WorldWideScience

Sample records for brain-derived polymorphic fibrils

  1. [Brain-derived neurotrophic factor gene (BDNF) polymorphism among Moscow citizens].

    Science.gov (United States)

    Kokaeva, Z G; Kochetkova, T O; Afonchikova, E V; Kondratyeva, N S; Klimov, E A

    2013-12-01

    Recent studies showed that brain-derived neurotrophic factor (BDNF) can participate in pathogenesis of various CNS disorders, being connected with proliferation, differentiation, and survival of neurons. In present study, analysis of occurrence rate was performed for three single nucleotide polymorphisms (SNPs) located in BDNF gene (rs6267 (A/G) allele A-0.265; rs2049046 (A/T) allele A-0.407; rs11030107 (A/G) allele A-0.872) in randomized selection of Moscow citizens. Linkage disequilibrium of rs6165 and rs2049046 loci was shown. Differences in allele frequencies in studied selection and populations of other re- gions were discovered.

  2. Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume.

    Science.gov (United States)

    Carballedo, Angela; Morris, Derek; Zill, Peter; Fahey, Ciara; Reinhold, Elena; Meisenzahl, Eva; Bondy, Brigitta; Gill, Michael; Möller, Hans-Jürgen; Frodl, Thomas

    2013-03-01

    The interaction between adverse life events during childhood and genetic factors is associated with a higher risk to develop major depressive disorder (MDD). One of the polymorphisms found to be associated with MDD is the Val66MET polymorphism of brain-derived neurotrophic factor (BDNF). The aim of our two-center study was to determine how the BDNF Val66Met polymorphism and childhood adversity affect the volumetric measures of the hippocampus in healthy individuals and people with MDD. In this two-center study, 62 adult patients with MDD and 71 healthy matched controls underwent high-resolution magnetic resonance imaging. We used manual tracing of the bilateral hippocampal structure with help of the software BRAINS2, assessed childhood adversity using the Childhood Trauma Questionnaire and genotyped Val66Met BDNF SNP (rs6265). MDD patients had smaller hippocampal volumes, both in the left and right hemispheres (F = 5.4, P = 0.022). We also found a significant interaction between BDNF allele and history of childhood adversity (F = 6.1, P = 0.015): Met allele carriers in our samples showed significantly smaller hippocampal volumes when they did have a history of childhood adversity, both in patients and controls. Our results highlight how relevant stress-gene interactions are for hippocampal volume reductions. Subjects exposed to early life adversity developed smaller hippocampal volumes when they carry the Met-allele of the BDNF polymorphism.

  3. Association analysis of the brain-derived neurotrophic factor gene polymorphisms with early-onset schizophrenia in the Chinese population

    Institute of Scientific and Technical Information of China (English)

    易正辉

    2012-01-01

    Objective To investigate the relationship between the brain-derived neurotrophic factor (BDNF) gene Tag SNPs(rs 11030101 and rs6265) and early-onset schizophrenia in the Chinese Han population. Methods The tag single nucleotide polymorphisms (tag SNPs) rs11030101 and rs6265 in the BDNF gene were genotyped

  4. The role of brain-derived neurotrophic factor and its single nucleotide polymorphisms in stroke patients.

    Science.gov (United States)

    Kotlęga, Dariusz; Peda, Barbara; Zembroń-Łacny, Agnieszka; Gołąb-Janowska, Monika; Nowacki, Przemysław

    2017-03-06

    Stroke is the main cause of motoric and neuropsychological disability in adults. Recent advances in research into the role of the brain-derived neurotrophic factor in neuroplasticity, neuroprotection and neurogenesis might provide important information for the development of new poststroke-rehabilitation strategies. It plays a role as a mediator in motor learning and rehabilitation after stroke. Concentrations of BDNF are lower in acute ischemic-stroke patients compared to controls. Lower levels of BDNF are correlated with an increased risk of stroke, worse functional outcomes and higher mortality. BDNF signalling is dependent on the genetic variation which could affect an individual's response to recovery after stroke. Several single nucleotide polymorphisms of the BDNF gene have been studied with regard to stroke patients, but most papers analyse the rs6265 which results in a change from valine to methionine in the precursor protein. Subsequently a reduction in BDNF activity is observed. There are studies indicating the role of this polymorphism in brain plasticity, functional and morphological changes in the brain. It may affect the risk of ischemic stroke, post-stroke outcomes and the efficacy of the rehabilitation process within physical exercise and transcranial magnetic stimulation. There is a consistent trend of Met alleles' being connected with worse outcomes and prognoses after stroke. However, there is no satisfactory data confirming the importance of Met allele in stroke epidemiology and the post-stroke rehabilitation process. We present the current data on the role of BDNF and polymorphisms of the BDNF gene in stroke patients, concentrating on human studies.

  5. Association study of a brain-derived neurotrophic factor polymorphism and short-term antidepressant response in major depressive disorders

    Directory of Open Access Journals (Sweden)

    Lung-Cheng Huang

    2008-10-01

    Full Text Available Eugene Lin1,7, Po See Chen2,6,7, Lung-Cheng Huang3,4, Sen-Yen Hsu51Vita Genomics, Inc., Wugu Shiang, Taipei, Taiwan; 2Department of Psychiatry, Hospital and College of Medicine, National Cheng Kung University, Tainan, Taiwan; 3Department of Psychiatry, National Taiwan University Hospital Yun-Lin Branch, Taiwan; 4Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Psychiatry, Chi Mei Medical Center, Liouying, Tainan, Taiwan; 6Department of Psychiatry, National Cheng Kung University Hospital, Dou-liou Branch, Yunlin, Taiwan; 7These authors contributed equally to this workAbstract: Major depressive disorder (MDD is one of the most common mental disorders worldwide. Single nucleotide polymorphisms (SNPs can be used in clinical association studies to determine the contribution of genes to drug efficacy. A common SNP in the brain-derived neurotrophic factor (BDNF gene, a methionine (Met substitution for valine (Val at codon 66 (Val66Met, is a candidate SNP for influencing antidepressant treatment outcome. In this study, our goal was to determine the relationship between the Val66Met polymorphism in the BDNF gene and the rapid antidepressant response to venlafaxine in a Taiwanese population with MDD. Overall, the BDNF Val66Met polymorphism was found not to be associated with short-term venlafaxine treatment outcome. However, the BDNF Val66Met polymorphism showed a trend to be associated with rapid venlafaxine treatment response in female patients. Future research with independent replication in large sample sizes is needed to confirm the role of the BDNF Val66Met polymorphism identified in this study.Keywords: antidepressant response, brain-derived neurotrophic factor, major depressive disorder, serotonin and norepinephrine reuptake inhibitor, single nucleotide polymorphisms

  6. No association of the Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) to multiple sclerosis.

    Science.gov (United States)

    Blanco, Y; Gómez-Choco, M; Arostegui, J L; Casanova, B; Martínez-Rodríguez, J E; Boscá, I; Munteis, E; Yagüe, J; Graus, F; Saiz, A

    2006-04-03

    Brain-derived neurotrophic factor (BDNF), a neurotrophin produced by neurons and immune cells, promotes neuronal survival and repair during development and after CNS injury. The BDNF-Val66Met polymorphism is functional and induces abnormal intracellular trafficking and decreased BDNF release. Therefore, we investigated the impact of the BDNF-Val66Met polymorphism on the susceptibility and clinical course in a case-control study of 224 multiple sclerosis (MS) Spanish patients and 177 healthy controls. We found no evidence for association to susceptibility or severity of the disease in our population. Moreover, we did not observe, in a subgroup of 12 MS patients, that the methionine substitution at position 66 in the prodomain had negative impact in the capacity to produce BDNF by peripheral blood mononuclear cells (PBMC).

  7. Gray Matter Volume in Adolescent Anxiety: An Impact of the Brain-Derived Neurotrophic Factor Val[superscript 66]Met Polymorphism?

    Science.gov (United States)

    Mueller, Sven C.; Aouidad, Aveline; Gorodetsky, Elena; Goldman, David; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Minimal research links anxiety disorders in adolescents to regional gray matter volume (GMV) abnormalities and their modulation by genetic factors. Prior research suggests that a brain-derived neurotrophic factor (BNDF) Val[superscript 66]Met polymorphism may modulate such brain morphometry profiles. Method: Using voxel-based…

  8. Increase in serum brain-derived neurotrophic factor in met allele carriers of the BDNF Val66Met polymorphism is specific to males.

    NARCIS (Netherlands)

    Bus, B.A.A.; Arias Vasquez, A.; Franke, B.; Prickaerts, J.; Graaf, J. de; Oude Voshaar, R.C.

    2012-01-01

    BACKGROUND: Association studies of the Val66Met polymorphism and serum brain-derived neurotrophic factor (BDNF) levels have yielded conflicting results. Recently, sex-specific differences in BDNF levels were demonstrated. As these might explain the reported inconsistencies, we tested sex interaction

  9. Attention-deficit hyperactivity disorder and intellectual disability: a study of association with brain-derived neurotrophic factor gene polymorphisms.

    Science.gov (United States)

    Aureli, A; Del Beato, T; Sebastiani, P; Marimpietri, A; Melillo, C V; Sechi, E; Di Loreto, S

    2010-01-01

    Symptoms of attention-deficit hyperactivity disorder (ADHD) have been found in several studies of children with intellectual disabilities (ID) but the two diseases are not always associated. Several lines of evidence implicate the involvement of brain-derived neurotrophic factor (BDNF) in ADHD, and it may also be relevant in ID due to its known involvement in the development of the central nervous system (CNS) and in learning/memory functions. We genotyped paediatric patients with ADHD and ID for the Val66Met and 270 C/T polymorphisms in BDNF. Diagnosis of ADHD and ID was confirmed by the clinicians in accordance with DSM-IV criteria. The G/A genotype of the Val66Met SNP was associated with both ADHD and ID, and the G allele was significantly associated with ADHD. The C/C genotype of the C270T SNP was significantly overrepresented in both ADHD and ID groups compared with the controls. Data suggest that both BDNF polymorphisms could play a role in the etiology of ADHD. In addition, we present the first results suggesting that these BDNF SNPs are significantly associated with ID.

  10. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine

    Directory of Open Access Journals (Sweden)

    Coskun S

    2016-07-01

    Full Text Available Salih Coskun,1 Sefer Varol,2 Hasan H Ozdemir,2 Elif Agacayak,3 Birsen Aydın,4 Oktay Kapan,5 Mehmet Akif Camkurt,6 Saban Tunc,7 Mehmet Ugur Cevik2 1Department of Medical Genetics, 2Department of Neurology, 3Department of Obstetrics and Gynecology, Medical Faculty, Dicle University, Diyarbakır, Turkey; 4Department of Neurology, Diyarbakır Education and Research Hospital, Diyarbakır, Turkey; 5Department of Neurology, Elaziğ Education and Research Hospital, Elaziğ, Turkey; 6Department of Psychiatry, Afsin State Hospital, Kahramanmaras, Turkey; 7Laboratory of Molecular Genetics, Medical Faculty, Dicle University, Diyarbakır, Turkey Abstract: Migraine is one of the most common neurological diseases worldwide. Migraine pathophysiology is very complex. Genetic factors play a major role in migraine. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF, play an important role in central nervous system functioning, development, and modulation of pain. This study investigates whether polymorphisms in the BDNF and NGF genes are associated with migraine disease in a Turkish case–control population. Overall, 576 subjects were investigated (288 patients with migraine and 288 healthy controls for the following polymorphisms: rs6265(G/A, rs8192466(C/T, rs925946(G/T, rs2049046(A/T, and rs12273363(T/C in the BDNF gene, and rs6330(C/T, rs11466112(C/T, rs11102930(C/A, and rs4839435(G/A in the NGF gene using 5'-exonuclease allelic discrimination assays. We found no differences in frequency of the analyzed eight polymorphisms between migraine and control groups. However, the frequency of minor A alleles of rs6265 in BDNF gene was borderline significant in the patients compared with the healthy controls (P=0.049; odds ratios [ORs] [95% confidence intervals {CIs}] =0.723 [0.523–0.999]. Moreover, when the migraine patients were divided into two subgroups, migraine with aura (MA and migraine without aura (MO, the

  11. Brain-derived neurotrophic factor Val66Met polymorphism and hippocampal activation during episodic encoding and retrieval tasks

    Science.gov (United States)

    Dennis, Nancy A.; Cabeza, Roberto; Need, Anna C.; Waters-Metenier, Sheena; Goldstein, David B.; LaBar, Kevin S.

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin which has been shown to regulate cell survival and proliferation, as well as synaptic growth and hippocampal long-term potentiation. A naturally occurring single nucleotide polymorphism in the human BDNF gene (val66met) has been associated with altered intercellular trafficking and regulated secretion of BDNF in met compared to val carriers. Additionally, previous studies have found a relationship between the BDNF val66met genotype and functional activity in the hippocampus during episodic and working memory tasks in healthy young adults. Specifically, studies have found that met carriers exhibit both poorer performance and reduced neural activity within the medial temporal lobe (MTL) when performing episodic memory tasks. However, these studies have not been well replicated and have not considered the role of behavioral differences in the interpretation of neural differences. The current study sought to control for cognitive performance in investigating the role of the BDNF val66met genotype on neural activity associated with episodic memory. Across item and relational memory tests, met carriers exhibited increased MTL activation during both encoding and retrieval stages, compared to non-carriers. The results suggest that met carriers are able to recruit MTL activity to support successful memory processes, and reductions in cognitive performance observed in prior studies are not a ubiquitous effect associated with variants of the BDNF val66met genotype. PMID:20865733

  12. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism affects sympathetic tone in a gender-specific way.

    Science.gov (United States)

    Chang, Chuan-Chia; Chang, Hsin-An; Chen, Tien-Yu; Fang, Wen-Hui; Huang, San-Yuan

    2014-09-01

    The Val/Val genotype of the brain-derived neurotrophic factor (BDNF) polymorphism (Val66Met) has been reported to affect human anxiety-related phenotypes. Substantial research has demonstrated that anxiety is associated with sympathetic activation, while sex steroid hormones have been shown to exert differential actions in regulating BDNF expression. Thus, we examined whether the BDNF variant modulates autonomic function in a gender-dependent manner. From 708 adults initially screened for medical and psychiatric illnesses, a final cohort of 583 drug-free healthy Han Chinese (355 males, 228 females; age 34.43±8.42 years) was recruited for BDNF genotyping (Val/Val: 136, 23.3%, Val/Met: 294, 50.4%, and Met/Met: 153, 26.2%). Time- and frequency-domain analyses of heart rate variability (HRV) were used to assess autonomic outflow to the heart. Significant genotype-by-gender interaction effects were found on HRV indices. Even after adjusting for possible confounders, male participants bearing the Val/Val genotype had significant increases in low frequency (LF), LF% and LF/high frequency (HF) ratio, indicating altered sympathovagal balance with increased sympathetic modulation, compared to male Met/Met homozygotes. Females, however, showed an opposite but non-significant pattern. These results suggest that the studied BDNF polymorphism is associated with sympathetic control in a gender-specific way. The findings here support the view that male subjects with the Val/Val genotype have increased risk of anxiety by association with sympathetic activation.

  13. Assessment of Brain-Derived Neurotrophic Gene and its Polymorphism Frequency in Patients With Bipolar Disorder in Hamadan

    Directory of Open Access Journals (Sweden)

    Ejmalian

    2016-05-01

    Full Text Available Background Bipolar disorder is a biological brain disorder which is associated with debilitating fluctuation in mood and adverse effects on patients, their families and society. The importance of genetics and its role in bipolar disorder is a controversial issue to discuss. Evidence indicates a relation between the risk of bipolar disorder and specific genes. Amongst the genes whose role has been established in bipolar disorder, the most notable gene is BDNF (Brain-derived neurotrophic factor. Methods The study is based on a case-control methodology. During 18 months, the blood samples of patients diagnosed with bipolar mood disorder who were admitted to Farshchian hospital of Hamadan from March 2011 to September 2012 and for the control group, the blood samples of patients admitted to other parts of Farshchian hospital except psychiatric ward were taken and DNA extraction from white blood cells was performed. In general, 84 patients and 85 controls were examined in this study and an expert in vials containing EDTA anticoagulant collected 4ml of blood samples. These samples were sent to the molecular biology lab of Hamadan University of Medical Science to determine their genetic polymorphisms. Genomic DNA was extracted from peripheral blood cells using the real extraction DNA kit (DNP Tm kit, Cat# DN8115C, CinnaGen co., Iran. The allele specific polymerase chain reaction technique was used to determine the frequencies of listed genotype. Considering the different variations for each gene, primers design was carried out using the Allele ID software (Allele ID 6, premier Bio soft Int, USA. For this purpose, 401 nucleotide sequences of targeted gene polymorphisms was chosen as the control sequence and desired primers for this sequence was designed and ordered (Takapouzist Co., Iran. Finally, using the mentioned method the sequences were amplified and examined on 2% agarose gel during electrophoresis. The young mania rating scale (YMRS was used to

  14. No influence of brain-derived neurotrophic factor (BDNF) polymorphisms on treatment response in a naturalistic sample of patients with major depression.

    Science.gov (United States)

    Musil, Richard; Zill, Peter; Seemüller, Florian; Bondy, Brigitta; Obermeier, Michael; Spellmann, Ilja; Bender, Wolfram; Adli, Mazda; Heuser, Isabella; Zeiler, Joachim; Gaebel, Wolfgang; Maier, Wolfgang; Rietschel, Marcella; Rujescu, Dan; Schennach, Rebecca; Möller, Hans-Jürgen; Riedel, Michael

    2013-08-01

    The role of the brain-derived neurotrophic factor (BDNF) in the pathophysiology of major depressive disorder (MDD) remains to be elucidated. Recent post hoc analyses indicated a potential association of three polymorphisms in the BDNF gene with worse treatment outcome in patients with the subtype of melancholic depression. We aimed at replicating these findings in a German naturalistic multicenter follow-up. Three polymorphisms in the BDNF gene (rs7103411, rs6265 (Val66Met) and rs7124442) were genotyped in 324 patients with MDD and 470 healthy controls. We applied univariate tests and logistic regression models stratifying for depression subtype and gender. The three polymorphisms were not associated with MDD as diagnosis. Further, no associations were found in univariate tests. With logistic regression, we only found a tendency towards an association of the rs6265 (Val66Met) polymorphism with overall response to treatment (response rates: GG (val/val) < GA (val/met) < AA (met/met); p = 0.0129) and some gender differences for the rs6265 (Val66Met) and rs7103411 polymorphisms. Treatment outcome stratified for subtypes of depression did not differ significantly between the investigated polymorphisms or using haplotype analyses. However, results showed a tendency towards significance. At this stage, we cannot support an influence of these three polymorphisms. Further studies in larger patient samples to increase sample sizes of subgroups are warranted.

  15. The brain-derived neurotrophic factor (BDNF) val66met polymorphism differentially affects performance on subscales of the Wechsler Memory Scale - Third Edition (WMS-III).

    Science.gov (United States)

    Lamb, Yvette N; Thompson, Christopher S; McKay, Nicole S; Waldie, Karen E; Kirk, Ian J

    2015-01-01

    Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF) gene and the catechol-O-methyltransferase (COMT) gene influence brain structure and function, as well as cognitive abilities. They are most influential in the hippocampus and prefrontal cortex (PFC), respectively. Recall and recognition are forms of memory proposed to have different neural substrates, with recall having a greater dependence on the PFC and hippocampus. This study aimed to determine whether the BDNF val(66)met or COMT val(158)met polymorphisms differentially affect recall and recognition, and whether these polymorphisms interact. A sample of 100 healthy adults was assessed on recall and familiarity-based recognition using the Faces and Family Pictures subscales of the Wechsler Memory Scale - Third Edition (WMS-III). COMT genotype did not affect performance on either task. The BDNF polymorphism (i.e., met carriers relative to val homozygotes) was associated with poorer recall ability, while not influencing recognition. Combining subscale scores in memory tests such as the WMS might obscure gene effects. Our results demonstrate the importance of distinguishing between recall and familiarity-based recognition in neurogenetics research.

  16. The brain-derived neurotrophic factor (BDNF val66met polymorphism differentially affects performance on subscales of the Wechsler memory scale – third edition (WMS-III

    Directory of Open Access Journals (Sweden)

    Yvette Nicole Lamb

    2015-08-01

    Full Text Available Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF gene and the catechol-O-methyltransferase (COMT gene influence brain structure and function, as well as cognitive abilities. They are most influential in the hippocampus and prefrontal cortex (PFC, respectively. Recall and recognition are forms of memory proposed to have different neural substrates, with recall having a greater dependence on the PFC and hippocampus. This study aimed to determine whether the BDNF val66met or COMT val158met polymorphisms differentially affect recall and recognition, and whether these polymorphisms interact. A sample of 100 healthy adults was assessed on recall and familiarity-based recognition using the Faces and Family Pictures subscales of the Wechsler Memory Scale – Third Edition (WMS-III. COMT genotype did not affect performance on either task. The BDNF polymorphism (i.e. met carriers relative to val homozygotes was associated with poorer recall ability, while not influencing recognition. Combining subscale scores in memory tests such as the WMS might obscure gene effects. Our results demonstrate the importance of distinguishing between recall and familiarity-based recognition in neurogenetics research.

  17. Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphism Is a Risk Factor for Attention-Deficit Hyperactivity Disorder in a Turkish Sample

    Science.gov (United States)

    Ozturk, Onder; Basay, Burge Kabukcu; Buber, Ahmet; Basay, Omer; Alacam, Huseyin; Bacanlı, Ali; Yılmaz, Şenay Görücü; Erdal, Mehmet Emin; Ercan, Eyup Sabri

    2016-01-01

    Objective Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that negatively affects different areas of life. We aimed to evaluate the associations between the Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) and ADHD and to assess the effect of the BDNF polymorphism on the neurocognitive profile and clinical symptomatology in ADHD. Methods Two hundred one ADHD cases and 99 typically developing subjects (TD) between the ages of 8 and 15 years were involved in the study. All subjects were evaluated using a complete neuropsychological battery, Child Behavior Checklist, the Teacher's Report Form (TRF) and the DSM-IV Disruptive Behavior Disorders Rating Scale-teacher and parent forms. Results The GG genotype was significantly more frequent in the patients with ADHD than in the TD controls, and the GG genotype was also significantly more frequent in the ADHD-combined (ADHD-C) subtype patients than in the TDs. However, there were no significant associations of the BDNF polymorphism with the ADHD subtypes or neurocognitive profiles of the patients. The teacher-assessed hyperactivity and inattention symptom count and the total score were higher, and the appropriately behaving subtest score of the TRF was lower in the GG genotypes than in the GA and AA (i.e., the A-containing) genotypes. Conclusion We found a positive association between the BDNF gene Val66Met polymorphism and ADHD, and this association was observed specifically in the ADHD-C subtype and not the ADHD-predominantly inattentive subtype. Our findings support that the Val66Met polymorphism of BDNF gene might be involved in the pathogenesis of ADHD. Furthermore Val66Met polymorphism of BDNF gene may be more closely associated with hyperactivity rather than inattention.

  18. Angiotensinogen and ACE gene polymorphisms and risk of atrial fibrillation in the general population

    DEFF Research Database (Denmark)

    Ravn, Lasse Steen; Benn, Marianne; Nordestgaard, Børge

    2008-01-01

    Objectives The renin-angiotensin system may play a role in the pathogenesis of atrial fibrillation, and renin-angiotensin system blockers reduce the risk of atrial fibrillation. We hypothesized that polymorphisms in the angiotensinogen and angiotensin-converting enzyme (ACE) genes encoding proteins...... in this system predict risk of atrial fibrillation. Methods and results We genotyped 9235 individuals from the Danish general population, The Copenhagen City Heart Study, for the a-20c, g-6a, T174M, and M235T polymorphisms in the angiotensinogen gene and the insertion/deletion (I/D) polymorphism in the ACE gene...

  19. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS.

    Science.gov (United States)

    Cheeran, Binith; Talelli, Penelope; Mori, Francesco; Koch, Giacomo; Suppa, Antonio; Edwards, Mark; Houlden, Henry; Bhatia, Kailash; Greenwood, Richard; Rothwell, John C

    2008-12-01

    The brain-derived neurotrophic factor gene (BDNF) is one of many genes thought to influence synaptic plasticity in the adult brain and shows a common single nucleotide polymorphism (BDNF Val66Met) in the normal population that is associated with differences in hippocampal volume and episodic memory. It is also thought to influence possible synaptic changes in motor cortex following a simple motor learning task. Here we extend these studies by using new non-invasive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) techniques that directly test the excitability and plasticity of neuronal circuits in human motor cortex in subjects at rest. We investigated whether the susceptibility to TMS probes of plasticity is significantly influenced by the BDNF polymorphism. Val66Met carriers were matched with Val66Val individuals and tested on the following protocols: continuous and intermittent theta burst TMS; median nerve paired associative stimulation; and homeostatic plasticity in the TDCS/1 Hz rTMS model. The response of Met allele carriers differed significantly in all protocols compared with the response of Val66Val individuals. We suggest that this is due to the effect of BNDF on the susceptibility of synapses to undergo LTP/LTD. The circuits tested here are implicated in the pathophysiology of movement disorders such as dystonia and are being assessed as potential new targets in the treatment of stroke. Thus the polymorphism may be one factor that influences the natural response of the brain to injury and disease.

  20. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and its implication in executive functions in adult offspring of alcohol-dependent probands.

    Science.gov (United States)

    Benzerouk, Farid; Gierski, Fabien; Gorwood, Philip; Ramoz, Nicolas; Stefaniak, Nicolas; Hübsch, Bérengère; Kaladjian, Arthur; Limosin, Frédéric

    2013-06-01

    Impairment of executive functions (EFs) mediated by the prefrontal lobe is regarded as a cognitive endophenotype of alcohol dependence, being observed both in probands and in healthy offspring. Given its impact on the anatomy of the prefrontal cortex, the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism may well be involved in this specific endophenotype. Forty-six healthy adult children of alcoholics (HACA) and 82 healthy controls (HC) took part in the study. All the participants were assessed with the Diagnostic Interview for Genetic Studies, and their family histories of alcohol and substance use were assessed with the Family Informant Schedule and Criteria. The Trail Making Test, Arithmetic Switching Task, Stroop Color-Word Test and Wisconsin Card Sorting Test were administered to assess EFs. An overall executive factor score was calculated using factorial analyses. Genotyping of the BDNF Val66Met polymorphism was performed using the TaqMan® allelic discrimination assay. HACA had significantly lower EFs performance than HC. Genetic analysis showed that BDNF genotype distributions were in Hardy-Weinberg equilibrium in the HACA and HC. Genotype and allele distributions did not differ significantly between the two groups. Participants with the Met allele performed significantly more poorly than participants with the Val allele, and a group by allele interaction was observed, the BDNF Met allele being associated with a poorer executive factor score in the HACA group. These results suggest that the BDNF Val66Met polymorphism may contribute to alcohol dependence vulnerability via lower EFs performance.

  1. The Role of the Val66Met Polymorphism of the Brain Derived Neurotrophic Factor Gene in Coping Strategies Relevant to Depressive Symptoms.

    Directory of Open Access Journals (Sweden)

    Warren Caldwell

    Full Text Available Disturbances of brain derived neurotrophic factor (BDNF signalling have been implicated in the evolution of depression, which likely arises, in part, as a result of diminished synaptic plasticity. Predictably, given stressor involvement in depression, BDNF is affected by recent stressors as well as stressors such as neglect experienced in early life. The effects of early life maltreatment in altering BDNF signalling may be particularly apparent among those individuals with specific BDNF polymorphisms. We examined whether polymorphisms of the Val66Met genotype might be influential in moderating how early-life events play out with respect to later coping styles, cognitive flexibility and depressive features. Among male and female undergraduate students (N = 124, childhood neglect was highly related to subsequent depressive symptoms. This outcome was moderated by the BDNF polymorphism in the sense that depressive symptoms appeared higher in Met carriers who reported low levels of neglect than in those with the Val/Val allele. However, under conditions of high neglect depressive symptoms only increased in the Val/Val individuals. In effect, the Met polymorphism was associated with depressive features, but did not interact with early life neglect in predicting later depressive features. It was further observed that among the Val/Val individuals, the relationship between neglect and depression was mediated by emotion-focused styles and diminished perceived control, whereas this mediation was not apparent in Met carriers. In contrast to the more typical view regarding this polymorphism, the data are consistent with the perspective that in the presence of synaptic plasticity presumably associated with the Val/Val genotype, neglect allows for the emergence of specific appraisal and coping styles, which are tied to depression. In the case of the reduced degree of neuroplasticity expected in the Met carriers, early life adverse experiences are not tied

  2. The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils.

    Science.gov (United States)

    Ivnitski, Denis; Amit, Moran; Silberbush, Ohad; Atsmon-Raz, Yoav; Nanda, Jayanta; Cohen-Luria, Rivka; Miller, Yifat; Ashkenasy, Gonen; Ashkenasy, Nurit

    2016-08-16

    Peptide fibril nanostructures have been advocated as components of future biotechnology and nanotechnology devices. However, the ability to exploit the fibril functionality for applications, such as catalysis or electron transfer, depends on the formation of well-defined architectures. Fibrils made of peptides substituted with aromatic groups are described presenting efficient electron delocalization. Peptide self-assembly under various conditions produced polymorphic fibril products presenting distinctly different conductivities. This process is driven by a collective set of hydrogen bonding, electrostatic, and π-stacking interactions, and as a result it can be directed towards formation of a distinct polymorph by using the medium to enhance specific interactions rather than the others. This method facilitates the detailed characterization of different polymorphs, and allows specific conditions to be established that lead to the polymorph with the highest conductivity.

  3. Study on the possible association of brain-derived neurotrophic factor polymorphism with the developmental course of symptoms of attention deficit and hyperactivity.

    Science.gov (United States)

    Bergman, Olle; Westberg, Lars; Lichtenstein, Paul; Eriksson, Elias; Larsson, Henrik

    2011-11-01

    Several studies have, with conflicting results, investigated the relationship between the Val⁶⁶Met polymorphism in brain-derived neurotrophic factor (BDNF) and attention deficit hyperactivity disorder (ADHD). We assessed longitudinal, quantitative phenotypes of hyperactivity-impulsivity and inattention in order to determine whether the Val⁶⁶Met polymorphism is associated with age-specific and/or persistent symptoms of hyperactivity-impulsivity and/or inattention in a community-based cohort of 1236 Swedish individuals for which ADHD symptom data were collected when the participants were aged 8-9, 13-14 and 16-17 yr. The Met allele was associated with symptoms of ADHD at ages 8-9 and 13-14 yr. A multivariate regression analysis revealed that the observed effect of the Met allele on ADHD symptoms reflects an influence on persistent hyperactivity-impulsivity symptoms. The present findings support the hypothesis that BDNF is involved in the pathogenesis of ADHD. The results highlight the importance of distinguishing between hyperactivity-impulsivity and inattention, respectively, and demonstrate the value of using a longitudinal approach in genetic studies of ADHD symptoms.

  4. The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients.

    Science.gov (United States)

    Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Wang, Tzu-Yun; Chen, Shih-Heng; Chu, Chun-Hsien; Chen, Po See; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-02-02

    BDNF and its gene polymorphism may be important in synaptic plasticity and neuron survival, and may become a key target in the physiopathology of long-term heroin use. Thus, we investigated the relationships between brain-derived neurotrophic factor (BDNF) plasma concentrations and the BDNF Val66Met nucleotide polymorphism (SNP) in heroin-dependent patients. The pretreatment expression levels of plasma BDNF and the BDNF Val66Met SNP in 172 heroin-dependent patients and 102 healthy controls were checked. BDNF levels were significantly lower in patients (F = 52.28, p BDNF levels significantly different between Met/Met, Met/Val, and Val/Val carriers in each group, which indicated that the BDNF Val66Met SNP did not affect plasma BDNF levels in our participants. In heroin-dependent patients, plasma BDNF levels were negatively correlated with the length of heroin dependency. Long-term (>15 years) users had significantly lower plasma BDNF levels than did short-term (BDNF concentration in habitual heroin users are not affected by BDNF Val66Met gene variants, but by the length of the heroin dependency.

  5. Association study of a brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and personality trait and intelligence in healthy young females.

    Science.gov (United States)

    Tsai, Shih-Jen; Hong, Chen-Jee; Yu, Younger W-Y; Chen, Tai-Jui

    2004-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the nerve-growth-factor family, plays an important role in neuronal survival and development, and it can modulate serotonergic activity. Further, BDNF has been implicated in the expression of personality traits and in cognitive function. We tested the associations between functional BDNF Val66Met genetic variants, and personality trait and intelligence in a cohort of 114 healthy young Chinese females. Subjects with the Val/Val genotype had a significantly higher mean performance IQ than Val/Met carriers, especially for the Object Assembly subtest. No significant association was demonstrated for the BDNF polymorphism and any of the Tridimensional Personality Questionnaire personality-factor scores, including harm avoidance. These results suggest that genetic variants of the BDNF gene may play a role in specific cognitive functions, but not in overall intelligence. In contrast to a recent report, however, this polymorphism does not appear to be associated with the neuroticism-related personality trait.

  6. Associations of Cigarette Smoking and Polymorphisms in Brain-Derived Neurotrophic Factor and Catechol-O-Methyltransferase with Neurocognition in Alcohol Dependent Individuals during Early Abstinence

    Directory of Open Access Journals (Sweden)

    Timothy eDurazzo

    2012-10-01

    Full Text Available Chronic cigarette smoking and polymorphisms in brain-derived neurotrophic factor (BDNF and catechol-o-methyltransferase (COMT are associated with neurocognition in normal controls and those with various neuropsychiatric conditions. The influence of these polymorphisms on neurocognition in alcohol dependence is unclear. The goal of this report was to investigate the associations of single nucleotide polymorphisms (SNP in BDNF Val66Met and COMT Val158Met with neurocognition in a treatment-seeking alcohol dependent cohort and determine if neurocognitive differences between non-smokers and smokers previously observed in this cohort persist when controlled for these functional SNPs. Genotyping was conducted on 70 primarily male treatment-seeking alcohol dependent participants (ALC who completed a comprehensive neuropsychological battery after 33 ± 9 days of monitored abstinence. Smoking ALC performed significantly worse than non-smoking ALC on the domains of auditory-verbal and visuospatial learning and memory, cognitive efficiency, general intelligence, processing speed and global neurocognition. In smoking ALC, greater number of years of smoking over lifetime was related to poorer performance on multiple domains. COMT Met homozygotes were superior to Val homozygotes on measures of executive skills and showed trends for higher general intelligence and visuospatial skills, while COMT Val/Met heterozygotes showed significantly better general intelligence than Val homozygotes. COMT Val homozygotes performed better than heterozygotes on auditory-verbal memory. BDNF genotype was not related to any neurocognitive domain. The findings are consistent with studies in normal controls and neuropsychiatric cohorts that observed COMT Met carriers showed better performance on measures of executive skills and general intelligence. Overall, the findings support to the expanding clinical movement to make smoking cessation programs available at the inception of

  7. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and post-stroke dementia: a hospital-based study from northern Iran.

    Science.gov (United States)

    Rezaei, Sajjad; Asgari Mobarake, Karim; Saberi, Alia; Keshavarz, Parvaneh; Leili, Ehsan Kazemnejad

    2016-06-01

    Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with functional and cognitive outcomes of stroke and plays a key role in preventing neuronal death. This study aimed to answer the following question: does BDNF Val66Met polymorphism prognosticate survival status and risk of post-stroke dementia (PSD)? In a retrospective cohort study, 206 patients with ischemic stroke (IS) entered the study. They were consecutively being admitted to the neurology clinic in Poursina Hospital (northern Iran) from 2012 to 2014. The diagnosis of PSD was based on DSM-5 criteria. The current and the premorbid cognitive statuses of the patients were respectively assessed through the third edition of Addenbrooke's Cognitive Examination and the Informant Questionnaire on Cognitive Decline in the Elderly. BDNF Val66Met gene polymorphism was determined by PCR-RFLP. On average, 48 patients (23.3 %) developed PSD 6 months after IS. Log-rank test showed that the survival rate of at least one Val-allele carriers was significantly lower than that of Met/Met homozygotes (P = 0.0005), and the former developed PSD sooner than the latter (375, 492 days, respectively). Cox model showed that heterozygous carriers of Val/Met were at greater risk of PSD over time (HR 2.280, 95 % CI 1.566-4.106, P = 0.006). However, the risk ratio of patients with PSD among different BDNF genotypes decreased after adjusting demographic, clinical, and vascular risk factors, and was no longer statistically significant (AHR 2.434, 95 % CI 0.597-9.926, P = 0.215). Val-allele carriers or Val/Met genotypes were more quickly diagnosed as having dementia after IS. However, this genetic vulnerability became more destructive when it was added to demographic, clinical, and vascular risk factors.

  8. Analysis of genetic polymorphisms of brain-derived neurotrophic factor and methylenetetrahydrofolate reductase in depressed patients in a Slovak (Caucasian) population.

    Science.gov (United States)

    Evinova, Andrea; Babusikova, Eva; Straka, Stanislav; Ondrejka, Igor; Lehotsky, Jan

    2012-12-01

    Major depressive disorder (MDD) is a complex neuropsychiatric disorder where both gene-gene and gene-environment interactions play an important role, but the clues are still not fully understood. One carbon metabolism in the CNS plays a critical role in the synthesis and release of neurotransmitters which are relevant to depressive disorder. We studied genetic polymorphisms of the brain derived neurotrophic factor (BDNF) and the methylenetetrahydrofolate reductase (MTHFR) in association with major depressive disorder. We genotyped the BDNF G196A, the MTHFR C677T, and A1298C polymorphisms in 134 patients diagnosed with major depression and 143 control subjects in Slovak (Caucasian) cohort of patients and probands. We found no significant association of either the BDNF G196A or MTHFR C677T polymorphisms with major depressive disorder neither in female nor male group of patients. However, the MTHFR A1298C genotype distribution was 36.6% (for AA genotype), 48.5% (AC) and 14.9% (CC) for the depressed patients, and 48.9% (AA), 42.7% (AC) and 8.4% (CC), respectively, for the control subjects. Patients with MDD had a higher prevalence of the CC genotype (OR = 2.38; 95% CI = 1.07-5.32; p = 0.032) and the AC + CC genotype (OR = 1.67; 95% CI = 1.03-2.69; p = 0.037) in comparison with the control subjects. This study shows that CC genotype of the MTHFR A1298C is associated with higher risk of MDD in Slovak population.

  9. Angiotensinogen and ACE gene polymorphisms and risk of atrial fibrillation in the general population

    DEFF Research Database (Denmark)

    Ravn, Lasse S; Benn, Marianne; Nordestgaard, Børge G

    2008-01-01

    proteins in this system predict risk of atrial fibrillation. METHODS AND RESULTS: We genotyped 9235 individuals from the Danish general population, The Copenhagen City Heart Study, for the a-20c, g-6a, T174M, and M235T polymorphisms in the angiotensinogen gene and the insertion/deletion (I/D) polymorphism...

  10. Association study of Val66Met polymorphism in brain-derived neurotrophic factor gene with clozapine-induced metabolic syndrome: preliminary results.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available The prevalence of the metabolic syndrome (MetS is higher among patients receiving atypical antipsychotics (AAPs treatment, and even among AAPs, treatment with clozapine has been shown to be associated with a higher long-term incidence rate of MetS. Likewise, brain-derived neurotrophic factor (BDNF deficiency has been reported to result in metabolic traits, such as increased food intake, hyperphagia and obesity, etc. In this study, we hypothesized that a functional polymorphism (Val66Met in the BDNF gene may confer susceptibility to clozapine-induced MetS, potentially in a sex-specific manner, since an interaction between Val66Met polymorphism and sex was observed in our previous studies. A total of 199 schizophrenia patients being treated with clozapine were divided into two groups, MetS and non-MetS, based on the diagnostic criteria of the National Cholesterol Education Program's Adult Treatment Panel III. We genotyped the Val66Met polymorphism, and measured the serum levels of fasting glucose (GLU, triglyceride (TG and high density lipoprotein cholesterol (HDL. There was a trend indicating a significant association between the homozygous Met/Met genotype and MetS in male patients (OR = 2.39; 95% CI: 1.05-5.41; p = 0.039; corrected p = 0.078. Among the six risk factors listed in the ATPIII criteria, we found a significant association between fasting GLU levels and Val66Met polymorphism in males (p = 0.005; corrected p = 0.03, but not in females (p = 0.65. Post-hoc analysis in males revealed that the Met/Met carriers had significant higher levels of fasting GLU than those with Val/Val or Val/Met genotypes (p = 0.007; corrected p = 0.042 and p = 0.002; corrected p = 0.012, respectively. In conclusion, we observed a weak association between the Val66Met polymorphism and clozapine-induced MetS in a sex-specific manner. While preliminary, such findings prompt further, large-scale longitudinal studies to

  11. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes.

    Science.gov (United States)

    Chen, Li; Pan, Hong; Tuan, Ta Anh; Teh, Ai Ling; MacIsaac, Julia L; Mah, Sarah M; McEwen, Lisa M; Li, Yue; Chen, Helen; Broekman, Birit F P; Buschdorf, Jan Paul; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang Mei; Gluckman, Peter D; Fortier, Marielle V; Rifkin-Graboi, Anne; Kobor, Michael S; Qiu, Anqi; Meaney, Michael J; Holbrook, Joanna D

    2015-02-01

    Early life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine-phosphate-guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine-phosphate-guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.

  12. Association between obesity and the brain-derived neurotrophic factor gene polymorphism Val66Met in individuals with bipolar disorder in Mexican population

    Directory of Open Access Journals (Sweden)

    Morales-Marín ME

    2016-07-01

    Full Text Available Mirna Edith Morales-Marín,1 Alma Delia Genis-Mendoza,1,2 Carlos Alfonso Tovilla-Zarate,3 Nuria Lanzagorta,4 Michael Escamilla,5 Humberto Nicolini1,4 1Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN, CDMX, Mexico; 2Psychiatric Care Services, Child Psychiatric Hospital Dr Juan N Navarro, CDMX, Mexico; 3Genomics Research Center, Juarez Autonomous University of Tabasco, Comalcalco, Mexico; 4Carracci Medical Group, CDMX, Mexico; 5Department of Psychiatry, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso TX, USA Background: The brain-derived neurotrophic factor (BDNF has been considered as an important candidate gene in bipolar disorder (BD; this association has been derived from several genetic and genome-wide studies. A polymorphic variant of the BDNF (Val66Met confers some differences in the clinical presentation of affective disorders. In this study, we evaluated a sample population from Mexico City to determine whether the BDNF (rs6265 Val66Met polymorphism is associated with the body mass index (BMI of patients with BD.Methods: This association study included a sample population of 357 individuals recruited in Mexico City. A total of 139 participants were diagnosed with BD and 137 were classified as psychiatrically healthy controls (all individuals were interviewed and evaluated by the Diagnostic Interview for Genetic Studies. Genomic DNA was extracted from peripheral blood leukocytes. The quantitative polymerase chain reaction (qPCR assay was performed in 96-well plates using the TaqMan Universal Thermal Cycling Protocol. After the PCR end point was reached, fluorescence intensity was measured in a 7,500 real-time PCR system and evaluated using the SDS v2.1 software, results were analyzed with Finetti and SPSS software. Concerning BMI stratification, random groups were defined as follows: normal <25 kg/m2, overweight (Ow =25.1–29.9 kg/m2

  13. Association between obesity and the brain-derived neurotrophic factor gene polymorphism Val66Met in individuals with bipolar disorder in Mexican population

    Science.gov (United States)

    Morales-Marín, Mirna Edith; Genis-Mendoza, Alma Delia; Tovilla-Zarate, Carlos Alfonso; Lanzagorta, Nuria; Escamilla, Michael; Nicolini, Humberto

    2016-01-01

    Background The brain-derived neurotrophic factor (BDNF) has been considered as an important candidate gene in bipolar disorder (BD); this association has been derived from several genetic and genome-wide studies. A polymorphic variant of the BDNF (Val66Met) confers some differences in the clinical presentation of affective disorders. In this study, we evaluated a sample population from Mexico City to determine whether the BDNF (rs6265) Val66Met polymorphism is associated with the body mass index (BMI) of patients with BD. Methods This association study included a sample population of 357 individuals recruited in Mexico City. A total of 139 participants were diagnosed with BD and 137 were classified as psychiatrically healthy controls (all individuals were interviewed and evaluated by the Diagnostic Interview for Genetic Studies). Genomic DNA was extracted from peripheral blood leukocytes. The quantitative polymerase chain reaction (qPCR) assay was performed in 96-well plates using the TaqMan Universal Thermal Cycling Protocol. After the PCR end point was reached, fluorescence intensity was measured in a 7,500 real-time PCR system and evaluated using the SDS v2.1 software, results were analyzed with Finetti and SPSS software. Concerning BMI stratification, random groups were defined as follows: normal 30 kg/m2. Results In the present work, we report the association of a particular BMI phenotype with the presence of the Val66Met allele in patients with BD (P=0.0033 and odds ratio [95% confidence interval] =0.332 [157–0.703]), and correlated the risk for valine allele carriers with Ow and Ob in patients with BD. Conclusion We found that the methionine allele confers a lower risk of developing Ow and Ob in patients with BD. We also confirmed that the G polymorphism represents a risk of developing Ow and Ob in patients with BD. In future studies, the haplotype analysis should provide additional evidence that BDNF may be associated with BD and BMI within the Mexican

  14. Brain-Derived Neurotrophic Factor (BDNF) Val66Met Polymorphism Differentially Predicts Hippocampal Function in Medication-Free Patients with Schizophrenia

    Science.gov (United States)

    Eisenberg, Daniel Paul; Ianni, Angela M.; Wei, Shau-Ming; Kohn, Philip D.; Kolachana, Bhaskar; Apud, José; Weinberger, Daniel R.; Berman, Karen F.

    2012-01-01

    A Val66Met single nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene impairs activity-dependent BDNF release in cultured hippocampal neurons and predicts impaired memory and exaggerated basal hippocampal activity in healthy humans. Several clinical genetic association studies, along with multi-modal evidence for hippocampal dysfunction in schizophrenia indirectly suggest a relationship between schizophrenia and genetically-determined BDNF function in the hippocampus. To directly test this hypothesized relationship, we studied 47 medication-free patients with schizophrenia or schizoaffective disorder and 74 healthy comparison individuals with genotyping for the Val66Met SNP and [15O]H2O positron emission tomography (PET) to measure resting and working memory-related hippocampal regional cerebral blood flow (rCBF). In patients, harboring a Met allele was associated with significantly less hippocampal rCBF. This finding was opposite to the genotype effect seen in healthy participants, resulting in a significant diagnosis-by-genotype interaction. Exploratory analyses of interregional resting rCBF covariation revealed a specific and significant diagnosis-by-genotype interaction effect on hippocampal-prefrontal coupling. A diagnosis-by-genotype interaction was also found for working-memory related hippocampal rCBF change, which was uniquely attenuated in Met allele-carrying patients. Thus, both task-independent and task-dependent hippocampal neurophysiology accommodates a Met allelic background differently in patients with schizophrenia than in control subjects. Potentially consistent with the hypothesis that cellular sequelae of the BDNF Val66Met SNP interface with aspects of schizophrenic hippocampal and frontotemporal dysfunction, these results warrant future investigation to understand the contributions of unique patient trait or state variables to these robust interactions. PMID:23319002

  15. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  16. Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training

    Science.gov (United States)

    Enge, Sören; Fleischhauer, Monika; Gärtner, Anne; Reif, Andreas; Lesch, Klaus-Peter; Kliegel, Matthias; Strobel, Alexander

    2016-01-01

    Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged

  17. Association of rs6265 and rs2030324 polymorphisms in brain-derived neurotrophic factor gene with Alzheimer's disease: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yan Lin

    Full Text Available BACKGROUND: The association between polymorphisms rs6265 and rs2030324 in brain-derived neurotrophic factor (BDNF and Alzheimer's disease (AD has been widely reported, but the results remain controversial. METHODS: A comprehensive search of Pubmed, Web of Science, China National Knowledge Infrastructure (CNKI, Wanfang Med Online and China Biology Medical literature database (CBM was performed. Pooled odds ratios (ORs with 95% confidence intervals (CIs were calculated using fixed or random-effects models. We excluded the studies with OR>3.0 or OR<0.3 for sensitive analysis. Subgroup analysis by ethnicity, form of AD and gender was carried out. Meta-regression was conducted to explore the potential sources of between-study heterogeneity. RESULTS: 29 articles with 7548 cases and 7334 controls concerning rs6265 and 22 articles with 5796 cases and 5706 controls concerning rs2030324 were included in this meta-analysis. The combined evidence suggested rs6265 contributing significantly to the increased risk of AD in females (codominant: fixed-effects model (FEM: OR = 1.13, 95% CI = 1.04-1.23; dominant: FEM: OR = 1.17, 95% CI = 1.05-1.31, especially for Caucasian females (codominant: FEM: OR = 1.18, 95% CI = 1.03-1.34; dominant: FEM: OR = 1.18, 95% CI = 1.01-1.37 and female late-onset Alzheimer's disease (LOAD patients (codominant: FEM: OR = 1.22, 95% CI = 1.05-1.41; dominant: FEM: OR = 1.23, 95% CI = 1.03-1.46. No evidence indicated an association between rs2030324 with AD in codominant (random-effects model (REM: OR = 1.06, 95% CI = 0.89-1.26 and dominant (REM: OR = 1.05, 95% CI = 0.86-1.27 models. CONCLUSION: This meta-analysis suggested A allele of rs6265 might increase the risk of AD in Caucasian females and female LOAD patients. In addition, no evidence indicated an association between rs2030324 with AD. Further studies are needed to confirm these results.

  18. Measurements of brain-derived neurotrophic factor

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Klein, Anders Bue; Vinberg, Maj;

    2007-01-01

    Although numerous studies have dealt with changes in blood brain-derived neurotrophic factor (BDNF), methodological issues about BDNF measurements have only been incompletely resolved. We validated BDNF ELISA with respect to accuracy, reproducibility and the effect of storage and repeated freezing...... reproducibility. Female gender is associated with higher whole blood BDNF concentrations whereas age, thrombocyte count and BDNF Val66Met polymorphism were un-associated....

  19. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans.

    Science.gov (United States)

    Caldwell Hooper, Ann E; Bryan, Angela D; Hagger, Martin S

    2014-12-01

    Individuals who are intrinsically motivated to exercise are more likely to do so consistently. In previous research, those with at least one copy of the methionine (met) allele in the brain-derived neurotrophic factor gene (BDNF; rs6265) had greater increases in positive mood and lower perceived exertion during exercise. This study examined whether genotype for BDNF is also related to intrinsic motivation, measured by self-report during a treadmill exercise session and a free-choice behavioral measure (continuing to exercise given the option to stop) among 89 regular exercisers (age M = 23.58, SD = 3.95). Those with at least one copy of the met allele reported greater increases in intrinsic motivation during exercise and were more likely to continue exercising when given the option to stop (55 vs. 33%). Results suggest that underlying genetic factors may partially influence perceptions of inherent rewards associated with exercise and might inform the development of individually targeted interventions.

  20. Brain-derived neurotrophic factor serum levels in genetically isolated populations: gender-specific association with anxiety disorder subtypes but not with anxiety levels or Val66Met polymorphism

    Directory of Open Access Journals (Sweden)

    Davide Carlino

    2015-10-01

    Full Text Available Anxiety disorders (ADs are disabling chronic disorders with exaggerated behavioral response to threats. This study was aimed at testing the hypothesis that ADs may be associated with reduced neurotrophic activity, particularly of Brain-derived neurotrophic factor (BDNF, and determining possible effects of genetics on serum BDNF concentrations. In 672 adult subjects from six isolated villages in North-Eastern Italy with high inbreeding, we determined serum BDNF levels and identified subjects with different ADs subtypes such as Social and Specific Phobias (PHSOC, PHSP, Generalized Anxiety Disorder (GAD, and Panic Disorder (PAD. Analysis of the population as a whole or individual village showed no significant correlation between serum BDNF levels and Val66Met polymorphism and no association with anxiety levels. Stratification of subjects highlighted a significant decrease in serum BDNF in females with GAD and males with PHSP. This study indicates low heritability and absence of any impact of the Val66Met polymorphism on circulating concentrations of BDNF. Our results show that BDNF is not a general biomarker of anxiety but serum BDNF levels correlate in a gender-specific manner with ADs subtypes.

  1. Brain-derived neurotrophic factor (Val66Met and serotonin transporter (5-HTTLPR polymorphisms modulate plasticity in inhibitory control performance over time but independent of inhibitory control training

    Directory of Open Access Journals (Sweden)

    Sören Enge

    2016-07-01

    Full Text Available Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N=122 and a three-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal was employed and genetic variation (Val66Met in the brain-derived neurotrophic factor (BDNF promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HT transporter (5-HTTLPR was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting

  2. Polymorphism, metastable species and interconversion: the many states of glucagon fibrils

    DEFF Research Database (Denmark)

    Ghodke, Shirin D; Jensen, Grethe Vestergaard; Svane, Anna Sigrid P.;

    2014-01-01

    . In addition to fundamental changes in secondary structure, glucagon fibril morphology can vary at two macroscopic levels, namely, the degree of association (three-filament fibrils form under quiescent conditions, and two-filament fibrils form with vigorous shaking) and the type of association (twisted fibrils...... fibril upon incubation at elevated temperatures (but not vice versa), indicating that fibrils are fundamentally malleable if they have not attained the most stable fibrillar state. While the effect of pressure on glucagon is complex (accelerating fibrillation at intermediate pressures and decelerating...... that the cyclodextrin kleptose retards glucagon fibrillation but without interfering fundamentally with the monomer–oligomer equilibrium....

  3. Development of a cost-efficient novel method for rapid, concurrent genotyping of five common single nucleotide polymorphisms of the brain derived neurotrophic factor (BDNF) gene by tetra-primer amplification refractory mutation system.

    Science.gov (United States)

    Wang, Cathy K; Xu, Michael S; Ross, Colin J; Lo, Ryan; Procyshyn, Ric M; Vila-Rodriguez, Fidel; White, Randall F; Honer, William G; Barr, Alasdair M

    2015-09-01

    Brain derived neurotrophic factor (BDNF) is a molecular trophic factor that plays a key role in neuronal survival and plasticity. Single nucleotide polymorphisms (SNPs) of the BDNF gene have been associated with specific phenotypic traits in a large number of neuropsychiatric disorders and the response to psychotherapeutic medications in patient populations. Nevertheless, due to study differences and occasionally contrasting findings, substantial further research is required to understand in better detail the association between specific BDNF SNPs and these psychiatric disorders. While considerable progress has been made recently in developing advanced genotyping platforms of SNPs, many high-throughput probe- or array-based detection methods currently available are limited by high costs, slow processing times or access to advanced instrumentation. The polymerase chain reaction (PCR)-based, tetra-primer amplification refractory mutation system (T-ARMS) method is a potential alternative technique for detecting SNP genotypes efficiently, quickly, easily, and cheaply. As a tool in psychopathology research, T-ARMS was shown to be capable of detecting five common SNPs in the BDNF gene (rs6265, rs988748, rs11030104, 11757G/C and rs7103411), which are all SNPs with previously demonstrated clinical relevance to schizophrenia and depression. The present technique therefore represents a suitable protocol for many research laboratories to study the genetic correlates of BDNF in psychiatric disorders. Copyright Copyright © 2015 John Wiley & Sons, Ltd.

  4. Sex-specific association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and plasma BDNF with attention-deficit/hyperactivity disorder in a drug-naïve Han Chinese sample.

    Science.gov (United States)

    Li, Haimei; Liu, Lu; Tang, Yilang; Ji, Ning; Yang, Li; Qian, Qiujin; Wang, Yufeng

    2014-07-30

    A functional polymorphism of the brain derived neurotrophic factor gene (BDNF) (Val66Met) has been suggested to be involved in the pathogenesis of attention-deficit/hyperactivity disorder (ADHD). It also has an impact on peripheral BDNF levels in psychiatric disorders. This study examined the association of Val66Met with plasma BDNF level of ADHD in Han Chinese children (170 medication - naïve ADHD patients and 155 unaffected controls, aged 6-16 years). The Val allele was showed a higher frequency in females with ADHD (n=84) than controls (P=0.029) from the case-control association study. The analysis of covariance (ANCOVA) indicated that the mean plasma BDNF levels of ADHD patients were significantly higher than that of controls (P=0.001). We performed both total sample and sex stratified analyses to investigate the effect of Val66Met genotype on the plasma BDNF levels, but only a trend of association was found in females with ADHD (n=84), with a tendency of lower plasma BDNF level in Val allele carriers than Met/Met genotype carriers (P=0.071). Our results suggested a sex-specific association between BDNF and ADHD. Furthermore, there was a possible sex-specific relationship between the BDNF Val66Met genotype and plasma BDNF levels. However, further studies are required to elucidate the role of BDNF in ADHD.

  5. Meta-analysis of the C270T polymorphism of brain-derived neurotrophic factor gene in schizophrenia%精神分裂症患者BDNF基因C270T多态性Meta分析

    Institute of Scientific and Technical Information of China (English)

    韩书贤; 钟衔江; 张丽丽; 罗晓; 安治国; 伊琦忠

    2014-01-01

    Objective To evaluate the relationship between the C270T polymorphism brain-derived neurotrophic factor and susceptibility of schizophrenia using meta-analysis. Methods A retrieval was performed on the case control study on the C270T polymorphism of the patients with schizophrenia. The meta-analysis was applied for investigating and summarizing the relationship between C270T polymorphism and schizophrenia. Subgroups were divided according to races. Results A total of 16 studies with 3874 patients and 4309 controls were included. The frequencies of C/T allele and genotype CC/(CT+TT) were associated with schizophrenia (all P<0.01) with OR 1.65 [95%CI (1.26, 2.16)] and 1.71 [95%CI (1.27, 2.30)], respectively. The association of C/T allele and genotype CC/(CT+TT) with schizophrenia was signif-icant in Asian subgroup (P<0.01), with OR 1.89 [95%CI (1.30, 2.75)] and 1.97 [95%CI (1.29, 3.03)], but not in Cauca-sian subgroup (all P=0.05). Conclusion The C270T polymorphism of brain-derived neurotrophic factor gene might con-tribute to the genetic susceptibility of schizophrenia in Asian population.%目的:评价脑源性神经营养因子基因C270T多态性与精神分裂症的关系。方法检索国内外公开发表的关于精神分裂症患者C270T位点多态性病例对照研究的文献,对C270T位点C/T等位基因和CC/(CT+TT)基因型进行Meta分析,计算OR值,并按人种因素分亚组分析。结果共纳入16篇文献,包括3874例患者与4309名对照。C/T等位基因和CC/(CT+TT)基因型均与精神分裂症有关(均P<0.01),OR值分别为1.65[95%CI(1.26,2.16)]和1.71[95%CI(1.27,2.30)]。亚组分析中,高加索人群等位基因和基因型与精神分裂症无统计学关联(均P=0.05);亚洲人群等位基因和基因型与发病风险有关(均P<0.01),OR值分别为1.89[95%CI(1.30,2.75)]和1.97[95%CI(1.29,3.03)]。结论脑源性神经营养因子基因C270T位点多态性可能增加

  6. Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region.

    Science.gov (United States)

    Cobb, Nathan J; Apostol, Marcin I; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K

    2014-01-31

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrP(Sc). One key operational parameter used to define differences between strains has been conformational stability of PrP(Sc) as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrP(Sc), especially because large strain-specific differences in PrP(Sc) stability are often observed despite a similar size of the PrP(Sc) core region.

  7. Conformational Stability of Mammalian Prion Protein Amyloid Fibrils Is Dictated by a Packing Polymorphism within the Core Region*

    Science.gov (United States)

    Cobb, Nathan J.; Apostol, Marcin I.; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K.

    2014-01-01

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrPSc. One key operational parameter used to define differences between strains has been conformational stability of PrPSc as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrPSc, especially because large strain-specific differences in PrPSc stability are often observed despite a similar size of the PrPSc core region. PMID:24338015

  8. Further exploration of the conformational space of α-synuclein fibrils: solid-state NMR assignment of a high-pH polymorph.

    Science.gov (United States)

    Verasdonck, Joeri; Bousset, Luc; Gath, Julia; Melki, Ronald; Böckmann, Anja; Meier, Beat H

    2016-04-01

    Polymorphism is a common and important phenomenon for protein fibrils which has been linked to the appearance of strains in prion and other neurodegenerative diseases. Parkinson disease is a frequently occurring neurodegenerative pathology, tightly associated with the formation of Lewy bodies. These deposits mainly consist of α-synuclein in fibrillar, β-sheet-rich form. α-synuclein is known to form numerous different polymorphs, which show distinct structural features. Here, we describe the chemical shift assignments, and derive the secondary structure, of a polymorph that was fibrillized at higher-than-physiological pH conditions. The fibrillar core contains residues 40-95, with both the C- and N-terminus not showing any ordered, rigid parts. The chemical shifts are similar to those recorded previously for an assigned polymorph that was fibrillized at neutral pH.

  9. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Gwonchan Yoon

    Full Text Available Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain. Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.

  10. The changing face of glucagon fibrillation: Structural polymorphism and conformational imprinting

    DEFF Research Database (Denmark)

    Pedersen, J.S.; Dikov, D.; Flink, J.L.

    2006-01-01

    concentration) appear less thermostable than those formed under more challenging conditions (high temperatures, low glucagon or low salt concentrations). Properties of preformed fibrils used for seeding are inherited in a prion-like manner. Thus, we conclude that the structure of fibrils formed by glucagon...

  11. Modulation of KCNQ1 current by atrial fibrillation-associated KCNE4 (145E/D) gene polymorphism

    Institute of Scientific and Technical Information of China (English)

    MA Ke-juan; LI Ning; TENG Si-yong; ZHANG Yin-hui; SUN Qi; GU Dong-feng; PU Jie-lin

    2007-01-01

    Background Atrial fibrillation is a common arrhythmia with multi-factorial pathogenesis. Recently, a single nucleotide polymorphism (G/T) at position 1057 in the KCNE4 gene, resulting in a glutamic acid (Glu, E)/aspartic acid (Asp, D) substitution at position 145 of the KCNE4 peptide, was found in our laboratory to be associated with idiopathic atrial fibrillation (atrial fibrillation more frequent with KCNE4 145D). However, the functional effect of the KCNE4 145E/Dpolymorphism is still unknown.Methods We constructed KCNE4 (145E/D) expression plasmids and transiently co-transfected them with the KCNQ1 gene into Chinese hamster ovary-K1 cells and performed whole-cell patch-clamping recording to identify the possible functional consequences of the single nucleotide polymorphism. Quantitative data were analyzed by Student's t test. Probability values less than 0.05 were considered statistically significant. Results A slowly activating, non-inactivating voltage-dependent current ((24.0±2.9) pA/pF, at +60 mV)) could be recorded in the cells transfected with KCNQ1 alone. Co-expression of wild type KCNE4 inhibited the KCNQ1 current ((7.3±1.1) pA/pF)). By contrast, co-expression of KCNE4 (145D) augment the KCNQ1 current ((42.9±3.7) pA/pF)). The V1/2 of activation for the KCNQ1/KCNE4 (145D) current was shifted significantly towards the depolarizing potential compared to that for the KCNQ1 current ((-2.3±0.2) mv vs (-13.0±1.5) mv, P < 0.01)) without changing the slope factorK. Furthermore, KCNE4 (145D) also affected the activation and deactivation kinetics of KCNQ1 channels. Conclusion We provide experimental evidence that the KCNE4 (145E/D) polymorphism exerts the effect of "gain of function" on the KCNQ1 channel. It may underlie the genetic mechanism of atrial fibrillation. Further studies on the functional association between Iks and KCNE4 (145D) polymorphism in cardiac myocytes are suggested.

