WorldWideScience

Sample records for brain-computer interface bci

  1. A development architecture for serious games using BCI (brain computer interface) sensors.

    Science.gov (United States)

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-11-12

    Games that use brainwaves via brain-computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.

  2. A Development Architecture for Serious Games Using BCI (Brain Computer Interface Sensors

    Directory of Open Access Journals (Sweden)

    Kyhyun Um

    2012-11-01

    Full Text Available Games that use brainwaves via brain–computer interface (BCI devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.

  3. A Development Architecture for Serious Games Using BCI (Brain Computer Interface) Sensors

    Science.gov (United States)

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-01-01

    Games that use brainwaves via brain–computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories. PMID:23202227

  4. Evolution of the Brain Computing Interface (BCI and Proposed Electroencephalography (EEG Signals Based Authentication Model

    Directory of Open Access Journals (Sweden)

    Ramzan Qaseem

    2018-01-01

    Full Text Available With current advancements in the field of Brain Computer interface it is required to study how it will affect the other technologies currently in use. In this paper, the authors motivate the need of Brain Computing Interface in the era of IoT (Internet of Things, and analyze how BCI in the presence of IoT could have serious privacy breach if not protected by new kind of more secure protocols. Security breach and hacking has been around for a long time but now we are sensitive towards data as our lives depend on it. When everything is interconnected through IoT and considering that we control all interconnected things by means of our brain using BCI (Brain Computer Interface, the meaning of security breach becomes much more sensitive than in the past. This paper describes the old security methods being used for authentication and how they can be compromised. Considering the sensitivity of data in the era of IoT, a new form of authentication is required, which should incorporate BCI rather than usual authentication techniques.

  5. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    Science.gov (United States)

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  6. Proprioceptive feedback and brain computer interface (BCI based neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Ander Ramos-Murguialday

    Full Text Available Brain computer interface (BCI technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1 motor imagery of the hand movement without any overt movement and without feedback, (2 motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3 passive (the orthosis passively opens and closes the hand without imagery and (4 active (overt movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants. Group 1 (n = 9 received contingent positive feedback (participants' sensorimotor rhythm (SMR desynchronization was directly linked to hand orthosis movements, group 2 (n = 8 contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements and group 3 (n = 7 sham feedback (no link between brain oscillations and orthosis movements. We observed that proprioceptive feedback (feeling and seeing hand movements improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and

  7. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.

    Science.gov (United States)

    Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels

    2012-01-01

    Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive

  8. sBCI-Headset—Wearable and Modular Device for Hybrid Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Tatsiana Malechka

    2015-02-01

    Full Text Available Severely disabled people, like completely paralyzed persons either with tetraplegia or similar disabilities who cannot use their arms and hands, are often considered as a user group of Brain Computer Interfaces (BCI. In order to achieve high acceptance of the BCI by this user group and their supporters, the BCI system has to be integrated into their support infrastructure. Critical disadvantages of a BCI are the time consuming preparation of the user for the electroencephalography (EEG measurements and the low information transfer rate of EEG based BCI. These disadvantages become apparent if a BCI is used to control complex devices. In this paper, a hybrid BCI is described that enables research for a Human Machine Interface (HMI that is optimally adapted to requirements of the user and the tasks to be carried out. The solution is based on the integration of a Steady-state visual evoked potential (SSVEP-BCI, an Event-related (de-synchronization (ERD/ERS-BCI, an eye tracker, an environmental observation camera, and a new EEG head cap for wearing comfort and easy preparation. The design of the new fast multimodal BCI (called sBCI system is described and first test results, obtained in experiments with six healthy subjects, are presented. The sBCI concept may also become useful for healthy people in cases where a “hands-free” handling of devices is necessary.

  9. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    Science.gov (United States)

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  10. Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline.

    Science.gov (United States)

    Statthaler, Karina; Schwarz, Andreas; Steyrl, David; Kobler, Reinmar; Höller, Maria Katharina; Brandstetter, Julia; Hehenberger, Lea; Bigga, Marvin; Müller-Putz, Gernot

    2017-12-28

    In this work, we share our experiences made at the world-wide first CYBATHLON, an event organized by the Eidgenössische Technische Hochschule Zürich (ETH Zürich), which took place in Zurich in October 2016. It is a championship for severely motor impaired people using assistive prototype devices to compete against each other. Our team, the Graz BCI Racing Team MIRAGE91 from Graz University of Technology, participated in the discipline "Brain-Computer Interface Race". A brain-computer interface (BCI) is a device facilitating control of applications via the user's thoughts. Prominent applications include assistive technology such as wheelchairs, neuroprostheses or communication devices. In the CYBATHLON BCI Race, pilots compete in a BCI-controlled computer game. We report on setting up our team, the BCI customization to our pilot including long term training and the final BCI system. Furthermore, we describe CYBATHLON participation and analyze our CYBATHLON result. We found that our pilot was compliant over the whole time and that we could significantly reduce the average runtime between start and finish from initially 178 s to 143 s. After the release of the final championship specifications with shorter track length, the average runtime converged to 120 s. We successfully participated in the qualification race at CYBATHLON 2016, but performed notably worse than during training, with a runtime of 196 s. We speculate that shifts in the features, due to the nonstationarities in the electroencephalogram (EEG), but also arousal are possible reasons for the unexpected result. Potential counteracting measures are discussed. The CYBATHLON 2016 was a great opportunity for our student team. We consolidated our theoretical knowledge and turned it into practice, allowing our pilot to play a computer game. However, further research is required to make BCI technology invariant to non-task related changes of the EEG.

  11. Concept of software interface for BCI systems

    Science.gov (United States)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  12. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis.

    Science.gov (United States)

    McCane, Lynn M; Sellers, Eric W; McFarland, Dennis J; Mak, Joseph N; Carmack, C Steve; Zeitlin, Debra; Wolpaw, Jonathan R; Vaughan, Theresa M

    2014-06-01

    Brain-computer interfaces (BCIs) might restore communication to people severely disabled by amyotrophic lateral sclerosis (ALS) or other disorders. We sought to: 1) define a protocol for determining whether a person with ALS can use a visual P300-based BCI; 2) determine what proportion of this population can use the BCI; and 3) identify factors affecting BCI performance. Twenty-five individuals with ALS completed an evaluation protocol using a standard 6 × 6 matrix and parameters selected by stepwise linear discrimination. With an 8-channel EEG montage, the subjects fell into two groups in BCI accuracy (chance accuracy 3%). Seventeen averaged 92 (± 3)% (range 71-100%), which is adequate for communication (G70 group). Eight averaged 12 (± 6)% (range 0-36%), inadequate for communication (L40 subject group). Performance did not correlate with disability: 11/17 (65%) of G70 subjects were severely disabled (i.e. ALSFRS-R < 5). All L40 subjects had visual impairments (e.g. nystagmus, diplopia, ptosis). P300 was larger and more anterior in G70 subjects. A 16-channel montage did not significantly improve accuracy. In conclusion, most people severely disabled by ALS could use a visual P300-based BCI for communication. In those who could not, visual impairment was the principal obstacle. For these individuals, auditory P300-based BCIs might be effective.

  13. Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate

    Science.gov (United States)

    ... Home Current Issue Past Issues Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate Past Issues / ... of this page please turn Javascript on. A brain-computer interface (BCI) system This brain-computer interface (BCI) system ...

  14. Near infrared spectroscopy based brain-computer interface

    Science.gov (United States)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  15. Robust Brain-Computer Interfaces

    NARCIS (Netherlands)

    Reuderink, B.

    2011-01-01

    A brain-computer interface (BCI) enables direct communication from the brain to devices, bypassing the traditional pathway of peripheral nerves and muscles. Current BCIs aimed at patients require that the user invests weeks, or even months, to learn the skill to intentionally modify their brain

  16. Brain-Computer Interface Games: Towards a Framework.

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Nijholt, Antinus; Poel, Mannes; Herrlich, Marc; Malaka, Rainer; Masuch, Maic

    2012-01-01

    The brain-computer interface (BCI) community started to consider games as potential applications while the games community started to consider BCI as a game controller. However, there is a discrepancy between the BCI games developed by the two communities. In this paper, we propose a preliminary BCI

  17. Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future.

    Science.gov (United States)

    Huggins, Jane E; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K R; Ramsey, Nick F; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J; Mattia, Donatella; Lance, Brent J; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H; Collinger, Jennifer L; Chavarriaga, Ricardo; Chase, Steven M; Bleichner, Martin G; Batista, Aaron; Anderson, Charles W; Aarnoutse, Erik J

    2017-01-01

    The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.

  18. Brain Computer Interfaces, a Review

    Directory of Open Access Journals (Sweden)

    Luis Fernando Nicolas-Alonso

    2012-01-01

    Full Text Available A brain-computer interface (BCI is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

  19. Brain Computer Interfaces, a Review

    Science.gov (United States)

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708

  20. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    Science.gov (United States)

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  1. Brain-Computer Interface Games: Towards a Framework

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Nijholt, Antinus; Poel, Mannes; Nakatsu, Ryohei; Rauterberg, Matthias; Ciancarini, Paolo

    2015-01-01

    The brain-computer interface (BCI) community has started to consider games as potential applications, while the game community has started to consider BCI as a game controller. However, there is a discrepancy between the BCI games developed by the two communities. This not only adds to the workload

  2. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    Science.gov (United States)

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  3. Brain-Computer Interfaces in Medicine

    Science.gov (United States)

    Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.

    2012-01-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364

  4. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  5. A comparative study: use of a Brain-computer Interface (BCI) device by people with cerebral palsy in interaction with computers.

    Science.gov (United States)

    Heidrich, Regina O; Jensen, Emely; Rebelo, Francisco; Oliveira, Tiago

    2015-01-01

    This article presents a comparative study among people with cerebral palsy and healthy controls, of various ages, using a Brain-computer Interface (BCI) device. The research is qualitative in its approach. Researchers worked with Observational Case Studies. People with cerebral palsy and healthy controls were evaluated in Portugal and in Brazil. The study aimed to develop a study for product evaluation in order to perceive whether people with cerebral palsy could interact with the computer and compare whether their performance is similar to that of healthy controls when using the Brain-computer Interface. Ultimately, it was found that there are no significant differences between people with cerebral palsy in the two countries, as well as between populations without cerebral palsy (healthy controls).

  6. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.

    Science.gov (United States)

    Huggins, Jane E; Guger, Christoph; Allison, Brendan; Anderson, Charles W; Batista, Aaron; Brouwer, Anne-Marie A-M; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7 th , 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.

  7. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    Science.gov (United States)

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  8. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    NARCIS (Netherlands)

    Jensen, O.; Bahramisharif, A.; Oostenveld, R.; Klanke, S.; Hadjipapas, A.; Okazaki, Y.O.; Gerven, M.A.J. van

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain-computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for

  9. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study

    Science.gov (United States)

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced

  10. Tools for Brain-Computer Interaction: a general concept for a hybrid BCI (hBCI

    Directory of Open Access Journals (Sweden)

    Gernot R. Mueller-Putz

    2011-11-01

    Full Text Available The aim of this work is to present the development of a hybrid Brain-Computer Interface (hBCI which combines existing input devices with a BCI. Thereby, the BCI should be available if the user wishes to extend the types of inputs available to an assistive technology system, but the user can also choose not to use the BCI at all; the BCI is active in the background. The hBCI might decide on the one hand which input channel(s offer the most reliable signal(s and switch between input channels to improve information transfer rate, usability, or other factors, or on the other hand fuse various input channels. One major goal therefore is to bring the BCI technology to a level where it can be used in a maximum number of scenarios in a simple way. To achieve this, it is of great importance that the hBCI is able to operate reliably for long periods, recognizing and adapting to changes as it does so. This goal is only possible if many different subsystems in the hBCI can work together. Since one research institute alone cannot provide such different functionality, collaboration between institutes is necessary. To allow for such a collaboration, a common software framework was investigated.

  11. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    NARCIS (Netherlands)

    Jensen, O.; Bahramisharif, A.; Oostenveld, R.; Klanke, S.; Hadjipapas, A.; Okazaki, Y.O.; Gerven, M.A.J. van

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for

  12. Brain-computer interfaces in neurological rehabilitation.

    Science.gov (United States)

    Daly, Janis J; Wolpaw, Jonathan R

    2008-11-01

    Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.

  13. Real-time brain computer interface using imaginary movements

    DEFF Research Database (Denmark)

    El-Madani, Ahmad; Sørensen, Helge Bjarup Dissing; Kjær, Troels W.

    2015-01-01

    Background: Brain Computer Interface (BCI) is the method of transforming mental thoughts and imagination into actions. A real-time BCI system can improve the quality of life of patients with severe neuromuscular disorders by enabling them to communicate with the outside world. In this paper...

  14. Brain-Computer Interface Spellers: A Review.

    Science.gov (United States)

    Rezeika, Aya; Benda, Mihaly; Stawicki, Piotr; Gembler, Felix; Saboor, Abdul; Volosyak, Ivan

    2018-03-30

    A Brain-Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers.

  15. The brain-computer interface cycle.

    Science.gov (United States)

    van Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Anton; Ramsey, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter

    2009-08-01

    Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the subject and the effect of feedback on brain activity. In this article we will review the critical steps of the BCI cycle, the present issues and state-of-the-art results. Moreover, we will develop a vision on how recently obtained results may contribute to new insights in neurocognition and, in particular, in the neural representation of perceived stimuli, intended actions and emotions. Now is the right time to explore what can be gained by embracing real-time, online BCI and by adding it to the set of experimental tools already available to the cognitive neuroscientist. We close by pointing out some unresolved issues and present our view on how BCI could become an important new tool for probing human cognition.

  16. Brain-computer interfaces increase whole-brain signal to noise.

    Science.gov (United States)

    Papageorgiou, T Dorina; Lisinski, Jonathan M; McHenry, Monica A; White, Jason P; LaConte, Stephen M

    2013-08-13

    Brain-computer interfaces (BCIs) can convert mental states into signals to drive real-world devices, but it is not known if a given covert task is the same when performed with and without BCI-based control. Using a BCI likely involves additional cognitive processes, such as multitasking, attention, and conflict monitoring. In addition, it is challenging to measure the quality of covert task performance. We used whole-brain classifier-based real-time functional MRI to address these issues, because the method provides both classifier-based maps to examine the neural requirements of BCI and classification accuracy to quantify the quality of task performance. Subjects performed a covert counting task at fast and slow rates to control a visual interface. Compared with the same task when viewing but not controlling the interface, we observed that being in control of a BCI improved task classification of fast and slow counting states. Additional BCI control increased subjects' whole-brain signal-to-noise ratio compared with the absence of control. The neural pattern for control consisted of a positive network comprised of dorsal parietal and frontal regions and the anterior insula of the right hemisphere as well as an expansive negative network of regions. These findings suggest that real-time functional MRI can serve as a platform for exploring information processing and frontoparietal and insula network-based regulation of whole-brain task signal-to-noise ratio.

  17. The Future of Brain-Computer Interfacing (keynote paper)

    NARCIS (Netherlands)

    Nijholt, Antinus

    In this paper we survey some early applications and research on brain-computer interfacing. We emphasize and revalue the role the views on artistic and playful applications have played. In previous years various road maps for BCI research appeared. The interest in medical applications has guided BCI

  18. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.

    Science.gov (United States)

    Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria

    2012-01-01

    Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.

  19. Neuroanatomical correlates of brain-computer interface performance.

    Science.gov (United States)

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A brain-computer interface to support functional recovery

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Sørensen, Helge Bjarup Dissing

    2013-01-01

    Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features...... extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type...... of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating...

  1. A brain computer interface-based explorer.

    Science.gov (United States)

    Bai, Lijuan; Yu, Tianyou; Li, Yuanqing

    2015-04-15

    In recent years, various applications of brain computer interfaces (BCIs) have been studied. In this paper, we present a hybrid BCI combining P300 and motor imagery to operate an explorer. Our system is mainly composed of a BCI mouse, a BCI speller and an explorer. Through this system, the user can access his computer and manipulate (open, close, copy, paste, and delete) files such as documents, pictures, music, movies and so on. The system has been tested with five subjects, and the experimental results show that the explorer can be successfully operated according to subjects' intentions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Brain-Computer Interface Cycle

    NARCIS (Netherlands)

    Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Antinus; Ramsay, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter

    2009-01-01

    Brain–computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of

  3. Evaluación experimental y estadística de un prototipo de interfaz cerebro-computador (ICC) [Experimental and statistical evaluation of a brain-computer interface (BCI) prototype

    NARCIS (Netherlands)

    Arcos Argoty, J.; Garcia Cossio, E.; Torres Villa, R.A.

    2010-01-01

    Abstract: Nowadays, brain-computer interfaces (BCI) are designed to be used in experimental and clinical studies, and their results allow the creation of new assistive technologies for people with motor disabilities. In 2008, a prototype of a BCI was developed in the School of Engineering of

  4. Mental workload during brain-computer interface training.

    Science.gov (United States)

    Felton, Elizabeth A; Williams, Justin C; Vanderheiden, Gregg C; Radwin, Robert G

    2012-01-01

    It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts' law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0-100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. Mental workload of brain-computer interfaces (BCI) can be evaluated with the NASA Task Load Index (TLX). The TLX is an effective tool for comparing subjective workload between BCI tasks, participant groups (able-bodied and disabled), and control modalities. The data can inform the design of BCIs that will have greater usability.

  5. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis

    Science.gov (United States)

    Mak, Joseph N.; McFarland, Dennis J.; Vaughan, Theresa M.; McCane, Lynn M.; Tsui, Phillippa Z.; Zeitlin, Debra J.; Sellers, Eric W.; Wolpaw, Jonathan R.

    2012-04-01

    The purpose of this study was to identify electroencephalography (EEG) features that correlate with P300-based brain-computer interface (P300 BCI) performance in people with amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling application in copy-spelling mode. Three types of EEG features were found to be good predictors of P300 BCI performance: (1) the root-mean-square amplitude and (2) the negative peak amplitude of the event-related potential to target stimuli (target ERP) at Fz, Cz, P3, Pz, and P4; and (3) EEG theta frequency (4.5-8 Hz) power at Fz, Cz, P3, Pz, P4, PO7, PO8 and Oz. A statistical prediction model that used a subset of these features accounted for >60% of the variance in copy-spelling performance (p < 0.001, mean R2 = 0.6175). The correlations reflected between-subject, rather than within-subject, effects. The results enhance understanding of performance differences among P300 BCI users. The predictors found in this study might help in: (1) identifying suitable candidates for long-term P300 BCI operation; (2) assessing performance online. Further work on within-subject effects needs to be done to establish whether P300 BCI user performance could be improved by optimizing one or more of these EEG features.

  6. Papers from the Fifth International Brain-Computer Interface Meeting

    Science.gov (United States)

    Huggins, Jane E.; Wolpaw, Jonathan R.

    2014-06-01

    Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs), translate brain activity into new outputs that replace, restore, enhance, supplement or improve natural brain outputs. BCI research and development has grown rapidly for the past two decades. It is beginning to provide useful communication and control capacities to people with severe neuromuscular disabilities; and it is expanding into new areas such as neurorehabilitation that may greatly increase its clinical impact. At the same time, significant challenges remain, particularly in regard to translating laboratory advances into clinical use. The papers in this special section report some of the work presented at the Fifth International BCI Meeting held on 3-7 June 2013 at the Asilomar Conference Center in Pacific Grove, California, USA. Like its predecessors over the past 15 years, this meeting was supported by the National Institutes of Health, the National Science Foundation, and a variety of other governmental and private sponsors [1]. This fifth meeting was organized and managed by a program committee of BCI researchers from throughout the world [2]. It retained the distinctive retreat-style format developed by the Wadsworth Center researchers who organized and managed the first four meetings. The 301 attendees came from 165 research groups in 29 countries; 37% were students or postdoctoral fellows. Of more than 200 extended abstracts submitted for peer review, 25 were selected for oral presentation [3], and 181 were presented as posters [4] and published in the open-access conference proceedings [5]. The meeting featured 19 highly interactive workshops [6] covering the broad spectrum of BCI research and development, as well as many demonstrations of BCI systems and associated technology. Like the first four meetings, this one included attendees and embraced topics from across the broad spectrum of disciplines essential to effective BCI research and development, including

  7. Brain-Computer Interfacing Embedded in Intelligent and Affective Systems

    NARCIS (Netherlands)

    Nijholt, Antinus

    In this talk we survey recent research views on non-traditional brain-computer interfaces (BCI). That is, interfaces that can process brain activity input, but that are designed for the ‘general population’, rather than for clinical purposes. Control of applications can be made more robust by fusing

  8. The Self-Paced Graz Brain-Computer Interface: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Reinhold Scherer

    2007-01-01

    Full Text Available We present the self-paced 3-class Graz brain-computer interface (BCI which is based on the detection of sensorimotor electroencephalogram (EEG rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine whether the ongoing brain activity is intended as control signal (intentional control or not (non-control state. The presented system is able to automatically reduce electrooculogram (EOG artifacts, to detect electromyographic (EMG activity, and uses only three bipolar EEG channels. Two applications are presented: the freeSpace virtual environment (VE and the Brainloop interface. The freeSpace is a computer-game-like application where subjects have to navigate through the environment and collect coins by autonomously selecting navigation commands. Three subjects participated in these feedback experiments and each learned to navigate through the VE and collect coins. Two out of the three succeeded in collecting all three coins. The Brainloop interface provides an interface between the Graz-BCI and Google Earth.

  9. A brain-computer interface to support functional recovery.

    Science.gov (United States)

    Kjaer, Troels W; Sørensen, Helge B

    2013-01-01

    Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating communication in the rather few patients with locked-in syndrome, much interest is now devoted to the therapeutic use of BCI in rehabilitation. For this latter group of patients, the device is not intended to be a lifelong assistive companion but rather a 'teacher' during the rehabilitation period. Copyright © 2013 S. Karger AG, Basel.

  10. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  11. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  12. Tutorial: Signal Processing in Brain-Computer Interfaces

    NARCIS (Netherlands)

    Garcia Molina, G.

    2010-01-01

    Research in Electroencephalogram (EEG) based Brain-Computer Interfaces (BCIs) has been considerably expanding during the last few years. Such an expansion owes to a large extent to the multidisciplinary and challenging nature of BCI research. Signal processing undoubtedly constitutes an essential

  13. A brain-computer interface controlled mail client.

    Science.gov (United States)

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong

    2013-01-01

    In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.

  14. An optical brain computer interface for environmental control.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Bunce, Scott; Onaral, Banu

    2011-01-01

    A brain computer interface (BCI) is a system that translates neurophysiological signals detected from the brain to supply input to a computer or to control a device. Volitional control of neural activity and its real-time detection through neuroimaging modalities are key constituents of BCI systems. The purpose of this study was to develop and test a new BCI design that utilizes intention-related cognitive activity within the dorsolateral prefrontal cortex using functional near infrared (fNIR) spectroscopy. fNIR is a noninvasive, safe, portable and affordable optical technique with which to monitor hemodynamic changes, in the brain's cerebral cortex. Because of its portability and ease of use, fNIR is amenable to deployment in ecologically valid natural working environments. We integrated a control paradigm in a computerized 3D virtual environment to augment interactivity. Ten healthy participants volunteered for a two day study in which they navigated a virtual environment with keyboard inputs, but were required to use the fNIR-BCI for interaction with virtual objects. Results showed that participants consistently utilized the fNIR-BCI with an overall success rate of 84% and volitionally increased their cerebral oxygenation level to trigger actions within the virtual environment.

  15. Ethical Issues in Brain-Computer Interface Research, Development, and Dissemination

    NARCIS (Netherlands)

    Vlek, Rutger; Steines, David; Szibbo, Dyana; Kübler, Andrea; Schneider, Mary-Jane; Haselager, Pim; Nijboer, Femke

    The steadily growing field of brain-computer interfacing (BCI) may develop useful technologies, with a potential impact not only on individuals, but also on society as a whole. At the same time, the development of BCI presents significant ethical and legal challenges. In a workshop during the 4th

  16. Ethical aspects of brain computer interfaces: a scoping review

    OpenAIRE

    Burwell, Sasha; Sample, Matthew; Racine, Eric

    2017-01-01

    Background Brain-Computer Interface (BCI) is a set of technologies that are of increasing interest to researchers. BCI has been proposed as assistive technology for individuals who are non-communicative or paralyzed, such as those with amyotrophic lateral sclerosis or spinal cord injury. The technology has also been suggested for enhancement and entertainment uses, and there are companies currently marketing BCI devices for those purposes (e.g., gaming) as well as health-related purposes (e.g...

  17. Brain-computer interfaces current trends and applications

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.