  12. Polymorphism of amyloid-like fibrils can be defined by the concentration of seeds

    Directory of Open Access Journals (Sweden)

    Tomas Sneideris

    2015-08-01

    Full Text Available Prions are infectious proteins where the same protein may express distinct strains. The strains are enciphered by different misfolded conformations. Strain-like phenomena have also been reported in a number of other amyloid-forming proteins. One of the features of amyloid strains is the ability to self-propagate, maintaining a constant set of physical properties despite being propagated under conditions different from those that allowed initial formation of the strain. Here we report a cross-seeding experiment using strains formed under different conditions. Using high concentrations of seeds results in rapid elongation and new fibrils preserve the properties of the seeding fibrils. At low seed concentrations, secondary nucleation plays the major role and new fibrils gain properties predicted by the environment rather than the structure of the seeds. Our findings could explain conformational switching between amyloid strains observed in a wide variety of in vivo and in vitro experiments.

  13. Polymorphisms of angiotensin-converting enzyme 2 gene confer a risk to lone atrial fibrillation in Chinese male patients

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-xia; TAO Tao; FU Zhi-qing; XIE Xiang-zhu; WANG Hao; WANG Yu-tang

    2013-01-01

    Background Growing epidemiologic evidence has indicated that genetics can predispose individuals to the occurrence of lone atrial fibrillation (AF).The angiotensin-converting enzyme 2 (ACE2) gene has been established to be associated with hypertension and left ventricular hypertrophy.The objective of our study was to investigate the association of ACE2 gene polymorphisms with lone AF.Methods A total of 265 consecutive lone AF patients and 289 healthy controls were successfully investigated.The polymorphisms rs2106809 and rs2285666 were genotyped by polymerase chain reaction (PCR) and direct sequencing.A Logistic regression model was used to determine the odds ratio (OR) and 95% confidence intervals (CI) of variations of ACE2 for lone AF.Results The T allele of rs2106809 conferred an increased risk for lone AF (OR 1.24,95% CI 1.01-1.52,P=0.03) in males after adjustment for conventional risk factors.SNP at rs2285666 in males was not significantly different between AF patients and controls.No association was found between the two polymorphisms in the female population with lone AF.After (36.3±4.5) months of follow-up,the end point data were obtained:death (cardiac and noncardiac),ischemic stroke,and heart failure.In the male subgroup,the associations between rs2106809 T male carriers and combined end points including ischemic stroke,heart failure,and death in our study were of significance (OR 3.6,95% CI 1.0-13.1,P=0.04).Conclusions The results indicate that polymorphism at ACE2 gene is associated with male lone AF in a Chinese Han population.Lone AF males who carry the rs2106809 T allele are associated with adverse cardiac events.

  14. Brain-derived neurotrophic factor gene val66met polymorphism and executive functioning in patients with bipolar disorder Polimorfismo do gene do fator neurotrófico derivado do cérebro val66met e função executiva em pacientes com transtorno bipolar

    Directory of Open Access Journals (Sweden)

    Juliana Fernandes Tramontina

    2009-06-01

    Full Text Available OBJECTIVE: In the present study, we investigate the association between the val66met polymorphism of the brain-derived neurotrophic factor (BNDF and the performance on the Wisconsin Card Sorting Test in a sample of Caucasian Brazilian patients with bipolar disorder. METHOD: Sixty-four patients with bipolar disorder were assessed and their performance on the Wisconsin Card Sorting Test was compared with the allele frequency and genotype of the val66met polymorphism of the brain-derived neurotrophic factor. RESULTS: The percentage of non-perseverative errors was significantly higher among patients with the val/val genotype. There was no association between (BNDF genotype frequency and other Wisconsin Card Sorting Test domains. CONCLUSION: Our results did not replicate previous descriptions of an association between a worse cognitive performance and the presence of the met allele of the val66met brain-derived neurotrophic factor gene polymorphism.OBJETIVO: O presente estudo tem por objetivo investigar a associação entre o polimorfismo val66met do gene do fator neurotrófico derivado do cérebro (BDNF e o desempenho cognitivo no Teste Wisconsin de Classificação de Cartas em uma amostra de pacientes bipolares brasileiros caucasianos. MÉTODO: Sessenta e quatro pacientes com transtorno bipolar foram avaliados em relação a sua cognição por meio do Teste Wisconsin de Classificação de Cartas que foi comparada com a freqüência alélica e genotípica do polimorfismo val66met do gene do fator neurotrófico derivado do cérebro. RESULTADOS: O percentual de erros não-perseverativos foi significativamente maior nos indivíduos com genótipo val/val. Não foi encontrada diferença significativa entre a freqüência genotípica do polimorfismo do BDNF e os outros domínios do Teste Wisconsin de Classificação de Cartas. CONCLUSÃO: O estudo do polimorfismo val66met em relação ao desempenho executivo em pacientes bipolares caucasianos de uma

  15. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Krasnoslobodtsev, Alexey V., E-mail: akrasnos@unomaha.edu [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States); Department of Physics, University of Nebraska Omaha, Omaha, NE 68182 (United States); Deckert-Gaudig, Tanja [IPHT-Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Zhang, Yuliang [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States); Deckert, Volker [IPHT-Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Institute for Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena (Germany); Lyubchenko, Yuri L., E-mail: ylyubchenko@unmc.edu [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States)

    2016-06-15

    Aggregation of prion proteins is the cause of various prion related diseases. The infectious form of prions, amyloid aggregates, exist as multiple strains. The strains are thought to represent structurally different prion protein molecules packed into amyloid aggregates, but the knowledge on the structure of different types of aggregates is limited. Here we report on the use of AFM (Atomic Force Microscopy) and TERS (Tip-Enhanced Raman Scattering) to study morphological heterogeneity and access underlying conformational features of individual amyloid aggregates. Using AFM we identified the morphology of amyloid fibrils formed by the peptide (CGNNQQNY) from the yeast prion protein Sup35 that is critically involved in the aggregation of the full protein. TERS results demonstrate that morphologically different amyloid fibrils are composed of a distinct set of conformations. Fibrils formed at pH 5.6 are composed of a mixture of peptide conformations (β-sheets, random coil and α-helix) while fibrils formed in pH~2 solution primarily have β-sheets. Additionally, peak positions in the amide III region of the TERS spectra suggested that peptides have parallel arrangement of β-sheets for pH~2 fibrils and antiparallel arrangement for fibrils formed at pH 5.6. We also developed a methodology for detailed analysis of the peptide secondary structure by correlating intensity changes of Raman bands in different regions of TERS spectra. Such correlation established that structural composition of peptides is highly localized with large contribution of unordered secondary structures on a fibrillar surface. - Highlights: • Amyloid polymorphs were characterized by AFM and TERS. • A mixture of peptide secondary structures in fibrils were identified using TERS. • TERS recognizes packing arrangement (parallel versus antiparallel) of peptides. • TERS is a powerful tool for high resolution structural analysis of fibrils.

  16. Association study of brain-derived neurotrophic factor Val66Met polymorphism and clinical characteristics of first episode schizophrenia%脑源性神经营养因子Val66Met基因多态性与首发精神分裂症临床特征的关联研究

    Institute of Scientific and Technical Information of China (English)

    孙萌萌; 刘兰芬; 杨丽敏; 王妍; 崔开艳; 王丽娜; 李翠鸾; 乔冬冬; 王汝展

    2012-01-01

    Objective To assess the association between brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism and clinical characteristics of first episode schizophrenia in a Chinese Han population.Methods Genotyping of BDNF Val66Met polymorphism was carried out for 135 schizophrenic patients and 483 healthy controls with TaqMan probe technology.The patients' psychotic symptoms were assessed using the positive and negative syndrome scale (PANSS).Results A significant difference was found in genotype distribution and allelic frequency of the Val66Met polymorphism between the two groups (P<0.01).In patients,Met homozygotes had a significantly higher score in anxiety/depression factor,cognitive factor and total score of PANSS than Val carriers: Conclusion BDNF gene Val66Met polymorphism is associated with the pathogenesis of schizophrenia.The Met/Met genotype of BDNF Val66Met variant may be a risk factor for symptoms in first episode schizophrenia patients.%目的 探讨脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)基因Val66Met多态性与首发精神分裂症临床特征的关联性.方法 应用TaqMan荧光探针技术对135例首发精神分裂症患者及483名正常对照者进行基因分型;采用阳性与阴性症状量表(positive and negative syndrome scale,PANSS)评估精神分裂症患者临床特征.结果 精神分裂症患者组与正常对照组BDNF Val66Met基因型及等位基因分布频率的差异具有统计学意义(P<0.01);Met/Met基因型患者的PANSS总分、焦虑(抑郁)因子分及认知损害因子分均高于Val/Val和Val/Met基因型患者,差异有统计学意义(P<0.01).结论 BDNF基因Val66Met多态性可能与精神分裂症的发病有关;首发精神分裂症患者中Met/Met基因型者临床症状可能更重.

  17. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

    DEFF Research Database (Denmark)

    Krabbe, K. S.; Nielsen, A. R.; Krogh-Madsen, R.;

    2006-01-01

    Aims/hypothesis  Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer's disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore...... explored whether BDNF plays a role in human glucose metabolism. Subjects and methods  We included (Study 1) 233 humans divided into four groups depending on presence or absence of type 2 diabetes and presence or absence of obesity; and (Study 2) seven healthy volunteers who underwent both a hyperglycaemic...... and a hyperinsulinaemic-euglycaemic clamp. Results  Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism...

  18. A novel mutation in the RYR2 gene leading to catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation: dose-dependent arrhythmia-event suppression by β-blocker therapy.

    Science.gov (United States)

    Kazemian, Pedram; Gollob, Michael H; Pantano, Alfredo; Oudit, Gavin Y

    2011-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a genetic condition that presents with exercise-induced polymorphic arrhythmias. We describe a case report of a 25-year-old woman who had a cardiac arrest due to ventricular fibrillation. Genetic analysis revealed a novel missense mutation in exon 90 of the ryanodine receptor (RyR2) gene resulting in substitution of arginine for serine at residue 4153 (S4153R). The patient received an implantable cardioverter-defibrillator and low-dose β-blocker therapy. She had recurrent polymorphic ventricular arrhythmias treated with appropriate cardioverter-defibrillator shocks and paroxysmal atrial fibrillation. Titration of β-blocker to a much higher dose suppressed further episodes of ventricular arrhythmia and paroxysmal atrial fibrillation, resulting in reduction in device therapies.

  19. Molecular-level secondary structure, polymorphism, and dynamics of full-length -synuclein fibrils studied by solid-state NMR

    Science.gov (United States)

    Heise, Henrike; Hoyer, Wolfgang; Becker, Stefan; Andronesi, Ovidiu C.; Riedel, Dietmar; Baldus, Marc

    2005-11-01

    The 140-residue protein -synuclein (AS) is able to form amyloid fibrils and as such is the main component of protein inclusions involved in Parkinson's disease. We have investigated the structure and dynamics of full-length AS fibrils by high-resolution solid-state NMR spectroscopy. Homonuclear and heteronuclear 2D and 3D spectra of fibrils grown from uniformly 13C/15N-labeled AS and AS reverse-labeled for two of the most abundant amino acids, K and V, were analyzed. 13C and 15N signals exhibited linewidths of HR ALIGN=LEFT WIDTH=50% NOSHADE SIZE=1>

  20. Genetic moderation of child maltreatment effects on depression and internalizing symptoms by serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter (NET), and corticotropin releasing hormone receptor 1 (CRHR1) genes in African American children.

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A

    2014-11-01

    Genetic moderation of the effects of child maltreatment on depression and internalizing symptoms was investigated in a sample of low-income maltreated and nonmaltreated African American children (N = 1,096). Lifetime child maltreatment experiences were independently coded from Child Protective Services records and maternal report. Child depression and internalizing problems were assessed in the context of a summer research camp by self-report on the Children's Depression Inventory and adult counselor report on the Teacher Report Form. DNA was obtained from buccal cell or saliva samples and genotyped for polymorphisms of the following genes: serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter, and corticotropin releasing hormone receptor 1. Analyses of covariance with age and gender as covariates were conducted, with maltreatment status and respective polymorphism as main effects and their Gene × Environment (G × E) interactions. Maltreatment consistently was associated with higher Children's Depression Inventory and Teacher Report Form symptoms. The results for child self-report symptoms indicated a G × E interaction for BDNF and maltreatment. In addition, BDNF and triallelic 5-HTTLPR interacted with child maltreatment in a G × G × E interaction. Analyses for counselor report of child anxiety/depression symptoms on the Teacher Report Form indicated moderation of child maltreatment effects by triallelic 5-HTTLPR. These effects were elaborated based on variation in developmental timing of maltreatment experiences. Norepinephrine transporter was found to further moderate the G × E interaction of 5-HTTLPR and maltreatment status, revealing a G × G × E interaction. This G × G × E was extended by consideration of variation in maltreatment subtype experiences. Finally, G × G × E effects were observed for the co-action of BDNF and the corticotropin releasing hormone receptor 1

  1. Effects of interactions between post-traumatic stress disorder with brain-derived neurotrophic factor gene Val66 Met polymorphism on serum lipid profiles in adolescents%PTSD 与 BDN F基因 Val66Met 多态性相互作用对青少年血脂的影响

    Institute of Scientific and Technical Information of China (English)

    樊梅; 李蓉晖; 胡敏珊; 方定志

    2015-01-01

    To test our hypothesis that the interplay may occur between post-traumatic stress disorder (PTSD) and brain-derived neurotrophic factor (BDNF) gene BDNF Val66Met polymorphism and affect serum lipid profiles .Chinese high school students were enrolled after the 2008 Wenchuan earthquake .The PTSD checklist-civilian version (PCL-C) was used to measure the symp-toms of PTSD .Body mass index (BMI) and waist-hip ratio (WHR) were calculated .Serum levels of total cholesterol (TC) ,tri-glyceride (TG) ,low-density lipoprotein cholesterol (LDL-C) ,high-density lipoprotein cholesterol (HDL-C) and glucose were tested by routine methods . BDNF Val66Met polymorphism was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and verified by DNA sequencing .The results show that the male PTSD subjects have higher TG than male subjects without PTSD in the V al/V al homozygotes .Compared with the Met allele carriers ,V al/V al homozygotes have higher TG in the males with PTSD .The female PTSD subjects have higher BMI than the female subjects without PTSD in the Met allele carriers .The results suggest that the changes of lipid profiles induced by interactions of PTSD and BDNF V al66Met polymorphism are different in adolescents with different gender .These findings will provide new insights into further exploration of factors influencing lipid profiles and the mechanism ,and precision medicine and personalized prevention of dysli-poproteinemia and cardiovascular diseases .%为验证“创伤后应激障碍(post-traumatic stress disorder ,PTSD)和脑源性神经营养因子(brain derived neurotrophic fac-tor ,BDNF)基因 BDNFVal66Met多态性之间存在相互作用并影响血脂及相关指标”的新假设,以2008年汶川地震灾区高中学生为研究对象,采用PTSD检查量表平民版(PTSD checklist-civilian version ,PCL-C)评估PTSD症状,常规体格检查并计算体质指数(body mass index

  2. The Brain Derived Neurotrophic Factor and Personality

    Directory of Open Access Journals (Sweden)

    Christian Montag

    2014-01-01

    Full Text Available The study of the biological basis of personality is a timely research endeavor, with the aim of deepening our understanding of human nature. In recent years, a growing body of research has investigated the role of the brain derived neurotrophic factor (BDNF in the context of individual differences across human beings, with a focus on personality traits. A large number of different approaches have been chosen to illuminate the role of BDNF for personality, ranging from the measurement of BDNF in the serum/plasma to molecular genetics to (genetic brain imaging. The present review provides the reader with an overview of the current state of affairs in the context of BDNF and personality.

  3. A functional brain-derived neurotrophic factor (BDNF) gene variant increases the risk of moderate-to-severe allergic rhinitis

    NARCIS (Netherlands)

    Jin, Peng; Andiappan, Anand Kumar; Quek, Jia Min; Lee, Bernett; Au, Bijin; Sio, Yang Yie; Irwanto, Astrid; Schurmann, Claudia; Grabe, Hans Joergen; Suri, Bani Kaur; Matta, Sri Anusha; Westra, Harm-Jan; Franke, Lude; Esko, Tonu; Sun, Liangdan; Zhang, Xuejun; Liu, Hong; Zhang, Furen; Larbi, Anis; Xu, Xin; Poidinger, Michael; Liu, Jianjun; Chew, Fook Tim; Rotzschke, Olaf; Shi, Li; Wang, De Yun

    2015-01-01

    Background: Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. Objective: We sough

  4. 抑郁症患者无抽搐电休克治疗的疗效与脑源性神经营养因子基因多态性%Relationship between the effect of modified electroconvulsive therapy and brain-derived neurotrophic factor(BDNF) gene polymorphism in patients with major depressive disorder

    Institute of Scientific and Technical Information of China (English)

    楼丹丹; 况利; 李大奇; 甘窈; 艾明; 高新学

    2011-01-01

    目的:探讨抑郁症患者脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)基因两个单核苷酸多态性位点的多态性与无抽搐电休克治疗(modified electroconvulsive therapy,MECT)疗效的关系.方法:采用病例对照研究,研究组为110例符合美国精神障碍诊断统计手册第4版(Diagnostic and Statistical Manual of Mental Disorders,Fourth Edition,DSM-IV)抑郁症诊断标准的门诊及住院患者,对照组为100名正常人.患者入组后连续接受MECT 8次,使用汉密顿抑郁量表(Hamilton Depression Rat.ing Scale for Depression,HRSD)进行抑郁严重程度及疗效评估.运用PCR扩增及测序的方法,分析BD-NF基因rs6265、rs7103411单核苷酸多态性的分布,分析rs6265、rs7103411基因型及等位基因频率分布与MECT疗效的关系.结果:BDNF基因rs6265、rs7103411位点基因型及等位基因频率在对照组与患者组间的差异无统计学意义,MECT后2个位点基因型及rs710341I等位基因频率在不同疗效组间的差异无统计学意义.rs6265位点A等位基因频率和G等位基因频率在减分率I>50%组分别为47.9%、52.1%;在减分率<25%组分别为27.5%、72.5%,两组比较差异有统计学意义(P<0.05),且A等位基因对MECT反应好于G等位基因(OR=1.740,95%CI:1.022~2.963).结论:病情严重的抑郁症患者BDNF基因rs6265位点A等位基因可能与无抽搐电休克治疗效果有关,A等位基因携带者接受MECT的疗效较G等位基因携带者好.%Objective To explore the relation of brain-derived neurotrophic factor (BDNF) polymorphisms with the response to modified electroconvulsive therapy (MECT) in patients with major depressive disorder (MDD) . Methods: In this study, 110 patients with major depression were selected according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria, and 100 healthy person were used as controls. The patients received MECT 8 times consecutively and were assessed with

  5. 苯丙胺所致精神障碍患者血清脑源性神经营养因子水平及其基因G196A多态性研究%The serum concentrations of brain derived neurotrophic factor and its G196A polymorphism in amphetamine induced-psychosis inpatients

    Institute of Scientific and Technical Information of China (English)

    蒋贤飞; 侯峰; 王年生; 苏中华; 郝伟

    2015-01-01

    目的 探讨苯丙胺所致精神障碍患者外周血脑源性神经营养因子(BDNF)水平及其基因多态性(G196A)与苯丙胺滥用之间的相关性.方法 以233例苯丙胺滥用患者为研究对象,110例健康体检者为对照,采用ELISA法检测血清BDNF水平,应用聚合酶链式反应(PCR)扩增技术,检测其BDNF基因G196A分型,运用SPSS 12.0统计软件进行数据分析.结果 病例组血清BDNF水平[(205.81±75.36)pg/ml]明显高于对照组[(95.04±31.63)pg/ml](t=15.02,P<0.01),苯丙胺所致精神障碍组与苯丙胺滥用组患者血清BDNF水平差异无统计学意义(P>0.05),各等位基因及各基因型血清BDNF水平差异无统计学意义(P>0.05);苯丙胺所致精神障碍组、苯丙胺滥用组和对照组BDNF基因G196A的基因型频率及等位基因频率差异无统计学意义(P>0.05).结论 血清BDNF水平与苯丙胺滥用相关,与其G196A基因多态性无关;BDNF G196A基因多态性与苯丙胺滥用无关.%Objective To investigate the relationship between the serum concentrations of brain derived neurotrophicfactor (BDNF) and its G196A polymorphism in the amphetamine induced-psychosis inpatients.Methods The cross-sectional study included 233 amphetamine abuses and 110 healthy participants who served as controls.The serum concentration of BDNF was measured by sandwich ELISA,and the genotype of BDNF G196A polymorphism was determined used polymerase chain reaction (PCR) techniques.The data were analyzed using SPSS 12.0 statistics software.Results The serum concentration of BDNF in case group((205.81±75.36) pg/ml) were significantly higher than that in control group((95.04±31.63) pg/ml;t=15.02,P<0.01).There was no significant difference about the BDNF serum concentrations between the inpatients with the amphetamine induced psychosis and the inpatients with the amphetamine abuse (P>0.05).The BDNF serum concentration showed no significant difference in the genotype distributions and allele

  6. Brain-Derived Neurotrophic Factor in Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Jôice Dias Corrêa

    2014-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a member of the neurotrophic factor family. Outside the nervous system, BDNF has been shown to be expressed in various nonneural tissues, such as periodontal ligament, dental pulp, and odontoblasts. Although a role for BDNF in periodontal regeneration has been suggested, a function for BDNF in periodontal disease has not yet been studied. The aim of this study was to analyze the BDNF levels in periodontal tissues of patients with chronic periodontitis (CP and periodontally healthy controls (HC. All subjects were genotyped for the rs4923463 and rs6265 BDNF polymorphisms. Periodontal tissues were collected for ELISA, myeloperoxidase (MPO, and microscopic analysis from 28 CP patients and 29 HC subjects. BDNF levels were increased in CP patients compared to HC subjects. A negative correlation was observed when analyzing concentration of BDNF and IL-10 in inflamed periodontium. No differences in frequencies of BDNF genotypes between CP and HC subjects were observed. However, BDNF genotype GG was associated with increased levels of BDNF, TNF-α, and CXCL10 in CP patients. In conclusion, BDNF seems to be associated with periodontal disease process, but the specific role of BDNF still needs to be clarified.

  7. Brain-derived neurotrophic factor, food intake regulation, and obesity.

    Science.gov (United States)

    Rosas-Vargas, Haydeé; Martínez-Ezquerro, José Darío; Bienvenu, Thierry

    2011-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a fundamental role in development and plasticity of the central nervous system (CNS). It is currently recognized as a major participant in the regulation of food intake. Multiple studies have shown that different regulators of appetite such as leptin, insulin and pancreatic polypeptide (PP) potentially exert anorexigenic effects through BDNF. Low circulating levels of BDNF are associated with a higher risk of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Strict food restriction reduces BDNF and may trigger binge-eating episodes and weight gain. The existence of mutations that cause haploinsufficiency of BDNF as well as some genetic variants, notably the BDNF p.Val66Met polymorphism, are also associated with the development of obese phenotypes and hyperphagia. However, association of the Met allele with AN and BN, which have different phenotypic characteristics, shows clearly the existence of other relevant factors that regulate eating behavior. This may, in part, be explained by the epigenetic regulation of BDNF through mechanisms like DNA methylation and histone acetylation. Environmental factors, primarily during early development, are crucial to the establishment of these stable but reversible changes that alter the transcriptional expression and are transgenerationally heritable, with potential concomitant effects on the development of eating disorders and body weight control.

  8. Relationship between brain-derived neurotrophic factor gene C270T polymorphisms and the psychotic symptoms and cognitive functioning of patients with schizophrenia%脑源性神经营养因子C270T基因多态性与精神分裂症精神病理症状和认知功能的关系

    Institute of Scientific and Technical Information of China (English)

    翟金国; 赵靖平; 陈敏; 李君; 苏中华

    2012-01-01

    Background: Findings from previous studies linking brain-derived neurotrophic factor (BDNF) and schizophrenia are inconsistent and few studies have assessed the relationship between BDNF C270T gene polymorphisms and the clinical and cognitive symptoms of schizophrenia.Aim: Compare the prevalence of the BDNF C270T gene polymorphisms between patients with schizophrenia and controls and, in the patients, assess the relationship of genotypes to the severity of symptoms.Methods: BDNF C270T genotype and allele frequency were measured using Polymerase Chain Reaction methods in 224 drug-free patients with schizophrenia and 220 controls. Psychotic symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS), and cognitive functioning was assessed using the Wisconsin Card Sorting Test (WCST) and the Trail Making Test (TMT). In the patient group, differences in severity of symptoms across the three genotypes (i.e., C/C, C/T,and T/T) of C270T were assessed using one-way analysis of variance.Results: The frequency of the T allele was much higher in patients than in controls(15.6% vs. 4.3%, χ2=31.47, p<0.001)and the C/T genotype was more common among patients than controls (27.7% vs. 7.7%, χ2=34.93, p<0.001). Compared to controls, patients performed poorly on all the cognitive tests, but there were no significant differences in the cognitive measures between patients with the three different genotypes. The total PANSS score, the PANSS negative symptoms subscale score, and the PANSS general psychopathology subscale score were not significantly different between the three groups of patients. However, the PANSS positive symptoms subscale score showed a small, statistically significant elevation in the severity of positive symptoms in the C/T genotype compared to the C/C genotype.Conclusion: We confirm previous findings about differences in the prevalence of the BDNF C270T gene polymorphisms in schizophrenia, but do not find strong evidence of a relationship

  9. Brain-derived Neurotrophic Factor in Megakaryocytes.

    Science.gov (United States)

    Chacón-Fernández, Pedro; Säuberli, Katharina; Colzani, Maria; Moreau, Thomas; Ghevaert, Cedric; Barde, Yves-Alain

    2016-05-06

    The biosynthesis of endogenous brain-derived neurotrophic factor (BDNF) has thus far been examined in neurons where it is expressed at very low levels, in an activity-dependent fashion. In humans, BDNF has long been known to accumulate in circulating platelets, at levels far higher than in the brain. During the process of blood coagulation, BDNF is released from platelets, which has led to its extensive use as a readily accessible biomarker, under the assumption that serum levels may somehow reflect brain levels. To identify the cellular origin of BDNF in platelets, we established primary cultures of megakaryocytes, the progenitors of platelets, and we found that human and rat megakaryocytes express the BDNF gene. Surprisingly, the pattern of mRNA transcripts is similar to neurons. In the presence of thapsigargin and external calcium, the levels of the mRNA species leading to efficient BDNF translation rapidly increase. Under these conditions, pro-BDNF, the obligatory precursor of biologically active BDNF, becomes readily detectable. Megakaryocytes store BDNF in α-granules, with more than 80% of them also containing platelet factor 4. By contrast, BDNF is undetectable in mouse megakaryocytes, in line with the absence of BDNF in mouse serum. These findings suggest that alterations of BDNF levels in human serum as reported in studies dealing with depression or physical exercise may primarily reflect changes occurring in megakaryocytes and platelets, including the ability of the latter to retain and release BDNF.

  10. A functional polymorphism C-509T in TGFβ-1 promoter contributes to susceptibility and prognosis of lone atrial fibrillation in Chinese population.

    Directory of Open Access Journals (Sweden)

    Hailong Cao

    Full Text Available Transforming growth factor-β1 (TGF-β1 is an important mediator of atrial fibrosis and atrial fibrillation (AF. But the involved genetic mechanism is unknown. Herein, the TGF-β1 C-509 T polymorphism (rs1800469 was genotyped in a case-control study of 840 patients and 845 controls in Chinese population to explore the association between the polymorphism and susceptibility and prognosis of lone AF. As a result, the CT and/or TT genotypes had an increased lone AF risk [adjusted odds ratio (OR = 1.50 for CT, OR = 3.72 for TT, and OR = 2.15 for CT/TT], compared with the TGF-β1CC genotype. Moreover, patients carrying CT/TT genotypes showed a higher possibility of AF recurrence after catheter ablation, compared with patients carrying CC genotype. In a genotype-phenotype correlation analysis using 24 normal left atrial appendage samples, increasing gradients of atrial TGF-β1 expression levels positively correlated with atrial collagen volume fraction were identified in samples with CC, CT and TT genotypes. The in vitro luciferase assays also showed a higher luciferase activity of the -509 T allele than that of the -509 C allele. In conclusion, the TGF-β1 C-509 T polymorphism is involved in the etiology of lone AF and thus may be a marker for genetic susceptibility to lone AF and predicting prognosis after catheter ablation in Chinese populations. Therefore, we provide new information about treatment strategies and our understanding of TGF-β1 in AF.

  11. 脑源性神经营养因子G196A基因多态性与精神分裂症患者认知功能的关系%Brain-derived neurotrophic factor gene G196A polymorphisms and the cognitive function of schizophrenia: a case-control study

    Institute of Scientific and Technical Information of China (English)

    翟金国; 李君; 陈敏; 赵靖平; 王克勤

    2013-01-01

    目的 探讨脑源性神经营养因子(BDNF)基因G196A多态性与精神分裂症精神病理症状和认知功能的相关性.方法 采用聚合酶链反应技术(PCR)、非变性聚丙烯酰胺凝胶电泳结合银染技术,检测224例精神分裂症患者(研究组)和220名正常人(对照组)的BDNF基因G196A基因型和等位基因分布频率,采用阳性与阴性症状量表评定精神病理症状、威斯康星卡片分类测验(WCST)和连线测验(CPT)评定认知功能.结果 ①研究组和对照组BDNF基因G196A基因型G/G、G/A、A/A和等位基因G和A分布差异无统计学意义(均P>0.05).②阳性症状和阴性症状为主的精神分裂症患者之间BDNF基因G196AA/A基因型分布存在显著差异(x2=4.558,P<0.05).③G/G、G/A、A/A三种不同基因型患者的威斯康星卡片分类测验的完成分类数、持续错误数和两种连线测验成绩比较,差异均无统计学意义(均P>0.05).结论 BDNF基因G196A多态性与精神分裂症及其认知功能不相关,但与阳性症状相关.%Objective To explore the relationships between brain-derived neurotrophic factor gene G196A polymorphisms and psychopathology and the cognitive function in schizophrenic patients.Methods 224 patients and 220 normal controls were examined with polymerase chain reaction(PCR),denaturing polyacrylamide gel electrophoresis and silver staining to determine genotype and allele of G196A.Clinical symptoms were assessed with the Positive and Negative Symptom Scale (PANSS).Cognitive function was assessed with Wisconsin card sorting test (WCST) and Trail Making Test(CPT).To analyse the differences of the scores of Scale for the Assessment of Positive Symptoms(SAPS) and Scale for the Assessment of Negative Symptoms (SANS) among the patients with the genotype G/G,G/A and A/A.At the same time,the differences of the performance of WCST and CPT were analyzed.Results ①There were no significant differences of the genotypes G/G,G/A and A/A and

  12. Association analysis of the brain-derived neurotrophic factor gene polymorphisms with early-onset schizophrenia in the Chinese population%脑源性神经营养因子基因多态性与早发精神分裂症的关联分析

    Institute of Scientific and Technical Information of China (English)

    易正辉; 方贻儒; 禹顺英; 张晨; 李则挚; 卢卫红; 杜亚松; 范娟; 汪栋祥; 刘漪; 傅迎美

    2012-01-01

    目的 探讨中国汉族人群脑源性神经营养因子(BDNF)基因rs11030101和rs6265多态性与早发精神分裂症的关联性.方法 采用TaqMan法,检测360例早发精神分裂症患者(患者组,起病年龄<18岁)和399名健康对照(对照组)BDNF基因rs11030101及rs6265 2个多态位点,并对等位基因、基因型及单体型频率进行比较.结果 (1)患者组与对照组rs11030101等位基因分布和基因型分布的差异均有统计学意义[x2 =5.13,自由度(df)=1,P=0.024;x2=6.12,df=2,P=0.047],但经Bonferroni校正检验后,只有等位基因分布的差异有统计学意义(P =0.048);单体型分析显示,患者组与对照组A-Val及T-Val分布的差异有统计学意义(x2=7.96,P=0.005;x2=8.53,P =0.004).(2)在女性人群中,患者组与对照组rs11030101基因型分布的差异有统计学意义(x2=7.76,df=2,P=0.021),经Bonferroni校正检验后差异仍有统计学意义(P=0.042);单体型T-Val及T-Met分布的差异均有统计学意义(x2=6.90,P=0.009;x2=4.60,P=0.032).结论 在中国汉族人群中BDNF基因可能与早发精神分裂症存在关联,尤其与女性早发精神分裂症存在关联,其可能是女性早发精神分裂症的易患基因.%Objective To investigate the relationship between the brain-derived neurotrophic factor (BDNF) gene Tag SNPs (rs11030101 and rs6265) and early-onset schizophrenia in the Chinese Han population.Methods The tag single nucleotide polymorphisms(tag SNPs) rs11030101 and rs6265 in the BDNF gene wcrc genotypcd in 360 early-onset schizophrenics and 399 controls subjects.Single nucleotide polymorphism association and haplotype analysis were performed.Results (1) There were significantly difference in allele and genotype frequencies between patients and control subjects for rs11030101 (x2 =5.13,df=1,P=0.024; x2 =6.12,df=2,P =0.047) and haplotypes A-Val and T-Val (x2 =7.96,P =0.005 ;x2 =8.53,P =0.004),and the difference in allele frequencies was still statistically significant

  13. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer's disease.

    Science.gov (United States)

    Zhang, Fang; Kang, Zhilong; Li, Wen; Xiao, Zhicheng; Zhou, Xinfu

    2012-07-01

    Alzheimer's disease (AD) is one of the most common causes of dementia in the elderly. It is characterized by extracellular deposition of the neurotoxic peptide, amyloid-beta (Aβ) peptide fibrils, and is accompanied by extensive loss of neurons in the brains of affected individuals. However, the pathogenesis of AD is not fully understood. The aim of this review is to discuss the possible role of brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signalling in the development of AD, focusing on BDNF/TrkB signalling in the production of Aβ, tau hyperphosphorylation and cognition decline, and exploring new possibilities for AD intervention.

  14. Study of Correlation between Genetic Polymorphism of Brain-Derived Neurotrophic Factor and 90-day Out-come of Ischemic Stroke in Chinese Han Population%脑源性神经生长因子的基因多态性与中国汉族人群缺血性卒中90天预后的相关性研究

    Institute of Scientific and Technical Information of China (English)

    赵静; 吴慧; 翁迎峰

    2015-01-01

    目的::探讨中国汉族人群中脑源性神经生长因子(brain-derived neurotrophic factor,BDNF)基因的单核苷酸多态性与缺血性卒中(ischemic stroke,IS)的关系。方法:采用聚合酶链式反应-连接酶检测反应(polymerase chain reaction-ligase de-tection reaction,PCR-LDR)在494例 IS 患者(IS 组)和337例健康对照者(对照组)中检测 BDNF 基因 G196A 位点的单核苷酸多态性,计算等位基因的频率分布。IS 组在入院当天依据神经功能缺损评分(National Institutes of Health Stroke Scale,NIH-SS)评估神经功能缺损程度,脑梗死后3个月随访时根据改良 Rankin 评分标准(modified Rankin Scale,mRS)评估患者的神经功能恢复情况。结果:IS 组 BDNF 基因 G196A 位点 AA 基因型的频率高于对照组,差异有统计学意义(P <0.05)。IS 组中轻症和重症患者在 BDNF 基因 G196A 位点的基因型和等位基因频率分布上无显著差异(P =0.800)。但出院后90 d 的随访结果显示,BDNF 基因 G196A 位点 AA 基因型患者较 GG 基因型患者预后不良的相对风险度为1.406[P =0.008,比值比(OR)=0.406,95%可信区间(95%CI ):1.203~1.813];采用 Logistic 回归方法对其他危险因素进行校正后,这种相关性仍然存在(P =0.012,OR=2.134,95%CI :1.178~3.866)。结论:BDNF 基因 G196A 位点多态性与中国汉族人群 IS 急性期神经功能缺损程度可能无关,BDNF 基因 G196A 位点呈 GA+AA 基因型的 IS 患者预后更差,A 等位基因可能是预测中国汉族人群 IS 预后不良的独立生物学指标。%Objective:To investigate the correlation between single nucleotide polymorphism(SNP)of BDNF gene and ischemic stroke(IS).Methods:The SNP of BDNF gene G196A in 494 patients with IS(IS group)and 337 healthy controls (control group)was detected by polymerase chain reaction-ligase detection reaction (PCR-LDR)assay,and the allele frequency was cal-culated.The degree of neural function defect in IS group was

  15. S4153R is a gain-of-function mutation in the cardiac Ca(2+) release channel ryanodine receptor associated with catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation.

    Science.gov (United States)

    Zhabyeyev, Pavel; Hiess, Florian; Wang, Ruiwu; Liu, Yingjie; Wayne Chen, S R; Oudit, Gavin Y

    2013-08-01

    Mutations in ryanodine receptor 2 (RYR2) gene can cause catecholaminergic polymorphic ventricular tachycardia (CPVT). The novel RYR2-S4153R mutation has been implicated as a cause of CPVT and atrial fibrillation. The mutation has been functionally characterized via store-overload-induced Ca(2+) release (SOICR) and tritium-labelled ryanodine ([(3)H]ryanodine) binding assays. The S4153R mutation enhanced propensity for spontaneous Ca(2+) release and reduced SOICR threshold but did not alter Ca(2+) activation of [(3)H]ryanodine binding, a common feature of other CPVT gain-of-function RYR2 mutations. We conclude that the S4153R mutation is a gain-of-function RYR2 mutation associated with a clinical phenotype characterized by both CPVT and atrial fibrillation.

  16. Treatment Adherence as a New Choice Factor for Optimization of Oral Anticoagulation Therapy in Patients with Atrial Fibrillation and Hemostatic Gene Polymorphisms

    Directory of Open Access Journals (Sweden)

    Yu. P. Skirdenko

    2016-01-01

    Full Text Available Aim. To evaluate treatment adherence and prevalence of CYP2C9 and VKORC1 gene mutations in patients with atrial fibrillation (AF and provide rationale of choice for oral anticoagulation therapy.Material and methods. Treatment adherence was evaluated in 137 AF patients (aged 35-85 years with quantitative estimation of drug therapy adherence along with compliance to medical support and lifestyle modifications. Among them 82 patients underwent polymerase chain reaction (PCR analysis of CYP2C9 and VKORC1 gene polymorphisms.Results. Patients receiving anticoagulation therapy are characterized by lower level of adherence compared to patients without anticoagulants (65.2±19.3% vs 68.5±19.1%; Wald-Wolfowitz; p<0.05. Considering all studied parameters men are less adherent than women (54.7±18.6% vs 60.6±16.7%; Kolmogorov-Smirnov; p<0.05. Patients receiving new oral anticoagulants (NOAC have better compliance compared with patients of warfarin group. Mutations in CYP2C9 gene were detected in 32.9%, VKORC1 – in 68.3%, and their combination – in 21.9% of study participants. Warfarin therapy may be potentially dangerous in such patients due to low adherence.Conclusion. Considering high prevalence of CYP2C9 and VKORC1 gene mutations treatment adherence should be estimated to optimize choice of anticoagulation therapy. NOAC treatment should be considered in patients with low adherence for prevention of thromboembolic complications.

  17. Determinants of serum brain-derived neurotrophic factor

    NARCIS (Netherlands)

    Bus, B. A. A.; Molendijk, M. L.; Penninx, B. J. W. H.; Buitelaar, J. K.; Kenis, G.; Prickaerts, J.; Elzinga, B. M.; Voshaar, R. C. Oude

    2011-01-01

    Background: Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of growth factors and affects the survival and plasticity of neurons in the adult central nervous system. The high correlation between cortical and serum BDNF levels has led to many human studies on BDNF levels i

  18. Determinants of serum brain-derived neurotrophic factor

    NARCIS (Netherlands)

    Bus, B.A.A.; Molendijk, M.L.; Penninx, B.J.; Buitelaar, J.K.; Kenis, G.; Prickaerts, J.; Elzinga, B.M.; Oude Voshaar, R.C.

    2011-01-01

    BACKGROUND: Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of growth factors and affects the survival and plasticity of neurons in the adult central nervous system. The high correlation between cortical and serum BDNF levels has led to many human studies on BDNF levels i

  19. Eumelanin fibrils

    Science.gov (United States)

    McQueenie, Ross; Sutter, Jens; Karolin, Jan; Birch, David J. S.

    2012-07-01

    We describe the auto-oxidation of 3, 4-dihydroxy-L-phenylalanine (L-DOPA) in the synthesis of eumelanin to spontaneously produce fibrils upon drying. The self-assembled fibrils are of characteristic diameter ~1 to 2 μm, composed of filaments, and are unidirectional, apart from branches that are formed at typically an angle of 20 to 22 deg. The fibrils are characterized using fluorescence spectroscopy, fluorescence decay times, scanning electron microscopy, atomic force microscopy, and fluorescence lifetime imaging microscopy. The fibrils mimic natural melanin in consisting of core eumelanin with efficient nonradiative properties, but they also display pockets of electronically isolated species with higher radiative rates on the nanosecond timescale. Eumelanin fibrils formed occasionally in solution are tentatively attributed to a scaffold of bacteria or fungus. Fabricating and characterizing novel synthetic eumelanin structures such as fibrils are of interest in helping to reveal a functional structure for eumelanin, in understanding its photophysics, in learning more about L-DOPA as it is used in the treatment of Parkinson's disease, and in producing novel materials which might embody some of the diverse properties of eumelanin.

  20. The brain derived neurotrophic factor and influences of stress in depression.

    Science.gov (United States)

    Kimpton, Jessica

    2012-09-01

    Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family and is widely expressed throughout the central nervous system (CNS). BDNF is involved in proliferation, differentiation, survival and death of neuronal and non-neuronal cells in the developing and adult CNS. The BDNF hypothesis of depression postulates that a reduction in BDNF is directly involved in the pathophysiology of depression, whilst anti-depressant mediated restoration of BDNF is responsible for the alleviation of the depressive state. This hypothesis is drawn from several studies implicating BDNF in depression and has received considerable support, which will be reviewed in this paper. This review will also discuss the implications of the functional Val66Met polymorphism of the gene encoding BDNF, which may reduce BDNF expression particularly when exposed to stress and thus may play a critical role in the pathogenesis of depression.

  1. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders

    OpenAIRE

    Anita E Autry; Monteggia, Lisa M.

    2012-01-01

    Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Ret...

  2. [The research advance of brain derived neurotrophic factor].

    Science.gov (United States)

    Liu, Z; Chen, J

    2000-12-01

    Recent research advances in neuroscience show that neurotrophic factors are proteins that affect selectively various kinds of neurons of CNS and PNS. Brain derived neurotrophic factor (BDNF) is another neurotrophic factor that was first reported by Barde, a German chemist, thirty years later after the nerve growth factor had been found out. BDNF plays an important role in the growth, development, differentiation, maintenance and regeneration of various types of neurons in the CNS and has potential application to the treatment of brain injury and neurodegenerative diseases such as Alzheimer's disease, Parkinson's syndrome, Huntington's chorea and amyotrophic lateral sclerosis. In this paper, the structure, function and potential clinical application of BDNF were reviewed.

  3. Atrial fibrillation

    DEFF Research Database (Denmark)

    Lip, Gregory Y H; Fauchier, Laurent; Freedman, Saul B;

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained cardiac rhythm disorder, and increases in prevalence with increasing age and the number of cardiovascular comorbidities. AF is characterized by a rapid and irregular heartbeat that can be asymptomatic or lead to symptoms such as palpitations...

  4. Atrial fibrillation

    DEFF Research Database (Denmark)

    Olesen, Morten S; Nielsen, Morten W; Haunsø, Stig;

    2014-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1-2% of the general population. A number of studies have demonstrated that AF, and in particular lone AF, has a substantial genetic component. Monogenic mutations in lone and familial AF, although rare, have been recognized...

  5. 抑郁症患者脑源性神经营养因子Va166Met多态性与血清浓度的关系%Va166Met polymorphism and serum brain-derived neurotrophic factor concentration in depression patients

    Institute of Scientific and Technical Information of China (English)

    杨兆正; 张玉梅; 周宏辉; 周朝昀

    2011-01-01

    目的 探讨脑源性神经营养因子(BDNF)基因Va166Met多态性与抑郁症之间的关系以及Va166Met多态性是否影响血清BDNF浓度.方法 对76例未经药物治疗的抑郁症患者和50例正常人,用限制性片段长度多态性方法分析Va166Met多态性,采用酶联吸附反应方法对血清BDNF浓度进行检测.结果 (1)抑郁症患者血清BDNF浓度(24.7±12.7)ng/ml显著低于正常对照组(36.6±16.4)pg/ml,差异有统计学意义(P<0.01);(2)抑郁症组和对照组之间的Va166Met多态性位点的等位基因频率和基因型分布差异无统计学意义(P>0.05);(3)在押郁症组和对照组,Val/Met+Met/Met基因型组与Val/Val基因型相比,血清BDNF浓度差异无统计学意义(P>0.05).结论 抑郁症患者存在较低的血清BDNF水平,BDNF基因Val66Met多态性与抑郁症之间无相关性,Va166Met多态性对血清BDNF水平浓度无明显影响.%Objective To explore whether the BDNF gene Val66Met polymorphism was associated with depressive disorder and whether the BDNF gene Val66Met polymorphism was correlated with the serum BDNF levels. Methods 76 untreated depressive disorder patients and 50 normal control cases were included in the study. The BDNF gene Val66Met polymorphism was analyzed by using a polymerase chain reaction-based restriction fragment length polymorphism detection assay. The enzyme linked immunoabsorption reaction assay was used to measure the serum BDNF levels. Results Serum BDNF levels were significantly lower in depressive disorder patients (24.7 ± 12.7)ng/ml than that in normal control subjects (36.6± 16.4)pg/ml (P < 0.01). There were no significant differences either in allele or genotype in the Val66Met polymorphism between the depressive disorder and control groups (P > 0. 05).Moreover,there were no significant differences in the serum BDNF levels between the Val/Met+ Met/Met genotype and Val/Val genotype in depressive disorder and control groups. Conclusions There is a

  6. Brain-derived neurotrophic factor and its clinical implications.

    Science.gov (United States)

    Bathina, Siresha; Das, Undurti N

    2015-12-10

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth, serves as a neurotransmitter modulator, and participates in neuronal plasticity, which is essential for learning and memory. It is widely expressed in the CNS, gut and other tissues. BDNF binds to its high affinity receptor TrkB (tyrosine kinase B) and activates signal transduction cascades (IRS1/2, PI3K, Akt), crucial for CREB and CBP production, that encode proteins involved in β cell survival. BDNF and insulin-like growth factor-1 have similar downstream signaling mechanisms incorporating both p-CAMK and MAPK that increase the expression of pro-survival genes. Brain-derived neurotrophic factor regulates glucose and energy metabolism and prevents exhaustion of β cells. Decreased levels of BDNF are associated with neurodegenerative diseases with neuronal loss, such as Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Thus, BDNF may be useful in the prevention and management of several diseases including diabetes mellitus.

  7. Analysis of association between violent behavior and polymorphism of brain-derived neurotrophic factor (BDNF) gene in male adolescent%BDNF基因多态性与男性青少年暴力攻击行为的关联性分析

    Institute of Scientific and Technical Information of China (English)

    邵阳; 谢斌; 汪栋祥; 乔屹

    2011-01-01

    Objective To study the association of BDNF related gene polymorphisms with violent behavior in delinquent adolescents. Methods Two single nucleotide polymorphisms (BDNF rsll03010 andrs6265) were detected using TaqMan SNP genotyping assay in 139 violence young male offenders,98 non—violence young male offenders and 259 normal adult controls. The distribution of genotypic and allelic frequencies in the case and control groups was analyzed. Results The results showed that rsll03010 T allelic distribution and rs1103010—rs6265 T—G haplotype were associated with violence behavior (P < 0. 05). Conclusions The variance of BDNF gene polymorphism may play a role under violent behavior in male adolescents.%目的 分析BDNF基因与青少年男性暴力行为之间的关系.方法 采用TaqMan探针SNP基因分型技术对139例男性暴力少教人员,98例非暴力男性少教人员以及259例正常成年男性进行BDNF基因(rs1103010,rs6265)位点的基因分型.分析攻击组和对照组的等位基因和基因型分布规律.结果 器力青少年男性rs1103010位点T等位基因频率高于正常对照组(31.7%vs 24.9%,P<0.05),rs1103010与rs6265两位点构成的T-G单体型在暴力组中的频率也显著高于正常对照组(31.4%VS 23.4%.P<0.05).结论 BDNF基因可能在青少年暴力行为的发生中起了作用.

  8. Atrial Fibrillation.

    Science.gov (United States)

    Zimetbaum, Peter

    2017-03-07

    This issue provides a clinical overview of atrial fibrillation, focusing on diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  9. Progesterone, brain-derived neurotrophic factor and neuroprotection.

    Science.gov (United States)

    Singh, M; Su, C

    2013-06-03

    While the effects of progesterone in the CNS, like those of estrogen, have generally been considered within the context of reproductive function, growing evidence supports its importance in regulating non-reproductive functions including cognition and affect. In addition, progesterone has well-described protective effects against numerous insults in a variety of cell models, animal models and in humans. While ongoing research in several laboratories continues to shed light on the mechanism(s) by which progesterone and its related progestins exert their effects in the CNS, our understanding is still incomplete. Among the key mediators of progesterone's beneficial effects is the family of growth factors called neurotrophins. Here, we review the mechanisms by which progesterone regulates one important member of the neurotrophin family, brain-derived neurotrophic factor (BDNF), and provides support for its pivotal role in the protective program elicited by progesterone in the brain.

  10. Brain-derived neurotrophic factor and neuropsychiatric disorders.

    Science.gov (United States)

    Autry, Anita E; Monteggia, Lisa M

    2012-04-01

    Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Rett syndrome, as well as other psychiatric and neurodevelopmental diseases. In addition, the review includes a discussion of the role of BDNF in the mechanism of action of pharmacological therapies currently used to treat these diseases, such antidepressants and antipsychotics. The review also covers a critique of experimental therapies such as BDNF mimetics and discusses the value of BDNF as a target for future drug development.

  11. The Effect of Brain-derived Neurotrophic Factor on Angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Chunyan SUN; Yu HU; Zhangbo CHU; Jing HUANG; Lu ZHANG

    2009-01-01

    To investigate the in vitro and in vivo proangiogenic effects of brain-derived ncurotrophic factor (BDNF),human umbilical vein endothelial cells (HUVECs) were isolated and cultured in primary culture.The effect of BDNF on the proliferation of HUVECs was examined by MTT assay.The effects of BDNF on HUVEC migration and tube formation were studied by modified Boyden chamber assay and tube formation assay,respectively.Matrigel plug assay and chorioaUantoic membrane assay were used to evaluate the effects of BDNF on angiogencsis in vivo.Our results showed that BDNF substantially stimulated the migration and tube formation of HUVECs in vitro,although it did not induce HUVEC proliferation.BDNF also induced angiogenesis both in matrigcl plug of mouse model and in chick chorioallantoic membrane.In conclusion,BDNF can promote angiogenesis both in vitro and in vivo,and may be a proangiogenic factor.

  12. Brain-Derived Neurotrophic Factor: Three Ligands, Many Actions.

    Science.gov (United States)

    Hempstead, Barbara L

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of a family of neurotrophins which include nerve growth factor, neurotrophin 3, and neurotrophin 4. Studies over the last three decades have identified mature BDNF as a key regulator of neuronal differentiation, structure, and function; actions mediated by the TrkB receptor. More recently identified isoforms which are translated from the bdnf gene, including the uncleaved precursor, pro-BDNF, and the cleaved prodomain, have been found to elicit opposing functions in neurons through the activation of distinct receptors. This work emphasizes the critical roles for all three isoforms of BDNF in modulating neuronal activity that impact complex human behaviors including memory, anxiety, depression, and hyperphagia.

  13. Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy.

    Science.gov (United States)

    Song, Jing-Hui; Yu, Jin-Tai; Tan, Lan

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) has a neurotrophic support on neuron of central nervous system (CNS) and is a key molecule in the maintenance of synaptic plasticity and memory storage in hippocampus. However, changes of BDNF level and expression have been reported in the CNS as well as blood of Alzheimer's disease (AD) patients in the last decade, which indicates a potential role of BDNF in the pathogenesis of AD. Therefore, this review aims to summarize the latest progress in the field of BDNF and its biological roles in AD pathogenesis. We will discuss the interaction between BDNF and amyloid beta (Aβ) peptide, the effect of BDNF on synaptic repair in AD, and the association between BDNF polymorphism and AD risk. The most important is, enlightening the detailed biological ability and complicated mechanisms of action of BDNF in the context of AD would provide a future BDNF-related remedy for AD, such as increment in the production or release of endogenous BDNF by some drugs or BDNF mimics.

  14. Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Aron K Barbey

    Full Text Available Brain-derived neurotrophic factor (BDNF promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI. In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156 consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points, verbal comprehension (6 IQ points, perceptual organization (6 IQ points, working memory (8 IQ points, and processing speed (8 IQ points after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI.

  15. The Correlation between Val66Met Polymorphism in Brain-derived Neurotrophic Factor and Post-stroke Depression%脑卒中后抑郁与脑源性神经营养因子基因Val66Met单核苷酸多态性的相关性研究

    Institute of Scientific and Technical Information of China (English)

    卢丽萍; 朱英标; 成俊英

    2013-01-01

    目的 探讨脑卒中后抑郁(PSD)与脑源性神经营养因子(BDNF)基因Val66Met单核苷酸多态性(SNP)的相互关系.方法 选择86例PSD患者为PSD组,68例脑卒中无PSD患者为无PSD组,另选择46名健康者为对照组.3组研究对象年龄及性别基本匹配.采用酶联免疫吸附法检测BDNF浓度和等位基因特异性聚合酶链反应(A-S PCR)技术检测BDNF基因Val66Met位点SNP的分布.结果 PSD组和无PSD组间BDNF表达差异有统计学意义(t=-2.038,P=0.043);两组间基因型频率(x2=0.340,P=0.844)和等位基因频率(x2=0.036,P=0.849)差异均无统计学意义.结论 BDNF表达与PSD发生相关,但BDNF基因Val66Met位点SNP与PSD未发现有相关关系.%Aim To evaluate the association of Val66Met single nucleotide polymorphism(SNP) in brainderived neurotrophic factor(BDNF) gene with post-stroke depression(PSD).Metholds PSD group(86 PD patients),non-PSD group(68 stroke patients) and 46 healthy control group took part in this research,the age and sex were matched in the groups.BDNF concentrations was tested by enzyme-linked immunosorbent assay,and Val66Met SNP in BDNFgene was detected by Allele-Specific polymerase chain reaction(A-S PCR) technique.Results No significant differences were demonstrated in Val66Met BDNF genotype(x2=0.340,P=0.844) or allele frequencies(x2=0.036,P=0.849) between PSD patients and the controls.The expression of BDNF in PSD patients was more than that in the controls(t=-2.038,P=0.043).Conclusion The results indicated that the expression of BDNF was associated with PSD,but Val66Met SNP in BDNF gene was not associated with PSD.

  16. Adenovirally Delivered Brain-derived Neurotrophic Factor to Rat Retina

    Institute of Scientific and Technical Information of China (English)

    Xu Hou; Dan Hu; Yannian Hui

    2004-01-01

    Purpose: To study the expression of brain-derived neurotrophic factor (BDNF) in the rat retina delivered by adenovirus.Methods: Adenovirus with BDNF gene was injected into the vitreous. Gene expression was detected by immunofluorescence staining, and quantitative analysis was performed after injury and transfection by Enzyme-linked immunosorbent assay (ELISA).Results: The positive cells can be seen on the 3rd day and last 4 weeks by immunofluorescence staining. Positive cells in the control group were fewer than those in the transfection group or the fluorescence intensity was lower at every time point. Quantitative analysis showed that the expression of BDNF groups was higher than that of the control group at every time point(P < 0.01 ), and that of the injured group without transfection was higher than that of the control group on the 3rd day and the 7th day (P < 0.01 ).Conclusion: Efficient and stable transfer of BDNF gene could be achieved by adenovirus delivery into the retina of rats. Injury can promote the expression of BDNF in early period.

  17. Role of brain-derived neurotrophic factor in Huntington's disease.

    Science.gov (United States)

    Zuccato, Chiara; Cattaneo, Elena

    2007-04-01

    Neurotrophic factors are essential contributors to the survival of peripheral and central nervous system (CNS) neurons, and demonstration of their reduced availability in diseased brains indicates that they play a role in various neurological disorders. This paper will concentrate on the role of brain-derived neurotrophic factor (BDNF) in the survival and activity of the neurons that die in Huntington's disease (HD) by reviewing the evidence indicating that it involves profound changes in BDNF levels and that attempts to restore these levels are therapeutically interesting. BDNF is a small dimeric protein that is widely expressed in adult mammalian brain and has been shown to promote the survival of all major neuronal types affected in Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, cortical BDNF production is required for the correct activity of the corticostriatal synapse and the survival of the GABA-ergic medium-sized spiny striatal neurons that die in HD. We will highlight the available data concerning changes in BDNF levels in HD cells, mice and human postmortem samples, describe the molecular evidence underlying this alteration, and review the data concerning the impact of the experimental manipulation of BDNF levels on HD progression. Such studies have revealed a major loss of BDNF protein in the striatum of HD patients which may contribute to the clinical manifestations of the disease. They have also opened up a molecular window into the underlying pathogenic mechanism and new therapeutic perspectives by raising the possibility that one of the mechanisms triggering the reduction in BDNF in HD may also affect the activity of many other neuronal proteins.

  18. Brain-derived neurotrophic factor: role in depression and suicide

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2009-08-01

    Full Text Available Yogesh DwivediPsychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USAAbstract: Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF, one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the “neurotrophin hypothesis of depression”. Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB and its splice variant (TrkB.T1 have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.Keywords: BDNF, neurotrophins, p75NTR, Trk receptor, depression, antidepressants, suicide, genetics, epigenetics

  19. Positive association between the brain-derived neurotrophic factor (BDNF) gene and bipolar disorder in the Han Chinese population.

    Science.gov (United States)

    Xu, Jie; Liu, Yun; Wang, Peng; Li, Sheng; Wang, Yabing; Li, Jun; Zhou, Daizhan; Chen, Zhuo; Zhao, Teng; Wang, Ting; Xu, He; Yang, Yifeng; Feng, Guoyin; He, Lin; Yu, Lan

    2010-01-05

    Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the central nervous system (CNS), and services many biological functions such as neural survival, differentiation, and plasticity. Previous studies have suggested that the Val66Met (also known as rs6265 or G196A) variant of BDNF is associated with bipolar disorder (BPD), but the results have been inconclusive. We therefore genotyped the Val66Met polymorphism in a Han Chinese population sample (498 cases and 501 control subjects). We found that the BDNF genotype is associated with BPD in this population (chi(2) = 9.4666, df = 2, P = 0.00884). Furthermore, our data suggested that the Met allele rather than the Val allele increased the risk for BPD in our Han population (OR = 1.44; 95% CI = 1.070-1.950; P = 0.016). Further studies are necessary to elucidate the involvement of the BDNF gene in the pathophysiology of BPD.

  20. Brain Derived Neurotrophic Factor (BDNF) levels as a possible predictor of psychopathology in healthy twins at high and low risk for affective disorder

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla; Kessing, Lars Vedel

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a potential biomarker of affective disorder. However, longitudinal studies evaluating a potential predictive role of BDNF on subsequent psychopathology are lacking. The aim of this study was to investigate whether BDNF alone or in interaction...... with the BDNF Val66Met polymorphism predict onset of affective disorder in healthy individuals at heritable risk for affective disorder. In a high-risk study, we assessed whole blood levels of BDNF in 234 healthy monozygotic and dizygotic twins with or without a co-twin history of affective disorder (high...... developed psychiatric disorder. Cox regression analysis revealed that BDNF levels at baseline were not associated with onset of illness in this explorative study. Further, two-way interactions between BDNF levels and the Val66Met polymorphism or between familial risk and the Val66Met polymorphism did...

  1. Brain-derived neurotrophic factor gene variants and Alzheimer disease: an association study in an Alzheimer disease Italian population.

    Science.gov (United States)

    Boiocchi, Chiara; Maggioli, Elisa; Zorzetto, Michele; Sinforiani, Elena; Cereda, Cristina; Ricevuti, Giovanni; Cuccia, Mariaclara

    2013-02-01

    Brain-derived neurotrophic factor (BDNF) promotes neuronal survival during development and protects neurons from insults of various kinds. Changes in production of BDNF have been reported in differing neurodegenerative pathologies and, in particular, in Alzheimer disease (AD). We studied 200 AD patients and 408 healthy controls for BDNF Val66Met(G196A) polymorphism, 200AD and 384 healthy controls for BDNF 270 C/T polymorphism, and 200AD and 393 healthy controls for BDNF 11757 G/C polymorphism by restriction fragment length polymorphism (RFLP) and real-time PCR. Our results indicated that the 11757 G/C BDNF polymorphism was significantly associated with AD. A statistically significant increase of GG genotype frequency in AD versus healthy subjects (p=0.0331) was observed, whereas the CG genotype demonstrates a statistically significant decrease of frequency in AD patients versus controls (p=0.0194). We focused our attention on haplotype reconstruction: A statistically significant decrease of the TAC haplotype frequency in AD patients versus healthy controls group (p=0.005) and a statistically significant increase of the CAC haplotype frequency in patients versus control (p=0.019) was demonstrated. We then studied the haplotype frequencies dividing patients according to gender. A statistically significant increase of the CAC haplotype in the male AD group compared with male healthy controls (p=0.041) was found, whereas a statistically significant decrease of TAC haplotype frequency in AD females versus healthy females (p=0.005) and a statistically significant increase of CAC haplotype frequency in female patients versus healthy females (p=0.019) was noticed. We propose that these haplotypes could be a further effective marker for AD.

  2. Chirality and chiroptical properties of amyloid fibrils.

    Science.gov (United States)

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties.

  3. Characterizing the role of brain derived neurotrophic factor genetic variation in Alzheimer's disease neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Robyn A Honea

    Full Text Available There is accumulating evidence that neurotrophins, like brain-derived neurotrophic factor (BDNF, may impact aging and Alzheimer's Disease. However, traditional genetic association studies have not found a clear relationship between BDNF and AD. Our goal was to test whether BDNF single nucleotide polymorphisms (SNPs impact Alzheimer's Disease-related brain imaging and cognitive markers of disease. We completed an imaging genetics study on 645 Alzheimer's Disease Neuroimaging Initiative participants (ND=175, MCI=316, AD=154 who had cognitive, brain imaging, and genetics data at baseline and a subset of those with brain imaging data at two years. Samples were genotyped using the Illumina Human610-Quad BeadChip. 13 SNPs in BDNF were identified in the dataset following quality control measures (rs6265(Val66Met, rs12273363, rs11030094, rs925946, rs1050187, rs2203877, rs11030104, rs11030108, rs10835211, rs7934165, rs908867, rs1491850, rs1157459. We analyzed a subgroup of 8 SNPs that were in low linkage disequilibrium with each other. Automated brain morphometric measures were available through ADNI investigators, and we analyzed baseline cognitive scores, hippocampal and whole brain volumes, and rates of hippocampal and whole brain atrophy and rates of change in the ADAS-Cog over one and two years. Three out of eight BDNF SNPs analyzed were significantly associated with measures of cognitive decline (rs1157659, rs11030094, rs11030108. No SNPs were significantly associated with baseline brain volume measures, however six SNPs were significantly associated with hippocampal and/or whole brain atrophy over two years (rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850. We also found an interaction between the BDNF Val66Met SNP and age with whole brain volume. Our imaging-genetics analysis in a large dataset suggests that while BDNF genetic variation is not specifically associated with a diagnosis of AD, it appears to play a role in AD

  4. Atrial fibrillation.

    Science.gov (United States)

    Bang, Casper N

    2013-10-01

    Atrial fibrillation (AF) is a common complication after myocardial infarction (MI) and new-onset AF has been demonstrated to be associated with adverse outcome and a large excess risk of death in both MI and aortic stenosis (AS) patients. Prevention of new-onset AF is therefore a potential therapeutic target in AS and MI patients. Lipid-lowering drugs, particularly statins, have anti-inflammatory and antioxidant properties that may prevent AF. Accordingly, statins are recommended as a class IIa recommendation for prevention of new-onset AF after coronary artery bypass grafting (CABG). However, this preventive effect has not been investigated on new-onset AF in asymptomatic patients with AS or a large scale first-time MI patient sample and data in patients not undergoing invasive cardiac interventions are limited. This PhD thesis was conducted at the Heart Centre, Rigshospitalet, Denmark, with the aim to investigate the three aforementioned questions and to add to the existing evidence of AF prevention with statins. This was done using three different settings: 1) a randomized patients sample of 1,873 from the Simvastatin and Ezetimibe in Aortic Stenosis (SEAS) study, 2) a register patient sample of 97,499 with first-time MI, and 3) all published studies until beginning of June 2011 examining statin treatment on new-onset and recurrent AF in patients not undergoing cardiac surgery. This thesis revealed that statins did not lower the incidence or the time to new-onset AF in patients with asymptomatic AS. However, statin treatment showed an independently preventive effect on new-onset AF, including type-dependent effect and a trend to dosage-dependent effect. In addition, this thesis showed that good compliance to statin treatment was important to prevent new-onset AF. Finally, the meta-analysis in this PhD thesis showed a preventive effect in the observational studies although this effect was absent in the randomized controlled trials. Based on this PhD thesis

  5. Relationship of rs4340 and rs4343 polymorphisms of angiotensin-converting enzyme gene to atrial fibrillation%血管紧张素转换酶基因rs4340和rs4343多态性与心房颤动的相关性

    Institute of Scientific and Technical Information of China (English)

    王亚珠; 李瑛; 范晋奇; 肖培林; 凌智瑜; 殷跃辉

    2012-01-01

    Objective To investigate the relationship of rs4340 and rs4343 polymorphisms of angiotensin- converting enzyme (ACE) gene to atrial fibrillation. Methods Venous blood samples were collected from 102 patients with atrial fibrillation, visiting four hospitals of class AAA in Chongqing Region, as well as 100 hospitalized patients without history of atrial fibrillation, from which genomic DNAs were extracted and analyzed for rs4340 and rs4343 polymorphisms of ACE gene by single nucleotide polymorphism-restriction fragment length polymorphism (SNP-RFLP) method and gene sequencing. Results The genotype distribution and allele frequency of rs4340 in the patients with atrial fibrillation showed no significant difference (P > 0. 05), while those of rs4343 showed significant difference (P ≤ 0. 001), with those in patients without history of atrial fibrillation. As compared with those in the patients without history of atrial fibrillation, the frequencies of GG + AG genotypes was significantly higher than that of AA genotype in patients with atrial fibrillation (P 0. 05). However.both left and right atrial dimensions in the patients with atrial fibrillation of 11/ AA genotype were significantly smaller, while those of II/AG genotype were significantly larger, than those of other genotypes (P < 0. 001). Conclusion The rs4343 polymorphism of ACE gene was significantly related to atrial fibrillation. II/AA genotype was a protective factor, while II/AG genotype was a risk factors for onset and progress of atrial fibrillation .%目的 探讨血管紧张素转换酶(Angiotensin converting enzyme,ACE)基因rs4340和rs4343多态性与心房颤动(简称房颤)的相关性.方法 选择重庆地区4家三甲医院就诊的102例房颤患者及同期住院的无房颤病史患者100例,抽取患者静脉血,分别提取基因组DNA,采用单核苷酸多态性-限制性片段长度多态性(Single nucleotide polymorphism,restriction fragment length polymorphism,SNP-RFLP)法

  6. Atrial Ectopics Precipitating Atrial Fibrillation

    OpenAIRE

    Johnson Francis

    2015-01-01

    Holter monitor tracing showing blocked atrial ectopics and atrial ectopic precipitating atrial fibrillation is being demonstrated. Initially it was coarse atrial fibrillation, which rapidly degenerated into fine atrial fibrillation.

  7. Reduced serum levels of oestradiol and brain derived neurotrophic factor in both diabetic women and HFD-feeding female mice.

    Science.gov (United States)

    Zhang, Yi; Zhang, Shan-Wen; Khandekar, Neeta; Tong, Shi-Fei; Yang, He-Qin; Wang, Wan-Ru; Huang, Xu-Feng; Song, Zhi-Yuan; Lin, Shu

    2017-04-01

    The estrogen levels in the pre and post menstrual phases interact with brain-derived neurotrophic factor in a complex manner, which influences the overall state of the body. To study the role of oestradiol and brain-derived neurotrophic factor in modulating obesity related type 2 diabetes and the interactions between two factors, we enrolled 15 diabetic premenopausal women and 15 diabetic postmenopausal women respectively, the same number of healthy pre and postmenopausal women were recruited as two control groups. The fasting blood glucose, insulin, lipids, estrogen, and brain-derived neurotrophic factor levels were measured through clinical tests. Additionally, we set up obese female mouse model to mimic human trial stated above, to verify the relationship between estrogen and brain-derived neurotrophic factor. Our findings revealed that there is a moderately positive correlation between brain-derived neurotrophic factor and oestradiol in females, and decreased brain-derived neurotrophic factor may worsen impaired insulin function. The results further confirmed that high fat diet-fed mice which exhibited impaired glucose tolerance, showed lower levels of oestradiol and decreased expression of brain-derived neurotrophic factor mRNA in the ventromedial hypothalamus. The level of brain-derived neurotrophic factor reduced on condition that the level of oestradiol is sufficiently low, such as women in postmenopausal period, which aggravates diabetes through feeding-related pathways. Increasing the level of brain-derived neurotrophic factor may help to alleviate the progression of the disease in postmenopausal women with diabetes.

  8. 高血压病合并心房颤动患者ACE多态性与TGFβ1/CTGF的关系%Correlation between angiotensin converting enzyme gene polymorphisms and TGFβ1/CTGF in hypertensive patients with atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    林宪如; 任永强; 史悦; 吴娜; 马颖; 王正忠; 王海洋

    2014-01-01

    目的:探讨高血压病(EH)合并心房颤动(AF)患者血管紧张素转换酶(ACE)基因插入/缺失(I/D)多态性与转化生长因子β1(TGFβ1)、结缔组织生长因子(CTGF)的关系。方法选择75例EH合并AF患者分为阵发性AF组(EH+pAF,44例)和慢性AF组(EH+cAF,31例),记录一般临床资料及行超声心动图检查,用ELISA法测定血清TGFβ1、CTGF,用PCR方法检测ACE基因插入/缺失(I/D)多态性,并与EH且为窦性心律(SR)组(EH+SR,37例)及健康对照者(NC,36例)进行比较;比较EH+AF组不同基因型间TGFβ1与CTGF的血清浓度。结果 EH+cAF组和EH+pAF组血清TGFβ1及CTGF水平均显著高于EH+SR组和NC组(P0.05),但D等位基因分布频率在EH+AF组中较EH+SR组和NC组明显增加(P<0.05);EH+AF组不同基因型之间TGFβ1及CTGF浓度比较发现,DD基因型TGFβ1浓度显著高于DI型(P<0.01)和II型(P<0.01),DD基因型CTGF浓度明显高于II型(P<0.05)。结论 D等位基因可能是高血压病合并心房颤动的易患基因;房颤患者ACE DD基因型TGFβ1和CTGF水平明显升高,藉此可引起心房肌纤维化及心房重构,导致房颤的发生和发展。%Objective To explore the relationship between the polymorphisms of angiotensin converting en-zyme (ACE) insertion/deletion (I/D) gene and transforming growth factorβ1 (TGFβ1)/connective tissue growth factor (CTGF) in patients with essential hypertension (EH) and atrial fibrillation (AF). Methods Seventy-five EH patients with documented AF were divided into the paroxysmal AF group (EH+pAF group, n=44) or the chronic AF group (EH+cAF group, n=31), and 37 EH patients with sinus rhythm (SR) were selected into the EH+SR group. All clinical data including blood pressure, lipids, glucose and atrial diameter measured from ultrasonic cardiogram were recorded. Thirty-six healthy subjects from the medical examination center were assigned to normal controls (NC group). The se-rum TGFβ1, CTGF were measured by

  9. Vulnerability to ventricular fibrillation

    Science.gov (United States)

    Janse, Michiel J.

    1998-03-01

    One of the factors that favors the development of ventricular fibrillation is an increase in the dispersion of refractoriness. Experiments will be described in which an increase in dispersion in the recovery of excitability was determined during brief episodes of enhanced sympathetic nerve activity, known to increase the risk of fibrillation. Whereas in the normal heart ventricular fibrillation can be induced by a strong electrical shock, a premature stimulus of moderate intensity only induces fibrillation in the presence of regional ischemia, which greatly increases the dispersion of refractoriness. One factor that is of importance for the transition of reentrant ventricular tachycardia to ventricular fibrillation during acute regional ischemia is the subendocardial Purkinje system. After selective destruction of the Purkinje network by lugol, reentrant tachycardias still develop in the ischemic region, but they do not degenerate into fibrillation. Finally, attempts were made to determine the minimal mass of thin ventricular myocardium required to sustain fibrillation induced by burst pacing. This was done by freezing of subendocardial and midmural layers. The rim of surviving epicardial muscle had to be larger than 20 g. Extracellular electrograms during fibrillation in both the intact and the "frozen" left ventricle were indistinguishable, but activation patterns were markedly different. In the intact ventricle epicardial activation was compatible with multiple wavelet reentry, in the "frozen" heart a single, or at most two wandering reentrant waves were seen.

  10. Dynamics of Focal Fibrillation Waves during Persistent Atrial Fibrillation.

    Science.gov (United States)

    Lanters, Eva A H; Allessie, Maurits A; DE Groot, Natasja M S

    2016-04-01

    The incidence and appearance of focal fibrillation waves on the right and left atrial epicardial surface were visualized during 10 seconds of persistent atrial fibrillation in a 71-year-old woman with valvular heart disease. The frequent, nonrepetitive, widespread, and capricious distribution of focal waves suggests that transmural conduction of fibrillation waves is most likely the mechanism underlying focal fibrillation waves.

  11. Brain-derived neurotrophic factor, impaired glucose metabolism, and bipolar disorder course

    DEFF Research Database (Denmark)

    Mansur, Rodrigo B; Santos, Camila M; Rizzo, Lucas B

    2016-01-01

    OBJECTIVES: The neurotrophin brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker in bipolar disorder (BD). However, current evidence is limited and results have been highly heterogeneous. This study aimed to assess the moderating effect of impaired glucose metabolism...

  12. Differential Regulation of Brain-Derived Neurotrophic Factor Transcripts during the Consolidation of Fear Learning

    Science.gov (United States)

    Ressler, Kerry J.; Rattiner, Lisa M.; Davis, Michael

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5[prime]-exon and a common 3[prime]-coding exon. This study describes novel evidence for the…

  13. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  14. Gender specific associations of serum levels of brain-derived neurotrophic factor in anxiety

    NARCIS (Netherlands)

    Molendijk, Marc L.; Bus, Boudewijn A. A.; Spinhoven, Philip; Penninx, Brenda W. J. H.; Prickaerts, Jos; Voshaar, Richard C. Oude; Elzinga, Bernet M.

    2012-01-01

    Objectives. Whereas animal models indicate that brain-derived neurotrophic factor (BDNF) plays a role in anxiety-related behaviour, little is known about BDNF in patients with an anxiety disorder. We tested the hypothesis that serum BDNF levels are low in patients with an anxiety disorder as compare

  15. Decreased levels of brain-derived neurotrophic factor in the remitted state of unipolar depressive disorder

    DEFF Research Database (Denmark)

    Hasselbalch, Jacob; Knorr, U; Bennike, B;

    2012-01-01

    Decreased levels of peripheral brain-derived neurotrophic factor (BDNF) have been associated with depression. It is uncertain whether abnormally low levels of BDNF in blood are present beyond the depressive state and whether levels of BDNF are associated with the course of clinical illness....

  16. Absence of hippocampal mossy fiber sprouting in transgenic mice overexpressing brain-derived neurotrophic factor.

    Science.gov (United States)

    Qiao, X; Suri, C; Knusel, B; Noebels, J L

    2001-05-01

    Excess neuronal activity upregulates the expression of two neurotrophins, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in adult hippocampus. Nerve growth factor has been shown to contribute the induction of aberrant hippocampal mossy fiber sprouting in the inner molecular layer of the dentate gyrus, however the role of prolonged brain-derived neurotrophic factor exposure is uncertain. We examined the distribution and plasticity of mossy fibers in transgenic mice with developmental overexpression of brain-derived neurotrophic factor. Despite 2--3-fold elevated BDNF levels in the hippocampus sufficient to increase the intensity of neuropeptide Y immunoreactivity in interneurons, no visible changes in mossy fiber Timm staining patterns were observed in the inner molecular layer of adult mutant hippocampus compared to wild-type mice. In addition, no changes of the mRNA expression of two growth-associated proteins, GAP-43 and SCG-10 were found. These data suggest that early and persistent elevations of brain-derived neurotrophic factor in granule cells are not sufficient to elicit this pattern of axonal plasticity in the hippocampus.

  17. Post-stroke recovery: the role of activity-dependent release of brain-derived neurotrophic factor.

    Science.gov (United States)

    Berretta, Antonio; Tzeng, Yu-Chieh; Clarkson, Andrew N

    2014-11-01

    Stroke remains the leading cause of long-term disability with no pharmacological approaches available to limit the degree of damage or aid in recovery. Considerable effort has been made to minimize neuronal damage using neuroprotective compounds. However, attempts have so far failed to translate into the clinic. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase type B are actively produced throughout the brain and are involved in regulating neuronal activity and normal day-to-day function. Further, BDNF has been shown to play a role in both protection and recovery of functions after stroke. This review focuses on the endogenous release of BDNF as well as activity-induced (pharmacological and physical) elevation in BDNF, and the role this plays during both acute (hours to days) and subacute (days to weeks) periods after stroke. Exogenous administration has previously been shown not to cross the blood-brain barrier; therefore, we have focused this review on approaches that allow us to directly stimulate, using pharmacological therapies and mimetics, physical activity and potential drug delivery systems that can be used to administer BDNF. Finally, we also discuss the role of BDNF polymorphisms and the influence of epigenetic regulation of BDNF on post-stroke recovery.

  18. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    Directory of Open Access Journals (Sweden)

    Claudia Mastroeni

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS of the human motor hand area (M1HAND can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val(66met polymorphism in the brain-derived neurotrophic factor (BDNF gene. Here we used theta burst stimulation (TBS to examine whether the BDNF val(66met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS usually inducing a lasting increase and continuous TBS (cTBS a lasting decrease in corticospinal excitability. In three separate sessions, healthy val(66met (n = 12 and val(66val (n = 17 carriers received neuronavigated cTBS followed by cTBS (n = 27, cTBS followed by iTBS (n = 29, and iTBS followed by iTBS (n = 28. Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS and increase (iTBS in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val(66met carriers and val(66val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val(66met polymorphism, our results do not support the notion that the BDNF val(66met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND.

  19. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    Science.gov (United States)

    Mastroeni, Claudia; Bergmann, Til Ole; Rizzo, Vincenzo; Ritter, Christoph; Klein, Christine; Pohlmann, Ines; Brueggemann, Norbert; Quartarone, Angelo; Siebner, Hartwig Roman

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val(66)met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val(66)met (n = 12) and val(66)val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val(66)met carriers and val(66)val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val(66)met polymorphism, our results do not support the notion that the BDNF val(66)met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND.

  20. Surgery for atrial fibrillation.

    Science.gov (United States)

    Lawrance, Christopher P; Henn, Matthew C; Damiano, Ralph J

    2014-11-01

    Atrial fibrillation is the most common cardiac arrhythmia, and its treatment options include drug therapy or catheter-based or surgical interventions. The surgical treatment of atrial fibrillation has undergone multiple evolutions over the last several decades. The Cox-Maze procedure went on to become the gold standard for the surgical treatment of atrial fibrillation and is currently in its fourth iteration (Cox-Maze IV). This article reviews the indications and preoperative planning for performing a Cox-Maze IV procedure. This article also reviews the literature describing the surgical results for both approaches including comparisons of the Cox-Maze IV to the previous cut-and-sew method.

  1. What Is Atrial Fibrillation?

    Science.gov (United States)

    ... regular beat. Certain cells in your heart make electric signals that cause the heart to contract and pump ... read your ECG to find out if the electric signals are normal. In atrial fibrillation (AFib), the heart’s ...

  2. Brain-derived neurotrophic factor and substantia nigra dopaminergic neurons in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Haixia Ding; Meijiang Feng; Xinsheng Ding

    2008-01-01

    BACKGROUND:Parkinson's disease (PD) is a chronic, progressive neurodegenerative central nervous system disease which occurs in the substantia nigra-corpus striatum system. The main pathological feature of PD is selective dopaminergic neuronal loss with distinctive Lewy bodies in populations of surviving dopaminergic neurons. In the clinical and neuropathological diagnosis of PD, brain-derived neurotrophic factor mRNA expression in the substantia nigra pars compacta is reduced by 70%, and surviving dopaminergic neurons in the PD substantia nigra pars compacta express less brain-derived neurotrophic factor (BDNF) mRNA (20%) than their normal counterparts. In recent years, knowledge surrounding the relationship between neurotrophic factors and PD has increased, and detailed pathogenesis of the role of neurotrophic factors in PD becomes more important.

  3. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Changwei Song; Shiqiang Fang; Gang Lv; Xifan Mei

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.

  4. Sequential process in brain-derived neurotrophic factor-induced functional periodontal tissue regeneration.

    Science.gov (United States)

    Konishi, Akihiro; Takeda, Katsuhiro; Fujita, Tsuyoshi; Kajiya, Mikihito; Matsuda, Shinji; Kittaka, Mizuho; Shiba, Hideki; Kurihara, Hidemi

    2016-04-01

    We recently demonstrated that brain-derived neurotrophic factor (BDNF) promotes periodontal tissue regeneration. The purpose of this study was to establish an essential component of a rational approach for the clinical application of BDNF in periodontal regenerative therapy. Here, we assessed the sequence of early events in BDNF-induced periodontal tissue regeneration, especially from the aspect of cementum regeneration. Brain-derived neurotrophic factor was applied into experimental periodontal defects in Beagle dogs. The localization of cells positive for neurotrophic tyrosine kinase, receptor, type 2, proliferating cell nuclear antigen, osteopontin, integrin αVβ3, and integrin α2β1 was evaluated by immunohistochemistry. The effects of BDNF on adhesion of cultured human periodontal ligament cells was examined by an in vitro study. The results suggest that BDNF could induce rapid cementum regeneration by stimulating adhesion, proliferation, and differentiation of periodontal ligament cells in the early regenerative phase, resulting in enhancement of periodontal tissue regeneration.

  5. Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat

    OpenAIRE

    Yongjun Jiang; Ning Wei; Juehua Zhu; Tingting Lu; Zhaoyao Chen; Gelin Xu; Xinfeng Liu

    2010-01-01

    This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobil...

  6. Correlation between Nerve Growth Factor (NGF) with Brain Derived Neurotropic Factor (BDNF) in Ischemic Stroke Patient

    OpenAIRE

    Islam, Andi Asadul

    2016-01-01

    - The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient's onset...

  7. Brain-derived Neurotrophic Factor and Epilepsy—A Missing Link?

    OpenAIRE

    SCHARFMAN, HELEN E.

    2005-01-01

    It has been known for some time that brain-derived neurotrophic factor (BDNF) is critical to normal development of the CNS, and more recently, studies also have documented the ability of BDNF to modify adult CNS structure and function. Therefore, it is no surprise that BDNF has been linked to diseases, such as epilepsy, which may involve abnormal cortical development or altered brain structure and function after maturity. This review evaluates the evidence, particularly from recent studies, t...

  8. DYNAMIC PLASTICITY: THE ROLE OF GLUCOCORTICOIDS, BRAIN-DERIVED NEUROTROPHIC FACTOR AND OTHER TROPHIC FACTORS

    OpenAIRE

    Gray, J. D.; MILNER, T. A.; MCEWEN, B. S.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is a secreted protein that has been linked to numerous aspects of plasticity in the central nervous system (CNS). Stress-induced remodeling of the hippocampus, prefrontal cortex and amygdala is coincident with changes in the levels of BDNF, which has been shown to act as a trophic factor facilitating the survival of existing and newly born neurons. Initially, hippocampal atrophy after chronic stress was associated with reduced BDNF, leading to the hypo...

  9. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    OpenAIRE

    Magariños, A.M.; Li, C. J.; Toth, J. Gal; Bath, K.G.; Jing, D; Lee, F S; MCEWEN, B. S.

    2011-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the ...

  10. Mature and Precursor Brain-Derived Neurotrophic Factor Have Individual Roles in the Mouse Olfactory Bulb

    OpenAIRE

    Thomas Gerald Mast; Debra Ann Fadool

    2012-01-01

    BACKGROUND: Sensory deprivation induces dramatic morphological and neurochemical changes in the olfactory bulb (OB) that are largely restricted to glomerular and granule layer interneurons. Mitral cells, pyramidal-like neurons, are resistant to sensory-deprivation-induced changes and are associated with the precursor to brain-derived neurotrophic factor (proBDNF); here, we investigate its unknown function in the adult mouse OB. PRINCIPAL FINDINGS: As determined using brain-slice electrophysio...

  11. Serum brain-derived neurotrophic factor levels and personality traits in patients with major depression

    OpenAIRE

    Nomoto, Hiroshi; Baba, Hajime; Satomura, Emi; Maeshima, Hitoshi; Takebayashi, Naoko; Namekawa, Yuki; Suzuki, Toshihito; Arai, Heii

    2015-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. Previous studies have demonstrated lower serum BDNF levels in patients with major depressive disorder (MDD) and reported an association between BDNF levels and depression-related personality traits in healthy subjects. The aim of the present study was to explore for a possible association between peripheral BDNF levels and personality traits in patients with MDD. Methods In this cross...

  12. TRPC3 Regulates Release of Brain-Derived Neurotrophic Factor From Human Airway Smooth Muscle

    OpenAIRE

    Vohra, Pawan K.; Thompson, Michael A.; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M.; Singh, Brij B.; Prakash, Y. S.

    2013-01-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2+ signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2+ entry (SOCE; including in ASM) and secretion of factors suc...

  13. Brain Derived Neurotrophic Factor (BDNF) levels as a possible predictor of psychopathology in healthy twins at high and low risk for affective disorder.

    Science.gov (United States)

    Vinberg, Maj; Miskowiak, Kamilla; Kessing, Lars Vedel

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a potential biomarker of affective disorder. However, longitudinal studies evaluating a potential predictive role of BDNF on subsequent psychopathology are lacking. The aim of this study was to investigate whether BDNF alone or in interaction with the BDNF Val66Met polymorphism predict onset of affective disorder in healthy individuals at heritable risk for affective disorder. In a high-risk study, we assessed whole blood levels of BDNF in 234 healthy monozygotic and dizygotic twins with or without a co-twin history of affective disorder (high and low risk twins, respectively). Participants were followed up longitudinally with questionnaires at 6-month intervals for mean seven years and then reassessed with a personal interview to obtain information about whether they had developed psychiatric illness. At follow-up 36 participants (15.4%) had developed psychiatric disorder. Cox regression analysis revealed that BDNF levels at baseline were not associated with onset of illness in this explorative study. Further, two-way interactions between BDNF levels and the Val66Met polymorphism or between familial risk and the Val66Met polymorphism did not predict illness onset.

  14. Brain-derived neurotrophic factor expression is higher in brain tissue from patients with refractory epilepsy than in normal controls

    Institute of Scientific and Technical Information of China (English)

    Yudan Lv; Jiqing Qiu; Zan Wang; Li Cui; Hongmei Meng; Weihong Lin

    2011-01-01

    The role of the brain-derived neurotrophic factor in epilepsy remains controversial. The present study utilized light and electron microscopy to investigate pathological and ultrastructural changes in brain tissue obtained from the seizure foci of 24 patients with temporal epilepsy. We found that epileptic tissue showed neuronal degeneration, glial cell proliferation, nuclear vacuolization, and neural cell tropism. Immunoelectron microscopy and immunohistochemistry showed that brain-derived neurotrophic factor was expressed at significantly higher levels in patients with refractory temporal epilepsy compared with normal controls, demonstrating that the pathological changes within seizure foci in patients with refractory epilepsy are associated with brain-derived neurotrophic factor expression alterations.

  15. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    Science.gov (United States)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  16. Stroke prevention in atrial fibrillation

    DEFF Research Database (Denmark)

    Freedman, Ben; Potpara, Tatjana S; Lip, Gregory Y H

    2016-01-01

    Atrial fibrillation is found in a third of all ischaemic strokes, even more after post-stroke atrial fibrillation monitoring. Data from stroke registries show that both unknown and untreated or under treated atrial fibrillation is responsible for most of these strokes, which are often fatal...... or debilitating. Most could be prevented if efforts were directed towards detection of atrial fibrillation before stroke occurs, through screening or case finding, and treatment of all patients with atrial fibrillation at increased risk of stroke with well-controlled vitamin K antagonists or non-vitamin K...

  17. Brain-derived neurotrophic factor and early-life stress: Multifaceted interplay

    Indian Academy of Sciences (India)

    NATALYA P BONDAR; TATIANA I MERKULOVA

    2016-12-01

    The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and plasticity. Longtermchanges in the BDNF pathway are associated with childhood adversity and adult depression symptoms.Initially, stress-induced decreases in the BDNF pathway were found in some studies, but subsequent reportsindicated the relationship between stress and BDNF to be much more complex, and the concept wassignificantly revised. In the present mini-review, we focus on the structure and regulation of the Bbnf geneas well as on the stress–BDNF interactions under early-life adverse conditions.

  18. Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function.

    Science.gov (United States)

    Teixeira, Antonio Lucio; Barbosa, Izabela Guimarães; Diniz, Breno Satler; Kummer, Arthur

    2010-12-01

    Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the CNS, where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF has become a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have consistently reported altered levels of BDNF in the circulation (i.e., serum or plasma) of patients with major depression, bipolar disorder, Alzheimer's disease, Huntington's disease and Parkinson's disease. Correlations between serum BDNF levels and affective, cognitive and motor symptoms have also been described. BDNF appears to be an unspecific biomarker of neuropsychiatric disorders characterized by neurodegenerative changes.

  19. Brain-derived neurotrophic factor and epilepsy--a missing link?

    Science.gov (United States)

    Scharfman, Helen E

    2005-01-01

    It has been known for some time that brain-derived neurotrophic factor (BDNF) is critical to normal development of the CNS, and more recently, studies also have documented the ability of BDNF to modify adult CNS structure and function. Therefore, it is no surprise that BDNF has been linked to diseases, such as epilepsy, which may involve abnormal cortical development or altered brain structure and function after maturity. This review evaluates the evidence, particularly from recent studies, that BDNF contributes to the development of temporal lobe epilepsy (TLE).

  20. Molecular mechanisms underlying the regulation of brain-derived neurotrophic factor (BDNF) translation in dendrites

    OpenAIRE

    Pinheiro, Vera Lúcia Margarido

    2010-01-01

    Dissertação de mestrado em Biologia Celular e Molecular apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra A especificidade espacial e temporal subjacente à diversidade de processos de plasticidade sináptica que ocorrem no sistema nervoso central está profundamente relacionada com a disponibilidade da proteína brain-derived neurotrophic factor (BDNF) em domínios sub-celulares distintos, especialmente na área pós-sinápti...

  1. Lesson Five Atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    鲁端; 吴文烈

    2003-01-01

    @@ Atrial fibrillation(AF) may occur in paroxysmaland persistent forms. It may be seen in normal subjects,particularly during emotional stress or follow-ing surgery,exercise, or acute alcoholic intoxication.It also may occur in patients with heart or lungdisease who develop acute hypoxia, hypercapnia,ormetabolic or hemodynamic derangements.

  2. Modulation of atrial fibrillation

    NARCIS (Netherlands)

    Geuzebroek, G.S.C.

    2013-01-01

    In this thesis we investigate the results of various surgical procedures for atrial fibrillation which have been performed in the last 2 decades in the Sint Antonius Hospital, Nieuwegein, The Netherlands. In the 1990s the classical Maze III procedure was the main surgical technique for drug-refracto

  3. Rivaroxaban in atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Giorgi MA

    2012-08-01

    Full Text Available Mariano A Giorgi,1,2 Lucas San Miguel31Cardiology Service, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno”, 2Department of Pharmacology, School of Medicine, Universidad Austral, 3Department of Cardiology and Cardiovascular Surgery, FLENI, Buenos Aires, ArgentinaAbstract: Warfarin is the traditional therapeutic option available to manage thromboembolic risk in atrial fibrillation. The hemorrhagic risk with warfarin depends mainly on the international normalized ratio (INR. Data from randomized controlled trials show that patients have a therapeutic INR (2.00–3.00 only 61%–68% of the time while taking warfarin, and this target is sometimes hard to establish. Many compounds have been developed in order to optimize the profile of oral anticoagulants. We focus on one of them, rivaroxaban, comparing it with novel alternatives, ie, dabigatran and apixaban. The indication for rivaroxaban in nonvalvular atrial fibrillation was evaluated in ROCKET-AF (Rivaroxaban-once daily, Oral, direct factor Xa inhibition Compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation. In this trial, rivaroxaban was associated with a 12% reduction in the incidence of the primary endpoint compared with warfarin (hazard ratio 0.88; 95% confidence interval [CI] 0.74–1.03; P < 0.001 for noninferiority and P = 0.12 for superiority. However, patients remained in the therapeutic range for INR only 55% of the time, which is less than that in RE-LY (the Randomized Evaluation of Long-Term Anticoagulation Therapy, 64% and in the ARISTOTLE trial (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation, 66%. This shorter time spent in the therapeutic range has been one of the main criticisms of the ROCKET-AF trial, but could actually reflect what happens in real life. In addition, rivaroxaban exhibits good pharmacokinetic and pharmacoeconomic properties. Novel anticoagulants

  4. Maternal prenatal anxiety and child brain-derived neurotrophic factor (BDNF) genotype: effects on internalizing symptoms from 4 to 15 years of age.

    Science.gov (United States)

    O'Donnell, Kieran J; Glover, Vivette; Holbrook, Joanna D; O'Connor, Thomas G

    2014-11-01

    Multiple behavioral and health outcomes, including internalizing symptoms, may be predicted from prenatal maternal anxiety, depression, or stress. However, not all children are affected, and those that are can be affected in different ways. Here we test the hypothesis that the effects of prenatal anxiety are moderated by genetic variation in the child's brain-derived neurotrophic factor (BDNF) gene, using the Avon Longitudinal Study of Parents and Children population cohort. Internalizing symptoms were assessed from 4 to 13 years of age using the Strengths and Difficulties Questionnaire (n = 8,584); a clinical interview with the adolescents was conducted at age 15 years (n = 4,704). Obstetric and psychosocial risk and postnatal maternal symptoms were included as covariates. Results show that prenatal maternal anxiety predicted internalizing symptoms, including with the diagnostic assessment at 15 years. There was a main effect of two BDNF polymorphisms (rs6265 [val66met] and rs11030104) on internalizing symptoms up to age 13. There was also genetic moderation of the prenatal anxiety effect by different BDNF polymorphisms (rs11030121 and rs7124442), although significant effects were limited to preadolescence. The findings suggest a role for BDNF gene-environment interactions in individual vulnerability to the effects of prenatal anxiety on child internalizing symptoms.

  5. Mature and precursor brain-derived neurotrophic factor have individual roles in the mouse olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Thomas Gerald Mast

    Full Text Available BACKGROUND: Sensory deprivation induces dramatic morphological and neurochemical changes in the olfactory bulb (OB that are largely restricted to glomerular and granule layer interneurons. Mitral cells, pyramidal-like neurons, are resistant to sensory-deprivation-induced changes and are associated with the precursor to brain-derived neurotrophic factor (proBDNF; here, we investigate its unknown function in the adult mouse OB. PRINCIPAL FINDINGS: As determined using brain-slice electrophysiology in a whole-cell configuration, brain-derived neurotrophic factor (BDNF, but not proBDNF, increased mitral cell excitability. BDNF increased mitral cell action potential firing frequency and decreased interspike interval in response to current injection. In a separate set of experiments, intranasal delivery of neurotrophic factors to awake, adult mice was performed to induce sustained interneuron neurochemical changes. ProBDNF, but not BDNF, increased activated-caspase 3 and reduced tyrosine hydroxylase immunoreactivity in OB glomerular interneurons. In a parallel set of experiments, short-term sensory deprivation produced by unilateral naris occlusion generated an identical phenotype. CONCLUSIONS: Our results indicate that only mature BDNF increases mitral cell excitability whereas proBDNF remains ineffective. Our demonstration that proBDNF activates an apoptotic marker in vivo is the first for any proneurotrophin and establishes a role for proBDNF in a model of neuronal plasticity.

  6. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke.

    Directory of Open Access Journals (Sweden)

    Masachika Niimi

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF and such effect is influenced by BDNF gene polymorphism.To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9 in poststroke patients with upper limb hemiparesis.Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels.Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002. The outcome of rTMS therapy was not altered by BDNF gene polymorphism.The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.

  7. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  8. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    Science.gov (United States)

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  9. Gonadectomy affects brain derived neurotrophic factor in rats after chronic constriction nerve injury

    Institute of Scientific and Technical Information of China (English)

    Xin ZHAO; Xin WANG; Shu-yun ZHENG; Jian-guo XU

    2004-01-01

    AIM: To assess the effect of gonadectomy on brain derived neurotrophic factor (BDNF) expression in neuropathic pain. METHODS: Using chronic constriction injury (CCI) model, we detected BDNF mRNA in dorsal root ganglion and protein content in spinal cord by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay respectively. The time point we chose was post CCI operation d 0, 3, 7, 14, and 21.RESULTS: After CCI surgery, BDNF mRNA in ipsilateral DRGs was upregulated and reached its maximum on post operation d 7. BDNF protein level in ipsilateral spinal cord was also increased and reached its maximum on post operation d 14. The magnitude of this increase in gonadectomy (GDX) rats was significantly smaller than the GDX-sham rats at each time point. CONCLUSION: Gonadectomy reduced the BDNF increment after CCI surgery.Estrogen may affect nociceptive processing by its effect on BDNF.

  10. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments.

    Science.gov (United States)

    Castrén, Eero; Kojima, Masami

    2017-01-01

    Levels of brain-derived neurotrophic factor (BDNF) are reduced in the brain and serum of depressed patients and at least the reduction in serum levels is reversible upon successful treatment. These data, together with a wealth of reports using different animal models with depression-like behavior or manipulation of expression of BDNF or its receptor TrkB have implicated BDNF in the pathophysiology of depression as well as in the mechanism of action of antidepressant treatments. Recent findings have shown that posttranslational processing of BDNF gene product can yield different molecular entities that differently influence signaling through BNDF receptor TrkB and the pan-neurotrophin receptor p75(NTR). We will here review these data and discuss new insights into the possible pathophysiological roles of those new BDNF subtypes as well as recent findings on the role of BDNF mediated neuronal plasticity in mood disorders and their treatments.

  11. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel

    2014-01-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case......-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3...... were measured in 37 rapid cycling bipolar disorder patients and in 40 age- and gender matched healthy control subjects using enzyme-linked immunosorbent assay (ELISA). In a longitudinal design, repeated measurements of BDNF and NT-3 were evaluated in various affective states in bipolar disorder...

  12. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Brassard, Patrice; Adser, Helle

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) has an important role in regulating maintenance, growth and survival of neurons. However, the main source of circulating BDNF in response to exercise is unknown. To identify whether the brain is a source of BDNF during exercise, eight volunteers rowed for 4...... h while simultaneous blood samples were obtained from the radial artery and the internal jugular vein. To further identify putative cerebral region(s) responsible for BDNF release, mouse brains were dissected and analysed for BDNF mRNA expression following treadmill exercise. In humans, a BDNF...... release from the brain was observed at rest (P exercise (P exercise, the brain contributed 70-80% of circulating BDNF, while that contribution decreased following 1 h of recovery. In mice, exercise induced a three...

  13. Role of brain-derived neurotrophic factor in the aetiology of depression: implications for pharmacological treatment.

    Science.gov (United States)

    Castrén, Eero; Rantamäki, Tomi

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a critical mediator of activity-dependent neuronal plasticity in the cerebral cortex. Deficits in neurotrophic factors have been proposed to underlie mood disorders. However, recent evidence suggests that mood disorders may be produced by abnormalities in the adaptation of neural networks to environmental conditions. Antidepressants may act by enhancing neuronal plasticity, which allows environmental inputs to modify the neuronal networks to better fine tune the individual to the outside world. Recent observations in the visual cortex directly support this idea. According to the network hypothesis of depression, changes in the levels of neurotrophins including BDNF may not directly produce depression or an antidepressant effect, but neurotrophins may act as critical tools in the process whereby environmental conditions guide neuronal networks to better adapt to the environment. This hypothesis suggests that antidepressant drugs should not be used alone but should always be combined with rehabilitation to guide the plastic networks within the brain.

  14. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease.

    Science.gov (United States)

    Mariga, Abigail; Mitre, Mariela; Chao, Moses V

    2017-01-01

    Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease.

  15. Cell-based delivery of brain-derived neurotrophic factor in experimental allergic encephalomyelitis.

    Science.gov (United States)

    Makar, Tapas K; Nimmagadda, Vamshi K C; Trisler, David; Bever, Christopher T

    2014-08-01

    Brain-derived neurotrophic factor (BDNF) is a pleiotropic cytokine with neuroprotective properties that has been identified as a potential therapeutic agent for diseases of the central nervous system (CNS). The use of BDNF has been limited by a short serum half-life and poor penetration of the blood-brain barrier. To address this limitation we have explored cell-based approaches to delivery. We have used experimental allergic encephalomyelitis (EAE), an inflammatory disease of the CNS, as a model system. We engineered hematopoietic stem cells to produce BDNF to determine the feasibility and effectiveness of cell-based delivery of BDNF into the CNS in EAE. We review those studies here.

  16. Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments.

    Science.gov (United States)

    Cunha, Carla; Angelucci, Andrea; D'Antoni, Angela; Dobrossy, Mate D; Dunnett, Stephen B; Berardi, Nicoletta; Brambilla, Riccardo

    2009-03-01

    In this study we analyzed the effect on behavior of a chronic exposure to brain-derived neurotrophic factor (BDNF), by analysing a mouse line overexpressing BDNF under the alphaCaMKII promoter, which drives the transgene expression exclusively to principal neurons of the forebrain. BDNF transgenic mice and their WT littermates were examined with a battery of behavioral tests, in order to evaluate motor coordination, learning, short and long-term memory formation. Our results demonstrate that chronic BDNF overexpression in the central nervous system (CNS) causes learning deficits and short-term memory impairments, both in spatial and instrumental learning tasks. This observation suggests that a widespread increase in BDNF in forebrain networks may result in adverse effects on learning and memory formation.

  17. Brain-Derived Neurotrophic Factor Predicts Mortality Risk in Older Women

    DEFF Research Database (Denmark)

    Krabbe, K.S.; Mortensen, E.L.; Avlund, K.

    2009-01-01

    OBJECTIVES To test the hypothesis that low circulating brain-derived neurotrophic factor (BDNF), a secretory member of the neurotrophin family that has a protective role in neurodegeneration and stress responses and a regulatory role in metabolism, predicts risk of all-cause mortality in 85-year...... was measured in plasma and serum. The Danish National Register of Patients was used to collect data on morbidity. The primary outcome in Cox regression analyses was all-cause mortality. RESULTS Women with low plasma BDNF (lowest tertile) had greater all-cause mortality risk than women with high plasma BDNF......-grade inflammation. No association was found between plasma BDNF and mortality in men, and serum BDNF did not influence mortality in either sex. CONCLUSION Low plasma BDNF is a novel, independent, and robust biomarker of mortality risk in old women. BDNF may be a central factor in the network of multimorbidity...

  18. Brain-derived neurotrophic factor and exercise in fibromyalgia syndrome patients: a mini review.

    Science.gov (United States)

    Nugraha, Boya; Karst, Matthias; Engeli, Stefan; Gutenbrunner, Christoph

    2012-09-01

    Fibromyalgia syndrome (FMS) is a common chronic pain condition characterized by chronic widespread pain and decreased pain threshold, with hyperalgesia and allodynia. Associated signs include fatigue, morning stiffness, non-restorative sleep, mood disturbance, depression, irritable bowel syndrome, and headache. In addition to the administration of drugs, psychological therapies treatment of FMS mainly consists of physical therapies. Although the precise pathogenesis of FMS remains elucidated, modern understanding conceptualizes FMS as central sensitization as a consequence of altered endogenous pain- and stress-response system and continuous nociceptive input. Altered brain-derived neurotrophic factor (BDNF) levels in FMS suggest that BDNF--well known for its effects on neuronal plasticity--is involved in this sensitization process. Exercise leads to changes in serum BDNF levels, too. This association highlights the importance of exercise in FMS and other chronic pain conditions.

  19. Aerobic Exercise Does Not Predict Brain Derived Neurotrophic Factor And Cortisol Alterations in Depressed Patients.

    Science.gov (United States)

    Lamego, Murilo Khede; de Souza Moura, Antonio Marcos; Paes, Flávia; Ferreira Rocha, Nuno Barbosa; de Sá Filho, Alberto Souza; Lattari, Eduardo; Rimes, Ridson; Manochio, João; Budde, Henning; Wegner, Mirko; Mura, Gioia; Arias-Carrión, Oscar; Yuan, Ti-Fei; Nardi, Antonio Egidio; Machado, Sergio

    2015-01-01

    The pathophysiology of depression is related to neurobiological changes that occur in the monoamine system, hypothalamic-pituitary-adrenal axis, neurogenesis system and the neuroimmune system. In recent years, there has been a growing interest in the research of the effects of exercise on brain function, with a special focus on its effects on brain-derived neurotrophic factor (BDNF), cortisol and other biomarkers. Thus, the aim of this study is to present a review investigating the acute and chronic effects of aerobic exercise on BDNF and cortisol levels in individuals with depression. It was not possible to establish an interaction between aerobic exercise and concentration of BDNF and cortisol, which may actually be the result of the divergence of methods, such as type of exercises, duration of the sessions, and prescribed intensity and frequency of sessions.

  20. Serum brain-derived neurotrophic factor levels in different neurological diseases.

    Science.gov (United States)

    Ventriglia, Mariacarla; Zanardini, Roberta; Bonomini, Cristina; Zanetti, Orazio; Volpe, Daniele; Pasqualetti, Patrizio; Gennarelli, Massimo; Bocchio-Chiavetto, Luisella

    2013-01-01

    Consistent evidence indicates the involvement of the brain-derived neurotrophic factor (BDNF) in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In the present study, we compared serum BDNF in 624 subjects: 266 patients affected by AD, 28 by frontotemporal dementia (FTD), 40 by Lewy body dementia (LBD), 91 by vascular dementia (VAD), 30 by PD, and 169 controls. Our results evidenced lower BDNF serum levels in AD, FTD, LBD, and VAD patients (P benzodiazepines (P = 0.020). In conclusion, our results support the role of BDNF alterations in neurodegenerative mechanisms common to different forms of neurological disorders and underline the importance of including drug treatment in the analyses to avoid confounding effects.

  1. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans

    DEFF Research Database (Denmark)

    Huang, T; Larsen, K T; Ried-Larsen, M

    2014-01-01

    The purpose of this study was to summarize the effects of physical activity and exercise on peripheral brain-derived neurotrophic factor (BDNF) in healthy humans. Experimental and observational studies were identified from PubMed, Web of Knowledge, Scopus, and SPORT Discus. A total of 32 articles...... met the inclusion criteria. Evidence from experimental studies suggested that peripheral BDNF concentrations were elevated by acute and chronic aerobic exercise. The majority of the studies suggested that strength training had no influence on peripheral BDNF. The results from most observational...... studies suggested an inverse relationship between the peripheral BDNF level and habitual physical activity or cardiorespiratory fitness. More research is needed to confirm the findings from the observational studies....

  2. Rapid control of male typical behaviors by brain-derived estrogens.

    Science.gov (United States)

    Cornil, Charlotte A; Ball, Gregory F; Balthazart, Jacques

    2012-10-01

    Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanisms that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators.

  3. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy

    DEFF Research Database (Denmark)

    Klein, Anders B; Jennum, Poul; Knudsen, Stine

    2013-01-01

    in hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesised......Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction...... that serum levels of these factors are altered in patients with narcolepsy compared to healthy controls without sleep disturbances. Polysomnography data was obtained and serum BDNF and NGF levels measured using ELISA, while hypocretin was measured using RIA. Serum BDNF levels were significantly higher...

  4. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Pedersen, Maria; Krabbe, Karen S

    2009-01-01

    identifies BDNF as a player not only in central metabolism, but also in regulating energy metabolism in peripheral organs. Low levels of BDNF are found in patients with neurodegenerative diseases, including Alzheimer's disease and major depression. In addition, BDNF levels are low in obesity...... and independently so in patients with type 2 diabetes. Brain-derived neurotrophic factor is expressed in non-neurogenic tissues, including skeletal muscle, and exercise increases BDNF levels not only in the brain and in plasma, but in skeletal muscle as well. Brain-derived neurotrophic factor mRNA and protein...... diabetes may explain the clustering of these diseases. Brain-derived neurotrophic factor is likely to mediate some of the beneficial effects of exercise with regard to protection against dementia and type 2 diabetes....

  5. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury:a biomechanical evaluation

    Institute of Scientific and Technical Information of China (English)

    Zhong-jun Zhang; Ya-jun Li; Xiao-guang Liu; Feng-xiao Huang; Tie-jun Liu; Dong-mei Jiang; Xue-man Lv; Min Luo

    2015-01-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood stem cells. After 30 days, the maximum load, max-imum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neu-rotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These ifndings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, im-prove biomechanical properties, and contribute to the recovery after injury.

  6. In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor.

    NARCIS (Netherlands)

    Groot, D.M. de; Coenen, A.J.M.; Verhofstad, A.A.J.; Herp, F. van; Martens, G.J.M.

    2006-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of neuronal cell survival and differentiation factors but is thought to be involved in neuronal cell proliferation and myelination as well. To explore the role of BDNF in vivo, we employed the intermediate pituitary melanotr

  7. Developmental Thyroid Hormone Insufficiency Reduces Expression of Brain-Derived Neurotrophic Factor (BDNF) in Adults But Not in Neonates

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expressio...

  8. Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factor over time

    NARCIS (Netherlands)

    Bus, B. A. A.; Molendijk, M. L.; Tendolkar, I.; Penninx, B. W. J. H.; Prickaerts, J.; Elzinga, B. M.; Oude Voshaar, R. C.

    2015-01-01

    One of the leading neurobiological hypotheses on depression states that decreased expression of brain-derived neurotrophic factor (BDNF) contributes to depression. This is supported by consistent findings of low serum BDNF levels in depressed patients compared with non-depressed controls. Whereas it

  9. EEG alpha power as an intermediate measure between brain-derived neurotrophic factor Val66Met and depression severity in patients with major depressive disorder.

    Science.gov (United States)

    Zoon, Harriët F A; Veth, C P M; Arns, Martijn; Drinkenburg, W H I M; Talloen, Willem; Peeters, Pieter J; Kenemans, J L

    2013-06-01

    Major depressive disorder has a large impact on patients and society and is projected to be the second greatest global burden of disease by 2020. The brain-derived neurotrophic factor (BDNF) gene is considered to be one of the important factors in the etiology of major depressive disorder. In a recent study, alpha power was found to mediate between BDNF Met and subclinical depressed mood. The current study looked at a population of patients with major depressive disorder (N = 107) to examine the association between the BDNF Val66Met polymorphism, resting state EEG alpha power, and depression severity. For this purpose, repeated-measures analysis of variance, partial correlation, and multiple linear models were used. Results indicated a negative association between parietal-occipital alpha power in the eyes open resting state and depression severity. In addition, Met/Met patients showed lower global absolute alpha power in the eyes closed condition compared with Val-carriers. These findings are in accordance with the previously uncovered pathway between BDNF Val66Met, resting state EEG alpha power, and depression severity. Additional research is needed for the clarification of this tentative pathway and its implication in personalized treatment of major depressive disorder.

  10. BDNF Val 66 Met and 5-HTTLPR genotype moderate the impact of early psychosocial adversity on plasma brain-derived neurotrophic factor and depressive symptoms: a prospective study.

    Science.gov (United States)

    Buchmann, Arlette F; Hellweg, Rainer; Rietschel, Marcella; Treutlein, Jens; Witt, Stephanie H; Zimmermann, Ulrich S; Schmidt, Martin H; Esser, Günter; Banaschewski, Tobias; Laucht, Manfred; Deuschle, Michael

    2013-08-01

    Recent studies have emphasized an important role for neurotrophins, such as brain-derived neurotrophic factor (BDNF), in regulating the plasticity of neural circuits involved in the pathophysiology of stress-related diseases. The aim of the present study was to examine the interplay of the BDNF Val⁶⁶Met and the serotonin transporter promoter (5-HTTLPR) polymorphisms in moderating the impact of early-life adversity on BDNF plasma concentration and depressive symptoms. Participants were taken from an epidemiological cohort study following the long-term outcome of early risk factors from birth into young adulthood. In 259 individuals (119 males, 140 females), genotyped for the BDNF Val⁶⁶Met and the 5-HTTLPR polymorphisms, plasma BDNF was assessed at the age of 19 years. In addition, participants completed the Beck Depression Inventory (BDI). Early adversity was determined according to a family adversity index assessed at 3 months of age. Results indicated that individuals homozygous for both the BDNF Val and the 5-HTTLPR L allele showed significantly reduced BDNF levels following exposure to high adversity. In contrast, BDNF levels appeared to be unaffected by early psychosocial adversity in carriers of the BDNF Met or the 5-HTTLPR S allele. While the former group appeared to be most susceptible to depressive symptoms, the impact of early adversity was less pronounced in the latter group. This is the first preliminary evidence indicating that early-life adverse experiences may have lasting sequelae for plasma BDNF levels in humans, highlighting that the susceptibility to this effect is moderated by BDNF Val⁶⁶Met and 5-HTTLPR genotype.

  11. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion.

    Science.gov (United States)

    López-Gallardo, M; López-Rodríguez, A B; Llorente-Berzal, Á; Rotllant, D; Mackie, K; Armario, A; Nadal, R; Viveros, M-P

    2012-03-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9-10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28-42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug "per se" induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments.

  12. Human Obesity Associated with an Intronic SNP in the Brain-Derived Neurotrophic Factor Locus

    Directory of Open Access Journals (Sweden)

    Zongyang Mou

    2015-11-01

    Full Text Available Brain-derived neurotrophic factor (BDNF plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs. We observed that the minor C allele of rs12291063 is associated with lower human ventromedial hypothalamic BDNF expression (p < 0.001 and greater adiposity in both adult and pediatric cohorts (p values < 0.05. We further demonstrated that the major T allele for rs12291063 possesses a binding capacity for the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, knockdown of which disrupts transactivation by the T allele. Binding and transactivation functions are both disrupted by substituting C for T. These findings provide a rationale for BDNF augmentation as a targeted treatment for obesity in individuals who have the rs12291063 CC genotype.

  13. The Effects of Acute Exercise on Memory and Brain-Derived Neurotrophic Factor (BDNF).

    Science.gov (United States)

    Etnier, Jennifer L; Wideman, Laurie; Labban, Jeffrey D; Piepmeier, Aaron T; Pendleton, Daniel M; Dvorak, Kelly K; Becofsky, Katie

    2016-08-01

    Acute exercise benefits cognition, and some evidence suggests that brain-derived neurotrophic factor (BDNF) plays a role in this effect. The purpose of this study was to explore the dose-response relationship between exercise intensity, memory, and BDNF. Young adults completed 3 exercise sessions at different intensities relative to ventilator threshold (Vt) (VO2max, Vt - 20%, Vt + 20%). For each session, participants exercised for approximately 30 min. Following exercise, they performed the Rey Auditory Verbal Learning Test (RAVLT) to assess short-term memory, learning, and long-term memory recall. Twenty-four hours later, they completed the RAVLT recognition trial, which provided another measure of long-term memory. Blood was drawn before exercise, immediately postexercise, and after the 30-min recall test. Results indicated that long-term memory as assessed after the 24-hr delay differed as a function of exercise intensity with the largest benefits observed following maximal intensity exercise. BDNF data showed a significant increase in response to exercise; however, there were no differences relative to exercise intensity and there were no significant associations between BDNF and memory. Future research is warranted so that we can better understand how to use exercise to benefit cognitive performance.

  14. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity.

    Science.gov (United States)

    Suri, D; Vaidya, V A

    2013-06-01

    Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.

  15. EXPRESSING HUMAN MATURED BRAIN-DERIVED NEUROTROPHIC FACTOR GENE IN E. Coli AND DETERMINING ITS BIOACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Expressing the human matured brain-derived neurotrophic factor (mBDNF) gene in E.Coli and determining its bioactivity. Methods The resulting gene of mBDNF was subcloned into the EcoRI-BamHI site of the expression vector plasmid pBV220. The ligation products were used to transform the competent E. Coli DH5α. The proteins of mBDNF were experessed by temperature inducing. The expression products were dealed with solubilizing inclusion bodies and refolding protein. It was introduced into the embryonic chicken DRG to test whether the expressed mBDNF is a biologically active protein. Results The recombinant plasmid pBV/mBDNF was successfully constructed. By temperature inducing,under the control of the bacteriophage λ PL promoter, the experessed mBDNF protein was a 14Kd non-fusion protein,which existed in E. Coli as inclusion bodies. The size of expressed mBDNF is identical to the prediction. Bioactivity of the products was proved that it could support the cell survival and neurite growth in the primary cultures of embryonic 8-day-old chicken DRG neurons as compared to control.Conclusion The mBDNF gene can be expressed bioactively in E. Coli.

  16. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    Institute of Scientific and Technical Information of China (English)

    De-guo Jiang; Shi-li Jin; Gong-ying Li; Qing-qing Li; Zhi-ruo Li; Hong-xia Ma; Chuan-jun Zhuo; Rong-huan Jiang; Min-jie Ye

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry andin situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no signiifcant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our ifndings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  17. Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training.

    Directory of Open Access Journals (Sweden)

    Go Suzuki

    Full Text Available Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep.

  18. Anatomical evidence for transsynaptic influences of estrogen on brain-derived neurotrophic factor expression.

    Science.gov (United States)

    Blurton-Jones, M; Kuan, P N; Tuszynski, M H

    2004-01-12

    Several studies have demonstrated that estrogen modulates brain-derived neurotrophic factor (BDNF) mRNA and protein within the adult hippocampus and cortex. However, mechanisms underlying this regulation are unknown. Although an estrogen response element (ERE)-like sequence has been identified within the BDNF gene, such a classical mechanism of estrogen-induced transcriptional activation requires the colocalized expression of estrogen receptors within cells that produce BDNF. Developmental studies have demonstrated such a relationship, but to date no studies have examined colocalization of estrogen receptors and BDNF within the adult brain. By utilizing double-label immunohistochemistry for BDNF, estrogen receptor-alpha (ER-alpha), and estrogen receptor-beta (ER-beta), we found only sparse colocalization between ER-alpha and BDNF in the hypothalamus, amygdala, prelimbic cortex, and ventral hippocampus. Furthermore, ER-beta and BDNF do not colocalize in any brain region. Given the recent finding that cortical ER-beta is almost exclusively localized to parvalbumin-immunoreactive GABAergic neurons, we performed BDNF/parvalbumin double labeling and discovered that axons from cortical ER-beta-expressing inhibitory neurons terminate on BDNF-immunoreactive pyramidal cells. Collectively, these findings support a potential transsynaptic relationship between estrogen state and cortical BDNF: By directly modulating GABAergic interneurons, estrogen may indirectly influence the activity and expression of BDNF-producing cortical neurons.

  19. Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat.

    Science.gov (United States)

    Jiang, Yongjun; Wei, Ning; Zhu, Juehua; Lu, Tingting; Chen, Zhaoyao; Xu, Gelin; Liu, Xinfeng

    2010-01-01

    This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobility shift assay, respectively. Exogenous BDNF significantly improved motor-sensory, sensorimotor function, and vestibulomotor function, while BDNF did not decrease the infarct volume. Exogenous BDNF increased the number of both activated and phagocytotic microglia in brain. BDNF upregulated interleukin10 and its mRNA expression, while downregulated tumor necrosis factor α and its mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B. BDNF antibody, which blocked the activity of endogenous BDNF, showed the opposite effect of exogenous BDNF. Our data indicated that BDNF may modulate local inflammation in ischemic brain tissues on the cellular, cytokine, and transcription factor levels.

  20. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression.

    Science.gov (United States)

    Chen, Hao-Hao; Zhang, Ning; Li, Wei-Yun; Fang, Ma-Rong; Zhang, Hui; Fang, Yuan-Shu; Ding, Ming-Xing; Fu, Xiao-Yan

    2015-09-01

    Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. A BDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippocampus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open field test in these rats as well. These findings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.

  1. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression

    Directory of Open Access Journals (Sweden)

    Hao-hao Chen

    2015-01-01

    Full Text Available Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF. In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. A BDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippocampus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open field test in these rats as well. These findings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.

  2. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression

    Institute of Scientific and Technical Information of China (English)

    Hao-hao Chen; Ning Zhang; Wei-yun Li; Ma-rong Fang; Hui Zhang; Yuan-shu Fang; Ming-xing Ding; Xiao-yan Fu

    2015-01-01

    Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. ABDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippo-campus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open ifeld test in these rats as well. These ifndings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.

  3. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    Science.gov (United States)

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  4. Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat

    Directory of Open Access Journals (Sweden)

    Yongjun Jiang

    2010-01-01

    Full Text Available This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobility shift assay, respectively. Exogenous BDNF significantly improved motor-sensory, sensorimotor function, and vestibulomotor function, while BDNF did not decrease the infarct volume. Exogenous BDNF increased the number of both activated and phagocytotic microglia in brain. BDNF upregulated interleukin10 and its mRNA expression, while downregulated tumor necrosis factor α and its mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B. BDNF antibody, which blocked the activity of endogenous BDNF, showed the opposite effect of exogenous BDNF. Our data indicated that BDNF may modulate local inflammation in ischemic brain tissues on the cellular, cytokine, and transcription factor levels.

  5. Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes.

    Science.gov (United States)

    Takano, Katsura; Yamasaki, Hiroshi; Kawabe, Kenji; Moriyama, Mitsuaki; Nakamura, Yoichi

    2012-01-01

    Depression is one of the most prevalent and livelihood-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Recent studies suggest that the neuronal plasticity involved with brain-derived neurotrophic factor (BDNF) plays an important role in the recovery from depression. Some antidepressants are reported to induce BDNF expression in vivo; however, the mechanisms have been considered solely in neurons and not fully elucidated. In the present study, we evaluated the effects of imipramine, a classic tricyclic antidepressant drug, on BDNF expression in cultured rat brain astrocytes. Imipramine dose-dependently increased BDNF mRNA expression in astrocytes. The imipramine-induced BDNF increase was suppressed with inhibitors for protein kinase A (PKA) or MEK/ERK. Moreover, imipramine exposure activated transcription factor cAMP response element binding protein (CREB) in a dose-dependent manner. These results suggested that imipramine induced BDNF expression through CREB activation via PKA and/or ERK pathways. Imipramine treatment in depression might exert antidepressant action through BDNF production from astrocytes, and glial BDNF expression might be a target of developing novel antidepressants.

  6. Construction of eukaryotic expression vector with brain-derived neurotrophic factor receptor trkB gene

    Institute of Scientific and Technical Information of China (English)

    HUANG Tao; JIANG Xiao-dan; XU Zhong; YUAN Jun; DING Lian-shu; ZOU Yu-xi; XU Ru-xiang

    2005-01-01

    Objective: To construct an eukaryotic expression vector carrying rat brain-derived neurotrophic factor receptor trkB gene. Methods: Using the total RNA isolated from rat brain as template, the trkB gene was amplified by reverse-transcription-polymerase chain reaction (RT-PCR) with a pair of specific primers which contained the restrictive sites of EcoR I and BamH I. The amplified fragment of trkB gene was digested with EcoR I and BamH I, and then subcloned into cloning vector pMD18-T and expression vector pEGFP-C2 respectively. The recombinant plasmids were identified by restriction endonuclease enzyme analysis and PCR. Results: The amplified DNA fragment was about 1461 bp in length. Enzyme digestion and PCR analysis showed that the gene of trkB had been successfully cloned into vector pMD18-T and pEGFP-C2. Conclusions: The trkB gene of rat has been amplified and cloned into the eukaryotic expression vector pEGFP-C2.

  7. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor.