  18. Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games

    NARCIS (Netherlands)

    Gürkök, Hayrettin

    2012-01-01

    A brain-computer interface (BCI) infers our actions (e.g. a movement), intentions (e.g. preparation for a movement) and psychological states (e.g. emotion, attention) by interpreting our brain signals. It uses the inferences it makes to manipulate a computer. Although BCIs have long been used

  19. Evaluation of LDA Ensembles Classifiers for Brain Computer Interface

    International Nuclear Information System (INIS)

    Arjona, Cristian; Pentácolo, José; Gareis, Iván; Atum, Yanina; Gentiletti, Gerardo; Acevedo, Rubén; Rufiner, Leonardo

    2011-01-01

    The Brain Computer Interface (BCI) translates brain activity into computer commands. To increase the performance of the BCI, to decode the user intentions it is necessary to get better the feature extraction and classification techniques. In this article the performance of a three linear discriminant analysis (LDA) classifiers ensemble is studied. The system based on ensemble can theoretically achieved better classification results than the individual counterpart, regarding individual classifier generation algorithm and the procedures for combine their outputs. Classic algorithms based on ensembles such as bagging and boosting are discussed here. For the application on BCI, it was concluded that the generated results using ER and AUC as performance index do not give enough information to establish which configuration is better.

  20. Brain computer interface for operating a robot

    Science.gov (United States)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  1. The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing

    NARCIS (Netherlands)

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z.; Haselager, Pim

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place

  2. The Asilomar Survey: Stakeholders’ Opinions on Ethical Issues Related to Brain-Computer Interfacing

    NARCIS (Netherlands)

    Nijboer, F.; Clausen, J.; Allison, B.Z.; Haselager, W.F.G.

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place

  3. A multi-purpose brain-computer interface output device.

    Science.gov (United States)

    Thompson, David E; Huggins, Jane E

    2011-10-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as stand-alone communication and control systems, rather than as interfaces to existing systems built for these purposes. An individual communication and control system may be powerful or flexible, but no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCls could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e., without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems.

  4. A Multi-purpose Brain-Computer Interface Output Device

    Science.gov (United States)

    Thompson, David E; Huggins, Jane E

    2012-01-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as standalone communication and control systems, rather than as interfaces to existing systems built for these purposes. While an individual communication and control system may be powerful or flexible, no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCIs could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e. without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems. PMID:22208120

  5. Detecting Mental States by Machine Learning Techniques: The Berlin Brain-Computer Interface

    Science.gov (United States)

    Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Dickhaus, Thorsten; Sannelli, Claudia; Popescu, Florin; Fazli, Siamac; Danóczy, Márton; Curio, Gabriel; Müller, Klaus-Robert

    The Berlin Brain-Computer Interface Brain-Computer Interface (BBCI) uses a machine learning approach to extract user-specific patterns from high-dimensional EEG-features optimized for revealing the user's mental state. Classical BCI applications are brain actuated tools for patients such as prostheses (see Section 4.1) or mental text entry systems ([1] and see [2-5] for an overview on BCI). In these applications, the BBCI uses natural motor skills of the users and specifically tailored pattern recognition algorithms for detecting the user's intent. But beyond rehabilitation, there is a wide range of possible applications in which BCI technology is used to monitor other mental states, often even covert ones (see also [6] in the fMRI realm). While this field is still largely unexplored, two examples from our studies are exemplified in Sections 4.3 and 4.4.

  6. Design and simulation of virtual telephone keypad control based on brain computer interface (BCI with very high transfer rates

    Directory of Open Access Journals (Sweden)

    Rehab B. Ashari

    2011-03-01

    Full Text Available Brain Computer Interface (BCI is a communication and control mechanism, which does not rely on any kind of muscular response to send a message to the external world. This technique is used to help the paralyzed people with spinal cord injury to have the ability to communicate with the external world. In this paper we emphasize to increase the BCI System bit rate for controlling a virtual telephone keypad. To achieve the proposed algorithm, a simulated virtual telephone keypad based on Steady State Visual Evoked Potential (SSVEP BCI system is developed. Dynamic programming technique with specifically modified Longest Common Subsequence (LCS algorithm is used. By comparing the paralyzed user selection with the recent, and then the rest, of the stored records in the file of the telephone, the user can save the rest of his choices for controlling the keypad and thence improving the overall performance of the BCI system. This axiomatic approach, which is used in searching the web pages for increasing the performance of the searching, is urgent to be used for the paralyzed people rather than the normal user.

  7. Toward affective brain-computer interfaces : exploring the neurophysiology of affect during human media interaction

    NARCIS (Netherlands)

    Mühl, C.

    2012-01-01

    Affective Brain-Computer Interfaces (aBCI), the sensing of emotions from brain activity, seems a fantasy from the realm of science fiction. But unlike faster-than-light travel or teleportation, aBCI seems almost within reach due to novel sensor technologies, the advancement of neuroscience, and the

  8. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    Science.gov (United States)

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  9. Ethical aspects of brain computer interfaces: a scoping review.

    Science.gov (United States)

    Burwell, Sasha; Sample, Matthew; Racine, Eric

    2017-11-09

    Brain-Computer Interface (BCI) is a set of technologies that are of increasing interest to researchers. BCI has been proposed as assistive technology for individuals who are non-communicative or paralyzed, such as those with amyotrophic lateral sclerosis or spinal cord injury. The technology has also been suggested for enhancement and entertainment uses, and there are companies currently marketing BCI devices for those purposes (e.g., gaming) as well as health-related purposes (e.g., communication). The unprecedented direct connection created by BCI between human brains and computer hardware raises various ethical, social, and legal challenges that merit further examination and discussion. To identify and characterize the key issues associated with BCI use, we performed a scoping review of biomedical ethics literature, analyzing the ethics concerns cited across multiple disciplines, including philosophy and medicine. Based on this investigation, we report that BCI research and its potential translation to therapeutic intervention generate significant ethical, legal, and social concerns, notably with regards to personhood, stigma, autonomy, privacy, research ethics, safety, responsibility, and justice. Our review of the literature determined, furthermore, that while these issues have been enumerated extensively, few concrete recommendations have been expressed. We conclude that future research should focus on remedying a lack of practical solutions to the ethical challenges of BCI, alongside the collection of empirical data on the perspectives of the public, BCI users, and BCI researchers.

  10. EXPERIMENTAL AND THEORETICAL FOUNDATIONS AND PRACTICAL IMPLEMENTATION OF TECHNOLOGY BRAIN-COMPUTER INTERFACE

    Directory of Open Access Journals (Sweden)

    A. Ya. Kaplan

    2013-01-01

    Full Text Available Technology brain-computer interface (BCI allow saperson to learn how to control external devices via thevoluntary regulation of own EEG directly from the brain without the involvement in the process of nerves and muscles. At the beginning the main goal of BCI was to replace or restore motor function to people disabled by neuromuscular disorders. Currently, the task of designing the BCI increased significantly, more capturing different aspects of life a healthy person. This article discusses the theoretical, experimental and technological base of BCI development and systematized critical fields of real implementation of these technologies.

  11. Brain-computer interfacing under distraction: an evaluation study

    DEFF Research Database (Denmark)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes

    2016-01-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach...

  12. Brain-computer interface on the basis of EEG system Encephalan

    Science.gov (United States)

    Maksimenko, Vladimir; Badarin, Artem; Nedaivozov, Vladimir; Kirsanov, Daniil; Hramov, Alexander

    2018-04-01

    We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.

  13. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    Science.gov (United States)

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  14. Current trends in hardware and software for brain-computer interfaces (BCIs).

    Science.gov (United States)

    Brunner, P; Bianchi, L; Guger, C; Cincotti, F; Schalk, G

    2011-04-01

    A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.

  15. Current trends in hardware and software for brain-computer interfaces (BCIs)

    Science.gov (United States)

    Brunner, P.; Bianchi, L.; Guger, C.; Cincotti, F.; Schalk, G.

    2011-04-01

    A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.

  16. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  17. Fully Online Multicommand Brain-Computer Interface with Visual Neurofeedback Using SSVEP Paradigm

    Directory of Open Access Journals (Sweden)

    Pablo Martinez

    2007-01-01

    Full Text Available We propose a new multistage procedure for a real-time brain-machine/computer interface (BCI. The developed system allows a BCI user to navigate a small car (or any other object on the computer screen in real time, in any of the four directions, and to stop it if necessary. Extensive experiments with five young healthy subjects confirmed the high performance of the proposed online BCI system. The modular structure, high speed, and the optimal frequency band characteristics of the BCI platform are features which allow an extension to a substantially higher number of commands in the near future.

  18. BCILAB: a platform for brain-computer interface development

    Science.gov (United States)

    Kothe, Christian Andreas; Makeig, Scott

    2013-10-01

    Objective. The past two decades have seen dramatic progress in our ability to model brain signals recorded by electroencephalography, functional near-infrared spectroscopy, etc., and to derive real-time estimates of user cognitive state, response, or intent for a variety of purposes: to restore communication by the severely disabled, to effect brain-actuated control and, more recently, to augment human-computer interaction. Continuing these advances, largely achieved through increases in computational power and methods, requires software tools to streamline the creation, testing, evaluation and deployment of new data analysis methods. Approach. Here we present BCILAB, an open-source MATLAB-based toolbox built to address the need for the development and testing of brain-computer interface (BCI) methods by providing an organized collection of over 100 pre-implemented methods and method variants, an easily extensible framework for the rapid prototyping of new methods, and a highly automated framework for systematic testing and evaluation of new implementations. Main results. To validate and illustrate the use of the framework, we present two sample analyses of publicly available data sets from recent BCI competitions and from a rapid serial visual presentation task. We demonstrate the straightforward use of BCILAB to obtain results compatible with the current BCI literature. Significance. The aim of the BCILAB toolbox is to provide the BCI community a powerful toolkit for methods research and evaluation, thereby helping to accelerate the pace of innovation in the field, while complementing the existing spectrum of tools for real-time BCI experimentation, deployment and use.

  19. Social Interaction in a Cooperative Brain-computer Interface Game

    NARCIS (Netherlands)

    Obbink, Michel; Gürkök, Hayrettin; Plass - Oude Bos, D.; Hakvoort, Gido; Poel, Mannes; Nijholt, Antinus; Camurri, Antonio; Costa, Cristina

    Does using a brain-computer interface (BCI) influence the social interaction between people when playing a cooperative game? By measuring the amount of speech, utterances, instrumental gestures and empathic gestures during a cooperative game where two participants had to reach a certain goal, and

  20. Guest editorial: Brain/neuronal computer games interfaces and interaction

    OpenAIRE

    Coyle, D.; Principe, J.; Lotte, F.; Nijholt, Antinus

    2013-01-01

    Nowadays brainwave or electroencephalogram (EEG) controlled games controllers are adding new options to satisfy the continual demand for new ways to interact with games, following trends such as the Nintendo® Wii, Microsoft® Kinect and Playstation® Move which are based on accelerometers and motion capture. EEG-based brain-computer games interaction are controlled through brain-computer interface (BCI) technology which requires sophisticated signal processing to produce a low communication ban...

  1. Brain Computer Interface Learning for Systems Based on Electrocorticography and Intracortical Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    2015-06-01

    Full Text Available A brain-computer interface (BCI system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  2. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.

    Science.gov (United States)

    Rutkowski, Tomasz M; Mori, Hiromu

    2015-04-15

    The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Designing a hands-on brain computer interface laboratory course.

    Science.gov (United States)

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  4. Spectral Transfer Learning using Information Geometry for a User-Independent Brain-Computer Interface

    OpenAIRE

    Nicholas Roy Waytowich; Nicholas Roy Waytowich; Vernon Lawhern; Vernon Lawhern; Addison Bohannon; Addison Bohannon; Kenneth Ball; Brent Lance

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry and recreation. However, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter- individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this p...

  5. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    OpenAIRE

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this p...

  6. A Review of EEG-Based Brain-Computer Interfaces as Access Pathways for Individuals with Severe Disabilities

    Science.gov (United States)

    Moghimi, Saba; Kushki, Azadeh; Guerguerian, Anne Marie; Chau, Tom

    2013-01-01

    Electroencephalography (EEG) is a non-invasive method for measuring brain activity and is a strong candidate for brain-computer interface (BCI) development. While BCIs can be used as a means of communication for individuals with severe disabilities, the majority of existing studies have reported BCI evaluations by able-bodied individuals.…

  7. Classification of binary intentions for individuals with impaired oculomotor function: ‘eyes-closed’ SSVEP-based brain-computer interface (BCI)

    Science.gov (United States)

    Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan

    2013-04-01

    Objective. Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. Approach. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Main results. Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min-1. A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. Significance. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our ‘eyes-closed’ SSVEP-based BCI system can be potentially used for communication of

  8. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    Science.gov (United States)

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  9. Vibrotactile Feedback for Brain-Computer Interface Operation

    OpenAIRE

    Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.

    2007-01-01

    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (i...

  10. As We May Think and Be: Brain-computer interfaces to expand the substrate of mind

    Directory of Open Access Journals (Sweden)

    Mijail Demian Serruya

    2015-04-01

    Full Text Available Over a half-century ago, the scientist Vannevar Bush explored the conundrum of how to tap the exponentially rising sea of human knowledge for the betterment of humanity. In his description of a hypothetical electronic library he dubbed the memex, he anticipated internet search and online encyclopedias (Bush, 1945. By blurring the boundary between brain and computer, brain-computer interfaces (BCI could lead to more efficient use of electronic resources (Schalk, 2008. We could expand the substrate of the mind itself rather than merely interfacing it to external computers. Components of brain-computer interfaces could be re-arranged to create brain-brain interfaces, or tightly interconnected links between a person’s brain and ectopic neural modules. Such modules – whether sitting in a bubbling Petri dish, rendered in reciprocally linked integrated circuits, or implanted in our belly – would mark the first step on to a path of breaking out of the limitations imposed by our phylogenetic past Novel BCI architectures could generate novel abilities to navigate and access information that might speed translational science efforts and push the boundaries of human knowledge in an unprecedented manner.

  11. The Asilomar Survey: Stakeholders? Opinions on Ethical Issues Related to Brain-Computer Interfacing

    OpenAIRE

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z.; Haselager, Pim

    2011-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place in May–June 2010 in Asilomar, California. We assessed respondents’ opinions about a number of topics. First, we investigated preferences for terminology and definitions relating to BCIs. Second, w...

  12. Review of wireless and wearable electroencephalogram systems and brain-computer interfaces--a mini-review.

    Science.gov (United States)

    Lin, Chin-Teng; Ko, Li-Wei; Chang, Meng-Hsiu; Duann, Jeng-Ren; Chen, Jing-Ying; Su, Tung-Ping; Jung, Tzyy-Ping

    2010-01-01

    Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems. Copyright 2009 S. Karger AG, Basel.

  13. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Jiang, Ning; Stevenson, Andrew James Thomas

    2016-01-01

    Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here, we evaluate the effect and the underlying mechanisms of three BCI training sessions in a double-blind-sham-controlled design. The applied BCI......-associative group. Fugl-Meyer motor scores (0.8±0.46 point difference p=0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. For the BCI as applied here, the precise coupling between the brain command...

  14. [Brain-Computer Interface: the First Clinical Experience in Russia].

    Science.gov (United States)

    Mokienko, O A; Lyukmanov, R Kh; Chernikova, L A; Suponeva, N A; Piradov, M A; Frolov, A A

    2016-01-01

    Motor imagery is suggested to stimulate the same plastic mechanisms in the brain as a real movement. The brain-computer interface (BCI) controls motor imagery by converting EEG during this process into the commands for an external device. This article presents the results of two-stage study of the clinical use of non-invasive BCI in the rehabilitation of patients with severe hemiparesis caused by focal brain damage. It was found that the ability to control BCI did not depend on the duration of a disease, brain lesion localization and the degree of neurological deficit. The first step of the study involved 36 patients; it showed that the efficacy of rehabilitation was higher in the group with the use of BCI (the score on the Action Research Arm Test (ARAT) improved from 1 [0; 2] to 5 [0; 16] points, p = 0.012; no significant improvement was observed in control group). The second step of the study involved 19 patients; the complex BCI-exoskeleton (i.e. with the kinesthetic feedback) was used for motor imagery trainings. The improvement of the motor function of hands was proved by ARAT (the score improved from 2 [0; 37] to 4 [1; 45:5] points, p = 0.005) and Fugl-Meyer scale (from 72 [63; 110 ] to 79 [68; 115] points, p = 0.005).

  15. Semi-supervised adaptation in ssvep-based brain-computer interface using tri-training

    DEFF Research Database (Denmark)

    Bender, Thomas; Kjaer, Troels W.; Thomsen, Carsten E.

    2013-01-01

    This paper presents a novel and computationally simple tri-training based semi-supervised steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). It is implemented with autocorrelation-based features and a Naïve-Bayes classifier (NBC). The system uses nine characters...

  16. Improved Targeting Through Collaborative Decision-Making and Brain Computer Interfaces

    Science.gov (United States)

    Stoica, Adrian; Barrero, David F.; McDonald-Maier, Klaus

    2013-01-01

    This paper reports a first step toward a brain-computer interface (BCI) for collaborative targeting. Specifically, we explore, from a broad perspective, how the collaboration of a group of people can increase the performance on a simple target identification task. To this end, we requested a group of people to identify the location and color of a sequence of targets appearing on the screen and measured the time and accuracy of the response. The individual results are compared to a collective identification result determined by simple majority voting, with random choice in case of drawn. The results are promising, as the identification becomes significantly more reliable even with this simple voting and a small number of people (either odd or even number) involved in the decision. In addition, the paper briefly analyzes the role of brain-computer interfaces in collaborative targeting, extending the targeting task by using a BCI instead of a mechanical response.

  17. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    Science.gov (United States)

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  18. Brain-Computer Interface Epoc Emotiv a potenciál jeho komerčního využití

    OpenAIRE

    Vencelides, David

    2012-01-01

    This work is focused on Brain Computer Interface. Specifically, the device EPOC Emotiv. The first part focuses on the introduction to the topic Brain Computer Interface. Definition of terms, a brief history and ways to measure brain activity. The second part deals with specific BCI products that are available on the consumer market open for sale at a price accessible to the ordinary customer. The third part focuses on the specific BCI product EPOC Emotiv In this part the device is introduced ...

  19. Control of a nursing bed based on a hybrid brain-computer interface.

    Science.gov (United States)

    Nengneng Peng; Rui Zhang; Haihua Zeng; Fei Wang; Kai Li; Yuanqing Li; Xiaobin Zhuang

    2016-08-01

    In this paper, we propose an intelligent nursing bed system which is controlled by a hybrid brain-computer interface (BCI) involving steady-state visual evoked potential (SSVEP) and P300. Specifically, the hybrid BCI includes an asynchronous brain switch based on SSVEP and P300, and a P300-based BCI. The brain switch is used to turn on/off the control system of the electric nursing bed through idle/control state detection, whereas the P300-based BCI is for operating the nursing bed. At the beginning, the user may focus on one group of flashing buttons in the graphic user interface (GUI) of the brain switch, which can simultaneously evoke SSVEP and P300, to switch on the control system. Here, the combination of SSVEP and P300 is used for improving the performance of the brain switch. Next, the user can control the nursing bed using the P300-based BCI. The GUI of the P300-based BCI includes 10 flashing buttons, which correspond to 10 functional operations, namely, left-side up, left-side down, back up, back down, bedpan open, bedpan close, legs up, legs down, right-side up, and right-side down. For instance, he/she can focus on the flashing button "back up" in the GUI of the P300-based BCI to activate the corresponding control such that the nursing bed is adjusted up. Eight healthy subjects participated in our experiment, and obtained an average accuracy of 93.75% and an average false positive rate (FPR) of 0.15 event/min. The effectiveness of our system was thus demonstrated.

  20. Performance variation in motor imagery brain-computer interface: a brief review.

    Science.gov (United States)

    Ahn, Minkyu; Jun, Sung Chan

    2015-03-30

    Brain-computer interface (BCI) technology has attracted significant attention over recent decades, and has made remarkable progress. However, BCI still faces a critical hurdle, in that performance varies greatly across and even within subjects, an obstacle that degrades the reliability of BCI systems. Understanding the causes of these problems is important if we are to create more stable systems. In this short review, we report the most recent studies and findings on performance variation, especially in motor imagery-based BCI, which has found that low-performance groups have a less-developed brain network that is incapable of motor imagery. Further, psychological and physiological states influence performance variation within subjects. We propose a possible strategic approach to deal with this variation, which may contribute to improving the reliability of BCI. In addition, the limitations of current work and opportunities for future studies are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. An efficient ERP-based brain-computer interface using random set presentation and face familiarity.

    Directory of Open Access Journals (Sweden)

    Seul-Ki Yeom

    Full Text Available Event-related potential (ERP-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC-based paradigm with our approach that combines a random set presentation paradigm with (non- self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup.

  2. fNIRS-based brain-computer interfaces: a review

    Directory of Open Access Journals (Sweden)

    Noman eNaseer

    2015-01-01

    Full Text Available A brain-computer interface (BCI is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis, multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine, hidden Markov model, artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  3. P300 brain computer interface: current challenges and emerging trends

    Science.gov (United States)

    Fazel-Rezai, Reza; Allison, Brendan Z.; Guger, Christoph; Sellers, Eric W.; Kleih, Sonja C.; Kübler, Andrea

    2012-01-01

    A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility. PMID:22822397

  4. Towards psychologically adaptive brain-computer interfaces

    Science.gov (United States)

    Myrden, A.; Chau, T.

    2016-12-01

    Objective. Brain-computer interface (BCI) performance is sensitive to short-term changes in psychological states such as fatigue, frustration, and attention. This paper explores the design of a BCI that can adapt to these short-term changes. Approach. Eleven able-bodied individuals participated in a study during which they used a mental task-based EEG-BCI to play a simple maze navigation game while self-reporting their perceived levels of fatigue, frustration, and attention. In an offline analysis, a regression algorithm was trained to predict changes in these states, yielding Pearson correlation coefficients in excess of 0.45 between the self-reported and predicted states. Two means of fusing the resultant mental state predictions with mental task classification were investigated. First, single-trial mental state predictions were used to predict correct classification by the BCI during each trial. Second, an adaptive BCI was designed that retrained a new classifier for each testing sample using only those training samples for which predicted mental state was similar to that predicted for the current testing sample. Main results. Mental state-based prediction of BCI reliability exceeded chance levels. The adaptive BCI exhibited significant, but practically modest, increases in classification accuracy for five of 11 participants and no significant difference for the remaining six despite a smaller average training set size. Significance. Collectively, these findings indicate that adaptation to psychological state may allow the design of more accurate BCIs.

  5. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.

    Science.gov (United States)

    Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.

  6. 뇌-컴퓨터 쿸터페쿴스 (Brain-Computer Interfaces) 기술엿 대한 국내·외 연구개발 뿙향 조사 (Research and Development in Brain-Computer Interfacing Technology: A Comprehensive Technical Review). Final Report.

    NARCIS (Netherlands)

    Nam, Chang Soo; Kim, Sung-Phil; Krusienkki, Dean; Nijholt, Antinus

    2015-01-01

    This report commisioned by the Korean American Scientists and Engineers Association (KSEA) and written with the support of the Korea Federation of Science and Technology Societies (KOFST) surveys research and development trends in the area of brain-computer interface (Brain-Computer Interfaces, BCI)

  7. BCI using imaginary movements

    DEFF Research Database (Denmark)

    Rohani, Darius Adam; Henning, William S.; Thomsen, Carsten E.

    2013-01-01

    Over the past two decades, much progress has been made in the rapidly evolving field of Brain Computer Interface (BCI). This paper presents a novel concept: a BCI-simulator, which has been developed for the Hex-O-Spell interface, using the sensory motor rhythms (SMR) paradigm. With the simulator...

  8. A covert attention P300-based brain-computer interface: Geospell.

    Science.gov (United States)

    Aloise, Fabio; Aricò, Pietro; Schettini, Francesca; Riccio, Angela; Salinari, Serenella; Mattia, Donatella; Babiloni, Fabio; Cincotti, Febo

    2012-01-01

    The Farwell and Donchin P300 speller interface is one of the most widely used brain-computer interface (BCI) paradigms for writing text. Recent studies have shown that the recognition accuracy of the P300 speller decreases significantly when eye movement is impaired. This report introduces the GeoSpell interface (Geometric Speller), which implements a stimulation framework for a P300-based BCI that has been optimised for operation in covert visual attention. We compared the Geospell with the P300 speller interface under overt attention conditions with regard to effectiveness, efficiency and user satisfaction. Ten healthy subjects participated in the study. The performance of the GeoSpell interface in covert attention was comparable with that of the P300 speller in overt attention. As expected, the effectiveness of the spelling decreased with the new interface in covert attention. The NASA task load index (TLX) for workload assessment did not differ significantly between the two modalities. This study introduces and evaluates a gaze-independent, P300-based brain-computer interface, the efficacy and user satisfaction of which were comparable with those off the classical P300 speller. Despite a decrease in effectiveness due to the use of covert attention, the performance of the GeoSpell far exceeded the threshold of accuracy with regard to effective spelling.