    Science.gov (United States)

    Szuhany, Kristin L; Bugatti, Matteo; Otto, Michael W

    2015-01-01

    Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males.

  8. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra.

    Science.gov (United States)

    Parain, K; Murer, M G; Yan, Q; Faucheux, B; Agid, Y; Hirsch, E; Raisman-Vozari, R

    1999-02-25

    Several in vitro and in vivo studies have shown that brain-derived neurotrophic factor (BDNF) promotes survival of damaged mesencephalic dopaminergic neurons. Using a specific antibody directed against human recombinant BDNF, we studied the expression of the protein at the cellular level in the post-mortem mesencephalon of control subjects and patients with Parkinson's disease (PD). In control subjects, BDNF was expressed in all mesencephalic regions containing dopaminergic neurons, and in the substantia nigra pars compacta (SNpc) 65% of the melanized neurons expressed BDNF. In the PD SNpc, the total number of pigmented neurons containing BDNF was reduced to 9.6% of the corresponding control value. In contrast, the number of pigmented neurons non-immunoreactive for BDNF was reduced to 23.9% of the corresponding control value. This result appears to indicate that SNpc melanized neurons not expressing BDNF have a 2.5-fold greater probability of surviving than BDNF-positive melanized neurons. Furthermore, we found that in parkinsonian mesencephalon almost all dopaminergic neurons containing Lewy bodies were immunoreactive for BDNF. These findings demonstrate a reduced expression of BDNF in PD and suggest that BDNF protein expression does not protect melanized SNpc neurons from the degenerative process in this disease.

  9. Quantitative analysis of cerebrospinal fluid brain derived neurotrophic factor in the patients with multiple sclerosis.

    Science.gov (United States)

    Mashayekhi, Farhad; Salehi, Zivar; Jamalzadeh, Hamid Reza

    2012-01-01

    Multiple sclerosis (MS) is the most common cause ofnontraumatic neurological disability in Europe and North America. Growth factor expression could participate in the repair process of the demyelinating disease. Among growth factors, brain derived neurotrophic factors (BDNF) has been demonstrated to play an important role in neuronal and axonal survival. In the central nervous system (CNS), neurons are the main source of BDNF. Another potential source are activated astrocytes, which are present in inflamed areas in the CNS as shown in MS. In this study, total protein concentration (TPC) and BDNF levels in the cerebrospinal fluid (CSF) samples from the patients with MS (n = 48) and control subjects (n = 53) were measured using a Bio-Rad protein assay and enzyme linked immunosorbent assay (ELISA). No significant change in the CSF TPC of patients with MS was seen as compared to normal CSF. The presence of BDNF in the CSF samples was shown by Western blot. Using ELISA, it was shown that the level of BDNF in the MS CSF is higher than in normal CSF. It is concluded that BDNF is a constant component of human CSF. Moreover, it could be implicated in the pathophysiology of MS.

  10. The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis.

    Science.gov (United States)

    Zhu, Wenjun; Frost, Emma E; Begum, Farhana; Vora, Parvez; Au, Kelvin; Gong, Yuewen; MacNeil, Brian; Pillai, Prakash; Namaka, Mike

    2012-08-01

    Multiple sclerosis (MS) is characterized by focal destruction of the white matter of the brain and spinal cord. The exact mechanisms underlying the pathophysiology of the disease are unknown. Many studies have shown that MS is predominantly an autoimmune disease with an inflammatory phase followed by a demyelinating phase. Recent studies alongside current treatment strategies, including glatiramer acetate, have revealed a potential role for brain-derived neurotrophic factor (BDNF) in MS. However, the exact role of BDNF is not fully understood. We used the experimental autoimmune encephalomyelitis (EAE) model of MS in adolescent female Lewis rats to identify the role of BDNF in disease progression. Dorsal root ganglia (DRG) and spinal cords were harvested for protein and gene expression analysis every 3 days post-disease induction (pdi) up to 15 days. We show significant increases in BDNF protein and gene expression in the DRG of EAE animals at 12 dpi, which correlates with peak neurological disability. BDNF protein expression in the spinal cord was significantly increased at 12 dpi, and maintained at 15 dpi. However, there was no significant change in mRNA levels. We show evidence for the anterograde transport of BDNF protein from the DRG to the dorsal horn of the spinal cord via the dorsal roots. Increased levels of BDNF within the DRG and spinal cord in EAE may facilitate myelin repair and neuroprotection in the CNS. The anterograde transport of DRG-derived BDNF to the spinal cord may have potential implications in facilitating central myelin repair and neuroprotection.

  11. Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development.

    Science.gov (United States)

    Suzuki, Shingo; Kiyosue, Kazuyuki; Hazama, Shunsuke; Ogura, Akihiko; Kashihara, Megumi; Hara, Tomoko; Koshimizu, Hisatsugu; Kojima, Masami

    2007-06-13

    Brain-derived neurotrophic factor (BDNF) exerts multiple biological functions in the CNS. Although BDNF can control transcription and protein synthesis, it still remains open to question whether BDNF regulates lipid biosynthesis. Here we show that BDNF elicits cholesterol biosynthesis in cultured cortical and hippocampal neurons. Importantly, BDNF elicited cholesterol synthesis in neurons, but not in glial cells. Quantitative reverse transcriptase-PCR revealed that BDNF stimulated the transcription of enzymes in the cholesterol biosynthetic pathway. BDNF-induced cholesterol increases were blocked by specific inhibitors of cholesterol synthesis, mevastatin and zaragozic acid, suggesting that BDNF stimulates de novo synthesis of cholesterol rather than the incorporation of extracellular cholesterol. Because cholesterol is a major component of lipid rafts, we investigated whether BDNF would increase the cholesterol content in lipid rafts or nonraft membrane domains. Interestingly, the BDNF-mediated increase in cholesterol occurred in rafts, but not in nonrafts, suggesting that BDNF promotes the development of neuronal lipid rafts. Consistent with this notion, BDNF raised the level of the lipid raft marker protein caveolin-2 in rafts. Remarkably, BDNF increased the levels of presynaptic proteins in lipid rafts, but not in nonrafts. An electrophysiological study revealed that BDNF-dependent cholesterol biosynthesis plays an important role for the development of a readily releasable pool of synaptic vesicles. Together, these results suggest a novel role for BDNF in cholesterol metabolism and synapse development.

  12. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.

    Science.gov (United States)

    Parkhurst, Christopher N; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N; Yates, John R; Lafaille, Juan J; Hempstead, Barbara L; Littman, Dan R; Gan, Wen-Biao

    2013-12-19

    Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.

  13. Brain-derived neurotrophic factor as a drug target for CNS disorders.

    Science.gov (United States)

    Pezet, Sophie; Malcangio, Marzia

    2004-10-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of trophic factors. BDNF is widely and abundantly expressed in the CNS and is available to some peripheral nervous system neurons that uptake the neurotrophin produced by peripheral tissues. BDNF promotes survival and differentiation of certain neuronal populations during development. In adulthood, BDNF can modulate neuronal synaptic strength and has been implicated in hippocampal mechanisms of learning and memory and spinal mechanisms for pain. Several CNS disorders are associated with a decrease in trophic support. As BDNF and its high affinity receptor are abundant throughout the whole CNS, and BDNF is a potent neuroprotective agent, this trophic factor is a good candidate for therapeutic treatment of some of CNS disorders. This review aims to correlate the features of some CNS disorders (Parkinson's disease, Alzheimer's disease, depression, epilepsy and chronic pain) to changes in BDNF expression in the brain. The cellular and molecular mechanism by which BDNF might be a therapeutic strategy are critically examined.

  14. Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system.

    Science.gov (United States)

    Numakawa, T; Adachi, N; Richards, M; Chiba, S; Kunugi, H

    2013-06-03

    Brain-derived neurotrophic factor (BDNF) has multiple roles in the central nervous system (CNS), including maintaining cell survival and regulation of synaptic function. In CNS neurons, BDNF triggers activation of phospholipase Cγ (PLCγ), mitogen-activated protein/extracellular signal-regulated kinase (MAPK/ERK), and phosphoinositide 3-kinase (PI3K)/Akt pathways, influencing neuronal cells beneficially through these intracellular signaling cascades. There is evidence to suggest that decreased BDNF expression or function is related to the pathophysiology of brain diseases including psychiatric disorders. Additionally, glucocorticoids, which are critical stress hormones, also influence neuronal function in the CNS, and are putatively involved in the onset of depression when levels are abnormally high. In animal models of depression, changes in glucocorticoid levels, expression of glucocorticoid receptor (GR), and alterations in BDNF signaling are observed. Interestingly, several studies using in vivo and in vitro systems suggest that glucocorticoids interact with BDNF to ultimately affect CNS function. In the present review, we provide an overview of recent evidence concerning the interaction between BDNF and glucocorticoids.

  15. Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation.

    Science.gov (United States)

    Guo, Wei; Robbins, Meredith T; Wei, Feng; Zou, Shiping; Dubner, Ronald; Ren, Ke

    2006-01-04

    In the adult mammalian brain, brain-derived neurotrophic factor (BDNF) is critically involved in long-term synaptic plasticity. Here, we show that supraspinal BDNF-tyrosine kinase receptor B (TrkB) signaling contributes to pain facilitation. We show that BDNF-containing neurons in the periaqueductal gray (PAG), the central structure for pain modulation, project to and release BDNF in the rostral ventromedial medulla (RVM), a relay between the PAG and spinal cord. BDNF in PAG and TrkB phosphorylation in RVM neurons are upregulated after inflammation. Intra-RVM sequestration of BDNF and knockdown of TrkB by RNA interference attenuate inflammatory pain. Microinjection of BDNF (10-100 fmol) into the RVM facilitates nociception, which is dependent on NMDA receptors (NMDARs). In vitro studies with RVM slices show that BDNF induces tyrosine phosphorylation of the NMDAR NR2A subunit in RVM via a signal transduction cascade involving IP(3), PKC, and Src. The supraspinal BDNF-TrkB signaling represents a previously unknown mechanism underlying the development of persistent pain. Our findings also caution that application of BDNF for recovery from CNS disorders could lead to undesirable central pain.

  16. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis.

    Science.gov (United States)

    Makar, Tapas K; Trisler, David; Sura, Karna T; Sultana, Shireen; Patel, Niraj; Bever, Christopher T

    2008-07-15

    Multiple sclerosis is an inflammatory disease of the central nervous system (CNS) which includes a neurodegenerative component. Brain derived neurotrophic factor (BDNF) is a neuroprotective agent which might be useful in preventing neurodegeneration but its application has been limited because the blood brain barrier restricts its access to the CNS. We have developed a novel delivery system for BDNF using transformed bone marrow stem cells (BMSC) and undertook studies of EAE to determine whether the delivery of BDNF could reduce inflammation and apoptosis. Mice receiving BDNF producing BMSC had reduced clinical impairment compared to control mice receiving BMSC that did not produce BDNF. Pathological examination of brain and spinal cord showed a reduction in inflammatory infiltrating cells in treated compared to control mice. Apoptosis was reduced in brain and spinal cord based on TUNEL and cleaved Caspase-3 staining. Consistent with the known mechanism of action of BDNF on apoptosis, Bcl-2 and Akt were increased in treated mice. Further studies suggested that these increases could be mediated by inhibition of both caspase dependent and caspase independent pathways. These results suggest that the BDNF delivered by the transformed bone marrow stem cells reduced clinical severity, inflammation and apoptosis in this model.

  17. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes.

    Science.gov (United States)

    Xiao, Junhua; Wong, Agnes W; Willingham, Melanie M; van den Buuse, Maarten; Kilpatrick, Trevor J; Murray, Simon S

    2010-01-01

    The extracellular factors that are responsible for inducing myelination in the central nervous system (CNS) remain elusive. We investigated whether brain-derived neurotrophic factor (BDNF) is implicated, by first confirming that BDNF heterozygous mice exhibit delayed CNS myelination during early postnatal development. We next established that the influence of BDNF upon myelination was direct, by acting on oligodendrocytes, using co-cultures of dorsal root ganglia neurons and oligodendrocyte precursor cells. Importantly, we found that BDNF retains its capacity to enhance myelination of neurons or by oligodendrocytes derived from p75NTR knockout mice, indicating the expression of p75NTR is not necessary for BDNF-induced myelination. Conversely, we observed that phosphorylation of TrkB correlated with myelination, and that inhibiting TrkB signalling also inhibited the promyelinating effect of BDNF, suggesting that BDNF enhances CNS myelination via activating oligodendroglial TrkB-FL receptors. Together, our data reveal a previously unknown role for BDNF in potentiating the normal development of CNS myelination, via signalling within oligodendrocytes.

  18. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor.

    Science.gov (United States)

    Carbone, D L; Handa, R J

    2013-06-03

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of CNS ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in CNS development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of CNS physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids (GCs), have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor Tropomyosin-Related Kinase B by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but also in mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and GCs, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the CNS.

  19. Involvement of brain-derived neurotrophic factor (BDNF) in MP4-induced autoimmune encephalomyelitis.

    Science.gov (United States)

    Javeri, Sita; Rodi, Michael; Tary-Lehmann, Magdalena; Lehmann, Paul V; Addicks, Klaus; Kuerten, Stefanie

    2010-11-01

    The role of brain-derived neurotrophic factor (BDNF) in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still unclear. Here we investigate the clinical course, CNS histopathology and peripheral antigen-specific immunity in MP4-induced EAE of BDNF (-/+) mice. We demonstrate that these mice displayed less severe disease compared to BDNF (+/+) mice, reflected by decreased inflammation and demyelination. In correspondence to diminished frequencies of T and B cells in CNS infiltrates, the peripheral MP4-specific T(H)1/T(H)17 response was attenuated in BDNF (-/+), but not in wild-type animals. In contrast, immunization with ovalbumin triggered similar frequencies of IFN-γ- and IL-17-secreting T cells in both groups. The cytokine secretion and proliferative activity upon mitogen stimulation did not reveal any global defect of T cell function in BDNF (-/+) mice. By influencing the antigen-specific immune response in autoimmune encephalomyelitis, BDNF may support and maintain the disease in ways that go beyond its alleged neuroprotective role.

  20. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  1. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor

    Science.gov (United States)

    Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E.

    2016-06-01

    The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain.

  2. Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperserotonergic phenotype.

    Science.gov (United States)

    Guiard, Bruno P; David, Denis J P; Deltheil, Thierry; Chenu, Franck; Le Maître, Erwan; Renoir, Thibault; Leroux-Nicollet, Isabelle; Sokoloff, Pierre; Lanfumey, Laurence; Hamon, Michel; Andrews, Anne M; Hen, René; Gardier, Alain M

    2008-02-01

    Growing evidence supports the involvement of brain-derived neurotrophic factor (BDNF) in mood disorders and the mechanism of action of antidepressant drugs. However, the relationship between BDNF and serotonergic signalling is poorly understood. Heterozygous mutants BDNF +/- mice were utilized to investigate the influence of BDNF on the serotonin (5-HT) system and the activity of the serotonin transporter (SERT) in the hippocampus. The zero net flux method of quantitative microdialysis revealed that BDNF +/- heterozygous mice have increased basal extracellular 5-HT levels in the hippocampus and decreased 5-HT reuptake capacity. In keeping with these results, the selective serotonin reuptake inhibitor paroxetine failed to increase hippocampal extracellular 5-HT levels in BDNF +/- mice while it produced robust effects in wild-type littermates. Using in-vitro autoradiography and synaptosome techniques, we investigated the causes of attenuated 5-HT reuptake in BDNF +/- mice. A significant decrease in [3H]citalopram-binding-site density in the CA3 subregion of the ventral hippocampus and a significant reduction in [3H]5-HT uptake in hippocampal synaptosomes, revealed mainly a decrease in SERT function. However, 5-HT1A autoreceptors were not desensitized in BDNF +/- mice. These results provide evidence that constitutive reductions in BDNF modulate SERT function reuptake in the hippocampus.

  3. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    Directory of Open Access Journals (Sweden)

    De-guo Jiang

    2016-01-01

    Full Text Available Previous studies suggest that serotonin (5-HT might interact with brain-derived neurotrophic factor (BDNF during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  4. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress.

    Science.gov (United States)

    Jiang, De-Guo; Jin, Shi-Li; Li, Gong-Ying; Li, Qing-Qing; Li, Zhi-Ruo; Ma, Hong-Xia; Zhuo, Chuan-Jun; Jiang, Rong-Huan; Ye, Min-Jie

    2016-09-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  5. Zinc-triggered induction of tissue plasminogen activator by brain-derived neurotrophic factor and metalloproteinases.

    Science.gov (United States)

    Hwang, Ih-Yeon; Sun, Eun-Sun; An, Ji Hak; Im, Hana; Lee, Sun-Ho; Lee, Joo-Yong; Han, Pyung-Lim; Koh, Jae-Young; Kim, Yang-Hee

    2011-09-01

    Tissue plasminogen activator (tPA) is necessary for hippocampal long-term potentiation. Synaptically released zinc also contributes to long-term potentiation, especially in the hippocampal CA3 region. Using cortical cultures, we examined whether zinc increased the concentration and/or activity of tPA. Two hours after a 10-min exposure to 300 μM zinc, expression of tPA and its substrate, plasminogen, were significantly increased, as was the proteolytic activity of tPA. In contrast, increasing extracellular or intracellular calcium levels did not affect the expression or secretion of tPA. Changing zinc influx or chelating intracellular zinc also failed to alter tPA/plasminogen induction by zinc, indicating that zinc acts extracellularly. Zinc-mediated extracellular activation of matrix metalloproteinase (MMP) underlies the up-regulation of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase (Trk) signaling. Consistent with these findings, co-treatment with a neutralizing antibody against BDNF or specific inhibitors of MMPs or Trk largely reversed tPA/plasminogen induction by zinc. Treatment of cortical cultures with p-aminophenylmercuric acetate, an MMP activator, MMP-2, or BDNF alone induced tPA/plasminogen expression. BDNF mRNA and protein expression was also increased by zinc and mediated by MMPs. Thus, an extracellular zinc-dependent, MMP- and BDNF-mediated synaptic mechanism may regulate the levels and activity of tPA.

  6. Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons.

    Science.gov (United States)

    Burkhalter, Julia; Fiumelli, Hubert; Allaman, Igor; Chatton, Jean-Yves; Martin, Jean-Luc

    2003-09-10

    Brain-derived neurotrophic factor (BDNF) promotes the biochemical and morphological differentiation of selective populations of neurons during development. In this study we examined the energy requirements associated with the effects of BDNF on neuronal differentiation. Because glucose is the preferred energy substrate in the brain, the effect of BDNF on glucose utilization was investigated in developing cortical neurons via biochemical and imaging studies. Results revealed that BDNF increases glucose utilization and the expression of the neuronal glucose transporter GLUT3. Stimulation of glucose utilization by BDNF was shown to result from the activation of Na+/K+-ATPase via an increase in Na+ influx that is mediated, at least in part, by the stimulation of Na+-dependent amino acid transport. The increased Na+-dependent amino acid uptake by BDNF is followed by an enhancement of overall protein synthesis associated with the differentiation of cortical neurons. Together, these data demonstrate the ability of BDNF to stimulate glucose utilization in response to an enhanced energy demand resulting from increases in amino acid uptake and protein synthesis associated with the promotion of neuronal differentiation by BDNF.

  7. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.

    Science.gov (United States)

    Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham

    2011-03-23

    Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.

  8. Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice.

    Science.gov (United States)

    Gudasheva, T A; Povarnina, P Yu; Seredenin, S B

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) plays the central role in the mechanisms of regulation of neurogenesis and neuroplasticity. Impairment of these mechanisms is considered as one of the main etiological factors of depression. Dimeric dipeptide mimetic of BDNF loop 4 bis-(N-monosuccinyl-l-seryl-l-lysine) hexamethylenediamide (GSB-106) was synthesized at the V. V. Zakusov Research Institute of Pharmacology. In vivo experiments revealed significant antidepressant properties of GSB-106 in doses of 0.1-10 mg/kg (intraperitoneally and orally). Effects of GSB-106 on hippocampal neurogenesis were studied in mice subjected to chronic predator stress. Proliferative activity in the subgranular zone of the dental gyrus was assessed immunohistochemically by Ki-67 expression (a marker of dividing cells). It was found that GSB-106 (10 mg/kg, intraperitoneally, 5 days) completely prevents neurogenesis disturbances in stressed mice. These findings suggest that GSB-106 is a promising candidate for the development of antidepressant agents with BDNF-like mechanism of action.

  9. The Pattern of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampus of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Iraj Salehi

    2010-06-01

    Full Text Available Objective(sThe aim of this study was to evaluate the effects of regular exercise in preventing diabetes complication in the hippocampus of streptozotocin (STZ-induced diabetic rat.Materials and MethodsA total of 48 male wistar rats were divided into four groups (control, control exercise, diabetic and diabetic exercise. Diabetes was induced by injection of single dose of STZ. Exercise was performed for one hr every day, over a period of 8 weeks. The antioxidant enzymes (SOD, GPX, CAT and GR and oxidant indexes with brain-derived neurotrophic factor (BDNF protein and its mRNA and apoptosis were measured in hippocampus of rats. ResultsA significant decrease in antioxidant enzymes activities and increased malondialdehyde (MDA level were observed in diabetic rats (P= 0.004. In response to exercise, antioxidant enzymes activities increased (P= 0.004. In contrast, MDA level decreased in diabetic rats (P= 0.004. Induction of diabetes caused an increase of BDNF protein and its mRNA expression. In response to exercise, BDNF protein and its mRNA expression reduced in hippocampus of diabetic rats. ConclusionDiabetes induced oxidative stress and increased BDNF gene expression. Exercise ameliorated oxidative stress and decreased BDNF gene expression.

  10. Decreased brain-derived neurotrophic factor plasma levels in psoriasis patients

    Directory of Open Access Journals (Sweden)

    A.R. Brunoni

    2015-08-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is associated with neuroplasticity and synaptic strength, and is decreased in conditions associated with chronic stress. Nevertheless, BDNF has not yet been investigated in psoriasis, a chronic inflammatory systemic disease that is exacerbated by stress. Therefore, our aim was to determine BDNF plasma levels in psoriasis patients and healthy controls. Adult patients (n=94 presenting with psoriasis for at least 1 year were enrolled, and age- and gender-matched with healthy controls (n=307 from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil. Participants had neither a previous history of coronary artery disease nor current episode of major depression. BDNF plasma levels were determined using the Promega ELISA kit. A general linear model was used to compare BDNF levels in psoriasis patients and controls, with age, gender, systolic blood pressure, serum fasting glucose, blood lipid levels, triglycerides, smoking status, and body mass index examined. After adjusting for clinical and demographic variables, significantly decreased BNDF plasma levels were observed in psoriasis patients (P=0.01 (estimated marginal means of 3922 pg/mL; 95%CI=2660-5135 compared with controls (5788 pg/mL; 95%CI=5185-6442. Similar BDNF levels were found in both mild and severe cases of psoriasis. Our finding, that BDNF is decreased in psoriasis, supports the concept of a brain-skin connection in psoriasis. Further studies should determine if BDNF is increased after specific psoriasis treatments, and associated with different disease stages.

  11. Serum Brain-Derived Neurotrophic Factor Levels in Different Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Mariacarla Ventriglia

    2013-01-01

    Full Text Available Consistent evidence indicates the involvement of the brain-derived neurotrophic factor (BDNF in neurodegenerative disorders such as Alzheimer's disease (AD and Parkinson’s disease (PD. In the present study, we compared serum BDNF in 624 subjects: 266 patients affected by AD, 28 by frontotemporal dementia (FTD, 40 by Lewy body dementia (LBD, 91 by vascular dementia (VAD, 30 by PD, and 169 controls. Our results evidenced lower BDNF serum levels in AD, FTD, LBD, and VAD patients (P<0.001 and a higher BDNF concentration in patients affected by PD (P=0.045. Analyses of effects of pharmacological treatments suggested significantly higher BDNF serum levels in patients taking mood stabilizers/antiepileptics (P=0.009 and L-DOPA (P<0.001 and significant reductions in patients taking benzodiazepines (P=0.020. In conclusion, our results support the role of BDNF alterations in neurodegenerative mechanisms common to different forms of neurological disorders and underline the importance of including drug treatment in the analyses to avoid confounding effects.

  12. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression.

    Science.gov (United States)

    Haile, C N; Murrough, J W; Iosifescu, D V; Chang, L C; Al Jurdi, R K; Foulkes, A; Iqbal, S; Mahoney, J J; De La Garza, R; Charney, D S; Newton, T F; Mathew, S J

    2014-02-01

    Ketamine produces rapid antidepressant effects in treatment-resistant depression (TRD), but the magnitude of response varies considerably between individual patients. Brain-derived neurotrophic factor (BDNF) has been investigated as a biomarker of treatment response in depression and has been implicated in the mechanism of action of ketamine. We evaluated plasma BDNF and associations with symptoms in 22 patients with TRD enrolled in a randomized controlled trial of ketamine compared to an anaesthetic control (midazolam). Ketamine significantly increased plasma BDNF levels in responders compared to non-responders 240 min post-infusion, and Montgomery-Åsberg Depression Rating Scale (MADRS) scores were negatively correlated with BDNF (r=-0.701, p = 0.008). Plasma BDNF levels at 240 min post-infusion were highly negatively associated with MADRS scores at 240 min (r = -0.897, p=.002), 24 h (r = -0.791, p = 0.038), 48 h (r = -0.944, p = 0.001) and 72 h (r = -0.977, p = 0.010). No associations with BDNF were found for patients receiving midazolam. These data support plasma BDNF as a peripheral biomarker relevant to ketamine antidepressant response.

  13. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor.

    Science.gov (United States)

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V

    2016-03-01

    Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms.

  14. TrkB-Mediated Neuroprotective and Antihypoxic Properties of Brain-Derived Neurotrophic Factor.

    Science.gov (United States)

    Vedunova, Maria V; Mishchenko, Tatiana A; Mitroshina, Elena V; Mukhina, Irina V

    2015-01-01

    The neuroprotective and antihypoxic effects of brain-derived neurotrophic factor (BDNF) on dissociated hippocampal cultures in a hypoxia model were investigated. These experiments demonstrate that 10 minutes of normobaric hypoxia increased the number of dead cells in primary culture, whereas a preventive application of BDNF increased the number of viable cells. Spontaneous bioelectrical and calcium activity in neural networks was analyzed using multielectrode arrays and functional intravital calcium imaging. The results indicate that BDNF affects the functional parameters of neuronal networks in dissociated hippocampal cultures over the 7-day posthypoxic period. In addition, the effects of k252a, an antagonist of tropomyosin-related kinase B (TrkB), on functional bioelectrical activity during and after acute hypoxia were investigated. It was shown that the protective effects of BDNF are associated with binding to the TrkB receptor. Finally, intravital fluorescent mRNA probes were used to study the role of NF-κB1 in the protective effects of BDNF. Our experiments revealed that BDNF application stimulates NF-κB1 mRNA synthesis in primary dissociated hippocampal cells under normal conditions but not in hypoxic state.

  15. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace.

  16. Reduced neuroplasticity in aged rats: a role for the neurotrophin brain-derived neurotrophic factor.

    Science.gov (United States)

    Calabrese, Francesca; Guidotti, Gianluigi; Racagni, Giorgio; Riva, Marco A

    2013-12-01

    Aging is a physiological process characterized by a significant reduction of neuronal plasticity that might contribute to the functional defects observed in old subjects. Even if the neurobiological mechanisms that contribute to such impairment remain largely unknown, a role for neurotrophic molecules, such as the neurotrophin brain-derived neurotrophic factor (BDNF), has been postulated. On this basis, the purpose of this study was to provide a detailed investigation of the BDNF system, at transcriptional and translational levels, in the ventral and dorsal hippocampus and in the prefrontal cortex of middle-aged and old rats, compared with in adult animals. The expression of major players in BDNF regulation and response, including the transcription factors, calcium-responsive transcription factor, cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB), and neuronal Per Arnt Sim (PAS) domain protein 4, and the high-affinity receptor tropomyosin receptor kinase B (TrkB), was also analyzed. Our results demonstrate that the BDNF system is affected at different levels in aged rats with global impairment including reduced transcription, impaired protein synthesis and processing, and decreased activation of the TrkB receptors. These modifications might contribute to the cognitive deficits associated with aging and suggest that pharmacological strategies aimed at restoring reduced neurotrophism might be useful to counteract age-related cognitive decline.

  17. Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development.

    Science.gov (United States)

    Li, Yun; Yui, Daishi; Luikart, Bryan W; McKay, Renée M; Li, Yanjiao; Rubenstein, John L; Parada, Luis F

    2012-09-18

    Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), are associated with the physiology of the striatum and the loss of its normal functioning under pathological conditions. The role of BDNF and its downstream signaling in regulating the development of the striatum has not been fully investigated, however. Here we report that ablation of Bdnf in both the cortex and substantia nigra depletes BDNF in the striatum, and leads to impaired striatal development, severe motor deficits, and postnatal lethality. Furthermore, striatal-specific ablation of TrkB, the gene encoding the high-affinity receptor for BDNF, is sufficient to elicit an array of striatal developmental abnormalities, including decreased anatomical volume, smaller neuronal nucleus size, loss of dendritic spines, reduced enkephalin expression, diminished nigral dopaminergic projections, and severe deficits in striatal dopamine signaling through DARPP32. In addition, TrkB ablation in striatal neurons elicits a non-cell-autonomous reduction of tyrosine hydroxylase protein level in the axonal projections of substantia nigral dopaminergic neurons. Thus, our results establish an essential function for TrkB in regulating the development of striatal neurons.

  18. Directed evolution of brain-derived neurotrophic factor for improved folding and expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Hackel, Benjamin J; Chan, Jonah R; Shusta, Eric V

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in nervous system function and has therapeutic potential. Microbial production of BDNF has resulted in a low-fidelity protein product, often in the form of large, insoluble aggregates incapable of binding to cognate TrkB or p75 receptors. In this study, employing Saccharomyces cerevisiae display and secretion systems, it was found that BDNF was poorly expressed and partially inactive on the yeast surface and that BDNF was secreted at low levels in the form of disulfide-bonded aggregates. Thus, for the purpose of increasing the compatibility of yeast as an expression host for BDNF, directed-evolution approaches were employed to improve BDNF folding and expression levels. Yeast surface display was combined with two rounds of directed evolution employing random mutagenesis and shuffling to identify BDNF mutants that had 5-fold improvements in expression, 4-fold increases in specific TrkB binding activity, and restored p75 binding activity, both as displayed proteins and as secreted proteins. Secreted BDNF mutants were found largely in the form of soluble homodimers that could stimulate TrkB phosphorylation in transfected PC12 cells. Site-directed mutagenesis studies indicated that a particularly important mutational class involved the introduction of cysteines proximal to the native cysteines that participate in the BDNF cysteine knot architecture. Taken together, these findings show that yeast is now a viable alternative for both the production and the engineering of BDNF.

  19. Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation.

    Science.gov (United States)

    Lambert, W Marcus; Xu, Chong-Feng; Neubert, Thomas A; Chao, Moses V; Garabedian, Michael J; Jeanneteau, Freddy D

    2013-09-01

    Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism.

  20. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons.

    Science.gov (United States)

    Murphy, D D; Cole, N B; Segal, M

    1998-09-15

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons.

  1. Brain-derived Neurotrophic Factor Promotes the Migration of Olfactory Ensheathing Cells Through TRPC Channels.

    Science.gov (United States)

    Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui

    2016-12-01

    Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165.

  2. Serum brain-derived neurotrophic factor (BDNF) levels in attention deficit-hyperactivity disorder (ADHD).

    Science.gov (United States)

    Scassellati, Catia; Zanardini, Roberta; Tiberti, Alessandra; Pezzani, Marco; Valenti, Vera; Effedri, Paola; Filippini, Elena; Conte, Stefano; Ottolini, Alberto; Gennarelli, Massimo; Bocchio-Chiavetto, Luisella

    2014-03-01

    It has been proposed that the neurotrophin brain-derived neurotrophic factor (BDNF) may be involved in attention deficit-hyperactivity disorder (ADHD) etiopathogenesis. Alterations in BDNF serum levels have been observed in childhood/adulthood neurodevelopmental pathologies, but no evidence is available for BDNF serum concentrations in ADHD. The study includes 45 drug-naïve ADHD children and 45 age-sex matched healthy subjects. Concentration of serum BDNF was determined by the ELISA method. BDNF serum levels in patients with ADHD were not different from those of controls (mean ± SD; ADHD: 39.33 ± 10.41 ng/ml; controls: 38.82 ± 8.29 ng/ml, t = -0.26, p = 0.80). Our findings indicate no alteration of serum BDNF levels in untreated patients with ADHD. A further stratification for cognitive, neuropsychological and psychopathological assessment in a larger sample could be useful to clarify the role of BDNF in the endophenotype characterization of ADHD.

  3. Brain derived neurotrophic factor (BDNF contributes to the pain hypersensitivity following surgical incision in the rats

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Yi

    2008-07-01

    Full Text Available Abstract Background The pathogenic role of brain derived neurotrophic factor (BDNF in the incisional pain is poorly understood. The present study explores the role of the BDNF in the incision-induced pain hypersensitivity. Methods A longitudinal incision was made in one plantar hind paw of isoflurane-anesthetized rats. Dorsal root ganglias (DRG and spinal cords were removed at various postoperative times (1–72 h. Expression pattern of BDNF was determined by immunohistochemistry and double-labeling immunofluorescence. Lidocaine-induced blockade of sciatic nerve function was used to determine the importance of afferent nerve activity on BDNF expression in the DRG and spinal cord after incision. BDNF antibody was administered intrathecally (IT or intraperitoneal (IP to modulate the spinal BDNF or peripheral BDNF after incision. Results After hind-paw incision, the BDNF was upregulated in the ipsilateral lumbar DRG and spinal cord whereas thoracic BDNF remained unchanged in response to incision. The upregulated BDNF was mainly expressed in the large-sized neurons in DRG and the neurons and the primary nerve terminals in the spinal cord. Sciatic nerve blockade prevented the increase of BDNF in the DRG and spinal cord. IT injection of BDNF antibody greatly inhibited the mechanical allodynia induced by incision whereas IP administration had only marginal effect. Conclusion The present study showed that incision induced the segmental upregulation of BDNF in the DRG and spinal cord through somatic afferent nerve transmission, and the upregulated BDNF contributed to the pain hypersensitivity induced by surgical incision.

  4. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    Science.gov (United States)

    Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the entire BDNF pathway. We examined the effects of CM, BDNF (genotype, gene expression and protein level) and their interactions on hippocampus, amygdala and anterior cingulate cortex (ACC) morphology. Data were collected from patients with depression and/or an anxiety disorder and healthy subjects within the Netherlands Study of Depression and Anxiety (NESDA) (N = 289). CM was assessed using the Childhood Trauma Interview. BDNF Val66Met genotype, gene expression and serum protein levels were determined in blood and T1 MRI scans were acquired at 3T. Regional brain morphology was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed. Amygdala volume was lower in maltreated individuals. This was more pronounced in maltreated met-allele carriers. The expected positive relationship between BDNF gene expression and volume of the amygdala is attenuated in maltreated subjects. Finally, decreased cortical thickness of the ACC was identified in maltreated subjects with the val/val genotype. CM was associated with altered brain morphology, partly in interaction with multiple levels of the BNDF pathway. Our results suggest that CM has different effects on brain morphology in met-carriers and val-homozygotes and that CM may disrupt the neuroprotective effect of BDNF. PMID:27405617

  5. Rare variants in GJA5 are associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Christophersen, Ingrid E; Holmegard, Haya N; Jabbari, Javad;

    2013-01-01

    Genetic factors are believed to be important in early-onset lone atrial fibrillation (AF). The gene GJA5 encodes the gap-junction protein Cx40, which together with Cx43 is responsible for the electrical coupling of the atrial cardiomyocytes. The regulatory single nucleotide polymorphism rs10465885...... in GJA5 was recently associated with early-onset lone AF (...

  6. No interactions between genetic polymorphisms and stressful life events on outcome of antidepressant treatment

    DEFF Research Database (Denmark)

    Bukh, Jens Drachmann; Bock, Camilla; Vinberg, Maj;

    2009-01-01

    in the genes encoding the serotonin transporter, brain derived neurotrophic factor, catechol-O-methyltransferase, angiotensin converting enzyme, tryptophan hydroxylase, and the serotonin receptors 1A, 2A, and 2C. We found no evidence that the effects of the genetic polymorphisms on treatment outcome were...

  7. Association Between Smoking, Nicotine Dependence, and BDNF Val(66)Met Polymorphism with BDNF Concentrations in Serum

    NARCIS (Netherlands)

    Jamal, Mumtaz; Van der Does, Willem; Elzinga, Bernet M.; Molendijk, Marc L.; Penninx, Brenda W. J. H.

    2015-01-01

    Introduction: Nicotine use is associated with the upregulation of brain-derived neurotrophic factor (BDNF) in serum. An association between smoking and the BDNF Val(66)Met polymorphism has also been found. The aim of this study is to examine the levels of serum BDNF in never-smokers, former smokers,

  8. BDNF Val66Met polymorphism interacts with sex to influence bimanual motor control in healthy humans

    NARCIS (Netherlands)

    Smolders, R.; Rijpkema, M.J.P.; Franke, B.; Fernandez, G.S.E.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in brain development. A common single nucleotide polymorphism in the gene encoding BDNF (rs6265, Val66Met) affects BDNF release and has been associated with altered learning and memory performance, and with structural changes in brain mo

  9. Atrial fibrillation in the elderly

    Institute of Scientific and Technical Information of China (English)

    Roberto A.Franken; Ronaldo F.Rosa; Silvio CM Santos

    2012-01-01

    This review discusses atrial fibrillation according to the guidelines of Brazilian Society of Cardiac Arrhythmias and the Brazilian Cardiogeriatrics Guidelines. We stress the thromboembolic burden of atrial fibrillation and discuss how to prevent it as well as the best way to conduct cases of atrial fibrillatios in the elderly, reverting the arrhythmia to sinus rhythm, or the option of heart rate control. The new methods to treat atrial fibrillation, such as radiofrequency ablation, new oral direct thrombin inhibitors and Xa factor inhibitors, as well as new antiarrhythmic drugs, are depicted.

  10. Electrostatic effects in collagen fibrillization

    Science.gov (United States)

    Morozova, Svetlana; Muthukumar, Murugappan

    2014-03-01

    Using light scattering and AFM techniques, we have measured the kinetics of fibrillization of collagen (pertinent to the vitreous of human eye) as a function of pH and ionic strength. At higher and lower pH, collagen triple-peptides remain stable in solution without fibrillization. At neutral pH, the fibrillization occurs and its growth kinetics is slowed upon either an increase in ionic strength or a decrease in temperature. We present a model, based on polymer crystallization theory, to describe the observed electrostatic nature of collagen assembly.

  11. Hypertension and Atrial Fibrillation

    DEFF Research Database (Denmark)

    Dzeshka, Mikhail S.; Shahid, Farhan; Shantsila, Alena

    2017-01-01

    Atrial fibrillation (AF) is the most prevalent sustained arrhythmia found in clinical practice. AF rarely exists as a single entity but rather as part of a diverse clinical spectrum of cardiovascular diseases, related to structural and electrical remodeling within the left atrium, leading to AF o...... of complications as the first clinical manifestation of the disease. Antithrombotic prevention in AF combined with strict blood pressure control is of primary importance, since stroke risk and bleeding risk are both greater with underlying hypertension....... onset, perpetuation, and progression. Due to the high overall prevalence within the AF population arterial hypertension plays a significant role in the pathogenesis of AF and its complications. Fibroblast proliferation, apoptosis of cardiomyocytes, gap junction remodeling, accumulation of collagen both...... in atrial and ventricular myocardium all accompany ageing-related structural remodeling with impact on electrical activity. The presence of hypertension also stimulates oxidative stress, systemic inflammation, rennin-angiotensin-aldosterone and sympathetic activation, which further drives the remodeling...

  12. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko;

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  13. Brain-derived neurotrophic factor modulates immune reaction in mice with peripheral nerve xenotransplantation

    Directory of Open Access Journals (Sweden)

    Yu X

    2016-03-01

    Full Text Available Xin Yu,1 Laijin Lu,1 Zhigang Liu,1 Teng Yang,2 Xu Gong,1 Yubo Ning,3 Yanfang Jiang4 1Department of Hand Surgery, 2Department of Orthopedics, The First Hospital of Jilin University, Changchun, 3Department of Orthopedics, Ningshi Orthopedics Hospital of Tonghua, Tonghua, 4Department of Central Laboratory, The First Hospital of Jilin University, Changchun, People’s Republic of China Background: Brain-derived neurotrophic factor (BDNF has been demonstrated to play an important role in survival, differentiation, and neurite outgrowth for many types of neurons. This study was designed to identify the role of BDNF during peripheral nerve xenotransplantation. Materials and methods: A peripheral nerve xenotransplantation from rats to mice was performed. Intracellular cytokines were stained for natural killer (NK cells, natural killer T (NKT cells, T cells, and B cells and analyzed by flow cytometry in the spleen of the recipient mouse. Serum levels of related cytokines were quantified by cytometric bead array. Results: Splenic NK cells significantly increased in the xenotransplanted mice (8.47±0.88×107 cells/mL compared to that in the control mice (4.66±0.78×107 cells/mL, P=0.0003, which significantly reduced in the presence of BDNF (4.85±0.87×107 cells/mL, P=0.0004. In contrast, splenic NKT cell number was significantly increased in the mice with xenotransplantation plus BDNF (XT + BDNF compared to that of control group or of mice receiving xenotransplantation only (XT only. Furthermore, the number of CD3+ T cells, CD3+CD4+ T cells, CD3+CD4- T cells, interferon-γ-producing CD3+CD4+ T cells, and interleukin (IL-17-producing CD3+CD4+ T cells, as well as CD3-CD19+ B cells, was significantly higher in the spleen of XT only mice compared to the control mice (P<0.05, which was significantly reduced by BDNF (P<0.05. The number of IL-4-producing CD3+CD4+ T cells and CD3+CD4+CD25+Foxp3+ T cells was significantly higher in the spleen of XT + BDNF

  14. Mechanical properties of collagen fibrils

    OpenAIRE

    Wenger, M. P. E.; Bozec, L.; Horton, M. A.; Mesquida, P

    2007-01-01

    The formation of collagen fibers from staggered subfibrils still lacks a universally accepted model. Determining the mechanical properties of single collagen fibrils ( diameter 50 - 200 nm) provides new insights into collagen structure. In this work, the reduced modulus of collagen was measured by nanoindentation using atomic force microscopy. For individual type 1 collagen fibrils from rat tail, the modulus was found to be in the range from 5 GPa to 11.5 GPa ( in air and at room temperature)...

  15. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury.

    Science.gov (United States)

    Schober, Michelle Elena; Block, Benjamin; Requena, Daniela F; Hale, Merica A; Lane, Robert H

    2012-06-01

    Pediatric traumatic brain injury (TBI) is a major cause of acquired cognitive dysfunction in children. Hippocampal Brain Derived Neurotrophic Factor (BDNF) is important for normal cognition. Little is known about the effects of TBI on BDNF levels in the developing hippocampus. We used controlled cortical impact (CCI) in the 17 day old rat pup to test the hypothesis that CCI would first increase rat hippocampal BDNF mRNA/protein levels relative to SHAM and Naïve rats by post injury day (PID) 2 and then decrease BDNF mRNA/protein by PID14. Relative to SHAM, CCI did not change BDNF mRNA/protein levels in the injured hippocampus in the first 2 days after injury but did decrease BDNF protein at PID14. Surprisingly, BDNF mRNA decreased at PID 1, 3, 7 and 14, and BDNF protein decreased at PID 2, in SHAM and CCI hippocampi relative to Naïve. In conclusion, TBI decreased BDNF protein in the injured rat pup hippocampus 14 days after injury. BDNF mRNA levels decreased in both CCI and SHAM hippocampi relative to Naïve, suggesting that certain aspects of the experimental paradigm (such as craniotomy, anesthesia, and/or maternal separation) may decrease the expression of BDNF in the developing hippocampus. While BDNF is important for normal cognition, no inferences can be made regarding the cognitive impact of any of these factors. Such findings, however, suggest that meticulous attention to the experimental paradigm, and possible inclusion of a Naïve group, is warranted in studies of BDNF expression in the developing brain after TBI.

  16. High voltage electric potentials to enhance brain-derived neurotrophic factor levels in the brain.

    Science.gov (United States)

    Yanamoto, Hiroji; Nakajo, Yukako; Kataoka, Hiroharu; Iihara, Koji

    2013-01-01

    Development of a safe method to increase brain-derived neurotrophic factor (BDNF) levels in the brain is expected to enhance learning and memory, induce tolerance to cerebral infarction or tolerance to depressive state, improve glucose metabolism, and suppress appetite and body weight. We have shown that repetitive applications of high-voltage electric potential (HELP) to the body increase BDNF levels in the brain, improving learning and memory in mice. Here, we investigated the effects of HELP treatment for a chronic period on the BDNF levels in the mouse brain, and on body weight in mice and humans. Adult mice were exposed to 3.1 or 5.4 kV HELP (on the body), 5 h a day for 24 weeks, and BDNF levels in the brain and alterations in body weight were analyzed. Humans [age, 53.2 ± 15.5 years old; BMI, 27.8 ± 5.6 (mean ± SD, n = 6)] were exposed to 3.9 kV HELP (on the body) for 1 h a day, continuing for 33 months (2.8 years) under the monitor of body weight. In mice, the HELP application elevated BDNF levels in the brain at least temporarily, affecting body weight in a voltage- and time-dependent manner. In humans, the HELP treatment reduced body weight compared to the pretreated initial values without any aversive effects (p BDNF, and 5.4 kV HELP was considered as excessive. HELP with an appropriate voltage can be utilized to increase BDNF levels in the brain for a prolonged period. We anticipate further investigations to clarify the effect of the optimal-leveled HELP therapy on memory disturbances, neurological deficits after stroke, depression, diabetes, obesity and metabolic syndrome.

  17. Vascular Endothelial Growth Factor and Brain-Derived Neurotropic Factor Levels in Ischemic Stroke Subject

    Directory of Open Access Journals (Sweden)

    Andri Hidayat

    2016-08-01

    Full Text Available BACKGROUND: Vascular endothelial growth factor (VEGF and brain-derived neurotropic factor (BDNF present during early neuronal development and play important roles in the process of neurorepairing includes angiogenesis, neurogenesis and neuronal plasticity after ischemic stroke. In this study, we observed VEGF and BDNF levels of subjects with ischemic stroke in different onset time. METHODS: A cross sectional study was designed. Study subjects were 51 ischemic stroke subjects, aged 30-80 years old, recruited from Gatot Subroto Army Central Hospital, Jakarta, Indonesia. Ischemic stroke was diagnosed by neurologist, based on clinical examination and magnetic resonance imaging (MRI result. Subjects were divided into 3 groups based on onset time of stroke: 30 days (Group C. VEGF and BDNF levels from serum were measured using lumine Magpix. The data was analyzed for comparison and correlation. RESULTS: VEGF and BDNF levels of group B and C were significantly different with p=0.034 and p=0.007, respectively. Group B had the highest VEGF levels, whereas Group C had the highest BDNF level. VEGF and BDNF levels in each group were not significantly correlated. CONCLUSION: Each stage of time after ischemic stroke has different recovery activities like angiogenesis, neurogenesis and plasticity. Angiogenesis process was optimum in 7-30 days after onset. in more than 30 days onset, Low VEGF with high BDNF have important role in a long period of time after the onset of stroke in the regeneration and repair, such as maintaining neuronal survival and plasticity. KEYWORDS: ischemic stroke, VEGF, BDNF

  18. Imipramine ameliorates pain-related negative emotion via induction of brain-derived neurotrophic factor.

    Science.gov (United States)

    Yasuda, Seiko; Yoshida, Mitsuhiro; Yamagata, Hirotaka; Iwanaga, Yasutake; Suenaga, Hiromi; Ishikawa, Kozo; Nakano, Masako; Okuyama, Satoshi; Furukawa, Yoshiko; Furukawa, Shoei; Ishikawa, Toshizo

    2014-11-01

    Depression-like behavior is often complicated by chronic pain. Antidepressants including imipramine (IMI) are widely used to treat chronic pain, but the mechanisms are not fully understood. Brain-derived neurotrophic factor (BDNF) is a neuromodulator that reduces depression by regulating synaptic transmission. We aimed to characterize the antidepressant effects of IMI without analgesia based on BDNF (trkB)-mediated signaling and gene expression in chronic pain. A chronic constriction injury (CCI) model was constructed in Sprague-Dawley (SD) rats. IMI (5 mg/kg, i.p.) was administered from day 10 after CCI. The pain response was assessed using the paw withdrawal latency (PWL) and depression was judged from the immobility time in a forced swim test. Anti-BDNF antibody, K252a, or 5,7-dihydroxytryptamine (5,7-DHT) were used to examine the antidepressant effects of imipramine. Changes in pERK1/2 (immunohistochemistry), 5-HT and BDNF (ELISA), and BDNF mRNA (RT-PCR) were measured in the anterior cingulate cortex (ACC), rostral ventromedial medulla (RVM), and spinal cord. After CCI, rats showed decreased PWL and increased immobility time. A low dose of IMI reduced the immobility time without having analgesic effects. This antidepressant effect was reversed by anti-BDNF antibody, K252a, and 5,7-DHT. IMI reduced excessive activation of pERK1/2 associated with decreased pCREB and BDNF mRNA, and these changes were reversed by 5,7-DHT. These results show that IMI reduces pain-related negative emotion without influencing pain and that this effect is diminished by denervation of 5-HT neurons and by anti-BDNF treatment. IMI also normalizes derangement of ERK/CREB coupling, which leads to induction of BDNF. This suggests a possible interaction between 5-HT and BDNF.

  19. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    Science.gov (United States)

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity.

  20. Brain-derived neurotrophic factor and substrate utilization following acute aerobic exercise in obese individuals.

    Science.gov (United States)

    Slusher, A L; Whitehurst, M; Zoeller, R F; Mock, J T; Maharaj, A; Huang, C-J

    2015-05-01

    Brain-derived neurotrophic factor (BDNF) serves as a vital regulator of neuronal proliferation and survival, and has been shown to regulate energy homeostasis, glucose metabolism and body weight maintenance. Elevated concentrations of plasma BDNF have been associated with obesity and type 2 diabetes mellitus. Acute aerobic exercise transiently increases circulating BDNF, potentially correcting obesity-related metabolic impairment. The present study aimed to compare acute aerobic exercise elicited BDNF responses in obese and normal-weight subjects. Furthermore, we aimed to investigate whether acute exercise-induced plasma BDNF elevations would be associated with improved indices of insulin resistance, as well as substrate utilization [carbohydrate oxidation (CHOoxi) and fat oxidation (FAToxi)]. Twenty-two healthy, untrained subjects [11 obese (four men and seven women; age = 22.91 ± 4.44 years; body mass index = 35.72 ± 4.17 kg/m(2)) and 11 normal-weight (five men and six women; age = 23.27 ± 2.24 years; body mass index = 21.89 ± 1.63 kg/m(2))] performed 30 min of continuous submaximal aerobic exercise at 75% maximal oxygen consumption. Our analyses showed that the BDNF response to acute aerobic exercise was similar in obese and normal-weight subjects across time (time: P = 0.015; group: P = not significant) and was not associated with indices of IR. Although no differences in the rates of CHOoxi and FAToxi were found between both groups, total relative energy expenditure was significantly lower in obese subjects compared to normal-weight subjects (3.53 ± 0.25 versus 5.59 ± 0.85; P exercise-elicited BDNF elevation may not be sufficient to modulate indices of IR or the utilization of either carbohydrates or fats in obese individuals.

  1. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  2. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors.

    Science.gov (United States)

    Gray, J D; Milner, T A; McEwen, B S

    2013-06-03

    Brain-derived neurotrophic factor (BDNF) is a secreted protein that has been linked to numerous aspects of plasticity in the central nervous system (CNS). Stress-induced remodeling of the hippocampus, prefrontal cortex and amygdala is coincident with changes in the levels of BDNF, which has been shown to act as a trophic factor facilitating the survival of existing and newly born neurons. Initially, hippocampal atrophy after chronic stress was associated with reduced BDNF, leading to the hypothesis that stress-related learning deficits resulted from suppressed hippocampal neurogenesis. However, recent evidence suggests that BDNF also plays a rapid and essential role in regulating synaptic plasticity, providing another mechanism through which BDNF can modulate learning and memory after a stressful event. Numerous reports have shown BDNF levels are highly dynamic in response to stress, and not only vary across brain regions but also fluctuate rapidly, both immediately after a stressor and over the course of a chronic stress paradigm. Yet, BDNF alone is not sufficient to effect many of the changes observed after stress. Glucocorticoids and other molecules have been shown to act in conjunction with BDNF to facilitate both the morphological and molecular changes that occur, particularly changes in spine density and gene expression. This review briefly summarizes the evidence supporting BDNF's role as a trophic factor modulating neuronal survival, and will primarily focus on the interactions between BDNF and other systems within the brain to facilitate synaptic plasticity. This growing body of evidence suggests a more nuanced role for BDNF in stress-related learning and memory, where it acts primarily as a facilitator of plasticity and is dependent upon the coactivation of glucocorticoids and other factors as the determinants of the final cellular response.

  3. Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain.

    Science.gov (United States)

    Trang, Tuan; Beggs, Simon; Salter, Michael W

    2011-02-01

    One of the most significant advances in pain research is the realization that neurons are not the only cell type involved in the etiology of chronic pain. This realization has caused a radical shift from the previous dogma that neuronal dysfunction alone accounts for pain pathologies to the current framework of thinking that takes into account all cell types within the central nervous system (CNS). This shift in thinking stems from growing evidence that glia can modulate the function and directly shape the cellular architecture of nociceptive networks in the CNS. Microglia, in particular, are increasingly recognized as active principal players that respond to changes in physiological homeostasis by extending their processes toward the site of neural damage, and by releasing specific factors that have profound consequences on neuronal function and that contribute to CNS pathologies caused by disease or injury. A key molecule that modulates microglia activity is ATP, an endogenous ligand of the P2 receptor family. Microglia expresses several P2 receptor subtypes, and of these the P2X4 receptor subtype has emerged as a core microglia-neuron signaling pathway: activation of this receptor drives the release of brain-derived neurotrophic factor (BDNF), a cellular substrate that causes disinhibition of pain-transmitting spinal lamina I neurons. Converging evidence points to BDNF from spinal microglia as being a critical microglia-neuron signaling molecule that gates aberrant nociceptive processing in the spinal cord. The present review highlights recent advances in our understanding of P2X4 receptor-mediated signaling and regulation of BDNF in microglia, as well as the implications for microglia-neuron interactions in the pathobiology of neuropathic pain.

  4. Genetic increase in brain-derived neurotrophic factor levels enhances learning and memory.

    Science.gov (United States)

    Nakajo, Yukako; Miyamoto, Susumu; Nakano, Yoshikazu; Xue, Jing-Hui; Hori, Takuya; Yanamoto, Hiroji

    2008-11-19

    Brain-derived neurotrophic factor (BDNF), a neurotrophin, is known to promote neuronal differentiation stimulating neurite outgrowth in the developing CNS, and is also known to modulate synaptic plasticity, thereby contributing to learning and memory in the mature brain. Here, we investigated the role of increased levels of intracerebral BDNF in learning and memory function. Using genetically engineered transgenic BDNF overexpressing mice (RTG-BDNF), young adult, homozygous (+/+), heterozygous (+/-), or wild-type (-/-) littermates, we analyzed escape latency to a hidden-platform and swimming velocity in the Morris Water Maze test (MWM) with modifications for the mice. The MWM comprised 4 trials per day over 5 consecutive days (sessions) without prior or subsequent training. In a separate set of animals, BDNF protein levels in the cortex, thalamostriatum and the hippocampus were measured quantitatively using ELISA. In the BDNF (+/-) mice, the BDNF levels in the cortex, the thalamostriatum and the hippocampus were significantly high, compared to the wild-type littermates; 238%, 158%, and 171%, respectively (PBDNF levels in the BDNF (+/+) mice were not elevated. The BDNF (+/-), but not the (+/+) mice, demonstrated significantly shorter escape latency, shorter total path length in the MWM, and more frequent arrivals at the location where the platform had been placed previously in the probe trial, compared with the wild-type littermates (PBDNF-transgenic mice, increased BDNF levels in the brain were found to enhance spatial learning and memory function. Although it has been postulated that excessive BDNF is deteriorating for neuronal survival or neurite outgrowth, further investigations are needed to clarify the mechanism of paradoxical lack of increase in BDNF levels in the (+/+) mouse brain.

  5. Expression of brain-derived neurotrophic factor in rat hippocampus following focal cerebral ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Yingping Li; Ruifang Guo; Kaifeng Lu

    2008-01-01

    BACKGROUND: The functional role of brain-derived neurotrophic factor (BDNF) is enhanced following cerebral ischemic injury providing neurons with an important self-protection mechanism in early stage ischemia/hypoxia.OBJECTIVE: To investigate the expression pattern of BDNF in different rat hippocampal regions following focal cerebral ischemic injury.DESIGN, TIME AND SETTING: We performed a comparative and neurobiological study of animals in the Department of Histology and Embryology and the Central Laboratory, Hebei Medical University from March to December 2003.MATERIALS: Forty healthy Sprague Dawley rats were randomly divided into a cerebral ischemla group and a sham operation group, with 20 rats per group.METHODS: In the cerebral ischemia group, we occluded the right middle cerebral artery with a suture,threading it to a depth of 17-19 mm. In the sham operation group, the threading depth was approximately 10 mm.MAIN OUTCOME MEASURES: We analyzed the expression of BDNF in different hippocampal regions by immunohistochemical staining of brain sections taken on post-operative days 7, 14, 21 and 30.RESULTS: Sham operation group: We observed a number of a few BDNF-positive cells with light staining in the hippocampal CAI CA4 regions and dentate gyrus. Cerebral ischemia group: compared with the sham operation group, BDNF increased on day 7, significantly increased on day 14, and reached a peak on day 21 (P < 0.05). Furthermore, immunologically reactive products were darkly stained, and neurons had long axons.BDNF was particularly highly expressed in the hippocampal CA3 and CA4 regions and dentate gyrus.CONCLUSION: Cerebral ischemic injury can damage hippocampal neurons. Neurons can increase their anti-ischemic capacity by increasing BDNF expression in the hippocampal CA3 and CA4 regions and dentate gyrus.

  6. Effects of multiparity on recognition memory, monoaminergic neurotransmitters, and brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Macbeth, Abbe H; Scharfman, Helen E; Maclusky, Neil J; Gautreaux, Claris; Luine, Victoria N

    2008-06-01

    Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5-6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after the last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic activity and levels were measured in prefrontal cortex, CA1 hippocampus, CA3 hippocampus, and olfactory bulb (OB). NP and MP females differed in monoamine concentrations in the OB only, with MP females having significantly greater concentrations of dopamine and metabolite DOPAC, norepinephrine and metabolite MHPG, and the serotonin metabolite 5-HIAA, as compared to NP females. These results indicate a long-term change in OB neurochemistry as a result of multiparity. Brain-derived neurotrophic factor (BDNF) was also measured in hippocampus (CA1, CA3, dentate gyrus) and septum. MP females had higher BDNF levels in both CA1 and septum; as these regions are implicated in memory performance, elevated BDNF may underlie the observed memory task differences. Thus, MP females (experiencing multiple bouts of pregnancy, birth, and pup rearing during the first year of life) displayed enhanced memory task performance but equal anxiety responses, as compared to NP females. These results are consistent with previous studies showing long-term changes in behavioral function in MP, as compared to NP, rats and suggest that alterations in monoamines and a neurotrophin, BDNF, may contribute to the observed behavioral changes.

  7. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons.

    Science.gov (United States)

    Magariños, A M; Li, C J; Gal Toth, J; Bath, K G; Jing, D; Lee, F S; McEwen, B S

    2011-03-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF(±) ) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF(±) mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF(±) mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling.

  8. Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation.

    Science.gov (United States)

    Danzer, S C; Pan, E; Nef, S; Parada, L F; McNamara, J O

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor tyrosine kinase B (TrkB) play important roles in regulating survival, structure, and function of CNS neurons. One method of studying the functions of these molecules has utilized in vitro hippocampal slice preparations. An important caveat to using slices, however, is that slice preparation itself might alter the expression of BDNF, thereby confounding experimental results. To address this concern, BDNF immunoreactivity was examined in rodent slices using two different methods of slice preparation. Rapid and anatomically selective regulation of BDNF content followed slice preparation using both methodologies; however, different patterns of altered BDNF immunoreactivity were observed. First, in cultured slices, BDNF content decreased in the dentate molecular layer and increased in the CA3 pyramidal cell layer and the mossy fiber pathway of the hippocampus after 30 min. Furthermore, an initially "punctate" pattern of BDNF labeling observed in the mossy fiber pathway of control sections changed to homogenous labeling of the pathway in vitro. In contrast to these findings, slices prepared as for acute slice physiology exhibited no change in BDNF content in the molecular layer and mossy fiber pathway 30 min after slicing, but exhibited significant increases in the dentate granule and CA3 pyramidal cell layers. These findings demonstrate that BDNF protein content is altered following slice preparation, that different methods of slice preparation produce different patterns of BDNF regulation, and raise the possibility that BDNF release and TrkB activation may also be regulated. These consequences of hippocampal slice preparation may confound analyses of exogenous or endogenous BDNF on hippocampal neuronal structure or function.

  9. Blocking brain-derived neurotrophic factor inhibits injury-induced hyperexcitability of hippocampal CA3 neurons.

    Science.gov (United States)

    Gill, Raminder; Chang, Philip K-Y; Prenosil, George A; Deane, Emily C; McKinney, Rebecca A

    2013-12-01

    Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin-related kinase B (TrkB), a receptor for brain-derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF-mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury-induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB-Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB-Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two-fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB-Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB-Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury-induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post-traumatic epilepsy. Therefore, our data suggest that blocking the BDNF-TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post-traumatic epilepsy.

  10. Correlation between Nerve Growth Factor (NGF with Brain Derived Neurotropic Factor (BDNF in Ischemic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Joko Widodo

    2016-05-01

    Full Text Available Background: The neurotrophins nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient’s onset: 7-30 and over 30 days. Methods: This is cross sectional study on 46 subjects aged 38 – 74 years old with ischemic stroke from The Indonesian Central Hospital of Army Gatot Subroto Jakarta. Diagnosis of ischemic stroke was made using clinical examination and magnetic resonance imaging (MRI by neurologist. Subjects were divided into 2 groups based on stroke onset: 7 – 30 days (Group A: 19 subjects and > 30 days (Group B: 27 Subjects. Serum NGF levels were measured with ELISA method and BDNF levels were measured using multiplex method with Luminex Magpix. Results: Levels of NGF and BDNF were significantly different between onset group A and B (NGF p= 0.022, and BDNF p=0.008, with mean levels NGF in group A higher than group B, indicating that BDNF levels is lower in group A than group B. There was no significant correlation between NGF and BDNF levels in all groups. Conclusion: The variations in neurotrophic factor levels reflect an endogenous attempt at neuroprotection against biochemical and molecular changes after ischemic stroke. NGF represents an early marker of brain injury while BDNF recovery is most prominent during the first 14 days after onsite but continuous for more than 30 days. There is no significant correlation between NGF and BDNF in each group.  

  11. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    Directory of Open Access Journals (Sweden)

    Rini Rossanti

    2015-09-01

    Full Text Available Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brain-derived neurotrophic factor (BDNF, a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This comparative, cross-sectional, analytic study was carried out on 40 elementary and high school students in Bandung, West Java, who were recruited by stratified random sampling. Short term memory was assessed by a psychologist using the Wechsler Intelligence Scale for Children-III Digit Span test (WISC-III Digit Span. Physical fitness was assessed by a clinical exercise physiologist using the Asian Committee on the Standardization of Physical Fitness Test (ACSPFT. Serum BDNF levels were measured by ELISA test in a certified laboratory. ANOVA test was used to assess for a correlation between serum BDNF concentration and short term memory, as well as between physical fitness level and short term memory. Pearson’s correlation test was used to analyze for a correlation between serum BDNF and physical fitness levels. Results The majority of subjects were in the physical fitness categories of moderate or poor. Subjects had a mean BDNF level of 44,227.8 (SD 10,359 pg/mL. There was no statistically significant difference in physical fitness with either serum BDNF or with short term memory levels (P=0.139 and P=0.383, respectively. Also, no correlation was determined between serum BDNF and physical fitness levels (r=0.222; P=0.169. Conclusion In obese adolescents, short term memory levels are not significantly different between physical fitness levels nor between serum BDNF levels.

  12. The effect of regular aerobic exercise on urinary brain-derived neurotrophic factor in children

    Directory of Open Access Journals (Sweden)

    Yunita Fediani

    2014-11-01

    Full Text Available Background Nervous system development in early life influences the quality of cognitive ability during adulthood. Neuronal development and neurogenesis are highly influenced by neurotrophins. The most active neurotrophin is brain-derived neurotrophic factor (BDNF. Physical activity has a positive effect on cognitive function. However, few experimental studies have been done on children to assess the effect of aerobic regular exercise on BDNF levels. Objective To assess the effect of regular aerobic exercise on urinary BDNF levels in children. Methods This clinical study was performed in 67 children aged 6-8 years in Palembang. The intervention group (n=34 engaged in aerobic gymnastics three times per week for 8 weeks, while the control group (n=33 engaged in gymnastic only once per week. Measurements of urinary BDNF were performed on both groups before and after intervention. Mann-Whitney and Wilcoxon rank tests were used to analyze the differences between groups. Results There was no difference in urinary BDNF levels between the two groups prior to the intervention. After intervention, the mean urinary BDNF levels were significantly higher in the intervention group than in the control group, 230.2 (SD 264.4 pg/mL vs. 88.0 (SD 35.4 pg/mL, respectively (P=0.027. We also found that engaging in aerobic gymnastics significantly increased urinary BDNF levels from baseline in both groups (P=0.001. Conclusion Regular aerobic exercise can increase urinary BDNF levels and potentially improve cognitive function. Aerobic exercise should be a routine activity in school curriculums in combination with the learning process to improve children’s cognitive ability.[Paediatr Indones. 2014;54:351-7.].

  13. Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina.

    Science.gov (United States)

    Park, Hae-Young Lopilly; Kim, Jie Hyun; Sun Kim, Hwa; Park, Chan Kee

    2012-08-21

    As an alternative to a viral vector, the application of stem cells to transfer specific genes is under investigation in various organs. Using this strategy may provide more effective method to supply neurotrophic factor to the neurodegenerative diseases caused by neurotrophic factor deprivation. This study investigated the possibility and efficacy of stem cell-based delivery of the brain-derived neurotrophic factor (BDNF) gene to rat retina. Rat BDNF cDNA was transduced into rat bone marrow mesenchymal stem cells (rMSCs) using a retroviral vector. Its incorporation into the experimental rat retina and the expression of BDNF after intravitreal injection or subretinal injection were detected by real-time PCR, western blot analysis, and immunohistochemical staining. For the incorporated rMSCs, retinal-specific marker staining was performed to investigate the changes in morphology and the characteristics of the stem cells. Transduction of the rMSCs by retrovirus was effective, and the transduced rMSCs expressed high levels of the BDNF gene and protein. The subretinal injection of rMSCs produced rMSC migration and incorporation into the rat retina (about 15.7% incorporation rate), and retinal BDNF mRNA and protein expression was increased at 4 weeks after transplantation. When subretinal injection of rMSCs was applied to axotomized rat retina, it significantly increased the expression of BDNF until 4 weeks after transplantation. Some of the transplanted rMSCs exhibited morphological changes, but the retinal-specific marker stain was not sufficient to indicate whether neuronal differentiation had occurred. Using mesenchymal stem cells to deliver the BDNF gene to the retina may provide new treatment for glaucoma.

  14. Study of brain-derived neurotrophic factor gene transgenic neural stem cells in the rat retina

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xue-mei; YUAN Hui-ping; WU Dong-lai; ZHOU Xin-rong; SUN Da-wei; LI Hong-yi; SHAO Zheng-bo

    2009-01-01

    Background Neural stem cells (NSCs) transplantation and gene therapy have been widely investigated for treating the cerebullar and myelonic injuries, however, studies on the ophthalmology are rare. The aim of this study was to investigate the migration and differentiation of brain-derived neurotrophic factor (BDNF) gene transgenic NSCs transplanted into the normal rat retinas. Methods NSCs were cultured and purified in vitro and infected with recombinant retrovirus pLXSN-BDNF and pLXSN respectively, to obtain the BDNF overexpressed NSCs (BDNF-NSCs) and control cells (p-NSCs). The expression of BDNF genes in two transgenic NSCs and untreated NSCs were measured by fluorescent quantitative polymerase chain reaction (FQ-PCR) and enzyme-linked immunosorbent assay (ELISA). BDNF-NSCs and NSCs were infected with adeno-associated viruses-enhanced green fluorescent protein (AAV-EGFP) to track them in vivo and served as donor cells for transplantation into the subretinal space of normal rat retinas, phosphated buffer solution (PBS) served as pseudo transplantation for a negative control. Survival, migration, and differentiation of donor cells in host retinas were observed and analyzed with Heidelberg retina angiograph (HRA) and immunohistochemistry, respectively. Results NSCs were purified successfully by limiting dilution assay. The expression of BDNF gene in BDNF-NSCs was the highest among three groups both at mRNA level tested by FQ-PCR (P<0.05) and at protein level measured by ELISA (P<0.05), which showed that BDNF was overexpressed in BDNF-NSCs. The results of HRA demonstrated that graft cells could survive well and migrate into the host retinas, while the immunohistochemical analysis revealed that transplanted BDNF-NSCs differentiated into neuron more efficiently compared with the control NSCs 2 months after transplantation. Conclusions The seed cells of NSCs highly secreting BDNF were established. BDNF can promote NSCs to migrate and differentiate into neural cells in

  15. The relationship between serum brain-derived neurotrophic factor (BDNF) and cardiometabolic indices in schizophrenia.

    Science.gov (United States)

    Nurjono, Milawaty; Tay, Yi Hang; Lee, Jimmy

    2014-08-01

    Brain derived neurotrophic factor (BDNF), which has been implicated in the pathogenesis of schizophrenia, has been recently shown to be involved in the regulation of metabolism and energy homeostasis. This study seeks to examine the relationship between BDNF, metabolic indices and cardiovascular (CVD) risk in patients with schizophrenia. Medical histories, demographic information and anthropometric measurements were collected and analyzed from 61 participants with schizophrenia. Fasting glucose and lipids were measured in a central laboratory, and serum BDNF was analyzed using commercially available enzyme-linked immunosorbent assay (ELISA). The 10-year CVD risk for each participant was computed using the Framingham risk score (FRS). Linear regressions were performed to examine the relationships between serum BDNF with body mass index (BMI), blood pressure (BP), triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C) and glucose. To examine the relationship between serum BDNF and FRS, serum BDNF was categorized into quartiles, and a multiple regression was performed. After adjusting for age, gender and current smoking status, diastolic BP (dBP) (p=0.045) and TG (p=0.015) were found to be significantly associated with serum BDNF. Participants in the highest quartile of serum BDNF had a 3.3 times increase in FRS over those in the lowest quartile. Our findings support the possible regulatory role of BDNF in metabolism and cardiovascular homeostasis among patients with schizophrenia similar to that observed among the non-mentally ill. Serum BDNF not only present itself as a candidate biomarker of schizophrenia but also might be a viable marker of metabolic co-morbidities associated with schizophrenia.

  16. Inflammation and activity augment brain-derived neurotrophic factor peripheral release.

    Science.gov (United States)

    Qiao, L Y; Shen, S; Liu, M; Xia, C; Kay, J C; Zhang, Q L

    2016-03-24

    Brain-derived neurotrophic factor (BDNF) release to nerve terminals in the central nervous system is crucial in synaptic transmission and neuronal plasticity. However, BDNF release peripherally from primary afferent neurons has not been investigated. In the present study, we show that BDNF is synthesized by primary afferent neurons located in the dorsal root ganglia (DRG) in rat, and releases to spinal nerve terminals in response to depolarization or visceral inflammation. In two-compartmented culture that separates DRG neuronal cell bodies and spinal nerve terminals, application of 50mM K(+) to either the nerve terminal or the cell body evokes BDNF release to the terminal compartment. Inflammatory stimulation of the visceral organ (e.g. the urinary bladder) also facilitates an increase in spontaneous BDNF release from the primary afferent neurons to the axonal terminals. In the inflamed viscera, we show that BDNF immunoreactivity is increased in nerve fibers that are immuno-positive to the neuronal marker PGP9.5. Both BDNF and pro-BDNF levels are increased, however, pro-BDNF immunoreactivity is not expressed in PGP9.5-positive nerve-fiber-like structures. Determination of receptor profiles in the inflamed bladder demonstrates that BDNF high affinity receptor TrkB and general receptor p75 expression levels are elevated, with an increased level of TrkB tyrosine phosphorylation/activity. These results suggest a possibility of pro-proliferative effect in the inflamed bladder. Consistently we show that the proliferation marker Ki67 expression levels are enhanced in the inflamed organ. Our results imply that in vivo BDNF release to the peripheral organ is an important event in neurogenic inflammatory state.

  17. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle.

    Science.gov (United States)

    Vohra, Pawan K; Thompson, Michael A; Sathish, Venkatachalem; Kiel, Alexander; Jerde, Calvin; Pabelick, Christina M; Singh, Brij B; Prakash, Y S

    2013-12-01

    Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca(2+) entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP-BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20ng/ml, 48h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca(2+) (EGTA; 1mM) or intracellular Ca(2+) (BAPTA; 5μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca(2+) influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca(2+) and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.

  18. Brain-derived neurotrophic factor deficiency restricts proliferation of oligodendrocyte progenitors following cuprizone-induced demyelination.

    Science.gov (United States)

    Tsiperson, Vladislav; Huang, Yangyang; Bagayogo, Issa; Song, Yeri; VonDran, Melissa W; DiCicco-Bloom, Emanuel; Dreyfus, Cheryl F

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that through its neurotrophic tyrosine kinase, receptor, type 2 (TrkB) receptor, increases 5-bromo-2-deoxyuridine incorporation in oligodendrocyte progenitor cells (OPCs) in culture. Roles in vivo are less well understood; however, increases in numbers of OPCs are restricted in BDNF+/- mice following cuprizone-elicited demyelination. Here, we investigate whether these blunted increases in OPCs are associated with changes in proliferation. BDNF+/+ and BDNF+/- mice were fed cuprizone-containing or control feed. To assess effects on OPC numbers, platelet-derived growth factor receptor alpha (PDGFRα)+ or NG2+ cells were counted. To monitor DNA synthesis, 5-ethynyl-2'-deoxyuridine (EdU) was injected intraperitoneally and colocalized with PDGFRα+ cells. Alternatively, proliferating cell nuclear antigen (PCNA) was colocalized with PDGFRα or NG2. Labeling indices were determined in the BDNF+/+ and BDNF+/- animals. After 4 or 5 weeks of control feed, BDNF+/- mice exhibit similar numbers of OPCs compared with BDNF+/+ animals. The labeling indices for EdU and PCNA also were not significantly different, suggesting that neither the DNA synthesis phase (S phase) nor the proliferative pool size was different between genotypes. In contrast, when mice were challenged by cuprizone for 4 or 5 weeks, increases in OPCs observed in BDNF+/+ mice were reduced in the BDNF+/- mice. This difference in elevations in cell number was accompanied by decreases in EdU labeling and PCNA labeling without changes in cell death, indicating a reduction in the DNA synthesis and the proliferative pool. Therefore, levels of BDNF influence the proliferation of OPCs resulting from a demyelinating lesion.

  19. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice.

    Science.gov (United States)

    Zunino, G; Messina, A; Sgadò, P; Baj, G; Casarosa, S; Bozzi, Y

    2016-06-02

    Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD.

  20. cAMP-mediated secretion of brain-derived neurotrophic factor in developing airway smooth muscle.

    Science.gov (United States)

    Thompson, Michael A; Britt, Rodney D; Kuipers, Ine; Stewart, Alecia; Thu, James; Pandya, Hitesh C; MacFarlane, Peter; Pabelick, Christina M; Martin, Richard J; Prakash, Y S

    2015-10-01

    Moderate hyperoxic exposure in preterm infants contributes to subsequent airway dysfunction and to risk of developing recurrent wheeze and asthma. The regulatory mechanisms that can contribute to hyperoxia-induced airway dysfunction are still under investigation. Recent studies in mice show that hyperoxia increases brain-derived neurotrophic factor (BDNF), a growth factor that increases airway smooth muscle (ASM) proliferation and contractility. We assessed the mechanisms underlying effects of moderate hyperoxia (50% O2) on BDNF expression and secretion in developing human ASM. Hyperoxia increased BDNF secretion, but did not alter endogenous BDNF mRNA or intracellular protein levels. Exposure to hyperoxia significantly increased [Ca2+]i responses to histamine, an effect blunted by the BDNF chelator TrkB-Fc. Hyperoxia also increased ASM cAMP levels, associated with reduced PDE4 activity, but did not alter protein kinase A (PKA) activity or adenylyl cyclase mRNA levels. However, 50% O2 increased expression of Epac2, which is activated by cAMP and can regulate protein secretion. Silencing RNA studies indicated that Epac2, but not Epac1, is important for hyperoxia-induced BDNF secretion, while PKA inhibition did not influence BDNF secretion. In turn, BDNF had autocrine effects of enhancing ASM cAMP levels, an effect inhibited by TrkB and BDNF siRNAs. Together, these novel studies suggest that hyperoxia can modulate BDNF secretion, via cAMP-mediated Epac2 activation in ASM, resulting in a positive feedback effect of BDNF-mediated elevation in cAMP levels. The potential functional role of this pathway is to sustain BDNF secretion following hyperoxic stimulus, leading to enhanced ASM contractility and proliferation.

  1. Brain-derived neurotrophic factor mediates the suppression of alcohol self-administration by memantine.

    Science.gov (United States)

    Jeanblanc, Jérôme; Coune, Fabien; Botia, Béatrice; Naassila, Mickaël

    2014-09-01

    Brain-derived neurotrophic factor (BDNF) within the striatum is part of a homeostatic pathway regulating alcohol consumption. Memantine, a non-competitive antagonist of N-methyl-D-aspartate receptors, induces expression of BDNF in several brain regions including the striatum. We hypothesized that memantine could decrease ethanol (EtOH) consumption via activation of the BNDF signalling pathway. Effects of memantine were evaluated in Long-Evans rats self-administering moderate or high amounts of EtOH 6, 30 and 54 hours after an acute injection (12.5 and 25 mg/kg). Motivation to consume alcohol was investigated through a progressive ratio paradigm. The possible role for BDNF in the memantine effect was tested by blockade of the TrkB receptor using the pharmacological agent K252a and by the BDNF scavenger TrkB-Fc. Candidate genes expression was also assessed by polymerase chain reaction array 4 and 28 hours after memantine injection. We found that memantine decreased EtOH self-administration and motivation to consume EtOH 6 and 30 hours post-injection. In addition, we found that inhibition or blockade of the BDNF signalling pathway prevented the early, but not the delayed decrease in EtOH consumption induced by memantine. Finally, Bdnf expression was differentially regulated between the early and delayed timepoints. These results demonstrate that an acute injection of memantine specifically reduces EtOH self-administration and motivation to consume EtOH for at least 30 hours. Moreover, we showed that BDNF was responsible for the early effect, but that the delayed effect was BDNF-independent.

  2. Parvalbumin immunoreactivity is enhanced by brain-derived neurotrophic factor in organotypic cultures of rat retina.

    Science.gov (United States)

    Rickman, D W

    1999-11-15

    The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand-receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trk(B), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway-the parvalbumin (PV)-immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV-immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well-immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit.

  3. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures.

    Science.gov (United States)

    Rutherford, L C; DeWan, A; Lauer, H M; Turrigiano, G G

    1997-06-15

    The excitability of cortical circuits is modulated by interneurons that release the inhibitory neurotransmitter GABA. In primate and rodent visual cortex, activity deprivation leads to a decrease in the expression of GABA. This suggests that activity is able to adjust the strength of cortical inhibition, but this has not been demonstrated directly. In addition, the nature of the signal linking activity to GABA expression has not been determined. Activity is known to regulate the expression of the neurotrophin brain-derived neurotrophic factor (BDNF), and BDNF has been shown to influence the phenotype of GABAergic interneurons. We use a culture system from postnatal rat visual cortex to test the hypothesis that activity is regulating the strength of cortical inhibition through the regulation of BDNF. Cultures were double-labeled against GABA and the neuronal marker MAP2, and the percentage of neurons that were GABA-positive was determined. Blocking spontaneous activity in these cultures reversibly decreased the number of GABA-positive neurons without affecting neuronal survival. Voltage-clamp analysis of inhibitory currents demonstrated that activity blockade also decreased GABA-mediated inhibition onto pyramidal neurons and raised pyramidal neuron firing rates. All of these effects were prevented by incubation with BDNF during activity blockade, but not by neurotrophin 3 or nerve growth factor. Additionally, blockade of neurotrophin signaling mimicked the effects of activity blockade on GABA expression. These data suggest that activity regulates cortical inhibition through a BDNF-dependent mechanism and that this neurotrophin plays an important role in the control of cortical excitability.

  4. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice.

    Science.gov (United States)

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice.

  5. Both 5' and 3' flanks regulate Zebrafish brain-derived neurotrophic factor gene expression

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2004-05-01

    Full Text Available Abstract Background Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood. Results Comparison of pufferfish and zebrafish BDNF gene sequences as well as 5' RACE revealed three additional 5' exons and associated promoters. RT-PCR with exon-specific primers showed differential developmental and organ-specific expression. Two exons were detected in the embryo before transcription starts. Of the adult organs examined, the heart expressed a single 5' exon whereas the brain, liver and eyes expressed four of the seven 5' exons. Three of the seven 5' exons were not detectable by RT-PCR. Injection of promoter/GFP constructs into embryos revealed distinct expression patterns. The 3' flank profoundly affected expression in a position-dependent manner and a highly conserved sequence (HCS1 present in 5' exon 1c in a dehancer-like manner. Conclusions The zebrafish BDNF gene is as complex in its promoter structure and patterns of differential promoter expression as is its murine counterpart. The expression of two of the promoters appears to be regulated in a temporally and/or spatially highly circumscribed fashion. The 3' flank has a position-dependent effect on expression, either by affecting transcription termination or post-transcriptional steps. HCS1, a highly conserved sequence in 5' exon 1c, restricts expression to primary sensory neurons. The tools are now available for detailed genetic and molecular analyses of zebrafish BDNF gene expression.

  6. Brain-derived neurotrophic factor infusion delays amygdala and perforant path kindling without affecting paired-pulse measures of neuronal inhibition in adult rats.

    Science.gov (United States)

    Osehobo, P; Adams, B; Sazgar, M; Xu, Y; Racine, R J; Fahnestock, M

    1999-01-01

    Kindling is an animal model of human temporal lobe epilepsy in which excitability in limbic structures is permanently enhanced by repeated stimulations. Kindling also increases the expression of nerve growth factor, brain-derived neurotrophic factor, and brain-derived neurotrophic factor receptor messenger RNAs in both the hippocampus and cerebral cortex and causes structural changes in the hippocampus including hilar hypertrophy. We have recently shown that intraventricular nerve growth factor infusion enhances the development of kindling, whereas blocking nerve growth factor activity retards amygdaloid kindling. Furthermore, we have shown that nerve growth factor protects against kindling-induced hilar hypertrophy. The physiological role of brain-derived neurotrophic factor in kindling is not as clear. Acute injection of brain-derived neurotrophic factor increases neuronal excitability and causes seizures, whereas chronic brain-derived neurotrophic factor infusion in rats slows hippocampal kindling. In agreement with the latter, we show here that intrahilar brain-derived neurotrophic factor infusion delays amygdala and perforant path kindling. In addition, we show that brain-derived neurotrophic factor, unlike nerve growth factor, does not protect against kindling-induced increases in hilar area. To test the hypothesis that brain-derived neurotrophic factor suppresses kindling by increasing inhibition above normal levels, we performed paired-pulse measures in the perforant path-dentate gyrus pathway. Brain-derived neurotrophic factor infused into the hippocampus had no effect on the stimulus intensity function (input/output curves); there was also no significant effect on paired-pulse inhibition. We then kindled the perforant path 10 days after the end of brain-derived neurotrophic factor treatment. Once again, kindling was retarded, showing that the brain-derived neurotrophic factor effect is long-lasting. These results indicate that prolonged in vivo infusion

  7. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.

    Science.gov (United States)

    Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C

    2009-07-01

    Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.

  8. Evidence for Novel [beta]-Sheet Structures in Iowa Mutant [beta]-Amyloid Fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P.R.O.; Meredith, Stephen C.; (IIT); (NIH); (UC)

    2009-07-24

    Asp23-to-Asn mutation within the coding sequence of {beta}-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-A{beta}40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-A{beta}40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10{sup -3} min{sup -1} and 1.07 x 10{sup -4} min{sup -1} for D23N-A{beta}40 and the wild-type peptide WT-A{beta}40, respectively) and without a lag phase. Electron microscopy shows that D23N-A{beta}40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-{beta} pattern, with a sharp reflection at 4.7 {angstrom} and a broad reflection at 9.4 {angstrom}, which is notably smaller than the value for WT-A{beta}40 fibrils (10.4 {angstrom}). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-A{beta}40 fibrils containing the in-register, parallel {beta}-sheet structure commonly found in WT-A{beta}40 fibrils and most other amyloid fibrils. Antiparallel {beta}-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-A{beta}40 fibrils and the unusual vasculotropic clinical picture in these patients.

  9. 白细胞介素6基因-597G/A与-572C/G多态性对心房颤动发病易感性的影响%Effects of interleukin-6 gene-597G/A and-572C/G polymorphisms on susceptibility to atrial fibrillation and its functional study

    Institute of Scientific and Technical Information of China (English)

    付海霞; 张嘉莹; 赵子牛; 程兆云; 王颖

    2013-01-01

    Objective To observe the effects of interleukin-6(IL-6) gene polymorphisms on susceptibility to atrial fibrillation(AF) and to analyze the function of IL-6 gene polymorphisms.Methods IL6 gene-597G/A and-572C/G polymorphisms were genotyped in 291 AF patients and 325 healthy adults by PCR-RFLP method.The distributions of polymorphisms among AF patients with different etiology and different clinical types were observed.Effects of IL-6 genotypes on left atrial diameter (LAD),serum IL-6 levels and the ability of IL-6 production from cultured peripheral blood mononuclear cells (PBMC)were studied.Results There wasn't IL-6 gene-597G/A polymorphism in two groups.-572CG+GG genotype and G allele were more frequent in AF patients than that in control group(P<0.001).The relative risk for G allele carrier to suffer from AF was 1.94 times of CC genotype individual (95%CI:1.41~2.68,P<0.001).After adjusted effects of other factors,-572C/G genotype still was an independent risk factor of AF(OR=1.63,95%CI:1.05~2.51,P<0.05).However,the distributions of IL-6 gene-572C/G polymorphism were not significantly different among AF patients with lone AF,hypertension and coronary artery diseases,and among patients with paroxysmal,persistent and permanent AF (P>0.05).LAD of patients with-572CG+GG genotype was larger than that of -572CC genotype in AF group (37.51 ± 8.78) mm vs (35.26± 5.52) mm,t =-2.5,P< 0.05).There were no statistics differences about serum IL-6 levels between genotypes among two groups (P>0.05).After 24 h PBMC culture in basical status or after 12 h and 24 h PBMC culture in oxidized low density lipoprotein stimulated status,the IL-6 concentrations in supematant were significantly higher in subjects with CG+GG genotype than those with CC genotype(P<0.05).Conclusion IL-6 gene-597G/A polymorphism was not associated with susceptibility to AF,but-572G allele may be a genetic susceptibility factor to AF attack in Chinese Hans population.This may be related to

  10. The effect of regular Taekwondo exercise on Brain-derived neurotrophic factor and Stroop test in undergraduate student

    OpenAIRE

    Kim, Youngil

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effect of Taekwondo exercise on Brain-derived neurotrophic factor and the Stroop test in undergraduate students. [Methods] Fourteen male subjects participated in this study. They were separated into a Control group (N = 7) and an Exercise group (N = 7). Subjects participated in Taekwondo exercise training for 8 weeks. They underwent to Taekwondo exercise training for 85 minutes per day, 5 times a week at RPE of 11~15. The taekwondo ex...

  11. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers

    OpenAIRE

    Tamura Makoto; Tamura Naohiro; Ikeda Takamitsu; Koyama Ryuta; Ikegaya Yuji; Matsuki Norio; Yamada Maki K

    2009-01-01

    Abstract Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced a...

  12. Essential Role for Vav GEFs in Brain-derived Neurotrophic Factor (BDNF)-induced Dendritic Spine Growth and Synapse Plasticity

    OpenAIRE

    Hale, Carly F.; Dietz, Karen C.; Varela, Juan A.; Wood, Cody B.; Zirlin, Benjamin C.; Leah S. Leverich; Greene, Robert W.; Cowan, Christopher W.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors (GEFs) through a no...

  13. Effect of Yoga on Pain, Brain-Derived Neurotrophic Factor, and Serotonin in Premenopausal Women with Chronic Low Back Pain

    OpenAIRE

    Moseon Lee; Woongjoon Moon; Jaehee Kim

    2014-01-01

    Background. Serotonin and brain-derived neurotrophic factor (BDNF) are known to be modulators of nociception. However, pain-related connection between yoga and those neuromodulators has not been investigated. Therefore, we aimed to evaluate the effect of yoga on pain, BDNF, and serotonin. Methods. Premenopausal women with chronic low back pain practiced yoga three times a week for 12 weeks. At baseline and after 12 weeks, back pain intensity was measured using visual analogue scale (VAS), and...

  14. Expression of brain derived-neurotrophic factor and granulocyte-colony stimulating factor in the urothelium: relation with voiding function

    OpenAIRE

    Yuk, Seung Mo; Shin, Ju Hyun; Song, Ki Hak; Na, Yong Gil; Lim, Jae Sung; Sul, Chong Koo

    2015-01-01

    Background We designed this experiment to elucidate the relationship between the expression of brain derived-neurotrophic factor (BDNF), the expression of granulocyte-colony stimulating factor (G-CSF), and the development of overactive bladder (OAB). In our previous study, the urothelium was observed to be more than a simple mechanosensory receptor and was found to be a potential therapeutic target for OAB. Moreover, neuregulin-1 and BDNF were found to be potential new biomarkers of OAB. Here...

  15. Meta-analysis and association of brain-derived neurotrophic factor (BDNF) gene with obsessive-compulsive disorder.

    Science.gov (United States)

    Zai, Gwyneth; Zai, Clement C; Arnold, Paul D; Freeman, Natalie; Burroughs, Eliza; Kennedy, James L; Richter, Margaret A

    2015-04-01

    Obsessive-compulsive disorder (OCD) is a severe psychiatric condition with a clear genetic component (Nicolini et al., 2009) in which neurodevelopmental mechanisms may be etiologically important. Brain-derived neurotrophic factor (BDNF) is an interesting candidate for molecular analysis in OCD on the basis of potential functional relevance, positive association studies, and reported interaction between this gene and other neurotransmitters implicated in this disorder.

  16. Effects of aerobic exercise training on peripheral brain-derived neurotrophic factor and eotaxin-1 levels in obese young men.

    Science.gov (United States)

    Cho, Su Youn; Roh, Hee Tae

    2016-04-01

    [Purpose] The aim of the present study was to investigate the effects of aerobic exercise training on the levels of peripheral brain-derived neurotrophic factor and eotaxin-1 in obese young men. [Subjects and Methods] The subjects included sixteen obese young men with a body mass index greater than 25 kg/m(2). They were randomly divided between control and exercise groups (n = 8 in each group). The exercise group performed treadmill exercise for 40 min, 3 times a week for 8 weeks at the intensity of 70% heart rate reserve. Blood collection was performed to examine the levels of serum glucose, plasma malonaldehyde, serum brain-derived neurotrophic factor, and plasma eotaxin-1 before and after the intervention (aerobic exercise training). [Results] Following the intervention, serum BDNF levels were significantly higher, while serum glucose, plasma MDA, and plasma eotaxin-1 levels were significantly lower than those prior to the intervention in the exercise group. [Conclusion] Aerobic exercise training can induce neurogenesis in obese individuals by increasing the levels of brain-derived neurotrophic factor and reducing the levels of eotaxin-1. Alleviation of oxidative stress is possibly responsible for such changes.

  17. Atrial fibrillation and heart failure: is atrial fibrillation a disease?

    Science.gov (United States)

    Tilman, V

    2014-09-01

    Atrial fibrillation in heart failure often occur together. The relationship between atrial fibrillation and heart failure has remained a subject of research. The main manifestation of the violation of hydrodynamics in heart failure is the increased end-diastolic pressure, which is transmitted through the intercommunicated system (left ventricle-left atrium-pulmonary veins-alveolar capillaries) causing increased pulmonary wedge pressure with the danger for pulmonary edema. End-diastolic pressure is the sum of left ventricle diastolic pressure and left atrial systolic pressure. Stopping the mechanical systole of the left atrium can reduce the pressure in the system in heart failure. Atrial fibrillation stops the mechanical systole of the left atrium and decreases the intercommunicating pressure and pulmonary wedge pressure. It is possible that atrial fibrillation is a mechanism for protection from increasing end-diastolic pressure and pulmonary wedge pressure, and prevents the danger of pulmonary edema. This hypothesis may explain the relationship between heart failure and atrial fibrillation and their frequent association.

  18. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  19. Chronic ethanol ingestion, type 2 diabetes mellitus, and brain-derived neurotrophic factor (BDNF) in rats.

    Science.gov (United States)

    Jung, Kyu-In; Ju, Anes; Lee, Hee-Mi; Lee, Seong-Su; Song, Chan-Hee; Won, Wang-Youn; Jeong, Jae-Seung; Hong, Oak-Kee; Kim, Jae-Hwa; Kim, Dai-Jin

    2011-01-07

    Chronic alcohol consumption contributes to the development of type 2 diabetes mellitus (T2DM) while decreasing the level of brain-derived neurotrophic factor (BDNF). BDNF may be an important regulator of glucose metabolism, so it may be associated with an increased risk for T2DM in alcoholism. We evaluated the association of chronic heavy alcohol exposure, T2DM and BDNF level. Ten week-old type 2 diabetic OLETF rats and non-diabetic LETO rats of similar weight were used. The rats were randomized by weight into four treatment groups: (1) OLETF-Ethanol (O-E, n=13), (2) OLETF-Control (O-C, n=15), (3) LETO-Ethanol (L-E, n=11), and (4) LETO-Control (L-C, n=14). The ethanol groups were fed an isocaloric liquid diet containing ethanol while the control groups were fed with the same diet containing maltose-dextran over a 6-week period using a pair-feeding control model in order to regulate different caloric ingestion. After 6 weeks of feeding, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and BDNF levels were analyzed. Prior to IP-GTT, the mean glucose levels in the O-E, O-C, L-E, and L-C groups were 90.38±12.84, 102.13±5.04, 95.18±6.43, and 102.36±4.43mg/dL, respectively. Thirty minutes after intraperitoneal injection, the mean glucose levels were 262.62±63.77, 229.07±51.30, 163.45±26.63, and 156.64±34.42mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (palcohol ingestion may aggravate T2DM and may possibly lower BDNF level.

  20. Exploring Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor Across Glaucoma Stages

    Science.gov (United States)

    Busanello, Anna; Bonini, Stefano; Quaranta, Luciano; Agnifili, Luca; Manni, Gianluca

    2017-01-01

    Purpose To investigate the serum levels of Brain Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) in patients affected by primary open angle glaucoma with a wide spectrum of disease severity compared to healthy controls and to explore their relationship with morphological and functional glaucoma parameters. Materials and Methods 45 patients affected by glaucoma at different stages and 15 age-matched healthy control subjects underwent visual field testing, peripapillary retinal nerve fibre layer thickness measurement using Spectral Domain Optical Coherence Tomography and blood collection for both neurotrophins detection by Enzyme-Linked Immunosorbent Assay. Statistical analysis and association between biostrumental and biochemical data were investigated. Results Serum levels of BDNF in glaucoma patients were significantly lower than those measured in healthy controls (261.2±75.0 pg/ml vs 313.6±79.6 pg/ml, p = 0.03). Subgroups analysis showed that serum levels of BDNF were significantly lower in early (253.8±40.7 pg/ml, p = 0.019) and moderate glaucoma (231.3±54.3 pg/ml, p = 0.04) but not in advanced glaucoma (296.2±103.1 pg/ml, p = 0.06) compared to healthy controls. Serum levels of NGF in glaucoma patients were significantly lower than those measured in the healthy controls (4.1±1 pg/mL vs 5.5±1.2 pg/mL, p = 0.01). Subgroups analysis showed that serum levels of NGF were significantly lower in early (3.5±0.9 pg/mL, p = 0.0008) and moderate glaucoma (3.8±0.7 pg/ml, p<0.0001) but not in advanced glaucoma (5.0±0.7 pg/ml, p = 0.32) compared to healthy controls. BDNF serum levels were not related to age, visual field mean deviation or retinal nerve fibre layer thickness either in glaucoma or in controls while NGF levels were significantly related to visual field mean deviation in the glaucoma group (r2 = 0.26, p = 0.004). Conclusions BDNF and NGF serum levels are reduced in the early and moderate glaucoma stages, suggesting the possibility that

  1. Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression.

    Science.gov (United States)

    Adlard, P A; Cotman, C W

    2004-01-01

    Exercise is increasingly recognized as an intervention that can reduce CNS dysfunctions such as cognitive decline, depression and stress. Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) is increased in the hippocampus following exercise. In this study we tested the hypothesis that exercise can counteract a reduction in hippocampal BDNF protein caused by acute immobilization stress. Since BDNF expression is suppressed by corticosterone (CORT), circulating CORT levels were also monitored. In animals subjected to 2 h immobilization stress, CORT was elevated immediately following, and at 1 h after the cessation of stress, but remained unchanged from baseline up to 24 h post-stress. The stress protocol resulted in a reduction in BDNF protein at 5 and 10 h post-stress that returned to baseline at 24 h. To determine if exercise could prevent this stress-induced reduction in BDNF protein, animals were given voluntary access to running wheels for 3 weeks prior to the stress. Stressed animals, in the absence of exercise, again demonstrated an initial elevation in CORT (at 0 h) and a subsequent decrease in hippocampal BDNF at the 10 h time point. Exercising animals, both non-stressed and stressed, demonstrated circulating CORT and hippocampal BDNF protein levels that were significantly elevated above control values at both time points examined (0 and 10 h post-stress). Thus, the persistently high CORT levels in exercised animals did not affect the induction of BDNF with exercise, and the effect of immobilization stress on BDNF protein was overcome. To examine the role of CORT in the stress-related regulation of BDNF protein, experiments were carried out in adrenalectomized (ADX) animals. BDNF protein was not downregulated as a result of immobilization stress in ADX animals, while there continued to be an exercise-induced upregulation of BDNF. This study demonstrates that CORT modulates stress-related alterations in BDNF protein. Further, exercise

  2. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  3. Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome

    Directory of Open Access Journals (Sweden)

    Akyol ES

    2015-03-01

    Full Text Available Esra Soydas Akyol,1 Yakup Albayrak,2 Murat Beyazyüz,3 Nurkan Aksoy,4 Murat Kuloglu,5 Kenji Hashimoto6 1Deparment of Psychiatry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 2Department of Psychiatry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 3Department of Psychiatry, Biga State Hospital, Çanakkale, Turkey; 4Department of Biochemistry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 5Department of Psychiatry, Faculty of Medicine, Akdeniz University, Antalya, Turkey; 6Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan Background: Brain-derived neurotrophic factor (BDNF is a well-established neurotrophin that plays a role in the pathophysiology of numerous psychiatric disorders. Many studies have investigated the serum BDNF levels in patients with schizophrenia. However, there are restricted data in the literature that compare the serum BDNF levels in patients with deficit and nondeficit syndromes. In this study, we aimed to compare the serum BDNF levels between schizophrenic patients with deficit or nondeficit syndrome and healthy controls.Methods: After fulfilling the inclusion and exclusion criteria, 58 patients with schizophrenia and 36 healthy controls were included in the study. The patients were grouped as deficit syndrome (N=23 and nondeficit syndrome (N=35 according to the Schedule for the Deficit Syndrome. Three groups were compared in terms of the sociodemographic and clinical variants and serum BDNF levels.Results: The groups were similar in terms of age, sex, body mass index, and smoking status. The serum BDNF levels in patients with deficit syndrome were significantly lower than those in healthy controls. In contrast, the serum BDNF levels in patients with nondeficit syndrome were similar to those in healthy controls.Conclusion: This study suggests that decreased BDNF levels may play a role in the pathophysio­logy of schizophrenic

  4. Brain-derived neurotrophic factor inducing angiogenesis through modulation of matrix-degrading proteases

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Recent studies have proved that brain-derived neurotrophic factor (BDNF) possesses angiogenic activity in vitro and in vivo. However, the proangiogenic mechanism of BDNF has not yet been provided with enough information. To explore the proangiogenic mechanism of BDNF, we investigated the effects of BDNF on extracellular proteolytic enzymes, including matrix metalloproteinases (MMPs) and serine proteases, particularly the urokinase-type plasminogen activator (uPA)-plasmin system in human umbilical vein endothelial cells (HUVECs) model. Methods Tube formation assay was performed in vitro to evaluate the effects of BDNF on angiogenesis. The HUVECs were treated with various concentrations of BDNF (25-400 ng/ml) for different (6-48 hours), reverse transcriptase-polymerase chain reaction (RT-PCR) was used to assay MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA in HUVECs, and the conditioned medium was analyzed for MMP and uPA activity by gelatin zymography and fibrin zymography, respectively. uPA, plasminogen activator inhibitor (PAI)-1, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-2 were quantified by western blotting analysis. Results BDNF elicited robust and elongated angiogeneis in two-dimensional cultures of HUVECs in comparison with control. The stimulation of serum-starved HUVECs with BDNF caused obvious increase in MMP-2 and MMP-9 mRNA expression and induced the pro-MMP-2 and pro-MMP-9 activation without significant differences in proliferation. However, BDNF had no effect on TIMP-1 and TIMP-2 production. BDNF increased uPA and PAI-1 production in a dose-dependent manner. Maximal activation of uPA and PAI-1 expression in HUVECs was induced by 100 ng/ml BDNF, while effects of 200 ng/ml and 400 ng/ml BDNF were slightly reduced in comparison with with those of 100 ng/ml. Protease activity for uPA was also increased by BDNF in a dose-dependent manner. BDNF also stimulated uPA and PAI-1 production beyond that in control cultures in a time

  5. Brugada syndrome risk loci seem protective against atrial fibrillation

    DEFF Research Database (Denmark)

    Andreasen, Laura; Nielsen, Jonas B; Darkner, Stine;

    2014-01-01

    Several studies have shown an overlap between genes involved in the pathophysiological mechanisms of atrial fibrillation (AF) and Brugada Syndrome (BrS). We investigated whether three single-nucleotide polymorphisms (SNPs) (rs11708996; G>C located intronic to SCN5A, rs10428132; T>G located in SCN10...... associated with BrS was lower in AF patients than in patients free of AF, suggesting a protective role of these loci in developing AF.European Journal of Human Genetics advance online publication, 26 March 2014; doi:10.1038/ejhg.2014.46....

  6. 心房颤动与白介素-6-174G/C、-572C/G、-597G/A位点基因多态性的关系%Relationship between Atrial Fibrillation and the IL-6-174G/C,-572C/G and -597G/A Polymorphism

    Institute of Scientific and Technical Information of China (English)

    郑金国; 高淑萍; 葛利军; 邓新桃; 何永辉; 石桂良; 潘闽

    2011-01-01

    Objective: To explore the relationships among atrial fibrillation (AF), interleukin-6 (IL-6) and single nucleotide polymorphisms (SNP) of the IL-6-174G/C, -572C/G and -597G/A. Methods: The serum levels of IL-6, lipid and other clinical indicators were measured. The left atrial diameter (LAD) was measured by echocardiography (UCG). The frequency distributions of genotypes and alleles of the IL-6-174G/C, -572G/C and -597G/A were amplified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in samples of 127 AF patients. Results: The values of IL-6 and LAD were significantly higher in AF group than those of control group (P < 0.01). The G/C+G/G genotype distribution and G allele frequencies of IL-6-572C/G were signif'icantly higher in AF group than those of control group (P < 0.01). The C allele mutation rate of IL-6-174G/C was minimal in Han population in Jiangsu Nantong, and no A allele mutation in IL-6-597G/A. Conclusion: The results showed that among Han population in Nantong IL-6-572 C/G polymorphic allele G mutation may lead to the increase of serum level of IL-6 in AF group , which may be related to the pathogenesis of AF.%目的:探讨江苏南通地区汉族人群中白细胞介素(IL)-6-174G/C(rs18007951、-572C/G(rs1800796)、-597G/A(rs1800797)单核苷酸多态性(SNP)与血清IL-6水平以及房颤发病之间的关系.方法:分别测定房颤组和对照组血清IL-6及其他临床指标,测量左心房长径(LAD);提取基因组DNA.聚合酶链反应-限制性片段长度多态性(PCR-RFLP)技术扩增目的基因片段并酶切.结果:房颤组IL-6和LAD与对照组比较差异有统计学意义(P<0.01);房颤组IL-6-572C/G基因型分布G/C+G/G明显高于对照组(P<0.05),且房颤组G等位基因频率明显大于对照组(P<0.01),IL-6-174G/C位点C等位基因突变率极低,IL-6-597G/A未见A等位基因突变.结论:IL-6-572C/G位点G等位基因突变导致了机体血清IL一6水平升高,可能与房颤的发病有关.

  7. Nanoscale structure and spectroscopic probing of Aβ1-40 fibril bundle formation

    Science.gov (United States)

    Psonka-Antonczyk, Katarzyna; Hammarström, Per; Johansson, Leif; Lindgren, Mikael; Stokke, Bjørn Torger; Nilsson, Peter; Nyström, Sofie

    2016-11-01

    Amyloid plaques composed of fibrillar Amyloid-β (Aβ) is a hallmark of Alzheimer’s disease. However, Aβ fibrils are morphologically heterogeneous. Conformation sensitive luminescent conjugated oligothiophenes (LCOs) are versatile tools for monitoring such fibril polymorphism in vivo and in vitro. Biophysical methods applied on in vitro generated Aβ fibrils, stained with LCOs with different binding and fluorescence properties, can be used to characterize the Aβ fibrillation in depth, far beyond that possible for in vivo generated amyloid plaques. In this study, in vitro fibrillation of the Aβ1-40 peptide was monitored by time-lapse transmission electron microscopy, LCO fluorescence and atomic force microscopy. Differences in the LCO binding in combination with nanoscale imaging revealed that spectral variation correlated with fibrils transforming from solitary filaments (Ø 2.5 nm) into higher order bundled structures (Ø 5 nm). These detailed in vitro experiments can be used to derive data that reflects the heterogeneity of in vivo generated Aβ plaques observed by LCO fluorescence. Our work provides new structural basis for targeted drug design and molecular probe development for amyloid imaging.

  8. Synthetic scrapie infectivity: interaction between recombinant PrP and scrapie brain-derived RNA.

    Science.gov (United States)

    Simoneau, Steve; Thomzig, Achim; Ruchoux, Marie-Madeleine; Vignier, Nicolas; Daus, Martin L; Poleggi, Anna; Lebon, Pierre; Freire, Sophie; Durand, Valerie; Graziano, Silvia; Galeno, Roberta; Cardone, Franco; Comoy, Emmanuel; Pocchiari, Maurizio; Beekes, Michael; Deslys, Jean-Philippe; Fournier, Jean-Guy

    2015-01-01

    The key molecular event in human cerebral proteinopathies, which include Alzheimer's, Parkinson's and Huntington's diseases, is the structural conversion of a specific host protein into a β-sheet-rich conformer. With regards to this common mechanism, it appears difficult to explain the outstanding infectious properties attributed to PrP(Sc), the hallmark of another intriguing family of cerebral proteinopathies known as transmissible spongiform encephalopathies (TSE) or prion diseases. The infectious PrP(Sc) or "prion" is thought to be composed solely of a misfolded form of the otherwise harmless cellular prion protein (PrP(c)). To gain insight into this unique situation, we used the 263K scrapie hamster model to search for a putative PrP(Sc)-associated factor that contributes to the infectivity of PrP(Sc) amyloid. In a rigorously controlled set of experiments that included several bioassays, we showed that originally innocuous recombinant prion protein (recPrP) equivalent to PrP(c) is capable of initiating prion disease in hamsters when it is converted to a prion-like conformation (β-sheet-rich) in the presence of RNA purified from scrapie-associated fibril (SAF) preparations. Analysis of the recPrP-RNA infectious mixture reveals the presence of 2 populations of small RNAs of approximately 27 and 55 nucleotides. These unprecedented findings are discussed in light of the distinct relationship that may exist between this RNA material and the 2 biological properties, infectivity and strain features, attributed to prion amyloid.

  9. Brain-derived neurotrophic factor (BDNF) gene: a gender-specific role in cognitive function during normal cognitive aging of the MEMO-Study?

    Science.gov (United States)

    Laing, Katharine R; Mitchell, David; Wersching, Heike; Czira, Maria E; Berger, Klaus; Baune, Bernhard T

    2012-08-01

    Cognitive aging processes are underpinned by multiple processes including genetic factors. The brain-derived neurotrophic factor (BDNF) has been suggested to be involved in age-related cognitive decline in otherwise healthy individuals. The gender-specific role of the BDNF gene in cognitive aging remains unclear. The identification of genetic biomarkers might be a useful approach to identify individuals at risk of cognitive decline during healthy aging processes. The aim of this study was to investigate the associations between three single-nucleotide polymorphisms (SNPs) in the BDNF gene and domains of cognitive functioning in normal cognitive aging. The sample, comprising 369 participants (M = 72.7 years, SD = 4.45 years), completed an extensive neuropsychological test battery measuring memory, motor function, and perceptual speed. The relationships between the SNPs rs6265, rs7103411, and rs7124442 and cognitive domains were examined. While significant main effects of BDNF SNPs on cognitive function were found for the association between rs7103411 and memory performance, gender-specific analyses revealed for females significant main effects of rs7103411 for memory and of rs6265 for perceptual speed independent of the APOE*E4 status and education. The finding for the association between rs6265 and perceptual speed in females remained significant after Bonferroni correction for multiple comparisons. None of the analyses showed significant results for males. This study is the first to implicate that the SNPs rs6265 and rs7103411 affect cognitive function in the elderly in a gender-specific way.

  10. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor.

    Science.gov (United States)

    Mang, Cameron S; Campbell, Kristin L; Ross, Colin J D; Boyd, Lara A

    2013-12-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategies that optimize BDNF effects on neuroplasticity may be especially effective for improving motor function poststroke. Two potential poststroke rehabilitation strategies that consider the importance of BDNF are the use of aerobic exercise to enhance brain function and the incorporation of genetic information to individualize therapy. Converging evidence demonstrates that aerobic exercise increases BDNF production and consequently enhances learning and memory processes. Nevertheless, a common genetic variant reduces activity-dependent secretion of the BDNF protein. Thus, BDNF gene variation may affect response to motor rehabilitation training and potentially modulate the effects of aerobic exercise on neuroplasticity. This perspective article discusses evidence that aerobic exercise promotes neuroplasticity by increasing BDNF production and considers how aerobic exercise may facilitate the acquisition and retention of motor skills for poststroke rehabilitation. Next, the impact of the BDNF gene val66met polymorphism on motor learning and response to rehabilitation is explored. It is concluded that the effects of aerobic exercise on BDNF and motor learning may be better exploited if aerobic exercise is paired more closely in time with motor training. Additionally, information about BDNF genotype could provide insight into the type and magnitude of effects that aerobic exercise may have across individuals and potentially help guide an individualized prescription of aerobic exercise

  11. Preliminary study of anxiety symptoms, family dysfunction, and the brain-derived neurotrophic factor (BDNF) Val66Met genotype in offspring of parents with bipolar disorder.

    Science.gov (United States)

    Park, Min-Hyeon; Chang, Kiki D; Hallmayer, Joachim; Howe, Meghan E; Kim, Eunjoo; Hong, Seung Chul; Singh, Manpreet K

    2015-02-01

    Several genetic and environmental factors place youth offspring of parents with bipolar disorder (BD) at high risk for developing mood and anxiety disorders. Recent studies suggest that anxiety symptoms, even at subclinical levels, have been associated with an increased risk for developing BD. The brain-derived neurotrophic factor (BDNF) gene has been implicated in the pathophysiology of both BD and anxiety disorders. We aimed to explore whether anxiety in BD offspring was associated with the BDNF Val66Met polymorphism. 64 BD offspring (mean age: 13.73 (S.D. 3.45) M = 30, F = 34) and 51 HC (mean age: 13.68 (S.D. 2.68) M = 23, F = 28) were compared on presence of the met allele and on scores from the Multidimensional Anxiety Scale for Children (MASC). To assess family function, we used the Family Adaptability and Cohesion Evaluation Scales (FACES-IV). The Baron & Kenny method was the statistical approach used to examine the moderating effects between variables. BD offspring showed higher levels of overall anxiety than did the HC group. BD offspring with the val/val genotype showed higher levels of anxiety than BD offspring with other genotypes. No significant levels of anxiety or its association with BDNF genotype were found in the HC group. BD offspring group showed significantly more family dysfunction when compared with the HC group and the family dysfunction moderated the association between the BDNF genotype and anxiety symptoms. This study demonstrated the potential interplay of three factors: BD offspring, anxiety symptoms and family dysfunction.

  12. Curative effect of transplantation of mesenchymal stem cells transfected with recombinant lentiviral vectors carrying brain-derived neurotrophic factor gene on intracerebral hemorrhage in rats

    Institute of Scientific and Technical Information of China (English)

    任瑞芳

    2013-01-01

    Objective To observe the curative effect of transplantation of mesenchymal stem cells(MSCs) transfected with recombinant lentiviral vectors carrying brain-derived neurotrophic factor(BDNF) gene on intracerebral

  13. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Institute of Scientific and Technical Information of China (English)

    Hyung Ho Yoon; Joongkee Min; Nari Shin; Yong Hwan Kim; Jin-Mo Kim; Yu-Shik Hwang; Jun-Kyo Francis Suh; Onyou Hwang; Sang Ryong Jeon

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18 F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  14. Effect of Training Exercise on Urinary Brain-derived Neurotrophic Factor Levels and Cognitive Performances in Overweight and Obese Subjects: A Pilot Study.

    Science.gov (United States)

    Russo, Angelo; Buratta, Livia; Pippi, Roberto; Aiello, Cristina; Ranucci, Claudia; Reginato, Elisa; Santangelo, Valerio; DeFeo, Pierpaolo; Mazzeschi, Claudia

    2016-11-21

    Exercise-mediated, brain-derived neurotrophic factor induction benefits health and cognitive functions. The multifaceted interplay between physical activity, urinary brain-derived neurotrophic factor levels and cognitive functioning has been largely neglected in previous literature. In this pilot study, two bouts of training exercise (65% and 70% of heart rate reserve) influenced urinary brain-derived neurotrophic factor levels and cognitive performances in 12 overweight and obese participants. Percent heart rate reserve, expenditure energy, brain-derived neurotrophic factor urinary levels and cognitive performances were measured before and after the exercise. No significant variations in energy expenditure were observed, while differences of heart rate reserve between two groups were maintained. Both bouts of training exercise induced a similar reduction in urinary brain-derived neurotrophic factor levels. Only visuo-spatial working memory capacity at 65% of heart rate reserve showed a significant increase. These findings indicate a consistent effect of training exercise on urinary brain-derived neurotrophic factor levels and cognitive factors in overweight and obese participants.

  15. Brain-derived Neurotrophic Factor Promotes Differentiation and Maturation of Adult-born Neurons Through GABAergic Transmission

    OpenAIRE

    Waterhouse, Emily G; An, Juan Ji; Orefice, Lauren L.; Baydyuk, Maryna; Liao, Guey-Ying; Zheng, Kang; Lu, Bai; Xu, Baoji

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in regulating adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus; however, the mechanism underlying this regulation remains unclear. In this study, we found that Bdnf mRNA localized to distal dendrites of dentate gyrus granule cells isolated from wild-type mice, but not from Bdnfklox/klox mice where the long 3′ untranslated region (UTR) of Bdnf mRNA is truncated. KCl-induced membrane depolarization stimulated rele...

  16. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brainrelated diseases

    Institute of Scientific and Technical Information of China (English)

    Naoki; Adachi; Tadahiro; Numakawa; Misty; Richards; Shingo; Nakajima; Hiroshi; Kunugi

    2014-01-01

    Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.

  17. Effects of aerobic exercise training on peripheral brain-derived neurotrophic factor and eotaxin-1 levels in obese young men

    OpenAIRE

    Cho, Su Youn; Roh, Hee Tae

    2016-01-01

    [Purpose] The aim of the present study was to investigate the effects of aerobic exercise training on the levels of peripheral brain-derived neurotrophic factor and eotaxin-1 in obese young men. [Subjects and Methods] The subjects included sixteen obese young men with a body mass index greater than 25 kg/m2. They were randomly divided between control and exercise groups (n = 8 in each group). The exercise group performed treadmill exercise for 40 min, 3 times a week for 8 weeks at the intensi...

  18. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla; Hoejman, Pernille

    2015-01-01

    UNLABELLED: The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment......-resistant depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU...

  19. Atrial fibrillation and delayed gastric emptying.

    Directory of Open Access Journals (Sweden)

    Isadora C Botwinick

    Full Text Available BACKGROUND: Atrial fibrillation and delayed gastric emptying (DGE are common after pancreaticoduodenectomy. Our aim was to investigate a potential relationship between atrial fibrillation and DGE, which we defined as failure to tolerate a regular diet by the 7(th postoperative day. METHODS: We performed a retrospective chart review of 249 patients who underwent pancreaticoduodenectomy at our institution between 2000 and 2009. Data was analyzed with Fisher exact test for categorical variables and Mann-Whitney U or unpaired T-test for continuous variables. RESULTS: Approximately 5% of the 249 patients included in the analysis experienced at least one episode of postoperative atrial fibrillation. Median age of patients with atrial fibrillation was 74 years, compared with 66 years in patients without atrial fibrillation (p = 0.0005. Patients with atrial fibrillation were more likely to have a history of atrial fibrillation (p = 0.03. 92% of the patients with atrial fibrillation suffered from DGE, compared to 46% of patients without atrial fibrillation (p = 0.0007. This association held true when controlling for age. CONCLUSION: Patients with postoperative atrial fibrillation are more likely to experience delayed gastric emptying. Interventions to manage delayed gastric function might be prudent in patients at high risk for postoperative atrial fibrillation.

  20. Nonlinear Dynamical Analysis of Fibrillation

    Science.gov (United States)

    Kerin, John A.; Sporrer, Justin M.; Egolf, David A.

    2013-03-01

    The development of spatiotemporal chaotic behavior in heart tissue, termed fibrillation, is a devastating, life-threatening condition. The chaotic behavior of electrochemical signals, in the form of spiral waves, causes the muscles of the heart to contract in an incoherent manner, hindering the heart's ability to pump blood. We have applied the mathematical tools of nonlinear dynamics to large-scale simulations of a model of fibrillating heart tissue to uncover the dynamical modes driving this chaos. By studying the evolution of Lyapunov vectors and exponents over short times, we have found that the fibrillating tissue is sensitive to electrical perturbations only in narrow regions immediately in front of the leading edges of spiral waves, especially when these waves collide, break apart, or hit the edges of the tissue sample. Using this knowledge, we have applied small stimuli to areas of varying sensitivity. By studying the evolution of the effects of these perturbations, we have made progress toward controlling the electrochemical patterns associated with heart fibrillation. This work was supported by the U.S. National Science Foundation (DMR-0094178) and Research Corporation.

  1. Genetic basis of atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Oscar Campuzano

    2016-12-01

    Full Text Available Atrial fibrillation is the most common sustained arrhythmia and remains as one of main challenges in current clinical practice. The disease may be induced secondary to other diseases such as hypertension, valvular heart disease, and heart failure, conferring an increased risk of stroke and sudden death. Epidemiological studies have provided evidence that genetic factors play an important role and up to 30% of clinically diagnosed patients may have a family history of atrial fibrillation. To date, several rare variants have been identified in a wide range of genes associated with ionic channels, calcium handling protein, fibrosis, conduction and inflammation. Important advances in clinical, genetic and molecular basis have been performed over the last decade, improving diagnosis and treatment. However, the genetics of atrial fibrillation is complex and pathophysiological data remains still unraveling. A better understanding of the genetic basis will induce accurate risk stratification and personalized clinical treatment. In this review, we have focused on current genetics basis of atrial fibrillation.

  2. Radiofrequency ablation of atrial fibrillation

    NARCIS (Netherlands)

    Wiesfeld, ACP; Tan, ES; Van Veldhuisen, DJ; Crijns, HJGM; Van Gelder, IC

    2004-01-01

    Twenty-five patients (16 males, mean age 46 years.) underwent radiofrequency ablation because of either paroxysmal (13 patients) or persistent atrial fibrillation (12 patients). Ablation aimed at earliest activation of spontaneous and catheter-induced repetitive ectopy in left and right atria and ap

  3. [New antithrombotics for atrial fibrillation].

    NARCIS (Netherlands)

    Verheugt, F.W.A.

    2011-01-01

    Cerebral infarction is the most serious complication of atrial fibrillation. Coumarin derivatives (vitamin K antagonists) counteract systemic thromboembolism and reduce the risk of stroke by more than 60%, but carry a risk of serious bleeding. Antiplatelet therapy and subcutaneous low-molecular-weig

  4. [Atrial fibrillation and cognitive function].

    Science.gov (United States)

    Duron, Emmanuelle; Hanon, Olivier

    2010-09-01

    Atrial fibrillation (AF), which prevalence increases with age, is a growing public health problem and a well known risk factor for stroke. On the other hand, dementia is one of the most important neurological disorders in the elderly, and with aging of the population in developed countries, the number of demented patients will increase in absence of prevention. In the past decade, several vascular risk factors (hypertension, obesity and metabolic syndrome, hypercholesterolemia) have been found, with various degree of evidence, to be associated with vascular dementia but also, surprisingly, with Alzheimer's disease. This review is devoted to the links between atrial fibrillation, cognitive decline and dementia. Globally, transversal studies showed a significant association between atrial fibrillation, cognitive decline and dementia. However, these studies are particularly sensitive to various biases. In this context, recent longitudinal studies of higher level of evidence have been conducted to assess the link between AF and dementia. One study disclosed a high incidence of dementia among patients suffering from atrial fibrillation during a 4.6 years follow-up. Similarly another study showed that atrial fibrillation was significantly associated with conversion from mild cognitive impairment to dementia during a 3 years follow-up. Nevertheless two other longitudinal studies did not find any significant association between AF and dementia, but this discrepancy should be interpreted taking into account that the comparability of all these studies is moderate because they were using different methodologies (population, cognitive testing, and mean follow-up). Possible explanatory mechanisms for the association between AF and the risk of dementia are proposed, such as thrombo-embolic ischemic damage and cerebral hypo perfusion due to fluctuations in the cardiac output. Thus, there is some evidence that FA could be associated with cognitive decline and dementia but this

  5. Risk of atrial fibrillation in diabetes mellitus

    DEFF Research Database (Denmark)

    Pallisgaard, Jannik L.; Schjerning, Anne-Marie; Lindhardt, Tommi B.

    2016-01-01

    AIM: Diabetes has been associated with atrial fibrillation but the current evidence is conflicting. In particular knowledge regarding young diabetes patients and the risk of developing atrial fibrillation is sparse. The aim of our study was to investigate the risk of atrial fibrillation in patients...... with diabetes compared to the background population in Denmark. METHODS AND RESULTS: Through Danish nationwide registries we included persons above 18 years of age and without prior atrial fibrillation and/or diabetes from 1996 to 2012. The study cohort was divided into a background population without diabetes...... and a diabetes group. The absolute risk of developing atrial fibrillation was calculated and Poisson regression models adjusted for sex, age and comorbidities were used to calculate incidence rate ratios of atrial fibrillation. The total study cohort included 5,081,087 persons, 4,827,713 (95%) in the background...

  6. Atrial fibrillation in the elderly

    Institute of Scientific and Technical Information of China (English)

    Roger Kerzner; Michael W. Rich

    2005-01-01

    Atrial fibrillation (AF) is an extremely common condition in the elderly, with increasing prevalence around the world as the population ages. AF may be associated with serious health consequences, including stroke, heart failure, and decreased quality of life, so that careful management of AF by geriatric health care providers is required. With careful attention to anticoagulation therapy, and prudent use of medications and invasive procedures to minimize symptoms, many of the adverse health consequences of AF can be prevented.

  7. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  8. Family Polymorphism

    DEFF Research Database (Denmark)

    Ernst, Erik

    2001-01-01

    safety and flexibility at the level of multi-object systems. We are granted the flexibility of using different families of kinds of objects, and we are guaranteed the safety of the combination. This paper highlights the inability of traditional polymorphism to handle multiple objects, and presents family...... polymorphism as a way to overcome this problem. Family polymorphism has been implemented in the programming language gbeta, a generalized version of Beta, and the source code of this implementation is available under GPL....