  9. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial

    Directory of Open Access Journals (Sweden)

    Alexander A. Frolov

    2017-07-01

    Full Text Available Repeated use of brain-computer interfaces (BCIs providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group (n = 55 performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group (n = 19, hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points (p < 0.01 and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points (p < 0.01. Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT and 15.8% (FMMA. These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher

  10. Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments

    Directory of Open Access Journals (Sweden)

    Alonso-Valerdi Luz María

    2017-01-01

    Full Text Available Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI. Those cognitive processes take place while a user navigates and explores a virtual environment (VE and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI. BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1 set out working environmental conditions, (2 maximize the efficiency of BCI control panels, (3 implement navigation systems based not only on user intentions but also on user emotions, and (4 regulate user mental state to increase the differentiation between control and noncontrol modalities.

  11. The Role of the Interplay between Stimulus Type and Timing in Explaining BCI-Illiteracy for Visual P300-Based Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Roberta Carabalona

    2017-06-01

    Full Text Available Visual P300-based Brain-Computer Interface (BCI spellers enable communication or interaction with the environment by flashing elements in a matrix and exploiting consequent changes in end-user's brain activity. Despite research efforts, performance variability and BCI-illiteracy still are critical issues for real world applications. Moreover, there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the same end-user operates BCI-spellers intended for different applications: our aim is to understand why some well performers can become BCI-illiterate depending on speller type. We manipulated stimulus type (factor STIM: either characters or icons, color (factor COLOR: white, green and timing (factor SPEED: fast, slow. Each BCI session consisted of training (without feedback and performance phase (with feedback, both in copy-spelling. For fast flashing spellers, we observed a performance worsening for white icon-speller. Our findings are consistent with existing results reported on end-users using identical white×fast spellers, indicating independence of worsening trend from users' group. The use of slow stimulation timing shed a new light on the perceptual and cognitive phenomena related to the use of a BCI-speller during both the training and the performance phase. We found a significant STIM main effect for the N1 component on Pz and PO7 during the training phase and on PO8 during the performance phase, whereas in both phases neither the STIM×COLOR interaction nor the COLOR main effect was statistically significant. After collapsing data for factor COLOR, it emerged a statistically significant modulation of N1 amplitude depending to the phase of BCI session: N1 was more negative for icons than for characters both on Pz and PO7 (training, whereas the opposite modulation was observed for PO8 (performance. Results indicate that both feedback and expertise with respect to the stimulus type can modulate the N1 component and

  12. A cell-phone-based brain-computer interface for communication in daily life

    Science.gov (United States)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  13. Control of a mobile robot through brain computer interface

    Directory of Open Access Journals (Sweden)

    Robinson Jimenez Moreno

    2015-07-01

    Full Text Available This paper poses a control interface to command the movement of a mobile robot according to signals captured from the user's brain. These signals are acquired and interpreted by Emotiv EPOC device, a 14-electrode type sensor which captures electroencephalographic (EEG signals with high resolution, which, in turn, are sent to a computer for processing. One brain-computer interface (BCI was developed based on the Emotiv software and SDK in order to command the mobile robot from a distance. Functionality tests are performed with the sensor to discriminate shift intentions of a user group, as well as with a fuzzy controller to hold the direction in case of concentration loss. As conclusion, it was possible to obtain an efficient system for robot movements by brain commands.

  14. Shaping of neuronal activity through a Brain Computer Interface

    OpenAIRE

    Valero-Aguayo, Luis; Silva-Sauer, Leandro; Velasco-Alvarez, Ricardo; Ron-Angevin, Ricardo

    2014-01-01

    Neuronal responses are human actions which can be measured by an EEG, and which imply changes in waves when neurons are synchronized. This activity could be changed by principles of behaviour analysis. This research tests the efficacy of the behaviour shaping procedure to progressively change neuronal activity, so that those brain responses are adapted according to the differential reinforcement of visual feedback. The Brain Computer Interface (BCI) enables us to record the EEG in real ti...

  15. Effects of Soft Drinks on Resting State EEG and Brain-Computer Interface Performance.

    Science.gov (United States)

    Meng, Jianjun; Mundahl, John; Streitz, Taylor; Maile, Kaitlin; Gulachek, Nicholas; He, Jeffrey; He, Bin

    2017-01-01

    Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography (EEG) allows users to directly control a computer or external device by modulating and decoding the brain waves. A variety of factors could potentially affect the performance of BCI such as the health status of subjects or the environment. In this study, we investigated the effects of soft drinks and regular coffee on EEG signals under resting state and on the performance of MI based BCI. Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period in each session. During each session, the subjects drank an unlabeled soft drink with either sugar (Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or a regular coffee if there was a fourth session. The resting state spectral power in each condition was compared; the analysis showed that power in alpha and beta band after caffeine consumption were decreased substantially compared to control and sugar condition. Although the attenuation of powers in the frequency range used for the online BCI control signal was shown, group averaged BCI online performance after consuming caffeine was similar to those of other conditions. This work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance and resting state brain signal.

  16. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    Science.gov (United States)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  17. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  18. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control.

    Science.gov (United States)

    Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A; Curio, Gabriel; Müller, Klaus-Robert

    2016-01-01

    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.

  19. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control

    Directory of Open Access Journals (Sweden)

    Benjamin Blankertz

    2016-11-01

    Full Text Available The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.

  20. Brain Computer Interface for Micro-controller Driven Robot Based on Emotiv Sensors

    OpenAIRE

    Parth Gargava; Krishna Asawa

    2017-01-01

    A Brain Computer Interface (BCI) is developed to navigate a micro-controller based robot using Emotiv sensors. The BCI system has a pipeline of 5 stages- signal acquisition, pre-processing, feature extraction, classification and CUDA inter- facing. It shall aid in serving a prototype for physical movement of neurological patients who are unable to control or operate on their muscular movements. All stages of the pipeline are designed to process bodily actions like eye blinks to command naviga...

  1. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller

    Science.gov (United States)

    Perdikis, S.; Leeb, R.; Williamson, J.; Ramsay, A.; Tavella, M.; Desideri, L.; Hoogerwerf, E.-J.; Al-Khodairy, A.; Murray-Smith, R.; Millán, J. d. R.

    2014-06-01

    Objective. While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. Approach. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. Main results. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. Significance. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.

  2. Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies

    Science.gov (United States)

    Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco

    2017-05-01

    Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.

  3. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial.

    Science.gov (United States)

    Frolov, Alexander A; Mokienko, Olesya; Lyukmanov, Roman; Biryukova, Elena; Kotov, Sergey; Turbina, Lydia; Nadareyshvily, Georgy; Bushkova, Yulia

    2017-01-01

    Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group ( n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group ( n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points ( p exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than chance level. A correlation between the classification accuracy and the improvement in the upper extremity function was found. An improvement of motor function was found for patients with different duration, severity and location of the stroke.

  4. Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    Directory of Open Access Journals (Sweden)

    King Christine E

    2011-08-01

    Full Text Available Abstract Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG-based BCI with a noninvasive functional electrical stimulation (FES system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77 with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions, and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower

  5. Brain-computer interface controlled functional electrical stimulation system for ankle movement.

    Science.gov (United States)

    Do, An H; Wang, Po T; King, Christine E; Abiri, Ahmad; Nenadic, Zoran

    2011-08-26

    Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications

  6. Brain-computer interfacing under distraction: an evaluation study

    Science.gov (United States)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  7. Brain-computer interface research a state-of-the-art summary 3

    CERN Document Server

    Guger, Christoph; Allison, Brendan

    2014-01-01

    This book provides a cutting-edge overview of the latest developments in Brain-Computer-Interfaces (BCIs), reported by leading research groups. As the reader will discover, BCI research is moving ahead rapidly, with many new ideas, research initiatives, and improved technologies, e.g. BCIs that enable people to communicate just by thinking - without any movement at all. Several different groups are helping severely disabled users communicate using BCIs, and BCI technology is also being extended to facilitate recovery from stroke, epilepsy, and other conditions. Each year, hundreds of the top

  8. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface

    Science.gov (United States)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-01-01

    Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712

  9. Decoding of intended saccade direction in an oculomotor brain-computer interface

    Science.gov (United States)

    Jia, Nan; Brincat, Scott L.; Salazar-Gómez, Andrés F.; Panko, Mikhail; Guenther, Frank H.; Miller, Earl K.

    2017-08-01

    Objective. To date, invasive brain-computer interface (BCI) research has largely focused on replacing lost limb functions using signals from the hand/arm areas of motor cortex. However, the oculomotor system may be better suited to BCI applications involving rapid serial selection from spatial targets, such as choosing from a set of possible words displayed on a computer screen in an augmentative and alternative communication (AAC) application. Here we aimed to demonstrate the feasibility of a BCI utilizing the oculomotor system. Approach. We developed a chronic intracortical BCI in monkeys to decode intended saccadic eye movement direction using activity from multiple frontal cortical areas. Main results. Intended saccade direction could be decoded in real time with high accuracy, particularly at contralateral locations. Accurate decoding was evident even at the beginning of the BCI session; no extensive BCI experience was necessary. High-frequency (80-500 Hz) local field potential magnitude provided the best performance, even over spiking activity, thus simplifying future BCI applications. Most of the information came from the frontal and supplementary eye fields, with relatively little contribution from dorsolateral prefrontal cortex. Significance. Our results support the feasibility of high-accuracy intracortical oculomotor BCIs that require little or no practice to operate and may be ideally suited for ‘point and click’ computer operation as used in most current AAC systems.

  10. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.

    Science.gov (United States)

    Brumberg, Jonathan S; Nguyen, Anh; Pitt, Kevin M; Lorenz, Sean D

    2018-01-31

    We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access

  11. Training to use a commercial brain-computer interface as access technology: a case study.

    Science.gov (United States)

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Davies, T Claire; Owens, R Glynn

    2016-01-01

    This case study describes how an individual with spastic quadriplegic cerebral palsy was trained over a period of four weeks to use a commercial electroencephalography (EEG)-based brain-computer interface (BCI). The participant spent three sessions exploring the system, and seven sessions playing a game focused on EEG feedback training of left and right arm motor imagery and a customised, training game paradigm was employed. The participant showed improvement in the production of two distinct EEG patterns. The participant's performance was influenced by motivation, fatigue and concentration. Six weeks post-training the participant could still control the BCI and used this to type a sentence using an augmentative and alternative communication application on a wirelessly linked device. The results from this case study highlight the importance of creating a dynamic, relevant and engaging training environment for BCIs. Implications for Rehabilitation Customising a training paradigm to suit the users' interests can influence adherence to assistive technology training. Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces, which require little set up time, may be used as access technology for individuals with severe disabilities.

  12. Ethical issues in brain-computer interface research, development, and dissemination.

    Science.gov (United States)

    Vlek, Rutger J; Steines, David; Szibbo, Dyana; Kübler, Andrea; Schneider, Mary-Jane; Haselager, Pim; Nijboer, Femke

    2012-06-01

    The steadily growing field of brain-computer interfacing (BCI) may develop useful technologies, with a potential impact not only on individuals, but also on society as a whole. At the same time, the development of BCI presents significant ethical and legal challenges. In a workshop during the 4th International BCI meeting (Asilomar, California, 2010), six panel members from various BCI laboratories and companies set out to identify and disentangle ethical issues related to BCI use in four case scenarios, which were inspired by current experiences in BCI laboratories. Results of the discussion are reported in this article, touching on topics such as the representation of persons with communication impairments, dealing with technological complexity and moral responsibility in multidisciplinary teams, and managing expectations, ranging from an individual user to the general public. Furthermore, we illustrate that where treatment and research interests conflict, ethical concerns arise. On the basis of the four case scenarios, we discuss salient, practical ethical issues that may confront any member of a typical multidisciplinary BCI team. We encourage the BCI and rehabilitation communities to engage in a dialogue, and to further identify and address pressing ethical issues as they occur in the practice of BCI research and its commercial applications.

  13. Detection of User Independent Single Trial ERPs in Brain Computer Interfaces: An Adaptive Spatial Filtering Approach

    DEFF Research Database (Denmark)

    Leza, Cristina; Puthusserypady, Sadasivan

    2017-01-01

    Brain Computer Interfaces (BCIs) use brain signals to communicate with the external world. The main challenges to address are speed, accuracy and adaptability. Here, a novel algorithm for P300 based BCI spelling system is presented, specifically suited for single-trial detection of Event...

  14. A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition

    OpenAIRE

    Gopikrishna Deshpande; Gopikrishna Deshpande; Gopikrishna Deshpande; D. Rangaprakash; D. Rangaprakash; Luke Oeding; Andrzej Cichocki; Andrzej Cichocki; Andrzej Cichocki; Xiaoping P. Hu

    2017-01-01

    A Brain-Computer Interface (BCI) is a setup permitting the control of external devices by decoding brain activity. Electroencephalography (EEG) has been extensively used for decoding brain activity since it is non-invasive, cheap, portable, and has high temporal resolution to allow real-time operation. Due to its poor spatial specificity, BCIs based on EEG can require extensive training and multiple trials to decode brain activity (consequently slowing down the operation of the BCI). On the o...

  15. Navigation with a passive brain based interface

    NARCIS (Netherlands)

    Erp, J.B.F. van; Werkhoven, P.J.; Thurlings, M.E.; Brouwer, A.-M.

    2009-01-01

    In this paper, we describe a Brain Computer Interface (BCI) for navigation. The system is based on detecting brain signals that are elicited by tactile stimulation on the torso indicating the desired direction.

  16. Brain-computer interface: changes in performance using virtual reality techniques.

    Science.gov (United States)

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  17. Towards Practical Brain-Computer Interfaces Bridging the Gap from Research to Real-World Applications

    CERN Document Server

    Dunne, Stephen; Leeb, Robert; Millán, José; Nijholt, Anton

    2013-01-01

    Brain-computer interfaces (BCIs) are devices that enable people to communicate via thought alone. Brain signals can be directly translated into messages or commands. Until recently, these devices were used primarily to help people who could not move. However, BCIs are now becoming practical tools for a wide variety of people, in many different situations. What will BCIs in the future be like? Who will use them, and why? This book, written by many of the top BCI researchers and developers, reviews the latest progress in the different components of BCIs. Chapters also discuss practical issues in an emerging BCI enabled community. The book is intended both for professionals and for interested laypeople who are not experts in BCI research.

  18. Performance evaluation of a motor-imagery-based EEG-Brain computer interface using a combined cue with heterogeneous training data in BCI-Naive subjects

    Directory of Open Access Journals (Sweden)

    Lee Youngbum

    2011-10-01

    Full Text Available Abstract Background The subjects in EEG-Brain computer interface (BCI system experience difficulties when attempting to obtain the consistent performance of the actual movement by motor imagery alone. It is necessary to find the optimal conditions and stimuli combinations that affect the performance factors of the EEG-BCI system to guarantee equipment safety and trust through the performance evaluation of using motor imagery characteristics that can be utilized in the EEG-BCI testing environment. Methods The experiment was carried out with 10 experienced subjects and 32 naive subjects on an EEG-BCI system. There were 3 experiments: The experienced homogeneous experiment, the naive homogeneous experiment and the naive heterogeneous experiment. Each experiment was compared in terms of the six audio-visual cue combinations and consisted of 50 trials. The EEG data was classified using the least square linear classifier in case of the naive subjects through the common spatial pattern filter. The accuracy was calculated using the training and test data set. The p-value of the accuracy was obtained through the statistical significance test. Results In the case in which a naive subject was trained by a heterogeneous combined cue and tested by a visual cue, the result was not only the highest accuracy (p Conclusions We propose the use of this measuring methodology of a heterogeneous combined cue for training data and a visual cue for test data by the typical EEG-BCI algorithm on the EEG-BCI system to achieve effectiveness in terms of consistence, stability, cost, time, and resources management without the need for a trial and error process.

  19. Maps managing interface design for a mobile robot navigation governed by a BCI

    International Nuclear Information System (INIS)

    Auat Cheein, Fernando A; Carelli, Ricardo; Celeste, Wanderley Cardoso; Freire Bastos, Teodiano; Di Sciascio, Fernando

    2007-01-01

    In this paper, a maps managing interface is proposed. This interface is governed by a Brain Computer Interface (BCI), which also governs a mobile robot's movements. If a robot is inside a known environment, the user can load a map from the maps managing interface in order to navigate it. Otherwise, if the robot is in an unknown environment, a Simultaneous Localization and Mapping (SLAM) algorithm is released in order to obtain a probabilistic grid map of that environment. Then, that map is loaded into the map database for future navigations. While slamming, the user has a direct control of the robot's movements via the BCI. The complete system is applied to a mobile robot and can be also applied to an autonomous wheelchair, which has the same kinematics. Experimental results are also shown

  20. Incorporating modern neuroscience findings to improve brain-computer interfaces: tracking auditory attention.

    Science.gov (United States)

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc

    2016-10-01

    Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.

  1. An online three-class Transcranial Doppler ultrasound brain computer interface.

    Science.gov (United States)

    Goyal, Anuja; Samadani, Ali-Akbar; Guerguerian, Anne-Marie; Chau, Tom

    2016-06-01

    Brain computer interfaces (BCI) can provide communication opportunities for individuals with severe motor disabilities. Transcranial Doppler ultrasound (TCD) measures cerebral blood flow velocities and can be used to develop a BCI. A previously implemented TCD BCI system used verbal and spatial tasks as control signals; however, the spatial task involved a visual cue that awkwardly diverted the user's attention away from the communication interface. Therefore, vision-independent right-lateralized tasks were investigated. Using a bilateral TCD BCI, ten participants controlled online, an on-screen keyboard using a left-lateralized task (verbal fluency), a right-lateralized task (fist motor imagery or 3D-shape tracing), and unconstrained rest. 3D-shape tracing was generally more discernible from other tasks than was fist motor imagery. Verbal fluency, 3D-shape tracing and unconstrained rest were distinguished from each other using a linear discriminant classifier, achieving a mean agreement of κ=0.43±0.17. These rates are comparable to the best offline three-class TCD BCI accuracies reported thus far. The online communication system achieved a mean information transfer rate (ITR) of 1.08±0.69bits/min with values reaching up to 2.46bits/min, thereby exceeding the ITR of previous online TCD BCIs. These findings demonstrate the potential of a three-class online TCD BCI that does not require visual task cues. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  2. A collaborative brain-computer interface for improving human performance.

    Directory of Open Access Journals (Sweden)

    Yijun Wang

    Full Text Available Electroencephalogram (EEG based brain-computer interfaces (BCI have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1 Event-related potentials (ERP averaging, (2 Feature concatenating, and (3 Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100-250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC, which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior.

  3. DARPA-funded efforts in the development of novel brain-computer interface technologies.

    Science.gov (United States)

    Miranda, Robbin A; Casebeer, William D; Hein, Amy M; Judy, Jack W; Krotkov, Eric P; Laabs, Tracy L; Manzo, Justin E; Pankratz, Kent G; Pratt, Gill A; Sanchez, Justin C; Weber, Douglas J; Wheeler, Tracey L; Ling, Geoffrey S F

    2015-04-15

    The Defense Advanced Research Projects Agency (DARPA) has funded innovative scientific research and technology developments in the field of brain-computer interfaces (BCI) since the 1970s. This review highlights some of DARPA's major advances in the field of BCI, particularly those made in recent years. Two broad categories of DARPA programs are presented with respect to the ultimate goals of supporting the nation's warfighters: (1) BCI efforts aimed at restoring neural and/or behavioral function, and (2) BCI efforts aimed at improving human training and performance. The programs discussed are synergistic and complementary to one another, and, moreover, promote interdisciplinary collaborations among researchers, engineers, and clinicians. Finally, this review includes a summary of some of the remaining challenges for the field of BCI, as well as the goals of new DARPA efforts in this domain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Ethics in published brain-computer interface research

    Science.gov (United States)

    Specker Sullivan, L.; Illes, J.

    2018-02-01

    Objective. Sophisticated signal processing has opened the doors to more research with human subjects than ever before. The increase in the use of human subjects in research comes with a need for increased human subjects protections. Approach. We quantified the presence or absence of ethics language in published reports of brain-computer interface (BCI) studies that involved human subjects and qualitatively characterized ethics statements. Main results. Reports of BCI studies with human subjects that are published in neural engineering and engineering journals are anchored in the rationale of technological improvement. Ethics language is markedly absent, omitted from 31% of studies published in neural engineering journals and 59% of studies in biomedical engineering journals. Significance. As the integration of technological tools with the capacities of the mind deepens, explicit attention to ethical issues will ensure that broad human benefit is embraced and not eclipsed by technological exclusiveness.

  5. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    Science.gov (United States)

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing.

    Science.gov (United States)

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z; Haselager, Pim

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4 th International BCI conference, which took place in May-June 2010 in Asilomar, California. We assessed respondents' opinions about a number of topics. First, we investigated preferences for terminology and definitions relating to BCIs. Second, we assessed respondents' expectations on the marketability of different BCI applications (BCIs for healthy people, BCIs for assistive technology, BCIs-controlled neuroprostheses and BCIs as therapy tools). Third, we investigated opinions about ethical issues related to BCI research for the development of assistive technology: informed consent process with locked-in patients, risk-benefit analyses, team responsibility, consequences of BCI on patients' and families' lives, liability and personal identity and interaction with the media. Finally, we asked respondents which issues are urgent in BCI research.

  7. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development.

    Science.gov (United States)

    Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H

    2012-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis.

  8. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review.

    Science.gov (United States)

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.

  9. A small, portable, battery-powered brain-computer interface system for motor rehabilitation.

    Science.gov (United States)

    McCrimmon, Colin M; Ming Wang; Silva Lopes, Lucas; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    Motor rehabilitation using brain-computer interface (BCI) systems may facilitate functional recovery in individuals after stroke or spinal cord injury. Nevertheless, these systems are typically ill-suited for widespread adoption due to their size, cost, and complexity. In this paper, a small, portable, and extremely cost-efficient (microcontroller and touchscreen. The system's performance was tested using a movement-related BCI task in 3 able-bodied subjects with minimal previous BCI experience. Specifically, subjects were instructed to alternate between relaxing and dorsiflexing their right foot, while their EEG was acquired and analyzed in real-time by the BCI system to decode their underlying movement state. The EEG signals acquired by the custom amplifier array were similar to those acquired by a commercial amplifier (maximum correlation coefficient ρ=0.85). During real-time BCI operation, the average correlation between instructional cues and decoded BCI states across all subjects (ρ=0.70) was comparable to that of full-size BCI systems. Small, portable, and inexpensive BCI systems such as the one reported here may promote a widespread adoption of BCI-based movement rehabilitation devices in stroke and spinal cord injury populations.

  10. SSVEP and ANN based optimal speller design for Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Irshad Ahmad Ansari

    2015-07-01

    Full Text Available This work put forwards an optimal BCI (Brain Computer Interface speller design based on Steady State Visual Evoked Potentials (SSVEP and Artificial Neural Network (ANN in order to help the people with severe motor impairments. This work is carried out to enhance the accuracy and communication rate of  BCI system. To optimize the BCI system, the work has been divided into two steps: First, designing of an encoding technique to choose characters from the speller interface and the second is the development and implementation of feature extraction algorithm to acquire optimal features, which is used to train the BCI system for classification using neural network. Optimization of speller interface is focused on representation of character matrix and its designing parameters. Then again, a lot of deliberations made in order to optimize selection of features and user’s time window. Optimized system works nearly the same with the new user and gives character per minute (CPM of 13 ± 2 with an average accuracy of 94.5% by choosing first two harmonics of power spectral density as the feature vectors and using the 2 second time window for each selection. Optimized BCI performs better with experienced users with an average accuracy of 95.1%. Such a good accuracy has not been reported before in account of fair enough CPM.DOI: 10.15181/csat.v2i2.1059

  11. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.

    Science.gov (United States)

    Ahn, Minkyu; Cho, Hohyun; Ahn, Sangtae; Jun, Sung C

    2018-01-01

    Performance variation is a critical issue in motor imagery brain-computer interface (MI-BCI), and various neurophysiological, psychological, and anatomical correlates have been reported in the literature. Although the main aim of such studies is to predict MI-BCI performance for the prescreening of poor performers, studies which focus on the user's sense of the motor imagery process and directly estimate MI-BCI performance through the user's self-prediction are lacking. In this study, we first test each user's self-prediction idea regarding motor imagery experimental datasets. Fifty-two subjects participated in a classical, two-class motor imagery experiment and were asked to evaluate their easiness with motor imagery and to predict their own MI-BCI performance. During the motor imagery experiment, an electroencephalogram (EEG) was recorded; however, no feedback on motor imagery was given to subjects. From EEG recordings, the offline classification accuracy was estimated and compared with several questionnaire scores of subjects, as well as with each subject's self-prediction of MI-BCI performance. The subjects' performance predictions during motor imagery task showed a high positive correlation ( r = 0.64, p performance even without feedback information. This implies that the human brain is an active learning system and, by self-experiencing the endogenous motor imagery process, it can sense and adopt the quality of the process. Thus, it is believed that users may be able to predict MI-BCI performance and results may contribute to a better understanding of low performance and advancing BCI.