  9. Effect of variation in BDNF Val(66)Met polymorphism, smoking, and nicotine dependence on symptom severity of depressive and anxiety disorders

    NARCIS (Netherlands)

    Jamal, Mumtaz; Van der Does, Willem; Penninx, Brenda W. J. H.

    2015-01-01

    Background: Smoking, especially nicotine dependence is associated with more severe symptoms of depression and anxiety disorders. However, the mechanisms underlying this association are unclear. We investigated the effect of brain-derived neurotrophic factor (BDNF) VaI(66)Met polymorphism on the seve

  10. Missense Mutation of Brain Derived Neurotrophic Factor (BDNF Alters Neurocognitive Performance in Patients with Mild Traumatic Brain Injury: A Longitudinal Study.

    Directory of Open Access Journals (Sweden)

    Vairavan Narayanan

    Full Text Available The predictability of neurocognitive outcomes in patients with traumatic brain injury is not straightforward. The extent and nature of recovery in patients with mild traumatic brain injury (mTBI are usually heterogeneous and not substantially explained by the commonly known demographic and injury-related prognostic factors despite having sustained similar injuries or injury severity. Hence, this study evaluated the effects and association of the Brain Derived Neurotrophic Factor (BDNF missense mutations in relation to neurocognitive performance among patients with mTBI. 48 patients with mTBI were prospectively recruited and MRI scans of the brain were performed within an average 10.1 (SD 4.2 hours post trauma with assessment of their neuropsychological performance post full Glasgow Coma Scale (GCS recovery. Neurocognitive assessments were repeated again at 6 months follow-up. The paired t-test, Cohen's d effect size and repeated measure ANOVA were performed to delineate statistically significant differences between the groups [wildtype G allele (Val homozygotes vs. minor A allele (Met carriers] and their neuropsychological performance across the time point (T1 = baseline/ admission vs. T2 = 6th month follow-up. Minor A allele carriers in this study generally performed more poorly on neuropsychological testing in comparison wildtype G allele group at both time points. Significant mean differences were observed among the wildtype group in the domains of memory (M = -11.44, SD = 10.0, p = .01, d = 1.22, executive function (M = -11.56, SD = 11.7, p = .02, d = 1.05 and overall performance (M = -6.89 SD = 5.3, p = .00, d = 1.39, while the minor A allele carriers showed significant mean differences in the domains of attention (M = -11.0, SD = 13.1, p = .00, d = .86 and overall cognitive performance (M = -5.25, SD = 8.1, p = .01, d = .66.The minor A allele carriers in comparison to the wildtype G allele group, showed considerably lower scores at

  11. Brain-derived neurotrophic factor and Bcl-2 expression in rat brain areas following chronic morphine treatment

    Institute of Scientific and Technical Information of China (English)

    Huiping Yu; Hua Hu; Huaqing Meng; Wei Deng; Yixiao Fu; Qinghua Luo

    2011-01-01

    The ventral tegmental area and the locus coeruleus are associated with psychological and physical dependence of opioid addiction. To date, very little is known about brain-derived neurotrophic factor (BDNF) and Bcl-2 gene and protein changes following morphine addiction. The present study utilized immunohistochemistry and in situ hybridization techniques, which revealed that there were increased BDNF levels, but decreased Bcl-2 levels in the prefrontal cortex, locus coeruleus, hippocampus, and the ventral tegmental area during morphine-dependence formation and abstinence. However, the levels of BDNF remained unchanged, and Bcl-2 expression was increased in the nucleus accumbens. These results showed that BDNF and Bcl-2 are involved in the development of morphine dependence, and precipitation of abstinence syndrome.

  12. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Ericksen Mielle Borba

    2016-12-01

    Full Text Available Background/Aims: Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD pathology. Serum brain-derived neurotrophic factor (BDNF reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]. Methods: Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results: MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion: The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction.

  13. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke.

    Science.gov (United States)

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Martínez-Sánchez, Patricia; Barahona-Sanz, Inés; Navarro-Hernanz, Teresa; Gómez-de Frutos, María Del Carmen; Díez-Tejedor, Exuperio; Gutiérrez-Fernández, María

    2016-09-01

    Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising tool to deliver proteins to select body areas. This study aimed to analyze whether UTMD was able to deliver brain-derived neurotrophic factor (BDNF) to the brain, enhancing functional recovery and white matter repair, in an animal model of subcortical stroke induced by endothelin (ET)-1. UTMD was used to deliver BDNF to the brain 24 h after stroke. This technique was shown to be safe, given there were no cases of hemorrhagic transformation or blood brain barrier (BBB) leakage. UTMD treatment was associated with increased brain BDNF levels at 4 h after administration. Targeted ultrasound delivery of BDNF improved functional recovery associated with fiber tract connectivity restoration, increasing oligodendrocyte markers and remyelination compared to BDNF alone administration in an experimental animal model of white matter injury.

  14. Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers.

    Science.gov (United States)

    Angelucci, Francesco; Ricci, Valerio; Spalletta, Gianfranco; Pomponi, Massimiliano; Tonioni, Federico; Caltagirone, Carlo; Bria, Pietro

    2008-12-01

    Chronic cannabis use produces effects within the central nervous system (CNS) which include deficits in learning and attention tasks and decreased brain volume. Neurotrophins, in particular nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are proteins that serve as survival factors for CNS neurons. Deficits in the production and utilization of these proteins can lead to CNS dysfunctions including those associated with cannabis abuse. In this study we measured by enzyme-linked immunosorbent assay (ELISA) the NGF and BDNF serum levels in two groups of subjects: cannabis-dependent patients and healthy subjects. We found that NGF serum levels were significantly reduced in cannabis abusers as compared to healthy subjects. These findings indicate that NGF may have a role in the central action of cannabis and potentially in the neurotoxicity induced by this drug. These data also suggest that chronic cannabis consumption may be a risk factor for developing psychosis among drug users.

  15. From Molecular to Nanotechnology Strategies for Delivery of Neurotrophins: Emphasis on Brain-Derived Neurotrophic Factor (BDNF

    Directory of Open Access Journals (Sweden)

    Claire Géral

    2013-02-01

    Full Text Available Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF, which is the most abundant neurotrophin in the mammalian central nervous system (CNS. Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted.

  16. Brain-derived neurotrophic factor in neuroimmunology: lessons learned from multiple sclerosis patients and experimental autoimmune encephalomyelitis models.

    Science.gov (United States)

    Lühder, Fred; Gold, Ralf; Flügel, Alexander; Linker, Ralf A

    2013-04-01

    The concept of neuroprotective autoimmunity implies that immune cells, especially autoantigen-specific T cells, infiltrate the central nervous system (CNS) after injury and contribute to neuroregeneration and repair by secreting soluble factors. Amongst others, neurotrophic factors and neurotrophins such as brain-derived neurotropic factor (BDNF) are considered to play an important role in this process. New data raise the possibility that this concept could also be extended to neuroinflammatory diseases such as multiple sclerosis (MS) where autoantigen-specific T cells infiltrate the CNS, causing axonal/neuronal damage on the one hand, but also providing neuroprotective support on the other hand. In this review, we summarize the current knowledge on BDNF levels analyzed in MS patients in different compartments and its correlation with clinical parameters. Furthermore, new approaches in experimental animal models are discussed that attempt to decipher the functional relevance of BDNF in autoimmune demyelination.

  17. From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Géral, Claire; Angelova, Angelina; Lesieur, Sylviane

    2013-02-08

    Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted.

  18. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs.

    Science.gov (United States)

    Bai, Ou; Chlan-Fourney, Jennifer; Bowen, Rudy; Keegan, David; Li, Xin-Min

    2003-01-01

    Typical and atypical antipsychotic drugs, though both effective, act on different neurotransmitter receptors and are dissimilar in some clinical effects and side effects. The typical antipsychotic drug haloperidol has been shown to cause a decrease in the expression of brain-derived neurotrophic factor (BDNF), which plays an important role in neuronal cell survival, differentiation, and neuronal connectivity. However, it is still unknown whether atypical antipsychotic drugs similarly regulate BDNF expression. We examined the effects of chronic (28 days) administration of typical and atypical antipsychotic drugs on BDNF mRNA expression in the rat hippocampus using in situ hybridization. Quantitative analysis revealed that the typical antipsychotic drug haloperidol (1 mg/kg) down-regulated BDNF mRNA expression in both CA1 (P BDNF mRNA expression in CA1, CA3, and dentate gyrus regions of the rat hippocampus compared with their respective controls (P BDNF mRNA expression in rat hippocampus.

  19. Effects of maternal smoking and exposure to methylmercury on brain-derived neurotrophic factor concentrations in umbilical cord serum

    DEFF Research Database (Denmark)

    Spulber, Stefan; Rantamäki, Tomi; Nikkilä, Outi;

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal survival and differentiation. We examined the concentration of BDNF in cord serum from newborns exposed to methylmercury (MeHg) and polychlorinated biphenyls (PCB) in utero by maternal consumption of whale meat....... The cohort consisted of 395 singleton births (206 boys and 189 girls), gestational age ranging from 38 to 42 weeks. Serum BDNF was measured by sandwich ELISA. Maternal smoking habits and other relevant factors were obtained by interviewing the mothers. The exposure to MeHg was estimated from Hg...... concentrations in cord blood, whereas exposure to PCB was estimated based on maternal serum concentrations. Only MeHg exposure affected the serum BDNF, which decreased in a concentration-dependent manner in girls born to nonsmoking mothers. Maternal smoking significantly increased BNDF in girls but not in boys...

  20. Brain-derived neurotrophic factor inhibits neuromuscular junction maturation in a cAMP-PKA-dependent way.

    Science.gov (United States)

    Song, Wei; Jin, Xiwan Albert

    2015-03-30

    The development of neuromuscular junction (NMJ) is initiated by motor axon's contact with the skeletal muscle cell that is followed by synaptic maturation. Previous studies showed that brain-derived neurotrophic factor (BDNF) enhanced motoneurons' survival and growth but significantly inhibited synaptogenesis. Here, we report that chronic application of BDNF resulted in inhibition in the maturation process both physiologically and morphologically. The response to BDNF was mediated by its cognate receptor TrkB as the effects were abolished by Trk receptor inhibitor K252a. Protein kinase A (PKA) inhibitor reversed the effects of BDNF in inhibiting NMJ maturation. These results indicate that BDNF suppresses NMJ maturation through cAMP-PKA signaling pathway. Together with the previous studies, these results suggest that BDNF suppresses NMJ formation and maturation despite its effects in enhancing neuronal survival and growth.

  1. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor.

    Science.gov (United States)

    Marty, S; Berninger, B; Carroll, P; Thoenen, H

    1996-03-01

    Gamma-Aminobutyric acid (GABA) switches from enhancing to repressing brain-derived neurotrophic factor (BDNF) mRNA synthesis during the maturation of hippocampal neurons in vitro. Interneurons do not produce BDNF themselves, but BDNF enhances their differentiation. Therefore, the question arose whether hippocampal interneurons regulate their phenotype by regulating BDNF expression and release from adjacent cells. The GABA(A) receptor agonist muscimol and BDNF increased the size and neuropeptide Y (NPY) immunoreactivity of hippocampal interneurons. However, GABAergic stimulation failed to increase NPY immunoreactivity in cultures from BDNF knockout embryos. At later developmental stages, when GABA represses BDNF synthesis, treatment with muscimol induced a decrease in cell size and NPY immunoreactivity of interneurons. Interneurons might thus control their phenotype through the regulation of BDNF synthesis in, and release from, their target neurons.

  2. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review.

    Science.gov (United States)

    Huang, T; Larsen, K T; Ried-Larsen, M; Møller, N C; Andersen, L B

    2014-02-01

    The purpose of this study was to summarize the effects of physical activity and exercise on peripheral brain-derived neurotrophic factor (BDNF) in healthy humans. Experimental and observational studies were identified from PubMed, Web of Knowledge, Scopus, and SPORT Discus. A total of 32 articles met the inclusion criteria. Evidence from experimental studies suggested that peripheral BDNF concentrations were elevated by acute and chronic aerobic exercise. The majority of the studies suggested that strength training had no influence on peripheral BDNF. The results from most observational studies suggested an inverse relationship between the peripheral BDNF level and habitual physical activity or cardiorespiratory fitness. More research is needed to confirm the findings from the observational studies.

  3. Cross-sectional associations of objectively measured physical activity with brain-derived neurotrophic factor in adolescents

    DEFF Research Database (Denmark)

    Huang, Tao; Gejl, Anne Kær; Tarp, Jakob

    2017-01-01

    .035). In girls, mean physical activity and MVPA were not associated with serum BDNF. Without adjustment for wear time, sedentary time was not associated with serum BDNF in either sex. CONCLUSION: These findings indicate that higher physical activity is associated with lower serum BDNF in boys, but not in girls.......OBJECTIVE: The purpose of this study was to examine the associations between objectively measured physical activity and serum brain-derived neurotrophic factor (BDNF) in adolescents. METHODS: Cross-sectional analyses were performed using data from 415 adolescents who participated in the 2015 follow......-up of the Childhood Health Activity and Motor Performance School Study Denmark (the CHAMPS-study DK). Physical activity was objectively measured by accelerometry monitors. Serum BDNF levels were analyzed using the Enzyme-linked immunosorbent assay (ELISA). Anthropometrics and pubertal status were measured using...

  4. Effect of yoga on pain, brain-derived neurotrophic factor, and serotonin in premenopausal women with chronic low back pain.

    Science.gov (United States)

    Lee, Moseon; Moon, Woongjoon; Kim, Jaehee

    2014-01-01

    Background. Serotonin and brain-derived neurotrophic factor (BDNF) are known to be modulators of nociception. However, pain-related connection between yoga and those neuromodulators has not been investigated. Therefore, we aimed to evaluate the effect of yoga on pain, BDNF, and serotonin. Methods. Premenopausal women with chronic low back pain practiced yoga three times a week for 12 weeks. At baseline and after 12 weeks, back pain intensity was measured using visual analogue scale (VAS), and serum BDNF and serotonin levels were evaluated. Additionally, back flexibility and level of depression were assessed. Results. After 12-week yoga, VAS decreased in the yoga group (P yoga group (P yoga group (P yoga group, while it reduced (P yoga group, whereas it tended to increase in the control group (P = 0.07). Conclusions. We propose that BDNF may be one of the key factors mediating beneficial effects of yoga on chronic low back pain.

  5. Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder - Results from a prospective study

    DEFF Research Database (Denmark)

    Jacoby, Anne Sophie; Munkholm, Klaus; Vinberg, Maj;

    2016-01-01

    BACKGROUND: Peripheral blood brain-derived neurotrophic factor (BDNF) and inflammatory markers may reflect key pathophysiological mechanisms in bipolar disorder in relation to disease activity and neuroprogression. AIMS: To investigate whether neutrophins and inflammatory marker vary with mood...... states and are increased in patients with bipolar disorder type I during euthymia as well as in all affective states as a group, compared to levels in healthy control subjects. METHODS: In a prospective 6-12 months follow-up study, we investigated state specific, intra-individual alterations in levels...... of BDNF, hsCRP, IL-1β, IL-6, IL-8, IL-18 and TNF-α in 60 patients with bipolar I disorder with an acute severe manic index episode and in subsequent euthymic and depressive and manic states and compared with repeated measurements in healthy control subjects. Data were analysed with linear mixed effects...

  6. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease

    Science.gov (United States)

    Borba, Ericksen Mielle; Duarte, Juliana Avila; Bristot, Giovana; Scotton, Ellen; Camozzato, Ana Luiza; Chaves, Márcia Lorena Fagundes

    2016-01-01

    Background/Aims Hippocampal atrophy is a recognized biomarker of Alzheimer disease (AD) pathology. Serum brain-derived neurotrophic factor (BDNF) reduction has been associated with neurodegeneration. We aimed to evaluate BDNF serum levels and hippocampal volume in clinical AD (dementia and mild cognitive impairment [MCI]). Methods Participants were 10 patients with MCI and 13 with dementia due to AD as well as 10 healthy controls. BDNF serum levels were determined by ELISA and volumetric measures with NeuroQuant®. Results MCI and dementia patients presented lower BDNF serum levels than healthy participants; dementia patients presented a smaller hippocampal volume than MCI patients and healthy participants. Discussion The findings support that the decrease in BDNF might start before the establishment of neuronal injury expressed by the hippocampal reduction. PMID:28101102

  7. Cross-sex hormone treatment in male-to-female transsexual persons reduces serum brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Fuss, Johannes; Hellweg, Rainer; Van Caenegem, Eva; Briken, Peer; Stalla, Günter K; T'Sjoen, Guy; Auer, Matthias K

    2015-01-01

    Serum levels of brain-derived neurotrophic factor (BDNF) are reduced in male-to-female transsexual persons (MtF) compared to male controls. It was hypothesized before that this might reflect either an involvement of BDNF in a biomechanism of transsexualism or to be the result of persistent social stress due to the condition. Here, we demonstrate that 12 month of cross-sex hormone treatment reduces serum BDNF levels in male-to-female transsexual persons independent of anthropometric measures. Participants were acquired through the European Network for the Investigation of Gender Incongruence (ENIGI). Reduced serum BDNF in MtF thus seems to be a result of hormonal treatment rather than a consequence or risk factor of transsexualism.

  8. Clinical correlates of plasma brain-derived neurotrophic factor in post-traumatic stress disorder spectrum after a natural disaster.

    Science.gov (United States)

    Stratta, Paolo; Sanità, Patrizia; Bonanni, Roberto L; de Cataldo, Stefano; Angelucci, Adriano; Rossi, Rodolfo; Origlia, Nicola; Domenici, Luciano; Carmassi, Claudia; Piccinni, Armando; Dell'Osso, Liliana; Rossi, Alessandro

    2016-10-30

    Clinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms. Thirteen patients were diagnosed as Full PTSD and 13 as Partial PTSD. The subjects with full-blown PTSD showed lower BDNF level than subjects with partial PTSD and controls. Different relationship patterns of BDNF with post-traumatic stress spectrum symptoms have been reported in the three samples. Our findings add more insight on the mechanisms regulating BDNF levels in response to stress and further proofs of the utility of the distinction of PTSD into full and partial categories.

  9. Cocaine-induced Psychosis and Brain-derived Neurothrophic Factor in Patients with Cocaine Dependence: Report of Two Cases

    Science.gov (United States)

    Roncero, Carlos; Palma-Álvarez, Raul Felipe; Ros-Cucurull, Elena; Barral, Carmen; Gonzalvo, Begoña; Corominas-Roso, Margarida; Casas, Miguel; Grau-López, Lara

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is linked to numerous brain functions. In addition, BDNF alterations contribute to neurological, mental, and addictive disorders. Cocaine dependence has received much attention recently due to its prevalence and psychological effects. Symptoms of psychosis are one of the most serious adverse events precipitated by cocaine use. It is particularly important to identify patients at risk of developing cocaine-induced psychosis (CIP). We described two cases of patients with cocaine dependence who presented with CIP and had changes in their BDNF levels during the psychotic episode. BDNF levels were initially low in both patients, and then decreased by more than 50% in association with CIP. The relationship between BDNF and psychosis is described in the literature. These cases revealed that BDNF levels decreased during a CIP episode and, thus, it is necessary to investigate BDNF and its relationship with CIP further. PMID:26792050

  10. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signaltransduction pathway in depressive disorder

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wang; Yingquan Zhang; Mingqi Qiao

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  11. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    Science.gov (United States)

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  12. Effect of propofol on brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus of aged rats with chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Gang Chen; Qiang Fu; Jiangbei Cao; Weidong Mi

    2012-01-01

    We intraperitoneally injected 10 and 50 mg/kg of propofol for 7 consecutive days to treat a rat model of chronic cerebral ischemia. A low-dose of propofol promoted the expression of brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element binding protein, and cAMP in the hippocampus of aged rats with chronic cerebral ischemia, but a high-dose of propofol inhibited their expression. Results indicated that the protective effect of propofol against cerebral ischemia in aged rats is related to changes in the expression of brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus, and that the cAMP-cAMP responsive element binding protein pathway is involved in the regulatory effect of propofol on brain-derived neurotrophic factor expression.

  13. Collagen fibril diameter and leather strength.

    Science.gov (United States)

    Wells, Hannah C; Edmonds, Richard L; Kirby, Nigel; Hawley, Adrian; Mudie, Stephen T; Haverkamp, Richard G

    2013-11-27

    The main structural component of leather and skin is type I collagen in the form of strong fibrils. Strength is an important property of leather, and the way in which collagen contributes to the strength is not fully understood. Synchrotron-based small angle X-ray scattering (SAXS) is used to measure the collagen fibril diameter of leather from a range of animals, including sheep and cattle, that had a range of tear strengths. SAXS data were fit to a cylinder model. The collagen fibril diameter and tear strength were found to be correlated in bovine leather (r(2) = 0.59; P = 0.009), with stronger leather having thicker fibrils. There was no correlation between orientation index, i.e., fibril alignment, and fibril diameter for this data set. Ovine leather showed no correlation between tear strength and fibril diameter, nor was there a correlation across a selection of other animal leathers. The findings presented here suggest that there may be a different structural motif in skin compared with tendon, particularly ovine skin or leather, in which the diameter of the individual fibrils contributes less to strength than fibril alignment does.

  14. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    Science.gov (United States)

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.

  15. Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons.

    Science.gov (United States)

    Berghuis, Paul; Dobszay, Marton B; Sousa, Kyle M; Schulte, Gunnar; Mager, Peter P; Härtig, Wolfgang; Görcs, Tamás J; Zilberter, Yuri; Ernfors, Patrik; Harkany, Tibor

    2004-09-01

    GABAergic interneurons with high-frequency firing, fast-spiking (FS) cells, form synapses on perisomatic regions of principal cells in the neocortex and hippocampus to control the excitability of cortical networks. Brain-derived neurotrophic factor (BDNF) is essential for the differentiation of multiple interneuron subtypes and the formation of their synaptic contacts. Here, we examined whether BDNF, alone or in conjunction with sustained KCl-induced depolarization, drives functional FS cell differentiation and the formation of inhibitory microcircuits. Homogeneous FS cell cultures were established by target-specific isolation using the voltage-gated potassium channel 3.1b subunit as the selection marker. Isolated FS cells expressed parvalbumin, were surrounded by perineuronal nets, formed immature inhibitory connections and generated slow action potentials at 12 days in vitro. Brain-derived neurotrophic factor (BDNF) promoted FS cell differentiation by increasing the somatic diameter, dendritic branching and the frequency of action potential firing. In addition, BDNF treatment led to a significant up-regulation of synaptophysin and vesicular GABA transporter expression, components of the synaptic machinery critical for GABA release, which was paralleled by an increase in synaptic strength. Long-term membrane depolarization alone was detrimental to dendritic branching. However, we observed that BDNF and KCl exerted additive effects, as reflected by the significantly accelerated maturation of synaptic contacts and high discharge frequencies, and was required for the formation of reciprocal connections between FS cells. Our results show that BDNF, along with membrane depolarization, is critical for FS cells to establish inhibitory circuitries during corticogenesis.

  16. Effects of fluoxetine on brain-derived neurotrophic factor serum concentration and cognition in patients with vascular dementia

    Directory of Open Access Journals (Sweden)

    Liu X

    2014-03-01

    Full Text Available Xuan Liu,1,2 Junjian Zhang,1 Dong Sun,1 Yuanteng Fan,1 Hongbin Zhou,2 Binfang Fu21Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, 2Department of Neurology, Xiangyang Central Hospital, Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, People’s Republic of ChinaBackground: Selective serotonin reuptake inhibitors improve cognition in patients with stroke and increase the expression of brain-derived neurotrophic factor (BDNF in the rat hippocampus. However, the effects of selective serotonin reuptake inhibitors on cognition and serum BDNF levels in patients with vascular dementia are largely unknown. We performed an open-label study to investigate the effects of fluoxetine, a selective serotonin reuptake inhibitor, on cognition and serum BDNF levels in patients with vascular dementia.Methods: Fifty patients with vascular dementia were randomly allocated to receive fluoxetine (20 mg/day; n=25 or no fluoxetine (control group; n=25 for 12 weeks. Both groups received secondary prevention of stroke. Serum BDNF level, Mini-Mental State Examination (MMSE score, Ten-Point Clock Drawing score, and Digit Span Test and Verbal Fluency Test scores were measured at baseline and at week 12 in the both groups.Results: The baseline serum BDNF level correlated significantly with the MMSE score. MMSE score, Ten-Point Clock Drawing score, and serum BDNF level increased significantly in the fluoxetine group but not in the control group. The increase in serum BDNF level correlated with the increase in MMSE score in the fluoxetine group.Conclusion: Fluoxetine may potentially improve cognition in patients with vascular dementia and requires further investigation. BDNF may play an important role in cognitive recovery.Keywords: brain-derived neurotrophic factor, cognition, fluoxetine, improvement, neuroplasticity, vascular dementia

  17. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

    Science.gov (United States)

    Qian, Qi; Liu, Qiuji; Zhou, Dongming; Pan, Hongyu; Liu, Zhiwei; He, Fangping; Ji, Suying; Wang, Dongpi; Bao, Wangxiao; Liu, Xinyi; Liu, Zhaoling; Zhang, Heng; Zhang, Xiaoqin; Zhang, Ling; Wang, Mingkai; Xu, Ying; Huang, Fude; Luo, Benyan; Sun, Binggui

    2017-02-13

    Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3a(f/f) mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL(+) cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

  18. Expression and Dendritic Trafficking of BDNF-6 Splice Variant are Impaired in Knock-In Mice Carrying Human BDNF Val66Met Polymorphism

    OpenAIRE

    Mallei, A.; Baj, G.; Ieraci, A.; Corna, S.; Musazzi, L.; Lee, F S; Tongiorgi, E.; Popoli, M.

    2015-01-01

    Background: The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. Methods: In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmar...

  19. Fibril assembly in whey protein mixtures

    NARCIS (Netherlands)

    Bolder, S.G.

    2007-01-01

    The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly

  20. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, René; Hassenkam, Tue; Hansen, Philip

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibr...

  1. Formation and properties of whey protein fibrils

    NARCIS (Netherlands)

    Kroes-Nijboer, A.

    2011-01-01

    Protein fibrils are threadlike aggregates that are about one molecule thick and more than thousand molecules long. Due to their threadlike structure they could potentially be used to form meat-like structures. Protein fibrils can be produced from milk protein and plant protein, opening opportunities

  2. Graphene oxide strongly inhibits amyloid beta fibrillation

    NARCIS (Netherlands)

    Mahmoudi, Morteza; Akhavan, Omid; Ghavami, Mahdi; Rezaee, Farhad; Ghiasi, Seyyed Mohammad Amin

    2012-01-01

    Since amyloid beta fibrillation (AbF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Ab fibrillation in the aqueous solution. We showed that GO and their protein-covered

  3. PAROXYSMAL ATRIAL FIBRILLATION: CHOICE OF CARDIOVERSION THERAPY

    Directory of Open Access Journals (Sweden)

    B. A. Tatarskii

    2007-01-01

    Full Text Available Characteristics and classification of different patterns of paroxysmal atrial fibrillation are presented. Main indications to restoration of sinus rhythm are discussed. The features of main medications used to terminate of atrial fibrillation are given. The choice of antiarrhythmic drug is considerate. Necessity of individual approach to therapy tactics is proved.

  4. Modeling generic aspects of ideal fibril formation

    CERN Document Server

    Michel, Denis

    2016-01-01

    Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions. These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers and the accumulation of complexe...

  5. Nanoscale scraping and dissection of collagen fibrils.

    Science.gov (United States)

    Wenger, M P E; Horton, M A; Mesquida, P

    2008-09-24

    The main function of collagen is mechanical, hence there is a fundamental scientific interest in experimentally investigating the mechanical and structural properties of collagen fibrils on the nanometre scale. Here, we present a novel atomic force microscopy (AFM) based scraping technique that can dissect the outer layer of a biological specimen. Applied to individual collagen fibrils, the technique was successfully used to expose the fibril core and reveal the presence of a D-banding-like structure. AFM nanoindentation measurements of fibril shell and core indicated no significant differences in mechanical properties such as stiffness (reduced modulus), hardness, adhesion and adhesion work. This suggests that collagen fibrils are mechanically homogeneous structures. The scraping technique can be applied to other biological specimens, as demonstrated on the example of bacteria.

  6. Molecular basis for insulin fibril assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Magdalena I.; Sievers, Stuart A.; Sawaya, Michael R.; Wall, Joseph S.; Eisenberg, David; (HHMI); (BNL)

    2009-12-01

    In the rare medical condition termed injection amyloidosis, extracellular fibrils of insulin are observed. We found that the segment of the insulin B-chain with sequence LVEALYL is the smallest segment that both nucleates and inhibits the fibrillation of full-length insulin in a molar ratio-dependent manner, suggesting that this segment is central to the cross-{beta} spine of the insulin fibril. In isolation from the rest of the protein, LVEALYL forms microcrystalline aggregates with fibrillar morphology, the structure of which we determined to 1 {angstrom} resolution. The LVEALYL segments are stacked into pairs of tightly interdigitated {beta}-sheets, each pair displaying the dry steric zipper interface typical of amyloid-like fibrils. This structure leads to a model for fibrils of human insulin consistent with electron microscopic, x-ray fiber diffraction, and biochemical studies.

  7. Atrial fibrillation in patients with ischemic stroke

    DEFF Research Database (Denmark)

    Thygesen, Sandra Kruchov; Frost, Lars; Eagle, Kim A;

    2009-01-01

    BACKGROUND: Atrial fibrillation is a major risk factor for ischemic stroke. However, the prognostic impact of atrial fibrillation among patients with stroke is not fully clarified. We compared patient characteristics, including severity of stroke and comorbidity, quality of in-hospital care...... and outcomes in a cohort of first-time ischemic stroke patients with and without atrial fibrillation. METHODS: Based on linkage of public medical databases, we did a population-based follow-up study among 3,849 stroke patients from the County of Aarhus, Denmark admitted in the period of 2003......-2007 and prospectively registered in the Danish National Indicator Project. RESULTS: Atrial fibrillation was associated with an adverse prognostic profile but not with an overall poorer quality of in-hospital care. Patients with atrial fibrillation had a longer total length of stay (median: 15 vs 9 days), and were...

  8. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated......Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect...... in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...

  9. Influence of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhengrong Peng; Sue Wang; Pingtian Xiao

    2009-01-01

    BACKGROUND: It has been previously shown that hyperbaric oxygen may promote proliferation of neural stem cells and reduce death of endogenous neural stem cells (NSCs).OBJECTIVE: To explore the effects of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived NSCs into neuron-like cells and compare with high-concentration oxygen and high pressure.DESIGN, TIME AND SETTING: An in vitro contrast study, performed at Laboratory of Neurology,Central South University between January and May 2006.MATERIALS: A hyperbaric oxygen chamber (YLC 0.5/1A) was provided by Wuhan Shipping Design Research Institute; mouse anti-rat microtubute-associated protein 2 monoclonal antibody by Jingmei Company, Beijing; mouse anti-rat glial fibrillary acidic protein monoclonal antibody by Neo Markers,USA; mouse anti-rat galactocerebroside monoclonal antibody by Santa Cruz Biotechnology Inc.,USA; and goat anti-mouse fluorescein isothiocyanate-labeled secondary antibody by Wuhan Boster Bioengineering Co., Ltd., China.METHODS: Brain-derived NSCs isolated from brain tissues of neonatal Sprague Dawiey rats werecloned and passaged, and assigned into five groups: normal control, model, high-concentration oxygen, high pressure, and hyperbaric oxygen groups. Cells in the four groups, excluding the normal control group, were incubated in serum-containing DMEM/F12 culture medium. Hypoxic/ischemic models of NSCs were established in an incubator comprising 93% N2, 5% CO2, and 2% O2.Thereafter, cells were continuously cultured as follows: compressed air (0.2 MPa, 1 hour, once a day)in the high pressure group, compressed air+a minimum of 80% O2 in the hyperbaric oxygen group,and a minimum of 80% O2 in the high-concentration oxygen group. Cells in the normal control and model groups were cultured as normal.MAIN OUTCOME MEASURES: At day 7 after culture, glial fibrillary acidic protein,microtubule-associated protein 2, and galactocerebroside immunofluorescence staining were examined to

  10. The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis.

    NARCIS (Netherlands)

    Jenks, B.G.; Kuribara, M.; Kidane, A.H.; Kramer, B.M.; Roubos, E.W.; Scheenen, W.J.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is, despite its name, also found outside the central nervous system (CNS), but the functional significance of this observation is largely unknown. This review concerns the expression of BDNF in the pituitary gland. While the presence of the neurotrophin in th

  11. Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-Derived Neurotrophic Factor

    OpenAIRE

    Mang, Cameron S.; Campbell, Kristin L.; Ross, Colin J.D.; Boyd, Lara A.

    2013-01-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategie...

  12. Effect of brain-derived neurotropic factor released from hypoxic astrocytes on gamma-aminobutyric acid type A receptor function in normal hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai

    2011-01-01

    Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects γ-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that γ-aminobutyric acid at 100 μmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by γ-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a. Γ-aminobutyric acid type A-gated current induced by 100 μmol/L γ-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 Mv, which could be inhibited by k252a and Na+-K+-Cl- cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of γ-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-Cl- cotransporter, and caused γ-aminobutyric acid to exert an excitatory effect by activating γ-aminobutyric acid type A receptor.

  13. Supplementation with Eicosapentaenoic Omega-3 Fatty Acid Does Not Influence Serum Brain-Derived Neurotrophic Factor in Diabetes Mellitus Patients with Major Depression : A Randomized Controlled Pilot Study

    NARCIS (Netherlands)

    Bot, Mariska; Pouwer, Francois; Assies, Johanna; Jansen, Eugene H. J. M.; Beekman, Aartjan T. F.; de Jonge, Peter

    2011-01-01

    Background: Low brain-derived neurotrophic factor (BDNF) levels are observed in both depressed and diabetes patients. Animal research has shown that omega-3 polyunsaturated fatty acids increase BDNF levels. In this exploratory randomized double-blind placebo-controlled study in diabetes patients wit

  14. Serum levels of brain-derived neurotrophic factor in major depressive disorder : state-trait issues, clinical features and pharmacological treatment

    NARCIS (Netherlands)

    Molendijk, M. L.; Bus, B. A. A.; Spinhoven, Ph; Penninx, B. W. J. H.; Kenis, G.; Prickaerts, J.; Voshaar, R. C. Oude; Elzinga, B. M.

    2011-01-01

    Recent evidence supports 'the neurotrophin hypothesis of depression' in its prediction that brain-derived neurotrophic factor (BDNF) is involved in depression. However, some key questions remain unanswered, including whether abnormalities in BDNF persist beyond the clinical state of depression, whet

  15. Brain-derived neurotrophic factor expression in dorsal root ganglion neurons in response to reanastomosis of the distal stoma after nerve grafting

    Institute of Scientific and Technical Information of China (English)

    Wei Yu; Jian Wang; Mingzhu Xu; Hanjiao Qin; Shusen Cui

    2012-01-01

    Studies have shown that retreatment of the distal stoma after nerve grafting can stimulate nerve regeneration. The present study attempted to verify the effects of reanastomosis of the distal stoma, after nerve grafting, on nerve regeneration by assessing brain-derived neurotrophic factor expression in 2-month-old rats. Results showed that brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia began to increase 3 days after autologous nerve grafting post sciatic nerve injury, peaked at 14 days, decreased at 28 days, and reached similar levels to the sham-surgery group at 56 days. Brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia began to increase 3 days after reanastomosis of the distal stoma, 59 days after autologous nerve grafting post sciatic nerve injury, significantly increased at 63 days, peaked at 70 days, and gradually decreased thereafter, but remained higher compared with the sham-surgery group up to 112 days. The results of this study indicate that reanastomosis of the distal stoma after orthotopic nerve grafting stimulated brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia.

  16. The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val(66)Met

    NARCIS (Netherlands)

    Elzinga, Bernet M.; Molendijk, Marc L.; Voshaar, Richard C. Oude; Bus, Boudewijn A. A.; Prickaerts, Jos; Spinhoven, Philip; Penninx, Brenda J. W. H.

    2011-01-01

    Recent findings show lowered brain-derived neurotrophic factor (BDNF) levels in major depressive disorder (MDD). Exposure to stressful life events may (partly) underlie these BDNF reductions, but little is known about the effects of early or recent life stress on BDNF levels. Moreover, the effects o

  17. The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF Val66Met

    NARCIS (Netherlands)

    Elzinga, B.M.; Molendijk, M.L.; Oude Voshaar, R.C.; Bus, B.A.A.; Prickaerts, J.; Spinhoven, P.; Penninx, B.J.

    2011-01-01

    RATIONALE: Recent findings show lowered brain-derived neurotrophic factor (BDNF) levels in major depressive disorder (MDD). Exposure to stressful life events may (partly) underlie these BDNF reductions, but little is known about the effects of early or recent life stress on BDNF levels. Moreover, th

  18. Spatial memory training modifies the expression of brain-derived neurotrophic factor tyrosine kinase receptors in young and aged rats.

    Science.gov (United States)

    Silhol, M; Arancibia, S; Maurice, T; Tapia-Arancibia, L

    2007-05-25

    Aging leads to alterations in the function of the hippocampus, a brain structure largely involved in learning processes. This study aimed at examining the basal levels and the impact of a learning-associated task on brain-derived neurotrophic factor (BDNF), on BDNF full-length catalytic receptor (TrkB.FL) and on the truncated forms (TrkB.T1 and TrkB.T2) receptor expression (mRNA and protein) in the hippocampus of young (2-month-old) and aged (24-month-old) Wistar rats. Spatial memory was evaluated using a water-maze procedure involving visible and invisible platform location learning. Aged rats showed higher latencies during the first two training days but rapidly exhibited learning performances similar to patterns observed with young rats. Real-time PCR measurements showed that aged rats had significantly higher levels of trkB.FL mRNAs than young rats under basal conditions. In situ hybridization analysis indicated that the highest level of trkB.FL mRNA (mRNA encoding for TrkB.FL receptor) was noted in the dentate gyrus, and in the CA2 and CA3 hippocampal layers. In contrast, there was no marked difference in trkB.T1 signal in any hippocampal region. Training induced a significant reduction in trkB.FL mRNA levels solely in aged rats. In contrast, in young and aged rats, trkB.T2 mRNA levels were significantly increased after training. Measurements of proteins revealed that learning significantly increased TrkB.FL content in aged rats. Untrained aged rats presented higher levels of BDNF and brain-derived neurotrophic factor precursor (proBDNF) proteins than young rats. Training strongly increased precursor BDNF metabolism in young and aged rats, resulting in increased levels of proBDNF in the two groups but in old rats the mature BDNF level did not change. This study shows that Wistar rats present age-related differences in the levels of BDNF and TrkB isoforms and that spatial learning differentially modifies some of these parameters in the hippocampus.

  19. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    Directory of Open Access Journals (Sweden)

    Tirassa P

    2015-10-01

    Full Text Available Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR, Institute of Cell Biology and Neurobiology (IBCN, 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI, Rome, Italy; 4International Psychoanalytical Association (IPA, London, UKAbstract: The light information pathways and their relationship with the body rhythms have generated a new insight into the neurobiology and the neurobehavioral sciences, as well as into the clinical approaches to human diseases associated with disruption of circadian cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely been used in psychiatric patients characterized by mood-related disorders, but the timing and dosage use of the various treatments, although based on international guidelines, are mainly dependent on the psychiatric experiences. Further, many efforts have been made to identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and brain-derived neurotrophic factor show anatomical and functional link with the circadian system and mediate some of light-induced effects in brain. In addition, in humans, both nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, which correlate with the morningness–eveningness dimensions, and are influenced by light, suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The evidences of the relationship between the diverse mood-related disorders

  20. Executive function performance and change in aging is predicted by apolipoprotein E, intensified by catechol-O-methyltransferase and brain-derived neurotrophic factor, and moderated by age and lifestyle.

    Science.gov (United States)

    Sapkota, Shraddha; Bäckman, Lars; Dixon, Roger A

    2017-01-03

    Recent studies have reported several genetic, health, and aging interaction effects in predicting cognitive performance and change. We used an accelerated longitudinal design to examine interactions among genetic, lifestyle, and aging for executive function (EF) in non-demented older adults (n = 634; age range = 53-95 years). The polymorphisms were apolipoprotein E (APOE), catechol-O-methyltransferase (COMT), and brain-derived neurotrophic factor (BDNF). We tested (1) independent and additive effects of APOE, COMT, and BDNF and (2) APOE effect modification for COMT + BDNF, on EF performance and 9-year change as separated by age and lifestyle activities. First, APOE ε4+ carriers had poorer EF performance and steeper 9-year decline. Second, APOE ε4+ carriers with (1) BDNF Met/Met genotype and (2) increasing allelic risk in the COMT + BDNF risk panel had poorer EF performance; these effects were moderated by lifestyle activities (composite of everyday social, physical, and cognitive activities). Examining APOE effect modification for COMT + BDNF risk panel effects with other moderating factors may help identify complex neurobiological and genetic underpinnings of polygenic phenotypes such as EF in aging.

  1. Neuronal Classification of Atria Fibrillation

    Directory of Open Access Journals (Sweden)

    Mohamed BEN MESSAOUD

    2008-06-01

    Full Text Available Motivation. In medical field, particularly the cardiology, the diagnosis systems constitute the essential domain of research. In some applications, the traditional methods of classification present some limitations. The neuronal technique is considered as one of the promising algorithms to resolve such problem.Method. In this paper, two approaches of the Artificial Neuronal Network (ANN technique are investigated to classify the heart beats which are Multi Layer Perception (MLP and Radial Basis Function (RBF. A calculation algorithm of the RBF centers is proposed. For the Atria Fibrillation anomalies, an artificial neural network was used as a pattern classifier to distinguish three classes of the cardiac arrhythmias. The different classes consist of the normal beats (N, the Arrhythmia (AFA and Tachycardia (TFA Atria Fibrillation cases. The global and the partition classifier are performed. The arrhythmias of MIT-BIH database are analyzed. The ANN inputs are the temporal and morphological parameters deduced from the electrocardiograph.Results. The simulation results illustrate the performances of the studied versions of the neural network and give the fault detection rate of the tested data, a rate of classification reaching the 3.7%.Conclusion. This system can constitute a mesh in a chain of automated diagnosis and can be a tool for assistance for the classification of the cardiac anomalies in the services of urgencies before the arrival of a qualified personal person.

  2. Anticoagulation therapy for atrial fibrillation.

    Science.gov (United States)

    Hylek, Elaine M

    2013-03-01

    Atrial fibrillation (AF) is the most common significant cardiac rhythm disorder, and its prevalence is increasing worldwide. Atrial fibrillation confers a fivefold increased risk of stroke, and these strokes are associated with significant mortality and disability. The vitamin K antagonist, warfarin, has been the mainstay of anticoagulant therapy for patients with AF, reducing the risk of stroke by 65%. Despite its efficacy, warfarin remains underused in clinical practice because of its variable dose response, diet and medication interactions, and need for frequent monitoring. Stroke prevention in AF has entered an exciting therapeutic era with new classes of targeted anticoagulants that avoid the many pitfalls of the vitamin K antagonists. Dabigatran, an oral thrombin inhibitor, and the factor Xa inhibitors, rivaroxaban and apixaban, have demonstrated efficacy for stroke prevention and a reduced risk of intracranial hemorrhage relative to warfarin. Translating the efficacy of clinical trials into effective use of these novel agents in clinical practice will require an understanding of their pharmacokinetic profiles, dose selection, and management in select clinical situations.

  3. Stop-and-go kinetics in amyloid fibrillation

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Fonslet, Jesper; Andersen, Christian Beyschau;

    2010-01-01

    Many human diseases are associated with protein aggregation and fibrillation. We present experiments on in vitro glucagon fibrillation using total internal reflection fluorescence microscopy, providing real-time measurements of single-fibril growth. We find that amyloid fibrils grow in an intermi...

  4. Huntingtin exon 1 fibrils feature an interdigitated β-hairpin-based polyglutamine core.

    Science.gov (United States)

    Hoop, Cody L; Lin, Hsiang-Kai; Kar, Karunakar; Magyarfalvi, Gábor; Lamley, Jonathan M; Boatz, Jennifer C; Mandal, Abhishek; Lewandowski, Józef R; Wetzel, Ronald; van der Wel, Patrick C A

    2016-02-09

    Polyglutamine expansion within the exon1 of huntingtin leads to protein misfolding, aggregation, and cytotoxicity in Huntington's disease. This incurable neurodegenerative disease is the most prevalent member of a family of CAG repeat expansion disorders. Although mature exon1 fibrils are viable candidates for the toxic species, their molecular structure and how they form have remained poorly understood. Using advanced magic angle spinning solid-state NMR, we directly probe the structure of the rigid core that is at the heart of huntingtin exon1 fibrils and other polyglutamine aggregates, via measurements of long-range intramolecular and intermolecular contacts, backbone and side-chain torsion angles, relaxation measurements, and calculations of chemical shifts. These experiments reveal the presence of β-hairpin-containing β-sheets that are connected through interdigitating extended side chains. Despite dramatic differences in aggregation behavior, huntingtin exon1 fibrils and other polyglutamine-based aggregates contain identical β-strand-based cores. Prior structural models, derived from X-ray fiber diffraction and computational analyses, are shown to be inconsistent with the solid-state NMR results. Internally, the polyglutamine amyloid fibrils are coassembled from differently structured monomers, which we describe as a type of "intrinsic" polymorphism. A stochastic polyglutamine-specific aggregation mechanism is introduced to explain this phenomenon. We show that the aggregation of mutant huntingtin exon1 proceeds via an intramolecular collapse of the expanded polyglutamine domain and discuss the implications of this observation for our understanding of its misfolding and aggregation mechanisms.

  5. Quartz Crystal Microbalance Studies of Multilayer Glucagon Fibrillation at the Solid-Liquid Interface

    Science.gov (United States)

    Hovgaard, Mads Bruun; Dong, Mingdong; Otzen, Daniel Erik; Besenbacher, Flemming

    2007-01-01

    We have used a quartz crystal microbalance with dissipation (QCM-D) to monitor the changes in layer thickness and viscoelastic properties accompanying multilayer amyloid deposition in situ for the first time. By means of atomic force microscope imaging, an unequivocal correlation is established between the interfacial nucleation and growth of glucagon fibrils and the QCM-D response. The combination of the two techniques allows us to study the temporal evolution of the interfacial fibrillation process. We have modeled the QCM-D data using an extension to the Kelvin-Voigt viscoelastic model. Three phases were observed in the fibrillation process: 1), a rigid multilayer of glucagon monomers forms and slowly rearranges; 2), this multilayer subsequently evolves into a dramatically more viscoelastic layer, containing a polymorphic network of micrometer-long fibrils growing from multiple nucleation sites; and 3), the fibrillar formation effectively stops as a result of the depletion of bulk-phase monomers, although the process can be continued without a lag phase by subsequent addition of fresh monomers. The robustness of the QCM-D technique, consolidated by complementary atomic force microscope studies, should make it possible to combine different components thought to be involved in the plaque formation process and thus build up realistic models of amyloid plaque formation in vitro. PMID:17513349

  6. Quartz crystal microbalance studies of multilayer glucagon fibrillation at the solid-liquid interface.

    Science.gov (United States)

    Hovgaard, Mads Bruun; Dong, Mingdong; Otzen, Daniel Erik; Besenbacher, Flemming

    2007-09-15

    We have used a quartz crystal microbalance with dissipation (QCM-D) to monitor the changes in layer thickness and viscoelastic properties accompanying multilayer amyloid deposition in situ for the first time. By means of atomic force microscope imaging, an unequivocal correlation is established between the interfacial nucleation and growth of glucagon fibrils and the QCM-D response. The combination of the two techniques allows us to study the temporal evolution of the interfacial fibrillation process. We have modeled the QCM-D data using an extension to the Kelvin-Voigt viscoelastic model. Three phases were observed in the fibrillation process: 1), a rigid multilayer of glucagon monomers forms and slowly rearranges; 2), this multilayer subsequently evolves into a dramatically more viscoelastic layer, containing a polymorphic network of micrometer-long fibrils growing from multiple nucleation sites; and 3), the fibrillar formation effectively stops as a result of the depletion of bulk-phase monomers, although the process can be continued without a lag phase by subsequent addition of fresh monomers. The robustness of the QCM-D technique, consolidated by complementary atomic force microscope studies, should make it possible to combine different components thought to be involved in the plaque formation process and thus build up realistic models of amyloid plaque formation in vitro.

  7. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier

    Institute of Scientific and Technical Information of China (English)

    Ying Xing; Chun-yan Wen; Song-tao Li; Zong-xin Xia

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in the repair of central nervous system injury, but cannot directly tra-verse the blood-brain barrier. Liposomes are a new type of non-viral vector, able to carry macromolecules across the blood-brain barrier and into the brain. Here, we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of lipo-somes conjugated to transferrin (Tf) and polyethylene glycol (PEG), and carrying BDNF modiifed with cytomegalovirus promoter (pCMV) or glial ifbrillary acidic protein promoter (pGFAP) (Tf-pCMV-BDNF-PEG and Tf-pGFAP-BDNF-PEG, respectively). Both liposomes were able to traverse the blood-brain barrier, and BDNF was mainly expressed in the cerebral cortex. BDNF expression in the cerebral cortex was higher in the Tf-pGFAP-BDNF-PEG group than in the Tf-pCMV-BDNF-PEG group. This study demonstrates the successful construction of a non-virus targeted liposome, Tf-pGFAP-BDNF-PEG, which crosses the blood-brain barrier and is distributed in the cerebral cortex. Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.

  8. Effect of brain-derived neurotrophic factor on sperm function, oxidative stress and membrane integrity in human.

    Science.gov (United States)

    Najafi, A; Amidi, F; Sedighi Gilani, M A; Moawad, A R; Asadi, E; Khanlarkhni, N; Fallah, P; Rezaiian, Z; Sobhani, A

    2017-03-01

    Oxidative stress has negative impacts on the clinical outcomes of assisted reproduction techniques. The brain-derived neurotrophic factor (BDNF) promotes the viability of nerve cells and is known to decrease oxidative stress and apoptosis in different cells. The aim of this study was to evaluate the effect of BDNF treatment on human sperm functions that are known to be essential for fertilisation. Our findings showed that treatment of human spermatozoa with 0.133 nM BDNF significantly increased the percentages of both total (P = 0.001) and progressive (P sperm cells compared to those observed in the nontreated (control) group. We also showed that the mean fluorescence intensity of DCFH-DA, as an indicator of intracellular reactive oxygen species, was significantly lower (P sperm cells (P sperm cells compared to the control (P = 0.001). In conclusion, BDNF has protective effects against oxidative stress in spermatozoa and could improve sperm functions that are essential for sperm-egg fusion and subsequent fertilisation.

  9. Brain-derived mast cells could mediate histamine-induced inhibition of food intake in neonatal chicks.

    Science.gov (United States)

    Kawakami, S; Bungo, T; Ohgushi, A; Ando, R; Shimojo, M; Masuda, Y; Denbow, D M; Furuse, M

    2000-02-28

    In the present study, the effect of intracerebroventricular (i.c.v.) administration of histamine on food intake of neonatal chicks was examined over 2 h. Histamine (100, 200 or 400 nmol, respectively) was injected in the lateral ventricle of 2-day-old chicks, and cumulative food intakes were measured. i.c.v. injection of histamine significantly inhibited food intake in a dose-dependent manner. In addition, compound 48/80, which causes degranulation of mast cells and release of histamine, or thioperamide, which is an antagonist of the histamine H3 autoreceptor and increases histamine release from histaminergic nerve terminals, was injected i.c.v. to clarify whether mast cell- or neuron-derived histamine in the central nervous system of chicks is essential to the feeding inhibition. Central administration of compound 48/80 inhibited food intake with a dose-dependent manner, but thioperamide had no effect on feeding. An inhibitor of mast cell degranulation, sodium cromoglycate, somewhat attenuated food intake inhibited by compound 48/80. These results suggest that brain-derived mast cells could be a major source of histamine in the inhibition of food intake of neonatal chicks.

  10. High-Mobility Group Box-1 Induces Decreased Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in the Diabetic Retina

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu El-Asrar

    2013-01-01

    Full Text Available To test the hypothesis that brain-derived neurotrophic factor-(BDNF- mediated neuroprotection is reduced by high-mobility group box-1 (HMGB1 in diabetic retina, paired vitreous and serum samples from 46 proliferative diabetic retinopathy and 34 nondiabetic patients were assayed for BDNF, HMGB1, soluble receptor for advanced glycation end products (sRAGE, soluble intercellular adhesion molecule-1 (sICAM-1, monocyte chemoattractant protein-1 (MCP-1, and TBARS. We also examined retinas of diabetic and HMGB1 intravitreally injected rats. The effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced changes in retinal BDNF expressions was studied. Western blot, ELISA, and TBARS assays were used. BDNF was not detected in vitreous samples. BDNF levels were significantly lower in serum samples from diabetic patients compared with nondiabetics, whereas HMGB1, sRAGE, sICAM-1, and TBARS levels were significantly higher in diabetic serum samples. MCP-1 levels did not differ significantly. There was significant inverse correlation between serum levels of BDNF and HMGB1. Diabetes and intravitreal administration of HMGB1 induced significant upregulation of the expression of HMGB1, TBARS, and cleaved caspase-3, whereas the expression of BDNF and synaptophysin was significantly downregulated in rat retinas. Glycyrrhizin significantly attenuated diabetes-induced downregulation of BDNF. Our results suggest that HMGB1-induced downregulation of BDNF might be involved in pathogenesis of diabetic retinal neurodegeneration.

  11. Effects of brain-derived neurotrophic factor on synapsin expression in rat spinal cord anterior horn neurons cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhifei Wang; Daguang Liao; Changqi Li

    2010-01-01

    Brain-derived neurotrophic factor(BDNF)promotes synaptic formation and functional maturation by upregulating synapsin expression in cortical and hippocampal neurons.However,it remains controversial whether BDNF affects synapsin expression in spinal cord anterior horn neurons.Wistar rat spinal cord anterior hom neurons were cultured in serum-supplemented medium containing BDNF,BDNF antibody,and Hank's solution for 3 days,and then synapsin I and synaptophysin protein and mRNA expression was detected.Under serum-supplemented conditions,the number of surviving neurons in the spinal cord anterior horn was similar among BDNF,anti-BDNF,and control groups(P > 0.05).Synapsin I and synaptophysin protein and mRNA expressions were increased in BDNF-treated neurons,but decreased in BDNF antibody-treated neurons(P< 0.01).These results indicated that BDNF significantly promotes synapsin I and synaptophysin expression in in vitro-cultured rat spinal cord anterior horn neurons.

  12. The role of brain-derived neurotrophic factor (BDNF in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition

    Directory of Open Access Journals (Sweden)

    Tadahiro eNumakawa

    2014-09-01

    Full Text Available Increasing evidence demonstrates a connection between growth factor function (including brain-derived neurotrophic factor, BDNF, glucocorticoid levels (one of the steroid hormones, and the pathophysiology of depressive disorders. Because both BDNF and glucocorticoids regulate synaptic function in the central nervous system, their functional interaction is of major concern. Interestingly, alterations in levels of estrogen, another steroid hormone, may play a role in depressive-like behavior in postpartum females with fluctuations of BDNF-related molecules in the brain. BDNF and cytokines, which are protein regulators of inflammation, stimulate multiple intracellular signaling cascades involved in neuropsychiatric illness. Pro-inflammatory cytokines may increase vulnerability to depressive symptoms, such as the increased risk observed in patients with cancer and/or autoimmune diseases. In this review, we discuss the possible relationship between inflammation and depression, in addition to the crosstalk among cytokines, BDNF and steroids. Further, since nutritional status has been shown to affect critical pathways involved in depression through both BDNF function and the monoamine system, we also review current evidence surrounding diet and supplementation (e.g., flavonoids on BDNF-mediated brain functions.

  13. Plasma brain-derived neurotrophic factor levels, learning capacity and cognition in patients with first episode psychosis

    Directory of Open Access Journals (Sweden)

    de Azua Sonia Ruiz

    2013-01-01

    Full Text Available Abstract Background Cognitive impairments are seen in first psychotic episode (FEP patients. The neurobiological underpinnings that might underlie these changes remain unknown. The aim of this study is to investigate whether Brain Derived Neurotrophic Factor (BDNF levels are associated with cognitive impairment in FEP patients compared with healthy controls. Methods 45 FEP patients and 45 healthy controls matched by age, gender and educational level were selected from the Basque Country area of Spain. Plasma BDNF levels were assessed in healthy controls and in patients. A battery of cognitive tests was applied to both groups, with the patients being assessed at 6 months after the acute episode and only in those with a clinical response to treatment. Results Plasma BDNF levels were altered in patients compared with the control group. In FEP patients, we observed a positive association between BDNF levels at six months and five cognitive domains (learning ability, immediate and delayed memory, abstract thinking and processing speed which persisted after controlling for medications prescribed, drug use, intelligence quotient (IQ and negative symptoms. In the healthy control group, BDNF levels were not associated with cognitive test scores. Conclusion Our results suggest that BDNF is associated with the cognitive impairment seen after a FEP. Further investigations of the role of this neurotrophin in the symptoms associated with psychosis onset are warranted.

  14. Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats.

    Science.gov (United States)

    Larsson, E; Nanobashvili, A; Kokaia, Z; Lindvall, O

    1999-11-01

    The levels of brain-derived neurotrophic factor (BDNF) vary between different forebrain areas and show region-specific changes after cerebral ischemia. The present study explores the possibility that the levels of endogenous BDNF determine the susceptibility to ischemic neuronal death. To block BDNF activity the authors used the TrkB-Fc fusion protein, which was infused intraventricularly in rats during 1 week before and 1 week after 5 or 30 minutes of global forebrain ischemia. Ischemic damage was quantified in the striatum and hippocampal formation after 1 week of reperfusion using immunocytochemistry and stereological procedures. After the 30-minute insult, there was a significantly lower number of surviving CA4 pyramidal neurons, neuropeptide Y-immunoreactive dentate hilar neurons, and choline acetyltransferase- and TrkA-positive, cholinergic striatal interneurons in the TrkB-Fc-infused rats as compared to controls. In contrast, the TrkB-Fc treatment did not influence survival of CA1 or CA3 pyramidal neurons or striatal projection neurons. Also, after the mild ischemic insult (5 minutes), neuronal death in the CA1 region was similar in the TrkB-Fc-treated and control groups. These results indicate that endogenous BDNF can protect certain neuronal populations against ischemic damage. It is conceivable, though, that efficient neuroprotection after brain insults is dependent not only on this factor but on the concerted action of a large number of neurotrophic molecules.

  15. Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke.

    Science.gov (United States)

    Fouda, Abdelrahman Y; Alhusban, Ahmed; Ishrat, Tauheed; Pillai, Bindu; Eldahshan, Wael; Waller, Jennifer L; Ergul, Adviye; Fagan, Susan C

    2017-01-01

    Angiotensin type 1 receptor blockers (ARBs) have been shown to be neuroprotective and neurorestorative in experimental stroke. The mechanisms proposed include anti-inflammatory, antiapoptotic effects, as well as stimulation of endogenous trophic factors leading to angiogenesis and neuroplasticity. We aimed to investigate the involvement of the neurotrophin, brain-derived neurotrophic factor (BDNF), in ARB-mediated functional recovery after stroke. To achieve this aim, Wistar rats received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles or nontargeting control (NTC) vector, to knock down BDNF in both hemispheres. After 14 days, rats were subjected to 90-min middle cerebral artery occlusion (MCAO) and received the ARB, candesartan, 1 mg/kg, or saline IV at reperfusion (one dose), then followed for another 14 days using a battery of behavioral tests. BDNF protein expression was successfully reduced by about 70 % in both hemispheres at 14 days after bilateral shRNA lentiviral particle injection. The NTC group that received candesartan showed better functional outcome as well as increased vascular density and synaptogenesis as compared to saline treatment. BDNF knockdown abrogated the beneficial effects of candesartan on neurobehavioral outcome, vascular density, and synaptogenesis. In conclusion, BDNF is directly involved in candesartan-mediated functional recovery, angiogenesis, and synaptogenesis.

  16. Mesenchymal Stem Cells Expressing Brain-Derived Neurotrophic Factor Enhance Endogenous Neurogenesis in an Ischemic Stroke Model

    Directory of Open Access Journals (Sweden)

    Chang Hyun Jeong

    2014-01-01

    Full Text Available Numerous studies have reported that mesenchymal stem cells (MSCs can ameliorate neurological deficits in ischemic stroke models. Among the various hypotheses that have been suggested to explain the therapeutic mechanism underlying these observations, neurogenesis is thought to be critical. To enhance the therapeutic benefits of human bone marrow-derived MSCs (hBM-MSCs, we efficiently modified hBM-MSCs by introduction of the brain-derived neurotrophic factor (BDNF gene via adenoviral transduction mediated by cell-permeable peptides and investigated whether BDNF-modified hBM-MSCs (MSCs-BDNF contributed to functional recovery and endogenous neurogenesis in a rat model of middle cerebral artery occlusion (MCAO. Transplantation of MSCs induced the proliferation of 5-bromo-2′-deoxyuridine (BrdU- positive cells in the subventricular zone. Transplantation of MSCs-BDNF enhanced the proliferation of endogenous neural stem cells more significantly, while suppressing cell death. Newborn cells differentiated into doublecortin (DCX- positive neuroblasts and Neuronal Nuclei (NeuN- positive mature neurons in the subventricular zone and ischemic boundary at higher rates in animals with MSCs-BDNF compared with treatment using solely phosphate buffered saline (PBS or MSCs. Triphenyltetrazolium chloride staining and behavioral analysis revealed greater functional recovery in animals with MSCs-BDNF compared with the other groups. MSCs-BDNF exhibited effective therapeutic potential by protecting cell from apoptotic death and enhancing endogenous neurogenesis.

  17. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health.

    Science.gov (United States)

    Rothman, Sarah M; Griffioen, Kathleen J; Wan, Ruiqian; Mattson, Mark P

    2012-08-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders.

  18. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model.

    Science.gov (United States)

    Jeong, Chang Hyun; Kim, Seong Muk; Lim, Jung Yeon; Ryu, Chung Heon; Jun, Jin Ae; Jeun, Sin-Soo

    2014-01-01

    Numerous studies have reported that mesenchymal stem cells (MSCs) can ameliorate neurological deficits in ischemic stroke models. Among the various hypotheses that have been suggested to explain the therapeutic mechanism underlying these observations, neurogenesis is thought to be critical. To enhance the therapeutic benefits of human bone marrow-derived MSCs (hBM-MSCs), we efficiently modified hBM-MSCs by introduction of the brain-derived neurotrophic factor (BDNF) gene via adenoviral transduction mediated by cell-permeable peptides and investigated whether BDNF-modified hBM-MSCs (MSCs-BDNF) contributed to functional recovery and endogenous neurogenesis in a rat model of middle cerebral artery occlusion (MCAO). Transplantation of MSCs induced the proliferation of 5-bromo-2'-deoxyuridine (BrdU-) positive cells in the subventricular zone. Transplantation of MSCs-BDNF enhanced the proliferation of endogenous neural stem cells more significantly, while suppressing cell death. Newborn cells differentiated into doublecortin (DCX-) positive neuroblasts and Neuronal Nuclei (NeuN-) positive mature neurons in the subventricular zone and ischemic boundary at higher rates in animals with MSCs-BDNF compared with treatment using solely phosphate buffered saline (PBS) or MSCs. Triphenyltetrazolium chloride staining and behavioral analysis revealed greater functional recovery in animals with MSCs-BDNF compared with the other groups. MSCs-BDNF exhibited effective therapeutic potential by protecting cell from apoptotic death and enhancing endogenous neurogenesis.