  12. Sequenced subjective accents for brain-computer interfaces

    Science.gov (United States)

    Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.

    2011-06-01

    Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.

  13. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

    Science.gov (United States)

    Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.

    2014-01-01

    Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079

  14. On the need to better specify the concept of control in brain-computer-interfaces/neurofeedback research

    Directory of Open Access Journals (Sweden)

    Guilherme eWood

    2014-09-01

    Full Text Available Aiming at a better specification of the concept of control in brain-computer-interfaces (BCI and neurofeedback research, we propose to distinguish self-control of brain activity from the broader concept of BCI control, since the first describes a neurocognitive phenomenon and is only one of the many components of BCI control. Based on this distinction, we developed a framework based on dual-processes theory that describes the cognitive determinants of self-control of brain activity as the interplay of automatic vs. controlled information processing. Further, we distinguish between cognitive processes that are necessary and sufficient to achieve a given level of self-control of brain activity and those which are not. We discuss that those cognitive processes which are not necessary for the learning process can hamper self-control because they cannot be completely turned-off at any time. This framework aims at a comprehensive description of the cognitive determinants of the acquisition of self-control of brain activity underlying those classes of BCI which require the user to achieve regulation of brain activity as well as neurofeedback learning.

  15. Broad-Band Visually Evoked Potentials: Re(convolution in Brain-Computer Interfacing.

    Directory of Open Access Journals (Sweden)

    Jordy Thielen

    Full Text Available Brain-Computer Interfaces (BCIs allow users to control devices and communicate by using brain activity only. BCIs based on broad-band visual stimulation can outperform BCIs using other stimulation paradigms. Visual stimulation with pseudo-random bit-sequences evokes specific Broad-Band Visually Evoked Potentials (BBVEPs that can be reliably used in BCI for high-speed communication in speller applications. In this study, we report a novel paradigm for a BBVEP-based BCI that utilizes a generative framework to predict responses to broad-band stimulation sequences. In this study we designed a BBVEP-based BCI using modulated Gold codes to mark cells in a visual speller BCI. We defined a linear generative model that decomposes full responses into overlapping single-flash responses. These single-flash responses are used to predict responses to novel stimulation sequences, which in turn serve as templates for classification. The linear generative model explains on average 50% and up to 66% of the variance of responses to both seen and unseen sequences. In an online experiment, 12 participants tested a 6 × 6 matrix speller BCI. On average, an online accuracy of 86% was reached with trial lengths of 3.21 seconds. This corresponds to an Information Transfer Rate of 48 bits per minute (approximately 9 symbols per minute. This study indicates the potential to model and predict responses to broad-band stimulation. These predicted responses are proven to be well-suited as templates for a BBVEP-based BCI, thereby enabling communication and control by brain activity only.

  16. Maps managing interface design for a mobile robot navigation governed by a BCI

    Energy Technology Data Exchange (ETDEWEB)

    Auat Cheein, Fernando A [Institute of Automatic, National University of San Juan. San Martin, 1109 - Oeste 5400 San Juan (Argentina); Carelli, Ricardo [Institute of Automatic, National University of San Juan. San Martin, 1109 - Oeste 5400 San Juan (Argentina); Celeste, Wanderley Cardoso [Electrical Engineering Department, Federal University of Espirito Santo. Fernando Ferrari, 514 29075-910 Vitoria-ES (Brazil); Freire Bastos, Teodiano [Electrical Engineering Department, Federal University of Espirito Santo. Fernando Ferrari, 514 29075-910 Vitoria-ES (Brazil); Di Sciascio, Fernando [Institute of Automatic, National University of San Juan. San Martin, 1109 - Oeste 5400 San Juan (Argentina)

    2007-11-15

    In this paper, a maps managing interface is proposed. This interface is governed by a Brain Computer Interface (BCI), which also governs a mobile robot's movements. If a robot is inside a known environment, the user can load a map from the maps managing interface in order to navigate it. Otherwise, if the robot is in an unknown environment, a Simultaneous Localization and Mapping (SLAM) algorithm is released in order to obtain a probabilistic grid map of that environment. Then, that map is loaded into the map database for future navigations. While slamming, the user has a direct control of the robot's movements via the BCI. The complete system is applied to a mobile robot and can be also applied to an autonomous wheelchair, which has the same kinematics. Experimental results are also shown.

  17. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.

    Science.gov (United States)

    Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S

    2014-01-01

    Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.

  18. EEG datasets for motor imagery brain-computer interface.

    Science.gov (United States)

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  19. On robust parameter estimation in brain-computer interfacing

    Science.gov (United States)

    Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert

    2017-12-01

    Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.

  20. Brain-computer interface based on intermodulation frequency

    Science.gov (United States)

    Chen, Xiaogang; Chen, Zhikai; Gao, Shangkai; Gao, Xiaorong

    2013-12-01

    Objective. Most recent steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have used a single frequency for each target, so that a large number of targets require a large number of stimulus frequencies and therefore a wider frequency band. However, human beings show good SSVEP responses only in a limited range of frequencies. Furthermore, this issue is especially problematic if the SSVEP-based BCI takes a PC monitor as a stimulator, which is only capable of generating a limited range of frequencies. To mitigate this issue, this study presents an innovative coding method for SSVEP-based BCI by means of intermodulation frequencies. Approach. Simultaneous modulations of stimulus luminance and color at different frequencies were utilized to induce intermodulation frequencies. Luminance flickered at relatively large frequency (10, 12, 15 Hz), while color alternated at low frequency (0.5, 1 Hz). An attractive feature of the proposed method was that it would substantially increase the number of targets at a single flickering frequency by altering color modulated frequencies. Based on this method, the BCI system presented in this study realized eight targets merely using three flickering frequencies. Main results. The online results obtained from 15 subjects (14 healthy and 1 with stroke) revealed that an average classification accuracy of 93.83% and information transfer rate (ITR) of 33.80 bit min-1 were achieved using our proposed SSVEP-based BCI system. Specifically, 5 out of the 15 subjects exhibited an ITR of 40.00 bit min-1 with a classification accuracy of 100%. Significance. These results suggested that intermodulation frequencies could be adopted as steady responses in BCI, for which our system could be used as a practical BCI system.

  1. Selective sensation based brain-computer interface via mechanical vibrotactile stimulation.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    In this work, mechanical vibrotactile stimulation was applied to subjects' left and right wrist skins with equal intensity, and a selective sensation perception task was performed to achieve two types of selections similar to motor imagery Brain-Computer Interface. The proposed system was based on event-related desynchronization/synchronization (ERD/ERS), which had a correlation with processing of afferent inflow in human somatosensory system, and attentional effect which modulated the ERD/ERS. The experiments were carried out on nine subjects (without experience in selective sensation), and six of them showed a discrimination accuracy above 80%, three of them above 95%. Comparative experiments with motor imagery (with and without presence of stimulation) were also carried out, which further showed the feasibility of selective sensation as an alternative BCI task complementary to motor imagery. Specifically there was significant improvement ([Formula: see text]) from near 65% in motor imagery (with and without presence of stimulation) to above 80% in selective sensation on some subjects. The proposed BCI modality might well cooperate with existing BCI modalities in the literature in enlarging the widespread usage of BCI system.

  2. Selective Sensation Based Brain-Computer Interface via Mechanical Vibrotactile Stimulation

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    In this work, mechanical vibrotactile stimulation was applied to subjects’ left and right wrist skins with equal intensity, and a selective sensation perception task was performed to achieve two types of selections similar to motor imagery Brain-Computer Interface. The proposed system was based on event-related desynchronization/synchronization (ERD/ERS), which had a correlation with processing of afferent inflow in human somatosensory system, and attentional effect which modulated the ERD/ERS. The experiments were carried out on nine subjects (without experience in selective sensation), and six of them showed a discrimination accuracy above 80%, three of them above 95%. Comparative experiments with motor imagery (with and without presence of stimulation) were also carried out, which further showed the feasibility of selective sensation as an alternative BCI task complementary to motor imagery. Specifically there was significant improvement () from near 65% in motor imagery (with and without presence of stimulation) to above 80% in selective sensation on some subjects. The proposed BCI modality might well cooperate with existing BCI modalities in the literature in enlarging the widespread usage of BCI system. PMID:23762253

  3. Motivation modulates the P300 amplitude during brain-computer interface use.

    Science.gov (United States)

    Kleih, S C; Nijboer, F; Halder, S; Kübler, A

    2010-07-01

    This study examined the effect of motivation as a possible psychological influencing variable on P300 amplitude and performance in a brain-computer interface (BCI) controlled by event-related potentials (ERP). Participants were instructed to copy spell a sentence by attending to cells of a randomly flashing 7*7 matrix. Motivation was manipulated by monetary reward. In two experimental groups participants received 25 (N=11) or 50 (N=11) Euro cent for each correctly selected character; the control group (N=11) was not rewarded. BCI performance was defined as the overall percentage of correctly selected characters (correct response rate=CRR). Participants performed at an average of 99%. At electrode location Cz the P300 amplitude was positively correlated to self-rated motivation. The P300 amplitude of the most motivated participants was significantly higher than that of the least motivated participants. Highly motivated participants were able to communicate correctly faster with the ERP-BCI than less motivated participants. Motivation modulates the P300 amplitude in an ERP-BCI. Motivation may contribute to variance in BCI performance and should be monitored in BCI settings. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Multimodal 2D Brain Computer Interface.

    Science.gov (United States)

    Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal

    2015-08-01

    In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.

  5. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems

    Directory of Open Access Journals (Sweden)

    Thierry Castermans

    2013-12-01

    Full Text Available In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS, functional magnetic resonance imaging (fMRI, positron-emission tomography (PET, single-photon emission-computed tomography (SPECT] and invasive studies. The first brain-computer interface (BCI applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation.

  6. [The P300 based brain-computer interface: effect of stimulus position in a stimulus train].

    Science.gov (United States)

    Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia

    2012-01-01

    The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.

  7. Neurobionics and the brain-computer interface: current applications and future horizons.

    Science.gov (United States)

    Rosenfeld, Jeffrey V; Wong, Yan Tat

    2017-05-01

    The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.

  8. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus

    Science.gov (United States)

    Krusienski, D. J.; Shih, J. J.

    2011-04-01

    A brain-computer interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans has used scalp-recorded electroencephalography or intracranial electrocorticography. The use of brain signals obtained directly from stereotactic depth electrodes to control a BCI has not previously been explored. In this study, event-related potentials (ERPs) recorded from bilateral stereotactic depth electrodes implanted in and adjacent to the hippocampus were used to control a P300 Speller paradigm. The ERPs were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in the two subjects tested. Our results demonstrate that ERPs from hippocampal and hippocampal adjacent depth electrodes can be used to reliably control the P300 Speller BCI paradigm.

  9. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    Directory of Open Access Journals (Sweden)

    Ole eJensen

    2011-05-01

    Full Text Available Large efforts are currently being made to develop and improve online analysis of brain activity which can be used e.g. for brain-computer interfacing (BCI. A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from EEG/MEG studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

  10. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface

    Directory of Open Access Journals (Sweden)

    Brittany Mei Young

    2014-07-01

    Full Text Available This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n=8 or no therapy (n=6. Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test, and the Nine-Hole Peg Test as well as task-based fMRI scans were conducted before, during, after, and one month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy but not in the absence of therapy to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and nonlesioned hemisphere and that these brain changes are associated with changes in specific motor functions.

  11. Brain-computer interface using P300 and virtual reality: A gaming approach for treating ADHD

    DEFF Research Database (Denmark)

    Rohani, Darius Adam; Sørensen, Helge Bjarup Dissing; Puthusserypady, Sadasivan

    2014-01-01

    This paper presents a novel brain-computer interface (BCI) system aiming at the rehabilitation of attention-deficit/hyperactive disorder in children. It uses the P300 potential in a series of feedback games to improve the subjects' attention. We applied a support vector machine (SVM) using temporal...

  12. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.

    Science.gov (United States)

    Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan

    2016-01-01

    Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.

  13. Asynchronous brain-computer interface for cognitive assessment in people with cerebral palsy

    Science.gov (United States)

    Alcaide-Aguirre, R. E.; Warschausky, S. A.; Brown, D.; Aref, A.; Huggins, J. E.

    2017-12-01

    Objective. Typically, clinical measures of cognition require motor or speech responses. Thus, a significant percentage of people with disabilities are not able to complete standardized assessments. This situation could be resolved by employing a more accessible test administration method, such as a brain-computer interface (BCI). A BCI can circumvent motor and speech requirements by translating brain activity to identify a subject’s response. By eliminating the need for motor or speech input, one could use a BCI to assess an individual who previously did not have access to clinical tests. Approach. We developed an asynchronous, event-related potential BCI-facilitated administration procedure for the peabody picture vocabulary test (PPVT-IV). We then tested our system in typically developing individuals (N  =  11), as well as people with cerebral palsy (N  =  19) to compare results to the standardized PPVT-IV format and administration. Main results. Standard scores on the BCI-facilitated PPVT-IV, and the standard PPVT-IV were highly correlated (r  =  0.95, p  <  0.001), with a mean difference of 2.0  ±  6.4 points, which is within the standard error of the PPVT-IV. Significance. Thus, our BCI-facilitated PPVT-IV provided comparable results to the standard PPVT-IV, suggesting that populations for whom standardized cognitive tests are not accessible could benefit from our BCI-facilitated approach.

  14. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

    Science.gov (United States)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s-1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  15. Simultaneous detection of P300 and steady-state visually evoked potentials for hybrid brain-computer interface.

    Science.gov (United States)

    Combaz, Adrien; Van Hulle, Marc M

    2015-01-01

    We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.

  16. Encoder-decoder optimization for brain-computer interfaces.

    Science.gov (United States)

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  17. Encoder-decoder optimization for brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Josh Merel

    2015-06-01

    Full Text Available Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model" and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  18. [Research of controlling of smart home system based on P300 brain-computer interface].

    Science.gov (United States)

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  19. A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Francesco Cavrini

    2016-01-01

    Full Text Available We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer Interface (BCI based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of systems and evaluate it in the context of a visual P300-based BCI. Offline analysis of data relative to 5 subjects lets us argue that the proposed classification strategy is suitable for BCI. Indeed, the achieved performance is significantly greater than the average of the base classifiers and, broadly speaking, similar to that of the best one. Thus the proposed methodology allows realizing systems that can be used by different subjects without the need for a preliminary configuration phase in which the best classifier for each user has to be identified. Moreover, the ensemble is often capable of detecting uncertain situations and turning them from misclassifications into abstentions, thereby improving the level of safety in BCI for environmental or device control.

  20. Performance improvement of ERP-based brain-computer interface via varied geometric patterns.

    Science.gov (United States)

    Ma, Zheng; Qiu, Tianshuang

    2017-12-01

    Recently, many studies have been focusing on optimizing the stimulus of an event-related potential (ERP)-based brain-computer interface (BCI). However, little is known about the effectiveness when increasing the stimulus unpredictability. We investigated a new stimulus type of varied geometric pattern where both complexity and unpredictability of the stimulus are increased. The proposed and classical paradigms were compared in within-subject experiments with 16 healthy participants. Results showed that the BCI performance was significantly improved for the proposed paradigm, with an average online written symbol rate increasing by 138% comparing with that of the classical paradigm. Amplitudes of primary ERP components, such as N1, P2a, P2b, N2, were also found to be significantly enhanced with the proposed paradigm. In this paper, a novel ERP BCI paradigm with a new stimulus type of varied geometric pattern is proposed. By jointly increasing the complexity and unpredictability of the stimulus, the performance of an ERP BCI could be considerably improved.

  1. Towards Development of a 3-State Self-Paced Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Ali Bashashati

    2007-01-01

    the presence of a right- or a left-hand movement and the second classifies the detected movement as a right or a left one. In an offline analysis of the EEG data collected from four able-bodied individuals, the 3-state brain-computer interface shows a comparable performance with a 2-state system and significant performance improvement if used as a 2-state BCI, that is, in detecting the presence of a right- or a left-hand movement (regardless of the type of movement. It has an average true positive rate of 37.5% and 42.8% (at false positives rate of 1% in detecting right- and left-hand extensions, respectively, in the context of a 3-state self-paced BCI and average detection rate of 58.1% (at false positive rate of 1% in the context of a 2-state self-paced BCI.

  2. An online hybrid brain-computer interface combining multiple physiological signals for webpage browse.

    Science.gov (United States)

    Long Chen; Zhongpeng Wang; Feng He; Jiajia Yang; Hongzhi Qi; Peng Zhou; Baikun Wan; Dong Ming

    2015-08-01

    The hybrid brain computer interface (hBCI) could provide higher information transfer rate than did the classical BCIs. It included more than one brain-computer or human-machine interact paradigms, such as the combination of the P300 and SSVEP paradigms. Research firstly constructed independent subsystems of three different paradigms and tested each of them with online experiments. Then we constructed a serial hybrid BCI system which combined these paradigms to achieve the functions of typing letters, moving and clicking cursor, and switching among them for the purpose of browsing webpages. Five subjects were involved in this study. They all successfully realized these functions in the online tests. The subjects could achieve an accuracy above 90% after training, which met the requirement in operating the system efficiently. The results demonstrated that it was an efficient system capable of robustness, which provided an approach for the clinic application.

  3. Benchmarking Brain-Computer Interfaces Outside the Laboratory: The Cybathlon 2016

    Directory of Open Access Journals (Sweden)

    Domen Novak

    2018-01-01

    Full Text Available This paper presents a new approach to benchmarking brain-computer interfaces (BCIs outside the lab. A computer game was created that mimics a real-world application of assistive BCIs, with the main outcome metric being the time needed to complete the game. This approach was used at the Cybathlon 2016, a competition for people with disabilities who use assistive technology to achieve tasks. The paper summarizes the technical challenges of BCIs, describes the design of the benchmarking game, then describes the rules for acceptable hardware, software and inclusion of human pilots in the BCI competition at the Cybathlon. The 11 participating teams, their approaches, and their results at the Cybathlon are presented. Though the benchmarking procedure has some limitations (for instance, we were unable to identify any factors that clearly contribute to BCI performance, it can be successfully used to analyze BCI performance in realistic, less structured conditions. In the future, the parameters of the benchmarking game could be modified to better mimic different applications (e.g., the need to use some commands more frequently than others. Furthermore, the Cybathlon has the potential to showcase such devices to the general public.

  4. Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.

    Science.gov (United States)

    Royer, Audrey S; He, Bin

    2009-02-01

    In a brain-computer interface (BCI) utilizing a process control strategy, the signal from the cortex is used to control the fine motor details normally handled by other parts of the brain. In a BCI utilizing a goal selection strategy, the signal from the cortex is used to determine the overall end goal of the user, and the BCI controls the fine motor details. A BCI based on goal selection may be an easier and more natural system than one based on process control. Although goal selection in theory may surpass process control, the two have never been directly compared, as we are reporting here. Eight young healthy human subjects participated in the present study, three trained and five naïve in BCI usage. Scalp-recorded electroencephalograms (EEG) were used to control a computer cursor during five different paradigms. The paradigms were similar in their underlying signal processing and used the same control signal. However, three were based on goal selection, and two on process control. For both the trained and naïve populations, goal selection had more hits per run, was faster, more accurate (for seven out of eight subjects) and had a higher information transfer rate than process control. Goal selection outperformed process control in every measure studied in the present investigation.

  5. The advantages of the surface Laplacian in brain-computer interface research.

    Science.gov (United States)

    McFarland, Dennis J

    2015-09-01

    Brain-computer interface (BCI) systems frequently use signal processing methods, such as spatial filtering, to enhance performance. The surface Laplacian can reduce spatial noise and aid in identification of sources. In BCI research, these two functions of the surface Laplacian correspond to prediction accuracy and signal orthogonality. In the present study, an off-line analysis of data from a sensorimotor rhythm-based BCI task dissociated these functions of the surface Laplacian by comparing nearest-neighbor and next-nearest neighbor Laplacian algorithms. The nearest-neighbor Laplacian produced signals that were more orthogonal while the next-nearest Laplacian produced signals that resulted in better accuracy. Both prediction and signal identification are important for BCI research. Better prediction of user's intent produces increased speed and accuracy of communication and control. Signal identification is important for ruling out the possibility of control by artifacts. Identifying the nature of the control signal is relevant both to understanding exactly what is being studied and in terms of usability for individuals with limited motor control. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Enhanced inter-subject brain computer interface with associative sensorimotor oscillations.

    Science.gov (United States)

    Saha, Simanto; Ahmed, Khawza I; Mostafa, Raqibul; Khandoker, Ahsan H; Hadjileontiadis, Leontios

    2017-02-01

    Electroencephalography (EEG) captures electrophysiological signatures of cortical events from the scalp with high-dimensional electrode montages. Usually, excessive sources produce outliers and potentially affect the actual event related sources. Besides, EEG manifests inherent inter-subject variability of the brain dynamics, at the resting state and/or under the performance of task(s), caused probably due to the instantaneous fluctuation of psychophysiological states. A wavelet coherence (WC) analysis for optimally selecting associative inter-subject channels is proposed here and is being used to boost performances of motor imagery (MI)-based inter-subject brain computer interface (BCI). The underlying hypothesis is that optimally associative inter-subject channels can reduce the effects of outliers and, thus, eliminate dissimilar cortical patterns. The proposed approach has been tested on the dataset IVa from BCI competition III, including EEG data acquired from five healthy subjects who were given visual cues to perform 280 trials of MI for the right hand and right foot. Experimental results have shown increased classification accuracy (81.79%) using the WC-based selected 16 channels compared to the one (56.79%) achieved using all the available 118 channels. The associative channels lie mostly around the sensorimotor regions of the brain, reinforced by the previous literature, describing spatial brain dynamics during sensorimotor oscillations. Apparently, the proposed approach paves the way for optimised EEG channel selection that could boost further the efficiency and real-time performance of BCI systems.

  7. Brain Computer Interface on Track to Home.

    Science.gov (United States)

    Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Solà, Marc; Müller-Putz, Gernot; Wriessnegger, Selina C; Pinegger, Andreas; Kübler, Andrea; Halder, Sebastian; Käthner, Ivo; Martin, Suzanne; Daly, Jean; Armstrong, Elaine; Guger, Christoph; Hintermüller, Christoph; Lowish, Hannah

    2015-01-01

    The novel BackHome system offers individuals with disabilities a range of useful services available via brain-computer interfaces (BCIs), to help restore their independence. This is the time such technology is ready to be deployed in the real world, that is, at the target end users' home. This has been achieved by the development of practical electrodes, easy to use software, and delivering telemonitoring and home support capabilities which have been conceived, implemented, and tested within a user-centred design approach. The final BackHome system is the result of a 3-year long process involving extensive user engagement to maximize effectiveness, reliability, robustness, and ease of use of a home based BCI system. The system is comprised of ergonomic and hassle-free BCI equipment; one-click software services for Smart Home control, cognitive stimulation, and web browsing; and remote telemonitoring and home support tools to enable independent home use for nonexpert caregivers and users. BackHome aims to successfully bring BCIs to the home of people with limited mobility to restore their independence and ultimately improve their quality of life.

  8. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    Science.gov (United States)

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Endogenous Sensory Discrimination and Selection by a Fast Brain Switch for a High Transfer Rate Brain-Computer Interface.

    Science.gov (United States)

    Xu, Ren; Jiang, Ning; Dosen, Strahinja; Lin, Chuang; Mrachacz-Kersting, Natalie; Dremstrup, Kim; Farina, Dario

    2016-08-01

    In this study, we present a novel multi-class brain-computer interface (BCI) for communication and control. In this system, the information processing is shared by the algorithm (computer) and the user (human). Specifically, an electro-tactile cycle was presented to the user, providing the choice (class) by delivering timely sensory input. The user discriminated these choices by his/her endogenous sensory ability and selected the desired choice with an intuitive motor task. This selection was detected by a fast brain switch based on real-time detection of movement-related cortical potentials from scalp EEG. We demonstrated the feasibility of such a system with a four-class BCI, yielding a true positive rate of  ∼ 80% and  ∼ 70%, and an information transfer rate of  ∼ 7 bits/min and  ∼ 5 bits/min, for the movement and imagination selection command, respectively. Furthermore, when the system was extended to eight classes, the throughput of the system was improved, demonstrating the capability of accommodating a large number of classes. Combining the endogenous sensory discrimination with the fast brain switch, the proposed system could be an effective, multi-class, gaze-independent BCI system for communication and control applications.

  10. Are we there yet? Evaluating commercial grade brain-computer interface for control of computer applications by individuals with cerebral palsy.

    Science.gov (United States)

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Claire Davies, T

    2017-02-01

    Using a commercial electroencephalography (EEG)-based brain-computer interface (BCI), the training and testing protocol for six individuals with spastic quadriplegic cerebral palsy (GMFCS and MACS IV and V) was evaluated. A customised, gamified training paradigm was employed. Over three weeks, the participants spent two sessions exploring the system, and up to six sessions playing the game which focussed on EEG feedback of left and right arm motor imagery. The participants showed variable inconclusive results in the ability to produce two distinct EEG patterns. Participant performance was influenced by physical illness, motivation, fatigue and concentration. The results from this case study highlight the infancy of BCIs as a form of assistive technology for people with cerebral palsy. Existing commercial BCIs are not designed according to the needs of end-users. Implications for Rehabilitation Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces are not designed for practical assistive technology use for people with cerebral palsy. Practical brain-computer interface assistive technologies may need to be flexible to suit individual needs.

  11. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    Science.gov (United States)

    Qin, Jianzhao; Li, Yuanqing; Sun, Wei

    2007-01-01

    As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141

  12. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    Science.gov (United States)

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  13. Brain Computer Interface for Micro-controller Driven Robot Based on Emotiv Sensors

    Directory of Open Access Journals (Sweden)

    Parth Gargava

    2017-08-01

    Full Text Available A Brain Computer Interface (BCI is developed to navigate a micro-controller based robot using Emotiv sensors. The BCI system has a pipeline of 5 stages- signal acquisition, pre-processing, feature extraction, classification and CUDA inter- facing. It shall aid in serving a prototype for physical movement of neurological patients who are unable to control or operate on their muscular movements. All stages of the pipeline are designed to process bodily actions like eye blinks to command navigation of the robot. This prototype works on features learning and classification centric techniques using support vector machine. The suggested pipeline, ensures successful navigation of a robot in four directions in real time with accuracy of 93 percent.

  14. A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential

    DEFF Research Database (Denmark)

    Mohebbi, Ali; Engelsholm, Signe K.D.; Puthusserypady, Sadasivan

    2015-01-01

    In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code...

  15. Z-score linear discriminant analysis for EEG based brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    Full Text Available Linear discriminant analysis (LDA is one of the most popular classification algorithms for brain-computer interfaces (BCI. LDA assumes Gaussian distribution of the data, with equal covariance matrices for the concerned classes, however, the assumption is not usually held in actual BCI applications, where the heteroscedastic class distributions are usually observed. This paper proposes an enhanced version of LDA, namely z-score linear discriminant analysis (Z-LDA, which introduces a new decision boundary definition strategy to handle with the heteroscedastic class distributions. Z-LDA defines decision boundary through z-score utilizing both mean and standard deviation information of the projected data, which can adaptively adjust the decision boundary to fit for heteroscedastic distribution situation. Results derived from both simulation dataset and two actual BCI datasets consistently show that Z-LDA achieves significantly higher average classification accuracies than conventional LDA, indicating the superiority of the new proposed decision boundary definition strategy.

  16. A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection

    Science.gov (United States)

    Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing

    2015-01-01

    Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC. PMID:26123281

  17. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  18. Beyond maximum speed—a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI)

    Science.gov (United States)

    Kaufmann, Tobias; Kübler, Andrea

    2014-10-01

    Objective. The speed of brain-computer interfaces (BCI), based on event-related potentials (ERP), is inherently limited by the commonly used one-stimulus paradigm. In this paper, we introduce a novel paradigm that can increase the spelling speed by a factor of 2, thereby extending the one-stimulus paradigm to a two-stimulus paradigm. Two different stimuli (a face and a symbol) are presented at the same time, superimposed on different characters and ERPs are classified using a multi-class classifier. Here, we present the proof-of-principle that is achieved with healthy participants. Approach. Eight participants were confronted with the novel two-stimulus paradigm and, for comparison, with two one-stimulus paradigms that used either one of the stimuli. Classification accuracies (percentage of correctly predicted letters) and elicited ERPs from the three paradigms were compared in a comprehensive offline analysis. Main results. The accuracies slightly decreased with the novel system compared to the established one-stimulus face paradigm. However, the use of two stimuli allowed for spelling at twice the maximum speed of the one-stimulus paradigms, and participants still achieved an average accuracy of 81.25%. This study introduced an alternative way of increasing the spelling speed in ERP-BCIs and illustrated that ERP-BCIs may not yet have reached their speed limit. Future research is needed in order to improve the reliability of the novel approach, as some participants displayed reduced accuracies. Furthermore, a comparison to the most recent BCI systems with individually adjusted, rapid stimulus timing is needed to draw conclusions about the practical relevance of the proposed paradigm. Significance. We introduced a novel two-stimulus paradigm that might be of high value for users who have reached the speed limit with the current one-stimulus ERP-BCI systems.

  19. Ethical Issues in Brain-Computer Interface Research, Development, and Dissemination

    NARCIS (Netherlands)

    Vlek, R.J.; Steines, D.; Szibbo, D.; Kübler, A.; Schneider, M.J.; Haselager, W.F.G.; Nijboer, F.

    2012-01-01

    The steadily growing field of brain–computer interfacing (BCI) may develop useful technologies, with a potential impact not only on individuals, but also on society as a whole. At the same time, the development of BCI presents significant ethical and legal challenges. In a workshop during the 4th

  20. An embedded implementation based on adaptive filter bank for brain-computer interface systems.

    Science.gov (United States)

    Belwafi, Kais; Romain, Olivier; Gannouni, Sofien; Ghaffari, Fakhreddine; Djemal, Ridha; Ouni, Bouraoui

    2018-07-15

    Brain-computer interface (BCI) is a new communication pathway for users with neurological deficiencies. The implementation of a BCI system requires complex electroencephalography (EEG) signal processing including filtering, feature extraction and classification algorithms. Most of current BCI systems are implemented on personal computers. Therefore, there is a great interest in implementing BCI on embedded platforms to meet system specifications in terms of time response, cost effectiveness, power consumption, and accuracy. This article presents an embedded-BCI (EBCI) system based on a Stratix-IV field programmable gate array. The proposed system relays on the weighted overlap-add (WOLA) algorithm to perform dynamic filtering of EEG-signals by analyzing the event-related desynchronization/synchronization (ERD/ERS). The EEG-signals are classified, using the linear discriminant analysis algorithm, based on their spatial features. The proposed system performs fast classification within a time delay of 0.430 s/trial, achieving an average accuracy of 76.80% according to an offline approach and 80.25% using our own recording. The estimated power consumption of the prototype is approximately 0.7 W. Results show that the proposed EBCI system reduces the overall classification error rate for the three datasets of the BCI-competition by 5% compared to other similar implementations. Moreover, experiment shows that the proposed system maintains a high accuracy rate with a short processing time, a low power consumption, and a low cost. Performing dynamic filtering of EEG-signals using WOLA increases the recognition rate of ERD/ERS patterns of motor imagery brain activity. This approach allows to develop a complete prototype of a EBCI system that achieves excellent accuracy rates. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Bacteria Hunt: Evaluating multi-paradigm BCI interaction

    NARCIS (Netherlands)

    Mühl, C.; Gürkök, Hayrettin; Plass - Oude Bos, D.; Thurlings, Marieke E.; Scherffig, Lasse; Duvinage, Matthieu; Elbakyan, Alexandra A.; Kang, SungWook; Poel, Mannes; Heylen, Dirk K.J.

    The multimodal, multi-paradigm brain-computer interfacing (BCI) game Bacteria Hunt was used to evaluate two aspects of BCI interaction in a gaming context. One goal was to examine the effect of feedback on the ability of the user to manipulate his mental state of relaxation. This was done by having

  2. Preface (to: Towards Practical Brain-Computer Interfaces)

    NARCIS (Netherlands)

    Allison, Brendan Z.; Dunne, Stephen; Leeb, Robert; Millán, Jose del R.; Allison, Brendan Z.; Dunne, Stephen; Leeb, Robert; Millán, Jose del R.; Nijholt, Antinus

    2012-01-01

    Brain–computer interface (BCI) research is advancing rapidly. The last few years have seen a dramatic rise in journal publications, academic workshops and conferences, books, new products aimed at both healthy and disabled users, research funding from different sources, and media attention. This

  3. User Experience Evaluation in BCI: Mind the Gap!

    NARCIS (Netherlands)

    Plass - Oude Bos, D.; Gürkök, Hayrettin; van de Laar, B.L.A.; Nijboer, Femke; Nijholt, Antinus

    2011-01-01

    Generally brain-computer interface (BCI) systems are evaluated based on the assumption that the user is trying to perform a specific task in the most efficient way. BCI for entertainment yields interesting applications for both patients and healthy users. Then the purpose is to create positive

  4. Players' opinions on control and playability of a BCI game

    NARCIS (Netherlands)

    Gürkök, Hayrettin; van de Laar, B.L.A.; Plass - Oude Bos, D.; Poel, Mannes; Nijholt, Antinus; Stephanidis, C; Antona, M.

    2014-01-01

    Brain-computer interface (BCI) games can satisfy our need for competence by providing us with challenges that we should enjoy tackling. However, many BCI games that claim to provide enjoyable challenges fail to do so. Some common fallacies and pitfalls about BCI games play a role in this failure and

  5. Brain-computer interface research a state-of-the-art summary

    CERN Document Server

    Allison, Brendan; Edlinger, Günter; Leuthardt, E C

    Brain-computer interfaces (BCIs) are rapidly developing into a mainstream, worldwide research endeavor. With so many new groups and projects, it can be difficult to identify the best ones. This book summarizes ten leading projects from around the world. About 60 submissions were received in 2011 for the highly competitive BCI Research Award, and an international jury selected the top ten. This Brief gives a concise but carefully illustrated and fully up-to-date description of each of these projects, together with an introduction and concluding chapter by the editors.

  6. Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis

    Science.gov (United States)

    Geronimo, A.; Simmons, Z.; Schiff, S. J.

    2016-04-01

    Objective. Patients with amyotrophic lateral sclerosis (ALS) may benefit from brain-computer interfaces (BCI), but the utility of such devices likely will have to account for the functional, cognitive, and behavioral heterogeneity of this neurodegenerative disorder. Approach. In this study, a heterogeneous group of patients with ALS participated in a study on BCI based on the P300 event related potential and motor-imagery. Results. The presence of cognitive impairment in these patients significantly reduced the quality of the control signals required to use these communication systems, subsequently impairing performance, regardless of progression of physical symptoms. Loss in performance among the cognitively impaired was accompanied by a decrease in the signal-to-noise ratio of task-relevant EEG band power. There was also evidence that behavioral dysfunction negatively affects P300 speller performance. Finally, older participants achieved better performance on the P300 system than the motor-imagery system, indicating a preference of BCI paradigm with age. Significance. These findings highlight the importance of considering the heterogeneity of disease when designing BCI augmentative and alternative communication devices for clinical applications.

  7. Permanency analysis on human electroencephalogram signals for pervasive Brain-Computer Interface systems.

    Science.gov (United States)

    Sadeghi, Koosha; Junghyo Lee; Banerjee, Ayan; Sohankar, Javad; Gupta, Sandeep K S

    2017-07-01

    Brain-Computer Interface (BCI) systems use some permanent features of brain signals to recognize their corresponding cognitive states with high accuracy. However, these features are not perfectly permanent, and BCI system should be continuously trained over time, which is tedious and time consuming. Thus, analyzing the permanency of signal features is essential in determining how often to repeat training. In this paper, we monitor electroencephalogram (EEG) signals, and analyze their behavior through continuous and relatively long period of time. In our experiment, we record EEG signals corresponding to rest state (eyes open and closed) from one subject everyday, for three and a half months. The results show that signal features such as auto-regression coefficients remain permanent through time, while others such as power spectral density specifically in 5-7 Hz frequency band are not permanent. In addition, eyes open EEG data shows more permanency than eyes closed data.

  8. Neurofeedback Training for BCI Control

    Science.gov (United States)

    Neuper, Christa; Pfurtscheller, Gert

    Brain-computer interface (BCI) systems detect changes in brain signals that reflect human intention, then translate these signals to control monitors or external devices (for a comprehensive review, see [1]). BCIs typically measure electrical signals resulting from neural firing (i.e. neuronal action potentials, Electroencephalogram (ECoG), or Electroencephalogram (EEG)). Sophisticated pattern recognition and classification algorithms convert neural activity into the required control signals. BCI research has focused heavily on developing powerful signal processing and machine learning techniques to accurately classify neural activity [2-4].

  9. A novel brain-computer interface based on the rapid serial visual presentation paradigm.

    Science.gov (United States)

    Acqualagna, Laura; Treder, Matthias Sebastian; Schreuder, Martijn; Blankertz, Benjamin

    2010-01-01

    Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.

  10. Operation of a P300-based brain-computer interface by patients with spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Yoji Okahara

    Full Text Available Objective: We investigated the efficacy of a P300-based brain-computer interface (BCI for patients with spinocerebellar ataxia (SCA, which is often accompanied by cerebellar impairment. Methods: Eight patients with SCA and eight age- and gender-matched healthy controls were instructed to input Japanese hiragana characters using the P300-based BCI with green/blue flicker. All patients depended on some assistance in their daily lives (modified Rankin scale: mean 3.5. The chief symptom was cerebellar ataxia; no cognitive deterioration was present. A region-based, two-step P300-based BCI was used. During the P300 task, eight-channel EEG data were recorded, and a linear discriminant analysis distinguished the target from other nontarget regions of the matrix. Results: The mean online accuracy in BCI operation was 82.9% for patients with SCA and 83.2% for controls; no significant difference was detected. Conclusion: The P300-based BCI was operated successfully not only by healthy controls but also by individuals with SCA. Significance: These results suggest that the P300-based BCI may be applicable for patients with SCA. Keywords: BCI, BMI, P300, Visual stimuli, Spinocerebellar ataxia

  11. Evolution of brain-computer interfaces: going beyond classic motor physiology

    Science.gov (United States)

    Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.

    2010-01-01

    The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892

  12. Quadcopter control using a BCI

    Science.gov (United States)

    Rosca, S.; Leba, M.; Ionica, A.; Gamulescu, O.

    2018-01-01

    The paper presents how there can be interconnected two ubiquitous elements nowadays. On one hand, the drones, which are increasingly present and integrated into more and more fields of activity, beyond the military applications they come from, moving towards entertainment, real-estate, delivery and so on. On the other hand, unconventional man-machine interfaces, which are generous topics to explore now and in the future. Of these, we chose brain computer interface (BCI), which allows human-machine interaction without requiring any moving elements. The research consists of mathematical modeling and numerical simulation of a drone and a BCI. Then there is presented an application using a Parrot mini-drone and an Emotiv Insight BCI.

  13. Brain Computer Interface on Track to Home

    Directory of Open Access Journals (Sweden)

    Felip Miralles

    2015-01-01

    Full Text Available The novel BackHome system offers individuals with disabilities a range of useful services available via brain-computer interfaces (BCIs, to help restore their independence. This is the time such technology is ready to be deployed in the real world, that is, at the target end users’ home. This has been achieved by the development of practical electrodes, easy to use software, and delivering telemonitoring and home support capabilities which have been conceived, implemented, and tested within a user-centred design approach. The final BackHome system is the result of a 3-year long process involving extensive user engagement to maximize effectiveness, reliability, robustness, and ease of use of a home based BCI system. The system is comprised of ergonomic and hassle-free BCI equipment; one-click software services for Smart Home control, cognitive stimulation, and web browsing; and remote telemonitoring and home support tools to enable independent home use for nonexpert caregivers and users. BackHome aims to successfully bring BCIs to the home of people with limited mobility to restore their independence and ultimately improve their quality of life.

  14. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    Science.gov (United States)

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. EDITORIAL: Special issue containing contributions from the Fourth International Brain-Computer Interface Meeting Special issue containing contributions from the Fourth International Brain-Computer Interface Meeting

    Science.gov (United States)

    Vaughan, Theresa M.; Wolpaw, Jonathan R.

    2011-04-01

    This special issue of Journal of Neural Engineering is a result of the Fourth International Brain-Computer Interface Meeting, which was held at the Asilomar Conference Center in Monterey, California, USA from 31 May to 4 June, 2010. The meeting was sponsored by the National Institutes of Health, The National Science Foundation and the Department of Defense, and was organized by the Wadsworth Center of the New York State Department of Health. It attracted over 260 participants from 17 countries—including many graduate students and postdoctoral fellows—and featured 19 workshops, platform presentations from 26 research groups, 170 posters, multiple brain-computer interface (BCI) demonstrations, and a keynote address by W Zev Rymer of the Rehabilitation Institute of Chicago. The number of participants and the diversity of the topics covered greatly exceeded those of the previous meeting in 2005, and testified to the continuing rapid expansion and growing sophistication of this exciting and still relatively new research field. BCI research focuses primarily on using brain signals to replace or restore the motor functions that people have lost due to amyotrophic lateral sclerosis (ALS), a brainstem stroke, or some other devastating neuromuscular disorder. In the last few years, attention has also turned towards using BCIs to improve rehabilitation after a stroke, and beyond that to enhancing or supplementing the capabilities of even those without disabilities. These diverse interests were represented in the wide range of topics covered in the workshops. While some workshops addressed broad traditional topics, such as signal acquisition, feature extraction and translation, and software development, many addressed topics that were entirely new or focused sharply on areas that have become important only recently. These included workshops on optimizing P300-based BCIs; improving the mutual adaptations of the BCI and the user; BCIs that can control neuroprostheses

  16. What will this do to me and my brain? Ethical issues in brain-to-brain interfacing

    Directory of Open Access Journals (Sweden)

    Elisabeth eHildt

    2015-02-01

    Full Text Available For several years now, brain-computer interfaces (BCIs in which brain signals are used to navigate a computer, a prostheses or a technical device, have been developed in various experimental contexts (Wolpaw & Wolpaw 2012; Grübler & Hildt 2014. Researchers have recently taken the next step and run experiments based on connections between two brains. These so-called brain-to-brain interfaces (abbreviation: BBIs or BTBIs involve not only a BCI component deriving information from a brain and sending it to a computer, but also a computer-brain interface (CBI component delivering information to another brain. What results is technology-mediated brain-to-brain communication (B2B communication, i.e. direct communication between two brains that does not involve any activity of the peripheral nervous system. In what follows, ethical issues that arise in neural interfacing will be discussed after a short introduction to recent BBI experiments. In this, the focus will be on the implications BBIs may have on the individual at the CBI side of the BBI, i.e. on the recipient.

  17. User-centered design in brain-computer interfaces-a case study.

    Science.gov (United States)

    Schreuder, Martijn; Riccio, Angela; Risetti, Monica; Dähne, Sven; Ramsay, Andrew; Williamson, John; Mattia, Donatella; Tangermann, Michael

    2013-10-01

    The array of available brain-computer interface (BCI) paradigms has continued to grow, and so has the corresponding set of machine learning methods which are at the core of BCI systems. The latter have evolved to provide more robust data analysis solutions, and as a consequence the proportion of healthy BCI users who can use a BCI successfully is growing. With this development the chances have increased that the needs and abilities of specific patients, the end-users, can be covered by an existing BCI approach. However, most end-users who have experienced the use of a BCI system at all have encountered a single paradigm only. This paradigm is typically the one that is being tested in the study that the end-user happens to be enrolled in, along with other end-users. Though this corresponds to the preferred study arrangement for basic research, it does not ensure that the end-user experiences a working BCI. In this study, a different approach was taken; that of a user-centered design. It is the prevailing process in traditional assistive technology. Given an individual user with a particular clinical profile, several available BCI approaches are tested and - if necessary - adapted to him/her until a suitable BCI system is found. Described is the case of a 48-year-old woman who suffered from an ischemic brain stem stroke, leading to a severe motor- and communication deficit. She was enrolled in studies with two different BCI systems before a suitable system was found. The first was an auditory event-related potential (ERP) paradigm and the second a visual ERP paradigm, both of which are established in literature. The auditory paradigm did not work successfully, despite favorable preconditions. The visual paradigm worked flawlessly, as found over several sessions. This discrepancy in performance can possibly be explained by the user's clinical deficit in several key neuropsychological indicators, such as attention and working memory. While the auditory paradigm relies

  18. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces.

    Science.gov (United States)

    Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.

  19. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Sebastian Grissmann

    2017-07-01

    Full Text Available Most brain-computer interfaces (BCIs focus on detecting single aspects of user states (e.g., motor imagery in the electroencephalogram (EEG in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.

  20. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

    OpenAIRE

    Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.

    2017-01-01

    Objective. Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach. In order to implement a closed-loop brain-computer interface (BCI) on the sma...

  1. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

    Science.gov (United States)

    Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin

    2015-04-15

    For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.

    Science.gov (United States)

    Wilaiprasitporn, Theerawit; Yagi, Tohru

    2015-01-01

    This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.

  3. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Science.gov (United States)

    Mokienko, Olesya A.; Chervyakov, Alexander V.; Kulikova, Sofia N.; Bobrov, Pavel D.; Chernikova, Liudmila A.; Frolov, Alexander A.; Piradov, Mikhail A.

    2013-01-01

    Background: Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). Subjects and Methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy. PMID:24319425

  4. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  5. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface

    Science.gov (United States)

    Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  6. Evaluating brain-computer interface performance using color in the P300 checkerboard speller.

    Science.gov (United States)

    Ryan, D B; Townsend, G; Gates, N A; Colwell, K; Sellers, E W

    2017-10-01

    Current Brain-Computer Interface (BCI) systems typically flash an array of items from grey to white (GW). The objective of this study was to evaluate BCI performance using uniquely colored stimuli. In addition to the GW stimuli, the current study tested two types of color stimuli (grey to color [GC] and color intensification [CI]). The main hypotheses were that in a checkboard paradigm, unique color stimuli will: (1) increase BCI performance over the standard GW paradigm; (2) elicit larger event-related potentials (ERPs); and, (3) improve offline performance with an electrode selection algorithm (i.e., Jumpwise). Online results (n=36) showed that GC provides higher accuracy and information transfer rate than the CI and GW conditions. Waveform analysis showed that GC produced higher amplitude ERPs than CI and GW. Information transfer rate was improved by the Jumpwise-selected channel locations in all conditions. Unique color stimuli (GC) improved BCI performance and enhanced ERPs. Jumpwise-selected electrode locations improved offline performance. These results show that in a checkerboard paradigm, unique color stimuli increase BCI performance, are preferred by participants, and are important to the design of end-user applications; thus, could lead to an increase in end-user performance and acceptance of BCI technology. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  7. A qualitative study adopting a user-centered approach to design and validate a brain computer interface for cognitive rehabilitation for people with brain injury.

    Science.gov (United States)

    Martin, Suzanne; Armstrong, Elaine; Thomson, Eileen; Vargiu, Eloisa; Solà, Marc; Dauwalder, Stefan; Miralles, Felip; Daly Lynn, Jean

    2017-07-14

    Cognitive rehabilitation is established as a core intervention within rehabilitation programs following a traumatic brain injury (TBI). Digitally enabled assistive technologies offer opportunities for clinicians to increase remote access to rehabilitation supporting transition into home. Brain Computer Interface (BCI) systems can harness the residual abilities of individuals with limited function to gain control over computers through their brain waves. This paper presents an online cognitive rehabilitation application developed with therapists, to work remotely with people who have TBI, who will use BCI at home to engage in the therapy. A qualitative research study was completed with people who are community dwellers post brain injury (end users), and a cohort of therapists involved in cognitive rehabilitation. A user-centered approach over three phases in the development, design and feasibility testing of this cognitive rehabilitation application included two tasks (Find-a-Category and a Memory Card task). The therapist could remotely prescribe activity with different levels of difficulty. The service user had a home interface which would present the therapy activities. This novel work was achieved by an international consortium of academics, business partners and service users.

  8. Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface.

    Directory of Open Access Journals (Sweden)

    Laura Acqualagna

    Full Text Available In the last years Brain Computer Interface (BCI technology has benefited from the development of sophisticated machine leaning methods that let the user operate the BCI after a few trials of calibration. One remarkable example is the recent development of co-adaptive techniques that proved to extend the use of BCIs also to people not able to achieve successful control with the standard BCI procedure. Especially for BCIs based on the modulation of the Sensorimotor Rhythm (SMR these improvements are essential, since a not negligible percentage of users is unable to operate SMR-BCIs efficiently. In this study we evaluated for the first time a fully automatic co-adaptive BCI system on a large scale. A pool of 168 participants naive to BCIs operated the co-adaptive SMR-BCI in one single session. Different psychological interventions were performed prior the BCI session in order to investigate how motor coordination training and relaxation could influence BCI performance. A neurophysiological indicator based on the Power Spectral Density (PSD was extracted by the recording of few minutes of resting state brain activity and tested as predictor of BCI performances. Results show that high accuracies in operating the BCI could be reached by the majority of the participants before the end of the session. BCI performances could be significantly predicted by the neurophysiological indicator, consolidating the validity of the model previously developed. Anyway, we still found about 22% of users with performance significantly lower than the threshold of efficient BCI control at the end of the session. Being the inter-subject variability still the major problem of BCI technology, we pointed out crucial issues for those who did not achieve sufficient control. Finally, we propose valid developments to move a step forward to the applicability of the promising co-adaptive methods.