  19. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF gene as a potent diagnostic biomarker in major depression.

    Directory of Open Access Journals (Sweden)

    Manabu Fuchikami

    Full Text Available Major depression, because of its recurring and life-threatening nature, is one of the top 10 diseases for global disease burden. Major depression is still diagnosed on the basis of clinical symptoms in patients. The search for specific biological markers is of great importance to advance the method of diagnosis for depression. We examined the methylation profile of 2 CpG islands (I and IV at the promoters of the brain-derived neurotrophic factor (BDNF gene, which is well known to be involved in the pathophysiology of depression. We analyzed genomic DNA from peripheral blood of 20 Japanese patients with major depression and 18 healthy controls to identify an appropriate epigenetic biomarker to aid in the establishment of an objective system for the diagnosis of depression. Methylation rates at each CpG unit was measured using a MassArray® system (SEQUENOM, and 2-dimensional hierarchical clustering analyses were undertaken to determine the validity of these methylation profiles as a diagnostic biomarker. Analyses of the dendrogram from methylation profiles of CpG I, but not IV, demonstrated that classification of healthy controls and patients at the first branch completely matched the clinical diagnosis. Despite the small number of subjects, our results indicate that classification based on the DNA methylation profiles of CpG I of the BDNF gene may be a valuable diagnostic biomarker for major depression.

  20. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Ying Xing

    2016-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF plays an important role in the repair of central nervous system injury, but cannot directly traverse the blood-brain barrier. Liposomes are a new type of non-viral vector, able to carry macromolecules across the blood-brain barrier and into the brain. Here, we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin (Tf and polyethylene glycol (PEG, and carrying BDNF modified with cytomegalovirus promoter (pCMV or glial fibrillary acidic protein promoter (pGFAP (Tf-pCMV-BDNF-PEG and Tf-pGFAP-BDNF-PEG, respectively. Both liposomes were able to traverse the blood-brain barrier, and BDNF was mainly expressed in the cerebral cortex. BDNF expression in the cerebral cortex was higher in the Tf-pGFAP-BDNF-PEG group than in the Tf-pCMV-BDNF-PEG group. This study demonstrates the successful construction of a non-virus targeted liposome, Tf-pGFAP-BDNF-PEG, which crosses the blood-brain barrier and is distributed in the cerebral cortex. Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.

  1. Pro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors.

    Science.gov (United States)

    Riffault, Baptiste; Medina, Igor; Dumon, Camille; Thalman, Carine; Ferrand, Nadine; Friedel, Perrine; Gaiarsa, Jean-Luc; Porcher, Christophe

    2014-10-01

    GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.

  2. Estradiol increases expression of the brain-derived neurotrophic factor after acute administration of ethanol in the neonatal rat cerebellum.

    Science.gov (United States)

    Firozan, Bita; Goudarzi, Iran; Elahdadi Salmani, Mahmoud; Lashkarbolouki, Taghi; Rezaei, Arezou; Abrari, Kataneh

    2014-06-05

    Recently it has been shown that estradiol prevents the toxicity of ethanol in developing cerebellum. The neuroprotective effect of estradiol is not due to a single phenomenon but rather encompasses a spectrum of independent proccesses. According to the specific timing of Purkinje cell vulnerability to ethanol and several protective mechanisms of estradiol, we considered the neurotrophin system, as a regulator of differentiation, maturation and survival of neurons during CNS development. Interactions between estrogen and Brain derived neurotrophic factor (BDNF, an essential factor in neuronal survival) lead us to investigate involvement of BDNF pathway in neuroprotective effects of estrogen against ethanol toxicity. In this study, 17β-estradiol (300-900μg/kg) was injected subcutaneously in postnatal day (PD) 4, 30min prior to intraperitoneal injection of ethanol (6g/kg) in rat pups. Eight hours after injection of ethanol, BDNF mRNA and protein levels were assayed. Behavioral studies, including rotarod and locomotor activity tests were performed in PD 21-23 and histological study was performed after completion of behavioral tests in PD 23. Our results indicated that estradiol increased BDNF mRNA and protein levels in the presence of ethanol. We also observed that pretreatment with estradiol significantly attenuated ethanol-induced motoric impairment. Histological analysis also demonstrated that estradiol prevented Purkinje cell loss following ethanol treatment. These results provide evidence on the possible mechanisms of estradiol neuroprotection against ethanol toxicity.

  3. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth.

    Science.gov (United States)

    Rauskolb, Stefanie; Zagrebelsky, Marta; Dreznjak, Anita; Deogracias, Rubén; Matsumoto, Tomoya; Wiese, Stefan; Erne, Beat; Sendtner, Michael; Schaeren-Wiemers, Nicole; Korte, Martin; Barde, Yves-Alain

    2010-02-03

    Although brain-derived neurotrophic factor (BDNF) is linked with an increasing number of conditions causing brain dysfunction, its role in the postnatal CNS has remained difficult to assess. This is because the bdnf-null mutation causes the death of the animals before BDNF levels have reached adult levels. In addition, the anterograde axonal transport of BDNF complicates the interpretation of area-specific gene deletion. The present study describes the generation of a new conditional mouse mutant essentially lacking BDNF throughout the CNS. It shows that BDNF is not essential for prolonged postnatal survival, but that the behavior of such mutant animals is markedly altered. It also reveals that BDNF is not a major survival factor for most CNS neurons and for myelination of their axons. However, it is required for the postnatal growth of the striatum, and single-cell analyses revealed a marked decreased in dendritic complexity and spine density. In contrast, BDNF is dispensable for the growth of the hippocampus and only minimal changes were observed in the dendrites of CA1 pyramidal neurons in mutant animals. Spine density remained unchanged, whereas the proportion of the mushroom-type spine was moderately decreased. In line with these in vivo observations, we found that BDNF markedly promotes the growth of cultured striatal neurons and of their dendrites, but not of those of hippocampal neurons, suggesting that the differential responsiveness to BDNF is part of a neuron-intrinsic program.

  4. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    Science.gov (United States)

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  5. Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia.

    Science.gov (United States)

    Song, Juhyun; Cheon, So Yeong; Jung, Wonsug; Lee, Won Taek; Lee, Jong Eun

    2014-09-02

    Microglia are the resident macrophages of the central nervous system (CNS) and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF) in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury.

  6. Brain-derived neurotrophic factor (BDNF) gene delivery into the CNS using bone marrow cells as vehicles in mice.

    Science.gov (United States)

    Makar, T K; Trisler, D; Eglitis, M A; Mouradian, M M; Dhib-Jalbut, S

    2004-02-19

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is protective in animal models of neurodegenerative diseases. However, BDNF has a short half-life and its efficacy in the CNS when delivered peripherally is limited due to the blood-brain barrier. In the present study, bone marrow cells were used as vehicles to deliver the BDNF gene into the CNS. Marrow cells obtained from 6 to 8 week-old SJL/J mice were transduced with BDNF expressing pro-virus. RT-PCR analysis revealed that BDNF mRNA was expressed in transduced but not in non-transduced marrow cells. Additionally, virus transduced marrow cells expressed the BDNF protein (296+/-1.2 unit/ml). BDNF-transduced marrow cells were then transplanted into irradiated mice through the tail vein. Three months post-transplantation, significant increases in BDNF as well as glutamic acid decarboxylase (GAD(67)) mRNA were detected in the brains of BDNF transplanted mice compared to untransplanted animals, indicating biological activity of the BDNF transgene. Thus, bone marrow cells can be used as vehicles to deliver the BDNF gene into the brain with implications for the treatment of neurological diseases.

  7. A lack of correlation between brain-derived neurotrophic factor serum level and verbal memory performance in healthy Polish population

    Directory of Open Access Journals (Sweden)

    Monika eWilkosc

    2016-05-01

    Full Text Available Brain derived neurotrophic factor is considered to be connected with memory and learning through the processes of long term synaptic potentiation and synaptic plasticity. The aim of the study was to examine the relationship between precursor BDNF (proBNDF and mature BDNF (mBDNF serum levels and performance on Rey Auditory-Verbal Learning Test (RAVLT in 150 healthy volunteers. In addition, we have verified the relationships between serum concentration of both forms of BDNF and RAVLT with sociodemographic and lifestyle factors. We found no strong evidence for the correlation of proBDNF and mBDNF serum levels with performance on RAVLT in healthy Polish population in early and middle adulthood. We observed the mBDNF serum concentration to be higher in women compared with men. Moreover, we revealed higher mBDNF level to be connected with lower Body Mass Index (BMI. In turn, the results of RAVLT correlated with sociodemographic and lifestyle factors, such as: age, education, gender, BMI and smoking.

  8. Computerized cognitive training and brain derived neurotrophic factor during bed rest: mechanisms to protect individual during acute stress

    Science.gov (United States)

    Passaro, Angelina; Soavi, Cecilia; Sanz, Juana M.; Morieri, Mario L.; Dalla Nora, Edoardo; Kavcic, Voyko; Narici, Marco V.; Reggiani, Carlo; Biolo, Gianni; Zuliani, Giovanni; Lazzer, Stefano; Pišot, Rado

    2017-01-01

    Acute stress, as bed rest, was shown to increase plasma level of the neurotrophin brain-derived neurotrophic factor (BDNF) in older, but not in young adults. This increase might represent a protective mechanism towards acute insults in aging subjects. Since computerized cognitive training (CCT) is known to protect brain, herein we evaluated the effect of CCT during bed rest on BDNF, muscle mass, neuromuscular function and metabolic parameters. The subjects that underwent CCT did not show an increase of BDNF after bed rest, and showed an anti-insular modification pattern in metabolism. Neuromuscular function parameters, already shown to beneficiate from CCT, negatively correlated with BDNF in research participants undergoing CCT, while positively correlated in the control group. In conclusion, BDNF increase can be interpreted as a standardized protective mechanism taking place whenever an insult occurs; it gives low, but consistent preservation of neuromuscular function. CCT, acting as an external protective mechanism, seems to modify this standardized response, avoiding BDNF increase or possibly modifying its time course. Our results suggest the possibility of differential neuroprotective mechanisms among ill and healthy individuals, and the importance of timing in determining the effects of protective mechanisms. PMID:28161695

  9. Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis.

    Science.gov (United States)

    Taliaz, D; Stall, N; Dar, D E; Zangen, A

    2010-01-01

    Depression has been associated with reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. In addition, animal studies suggest an association between reduced hippocampal neurogenesis and depressive-like behavior. These associations were predominantly established based on responses to antidepressant drugs and alterations in BDNF levels and neurogenesis in depressive patients or animal models for depressive behavior. Nevertheless, there is no direct evidence that the actual reduction of the BDNF protein in specific brain sites can induce depressive-like behaviors or affect neurogenesis in vivo. Using BDNF knockdown by RNA interference and lentiviral vectors injected into specific subregions of the hippocampus we show that a reduction in BDNF expression in the dentate gyrus, but not the CA3, reduces neurogenesis and affects behaviors associated with depression. Moreover, we show that BDNF has a critical function in neuronal differentiation, but not proliferation in vivo. Finally, we found that a specific BDNF knockdown in the ventral subiculum induces anhedonic-like behavior. These findings provide substantial support for the neurotrophic hypothesis of depression and specify anatomical and neurochemical targets for potential antidepressant interventions. Moreover, the specific effect of BDNF reduction on neuronal differentiation has broader implications for the study of neurodevelopment and neurodegenerative diseases.

  10. Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity

    DEFF Research Database (Denmark)

    Xapelli, S; Bernardino, L; Ferreira, R;

    2008-01-01

    -day-old C57BL/6 mice, to 8 microm AMPA, for 24 h, induced degeneration of CA1 and CA3 pyramidal cells, as measured by cellular uptake of propidium iodide (PI). A significant neuroprotection, with a reduction of PI uptake in CA1 and CA3 pyramidal cell layers, was observed after incubation with a Y(2......) receptor agonist [NPY(13-36), 300 nm]. This effect was sensitive to the presence of the selective Y(2) receptor antagonist (BIIE0246, 1 microm), but was not affected by addition of TrkB-Fc or by a neutralizing antibody against brain-derived neurotrophic factor (BDNF). Moreover, addition of a Y(1) receptor...... antagonist (BIBP3226, 1 microm) or a NPY-neutralizing antibody helped to disclose a neuroprotective role of endogenous NPY in CA1 region. Cultures exposed to 8 microm AMPA for 24 h, displayed, as measured by an enzyme-linked immunosorbent assay, a significant increase in BDNF. In such cultures...

  11. Increased adult hippocampal brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats.

    Science.gov (United States)

    Greisen, Mia H; Altar, C Anthony; Bolwig, Tom G; Whitehead, Richard; Wörtwein, Gitta

    2005-03-15

    Repeated maternal separation of rat pups during the early postnatal period may affect brain-derived neurotrophic factor (BDNF) or neurons in brain areas that are compromised by chronic stress. In the present study, a highly significant increase in hippocampal BDNF protein concentration was found in adult rats that as neonates had been subjected to 180 min of daily separation compared with handled rats separated for 15 min daily. BDNF protein was unchanged in the frontal cortex and hypothalamus/paraventricular nucleus. Expression of BDNF mRNA in the CA1, CA3, or dentate gyrus of the hippocampus or in the paraventricular hypothalamic nucleus was not affected by maternal separation. All animals displayed similar behavioral patterns in a forced-swim paradigm, which did not affect BDNF protein concentration in the hippocampus or hypothalamus. Repeated administration of bromodeoxyuridine revealed equal numbers of surviving, newly generated granule cells in the dentate gyrus of adult rats from the 15 min or 180 min groups. The age-dependent decline in neurogenesis from 3 months to 7 months of age did not differ between the groups. Insofar as BDNF can stimulate neurogenesis and repair, we propose that the elevated hippocampal protein concentration found in maternally deprived rats might be a compensatory reaction to separation during the neonatal period, maintaining adult neurogenesis at levels equal to those of the handled rats.

  12. Aging and infection reduce expression of specific brain-derived neurotrophic factor mRNAs in hippocampus.

    Science.gov (United States)

    Chapman, Timothy R; Barrientos, Ruth M; Ahrendsen, Jared T; Hoover, Jennifer M; Maier, Steven F; Patterson, Susan L

    2012-04-01

    Aging increases the likelihood of cognitive decline after negative life events such as infection or injury. We have modeled this increased vulnerability in aged (24-month-old), but otherwise unimpaired F344xBN rats. In these animals, but not in younger (3-month-old) counterparts, a single intraperitoneal injection of E. coli leads to specific deficits in long-term memory and long-lasting synaptic plasticity in hippocampal area CA1-processes strongly dependent on brain-derived neurotrophic factor (BDNF). Here we have investigated the effects of age and infection on basal and fear-conditioning-stimulated expression of Bdnf in hippocampus. We performed in situ hybridization with 6 probes recognizing: total (pan-)BDNF mRNA, the 4 predominant 5' exon-specific transcripts (I, II, IV, and VI), and BDNF mRNAs with a long 3' untranslated region (3' UTR). In CA1, aging reduced basal levels and fear-conditioning-induced expression of total BDNF mRNA, exon IV-specific transcripts, and transcripts with long 3' UTRs; effects of infection were similar and sometimes compounded the effects of aging. In CA3, aging reduced all of the transcripts to some degree; infection had no effect. Effects in dentate were minimal. Northern blot analysis confirmed an aging-associated loss of total BDNF mRNA in areas CA1 and CA3, and revealed a parallel, preferential loss of BDNF mRNA transcripts with long 3' UTRs.

  13. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus.

    Science.gov (United States)

    Katoh-Semba, Ritsuko; Asano, Tomiko; Ueda, Hiroshi; Morishita, Rika; Takeuchi, Ikuo K; Inaguma, Yutaka; Kato, Kanefusa

    2002-08-01

    The dentate gyrus of the hippocampus, generating new cells throughout life, is essential for normal recognition memory performance. Reduction of brain-derived neurotrophic factor (BDNF) in this structure impairs its functions. To elucidate the association between BDNF levels and hippocampal neurogenesis, we first conducted a search for compounds that stimulate endogenous BDNF production in hippocampal granule neurons. Among ion channel modulators tested, riluzole, a neuroprotective agent with anticonvulsant properties that is approved for treatment of amyotrophic lateral sclerosis, was highly effective as a single dose by an intraperitoneal injection, causing a rise in BDNF localized in dentate granule neurons, the hilus, and the stratum radiatum of the CA3 region. Repeated, but not single, injections resulted in prolonged elevation of hippocampal BDNF and were associated with increased numbers of newly generated cells in the granule cell layer. This appeared due to promoted proliferation rather than survival of precursor cells, many of which differentiated into neurons. Intraventricular administration of BDNF-specific antibodies blocked such riluzole effects, suggesting that BDNF increase is necessary for the promotion of precursor proliferation. Our results suggest the basis for a new strategy for treatment of memory dysfunction.

  14. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers.

    Science.gov (United States)

    Tamura, Makoto; Tamura, Naohiro; Ikeda, Takamitsu; Koyama, Ryuta; Ikegaya, Yuji; Matsuki, Norio; Yamada, Maki K

    2009-01-31

    Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF), a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  15. Resveratrol Induces the Expression of Interleukin-10 and Brain-Derived Neurotrophic Factor in BV2 Microglia under Hypoxia

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2014-09-01

    Full Text Available Microglia are the resident macrophages of the central nervous system (CNS and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB, which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury.

  16. Serum level of brain-derived neurotrophic factor in fibromyalgia syndrome correlates with depression but not anxiety.

    Science.gov (United States)

    Nugraha, Boya; Korallus, Christoph; Gutenbrunner, Christoph

    2013-02-01

    Brain-derived neurotrophic factor (BDNF) has been known to play a role in fibromyalgia syndrome (FMS) patients. Depression and anxiety are quite common additional symptoms in FMS. However the role of BDNF in these symptoms still needs to be elucidated. Although BDNF has been shown to be relevant in major depression, however studies could not show such differences between FMS patients with and without major depression. As mood-related symptom occurs frequently and differs in its intensity in FMS patients, BDNF level should be measured in subgroup regarding depression and anxiety scale. Therefore the aim of this study was to evaluate the correlation of BDNF in serum of FMS with intensity of depression and anxiety. Additionally, interleukin (IL)-6 was measured. This study showed that serum level of BDNF was age-dependent in HCs. FMS patients had higher level of serum BDNF as compared to HC. Additionally, serum level of BDNF showed correlation with depression, but not with anxiety. Serum level of BDNF increased with depression score in FMS. However, serum level of IL-6 was not correlated with both depression and anxiety scores. Taken together, BDNF is involved in the pathophysiology of FMS. Additionally, it seems to be correlated with intensity of depressive symptoms in FMS.

  17. Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Comini-Frota, E.R. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, D.H. [Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Miranda, E.C. [Ecoar Diagnostic Center, Belo Horizonte, MG (Brazil); Brum, D.G. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Kaimen-Maciel, D.R. [Unidade de Neurologia, Hospital Universitário, Universidade Estadual de Londrina, Londrina, PR (Brazil); Donadi, E.A. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Teixeira, A.L. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2011-11-23

    The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.

  18. Lack of Postprandial Peak in Brain-Derived Neurotrophic Factor in Adults with Prader-Willi Syndrome

    Science.gov (United States)

    Bueno, Marta; Esteba-Castillo, Susanna; Novell, Ramon; Giménez-Palop, Olga; Coronas, Ramon; Gabau, Elisabeth; Corripio, Raquel; Baena, Neus; Viñas-Jornet, Marina; Guitart, Míriam; Torrents-Rodas, David; Deus, Joan; Pujol, Jesús; Rigla, Mercedes

    2016-01-01

    Context Prader-Willi syndrome (PWS) is characterized by severe hyperphagia. Brain-derived neurotrophic factor (BDNF) and leptin are reciprocally involved in energy homeostasis. Objectives To analyze the role of BDNF and leptin in satiety in genetic subtypes of PWS. Design Experimental study. Setting University hospital. Subjects 90 adults: 30 PWS patients; 30 age-sex-BMI-matched obese controls; and 30 age-sex-matched lean controls. Interventions Subjects ingested a liquid meal after fasting ≥10 hours. Main Outcome Measures Leptin and BDNF levels in plasma extracted before ingestion and 30’, 60’, and 120’ after ingestion. Hunger, measured on a 100-point visual analogue scale before ingestion and 60’ and 120’ after ingestion. Results Fasting BDNF levels were lower in PWS than in controls (p = 0.05). Postprandially, PWS patients showed only a truncated early peak in BDNF, and their BDNF levels at 60' and 120' were lower compared with lean controls (puniparental disomy, the odds of being hungry decreased by 66% (OR: 0.34, 90%CI: 0.13–0.9). Postprandial leptin patterns did no differ among genetic subtypes. Conclusions Low baseline BDNF levels and lack of postprandial peak may contribute to persistent hunger after meals. Uniparental disomy is the genetic subtype of PWS least affected by these factors. PMID:27685845

  19. Furin mediates brain-derived neurotrophic factor upregulation in cultured rat astrocytes exposed to oxygen-glucose deprivation.

    Science.gov (United States)

    Chen, Yan; Zhang, Junjian; Deng, Min

    2015-01-01

    This study investigated the changes in brain-derived neurotrophic factor (BDNF) expression and the role of furin in BDNF maturation in reactive astrocytes from rats exposed to oxygen-glucose deprivation (OGD). Furin, a proprotein convertase, is upregulated and cleaves certain substrates during hypoxia in cancer cells. In addition, during hypoxia in the central nervous system, astrocytes become reactive and release BDNF to protect neurons. Maturation of BDNF in astrocytes requires furin-mediated endoproteolytic processing of the precursor protein pro-BDNF to BDNF. To expand our knowledge about the role of furin in BDNF maturation in astrocytes, these cells were exposed to OGD, and expression of furin and BDNF was detected by Western blot analysis. Changes in BDNF expression were observed when furin activity was inhibited by furin prosegment. We found that protein expression of BDNF and furin was upregulated, and this upregulation correlated with OGD stimulation. Furin inhibition reduced BDNF maturation and secretion. These results indicate that furin mediates the upregulation of BDNF in reactive astrocytes exposed to OGD and that furin may impact the biological effect of reactive astrocytes.

  20. Brain-derived neurotrophic factor superinduction parallels anti-epileptic--neuroprotective treatment in the pilocarpine epilepsy model.

    Science.gov (United States)

    Biagini, G; Avoli, M; Marcinkiewicz, J; Marcinkiewicz, M

    2001-03-01

    Antiepileptic drugs provide neuroprotection in several animal models of brain damage, including those induced by status epilepticus (SE). The mechanisms involved in this action are unknown, but neurotrophic factors such as brain-derived neurotrophic factor (BDNF) may play a role. In this study we investigated the changes in BDNF levels in rats in which SE had been induced by pilocarpine injection (400 mg/kg i.p.) and continued for several hours (unprotected group). In other animals (protected groups), SE was suppressed after 30 min by intraperitoneal injection of either diazepam (10 mg/kg) + pentobarbital (30 mg/kg) or paraldehyde (0.3 mg/kg). In diazepam + pentobarbital-treated rats the hippocampal damage caused by SE was significantly lower (p rats treated with diazepam + pentobarbital. In contrast, a decrease of BDNF immunoreactivity occurred in the unprotected group. In conclusion, these results show that neuroprotection induced by anti-epileptic drugs in pilocarpine-treated rats is accompanied by strong potentiation of BDNF synthesis in brain regions involved in SE.

  1. Effectiveness of the Viet Nam produced, mouse brain-derived, inactivated Japanese encephalitis vaccine in Northern Viet Nam.

    Directory of Open Access Journals (Sweden)

    Florian Marks

    Full Text Available BACKGROUND: Japanese encephalitis (JE is a flaviviral disease of public health concern in many parts of Asia. JE often occurs in large epidemics, has a high case-fatality ratio and, among survivors, frequently causes persistent neurological sequelae and mental disabilities. In 1997, the Vietnamese government initiated immunization campaigns targeting all children aged 1-5 years. Three doses of a locally-produced, mouse brain-derived, inactivated JE vaccine (MBV were given. This study aims at evaluating the effectiveness of Viet Nam's MBV. METHODOLOGY: A matched case-control study was conducted in Northern Viet Nam. Cases were identified through an ongoing hospital-based surveillance. Each case was matched to four healthy controls for age, gender, and neighborhood. The vaccination history was ascertained through JE immunization logbooks maintained at local health centers. PRINCIPAL FINDINGS: Thirty cases and 120 controls were enrolled. The effectiveness of the JE vaccine was 92.9% [95% CI: 66.6-98.5]. Confounding effects of other risk variables were not observed. CONCLUSIONS: Our results strongly suggest that the locally-produced JE-MBV given to 1-5 years old Vietnamese children was efficacious.

  2. Exercise-Induced Neuroprotection in the Spastic Han Wistar Rat: The Possible Role of Brain-Derived Neurotrophic Factor

    Directory of Open Access Journals (Sweden)

    Brooke H. Van Kummer

    2015-01-01

    Full Text Available Moderate aerobic exercise has been shown to enhance motor skills and protect the nervous system from neurodegenerative diseases, like ataxia. Our lab uses the spastic Han Wistar rat as a model of ataxia. Mutant rats develop forelimb tremor and hind limb rigidity and have a decreased lifespan. Our lab has shown that exercise reduced Purkinje cell degeneration and delayed motor dysfunction, significantly increasing lifespan. Our study investigated how moderate exercise may mediate neuroprotection by analyzing brain-derived neurotrophic factor (BDNF and its receptor TrkB. To link BDNF to exercise-induced neuroprotection, mutant and normal rats were infused with the TrkB antagonist K252a or vehicle into the third ventricle. During infusion, rats were subjected to moderate exercise regimens on a treadmill. Exercised mutants receiving K252a exhibited a 21.4% loss in Purkinje cells compared to their controls. Cerebellar TrkB expression was evaluated using non-drug-treated mutants subjected to various treadmill running regimens. Running animals expressed three times more TrkB than sedentary animals. BDNF was quantified via Sandwich ELISA, and cerebellar expression was found to be 26.6% greater in mutant rats on 7-day treadmill exercise regimen compared to 30 days of treadmill exercise. These results suggest that BDNF is involved in mediating exercise-induced neuroprotection.

  3. Effects of Music Aerobic Exercise on Depression and Brain-Derived Neurotrophic Factor Levels in Community Dwelling Women

    Directory of Open Access Journals (Sweden)

    Shu-Hui Yeh

    2015-01-01

    Full Text Available A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF levels between community women with and without music aerobic exercise (MAE for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016, decreased depression symptoms in crying (p = 0.03, appetite (p = 0.006, and fatigue (p = 0.011. The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042. The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels.

  4. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    Science.gov (United States)

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-06

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise.

  5. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids.

    Science.gov (United States)

    Das, Undurti N

    2013-10-01

    Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process.

  6. The acute response of plasma brain-derived neurotrophic factor as a result of exercise in major depressive disorder.

    Science.gov (United States)

    Gustafsson, Gunnar; Lira, Claudia Mallea; Johansson, Jon; Wisén, Anita; Wohlfart, Björn; Ekman, Rolf; Westrin, Asa

    2009-10-30

    Brain-derived neurotrophic factor (BDNF) and other neurotrophins are believed to play an important role in affective disorders. In this study we investigated plasma-BDNF response during an incremental exercise test in 18 patients suffering from moderate major depressive disorder (MDD) and 18 controls. The patients were not treated with antidepressants or neuroleptics. Possible associations between plasma plasma-BDNF levels, dexamethasone suppression test cortisol levels and Montgomery-Asberg Depression Rating Scale (MADRS) scores were also tested. No difference in basal BDNF levels between patients and controls was found. BDNF increased significantly during exercise in both male and female patients as well as in male controls, with no significant differences between the groups. BDNF levels declined after exercise, but after 60 min of rest BDNF levels showed tendencies to increase again in male patients. No correlation between BDNF and cortisol or MADRS scores was found. We conclude that unmedicated patients with moderate depression and normal activity of the hypothalamic-pituitary-adrenal axis do not have a disturbed peripheral BDNF release during exercise. The BDNF increase 60 min after interruption of exercise in male patients might indicate up-regulated BDNF synthesis, but this needs to be further investigated in future studies.

  7. Influence of brain-derived neurotrophic factor on pathfinding of dentate granule cell axons, the hippocampal mossy fibers

    Directory of Open Access Journals (Sweden)

    Tamura Makoto

    2009-01-01

    Full Text Available Abstract Mossy fibers, the dentate granule cell axons, are generated throughout an animal's lifetime. Mossy fiber paths and synapses are primarily restricted to the stratum lucidum within the CA3 region. Brain-derived neurotrophic factor (BDNF, a neurotrophin family protein that activates Trk neurotrophin receptors, is highly expressed in the stratum lucidum in an activity-dependent manner. The addition of a Trk neurotrophin receptor inhibitor, K252a, to cultured hippocampal slices induced aberrant extension of mossy fibers into ectopic regions. BDNF overexpression in granule cells ameliorated the mossy fiber pathway abnormalities caused by a submaximal dose of K252a. A similar rescue was observed when BDNF was expressed in CA3 pyramidal cells, most notably in mossy fibers distal to the expression site. These findings are the first to clarify the role of BDNF in mossy fiber pathfinding, not as an attractant cue but as a regulator, possibly acting in a paracrine manner. This effect of BDNF may be as a signal for new fibers to fasciculate and extend further to form synapses with neurons that are far from active BDNF-expressing synapses. This mechanism would ensure the emergence of new independent dentate gyrus-CA3 circuits by the axons of new-born granule cells.

  8. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice.

    Science.gov (United States)

    Angelucci, Francesco; Fiore, Marco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-09-01

    It has been shown that music might be able to improve mood state in people affected by psychiatric disorders, ameliorate cognitive deficits in people with dementia and increase motor coordination in Parkinson patients. Robust experimental evidence explaining the central effects of music, however, is missing. This study was designed to investigate the effect of music on brain neurotrophin production and behavior in the mouse. We exposed young adult mice to music with a slow rhythm (6 h/day; mild sound pressure levels, between 50 and 60 db) for 21 consecutive days. At the end of the treatment, mice were tested for passive avoidance learning and then killed for analysis of brain-derived neurotrophic factor (BDNF) and nerve growth factor with enzyme-linked immunosorbent assay (ELISA) in selected brain regions. We found that music-exposed mice showed increased BDNF, but not nerve growth factor in the hippocampus. Furthermore, we observed that music exposure significantly enhanced learning performance, as measured by the passive avoidance test. Our results demonstrate that exposure to music can modulate the activity of the hippocampus by influencing BDNF production. Our findings also suggest that music exposure might be of help in several central nervous system pathologies.

  9. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?

    Indian Academy of Sciences (India)

    A Nair; V A Vaidya

    2006-09-01

    Depression is the major psychiatric ailment of our times, afflicting ∼20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to limbic regions is thought to contribute to the etiology of depression and antidepressants have been reported to reverse such damage and promote adaptive plasticity. The molecular pathways that contribute to the damage associated with depression and antidepressant-mediated plasticity are a major focus of scientific enquiry. The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood. The purpose of this review is to discuss the role of CREB and BDNF in depression and as targets/mediators of antidepressant action.

  10. Rapamycin modulated brain-derived neurotrophic factor and B-cell lymphoma 2 to mitigate autism spectrum disorder in rats

    Science.gov (United States)

    Zhang, Jie; Liu, Li-Ming; Ni, Jin-Feng

    2017-01-01

    The number of children suffered from autism spectrum disorder (ASD) is increasing dramatically. However, the etiology of ASD is not well known. This study employed mammalian target of rapamycin inhibitor rapamycin to explore its effect on ASD and provided new therapeutic strategies for ASD. ASD rat model was constructed and valproic acid (VPA) was injected intraperitoneally into rats on pregnancy day 12.5. Offspring from VPA group were divided into ASD group and ASD + rapamycin (ASD + RAPA) group. Compared with normal group, the frequency and duration of social behavior and straight times of ASD group were shortened, but the grooming times were extended. Meanwhile, in ASD group, the average escape latency and the frequency of crossing plates were decreased, the apoptotic index (AI) detected by TUNEL assay was increased, and the expression of brain-derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) analyzed was decreased with great difference compared with normal group (P<0.01). However, rapamycin treatment in ASD rats mitigated the ASD-like social behavior, such as the frequencies of straight and grooming. Furthermore, rapamycin shortened the average escape latency, but increased the frequency of crossing plates of ASD rats. In hippocampus, rapamycin decreased the AI, but increased the levels of BDNF and Bcl-2 (P<0.01) of ASD rats. These findings revealed that rapamycin significantly mitigated the social behavior by enhancing the expression of BDNF and Bcl-2 to suppress the hippocampus apoptosis in VPA-induced ASD rats.

  11. Serum levels of brain-derived neurotrophic factor in alcohol-dependent patients receiving high-dose baclofen.

    Science.gov (United States)

    Geisel, Olga; Hellweg, Rainer; Müller, Christian A

    2016-06-30

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the development and maintenance of addictive and other psychiatric disorders. Also, interactions of γ-aminobutyric acid (GABA)-ergic compounds and BDNF have been reported. The objective of this study was to investigate serum levels of BDNF over time in alcohol-dependent patients receiving individually titrated high-dose treatment (30-270mg/d) with the GABA-B receptor agonist baclofen or placebo for up to 20 weeks. Serum levels of BDNF were measured in patients of the baclofen/placebo group at baseline (t0), 2 weeks after reaching individual high-dose of baclofen/placebo treatment (t1) and after termination of study medication (t2) in comparison to carefully matched healthy controls. No significant differences in serum levels of BDNF between the baclofen and the placebo group or healthy controls were found at t0, t1, or at t2. Based on these findings, it seems unlikely that baclofen exerts a direct effect on serum levels of BDNF in alcohol-dependent patients. Future studies are needed to further explore the mechanism of action of baclofen and its possible relationship to BDNF in alcohol use disorders.

  12. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    Science.gov (United States)

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype.

  13. Changes in brain-derived neurotrophic factor (BDNF) during abstinence could be associated with relapse in cocaine-dependent patients.

    Science.gov (United States)

    Corominas-Roso, Margarida; Roncero, Carlos; Daigre, Constanza; Grau-Lopez, Lara; Ros-Cucurull, Elena; Rodríguez-Cintas, Laia; Sanchez-Mora, Cristina; Lopez, Maria Victoria; Ribases, Marta; Casas, Miguel

    2015-02-28

    Brain-derived neurotrophic factor (BDNF) is involved in cocaine craving in humans and drug seeking in rodents. Based on this, the aim of this study was to explore the possible role of serum BDNF in cocaine relapse in abstinent addicts. Forty cocaine dependent subjects (DSM-IV criteria) were included in an inpatient 2 weeks abstinence program. Organic and psychiatric co-morbidities were excluded. Two serum samples were collected for each subject at baseline and at after 14 abstinence days. After discharge, all cocaine addicts underwent a 22 weeks follow-up, after which they were classified into early relapsers (ER) (resumed during the first 14 days after discharge,) or late relapsers (LR) (resumed beyond 14 days after discharge). The only clinical differences between groups were the number of consumption days during the last month before detoxification. Serum BDNF levels increased significantly across the 12 days of abstinence in the LR group (p=0.02), whereas in the ER group BDNF remained unchanged. In the ER group, the change of serum BDNF during abstinence negatively correlated with the improvement in depressive symptoms (p=0.02). These results suggest that BDNF has a role in relapse to cocaine consumption in abstinent addicts, although the underlying neurobiological mechanisms remain to be clarified.

  14. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury

    Science.gov (United States)

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  15. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets.

    Science.gov (United States)

    Zhang, Ji-Chun; Yao, Wei; Hashimoto, Kenji

    2016-01-01

    Depression is the most prevalent and among the most debilitating of psychiatric disorders. The precise neurobiology of this illness is unknown. Several lines of evidence suggest that peripheral and central inflammation plays a role in depressive symptoms, and that anti-inflammatory drugs can improve depressive symptoms in patients with inflammation-related depression. Signaling via brain-derived neurotrophic factor (BDNF) and its receptor, tropomycin receptor kinase B (TrkB) plays a key role in the pathophysiology of depression and in the therapeutic mechanisms of antidepressants. A recent paper showed that lipopolysaccharide (LPS)-induced inflammation gave rise to depression-like phenotype by altering BDNF-TrkB signaling in the prefrontal cortex, hippocampus, and nucleus accumbens, areas thought to be involved in the antidepressant effects of TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) and TrkB antagonist, ANA-12. Here we provide an overview of the tryptophan-kynurenine pathway and BDNF-TrkB signaling in the pathophysiology of inflammation-induced depression, and propose mechanistic actions for potential therapeutic agents. Additionally, the authors discuss the putative role of TrkB agonists and antagonists as novel therapeutic drugs for inflammation-related depression.

  16. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  17. Functional recovery after transplantation of neural stem cells modified by brain-derived neurotrophic factor in rats with cerebral ischaemia.

    Science.gov (United States)

    Zhu, J M; Zhao, Y Y; Chen, S D; Zhang, W H; Lou, L; Jin, X

    2011-01-01

    Functional recovery after transplantation of brain-derived neurotrophic factor (BDNF)-modified neural stem cells (NSCs) was evaluated in a rat model of cerebral ischaemia damage induced by temporary middle cerebral artery occlusion (tMCAO). Western blotting and enzyme-linked immunosorbent assay demonstrated upregulated BDNF protein expression by rat embryonic NSCs transfected with the human BDNF gene (BDNF-NSCs). BDNF-NSCs stimulated neurite outgrowth in cocultured dorsal root ganglion neurons, suggesting that BDNF increased neurogenesis in vitro. In vivo, BDNF promoted recovery of tMCAO. Phosphate-buffered saline, untransformed NSCs or BDNF-NSCs were introduced into the penumbra zone of the right striatum of tMCAO rats and neurological function deficit was assessed for up to 12 weeks using the neurological severity score (NSS). The NSS was significantly lower in the BDNF-NSC transfected transplant group than in all the other groups from week 10. BDNF-NSCs recovered 1 week after transplantation expressed BDNF protein. Transplanted NSCs had differentiated into mature neurons 12 weeks after transplantation. Transgenic NSCs have potential as a therapeutic agent for brain ischaemia.

  18. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells.

    Science.gov (United States)

    Lin, Chih-Yang; Hung, Shih-Ya; Chen, Hsien-Te; Tsou, Hsi-Kai; Fong, Yi-Chin; Wang, Shih-Wei; Tang, Chih-Hsin

    2014-10-15

    Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma.

  19. Neuroprotection elicited by nerve growth factor and brain-derived neurotrophic factor released from astrocytes in response to methylmercury.

    Science.gov (United States)

    Takemoto, Takuya; Ishihara, Yasuhiro; Ishida, Atsuhiko; Yamazaki, Takeshi

    2015-07-01

    The protective roles of astrocytes in neurotoxicity induced by environmental chemicals, such as methylmercury (MeHg), are largely unknown. We found that conditioned medium of MeHg-treated astrocytes (MCM) attenuated neuronal cell death induced by MeHg, suggesting that astrocytes-released factors can protect neuronal cells. The increased expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was observed in MeHg-treated astrocytes. NGF and BDNF were detected in culture media as homodimers, which are able to bind specific tyrosine kinase receptors, tropomyosin related kinase (Trk) A and TrkB, respectively. The TrkA antagonist and TrkB antagonist abolished the protective effects of MCM in neuronal cell death induced by MeHg. Taken together, astrocytes synthesize and release NGF and BDNF in response to MeHg to protect neurons from MeHg toxicity. This study is considered to show a novel defense mechanism against MeHg-induced neurotoxicity.

  20. Fingolimod phosphate attenuates oligomeric amyloid β-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons.

    Directory of Open Access Journals (Sweden)

    Yukiko Doi

    Full Text Available The neurodegenerative processes that underlie Alzheimer's disease are mediated, in part, by soluble oligomeric amyloid β, a neurotoxic protein that inhibits hippocampal long-term potentiation, disrupts synaptic plasticity, and induces the production of reactive oxygen species. Here we show that the sphingosine-1-phosphate (S1P receptor (S1PR agonist fingolimod phosphate (FTY720-P-a new oral drug for multiple sclerosis-protects neurons against oligomeric amyloid β-induced neurotoxicity. We confirmed that primary mouse cortical neurons express all of the S1P receptor subtypes and FTY720-P directly affects the neurons. Treatment with FTY720-P enhanced the expression of brain-derived neurotrophic factor (BDNF in neurons. Moreover, blocking BDNF-TrkB signaling with a BDNF scavenger, TrkB inhibitor, or ERK1/2 inhibitor almost completely ablated these neuroprotective effects. These results suggested that the neuroprotective effects of FTY720-P are mediated by upregulated neuronal BDNF levels. Therefore, FTY720-P may be a promising therapeutic agent for neurodegenerative diseases, such as Alzheimer's disease.

  1. The expression and putative role of brain-derived neurotrophic factor and its receptor in bovine sperm.

    Science.gov (United States)

    Li, C; Li, C; Zhu, X; Wang, C; Liu, Zhuo; Li, W; Lu, Chen; Zhou, Xu

    2012-02-01

    The neurotrophin family of proteins promote the survival and differentiation of nerve cells and are thought to play an important role in development of reproductive tissues. The objective of the present study was to detect the presence of Brain-derived neurotrophic factor (BDNF) and its receptor TrkB in bovine sperm, and explore the potential role of BDNF in sperm function. We demonstrated that both the neorotrophin BDNF and the tyrosine kinase receptor protein TrkB were expressed in ejaculated bovine sperm. Furthermore, BDNF per se was secreted by sperm. Insulin and leptin secretion by bovine sperm were increased (P BDNF, whereas insulin was decreased by K252a. Therefore, we inferred that BDNF could be a regulator of sperm secretion of insulin and leptin through the TrkB receptor. Sperm viability and mitochondrial activity were both decreased (P BDNF/TrkB signaling pathway was blocked with K252a. Furthermore, BDNF promoted apoptosis of bovine sperm through TrkB binding (P BDNF secreted by bovine sperm was important in regulation of insulin and leptin secretion in ejaculated bovine sperm. Furthermore, BDNF may affect sperm mitochondrial activity and apoptosis, as well as their viability.

  2. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    Science.gov (United States)

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  3. Developmental changes of TrkB signaling in response to exogenous brain-derived neurotrophic factor in primary cortical neurons.

    Science.gov (United States)

    Zhou, Xianju; Xiao, Hua; Wang, Hongbing

    2011-12-01

    Neocortical circuits are most sensitive to sensory experience during a critical period of early development. Previous studies implicate that brain-derived neurotrophic factor (BDNF) and GABAergic inhibition may control the timing of the critical period. By using an in vitro maturation model, we found that neurons at DIV (day in vitro) 7, around a period when functional synapses start to form and GABAergic inhibition emerges, displayed the most dynamic activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB by exogenous BDNF. The BDNF-stimulated transcriptional up-regulation of CREB target genes was also the highest in DIV 7 neurons. The basal level of ERK1/2 and CREB activity, as well as the expression of CREB target genes, increased along with maturation, and neurons at DIV 13 and 22 displayed less dynamic responses to BDNF. Furthermore, we found that the developmentally regulated GABAergic inhibition correlated with the decline of BDNF-mediated signaling during maturation. BDNF stimulation along with suppression of GABAergic inhibition enhanced the activation of ERK1/2-CREB signaling and gene transcription in mature neurons. Conversely, BDNF stimulation along with enhancement of GABAergic inhibition reduced the overall induction of intracellular signaling in younger neurons. We propose that the less dynamic molecular changes may play a certain role in the loss of plasticity during maturation.

  4. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues.

    Science.gov (United States)

    Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu

    2015-07-01

    There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro, while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.

  5. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex.

    Science.gov (United States)

    Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E

    2015-01-02

    Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence.

  6. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor.

    Science.gov (United States)

    Rendeiro, Catarina; Vauzour, David; Rattray, Marcus; Waffo-Téguo, Pierre; Mérillon, Jean Michel; Butler, Laurie T; Williams, Claire M; Spencer, Jeremy P E

    2013-01-01

    Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, pmemory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.

  7. Evolution of brain-derived neurotrophic factor levels after autologous hematopietic stem cell transplantation in multiple sclerosis.

    Science.gov (United States)

    Blanco, Y; Saiz, A; Costa, M; Torres-Peraza, J F; Carreras, E; Alberch, J; Jaraquemada, D; Graus, F

    A neuroprotective role of inflammation has been suggested based on that immune cells are the main source of brain-derived neurotrophic factor (BDNF). We investigated the 3-year evolution of BDNF levels in serum, CSF and culture supernatant of peripheral blood mononuclear cells (PBMC), unstimulated and stimulated with anti-CD3 and soluble anti-CD28 antibodies, in 14 multiple sclerosis patients who underwent an autologous hematopoietic stem cell transplantation (AHSCT). BDNF levels were correlated with previously reported MRI measures that showed a reduction of T2 lesion load and increased brain atrophy, mainly at first year post-transplant. A significant decrease of serum BDNF levels was seen at 12 months post-transplant. BDNF values were found significantly lower in stimulated but not in unstimulated PBMC supernatants during the follow-up, supporting that AHSCT may induce a down-regulation of BDNF production. The only significant correlation was found between CSF BDNF levels and T2 lesion load before and 1 year after AHSCT, suggesting that BDNF reflects the past and ongoing inflammatory activity and demyelination of these highly active patients. Our study suggests that AHSCT can reduce BDNF levels to values associated with lower activity. This decrease does not seem to correlate with the brain atrophy measures observed in the MRI.

  8. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Catarina Rendeiro

    Full Text Available Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w, results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively, to a similar extent to that following blueberry supplementation (p = 0.002. These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01, suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.

  9. Effect of Yoga on Pain, Brain-Derived Neurotrophic Factor, and Serotonin in Premenopausal Women with Chronic Low Back Pain

    Directory of Open Access Journals (Sweden)

    Moseon Lee

    2014-01-01

    Full Text Available Background. Serotonin and brain-derived neurotrophic factor (BDNF are known to be modulators of nociception. However, pain-related connection between yoga and those neuromodulators has not been investigated. Therefore, we aimed to evaluate the effect of yoga on pain, BDNF, and serotonin. Methods. Premenopausal women with chronic low back pain practiced yoga three times a week for 12 weeks. At baseline and after 12 weeks, back pain intensity was measured using visual analogue scale (VAS, and serum BDNF and serotonin levels were evaluated. Additionally, back flexibility and level of depression were assessed. Results. After 12-week yoga, VAS decreased in the yoga group (P<0.001, whereas it increased (P<0.05 in the control group. Back flexibility was improved in the yoga group (P<0.01. Serum BDNF increased in the yoga group (P<0.01, whereas it tended to decrease in the control group (P=0.05. Serum serotonin maintained in the yoga group, while it reduced (P<0.01 in the control group. The depression level maintained in the yoga group, whereas it tended to increase in the control group (P=0.07. Conclusions. We propose that BDNF may be one of the key factors mediating beneficial effects of yoga on chronic low back pain.

  10. Effect of Fluoxetine on Expression of Brain-derived Neurotrophic Factor in Patients with Post-stroke Depression

    Institute of Scientific and Technical Information of China (English)

    LI Hong-liang; WANG Shou-yong; SHI Xiang-song; PAN He-yue; HUANG Wen-zhong; GAO Xuan

    2014-01-01

    Objective:To observe the effect of lfuoxetine on the expression brain-derived neurotrophic factor (BDNF) in patients with post-stroke depression (PSD). Methods:A total of 62 patients with ischemic stroke and post depression were divided into PSD group (32 cases) given fluoxetine combined with rehabilitation and Non-PSD group (30 cases) given rehabilitation treatment according to the presence of depression after stroke. The degree of depression, activities of daily living and the motor function were evaluated by Hamilton Depression Scale 17 (HAMD-17), Modified Barthel Index (MBI) and Fugl-Meyer Assessment (FMA) before and after treatment, respectively. And the levels of BDNF were examined using enzyme-linked immunosorbent assay (ELISA). Results: Before treatment, HAMD-17 score and MBI scores were markedly higher in PSD group than in Non-PSD group (P0.05). After 3, 6 and 12-month treatment, BDNF concentrations in PSD group were signiifcantly higher than in Non-PSD group (P<0.01). Relevant analysis showed that BDNF in patients with PSD was in negative relationship with HAMD-17 (r=-0.784,P=0.000) and in positive association with BMI and FMA (r=0.761,P=0.000;r=0.789,P=0.000). Conclusion: Fluoxetine combined with rehabilitation can regulate depression, improve motor function and activities of daily living through increasing the concentration of BNDF in treating PSD patients.

  11. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Tatiana Lauxen Peruzzolo

    2015-01-01

    Full Text Available Pediatric bipolar disorder (PBD is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder. We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm3, respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD.

  12. Effect of controlled release of brain-derived neurotrophic factor and neurotrophin-3 from collagen gel on neural stem cells.

    Science.gov (United States)

    Huang, Fei; Wu, Yunfeng; Wang, Hao; Chang, Jun; Ma, Guangwen; Yin, Zongsheng

    2016-01-20

    This study aimed to examine the effect of controlled release of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from collagen gel on rat neural stem cells (NSCs). With three groups of collagen gel, BDNF/collagen gel, and NT-3/collagen gel as controls, BDNF and NT-3 were tested in the BDNF-NT-3/collagen gel group at different time points. The enzyme-linked immunosorbent assay results showed that BDNF and NT-3 were steadily released from collagen gels for 10 days. The cell viability test and the bromodeoxyuridine incorporation assay showed that BDNF-NT-3/collagen gel supported the survival and proliferation of NSCs. The results also showed that the length of processes was markedly longer and differentiation percentage from NSCs into neurons was much higher in the BDNF-NT-3/collagen gel group than those in the collagen gel, BDNF/collagen gel, and NT-3/collagen gel groups. These findings suggest that BDNF-NT-3/collagen gel could significantly improve the ability of NSCs proliferation and differentiation.

  13. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice.

    Science.gov (United States)

    Mao, Qing-Qiu; Huang, Zhen; Zhong, Xiao-Ming; Xian, Yan-Fang; Ip, Siu-Po

    2014-03-15

    Previous studies in our laboratory have demonstrated that piperine produced antidepressant-like action in various mouse models of behavioral despair. This study aimed to investigate the role of brain-derived neurotrophic factor (BDNF) signalling in the antidepressant-like effect of piperine in mice exposed to chronic unpredictable mild stress (CUMS). The results showed that CUMS caused depression-like behavior in mice, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. It was also found that BDNF protein expression in the hippocampus and frontal cortex were significantly decreased in CUMS-treated mice. Chronic treatment of piperine at the dose of 10mg/kg significantly ameliorated behavioural deficits of CUMS-treated mice in the sucrose preference test and forced swim test. Piperine treatment also significantly decreased immobility time in the forced swim test in naive mice. In parallel, chronic piperine treatment significantly increased BDNF protein expression in the hippocampus and frontal cortex of both naive and CUMS-treated mice. In addition, inhibition of BDNF signalling by injection of K252a, an inhibitor of the BDNF receptor TrkB, significantly blocked the antidepressant-like effect of piperine in the sucrose preference test and forced swim test of CUMS-treated mice. Taken together, this study suggests that BDNF signalling is an essential mediator for the antidepressant-like effect of piperine.

  14. Brain-Derived neurotrophic factor and suicide in schizophrenia: Critical role of neuroprotective mechanisms as an emerging hypothesis

    Directory of Open Access Journals (Sweden)

    Amresh Shrivastava

    2016-01-01

    Full Text Available Suicide is a common occurrence in psychiatric disorders and is a cause of increased healthcare utilization worldwide. Schizophrenia is one of the most common psychiatric disorders worldwide and posited to be seen in 1% of the population worldwide. Suicide is a common occurrence in schizophrenia with 25%–30% patients with schizophrenia attempting suicide and 8%–10% completing it. There is a need for valid biological markers to help clinicians identify patients with schizophrenia that may be at a risk of suicide and thus help in them receiving better care and interventions at the earliest even before a suicide attempt occurring. There are clear neurobiological changes at a genetic, neuroimaging, and neurochemical level that occurs in patients with schizophrenia that attempt suicide. There is a new theory that postulates neuronal plasticity and neuroprotection to have a role in the biological changes that ensue when suicidal thoughts and feelings occur in patients with schizophrenia. Neurotrophic growth factors like brain-derived neurotrophic factor (BDNF have been documented to play a role in the protection of neurons and in the prevention of neurobiological changes that may lead to suicide both in schizophrenia and depression. The present paper presents a commentary that looks at the role of BDNF as a protective factor and neurobiological marker for suicide in schizophrenia.

  15. Effects of music aerobic exercise on depression and brain-derived neurotrophic factor levels in community dwelling women.

    Science.gov (United States)

    Yeh, Shu-Hui; Lin, Li-Wei; Chuang, Yu Kuan; Liu, Cheng-Ling; Tsai, Lu-Jen; Tsuei, Feng-Shiou; Lee, Ming-Tsung; Hsiao, Chiu-Yueh; Yang, Kuender D

    2015-01-01

    A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE group and 26 in the comparison group completed a pre- and posttest. The MAE group displayed significant improvement in depression scores (p = 0.016), decreased depression symptoms in crying (p = 0.03), appetite (p = 0.006), and fatigue (p = 0.011). The BDNF levels of the participants significantly increased after the 12-week MAE (p = 0.042). The parallel comparison group revealed no significant changes in depression scores or BDNF levels. In summary, the 12-week MAE had a significant impact on the enhancement of BDNF levels and improvement of depression symptoms. Middle-aged community women are encouraged to exercise moderately to improve their depression symptoms and BDNF levels.

  16. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  17. Effect of stirring and seeding on whey protein fibril formation.

    Science.gov (United States)

    Bolder, Suzanne G; Sagis, Leonard M C; Venema, Paul; van der Linden, Erik

    2007-07-11

    The effect of stirring and seeding on the formation of fibrils in whey protein isolate (WPI) solutions was studied. More fibrils of a similar length are formed when WPI is stirred during heating at pH 2 and 80 degrees C compared to samples that were heated at rest. Addition of seeds did not show an additional effect compared to samples that were stirred. We propose a model for fibril formation, including an activation, nucleation, growth, and termination step. The activation and nucleation steps are the rate-determining steps. Fibril growth is relatively fast but terminates after prolonged heating. Two processes that possibly induce termination of fibril growth are hydrolysis of nonassembled monomers and inactivation of the growth ends of the fibrils. Stirring may break up immature fibrils, thus producing more active fibrils. Stirring also seems to accelerate the kinetics of fibril formation, resulting in an increase of the number of fibrils formed.

  18. Atrial fibrillation and survival in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Justin Timothy A

    2004-11-01

    Full Text Available Abstract Background Survival in colorectal cancer may correlate with the degree of systemic inflammatory response to the tumour. Atrial fibrillation may be regarded as an inflammatory complication. We aimed to determine if atrial fibrillation is a prognostic factor in colorectal cancer. Patients and methods A prospective colorectal cancer patient database was cross-referenced with the hospital clinical-coding database to identify patients who had underwent colorectal cancer surgery and were in atrial fibrillation pre- or postoperatively. Results A total of 175 patients underwent surgery for colorectal cancer over a two-year period. Of these, 13 patients had atrial fibrillation pre- or postoperatively. Atrial fibrillation correlated with worse two-year survival (p = 0.04; log-rank test. However, in a Cox regression analysis, atrial fibrillation was not significantly associated with survival. Conclusion The presence or development of atrial fibrillation in patients undergoing surgery for colorectal cancer is associated with worse overall survival, however it was not found to be an independent factor in multivariate analysis.

  19. Magnetite nanoparticle interactions with insulin amyloid fibrils

    Science.gov (United States)

    Chen, Yun-Wen; Chang, Chiung-Wen; Hung, Huey-Shan; Kung, Mei-Lang; Yeh, Bi-Wen; Hsieh, Shuchen

    2016-10-01

    Accumulation of amyloid fibrils is one of the likely key factors leading to the development of Alzheimer’s disease and other amyloidosis associated diseases. Magnetic nanoparticles (NPs) have been developed as promising medical materials for many medical applications. In this study, we have explored the effects of Fe3O4 NPs on the fibrillogenesis process of insulin fibrils. When Fe3O4 NPs were co-incubated with insulin, Fe3O4 NPs had no effect on the structural transformation into amyloid-like fibrils but had higher affinity toward insulin fibrils. We demonstrated that the zeta potential of insulin fibrils and Fe3O4 NPs were both positive, suggesting the binding forces between Fe3O4 NPs and insulin fibrils were van der Waals forces but not surface charge. Moreover, a different amount of Fe3O4 NPs added had no effect on secondary structural changes of insulin fibrils. These results propose the potential use of Fe3O4 NPs as therapeutic agents against diseases related to protein aggregation or contrast agents for magnetic resonance imaging.

  20. On fibrils and field lines: The nature of H$\\alpha$ fibrils in the solar chromosphere

    CERN Document Server

    Leenaarts, Jorrit; van der Voort, Luc Rouppe

    2015-01-01

    Observations of the solar chromosphere in the line-core of the \\Halpha\\ line show dark elongated structures called fibrils that show swaying motion. We performed a 3D radiation-MHD simulation of a network region, and computed synthetic \\Halpha\\ images from this simulation to investigate the relation between fibrils and the magnetic field lines in the chromosphere. The periods, amplitudes and phase-speeds of the synthetic fibrils are consistent with those observed. We analyse the relation between the synthetic fibrils and the field lines threading through them, and find that some fibrils trace out the same field line along the fibril's length, but there are also fibrils that sample different field lines at different locations along their length. Fibrils sample the same field lines on a time scale of $\\sim200$~s. This is shorter than their own lifetime. We analysed the evolution of the atmosphere along a number of field lines that thread through fibrils and find that they carry slow-mode waves that load mass in...

  1. Personalized management of atrial fibrillation

    DEFF Research Database (Denmark)

    Kirchhof, Paulus; Breithardt, Günter; Aliot, Etienne

    2013-01-01

    to detect AF. Most clinical management decisions in AF patients can be based on validated parameters that encompass type of presentation, clinical factors, electrocardiogram analysis, and cardiac imaging. Despite these advances, patients with AF are still at increased risk for death, stroke, heart failure......, and hospitalizations. During the fourth Atrial Fibrillation competence NETwork/European Heart Rhythm Association (AFNET/EHRA) consensus conference, we identified the following opportunities to personalize management of AF in a better manner with a view to improve outcomes by integrating atrial morphology and damage......, brain imaging, information on genetic predisposition, systemic or local inflammation, and markers for cardiac strain. Each of these promising avenues requires validation in the context of existing risk factors in patients. More importantly, a new taxonomy of AF may be needed based...

  2. Amyloid fibrils compared to peptide nanotubes.

    Science.gov (United States)

    Zganec, Matjaž; Zerovnik, Eva

    2014-09-01

    Prefibrillar oligomeric states and amyloid fibrils of amyloid-forming proteins qualify as nanoparticles. We aim to predict what biophysical and biochemical properties they could share in common with better researched peptide nanotubes. We first describe what is known of amyloid fibrils and prefibrillar aggregates (oligomers and protofibrils): their structure, mechanisms of formation and putative mechanism of cytotoxicity. In distinction from other neuronal fibrillar constituents, amyloid fibrils are believed to cause pathology, however, some can also be functional. Second, we give a review of known biophysical properties of peptide nanotubes. Finally, we compare properties of these two macromolecular states side by side and discuss which measurements that have already been done with peptide nanotubes could be done with amyloid fibrils as well.

  3. Atrial Fibrillation and Stroke in Elderly Patients

    Directory of Open Access Journals (Sweden)

    Geetanjali Dang

    2016-11-01

    Full Text Available The increasing prevalence of stroke, with an estimated annual cost of $71.5 billion, has made it a major health problem that increases disability and death, particularly in patients with atrial fibrillation. Although advanced age and atrial fibrillation are recognized as strong risk factors for stroke, the basis for this susceptibility are not well defined. Aging or associated diseases are accompanied by changes in rheostatic, humoral, metabolic and hemodynamic factors that may contribute more to stroke predisposition than rhythm abnormality alone. Several thromboembolism-predisposing clinical characteristics and serum biomarkers with prognostic significance have been identified in patients with atrial fibrillation. Although anticoagulation decreases the risk of thromboembolism, management in the elderly remains complex due to major concerns about bleeding. New anticoagulants and nonpharmacologic strategies are helpful to reduce the risk of bleeding, particularly in older-elderly patients. Herein, we review the pathogenesis and management of select issues of thromboembolism in the elderly with atrial fibrillation.

  4. Atrial Fibrillation During an Exploration Class Mission

    Science.gov (United States)

    Lipsett, Mark; Hamilton, Douglas; Lemery, Jay; Polk, James

    2011-01-01

    This slide presentation reviews a possible scenario of an astronaut having Atrial Fibrillation during a Mars Mission. In the case review the presentation asks several questions about the alternatives for treatment, medications and the ramifications of the decisions.

  5. Aggregate geometry in amyloid fibril nucleation

    CERN Document Server

    Irbäck, A; Linnemann, N; Linse, B; Wallin, S; 10.1103/PhysRevLett.110.058101

    2013-01-01

    We present and study a minimal structure-based model for the self-assembly of peptides into ordered beta-sheet-rich fibrils. The peptides are represented by unit-length sticks on a cubic lattice and interact by hydrogen bonding and hydrophobicity forces. By Monte Carlo simulations with >100,000 peptides, we show that fibril formation occurs with sigmoidal kinetics in the model. To determine the mechanism of fibril nucleation, we compute the joint distribution in length and width of the aggregates at equilibrium, using an efficient cluster move and flat-histogram techniques. This analysis, based on simulations with 256 peptides in which aggregates form and dissolve reversibly, shows that the main free-energy barriers that a nascent fibril has to overcome are associated with changes in width.