  9. Control of a visual keyboard using an electrocorticographic brain-computer interface.

    Science.gov (United States)

    Krusienski, Dean J; Shih, Jerry J

    2011-05-01

    Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.

  10. Quantitative analysis of task selection for brain-computer interfaces

    Science.gov (United States)

    Llera, Alberto; Gómez, Vicenç; Kappen, Hilbert J.

    2014-10-01

    Objective. To assess quantitatively the impact of task selection in the performance of brain-computer interfaces (BCI). Approach. We consider the task-pairs derived from multi-class BCI imagery movement tasks in three different datasets. We analyze for the first time the benefits of task selection on a large-scale basis (109 users) and evaluate the possibility of transferring task-pair information across days for a given subject. Main results. Selecting the subject-dependent optimal task-pair among three different imagery movement tasks results in approximately 20% potential increase in the number of users that can be expected to control a binary BCI. The improvement is observed with respect to the best task-pair fixed across subjects. The best task-pair selected for each subject individually during a first day of recordings is generally a good task-pair in subsequent days. In general, task learning from the user side has a positive influence in the generalization of the optimal task-pair, but special attention should be given to inexperienced subjects. Significance. These results add significant evidence to existing literature that advocates task selection as a necessary step towards usable BCIs. This contribution motivates further research focused on deriving adaptive methods for task selection on larger sets of mental tasks in practical online scenarios.

  11. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.

    Science.gov (United States)

    McCane, Lynn M; Heckman, Susan M; McFarland, Dennis J; Townsend, George; Mak, Joseph N; Sellers, Eric W; Zeitlin, Debra; Tenteromano, Laura M; Wolpaw, Jonathan R; Vaughan, Theresa M

    2015-11-01

    Brain-computer interfaces (BCIs) aimed at restoring communication to people with severe neuromuscular disabilities often use event-related potentials (ERPs) in scalp-recorded EEG activity. Up to the present, most research and development in this area has been done in the laboratory with young healthy control subjects. In order to facilitate the development of BCI most useful to people with disabilities, the present study set out to: (1) determine whether people with amyotrophic lateral sclerosis (ALS) and healthy, age-matched volunteers (HVs) differ in the speed and accuracy of their ERP-based BCI use; (2) compare the ERP characteristics of these two groups; and (3) identify ERP-related factors that might enable improvement in BCI performance for people with disabilities. Sixteen EEG channels were recorded while people with ALS or healthy age-matched volunteers (HVs) used a P300-based BCI. The subjects with ALS had little or no remaining useful motor control (mean ALS Functional Rating Scale-Revised 9.4 (±9.5SD) (range 0-25)). Each subject attended to a target item as the items in a 6×6 visual matrix flashed. The BCI used a stepwise linear discriminant function (SWLDA) to determine the item the user wished to select (i.e., the target item). Offline analyses assessed the latencies, amplitudes, and locations of ERPs to the target and non-target items for people with ALS and age-matched control subjects. BCI accuracy and communication rate did not differ significantly between ALS users and HVs. Although ERP morphology was similar for the two groups, their target ERPs differed significantly in the location and amplitude of the late positivity (P300), the amplitude of the early negativity (N200), and the latency of the late negativity (LN). The differences in target ERP components between people with ALS and age-matched HVs are consistent with the growing recognition that ALS may affect cortical function. The development of BCIs for use by this population may begin

  12. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    Science.gov (United States)

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  13. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.

    Science.gov (United States)

    Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan

    2018-01-01

    The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.

  14. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface.

    Science.gov (United States)

    Waytowich, Nicholas R; Lawhern, Vernon J; Bohannon, Addison W; Ball, Kenneth R; Lance, Brent J

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  15. A Link between the Increase in Electroencephalographic Coherence and Performance Improvement in Operating a Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Irma Nayeli Angulo-Sherman

    2015-01-01

    Full Text Available We study the relationship between electroencephalographic (EEG coherence and accuracy in operating a brain-computer interface (BCI. In our case, the BCI is controlled through motor imagery. Hence, a number of volunteers were trained using different training paradigms: classical visual feedback, auditory stimulation, and functional electrical stimulation (FES. After each training session, the volunteers’ accuracy in operating the BCI was assessed, and the event-related coherence (ErCoh was calculated for all possible combinations of pairs of EEG sensors. After at least four training sessions, we searched for significant differences in accuracy and ErCoh using one-way analysis of variance (ANOVA and multiple comparison tests. Our results show that there exists a high correlation between an increase in ErCoh and performance improvement, and this effect is mainly localized in the centrofrontal and centroparietal brain regions for the case of our motor imagery task. This result has a direct implication with the development of new techniques to evaluate BCI performance and the process of selecting a feedback modality that better enhances the volunteer’s capacity to operate a BCI system.

  16. Brain–Computer Interface Spellers: A Review

    Science.gov (United States)

    Gembler, Felix; Saboor, Abdul

    2018-01-01

    A Brain–Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers. PMID:29601538

  17. Region based Brain Computer Interface for a home control application.

    Science.gov (United States)

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  18. The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    J. Clark Powers

    2015-08-01

    Full Text Available Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use—i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1 alternative signal evocation methods within the oddball paradigm; (2 environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3 measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications.

  19. An independent brain-computer interface using covert non-spatial visual selective attention

    Science.gov (United States)

    Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K.; Gao, Shangkai

    2010-02-01

    In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 ± 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.

  20. Light Stimulation Properties to Influence Brain Activity: A Brain-CoMputer Interface application

    NARCIS (Netherlands)

    Bieger, J.; Garcia Molina, G.

    2010-01-01

    Brain-Computer Interfaces (BCIs) enable people to control appliances without involving the normal output pathways of peripheral nervesand muscles. A particularly promising type of BCI is based on the Steady-State Visual Evoked Potential (SSVEP). Users can selectcommands by focusing their attention

  1. Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces

    Science.gov (United States)

    Wang, Deng; Miao, Duoqian; Blohm, Gunnar

    2012-01-01

    Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find non-contiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications. PMID:23087607

  2. Effects of training and motivation on auditory P300 brain-computer interface performance.

    Science.gov (United States)

    Baykara, E; Ruf, C A; Fioravanti, C; Käthner, I; Simon, N; Kleih, S C; Kübler, A; Halder, S

    2016-01-01

    Brain-computer interface (BCI) technology aims at helping end-users with severe motor paralysis to communicate with their environment without using the natural output pathways of the brain. For end-users in complete paralysis, loss of gaze control may necessitate non-visual BCI systems. The present study investigated the effect of training on performance with an auditory P300 multi-class speller paradigm. For half of the participants, spatial cues were added to the auditory stimuli to see whether performance can be further optimized. The influence of motivation, mood and workload on performance and P300 component was also examined. In five sessions, 16 healthy participants were instructed to spell several words by attending to animal sounds representing the rows and columns of a 5 × 5 letter matrix. 81% of the participants achieved an average online accuracy of ⩾ 70%. From the first to the fifth session information transfer rates increased from 3.72 bits/min to 5.63 bits/min. Motivation significantly influenced P300 amplitude and online ITR. No significant facilitative effect of spatial cues on performance was observed. Training improves performance in an auditory BCI paradigm. Motivation influences performance and P300 amplitude. The described auditory BCI system may help end-users to communicate independently of gaze control with their environment. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Workshops of the Sixth International Brain–Computer Interface Meeting : brain–computer interfaces past, present, and future

    NARCIS (Netherlands)

    Huggins, Jane E.; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O.; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K.R.; Ramsey, Nick F.; Nijholt, Anton; Müller-Putz, Gernot R.; McFarland, Dennis J.; Mattia, Donatella; Lance, Brent J.; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H.; Collinger, Jennifer L.; Chavarriaga, Ricardo; Chasey, Steven M.; Bleichner, Martin G.; Batista, Aaron; Anderson, Charles W.; Aarnoutse, Erik J.

    2017-01-01

    The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain–machine interface research. Topics included BCI for specific

  4. Turbo-Satori: a neurofeedback and brain-computer interface toolbox for real-time functional near-infrared spectroscopy.

    Science.gov (United States)

    Lührs, Michael; Goebel, Rainer

    2017-10-01

    Turbo-Satori is a neurofeedback and brain-computer interface (BCI) toolbox for real-time functional near-infrared spectroscopy (fNIRS). It incorporates multiple pipelines from real-time preprocessing and analysis to neurofeedback and BCI applications. The toolbox is designed with a focus in usability, enabling a fast setup and execution of real-time experiments. Turbo-Satori uses an incremental recursive least-squares procedure for real-time general linear model calculation and support vector machine classifiers for advanced BCI applications. It communicates directly with common NIRx fNIRS hardware and was tested extensively ensuring that the calculations can be performed in real time without a significant change in calculation times for all sampling intervals during ongoing experiments of up to 6 h of recording. Enabling immediate access to advanced processing features also allows the use of this toolbox for students and nonexperts in the field of fNIRS data acquisition and processing. Flexible network interfaces allow third party stimulus applications to access the processed data and calculated statistics in real time so that this information can be easily incorporated in neurofeedback or BCI presentations.

  5. Non-invasive brain-computer interface system: towards its application as assistive technology.

    Science.gov (United States)

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2008-04-15

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain-computer interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI.

  6. Performance monitoring for brain-computer-interface actions.

    Science.gov (United States)

    Schurger, Aaron; Gale, Steven; Gozel, Olivia; Blanke, Olaf

    2017-02-01

    When presented with a difficult perceptual decision, human observers are able to make metacognitive judgements of subjective certainty. Such judgements can be made independently of and prior to any overt response to a sensory stimulus, presumably via internal monitoring. Retrospective judgements about one's own task performance, on the other hand, require first that the subject perform a task and thus could potentially be made based on motor processes, proprioceptive, and other sensory feedback rather than internal monitoring. With this dichotomy in mind, we set out to study performance monitoring using a brain-computer interface (BCI), with which subjects could voluntarily perform an action - moving a cursor on a computer screen - without any movement of the body, and thus without somatosensory feedback. Real-time visual feedback was available to subjects during training, but not during the experiment where the true final position of the cursor was only revealed after the subject had estimated where s/he thought it had ended up after 6s of BCI-based cursor control. During the first half of the experiment subjects based their assessments primarily on the prior probability of the end position of the cursor on previous trials. However, during the second half of the experiment subjects' judgements moved significantly closer to the true end position of the cursor, and away from the prior. This suggests that subjects can monitor task performance when the task is performed without overt movement of the body. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Brain-machine and brain-computer interfaces.

    Science.gov (United States)

    Friehs, Gerhard M; Zerris, Vasilios A; Ojakangas, Catherine L; Fellows, Mathew R; Donoghue, John P

    2004-11-01

    The idea of connecting the human brain to a computer or machine directly is not novel and its potential has been explored in science fiction. With the rapid advances in the areas of information technology, miniaturization and neurosciences there has been a surge of interest in turning fiction into reality. In this paper the authors review the current state-of-the-art of brain-computer and brain-machine interfaces including neuroprostheses. The general principles and requirements to produce a successful connection between human and artificial intelligence are outlined and the authors' preliminary experience with a prototype brain-computer interface is reported.

  8. Initial constructs for patient-centered outcome measures to evaluate brain-computer interfaces.

    Science.gov (United States)

    Andresen, Elena M; Fried-Oken, Melanie; Peters, Betts; Patrick, Donald L

    2016-10-01

    The authors describe preliminary work toward the creation of patient-centered outcome (PCO) measures to evaluate brain-computer interface (BCI) as an assistive technology (AT) for individuals with severe speech and physical impairments (SSPI). In Phase 1, 591 items from 15 existing measures were mapped to the International Classification of Functioning, Disability and Health (ICF). In Phase 2, qualitative interviews were conducted with eight people with SSPI and seven caregivers. Resulting text data were coded in an iterative analysis. Most items (79%) were mapped to the ICF environmental domain; over half (53%) were mapped to more than one domain. The ICF framework was well suited for mapping items related to body functions and structures, but less so for items in other areas, including personal factors. Two constructs emerged from qualitative data: quality of life (QOL) and AT. Component domains and themes were identified for each. Preliminary constructs, domains and themes were generated for future PCO measures relevant to BCI. Existing instruments are sufficient for initial items but do not adequately match the values of people with SSPI and their caregivers. Field methods for interviewing people with SSPI were successful, and support the inclusion of these individuals in PCO research. Implications for Rehabilitation Adapted interview methods allow people with severe speech and physical impairments to participate in patient-centered outcomes research. Patient-centered outcome measures are needed to evaluate the clinical implementation of brain-computer interface as an assistive technology.

  9. The investigation of brain-computer interface for motor imagery and execution using functional near-infrared spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Jiao, Xuejun; Xu, Fengang; Jiang, Jin; Yang, Hanjun; Cao, Yong; Fu, Jiahao

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS), which can measure cortex hemoglobin activity, has been widely adopted in brain-computer interface (BCI). To explore the feasibility of recognizing motor imagery (MI) and motor execution (ME) in the same motion. We measured changes of oxygenated hemoglobin (HBO) and deoxygenated hemoglobin (HBR) on PFC and Motor Cortex (MC) when 15 subjects performing hand extension and finger tapping tasks. The mean, slope, quadratic coefficient and approximate entropy features were extracted from HBO as the input of support vector machine (SVM). For the four-class fNIRS-BCI classifiers, we realized 87.65% and 87.58% classification accuracy corresponding to hand extension and finger tapping tasks. In conclusion, it is effective for fNIRS-BCI to recognize MI and ME in the same motion.

  10. A review of brain-computer interface games and an opinion survey from researchers, developers and users.

    Science.gov (United States)

    Ahn, Minkyu; Lee, Mijin; Choi, Jinyoung; Jun, Sung Chan

    2014-08-11

    In recent years, research on Brain-Computer Interface (BCI) technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state) have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users) agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to "the easiness of playing" and the "development platform" as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration.

  11. A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users

    Directory of Open Access Journals (Sweden)

    Minkyu Ahn

    2014-08-01

    Full Text Available In recent years, research on Brain-Computer Interface (BCI technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to “the easiness of playing” and the “development platform” as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration.

  12. Application of tripolar concentric electrodes and prefeature selection algorithm for brain-computer interface.

    Science.gov (United States)

    Besio, Walter G; Cao, Hongbao; Zhou, Peng

    2008-04-01

    For persons with severe disabilities, a brain-computer interface (BCI) may be a viable means of communication. Lapalacian electroencephalogram (EEG) has been shown to improve classification in EEG recognition. In this work, the effectiveness of signals from tripolar concentric electrodes and disc electrodes were compared for use as a BCI. Two sets of left/right hand motor imagery EEG signals were acquired. An autoregressive (AR) model was developed for feature extraction with a Mahalanobis distance based linear classifier for classification. An exhaust selection algorithm was employed to analyze three factors before feature extraction. The factors analyzed were 1) length of data in each trial to be used, 2) start position of data, and 3) the order of the AR model. The results showed that tripolar concentric electrodes generated significantly higher classification accuracy than disc electrodes.

  13. Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design

    Directory of Open Access Journals (Sweden)

    Fabien eLotte

    2013-09-01

    Full Text Available While recent research on Brain-Computer Interfaces (BCI has highlighted their potential for many applications, they remain barely used outside laboratories. The main reason is their lack of robustness. Indeed, with current BCI, mental state recognition is usually slow and often incorrect. Spontaneous BCI (i.e., mental imagery-based BCI often rely on mutual learning efforts by the user and the machine, with BCI users learning to produce stable EEG patterns (spontaneous BCI control being widely acknowledged as a skill while the computer learns to automatically recognize these EEG patterns, using signal processing. Most research so far was focused on signal processing, mostly neglecting the human in the loop. However, how well the user masters the BCI skill is also a key element explaining BCI robustness. Indeed, if the user is not able to produce stable and distinct EEG patterns, then no signal processing algorithm would be able to recognize them. Unfortunately, despite the importance of BCI training protocols, they have been scarcely studied so far, and used mostly unchanged for years.In this paper, we advocate that current human training approaches for spontaneous BCI are most likely inappropriate. We notably study instructional design literature in order to identify the key requirements and guidelines for a successful training procedure that promotes a good and efficient skill learning. This literature study highlights that current spontaneous BCI user training procedures satisfy very few of these requirements and hence are likely to be suboptimal. We therefore identify the flaws in BCI training protocols according to instructional design principles, at several levels: in the instructions provided to the user, in the tasks he/she has to perform, and in the feedback provided. For each level, we propose new research directions that are theoretically expected to address some of these flaws and to help users learn the BCI skill more efficiently.

  14. An auditory oddball brain-computer interface for binary choices.

    Science.gov (United States)

    Halder, S; Rea, M; Andreoni, R; Nijboer, F; Hammer, E M; Kleih, S C; Birbaumer, N; Kübler, A

    2010-04-01

    Brain-computer interfaces (BCIs) provide non-muscular communication for individuals diagnosed with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)). In the final stages of the disease, a BCI cannot rely on the visual modality. This study examined a method to achieve high accuracies using auditory stimuli only. We propose an auditory BCI based on a three-stimulus paradigm. This paradigm is similar to the standard oddball but includes an additional target (i.e. two target stimuli, one frequent stimulus). Three versions of the task were evaluated in which the target stimuli differed in loudness, pitch or direction. Twenty healthy participants achieved an average information transfer rate (ITR) of up to 2.46 bits/min and accuracies of 78.5%. Most subjects (14 of 20) achieved their best performance with targets differing in pitch. With this study, the viability of the paradigm was shown for healthy participants and will next be evaluated with individuals diagnosed with ALS or locked-in syndrome (LIS) after stroke. The here presented BCI offers communication with binary choices (yes/no) independent of vision. As it requires only little time per selection, it may constitute a reliable means of communication for patients who lost all motor function and have a short attention span. 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Using the Electrocorticographic Speech Network to Control a Brain-Computer Interface in Humans

    Science.gov (United States)

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2013-01-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68 and 91% within 15 minutes. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive. PMID:21471638

  16. Improving the accessibility at home: implementation of a domotic application using a p300-based brain computer interface system

    Directory of Open Access Journals (Sweden)

    Rebeca Corralejo Palacios

    2012-05-01

    Full Text Available The aim of this study was to develop a Brain Computer Interface (BCI application to control domotic devices usually present at home. Previous studies have shown that people with severe disabilities, both physical and cognitive ones, do not achieve high accuracy results using motor imagery-based BCIs. To overcome this limitation, we propose the implementation of a BCI application using P300 evoked potentials, because neither extensive training nor extremely high concentration level are required for this kind of BCIs. The implemented BCI application allows to control several devices as TV, DVD player, mini Hi-Fi system, multimedia hard drive, telephone, heater, fan and lights. Our aim is that potential users, i.e. people with severe disabilities, are able to achieve high accuracy. Therefore, this domotic BCI application is useful to increase

  17. Affective Stimuli for an Auditory P300 Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Akinari Onishi

    2017-09-01

    Full Text Available Gaze-independent brain computer interfaces (BCIs are a potential communication tool for persons with paralysis. This study applies affective auditory stimuli to investigate their effects using a P300 BCI. Fifteen able-bodied participants operated the P300 BCI, with positive and negative affective sounds (PA: a meowing cat sound, NA: a screaming cat sound. Permuted stimuli of the positive and negative affective sounds (permuted-PA, permuted-NA were also used for comparison. Electroencephalography data was collected, and offline classification accuracies were compared. We used a visual analog scale (VAS to measure positive and negative affective feelings in the participants. The mean classification accuracies were 84.7% for PA and 67.3% for permuted-PA, while the VAS scores were 58.5 for PA and −12.1 for permuted-PA. The positive affective stimulus showed significantly higher accuracy and VAS scores than the negative affective stimulus. In contrast, mean classification accuracies were 77.3% for NA and 76.0% for permuted-NA, while the VAS scores were −50.0 for NA and −39.2 for permuted NA, which are not significantly different. We determined that a positive affective stimulus with accompanying positive affective feelings significantly improved BCI accuracy. Additionally, an ALS patient achieved 90% online classification accuracy. These results suggest that affective stimuli may be useful for preparing a practical auditory BCI system for patients with disabilities.

  18. Usability and Performance Measure of a Consumer-grade Brain Computer Interface System for Environmental Control by Neurological Patients

    Directory of Open Access Journals (Sweden)

    Farzin Deravi

    2015-07-01

    Full Text Available With the increasing incidence and prevalence of chronic brain injury patients and the current financial constraints in healthcare budgets, there is a need for a more intelligent way to realise the current practice of neuro-rehabilitation service provision. Brain-computer Interface (BCI systems have the potential to address this issue to a certain extent only if carefully designed research can demonstrate that these systems are accurate, safe, cost-effective, are able to increase patient/carer satisfaction and enhance their quality of life. Therefore, one of the objectives of the proposed study was to examine whether participants (patients with brain injury and a sample of reference population were able to use a low cost BCI system (Emotiv EPOC to interact with a computer and to communicate via spelling words. Patients participated in the study did not have prior experience in using BCI headsets so as to measure the user experience in the first-exposure to BCI training. To measure emotional arousal of participants we used an ElectroDermal Activity Sensor (Qsensor by Affectiva. For the signal processing and feature extraction of imagery controls the Cognitive Suite of Emotiv's Control Panel was used. Our study reports the key findings based on data obtained from a group of patients and a sample reference population and presents the implications for the design and development of a BCI system for communication and control. The study also evaluates the performance of the system when used practically in context of an acute clinical environment

  19. Improving zero-training brain-computer interfaces by mixing model estimators

    Science.gov (United States)

    Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.

    2017-06-01

    Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.

  20. Leveraging anatomical information to improve transfer learning in brain-computer interfaces

    Science.gov (United States)

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian K. C.

    2015-08-01

    Objective. Brain-computer interfaces (BCIs) represent a technology with the potential to rehabilitate a range of traumatic and degenerative nervous system conditions but require a time-consuming training process to calibrate. An area of BCI research known as transfer learning is aimed at accelerating training by recycling previously recorded training data across sessions or subjects. Training data, however, is typically transferred from one electrode configuration to another without taking individual head anatomy or electrode positioning into account, which may underutilize the recycled data. Approach. We explore transfer learning with the use of source imaging, which estimates neural activity in the cortex. Transferring estimates of cortical activity, in contrast to scalp recordings, provides a way to compensate for variability in electrode positioning and head morphologies across subjects and sessions. Main results. Based on simulated and measured electroencephalography activity, we trained a classifier using data transferred exclusively from other subjects and achieved accuracies that were comparable to or surpassed a benchmark classifier (representative of a real-world BCI). Our results indicate that classification improvements depend on the number of trials transferred and the cortical region of interest. Significance. These findings suggest that cortical source-based transfer learning is a principled method to transfer data that improves BCI classification performance and provides a path to reduce BCI calibration time.

  1. Online LDA BASED brain-computer interface system to aid disabled people

    Directory of Open Access Journals (Sweden)

    Apdullah Yayık

    2017-06-01

    Full Text Available This paper aims to develop brain-computer interface system based on electroencephalography that can aid disabled people in daily life. The system relies on one of the most effective event-related potential wave, P300, which can be elicited by oddball paradigm. Developed application has a basic interaction tool that enables disabled people to convey their needs to other people selecting related objects. These objects pseudo-randomly flash in a visual interface on computer screen. The user must focus on related object to convey desired needs. The system can convey desired needs correctly by detecting P300 wave in acquired 14-channel EEG signal and classifying using linear discriminant analysis classifier just in 15 seconds. Experiments have been carried out on 19 volunteers to validate developed BCI system. As a result, accuracy rate of 90.83% is achieved in online performance.

  2. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.

    Science.gov (United States)

    Riechmann, Hannes; Finke, Andrea; Ritter, Helge

    2016-06-01

    Brain-computer interfaces provide a means for controlling a device by brain activity alone. One major drawback of noninvasive BCIs is their low information transfer rate, obstructing a wider deployment outside the lab. BCIs based on codebook visually evoked potentials (cVEP) outperform all other state-of-the-art systems in that regard. Previous work investigated cVEPs for spelling applications. We present the first cVEP-based BCI for use in real-world settings to accomplish everyday tasks such as navigation or action selection. To this end, we developed and evaluated a cVEP-based on-line BCI that controls a virtual agent in a simulated, but realistic, 3-D kitchen scenario. We show that cVEPs can be reliably triggered with stimuli in less restricted presentation schemes, such as on dynamic, changing backgrounds. We introduce a novel, dynamic repetition algorithm that allows for optimizing the balance between accuracy and speed individually for each user. Using these novel mechanisms in a 12-command cVEP-BCI in the 3-D simulation results in ITRs of 50 bits/min on average and 68 bits/min maximum. Thus, this work supports the notion of cVEP-BCIs as a particular fast and robust approach suitable for real-world use.

  3. Spectral Transfer Learning using Information Geometry for a User-Independent Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Nicholas Roy Waytowich

    2016-09-01

    Full Text Available Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI technologies to fields such as medicine, industry and recreation. However, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter- individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG, which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both offline and real-time feedback analysis during a rapid serial visual presentation task (RSVP. For detection of single-trial, event-related potentials (ERPs, the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  4. Usability of Three Electroencephalogram Headsets for Brain-Computer Interfaces: A Within Subject Comparison

    NARCIS (Netherlands)

    Gamboa, H.; Nijboer, Femke; van de Laar, B.L.A.; Plácido da Silva, H.; Gilleade, K.; Gerritsen, Steven; Nijholt, Antinus; Bermúdez i Badia, S.; Poel, Mannes; Fairclough, S.

    Currently the field of brain–computer interfacing is increasingly focused on developing usable brain–computer interfaces (BCIs) to better ensure technology transfer and acceptance. Many studies have investigated the usability of BCI applications as a whole. Here we aim to investigate one specific

  5. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface.

    Science.gov (United States)

    Horschig, Jörn M; Oosterheert, Wouter; Oostenveld, Robert; Jensen, Ole

    2015-11-01

    Here we report that the modulation of alpha activity by covert attention can be used as a control signal in an online brain-computer interface, that it is reliable, and that it is robust. Subjects were instructed to orient covert visual attention to the left or right hemifield. We decoded the direction of attention from the magnetoencephalogram by a template matching classifier and provided the classification outcome to the subject in real-time using a novel graphical user interface. Training data for the templates were obtained from a Posner-cueing task conducted just before the BCI task. Eleven subjects participated in four sessions each. Eight of the subjects achieved classification rates significantly above chance level. Subjects were able to significantly increase their performance from the first to the second session. Individual patterns of posterior alpha power remained stable throughout the four sessions and did not change with increased performance. We conclude that posterior alpha power can successfully be used as a control signal in brain-computer interfaces. We also discuss several ideas for further improving the setup and propose future research based on solid hypotheses about behavioral consequences of modulating neuronal oscillations by brain computer interfacing.

  6. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem

    Directory of Open Access Journals (Sweden)

    Wilbert A. McClay

    2015-09-01

    Full Text Available Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.

  7. Application of BCI systems in neurorehabilitation: a scoping review.

    Science.gov (United States)

    Bamdad, Mahdi; Zarshenas, Homayoon; Auais, Mohammad A

    2015-01-01

    To review various types of electroencephalographic activities of the brain and present an overview of brain-computer interface (BCI) systems' history and their applications in rehabilitation. A scoping review of published English literature on BCI application in the field of rehabilitation was undertaken. IEEE Xplore, ScienceDirect, Google Scholar and Scopus databases were searched since inception up to August 2012. All experimental studies published in English and discussed complete cycle of the BCI process was included in the review. In total, 90 articles met the inclusion criteria and were reviewed. Various approaches that improve the accuracy and performance of BCI systems were discussed. Based on BCI's clinical application, reviewed articles were categorized into three groups: motion rehabilitation, speech rehabilitation and virtual reality control (VRC). Almost half of the reviewed papers (48%) concentrated on VRC. Speech rehabilitation and motion rehabilitation made up 33% and 19% of the reviewed papers, respectively. Among different types of electroencephalography signals, P300, steady state visual evoked potentials and motor imagery signals were the most common. This review discussed various applications of BCI in rehabilitation and showed how BCI can be used to improve the quality of life for people with neurological disabilities. It will develop and promote new models of communication and finally, will create an accurate, reliable, online communication between human brain and computer and reduces the negative effects of external stimuli on BCI performance. Implications for Rehabilitation The field of brain-computer interfaces (BCI) is rapidly advancing and it is expected to fulfill a critical role in rehabilitation of neurological disorders and in movement restoration in the forthcoming years. In the near future, BCI has notable potential to become a major tool used by people with disabilities to control locomotion and communicate with surrounding

  8. Non invasive Brain-Computer Interface system: towards its application as assistive technology

    Science.gov (United States)

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2010-01-01

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain Computer Interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI. PMID:18394526

  9. Evaluation of different EEG acquisition systems concerning their suitability for building a brain-computer interface

    Directory of Open Access Journals (Sweden)

    Andreas Pinegger

    2016-09-01

    Full Text Available One important aspect in non-invasive brain-computer interface (BCI research is to acquire the electroencephalogram (EEG in a proper way. From an end-user perspective this means with maximum comfort and without any extra inconveniences (e.g., washing the hair. Whereas from a technical perspective, the signal quality has to be optimal to make the BCI work effectively and efficiently.In this work we evaluated three different commercially available EEG acquisition systems that differ in the type of electrode (gel-, water-, and dry-based, the amplifier technique, and the data transmission method. Every system was tested regarding three different aspects, namely, technical, BCI effectiveness and efficiency (P300 communication and control, and user satisfaction (comfort.We found that the water-based system had the lowest short circuit noise level, the hydrogel-based system had the highest P300 spelling accuracies, and the dry electrode system caused the least inconveniences.Therefore, building a reliable BCI is possible with all evaluated systems and it is on the user to decide which system meets the given requirements best.

  10. Flashing characters with famous faces improves ERP-based brain-computer interface performance

    Science.gov (United States)

    Kaufmann, T.; Schulz, S. M.; Grünzinger, C.; Kübler, A.

    2011-10-01

    Currently, the event-related potential (ERP)-based spelling device, often referred to as P300-Speller, is the most commonly used brain-computer interface (BCI) for enhancing communication of patients with impaired speech or motor function. Among numerous improvements, a most central feature has received little attention, namely optimizing the stimulus used for eliciting ERPs. Therefore we compared P300-Speller performance with the standard stimulus (flashing characters) against performance with stimuli known for eliciting particularly strong ERPs due to their psychological salience, i.e. flashing familiar faces transparently superimposed on characters. Our results not only indicate remarkably increased ERPs in response to familiar faces but also improved P300-Speller performance due to a significant reduction of stimulus sequences needed for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-Speller.

  11. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...... subjects achieved an information transfer rate (ITR) of 14:64 bits/min ± 7:63 bits=min and a subject test performance of 47:22% ± 34:10%. This study suggests that BCI may be applicable in practice as a computerized cognitive assessment tool. However, many improvements are required for the system...

  12. Big data challenges in decoding cortical activity in a human with quadriplegia to inform a brain computer interface.

    Science.gov (United States)

    Friedenberg, David A; Bouton, Chad E; Annetta, Nicholas V; Skomrock, Nicholas; Mingming Zhang; Schwemmer, Michael; Bockbrader, Marcia A; Mysiw, W Jerry; Rezai, Ali R; Bresler, Herbert S; Sharma, Gaurav

    2016-08-01

    Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.

  13. Eye-gaze independent EEG-based brain-computer interfaces for communication

    Science.gov (United States)

    Riccio, A.; Mattia, D.; Simione, L.; Olivetti, M.; Cincotti, F.

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users’ requirements in a real-life scenario.

  14. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms.

    Science.gov (United States)

    McFarland, Dennis J; Krusienski, Dean J; Wolpaw, Jonathan R

    2006-01-01

    The Wadsworth brain-computer interface (BCI), based on mu and beta sensorimotor rhythms, uses one- and two-dimensional cursor movement tasks and relies on user training. This is a real-time closed-loop system. Signal processing consists of channel selection, spatial filtering, and spectral analysis. Feature translation uses a regression approach and normalization. Adaptation occurs at several points in this process on the basis of different criteria and methods. It can use either feedforward (e.g., estimating the signal mean for normalization) or feedback control (e.g., estimating feature weights for the prediction equation). We view this process as the interaction between a dynamic user and a dynamic system that coadapt over time. Understanding the dynamics of this interaction and optimizing its performance represent a major challenge for BCI research.

  15. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    Science.gov (United States)

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Performance Assessment of a Custom, Portable, and Low-Cost Brain-Computer Interface Platform.

    Science.gov (United States)

    McCrimmon, Colin M; Fu, Jonathan Lee; Wang, Ming; Lopes, Lucas Silva; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An Hong

    2017-10-01

    Conventional brain-computer interfaces (BCIs) are often expensive, complex to operate, and lack portability, which confines their use to laboratory settings. Portable, inexpensive BCIs can mitigate these problems, but it remains unclear whether their low-cost design compromises their performance. Therefore, we developed a portable, low-cost BCI and compared its performance to that of a conventional BCI. The BCI was assembled by integrating a custom electroencephalogram (EEG) amplifier with an open-source microcontroller and a touchscreen. The function of the amplifier was first validated against a commercial bioamplifier, followed by a head-to-head comparison between the custom BCI (using four EEG channels) and a conventional 32-channel BCI. Specifically, five able-bodied subjects were cued to alternate between hand opening/closing and remaining motionless while the BCI decoded their movement state in real time and provided visual feedback through a light emitting diode. Subjects repeated the above task for a total of 10 trials, and were unaware of which system was being used. The performance in each trial was defined as the temporal correlation between the cues and the decoded states. The EEG data simultaneously acquired with the custom and commercial amplifiers were visually similar and highly correlated ( ρ = 0.79). The decoding performances of the custom and conventional BCIs averaged across trials and subjects were 0.70 ± 0.12 and 0.68 ± 0.10, respectively, and were not significantly different. The performance of our portable, low-cost BCI is comparable to that of the conventional BCIs. Platforms, such as the one developed here, are suitable for BCI applications outside of a laboratory.

  17. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke

    Science.gov (United States)

    Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K.; He, B.

    2018-02-01

    Objective. Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS  +  BCI, compared to sham rTMS  +  BCI, on motor recovery after stroke in subjects with lasting motor paresis. Approach. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Main results. Motor improvements were observed in both real rTMS  +  BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. Significance. When combined, the results highlight the feasibility and efficacy of combined rTMS  +  BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS  +  BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS  +  BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

  18. Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.

    Science.gov (United States)

    Bai, Ou; Lin, Peter; Huang, Dandan; Fei, Ding-Yu; Floeter, Mary Kay

    2010-08-01

    Patients usually require long-term training for effective EEG-based brain-computer interface (BCI) control due to fatigue caused by the demands for focused attention during prolonged BCI operation. We intended to develop a user-friendly BCI requiring minimal training and less mental load. Testing of BCI performance was investigated in three patients with amyotrophic lateral sclerosis (ALS) and three patients with primary lateral sclerosis (PLS), who had no previous BCI experience. All patients performed binary control of cursor movement. One ALS patient and one PLS patient performed four-directional cursor control in a two-dimensional domain under a BCI paradigm associated with human natural motor behavior using motor execution and motor imagery. Subjects practiced for 5-10min and then participated in a multi-session study of either binary control or four-directional control including online BCI game over 1.5-2h in a single visit. Event-related desynchronization and event-related synchronization in the beta band were observed in all patients during the production of voluntary movement either by motor execution or motor imagery. The online binary control of cursor movement was achieved with an average accuracy about 82.1+/-8.2% with motor execution and about 80% with motor imagery, whereas offline accuracy was achieved with 91.4+/-3.4% with motor execution and 83.3+/-8.9% with motor imagery after optimization. In addition, four-directional cursor control was achieved with an accuracy of 50-60% with motor execution and motor imagery. Patients with ALS or PLS may achieve BCI control without extended training, and fatigue might be reduced during operation of a BCI associated with human natural motor behavior. The development of a user-friendly BCI will promote practical BCI applications in paralyzed patients. Copyright 2010 International Federation of Clinical Neurophysiology. All rights reserved.

  19. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report.

    Science.gov (United States)

    Broetz, Doris; Braun, Christoph; Weber, Cornelia; Soekadar, Surjo R; Caria, Andrea; Birbaumer, Niels

    2010-09-01

    There is no accepted and efficient rehabilitation strategy to reduce focal impairments for patients with chronic stroke who lack residual movements. A 67-year-old hemiplegic patient with no active finger extension was trained with a brain-computer interface (BCI) combined with a specific daily life-oriented physiotherapy. The BCI used electrical brain activity (EEG) and magnetic brain activity (MEG) to drive an orthosis and a robot affixed to the patient's affected upper extremity, which enabled him to move the paralyzed arm and hand driven by voluntary modulation of micro-rhythm activity. In addition, the patient practiced goal-directed physiotherapy training. Over 1 year, he completed 3 training blocks. Arm motor function, gait capacities (using Fugl-Meyer Assessment, Wolf Motor Function Test, Modified Ashworth Scale, 10-m walk speed, and goal attainment score), and brain reorganization (functional MRI, MEG) were repeatedly assessed. The ability of hand and arm movements as well as speed and safety of gait improved significantly (mean 46.6%). Improvement of motor function was associated with increased micro-oscillations in the ipsilesional motor cortex. This proof-of-principle study suggests that the combination of BCI training with goal-directed, active physical therapy may improve the motor abilities of chronic stroke patients despite apparent initial paralysis.

  20. Addition of visual noise boosts evoked potential-based brain-computer interface.

    Science.gov (United States)

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  1. BCI inside a virtual reality classroom: a potential training tool for attention

    OpenAIRE

    Rohani, Darius Adam; Puthusserypady, Sadasivan

    2015-01-01

    Background: A growing population is diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and are currently being treated with psychostimulants. Brain Computer Interface (BCI) is a method of communicating with an external program or device based on measured electrical signals from the brain. A particular brain signal, the P300 potential, can be measured about 300 ms after a voluntary cognitive involvement to external stimuli. By utilizing the P300 potential, we have designed a BCI- a...

  2. Effect of a combination of flip and zooming stimuli on the performance of a visual brain-computer interface for spelling.

    Science.gov (United States)

    Cheng, Jiao; Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Bei; Wang, Xingyu; Cichocki, Andrzej

    2018-02-13

    Brain-computer interface (BCI) systems can allow their users to communicate with the external world by recognizing intention directly from their brain activity without the assistance of the peripheral motor nervous system. The P300-speller is one of the most widely used visual BCI applications. In previous studies, a flip stimulus (rotating the background area of the character) that was based on apparent motion, suffered from less refractory effects. However, its performance was not improved significantly. In addition, a presentation paradigm that used a "zooming" action (changing the size of the symbol) has been shown to evoke relatively higher P300 amplitudes and obtain a better BCI performance. To extend this method of stimuli presentation within a BCI and, consequently, to improve BCI performance, we present a new paradigm combining both the flip stimulus with a zooming action. This new presentation modality allowed BCI users to focus their attention more easily. We investigated whether such an action could combine the advantages of both types of stimuli presentation to bring a significant improvement in performance compared to the conventional flip stimulus. The experimental results showed that the proposed paradigm could obtain significantly higher classification accuracies and bit rates than the conventional flip paradigm (p<0.01).

  3. EDITORIAL: Special section on gaze-independent brain-computer interfaces Special section on gaze-independent brain-computer interfaces

    Science.gov (United States)

    Treder, Matthias S.

    2012-08-01

    Restoring the ability to communicate and interact with the environment in patients with severe motor disabilities is a vision that has been the main catalyst of early brain-computer interface (BCI) research. The past decade has brought a diversification of the field. BCIs have been examined as a tool for motor rehabilitation and their benefit in non-medical applications such as mental-state monitoring for improved human-computer interaction and gaming has been confirmed. At the same time, the weaknesses of some approaches have been pointed out. One of these weaknesses is gaze-dependence, that is, the requirement that the user of a BCI system voluntarily directs his or her eye gaze towards a visual target in order to efficiently operate a BCI. This not only contradicts the main doctrine of BCI research, namely that BCIs should be independent of muscle activity, but it can also limit its real-world applicability both in clinical and non-medical settings. It is only in a scenario devoid of any motor activity that a BCI solution is without alternative. Gaze-dependencies have surfaced at two different points in the BCI loop. Firstly, a BCI that relies on visual stimulation may require users to fixate on the target location. Secondly, feedback is often presented visually, which implies that the user may have to move his or her eyes in order to perceive the feedback. This special section was borne out of a BCI workshop on gaze-independent BCIs held at the 2011 Society for Applied Neurosciences (SAN) Conference and has then been extended with additional contributions from other research groups. It compiles experimental and methodological work that aims toward gaze-independent communication and mental-state monitoring. Riccio et al review the current state-of-the-art in research on gaze-independent BCIs [1]. Van der Waal et al present a tactile speller that builds on the stimulation of the fingers of the right and left hand [2]. H¨ohne et al analyze the ergonomic aspects

  4. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP

    Science.gov (United States)

    Yi, Weibo; Qiu, Shuang; Wang, Kun; Qi, Hongzhi; Zhao, Xin; He, Feng; Zhou, Peng; Yang, Jiajia; Ming, Dong

    2017-04-01

    Objective. We proposed a novel simultaneous hybrid brain-computer interface (BCI) by incorporating electrical stimulation into a motor imagery (MI) based BCI system. The goal of this study was to enhance the overall performance of an MI-based BCI. In addition, the brain oscillatory pattern in the hybrid task was also investigated. Approach. 64-channel electroencephalographic (EEG) data were recorded during MI, selective attention (SA) and hybrid tasks in fourteen healthy subjects. In the hybrid task, subjects performed MI with electrical stimulation which was applied to bilateral median nerve on wrists simultaneously. Main results. The hybrid task clearly presented additional steady-state somatosensory evoked potential (SSSEP) induced by electrical stimulation with MI-induced event-related desynchronization (ERD). By combining ERD and SSSEP features, the performance in the hybrid task was significantly better than in both MI and SA tasks, achieving a ~14% improvement in total relative to the MI task alone and reaching ~89% in mean classification accuracy. On the contrary, there was no significant enhancement obtained in performance while separate ERD feature was utilized in the hybrid task. In terms of the hybrid task, the performance using combined feature was significantly better than using separate ERD or SSSEP feature. Significance. The results in this work validate the feasibility of our proposed approach to form a novel MI-SSSEP hybrid BCI outperforming a conventional MI-based BCI through combing MI with electrical stimulation.

  5. [The Changes in the Hemodynamic Activity of the Brain during Moroe Imagery Training with the Use of Brain-Computer Interface].

    Science.gov (United States)

    Frolov, A A; Husek, D; Silchenko, A V; Tintera, Y; Rydlo, J

    2016-01-01

    With the use of functional MRI (fMRI), we studied the changes in brain hemodynamic activity of healthy subjects during motor imagery training with the use brain-computer interface (BCI), which is based on the recognition of EEG patterns of imagined movements. ANOVA dispersion analysis showed there are 14 areas of the brain where statistically sgnificant changes were registered. Detailed analysis of the activity in these areas before and after training (Student's and Mann-Whitney tests) reduced the amount of areas with significantly changed activity to five; these are Brodmann areas 44 and 45, insula, middle frontal gyrus, and anterior cingulate gyrus. We suggest that these changes are caused by the formation of memory traces of those brain activity patterns which are most accurately recognized by BCI classifiers as correspondent with limb movements. We also observed a tendency of increase in the activity of motor imagery after training. The hemodynamic activity in all these 14 areas during real movements was either approximatly the same or significantly higher than during motor imagery; activity during imagined leg movements was higher that that during imagined arm movements, except for the areas of representation of arms.

  6. Towards User-Friendly Spelling with an Auditory Brain-Computer Interface: The CharStreamer Paradigm

    Science.gov (United States)

    Höhne, Johannes; Tangermann, Michael

    2014-01-01

    Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI) aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP) of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: “CharStreamer”. The speller can be used with an instruction as simple as “please attend to what you want to spell”. The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10) of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences. PMID:24886978

  7. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  8. Experiencing BCI control in a popular computer game

    NARCIS (Netherlands)

    van de Laar, B.L.A.; Coyle, D.; Gürkök, Hayrettin; Principe, J.; Lotte, F.; Plass - Oude Bos, D.; Poel, Mannes; Nijholt, Antinus

    2013-01-01

    Brain–computer interfaces (BCIs) are not only being developed to aid disabled individuals with motor substitution, motor recovery, and novel communication possibilities, but also as a modality for healthy users in entertainment and gaming. This study investigates whether the incorporation of a BCI

  9. A P300 brain-computer interface based on a modification of the mismatch negativity paradigm.

    Science.gov (United States)

    Jin, Jing; Sellers, Eric W; Zhou, Sijie; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2015-05-01

    The P300-based brain-computer interface (BCI) is an extension of the oddball paradigm, and can facilitate communication for people with severe neuromuscular disorders. It has been shown that, in addition to the P300, other event-related potential (ERP) components have been shown to contribute to successful operation of the P300 BCI. Incorporating these components into the classification algorithm can improve the classification accuracy and information transfer rate (ITR). In this paper, a single character presentation paradigm was compared to a presentation paradigm that is based on the visual mismatch negativity. The mismatch negativity paradigm showed significantly higher classification accuracy and ITRs than a single character presentation paradigm. In addition, the mismatch paradigm elicited larger N200 and N400 components than the single character paradigm. The components elicited by the presentation method were consistent with what would be expected from a mismatch paradigm and a typical P300 was also observed. The results show that increasing the signal-to-noise ratio by increasing the amplitude of ERP components can significantly improve BCI speed and accuracy. The mismatch presentation paradigm may be considered a viable option to the traditional P300 BCI paradigm.

  10. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials

    Science.gov (United States)

    2014-01-01

    Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900

  11. An Efficient Framework for EEG Analysis with Application to Hybrid Brain Computer Interfaces Based on Motor Imagery and P300

    Directory of Open Access Journals (Sweden)

    Jinyi Long

    2017-01-01

    Full Text Available The hybrid brain computer interface (BCI based on motor imagery (MI and P300 has been a preferred strategy aiming to improve the detection performance through combining the features of each. However, current methods used for combining these two modalities optimize them separately, which does not result in optimal performance. Here, we present an efficient framework to optimize them together by concatenating the features of MI and P300 in a block diagonal form. Then a linear classifier under a dual spectral norm regularizer is applied to the combined features. Under this framework, the hybrid features of MI and P300 can be learned, selected, and combined together directly. Experimental results on the data set of hybrid BCI based on MI and P300 are provided to illustrate competitive performance of the proposed method against other conventional methods. This provides an evidence that the method used here contributes to the discrimination performance of the brain state in hybrid BCI.

  12. Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces

    International Nuclear Information System (INIS)

    Gutierrez, David

    2008-01-01

    Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEG data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation

  13. A subject-independent pattern-based Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Andreas Markus Ray

    2015-10-01

    Full Text Available While earlier Brain-Computer Interface (BCI studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e. happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to match their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders.

  14. A general method for assessing brain-computer interface performance and its limitations

    Science.gov (United States)

    Hill, N. Jeremy; Häuser, Ann-Katrin; Schalk, Gerwin

    2014-04-01

    Objective. When researchers evaluate brain-computer interface (BCI) systems, we want quantitative answers to questions such as: How good is the system’s performance? How good does it need to be? and: Is it capable of reaching the desired level in future? In response to the current lack of objective, quantitative, study-independent approaches, we introduce methods that help to address such questions. We identified three challenges: (I) the need for efficient measurement techniques that adapt rapidly and reliably to capture a wide range of performance levels; (II) the need to express results in a way that allows comparison between similar but non-identical tasks; (III) the need to measure the extent to which certain components of a BCI system (e.g. the signal processing pipeline) not only support BCI performance, but also potentially restrict the maximum level it can reach. Approach. For challenge (I), we developed an automatic staircase method that adjusted task difficulty adaptively along a single abstract axis. For challenge (II), we used the rate of information gain between two Bernoulli distributions: one reflecting the observed success rate, the other reflecting chance performance estimated by a matched random-walk method. This measure includes Wolpaw’s information transfer rate as a special case, but addresses the latter’s limitations including its restriction to item-selection tasks. To validate our approach and address challenge (III), we compared four healthy subjects’ performance using an EEG-based BCI, a ‘Direct Controller’ (a high-performance hardware input device), and a ‘Pseudo-BCI Controller’ (the same input device, but with control signals processed by the BCI signal processing pipeline). Main results. Our results confirm the repeatability and validity of our measures, and indicate that our BCI signal processing pipeline reduced attainable performance by about 33% (21 bits min-1). Significance. Our approach provides a flexible basis

  15. Brain-computer interface with language model-electroencephalography fusion for locked-in syndrome.

    Science.gov (United States)

    Oken, Barry S; Orhan, Umut; Roark, Brian; Erdogmus, Deniz; Fowler, Andrew; Mooney, Aimee; Peters, Betts; Miller, Meghan; Fried-Oken, Melanie B

    2014-05-01

    Some noninvasive brain-computer interface (BCI) systems are currently available for locked-in syndrome (LIS) but none have incorporated a statistical language model during text generation. To begin to address the communication needs of individuals with LIS using a noninvasive BCI that involves rapid serial visual presentation (RSVP) of symbols and a unique classifier with electroencephalography (EEG) and language model fusion. The RSVP Keyboard was developed with several unique features. Individual letters are presented at 2.5 per second. Computer classification of letters as targets or nontargets based on EEG is performed using machine learning that incorporates a language model for letter prediction via Bayesian fusion enabling targets to be presented only 1 to 4 times. Nine participants with LIS and 9 healthy controls were enrolled. After screening, subjects first calibrated the system, and then completed a series of balanced word generation mastery tasks that were designed with 5 incremental levels of difficulty, which increased by selecting phrases for which the utility of the language model decreased naturally. Six participants with LIS and 9 controls completed the experiment. All LIS participants successfully mastered spelling at level 1 and one subject achieved level 5. Six of 9 control participants achieved level 5. Individuals who have incomplete LIS may benefit from an EEG-based BCI system, which relies on EEG classification and a statistical language model. Steps to further improve the system are discussed.