  6. Alcohol consumption and risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Tolstrup, Janne Schurmann; Wium-Andersen, Marie Kim; Ørsted, David Dynnes

    2016-01-01

    BACKGROUND: The aim of this study was to test the hypothesis that alcohol consumption, both observational (self-reported) and estimated by genetic instruments, is associated with a risk of atrial fibrillation and to determine whether people with high cardiovascular risk are more sensitive towards...... register. As a measure of alcohol exposure, both self-reported consumption and genetic variations in alcohol metabolizing genes (ADH1B/ADH1C) were used as instrumental variables. The endpoint was admission to hospital for atrial fibrillation as recorded in a validated hospital register. RESULTS: A total...... of 3493 cases of atrial fibrillation occurred during follow-up. High alcohol consumption was associated with a risk of atrial fibrillation among men, but not among women. Among the men who drank 28-35 and 35+ drinks/week, the hazards ratios were 1.40 (95% confidence interval 1.09-1.80) and 1.62 (95...

  7. [Cardiac rehabilitation in patients with atrial fibrillation].

    Science.gov (United States)

    Schlitt, Axel; Kamke, Wolfram; Guha, Manju; Haberecht, Olaf; Völler, Heinz

    2015-06-01

    The course of cardiac rehabilitation is often altered due to episodes of paroxysmal, predominantly postoperative atrial fibrillation. In symptomatic patients, a TEE-guided cardioversion - preferential DC shock - is indicated. In patients with persistent / permanent atrial fibrillation, a heart rate up to 110 / min and 170 / min at rest and during physical activity should, respectively, be tolerated. Therefore, training should not be quitted by heart rate but rather by load. The antithrombotic management is in addition a great task in treating patients with atrial fibrillation. With the exception of patients with a CHA2DS2-VASc-Score < 1, oral anticoagulation is indicated. Atrial fibrillation has little impact on social aspects, whereas the underlying heart disease and drug treatment (oral anticoagulation) has an important impact.

  8. A Synchrotron-Based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and Prefibrillar Intermediates with Residue-Specific Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, Alexandra L. [Univ. of Pennsylvania, Philadelphia, PA (United States); Kiselar, Janna [Case Western Reserve Univ., Cleveland, OH (United States); Ilchenko, Serguei [Case Western Reserve Univ., Cleveland, OH (United States); Komatsu, Hiroaki [Univ. of Pennsylvania, Philadelphia, PA (United States); Chance, Mark R. [Case Western Reserve Univ., Cleveland, OH (United States); Axelsen, Paul H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2014-11-09

    The structural models of the fibrils formed by the 40-residue amyloid-β (Aβ40) peptide in Alzheimer’s disease typically consist of linear polypeptide segments, oriented approximately perpendicular to the long axis of the fibril, and joined together as parallel in-register β-sheets to form filaments. However, various models differ in the number of filaments that run the length of a fibril, and in the topological arrangement of these filaments. In addition to questions about the structure of Aβ40 monomers in fibrils, there are important unanswered questions about their structure in prefibrillar intermediates, which are of interest because they may represent the most neurotoxic form of Aβ40. To assess different models of fibril structure and to gain insight into the structure of prefibrillar intermediates, the relative solvent accessibility of amino acid residue side chains in fibrillar and prefibrillar Aβ40 preparations was characterized in solution by hydroxyl radical footprinting and structural mass spectrometry. A key to the application of this technology was the development of hydroxyl radical reactivity measures for individual side chains of Aβ40. When we combined mass-per-length measurements performed by dark-field electron microscopy, we determined that the results of our study were consistent with the core filament structure represented by two- and three-filament solid state nuclear magnetic resonance-based models of the Aβ40 fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements, but they are inconsistent with the more recently proposed 2M4J model. Our results also demonstrate that individual Aβ40 fibrils exhibit structural heterogeneity or polymorphism, where regions of two-filament structure alternate with regions of three-filament structure. The footprinting approach utilized in this study will be valuable for characterizing various fibrillar and nonfibrillar forms of the Aβ peptide.

  9. Agmatine promotes expression of brain-derived neurotrophic factor in brainstem facial nucleus in the rat facial nerve injury model

    Institute of Scientific and Technical Information of China (English)

    Li Fang; Wenlong Luo

    2008-01-01

    BACKGROUND: Studies have shown that agmatine can reduce inhibition of neuronal regeneration by increasing cyclic adenosine monophosphate and brain-derived neurotrophic factor (BDNF) in the hippocampus of morphine-dependent rats. The hypothesis that agmatine exerts similar effects on facial nerve injury deserves further analysis.OBJECTIVE: To study the effects of peritoneal agmatine injection on BDNF levels in the rat brainstem after facial nerve injury.DESIGN, TIME AND SETTING: A controlled animal experiment was performed at the Department of Otolaryngology-Head and Neck Surgery at the Second Affiliated Hospital, Chongqing University of Medical Sciences (Chongqing, China), between October and December in 2007.MATERIALS: Twenty-four male Sprague-Dawley rats were randomly divided into a control, a lesion, and an agmatine treatment group, with eight rats in each group. Bilateral facial nerve anastomosis was induced in the lesion and agmatine treatment groups, while the control group remained untreated. A rat BDNF Enzyme-linked immunosorbent assay kit was used to measure BDNF levels in the brainstem facial nucleus.METHODS: Starting on the day of lesion, the agmatine group received a peritoneal injection of 100 mg/kg agmatine, once per day, for a week, whereas rats in the lesion group received saline injections.MAIN OUTCOME MEASURES: BDNF levels in the brainstem containing facial nucleus were measured by ELISA.RESULTS: Twenty-four rats were included in the final analysis without any loss. Two weeks after lesion, BDNF levels were significantly higher in the lesion group than in the control group (P<0.01). A significant increase was noted in the agmatine group compared to the lesion group (P<0.01).CONCLUSION: Agmatine can substantially increase BDNF levels in the rat brainstem after facial nerve injury.

  10. Alterations in brain-derived neurotrophic factor in the mouse hippocampus following acute but not repeated benzodiazepine treatment.

    Directory of Open Access Journals (Sweden)

    Stephanie C Licata

    Full Text Available Benzodiazepines (BZs are safe drugs for treating anxiety, sleep, and seizure disorders, but their use also results in unwanted effects including memory impairment, abuse, and dependence. The present study aimed to reveal the molecular mechanisms that may contribute to the effects of BZs in the hippocampus (HIP, an area involved in drug-related plasticity, by investigating the regulation of immediate early genes following BZ administration. Previous studies have demonstrated that both brain derived neurotrophic factor (BDNF and c-Fos contribute to memory- and abuse-related processes that occur within the HIP, and their expression is altered in response to BZ exposure. In the current study, mice received acute or repeated administration of BZs and HIP tissue was analyzed for alterations in BDNF and c-Fos expression. Although no significant changes in BDNF or c-Fos were observed in response to twice-daily intraperitoneal (i.p. injections of diazepam (10 mg/kg + 5 mg/kg or zolpidem (ZP; 2.5 mg/kg + 2.5 mg/kg, acute i.p. administration of both triazolam (0.03 mg/kg and ZP (1.0 mg/kg decreased BDNF protein levels within the HIP relative to vehicle, without any effect on c-Fos. ZP specifically reduced exon IV-containing BDNF transcripts with a concomitant increase in the association of methyl-CpG binding protein 2 (MeCP2 with BDNF promoter IV, suggesting that MeCP2 activity at this promoter may represent a ZP-specific mechanism for reducing BDNF expression. ZP also increased the association of phosphorylated cAMP response element binding protein (pCREB with BDNF promoter I. Future work should examine the interaction between ZP and DNA as the cause for altered gene expression in the HIP, given that BZs can enter the nucleus and intercalate into DNA directly.

  11. The effect of exercise training modality on serum brain derived neurotrophic factor levels in individuals with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Damon L Swift

    Full Text Available INTRODUCTION: Brain derived neurotrophic factor (BDNF has been implicated in memory, learning, and neurodegenerative diseases. However, the relationship of BDNF with cardiometabolic risk factors is unclear, and the effect of exercise training on BDNF has not been previously explored in individuals with type 2 diabetes. METHODS: Men and women (N = 150 with type 2 diabetes were randomized to an aerobic exercise (aerobic, resistance exercise (resistance, or a combination of both (combination for 9 months. Serum BDNF levels were evaluated at baseline and follow-up from archived blood samples. RESULTS: Baseline serum BDNF was not associated with fitness, body composition, anthropometry, glucose control, or strength measures (all, p>0.05. Similarly, no significant change in serum BDNF levels was observed following exercise training in the aerobic (-1649.4 pg/ml, CI: -4768.9 to 1470.2, resistance (-2351.2 pg/ml, CI:-5290.7 to 588.3, or combination groups (-827.4 pg/ml, CI: -3533.3 to 1878.5 compared to the control group (-2320.0 pg/ml, CI: -5750.8 to 1110.8. However, reductions in waist circumference were directly associated with changes in serum BDNF following training (r = 0.25, p = 0.005. CONCLUSIONS: Serum BDNF was not associated with fitness, body composition, anthropometry, glucose control, or strength measures at baseline. Likewise, serum BDNF measures were not altered by 9 months of aerobic, resistance, or combination training. However, reductions in waist circumference were associated with decreased serum BDNF levels. Future studies should investigate the relevance of BDNF with measures of cognitive function specifically in individuals with type-2 diabetes.

  12. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men

    Directory of Open Access Journals (Sweden)

    A. Zembron-Lacny

    2016-01-01

    Full Text Available Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF and its relationship to oxidative damage and conventional cardiovascular disease (CVD biomarkers, such as atherogenic index, C-reactive protein (hsCRP and oxidized LDL (oxLDL, in active and inactive men. Seventeen elderly males (61-80 years and 17 young males (20-24 years participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001. In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL, hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men.

  13. Brain derived neurotrophic factor contributes to the cardiogenic potential of adult resident progenitor cells in failing murine heart.

    Directory of Open Access Journals (Sweden)

    Rasmita Samal

    Full Text Available Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium.Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25 ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts.Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii repressed the cell cycle progression suggesting its potency to ameliorate heart failure.

  14. Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels.

    Science.gov (United States)

    Hopkins, M E; Nitecki, R; Bucci, D J

    2011-10-27

    It is well established that physical exercise can enhance hippocampal-dependent forms of learning and memory in laboratory animals, commensurate with increases in hippocampal neural plasticity (brain-derived neurotrophic factor [BDNF] mRNA/protein, neurogenesis, long-term potentiation [LTP]). However, very little is known about the effects of exercise on other, non-spatial forms of learning and memory. In addition, there has been little investigation of the duration of the effects of exercise on behavior or plasticity. Likewise, few studies have compared the effects of exercising during adulthood versus adolescence. This is particularly important since exercise may capitalize on the peak of neural plasticity observed during adolescence, resulting in a different pattern of behavioral and neurobiological effects. The present study addressed these gaps in the literature by comparing the effects of 4 weeks of voluntary exercise (wheel running) during adulthood or adolescence on novel object recognition and BDNF levels in the perirhinal cortex (PER) and hippocampus (HP). Exercising during adulthood improved object recognition memory when rats were tested immediately after 4 weeks of exercise, an effect that was accompanied by increased BDNF levels in PER and HP. When rats were tested again 2 weeks after exercise ended, the effects of exercise on recognition memory and BDNF levels were no longer present. Exercising during adolescence had a very different pattern of effects. First, both exercising and non-exercising rats could discriminate between novel and familiar objects immediately after the exercise regimen ended; furthermore there was no group difference in BDNF levels. Two or four weeks later, however, rats that had previously exercised as adolescents could still discriminate between novel and familiar objects, while non-exercising rats could not. Moreover, the formerly exercising rats exhibited higher levels of BDNF in PER compared to HP, while the reverse was

  15. Brain-derived neurotrophic factor (BDNF as a potential mechanism of the effects of acute exercise on cognitive performance

    Directory of Open Access Journals (Sweden)

    Aaron T. Piepmeier

    2015-03-01

    Full Text Available The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings from both rodent and human studies suggest brain-derived neurotrophic factor (BDNF as a potential mechanism of the effect of acute exercise on memory. The molecular properties of BDNF allow this protein to be assessed in the periphery (pBDNF (i.e., blood serum, blood plasma, making measurements of acute exercise-induced changes in BDNF concentration relatively accessible. Studies exploring the acute exercise–pBDNF–cognitive performance relationship have had mixed findings, but this may be more reflective of methodological differences between studies than it is a statement about the role of BDNF. For example, significant associations have been observed between acute exercise-induced changes in pBDNF concentration and cognitive performance in studies assessing memory, and non-significant associations have been found in studies assessing non-memory cognitive domains. Three suggestions are made for future research aimed at understanding the role of BDNF as a biological mechanism of this relationship: 1 Assessments of cognitive performance may benefit from a focus on various types of memory (e.g., relational, spatial, long-term; 2 More fine-grained measurements of pBDNF will allow for the assessment of concentrations of specific isoforms of the BDNF protein (i.e., immature, mature; 3 Statistical techniques designed to test the mediating role of pBDNF in the acute exercise-cognitive performance relationship should be utilized in order to make causal inferences.

  16. Brain-Derived Neurotrophic Factor (BDNF protein levels in anxiety disorders: systematic review and meta-regression analysis

    Directory of Open Access Journals (Sweden)

    Sharain eSuliman

    2013-07-01

    Full Text Available Background: Brain-Derived Neurotrophic Factor (BDNF is a neurotrophin that is involved in the synaptic plasticity and survival of neurons. BDNF is believed to be involved in the pathogenesis of several neuropsychiatric disorders. As findings of BDNF levels in the anxiety disorders have been inconsistent, we undertook to conduct a systematic review and meta-analysis of studies that assessed BDNF protein levels in anxiety disorders. Methods: We conducted the review using electronic databases and searched reference lists of relevant articles for any further studies. Studies that measured BDNF protein levels in any anxiety disorder and compared these to a control group were included. Effect sizes of the differences in BDNF levels between anxiety disorder and control groups were calculated. Results: Eight studies with a total of 1179 participants were included. Initial findings suggested that BDNF levels were lower in individuals with any anxiety disorder compared to those without (Standard Mean Difference [SMD]=-0.94 [-1.75, -0.12], p≤0.05. This, however, differed with regards to source of BDNF protein (plasma: SMD=-1.31 [-1.69, -0.92], p≤0.01; serum: SMD=-1.06 [-2.27, 0.16], p≥0.01 and type of anxiety disorder (PTSD: SMD=-0.05 [-1.66, 1.75], p≥0.01; OCD: SMD=-2.33 [-4.21, -0.45], p≤0.01. Conclusion: Although BDNF levels appear to be reduced in individuals with an anxiety disorder, this is not consistent across the various anxiety disorders and may largely be explained by the significantly lowered BDNF levels found in OCD. Results further appear to be mediated by differences in sampling methods. Findings are, however, limited by the lack of research in this area, and given the potential for BDNF as a biomarker of anxiety disorders it would be useful to clarify the relationship further.

  17. "Regulation of the intracerebroventricular administration of brain-derived neurotrophic factor on baroreflex function and insulin sensitivity in rats".

    Science.gov (United States)

    Wang, Ming-Fu; Chan, Yin-Ching; Lee, Hsu-Tung; Hong, Ling-Zong

    2012-06-30

    "In addition to its well-established neurotrophic effects, brain-derived neurotrophic factor (BDNF) has also been shown to regulate glucose metabolism. The present study was conducted to determine whether BDNF has effects on baroreflex sensitivity (BRS) and whole-body insulin sensitivity through modulation of autonomic nervous function in normal rats. Male Sprague-Dawley rats were treated with intracerebroventricular BDNF (20 μg per rat, 10μl; BDNF) or artificial cerebrospinal fluid (10 μl; control) at an infusion rate of 1 μl/min in conscious state. The whole-body insulin sensitivity was determined by the euglycemic hyperinsulinemic clamp technique. BRS in response to phenylephrine (PE-BRS) or sodium nitroprusside (NP-BRS) was assessed using linear regression analysis. The sympathetic and parasympathetic influences on BRS were investigated by pharmacological autonomic blockade. When compared to the control rats, blood glucose levels were slightly but significantly decreased in BDNF-treated rats. However, plasma insulin levels were reduced by about 30%. The whole-body insulin sensitivity was increased in BDNF-treated rats. In addition, blood pressure was increased but heart rate remained unchanged after BDNF treatment. Enhanced PE-BRS was also observed in the BDNF-treated rats, which was attributed to the abnormal parasympathetic activation as revealed by the results of the pharmacological blockade study with methylatropine. Results of the present demonstrate that central BDNF plays an important role in the regulation of whole-body insulin sensitivity and baroreflex function. The data indicate that the alteration of autonomic nervous function may play a role in the effects of BDNF."

  18. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine.

    Science.gov (United States)

    Savignac, Helene M; Corona, Giulia; Mills, Henrietta; Chen, Li; Spencer, Jeremy P E; Tzortzis, George; Burnet, Philip W J

    2013-12-01

    The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and

  19. Expression of Brain-derived Neurotrophic Factor and Tyrosine Kinase B in Cerebellum of Poststroke Depression Rat Model

    Institute of Scientific and Technical Information of China (English)

    Yun Li; Chun Peng; Xu Guo; Jun-Jie You; Harishankar Prasad Yadav

    2015-01-01

    Background:The pathophysiology of poststroke depression (PSD) remains elusive because of its proposed multifactorial nature.Accumulating evidence suggests that brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of depression and PSD.And the cerebellar dysfunction may be important in the etiology of depression;it is not clear whether it also has a major effect on the risk of PSD.This study aimed to explore the expression of BDNF and high-affinity receptors tyrosine kinase B (TrkB) in the cerebellum of rats with PSD.Methods:The rat models with focal cerebral ischemic were made using a thread embolization method.PSD rat models were established with comprehensive separate breeding and unpredicted chronic mild stress (UCMS) on this basis.A normal control group,depression group,and a stroke group were used to compare with the PSD group.Thirteen rats were used in each group.Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) for detecting the expression of BDNF and TrkB protein and mRNA in the cerebellum were used at the 29th day following the UCMS.Results:Compared with the normal control group and the stroke group,the number ofBDNF immunoreactive (IR) positive neurons was less in the PSD group (P < 0.05).Furthermore,the number ofTrkB IR positive cells was significantly less in the PSD group than that in the normal control group (P < 0.05).The gene expression of BDNF and TrkB in the cerebellum of PSD rats also decreased compared to the normal control group (P < 0.05).Conclusions:These findings suggested a possible association between expression of BDNF and TrkB in the cerebellum and the pathogenesis of PSD.

  20. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum.

    Science.gov (United States)

    Grade, Sofia; Weng, Yuan C; Snapyan, Marina; Kriz, Jasna; Malva, João O; Saghatelyan, Armen

    2013-01-01

    Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.

  1. Expression of Brain-derived Neurotrophic Factor and Tyrosine Kinase B in Cerebellum of Poststroke Depression Rat Model

    Directory of Open Access Journals (Sweden)

    Yun Li

    2015-01-01

    Full Text Available Background: The pathophysiology of poststroke depression (PSD remains elusive because of its proposed multifactorial nature. Accumulating evidence suggests that brain-derived neurotrophic factor (BDNF plays a key role in the pathophysiology of depression and PSD. And the cerebellar dysfunction may be important in the etiology of depression; it is not clear whether it also has a major effect on the risk of PSD. This study aimed to explore the expression of BDNF and high-affinity receptors tyrosine kinase B (TrkB in the cerebellum of rats with PSD. Methods: The rat models with focal cerebral ischemic were made using a thread embolization method. PSD rat models were established with comprehensive separate breeding and unpredicted chronic mild stress (UCMS on this basis. A normal control group, depression group, and a stroke group were used to compare with the PSD group. Thirteen rats were used in each group. Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR for detecting the expression of BDNF and TrkB protein and mRNA in the cerebellum were used at the 29 th day following the UCMS. Results: Compared with the normal control group and the stroke group, the number of BDNF immunoreactive (IR positive neurons was less in the PSD group (P < 0.05. Furthermore, the number of TrkB IR positive cells was significantly less in the PSD group than that in the normal control group (P < 0.05. The gene expression of BDNF and TrkB in the cerebellum of PSD rats also decreased compared to the normal control group (P < 0.05. Conclusions: These findings suggested a possible association between expression of BDNF and TrkB in the cerebellum and the pathogenesis of PSD.

  2. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats.

    Science.gov (United States)

    Jiang, Y; Wei, N; Lu, T; Zhu, J; Xu, G; Liu, X

    2011-01-13

    Inflammation plays a vital role in the pathogenesis of ischemic stroke. Brain-derived neurotrophic factor (BDNF) may protect brain tissues from ischemic injury. In this study, we investigated whether intranasal BDNF exerted neuroprotection against ischemic insult by modulating the local inflammation in rats with ischemic stroke. Rats were subjected to temporary occlusion of the right middle cerebral artery (120 min) and intranasal BDNF or vehicle was adminstrated 2 h after reperfusion. Infarct volume and neuron injury were measured using triphenyltetrazolium chloride, Nissl staining and TUNEL assay, respectively. Microglia were detected by immunohistofluorescence. Tumor necrosis factor-α, interleukin10 and mRNAs were evaluated by enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. DNA-binding activity of nuclear factor-kappa B was measured by electrophoretic mobility shift assay. BDNF level in brain tissues was markedly raised following intranasal administration. There were more Nissl positive and less TUNEL positive neurons in BDNF group than in control group while intranasal BDNF did not reduce the infarct volume significantly (n=6, 0.27±0.04 vs. 0.24±0.05, P>0.05). BDNF increased the number of activated microglia (OX-42 positive) and phagocytotic microglia (ED1 positive). BDNF suppressed tumor necrosis factor-α and mRNA expression while increasing the interleukin10 and mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B (n=6, 49.78±1.23 vs. 52.89±1.64, PBDNF might protect the brain against ischemic insult by modulating local inflammation via regulation of the levels of cellular, cytokine and transcription factor in the experimental stroke.

  3. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum.

    Directory of Open Access Journals (Sweden)

    Sofia Grade

    Full Text Available Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS. The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF, a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.

  4. TDP6, a brain-derived neurotrophic factor-based trkB peptide mimetic, promotes oligodendrocyte myelination.

    Science.gov (United States)

    Wong, Agnes W; Giuffrida, Lauren; Wood, Rhiannon; Peckham, Haley; Gonsalvez, David; Murray, Simon S; Hughes, Richard A; Xiao, Junhua

    2014-11-01

    Brain-derived neurotrophic factor (BDNF) plays critical roles in the development and maintenance of the central (CNS) and peripheral nervous systems (PNS). BDNF exerts its biological effects via tropomyosin-related kinase B (TrkB) and the p75 neurotrophin receptor (p75NTR). We have recently identified that BDNF promotes CNS myelination via oligodendroglial TrkB receptors. In order to selectively target TrkB to promote CNS myelination, we have used a putative TrkB agonist, a small multicyclic peptide (tricyclic dimeric peptide 6, TDP6) previously described by us that structurally mimics a region of BDNF that binds TrkB. We confirmed that TDP6 acts as a TrkB agonist as it provoked autophosphorylation of TrkB and its downstream signalling effector extracellular related-kinase 1 and 2 (Erk1/2) in primary oligodendrocytes. Using an in vitro myelination assay, we show that TDP6 significantly promotes myelination by oligodendrocytes in vitro, as evidenced by enhanced myelin protein expression and an increased number of myelinated axonal segments. In contrast, a second, structurally distinct BDNF mimetic (cyclo-dPAKKR) that targets p75NTR had no effect upon oligodendrocyte myelination in vitro, despite the fact that cyclo-dPAKKR is a very effective promoter of peripheral (Schwann cell) myelination. The selectivity of TDP6 was further verified by using TrkB-deficient oligodendrocytes, in which TDP6 failed to promote myelination, indicating that the pro-myelinating effect of TDP6 is oligodendroglial TrkB-dependent. Together, our results demonstrate that TDP6 is a novel BDNF mimetic that promotes oligodendrocyte myelination in vitro via targeting TrkB.

  5. Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression.

    Science.gov (United States)

    Hashimoto, Kenji

    2013-01-01

    Epidemiological studies have demonstrated a close relationship between depression and cardiovascular disease (CVD). Although it is known that the central nervous system (CNS) contributes to this relationship, the detailed mechanisms involved in this process remain unclear. Recent studies suggest that the endoplasmic reticulum (ER) molecular chaperone sigma-1 receptor and brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of CVD and depression. Several meta-analysis studies have showed that levels of BDNF in the blood of patients with major depressive disorder (MDD) are lower than normal controls, indicating that blood BDNF might be a biomarker for depression. Furthermore, blood levels of BDNF in patients with CVD are also lower than normal controls. A recent study using conditional BDNF knock-out mice in animal models of myocardial infarction highlighted the role of CNS-mediated mechanisms in the cardioprotective effects of BDNF. In addition, a recent study shows that decreased levels of sigma-1 receptor in the mouse brain contribute to the association between heart failure and depression. Moreover, sigma-1 receptor agonists, including the endogenous neurosteroid dehydroepiandosterone (DHEA) and the selective serotonin reuptake inhibitor (SSRI) fluvoxamine, show potent cardioprotective and antidepressive effects in rodents, via sigma-1 receptor stimulation. Interestingly, agonist activation of sigma-1 receptors increased the secretion of mature BDNF from its precursor proBDNF via chaperone activity in the ER. Given the role of ER stress in the pathophysiology of CVD and MDD, the author will discuss the potential link between sigma-1 receptors and BDNF-TrkB pathway in the pathophysiology of these two diseases. Finally, the author will make a case for potent sigma-1 receptor agonists and TrkB agonists as new potential therapeutic drugs for depressive patients with CVD.

  6. Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior.

    Science.gov (United States)

    Vigers, A J; Amin, D S; Talley-Farnham, T; Gorski, J A; Xu, B; Jones, K R

    2012-06-14

    Brain-derived neurotrophic factor (BDNF) plays important roles in the development, maintenance, and plasticity of the mammalian forebrain. These functions include regulation of neuronal maturation and survival, axonal and dendritic arborization, synaptic efficacy, and modulation of complex behaviors including depression and spatial learning. Although analysis of mutant mice has helped establish essential developmental functions for BDNF, its requirement in the adult is less well documented. We have studied late-onset forebrain-specific BDNF knockout (CaMK-BDNF(KO)) mice, in which BDNF is lost primarily from the cortex and hippocampus in early adulthood, well after BDNF expression has begun in these structures. We found that although CaMK-BDNF(KO) mice grew at a normal rate and can survive more than a year, they had smaller brains than wild-type siblings. The CaMK-BDNF(KO) mice had generally normal behavior in tests for ataxia and anxiety, but displayed reduced spatial learning ability in the Morris water task and increased depression in the Porsolt swim test. These behavioral deficits were very similar to those we previously described in an early-onset forebrain-specific BDNF knockout. To identify an anatomical correlate of the abnormal behavior, we quantified dendritic spines in cortical neurons. The spine density of CaMK-BDNF(KO) mice was normal at P35, but by P84, there was a 30% reduction in spine density. The strong similarities we find between early- and late-onset BDNF knockouts suggest that BDNF signaling is required continuously in the CNS for the maintenance of some forebrain circuitry also affected by developmental BDNF depletion.

  7. Brain-derived neurotrophic factor as an indicator of chemical neurotoxicity: an animal-free CNS cell culture model.

    Science.gov (United States)

    Woehrling, Elizabeth K; Hill, Eric J; Nagel, David; Coleman, Michael D

    2013-12-01

    Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model.

  8. Reduced hippocampal brain-derived neurotrophic factor (BDNF) in neonatal rats after prenatal exposure to propylthiouracil (PTU).

    Science.gov (United States)

    Chakraborty, Goutam; Magagna-Poveda, Alejandra; Parratt, Carolyn; Umans, Jason G; MacLusky, Neil J; Scharfman, Helen E

    2012-03-01

    Thyroid hormone is critical for central nervous system development. Fetal hypothyroidism leads to reduced cognitive performance in offspring as well as other effects on neural development in both humans and experimental animals. The nature of these impairments suggests that thyroid hormone may exert its effects via dysregulation of the neurotrophin brain-derived neurotrophic factor (BDNF), which is critical to normal development of the central nervous system and has been implicated in neurodevelopmental disorders. The only evidence of BDNF dysregulation in early development, however, comes from experimental models in which severe prenatal hypothyroidism occurred. By contrast, milder prenatal hypothyroidism has been shown to alter BDNF levels and BDNF-dependent functions only much later in life. We hypothesized that mild experimental prenatal hypothyroidism might lead to dysregulation of BDNF in the early postnatal period. BDNF levels were measured by ELISA at 3 or 7 d after birth in different regions of the brains of rats exposed to propylthiouracil (PTU) in the drinking water. The dose of PTU that was used induced mild maternal thyroid hormone insufficiency. Pups, but not the parents, exhibited alterations in tissue BDNF levels. Hippocampal BDNF levels were reduced at both d 3 and 7, but no significant reductions were observed in either the cerebellum or brain stem. Unexpectedly, more males than females were born to PTU-treated dams, suggesting an effect of PTU on sex determination. These results support the hypothesis that reduced hippocampal BDNF levels during early development may contribute to the adverse neurodevelopmental effects of mild thyroid hormone insufficiency during pregnancy.

  9. Effect of dehydroepiandrosterone (DHEA) on memory and brain derived neurotrophic factor (BDNF) in a rat model of vascular dementia.

    Science.gov (United States)

    Sakr, H F; Khalil, K I; Hussein, A M; Zaki, M S A; Eid, R A; Alkhateeb, M

    2014-02-01

    The effect of dehydroepiandrosterone (DHEA) on memory and cognition in experimental animals is well known, but its efficacy in clinical dementia is unproven. So, the aim of the present study was to investigate the effect of DHEA on learning and memory activities in a rat model of vascular dementia (VD). Forty-eight male rats that positively passed the holeboard memory test were chosen for the study before bilateral permanent occlusion of the common carotid artery. They were divided into four groups (n=12, each) as follows (i) untreated control, (ii) rats exposed to surgical permanent bilateral occlusion of the common carotid arteries (BCCAO) leading to chronic cerebral hypoperfusion, (iii) rats exposed to BCCAO then received DHEA (BCCAO + DHEA) and (i.v.) rats exposed to BCCAO then received donepezil (BCCAO + DON). Holeboard memory test was used to assess the time, latency, working memory and reference memory. Central level of acetylcholine, norepinephrine and dopamine in the hippocampus were measured. Furthermore, the expression of brain derived neurotrophic factor (BDNF) in the hippocampus was determined. Histopathological studies of the cerebral cortex and transmission electron microscope of the hippocampus were performed. BCCAO decreased the learning and memory activities in the holeboard memory. Also, it decreased the expression of BDNF as well as the central level of acetylcholine, noradrenaline and dopamine as compared to control rats. Treatment with DHEA and donepezil increased the working and reference memories, BDNF expression as well as the central acetylcholine in the hippocampus as compared to BCCAO rats. DHEA produced neuroprotective effects through increasing the expression of BDNF as well as increasing the central level of acetylcholine and catecholamines which are non-comparable to donepezil effects.

  10. Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve.

    Directory of Open Access Journals (Sweden)

    Yoshinori Takemura

    Full Text Available Brain-derived neurotrophic factor (BDNF stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/- received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI, and motor nerve conduction velocity (MNCV simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/- mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/- BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/- mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair.

  11. Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus.

    Science.gov (United States)

    Solum, Derek T; Handa, Robert J

    2002-04-01

    During development, estrogen has a variety of effects on morphological and electrophysiological properties of hippocampal neurons. Brain-derived neurotrophic factor (BDNF) also plays an important role in the survival and differentiation of neurons during development. We examined the effects of gonadectomy with and without estrogen replacement on the mRNA and protein of BDNF and its receptor, trkB, during early postnatal development of the rat hippocampus. We used immunocytochemistry to demonstrate that estrogen receptor alpha (ERalpha) and BDNF were localized to the same cells within the developing hippocampus. BDNF and ERalpha were colocalized in pyramidal cells of the CA3 subregion and to a lesser extent in CA1. To determine whether BDNF mRNA was regulated by estrogen during development, we gonadectomized male rat pups at postnatal day 0 (P0) and examined mRNA and protein levels from P0 to P25 using real-time reverse transcription-PCR and Western blot analysis. After gonadectomy, BDNF mRNA levels are significantly reduced on P7, but after treatment of gonadectomized animals with estradiol benzoate on P0, levels at all ages were similar to those in intact animals. BDNF mRNA changes after gonadectomy are accompanied by an increase in the levels of BDNF protein, which were reduced by estrogen treatment at P0. We also examined the effect of postnatal estrogen treatment on trkB. There were no significant changes in trkB mRNA or protein in gonadectomized or estrogen-replaced animals. These results suggest that a direct interaction may exist between ERalpha and BDNF to alter hippocampal physiology during development in the rat.

  12. Involvement of brain-derived neurotrophic factor and neurogenesis in oestradiol neuroprotection of the hippocampus of hypertensive rats.

    Science.gov (United States)

    Pietranera, L; Lima, A; Roig, P; De Nicola, A F

    2010-10-01

    The hippocampus of spontaneously hypertensive rats (SHR) and deoxycorticosterone (DOCA)-salt hypertensive rats shows decreased cell proliferation and astrogliosis as well as a reduced number of hilar cells. These defects are corrected after administration of 17β-oestradiol (E(2) ) for 2 weeks. The present work investigated whether E(2) treatment of SHR and of hypertensive DOCA-salt male rats modulated the expression of brain-derived neurotrophic factor (BDNF), a neurotrophin involved in hippocampal neurogenesis. The neurogenic response to E(2) was simultaneously determined by counting the number of doublecortin-immunopositive immature neurones in the subgranular zone of the dentate gyrus. Both hypertensive models showed decreased expression of BDNF mRNA in the granular zone of the dentate gyrus, without changes in CA1 or CA3 pyramidal cell layers, decreased BDNF protein levels in whole hippocampal tissue, low density of doublecortin (DCX)-positive immature neurones in the subgranule zone and decreased length of DCX+ neurites in the dentate gyrus. After s.c. implantation of a single E(2) pellet for 2 weeks, BDNF mRNA in the dentate gyrus, BDNF protein in whole hippocampus, DCX immunopositive cells and the length of DCX+ neurites were significantly raised in both SHR and DOCA-salt-treated rats. These results indicate that: (i) low BDNF expression and deficient neurogenesis distinguished the hippocampus of SHR and DOCA-salt hypertensive rats and (ii) E(2) was able to normalise these biologically important functions in the hippocampus of hypertensive animals.

  13. Influence of brain-derived neurotrophic factor (BDNF) on serotonin neurotransmission in the hippocampus of adult rodents.

    Science.gov (United States)

    Benmansour, Saloua; Deltheil, Thierry; Piotrowski, Jonathan; Nicolas, Lorelei; Reperant, Christelle; Gardier, Alain M; Frazer, Alan; David, Denis J

    2008-06-10

    Whereas SSRIs produce rapid blockade of the serotonin transporter (SERT) in vitro and in vivo, the onset of an observable clinical effect takes longer to occur and a variety of pharmacological effects caused by antidepressants have been speculated to be involved either in initiating antidepressant effects and/or enhancing their effects on serotonergic transmission so as to cause clinical improvement. Among such secondary factors is increased activity of brain-derived neurotrophic factor (BDNF), which requires the Tropomyosine-related kinase B receptor (TrkB) for its effects. To begin an analysis of the influence of BDNF on serotonergic activity, we studied the acute effects of BDNF on SERT activity. A single BDNF injection (either intracerebroventricularly or directly into the CA3 region of hippocampus) decreased the signal amplitude and clearance rate produced by exogenously applied 5-HT compared to what was measured in control rats, shown using in vivo chronoamperometry. It also reduced the ability of a locally applied SSRI to block the clearance of 5-HT. In awake freely moving mice, acute intrahippocampal injection of BDNF decreased extracellular levels of 5-HT in the hippocampus, as measured using microdialysis. In addition, perfusion with BDNF decreased KCl-evoked elevations of 5-HT. These effects of BDNF were blocked by the non-selective antagonist of TrkB receptors, K252a. Overall, it may be inferred that in the hippocampus, through TrkB activation, a single injection of BDNF enhances SERT function. Such acute effects of BDNF would be expected to counter early effects of SSRIs, which might, in part, account for some delay in therapeutic effect.

  14. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist.

    Science.gov (United States)

    Katsurada, Kenichi; Yada, Toshihiko

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists.

  15. Ginsenoside Reduces Cognitive Impairment During Chronic Cerebral Hypoperfusion Through Brain-Derived Neurotrophic Factor Regulated by Epigenetic Modulation.

    Science.gov (United States)

    Wan, Qun; Ma, Xue; Zhang, Zhi-Jun; Sun, Ting; Xia, Feng; Zhao, Gang; Wu, Yu-Mei

    2016-03-28

    Increased expression of brain-derived neurotrophic factor (BDNF) has been associated with memory-enhancing and neuroprotective properties of some drugs under chronic cerebral hypoperfusion (CCH) condition. Ginsenoside Rd (GSRd), one of the main active ingredients in Panax ginseng, is widely used for brain protection. However, it is poorly understood whether epigenetic mechanisms implied in the BDNF modulation after GSRd treatment for CCH remain elusive. Here, we investigated the neuroprotective effects of GSRd and the involved mechanisms. We demonstrated that GSRd administration ameliorated CCH-induced impairment of learning and memory behaviors, evidenced by decreased escape latency and increased number of crossing the platform in Morris water maze test. This improvement was associated with promoted neuron survival and increased BDNF expression in the hippocampus and prefrontal cortex of CCH mice. GSRd improved neuron survival and decreased neuron apoptosis and the level of caspase-3 under oxygen-glucose deprivation/reoxygenation (OGD/R) by upregulation of BDNF as well as in vitro. The levels of acetylated histone H3 (Ac-H3) and histone deacetylase (histone deacetylase 2 (HDAC2)) were altered under OGD/R in a time-dependent manner, and GSRd reestablished the balance between Ac-H3 and HDAC2 which resulted in upregulation of BDNF and increased neuron survival. MS-275, an inhibitor of class I HDACs, abolished the levels of Ac-H3 at the bdnf promoters and enhanced upregulation of BDNF after GSRd administration, suggesting a synergistic effect between GSRd and MS-275. All the data suggested that GSRd provided neuroprotection by epigenetic modulation which accounted for the regulation of BDNF in CCH mice.

  16. Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine.

    Science.gov (United States)

    Martin-Iverson, M T; Todd, K G; Altar, C A

    1994-03-01

    To investigate behavioral and neurochemical effects of neurotrophic factors in vivo, rats received continuous 14 d infusions of either brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or vehicle unilaterally into the substantia nigra. BDNF and NT-3 decreased body weights, an effect that was sustained over the infusion period. BDNF elevated daytime and nocturnal locomotion compared with infusions of vehicle or NT-3. At 2 weeks, a systemic injection of amphetamine (1.5 mg/kg, s.c.) increased the frequencies and durations of rotations contraversive to the side of BDNF and NT-3 infusions. Both factors attenuated amphetamine-induced locomotion without affecting amphetamine-induced stereotyped behaviors such as sniffing, head movements, and snout contact with cage surfaces. Only BDNF induced backward walking, and this response was augmented by amphetamine. BDNF, but not NT-3, increased dopamine turnover in the striatum ipsilateral to the infusion relative to the contralateral striatum. Both trophic factors decreased dopamine turnover in the infused substantia nigra relative to the contralateral hemisphere and increased 5-HT turnover in the striatum of both sides. Contraversive rotations were positively correlated with dopamine content decreases and 5-HT turnover increases in the striatum ipsilateral to the infused substantia nigra. Backward walking was positively correlated with increased dopamine and 5-HT turnover in the striatum of the infused hemisphere. Supranigral infusions of BDNF and NT-3 alter circadian rhythms, spontaneous motor activity, body weights, and amphetamine-induced behaviors including locomotion and contraversive rotations. These behavioral effects of the neurotrophins are consistent with a concomitant activation of dopamine and 5-HT systems in vivo.

  17. Zinc(II) interactions with brain-derived neurotrophic factor N-terminal peptide fragments: inorganic features and biological perspectives.

    Science.gov (United States)

    Travaglia, Alessio; La Mendola, Diego; Magrì, Antonio; Pietropaolo, Adriana; Nicoletti, Vincenzo G; Grasso, Giuseppe; Malgieri, Gaetano; Fattorusso, Roberto; Isernia, Carla; Rizzarelli, Enrico

    2013-10-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal differentiation, growth, and survival; it is involved in memory formation and higher cognitive functions. The N-terminal domain of BDNF is crucial for the binding selectivity and activation of its specific TrkB receptor. Zn(2+) ion binding may influence BDNF activity. Zn(2+) complexes with the peptide fragment BDNF(1-12) encompassing the sequence 1-12 of the N-terminal domain of BDNF were studied by means of potentiometry, electrospray mass spectrometry, NMR, and density functional theory (DFT) approaches. The predominant Zn(2+) complex species, at physiological pH, is [ZnL] in which the metal ion is bound to an amino, an imidazole, and two water molecules (NH2, N(Im), and 2O(water)) in a tetrahedral environment. DFT-based geometry optimization of the zinc coordination environment showed a hydrogen bond between the carboxylate and a water molecule bound to zinc in [ZnL]. The coordination features of the acetylated form [AcBDNF(1-12)] and of a single mutated peptide [BDNF(1-12)D3N] were also characterized, highlighting the role of the imidazole side chain as the first anchoring site and ruling out the direct involvement of the aspartate residue in the metal binding. Zn(2+) addition to the cell culture medium induces an increase in the proliferative activity of the BDNF(1-12) peptide and of the whole protein on the SHSY5Y neuroblastoma cell line. The effect of Zn(2+) is opposite to that previously observed for Cu(2+) addition, which determines a decrease in the proliferative activity for both peptide and protein, suggesting that these metals might discriminate and modulate differently the activity of BDNF.

  18. Additive clinical value of serum brain-derived neurotrophic factor for prediction of chronic heart failure outcome.

    Science.gov (United States)

    Kadowaki, Shinpei; Shishido, Tetsuro; Honda, Yuki; Narumi, Taro; Otaki, Yoichiro; Kinoshita, Daisuke; Nishiyama, Satoshi; Takahashi, Hiroki; Arimoto, Takanori; Miyamoto, Takuya; Watanabe, Tetsu; Kubota, Isao

    2016-04-01

    The importance of the central nervous system in cardiovascular events has been recognized. Recently, brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, is involved in depression mechanisms and also in stress and anxiety. Because BDNF is reported about cardioprotective role, we elucidated whether BDNF is associated with cardiovascular events in patients with chronic heart failure (CHF). We examined serum BDNF levels in 134 patients with CHF and 23 control subjects. The patients were followed to register cardiac events for a median of 426 days. BDNF was significantly lower in CHF patients than in control subjects (25.8 ± 8.4 vs 14.7 ± 8.4, P BDNF was also lower in patients with cardiac events than in event-free patients (16.1 ± 8.0 vs 12.5 ± 8.5, P BDNF was determined by performing receiver operating characteristic curve analysis. Kaplan-Meier analysis demonstrated that patients with low levels of BDNF experienced higher rates of cardiac events than those with high levels of BDNF. Multivariate Cox hazard analysis demonstrated that low BDNF levels (≤12.4 ng/mL) were an independent prognostic factor for cardiac events (hazard ratio 2.932, 95 % confidence interval 1.622-5.301; P = 0.0004). Adding levels of BDNF to the model with BNP levels, age, and eGFR for the prediction of cardiac events yielded significant net reclassification improvement of 0.429 (P BDNF levels were found in patients with CHF, and these levels were found to be independently associated with an increased risk of cardiac events.

  19. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-09-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  20. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis.

    Science.gov (United States)

    Xuan, Weijun; Agrawal, Tanupriya; Huang, Liyi; Gupta, Gaurav K; Hamblin, Michael R

    2015-06-01

    Transcranial low-level laser (light) therapy (LLLT) is a new non-invasive approach to treating a range of brain disorders including traumatic brain injury (TBI). We (and others) have shown that applying near-infrared light to the head of animals that have suffered TBI produces improvement in neurological functioning, lessens the size of the brain lesion, reduces neuroinflammation, and stimulates the formation of new neurons. In the present study we used a controlled cortical impact TBI in mice and treated the mice either once (4 h post-TBI, 1-laser), or three daily applications (3-laser) with 810 nm CW laser 36 J/cm(2) at 50 mW/cm(2). Similar to previous studies, the neurological severity score improved in laser-treated mice compared to untreated TBI mice at day 14 and continued to further improve at days 21 and 28 with 3-laser being better than 1-laser. Mice were sacrificed at days 7 and 28 and brains removed for immunofluorescence analysis. Brain-derived neurotrophic factor (BDNF) was significantly upregulated by laser treatment in the dentate gyrus of the hippocampus (DG) and the subventricular zone (SVZ) but not in the perilesional cortex (lesion) at day 7 but not at day 28. Synapsin-1 (a marker for synaptogenesis, the formation of new connections between existing neurons) was significantly upregulated in lesion and SVZ but not DG, at 28 days but not 7 days. The data suggest that the benefit of LLLT to the brain is partly mediated by stimulation of BDNF production, which may in turn encourage synaptogenesis. Moreover the pleiotropic benefits of BDNF in the brain suggest LLLT may have wider applications to neurodegenerative and psychiatric disorders. Neurological Severity Score (NSS) for TBI mice.

  1. Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson's disease.

    Science.gov (United States)

    Tuon, T; Valvassori, S S; Dal Pont, G C; Paganini, C S; Pozzi, B G; Luciano, T F; Souza, P S; Quevedo, J; Souza, C T; Pinho, R A

    2014-09-01

    Depression is a neuropsychiatric disorder that is commonly found in patients with Parkinson's disease (PD). Many studies have suggested that physical exercise can have an antidepressant effect by increasing the levels of brain-derived neurotrophic factor (BDNF), and may also prevent neurodegenerative disease. However, different forms of training may promote different changes in the brain. The aim of this study was to investigate the effects of two types of physical training on depressive-like behavior, and on the levels of proBDNF, BDNF, and its receptor, TrkB, in a mouse model of PD. C57BL/6 mice were subjected to 60 days of exercise: either running on a treadmill or performing a strength exercise. PD was induced by striatal administration of 6-OHDA 24h after the last physical exercise session. Seven days after 6-OHDA injection, depressive-like behavior and apomorphine-induced rotational behavior were evaluated. The levels of proBDNF, BDNF, and TRKB were measured in the striatum and the hippocampus of mice by immunoblotting assay. The 6-OHDA-treated animals showed a significant increase in immobility time and rotational behavior compared with the control group. In addition, significant decreases in the levels of proBDNF, BDNF, and its receptor, TrkB were observed in the 6-OHDA group. Both types of physical exercise prevented depressive-like behavior and restored the levels of proBDNF, BDNF, and TrkB in the striatum and hippocampus of mice administered 6-OHDA. Our results demonstrate that exercise training was effective for neuroprotection in the striatum and the hippocampus in an experimental model of PD.

  2. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Chien-Hung Shih

    Full Text Available Neurite outgrowth is an essential process for the establishment of the nervous system. Brain-derived neurotrophic factor (BDNF binds to its receptor TrkB and regulates axonal and dendritic morphology of neurons through signal transduction and gene expression. SH2B1 is a signaling adaptor protein that regulates cellular signaling in various physiological processes. The purpose of this study is to investigate the role of SH2B1 in the development of the central nervous system. In this study, we show that knocking down SH2B1 reduces neurite formation of cortical neurons whereas overexpression of SH2B1β promotes the development of hippocampal neurons. We further demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth and signaling using the established PC12 cells stably expressing TrkB, SH2B1β or SH2B1β mutants. Our data indicate that overexpressing SH2B1β enhances BDNF-induced MEK-ERK1/2, and PI3K-AKT signaling pathways. Inhibition of MEK-ERK1/2 and PI3K-AKT pathways by specific inhibitors suggest that these two pathways are required for SH2B1β-promoted BDNF-induced neurite outgrowth. Moreover, SH2B1β enhances BDNF-stimulated phosphorylation of signal transducer and activator of transcription 3 at serine 727. Finally, our data indicate that the SH2 domain and tyrosine phosphorylation of SH2B1β contribute to BDNF-induced signaling pathways and neurite outgrowth. Taken together, these findings demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth through enhancing pathways involved MEK-ERK1/2 and PI3K-AKT.

  3. Expression of brain-derived neurotrophic factor and TrkB in the lateral line system of zebrafish during development.

    Science.gov (United States)

    Germanà, A; Laurà, R; Montalbano, G; Guerrera, M C; Amato, V; Zichichi, R; Campo, S; Ciriaco, E; Vega, J A

    2010-07-01

    The neuromasts of the lateral line system are regarded as a model to study the mechanisms of hearing, deafness, and ototoxicity. The neurotrophins (NTs), especially brain-derived neurotrophic factor (BDNF), and its signaling receptor TrkB are involved in the development and maintenance of neuromasts. To know the period in which the BDNF/TrkB complex has more effects in the neuromast biology, the age-related changes were studied. Normal zebrafish from 10 to 180 days post-fertilization (dpf), as well as transgenic ET4 zebrafish 10 and 20 dpf, was analyzed using qRT-PCR, western blot, and immunohistochemistry. BDNF and TrkB mRNAs followed a parallel course, peaking at 20 dpf, and thereafter progressively decreased. Specific immunoreactivity for BDNF and TrkB was found co-localized in all hairy cells of neuromasts in 20 and 30 dpf; then, the number of immunoreactive cells decreased, and by 180 dpf BDNF remains restricted to a subpopulation of hairy cells, and TrkB to a few number of sensory and non-sensory cells. At all ages examined, TrkB immunoreactivity was detected in sensory ganglia innervating the neuromasts. The present results demonstrate that there is a parallel time-related decline in the expression of BDNF and TrkB in zebrafish. Also, the patterns of cell expression suggest that autocrine/paracrine mechanisms for this NT system might occur within the neuromasts. Because TrkB in lateral line ganglia did not vary with age, their neurons are potentially capable to respond to BDNF during the entire lifespan of zebrafish.

  4. Short-term striatal gene expression responses to brain-derived neurotrophic factor are dependent on MEK and ERK activation.

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce

    Full Text Available BACKGROUND: Brain-derived neurotrophic factor (BDNF is believed to be an important regulator of striatal neuron survival, differentiation, and plasticity. Moreover, reduction of BDNF delivery to the striatum has been implicated in the pathophysiology of Huntington's disease. Nevertheless, many essential aspects of BDNF responses in striatal neurons remain to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we assessed the relative contributions of multipartite intracellular signaling pathways to the short-term induction of striatal gene expression by BDNF. To identify genes regulated by BDNF in these GABAergic cells, we first used DNA microarrays to quantify their transcriptomic responses following 3 h of BDNF exposure. The signal transduction pathways underlying gene induction were subsequently dissected using pharmacological agents and quantitative real-time PCR. Gene expression responses to BDNF were abolished by inhibitors of TrkB (K252a and calcium (chelator BAPTA-AM and transient receptor potential cation channel [TRPC] antagonist SKF-96365. Interestingly, inhibitors of mitogen-activated protein kinase kinases 1 and 2 (MEK1/2 and extracellular signal-regulated kinase ERK also blocked the BDNF-mediated induction of all tested BDNF-responsive genes. In contrast, inhibitors of nitric oxide synthase (NOS, phosphotidylinositol-3-kinase (PI3K, and CAMK exhibited less prevalent, gene-specific effects on BDNF-induced RNA expression. At the nuclear level, the activation of both Elk-1 and CREB showed MEK dependence. Importantly, MEK-dependent activation of transcription was shown to be required for BDNF-induced striatal neurite outgrowth, providing evidence for its contribution to striatal neuron plasticity. CONCLUSIONS: These results show that the MEK/ERK pathway is a major mediator of neuronal plasticity and other important BDNF-dependent striatal functions that are fulfilled through the positive regulation of gene expression.

  5. Expression and cell localization of brain-derived neurotrophic factor and TrkB during zebrafish retinal development.

    Science.gov (United States)

    Germanà, A; Sánchez-Ramos, C; Guerrera, M C; Calavia, M G; Navarro, M; Zichichi, R; García-Suárez, O; Pérez-Piñera, P; Vega, Jose A

    2010-09-01

    Brain-derived neurotrophic factor (BDNF) signaling through TrkB regulates different aspects of neuronal development, including survival, axonal and dendritic growth, and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF and TrkB in the retina, the cell types in the retina that express BDNF and TrkB, and the variations in their levels of expression during development, remain poorly defined. The goal of the present study is to determine the age-dependent changes in the levels of expression and localization of BDNF and TrkB in the zebrafish retina. Zebrafish retinas from 10 days post-fertilization (dpf) to 180 dpf were used to perform PCR, Western blot and immunohistochemistry. Both BDNF and TrkB mRNAs, and BDNF and full-length TrkB proteins were detected at all ages sampled. The localization of these proteins in the retina was very similar at all time points studied. BDNF immunoreactivity was found in the outer nuclear layer, the outer plexiform layer and the inner plexiform layer, whereas TrkB immunoreactivity was observed in the inner plexiform layer and, to a lesser extent, in the ganglion cell layer. These results demonstrate that the pattern of expression of BDNF and TrkB in the retina of zebrafish remains unchanged during postembryonic development and adult life. Because TrkB expression in retina did not change with age, cells expressing TrkB may potentially be able to respond during the entire lifespan of zebrafish to BDNF either exogenously administered or endogenously produced, acting through paracrine mechanisms.

  6. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C.

    Science.gov (United States)

    Al-Qudah, M; Anderson, C D; Mahavadi, S; Bradley, Z L; Akbarali, H I; Murthy, K S; Grider, J R

    2014-02-15

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation.

  7. Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures.

    Science.gov (United States)

    Jin, Xiaoming; Hu, Hang; Mathers, Peter H; Agmon, Ariel

    2003-07-02

    Brain-derived neurotrophic factor (BDNF) promotes postnatal maturation of GABAergic inhibition in the cerebral and cerebellar cortices, and its expression and release are enhanced by neuronal activity, suggesting that it acts in a feedback manner to maintain a balance between excitation and inhibition during development. BDNF promotes differentiation of cerebellar, hippocampal, and neostriatal inhibitory neurons, but its effects on the dendritic development of neocortical inhibitory interneurons remain unknown. Here, we show that BDNF mediates depolarization-induced dendritic growth and branching in neocortical interneurons. To visualize inhibitory interneurons, we biolistically transfected organotypic cortical slice cultures from neonatal mice with green fluorescent protein (GFP) driven by the glutamic acid decarboxylase (GAD)67 promoter. Nearly all GAD67-GFP-expressing neurons were nonpyramidal, many contained GABA, and some expressed markers of neurochemically defined GABAergic subtypes, indicating that GAD67-GFP-expressing neurons were GABAergic. We traced dendritic trees from confocal images of the same GAD67-GFP-expressing neurons before and after a 5 d growth period, and quantified the change in total dendritic length (TDL) and total dendritic branch points (TDBPs) for each neuron. GAD67-GFP-expressing neurons growing in control medium exhibited a 20% increase in TDL, but in 200 ng/ml BDNF or 10 mm KCl, this increase nearly doubled and was accompanied by a significant increase in TDBPs. Blocking action potentials with TTX did not prevent the BDNF-induced growth, but antibodies against BDNF blocked the growth-promoting effect of KCl. We conclude that BDNF, released by neocortical pyramidal neurons in response to depolarization, enhances dendritic growth and branching in nearby inhibitory interneurons.

  8. Overexpression of neuropeptide Y induced by brain-derived neurotrophic factor in the rat hippocampus is long lasting.

    Science.gov (United States)

    Reibel, S; Vivien-Roels, B; Lê, B T; Larmet, Y; Carnahan, J; Marescaux, C; Depaulis, A

    2000-02-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampal neuroplasticity. In particular, BDNF upregulation in the hippocampus by epileptic seizures suggests its involvement in the neuronal rearrangements accompanying epileptogenesis. We have shown previously that chronic infusion of BDNF in the hippocampus induces a long-term delay in hippocampal kindling progression. Although BDNF has been shown to enhance the excitability of this structure upon acute application, long-term transcriptional regulations leading to increased inhibition within the hippocampus may account for its suppressive effects on epileptogenesis. Therefore, the long-term consequences of a 7-day chronic intrahippocampal infusion of BDNF (12 microg/day) were investigated up to 2 weeks after the end of the infusion, on the expression of neurotransmitters contained in inhibitory hippocampal interneurons and which display anti-epileptic properties. Our results show that BDNF does not modify levels of immunostaining for glutamic acid decarboxylase, the rate-limiting enzyme for gamma-aminobutyric acid (GABA) synthesis, and somatostatin. Conversely, BDNF induces a long-lasting increase of neuropeptide Y (NPY) in the hippocampus, measured by immunohistochemistry and radioimmunoassay, outlasting the end of the infusion by at least 7 days. The distribution of BDNF-induced neuropeptide Y immunoreactivity is similar to the pattern observed in animals submitted to hippocampal kindling, with the exception of mossy fibres which only become immunoreactive following seizure activity. The enduring increase of neuropeptide Y expression induced by BDNF in the hippocampus suggests that this neurotrophin can trigger long-term genomic effects, which may contribute to the neuroplasticity of this structure, in particular during epileptogenesis.

  9. Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats.

    Science.gov (United States)

    Boyce, Vanessa S; Park, Jihye; Gage, Fred H; Mendell, Lorne M

    2012-01-01

    We compared the effect of viral administration of brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (NT-3) on locomotor recovery in adult rats with complete thoracic (T10) spinal cord transection injuries, in order to determine the effect of chronic neurotrophin expression on spinal plasticity. At the time of injury, BDNF, NT-3 or green fluorescent protein (GFP) (control) was delivered to the lesion via adeno-associated virus (AAV) constructs. AAV-BDNF was significantly more effective than AAV-NT-3 in eliciting locomotion. In fact, AAV-BDNF-treated rats displayed plantar, weight-supported hindlimb stepping on a stationary platform, that is, without the assistance of a moving treadmill and without step training. Rats receiving AAV-NT-3 or AAV-GFP were incapable of hindlimb stepping during this task, despite provision of balance support. AAV-NT-3 treatment did promote the recovery of treadmill-assisted stepping, but this required continuous perineal stimulation. In addition, AAV-BDNF-treated rats were sensitized to noxious heat, whereas AAV-NT-3-treated and AAV-GFP-treated rats were not. Notably, AAV-BDNF-treated rats also developed hindlimb spasticity, detracting from its potential clinical applicability via the current viral delivery method. Intracellular recording from triceps surae motoneurons revealed that AAV-BDNF significantly reduced motoneuron rheobase, suggesting that AAV-BDNF promoted the recovery of over-ground stepping by enhancing neuronal excitability. Elevated nuclear c-Fos expression in interneurons located in the L2 intermediate zone after AAV-BDNF treatment indicated increased activation of interneurons in the vicinity of the locomotor central pattern generator. AAV-NT-3 treatment reduced motoneuron excitability, with little change in c-Fos expression. These results support the potential for BDNF delivery at the lesion site to reorganize locomotor circuits.

  10. Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord.

    Science.gov (United States)

    Johnson, R A; Okragly, A J; Haak-Frendscho, M; Mitchell, G S

    2000-05-15

    Although neurotrophic factors have been implicated in several forms of neuroplasticity, little is known concerning their potential role in spinal plasticity. Cervical dorsal rhizotomy (CDR) enhances serotonin terminal density near (spinal) phrenic motoneurons and serotonin-dependent long-term facilitation of phrenic motor output (Kinkead et al., 1998). We tested the hypothesis that selected neurotrophic factors change in a manner consistent with an involvement in this model of spinal plasticity. Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), glial cell line-derived neurotrophic factor (GDNF), and transforming growth factor-beta(1) (TGF-beta(1)) concentrations were measured (ELISA) in three regions of interest to respiratory control: (1) ventral cervical spinal segments associated with the phrenic motor nucleus (C3-C6), (2) ventral thoracic spinal segments associated with inspiratory intercostal motor output (T3-T6) and (3) the diaphragm. Tissues were harvested from rats 7 d after bilateral CDR and compared with sham-operated and unoperated control rats. CDR increased BDNF (110%; p = 0.002) and NT-3 (100%; p = 0.002) in the cervical and NT-3 in the thoracic spinal cord (98%; p = 0.009). GDNF and TGF-beta(1) were not altered by CDR in any tissue. Immunohistochemistry localized BDNF and NT-3 to motoneurons and interneurons of the ventral spinal cord. These studies provide novel, suggestive evidence that BDNF and NT-3, possibly through their trophic effects on serotonergic neurons and/or motoneurons, may underlie serotonin-dependent plasticity in (spinal) respiratory motor control after CDR.

  11. Brain-derived neurotrophic factor but not neurotrophin-3 enhances differentiation of somatostatin neurons in hypothalamic cultures.

    Science.gov (United States)

    Loudes, C; Petit, F; Kordon, C; Faivre-Bauman, A

    2000-09-01

    The present work investigated whether neurotrophins could differentially affect in vitro growth and maturation of two related subsets of hypothalamic neurons, hypophysiotropic somatostatin (SRIH) neurons projecting from the periventricular area and arcuate SRIH interneurons. For this purpose, the hypothalamus of 17-day-old rat fetuses was sampled and separated into a ventral and a dorsal fragment containing respectively periventricular and arcuate regions. Each fragment was dissociated and seeded separately in defined medium. Brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3), two important members of the neurotrophin family involved in neuronal differentiation and plasticity, were added to the cultures at seeding time. After 6 or 11 days in vitro, neurons were labeled with an anti-SRIH antiserum and submitted to morphometric analysis. In parallel, SRIH mRNA was estimated by semiquantitative reverse-transcriptase-polymerase chain reaction, and neuronal SRIH content, basal and depolarisation-stimulated releases measured by radioimmunoassay. The response of control, non-labeled neurons was estimated by neuronal counts and by assaying glutamic acid decarboxylase, a marker of a large majority of hypothalamic neurons. BDNF markedly increased the size and the branching number of SRIH periventricular cell bodies. Expression of SRIH mRNA, as well as SRIH content and release into the culture medium, were also stimulated by the neurotrophin. Non-SRIH neurons were not affected by the treatment. Under the same conditions, arcuate neurons exhibited a weak, mostly transient response to BDNF. NT-3 was ineffective on either neuronal subset. Immunoneutralization of Trk receptors provided further evidence for BDNF effect specificity. The results indicate that BDNF is a selective activator of the differentiation of hypophysiotropic SRIH neurons in the periventricular area of the hypothalamus.

  12. Regulation of fear extinction by long-term depression: The roles of endocannabinoids and brain derived neurotrophic factor.

    Science.gov (United States)

    Bennett, Maxwell R; Arnold, Jonathon; Hatton, Sean N; Lagopoulos, Jim

    2017-02-15

    The extinction of a conditioned fear response is of great interest in the search for a means of ameliorating adverse neurobiological changes resulting from stress. The discovery that endocannibinoid (EC) levels are inversely related to the extent of such stress, and that the amygdala is a primary site mediating stress, suggests that ECs in this brain region might play a major role in extinction. Supporting this are the observations that the basolateral complex of the amygdala shows an increase in ECs only during extinction and that early clinical trials indicate that cannabinoid-like agents, when taken orally by patients suffering from post traumatic stress disorder (PTSD), reduce insomnia and nightmares. In order to op