  16. Scientific profile of brain-computer interfaces: Bibliometric analysis in a 10-year period.

    Science.gov (United States)

    Hu, Kejia; Chen, Chao; Meng, Qingyao; Williams, Ziv; Xu, Wendong

    2016-12-02

    With the tremendous advances in the field of brain-computer interfaces (BCI), the literature in this field has grown exponentially; examination of highly cited articles is a tool that can help identify outstanding scientific studies and landmark papers. This study examined the characteristics of 100 highly cited BCI papers over the past 10 years. The Web of Science was searched for highly cited papers related to BCI research published from 2006 to 2015. The top 100 highly cited articles were identified. The number of citations and countries, and the corresponding institutions, year of publication, study design, and research area were noted and analyzed. The 100 highly cited articles had a mean of 137.1(SE: 15.38) citations. These articles were published in 45 high-impact journals, and mostly in TRANSACTIONS ON BIOMEDICAL ENGINEERING (n=14). Of the 100 articles, 72 were original articles and the rest were review articles. These articles came from 15 countries, with the USA contributing most of the highly cited articles (n=52). Fifty-seven institutions produced these 100 highly cited articles, led by Duke University (n=7). This study provides a historical perspective on the progress in the field of BCI, allows recognition of the most influential reports, and provides useful information that can indicate areas requiring further investigation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Affective Interaction with a Virtual Character through an fNIRS Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Gabor Aranyi

    2016-07-01

    Full Text Available Affective Brain-Computer Interfaces (BCI harness Neuroscience knowledge to develop affective interaction from first principles. In this paper, we explore affective engagement with a virtual agent through Neurofeedback (NF. We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC, which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using fNIRS and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent’s facial expressions, in which Action Units are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent’s responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment.

  18. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually.

    Directory of Open Access Journals (Sweden)

    Elisabeth V C Friedrich

    Full Text Available This study implemented a systematic user-centered training protocol for a 4-class brain-computer interface (BCI. The goal was to optimize the BCI individually in order to achieve high performance within few sessions for all users. Eight able-bodied volunteers, who were initially naïve to the use of a BCI, participated in 10 sessions over a period of about 5 weeks. In an initial screening session, users were asked to perform the following seven mental tasks while multi-channel EEG was recorded: mental rotation, word association, auditory imagery, mental subtraction, spatial navigation, motor imagery of the left hand and motor imagery of both feet. Out of these seven mental tasks, the best 4-class combination as well as most reactive frequency band (between 8-30 Hz was selected individually for online control. Classification was based on common spatial patterns and Fisher's linear discriminant analysis. The number and time of classifier updates varied individually. Selection speed was increased by reducing trial length. To minimize differences in brain activity between sessions with and without feedback, sham feedback was provided in the screening and calibration runs in which usually no real-time feedback is shown. Selected task combinations and frequency ranges differed between users. The tasks that were included in the 4-class combination most often were (1 motor imagery of the left hand (2, one brain-teaser task (word association or mental subtraction (3, mental rotation task and (4 one more dynamic imagery task (auditory imagery, spatial navigation, imagery of the feet. Participants achieved mean performances over sessions of 44-84% and peak performances in single-sessions of 58-93% in this user-centered 4-class BCI protocol. This protocol is highly adjustable to individual users and thus could increase the percentage of users who can gain and maintain BCI control. A high priority for future work is to examine this protocol with severely

  19. Classifying BCI signals from novice users with extreme learning machine

    Directory of Open Access Journals (Sweden)

    Rodríguez-Bermúdez Germán

    2017-07-01

    Full Text Available Brain computer interface (BCI allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.

  20. Brain Computer Interface: Assessment of Spinal Cord Injury Patient towards Motor Movement through EEG application

    Directory of Open Access Journals (Sweden)

    Syam Syahrull Hi-Fi

    2017-01-01

    Full Text Available Electroencephalography (EEG associated with motor task have been comprehensively investigated and it can also describe the brain activities while spinal cord injury (SCI patient with para/tetraplegia performing movement with their limbs. This paper reviews on conducted research regarding application of brain computer interface (BCI that offer alternative for neural impairments community such as spinal cord injury patient (SCI which include the experimental design, signal analysis of EEG band signal and data processing methods. The findings claim that the EEG signals of SCI patients associated with movement tasks can be stimulated through mental and motor task. Other than that EEG signal component such as alpha and beta frequency bands indicate significance for analysing the brain activity of subjects with SCI during movements.

  1. User-customized brain computer interfaces using Bayesian optimization.

    Science.gov (United States)

    Bashashati, Hossein; Ward, Rabab K; Bashashati, Ali

    2016-04-01

    The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject's brain characteristics. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  2. A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition.

    Science.gov (United States)

    Deshpande, Gopikrishna; Rangaprakash, D; Oeding, Luke; Cichocki, Andrzej; Hu, Xiaoping P

    2017-01-01

    A Brain-Computer Interface (BCI) is a setup permitting the control of external devices by decoding brain activity. Electroencephalography (EEG) has been extensively used for decoding brain activity since it is non-invasive, cheap, portable, and has high temporal resolution to allow real-time operation. Due to its poor spatial specificity, BCIs based on EEG can require extensive training and multiple trials to decode brain activity (consequently slowing down the operation of the BCI). On the other hand, BCIs based on functional magnetic resonance imaging (fMRI) are more accurate owing to its superior spatial resolution and sensitivity to underlying neuronal processes which are functionally localized. However, due to its relatively low temporal resolution, high cost, and lack of portability, fMRI is unlikely to be used for routine BCI. We propose a new approach for transferring the capabilities of fMRI to EEG, which includes simultaneous EEG/fMRI sessions for finding a mapping from EEG to fMRI, followed by a BCI run from only EEG data, but driven by fMRI-like features obtained from the mapping identified previously. Our novel data-driven method is likely to discover latent linkages between electrical and hemodynamic signatures of neural activity hitherto unexplored using model-driven methods, and is likely to serve as a template for a novel multi-modal strategy wherein cross-modal EEG-fMRI interactions are exploited for the operation of a unimodal EEG system, leading to a new generation of EEG-based BCIs.

  3. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface.

    Science.gov (United States)

    Yu, Yang; Zhou, Zongtan; Yin, Erwei; Jiang, Jun; Tang, Jingsheng; Liu, Yadong; Hu, Dewen

    2016-10-01

    This study presented a paradigm for controlling a car using an asynchronous electroencephalogram (EEG)-based brain-computer interface (BCI) and presented the experimental results of a simulation performed in an experimental environment outside the laboratory. This paradigm uses two distinct MI tasks, imaginary left- and right-hand movements, to generate a multi-task car control strategy consisting of starting the engine, moving forward, turning left, turning right, moving backward, and stopping the engine. Five healthy subjects participated in the online car control experiment, and all successfully controlled the car by following a previously outlined route. Subject S1 exhibited the most satisfactory BCI-based performance, which was comparable to the manual control-based performance. We hypothesize that the proposed self-paced car control paradigm based on EEG signals could potentially be used in car control applications, and we provide a complementary or alternative way for individuals with locked-in disorders to achieve more mobility in the future, as well as providing a supplementary car-driving strategy to assist healthy people in driving a car. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors

    Science.gov (United States)

    2012-01-01

    A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering. PMID:22284235

  5. Context-aware adaptive spelling in motor imagery BCI

    Science.gov (United States)

    Perdikis, S.; Leeb, R.; Millán, J. d. R.

    2016-06-01

    Objective. This work presents a first motor imagery-based, adaptive brain-computer interface (BCI) speller, which is able to exploit application-derived context for improved, simultaneous classifier adaptation and spelling. Online spelling experiments with ten able-bodied users evaluate the ability of our scheme, first, to alleviate non-stationarity of brain signals for restoring the subject’s performances, second, to guide naive users into BCI control avoiding initial offline BCI calibration and, third, to outperform regular unsupervised adaptation. Approach. Our co-adaptive framework combines the BrainTree speller with smooth-batch linear discriminant analysis adaptation. The latter enjoys contextual assistance through BrainTree’s language model to improve online expectation-maximization maximum-likelihood estimation. Main results. Our results verify the possibility to restore single-sample classification and BCI command accuracy, as well as spelling speed for expert users. Most importantly, context-aware adaptation performs significantly better than its unsupervised equivalent and similar to the supervised one. Although no significant differences are found with respect to the state-of-the-art PMean approach, the proposed algorithm is shown to be advantageous for 30% of the users. Significance. We demonstrate the possibility to circumvent supervised BCI recalibration, saving time without compromising the adaptation quality. On the other hand, we show that this type of classifier adaptation is not as efficient for BCI training purposes.

  6. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface

    Science.gov (United States)

    Rouse, A. G.; Williams, J. J.; Wheeler, J. J.; Moran, D. W.

    2016-10-01

    Objective. Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used. Approach. The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored. Main results. Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme. Significance. Our results clearly show that neural activity under a BCI recording electrode (which we define as a ‘cortical control column’) readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and

  7. BCI inside a virtual reality classroom: a potential training tool for attention

    DEFF Research Database (Denmark)

    Rohani, Darius Adam; Puthusserypady, Sadasivan

    2015-01-01

    Background : A growing population is diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and are currently being treated with psychostimulants. Brain Computer Interface (BCI) is a method of communicating with an external program or device based on measured electrical signals from...... the brain. A particular brain signal, the P300 potential, can be measured about 300 ms after a voluntary cognitive involvement to external stimuli. By utilizing the P300 potential, we have designed a BCI- assisted exercising tool targeting attention enhancement within an immersive 3D virtual reality (VR...

  8. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    Science.gov (United States)

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  9. Brain-computer interface supported collaborative work: Implications for rehabilitation.

    Science.gov (United States)

    Nam, C S; Lee, J; Bahn, S

    2013-01-01

    Working together and collaborating in a group can provide greater benefits for people with severe motor disability. However, it is still not clear how collaboration should be supported by BCI systems. The present study explored BCI-supported collaborative work by investigating differences in performance and brain activity between when a pair of users performs a task jointly with each other and when they do alone only through means of their brain activity. We found differences in performance and brain activity between different work conditions. The results of this research should provide fundamental knowledge of BCI-supported cooperative work.

  10. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Directory of Open Access Journals (Sweden)

    Alessio Paolo Buccino

    Full Text Available Non-invasive Brain-Computer Interfaces (BCI have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG and functional Near-Infrared Spectroscopy (fNIRS in an asynchronous Sensory Motor rhythm (SMR-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  11. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    Science.gov (United States)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  12. Simple communication using a SSVEP-based BCI

    International Nuclear Information System (INIS)

    Sanchez, Guillermo; Diez, Pablo F; Avila, Enrique; Laciar Leber, Eric

    2011-01-01

    Majority of Brain-Computer Interface (BCI) for communication purposes are speller, i.e., the user has to select letter by letter. In this work, is proposed a different approach where the user can select words from a word set designed in order to answer a wide range of questions. The word selection process is commanded by a Steady-state visual evoked potential (SSVEP) based-BCI that allows selecting a word in an average time of 26 s with accuracies of 92% on average. This BCI is focus in the first stages on rehabilitation or even in first moments of some diseases (such as stroke), when the person is eager to communicate with family and doctors.

  13. Simple communication using a SSVEP-based BCI

    Science.gov (United States)

    Sanchez, Guillermo; Diez, Pablo F.; Avila, Enrique; Laciar Leber, Eric

    2011-12-01

    Majority of Brain-Computer Interface (BCI) for communication purposes are speller, i.e., the user has to select letter by letter. In this work, is proposed a different approach where the user can select words from a word set designed in order to answer a wide range of questions. The word selection process is commanded by a Steady-state visual evoked potential (SSVEP) based-BCI that allows selecting a word in an average time of 26 s with accuracies of 92% on average. This BCI is focus in the first stages on rehabilitation or even in first moments of some diseases (such as stroke), when the person is eager to communicate with family and doctors.

  14. Non-invasive brain-to-brain interface (BBI: establishing functional links between two brains.

    Directory of Open Access Journals (Sweden)

    Seung-Schik Yoo

    Full Text Available Transcranial focused ultrasound (FUS is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI. In conjunction with the use of brain-to-computer interface (BCI techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat, thus creating a brain-to-brain interface (BBI. The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

  15. Active training paradigm for motor imagery BCI.

    Science.gov (United States)

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  16. Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rüdiger eRupp

    2014-09-01

    Full Text Available Brain computer interfaces (BCIs are devices that measure brain activities and translate them into control signals used for a variety of applications. Among them are systems for communication, environmental control, neuroprostheses, exoskeletons or restorative therapies. Over the last years the technology of BCIs has reached a level of matureness allowing them to be used not only in research experiments supervised by scientists, but also in clinical routine with patients with neurological impairments supervised by clinical personnel or caregivers. However, clinicians and patients face many challenges in the application of BCIs. This particularly applies to high spinal cord injured patients, in whom artificial ventilation, autonomic dysfunctions, neuropathic pain or the inability to achieve a sufficient level of control during a short-term training may limit the successful use of a BCI. Additionally, spasmolytic medication and the acute stress reaction with associated episodes of depression may have a negative influence on the modulation of brain waves and therefore the ability to concentrate over an extended period of time. Although BCIs seem to be a promising assistive technology for individuals with high spinal cord injury systematic investigations are highly needed to obtain realistic estimates of the percentage of users that for any reason may not be able to operate a BCI in a clinical setting.

  17. Emotiv EPOC BCI with Python on a Raspberry pi

    OpenAIRE

    Patrón, José Salgado; Monje, Cristian Raúl Barrera

    2015-01-01

    The hybrid Brain-Computer Interface [BCI] system gives an insight on the development of useful interfaces for users with different backgrounds, from medical applications to video games, where standalone and wearable means accessibility for the user. Systems such as EPOC offers a simple solution for acquiring electroencephalography and electromyography signals with low price and fast setup, compared to high tech medical equipment. From the processing point of view, a computer always offers the...

  18. Implementation of active electrodes on a brain-computer interface and its application as P300 speller

    International Nuclear Information System (INIS)

    Aguero Rojas, Eliecer

    2013-01-01

    A brain computer interface has implemented using open hardware called Modular EEG, created by The OpenEEG Project and distributed by the company Olimex Ltd. That hardware is modified to use active electrodes, instead of passive electrodes, for acquiring electroencephalographic signals. The application has been given to the interface has been a speller P300; for which has used the BC12000 open software that has the necessary configuration for the application. P300 speller has used a protocol in each session so that could be standardize the method to different users. Valuing the results with three neuropsychological tests, was within the objectives; however, has not been achieved by the limitation in time of project implementation. A brain computer interface has been used with passive electrodes; implemented in the same way that the BCI with active electrodes; and has worked better than the interface with active electrodes. One of the major advantages that has been observed of passive electrodes on the actives has been the size of the same, because the liabilities are smaller and therefore, easier to place preventing the hair of the user, which increases the noise in the signal. (author) [es

  19. Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis

    Science.gov (United States)

    Degenhart, Alan D.; Hiremath, Shivayogi V.; Yang, Ying; Foldes, Stephen; Collinger, Jennifer L.; Boninger, Michael; Tyler-Kabara, Elizabeth C.; Wang, Wei

    2018-04-01

    Objective. Brain-computer interface (BCI) technology aims to provide individuals with paralysis a means to restore function. Electrocorticography (ECoG) uses disc electrodes placed on either the surface of the dura or the cortex to record field potential activity. ECoG has been proposed as a viable neural recording modality for BCI systems, potentially providing stable, long-term recordings of cortical activity with high spatial and temporal resolution. Previously we have demonstrated that a subject with spinal cord injury (SCI) could control an ECoG-based BCI system with up to three degrees of freedom (Wang et al 2013 PLoS One). Here, we expand upon these findings by including brain-control results from two additional subjects with upper-limb paralysis due to amyotrophic lateral sclerosis and brachial plexus injury, and investigate the potential of motor and somatosensory cortical areas to enable BCI control. Approach. Individuals were implanted with high-density ECoG electrode grids over sensorimotor cortical areas for less than 30 d. Subjects were trained to control a BCI by employing a somatotopic control strategy where high-gamma activity from attempted arm and hand movements drove the velocity of a cursor. Main results. Participants were capable of generating robust cortical modulation that was differentiable across attempted arm and hand movements of their paralyzed limb. Furthermore, all subjects were capable of voluntarily modulating this activity to control movement of a computer cursor with up to three degrees of freedom using the somatotopic control strategy. Additionally, for those subjects with electrode coverage of somatosensory cortex, we found that somatosensory cortex was capable of supporting ECoG-based BCI control. Significance. These results demonstrate the feasibility of ECoG-based BCI systems for individuals with paralysis as well as highlight some of the key challenges that must be overcome before such systems are translated to the clinical

  20. Cognitive assessment in Amyotrophic Lateral Sclerosis by means of P300-Brain Computer Interface: a preliminary study.

    Science.gov (United States)

    Poletti, Barbara; Carelli, Laura; Solca, Federica; Lafronza, Annalisa; Pedroli, Elisa; Faini, Andrea; Zago, Stefano; Ticozzi, Nicola; Meriggi, Paolo; Cipresso, Pietro; Lulé, Dorothée; Ludolph, Albert C; Riva, Giuseppe; Silani, Vincenzo

    To investigate the use of P300-based Brain Computer Interface (BCI) technology for the administration of motor-verbal free cognitive tests in Amyotrophic Lateral Sclerosis (ALS). We recruited 15 ALS patients and 15 age- and education-matched healthy subjects. All participants underwent a BCI-based neuropsychological assessment, together with two standard cognitive screening tools (FAB, MoCA), two psychological questionnaires (BDI, STAI-Y) and a usability questionnaire. For patients, clinical and respiratory examinations were also performed, together with a behavioural assessment (FBI). Correlations were observed between standard cognitive and BCI-based neuropsychological assessment, mainly concerning execution times in the ALS group. Moreover, patients provided positive rates concerning the BCI perceived usability and subjective experience. Finally, execution times at the BCI-based neuropsychological assessment were useful to discriminate patients from controls, with patients achieving lower processing speed than controls regarding executive functions. The developed motor-verbal free neuropsychological battery represents an innovative approach, that could provide relevant information for clinical practice and ethical issues. Its use for cognitive evaluation throughout the course of ALS, currently not available by means of standard assessment, must be addressed in further longitudinal validation studies. Further work will be aimed at refining the developed system and enlarging the cognitive spectrum investigated.

  1. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Ebert, Felix; Peer, Angelika

    2017-06-01

    Objective. This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. Approach. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Main results. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Significance. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the

  2. Spatial Filter Feature Extraction Methods for P300 BCI Speller: A Comparison

    DEFF Research Database (Denmark)

    Chiou, Eleni; Puthusserypady, Sadasivan

    2017-01-01

    Brain Computer Interface (BCI) systems enable subjects affected by neuromuscular disorders to interact with the outside world. A P300 speller uses Event Related Potential (ERP) components, generated in the brain in the presence of a target stimulus, to extract information about the user’s intent...

  3. A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Choon Guan Lim

    Full Text Available Attention deficit hyperactivity disorder (ADHD symptoms can be difficult to treat. We previously reported that a 20-session brain-computer interface (BCI attention training programme improved ADHD symptoms. Here, we investigated a new more intensive BCI-based attention training game system on 20 unmedicated ADHD children (16 males, 4 females with significant inattentive symptoms (combined and inattentive ADHD subtypes. This new system monitored attention through a head band with dry EEG sensors, which was used to drive a feed forward game. The system was calibrated for each user by measuring the EEG parameters during a Stroop task. Treatment consisted of an 8-week training comprising 24 sessions followed by 3 once-monthly booster training sessions. Following intervention, both parent-rated inattentive and hyperactive-impulsive symptoms on the ADHD Rating Scale showed significant improvement. At week 8, the mean improvement was -4.6 (5.9 and -4.7 (5.6 respectively for inattentive symptoms and hyperactive-impulsive symptoms (both p<0.01. Cohen's d effect size for inattentive symptoms was large at 0.78 at week 8 and 0.84 at week 24 (post-boosters. Further analysis showed that the change in the EEG based BCI ADHD severity measure correlated with the change ADHD Rating Scale scores. The BCI-based attention training game system is a potential new treatment for ADHD.ClinicalTrials.gov NCT01344044.

  4. Goal selection versus process control while learning to use a brain-computer interface

    Science.gov (United States)

    Royer, Audrey S.; Rose, Minn L.; He, Bin

    2011-06-01

    A brain-computer interface (BCI) can be used to accomplish a task without requiring motor output. Two major control strategies used by BCIs during task completion are process control and goal selection. In process control, the user exerts continuous control and independently executes the given task. In goal selection, the user communicates their goal to the BCI and then receives assistance executing the task. A previous study has shown that goal selection is more accurate and faster in use. An unanswered question is, which control strategy is easier to learn? This study directly compares goal selection and process control while learning to use a sensorimotor rhythm-based BCI. Twenty young healthy human subjects were randomly assigned either to a goal selection or a process control-based paradigm for eight sessions. At the end of the study, the best user from each paradigm completed two additional sessions using all paradigms randomly mixed. The results of this study were that goal selection required a shorter training period for increased speed, accuracy, and information transfer over process control. These results held for the best subjects as well as in the general subject population. The demonstrated characteristics of goal selection make it a promising option to increase the utility of BCIs intended for both disabled and able-bodied users.

  5. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface.

    Science.gov (United States)

    Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N

    2016-01-01

    We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR

    Directory of Open Access Journals (Sweden)

    Eva Maria Hammer

    2014-08-01

    Full Text Available Modulation of sensorimotor rhythms (SMR was suggested as a control signal for brain-computer interfaces (BCI. Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80-100% performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning. Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1 A measure for the accuracy of fine motor skills, i.e. a trade for a person’s visuo-motor control ability and (2 subject’s attentional impulsivity. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1 failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject the present predictors.

  7. PET Mapping for Brain-Computer Interface Stimulation of the Ventroposterior Medial Nucleus of the Thalamus in Rats with Implanted Electrodes.

    Science.gov (United States)

    Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei

    2016-07-01

    Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. DTU BCI speller: An SSVEP-based spelling system with dictionary support

    DEFF Research Database (Denmark)

    Vilic, Adnan; Kjaer, Troels W.; Thomsen, Carsten E.

    2013-01-01

    In this paper, a new brain computer interface (BCI) speller, named DTU BCI speller, is introduced. It is based on the steady-state visual evoked potential (SSVEP) and features dictionary support. The system focuses on simplicity and user friendliness by using a single electrode for the signal......) is 4.90 ± 3.84 with a best case of 8.74 CPM. All subjects reported systematically on different user friendliness measures, and the overall results indicated the potentials of the DTU BCI Speller system. For subjects with high classification accuracies, the introduced dictionary approach greatly reduced...

  9. Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment

    Directory of Open Access Journals (Sweden)

    Burke R

    2005-01-01

    Full Text Available This paper presents the application of an effective EEG-based brain-computer interface design for binary control in a visually elaborate immersive 3D game. The BCI uses the steady-state visual evoked potential (SSVEP generated in response to phase-reversing checkerboard patterns. Two power-spectrum estimation methods were employed for feature extraction in a series of offline classification tests. Both methods were also implemented during real-time game play. The performance of the BCI was found to be robust to distracting visual stimulation in the game and relatively consistent across six subjects, with 41 of 48 games successfully completed. For the best performing feature extraction method, the average real-time control accuracy across subjects was 89%. The feasibility of obtaining reliable control in such a visually rich environment using SSVEPs is thus demonstrated and the impact of this result is discussed.

  10. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users.

    Science.gov (United States)

    Leeb, Robert; Perdikis, Serafeim; Tonin, Luca; Biasiucci, Andrea; Tavella, Michele; Creatura, Marco; Molina, Alberto; Al-Khodairy, Abdul; Carlson, Tom; Millán, José D R

    2013-10-01

    Brain-computer interfaces (BCIs) are no longer only used by healthy participants under controlled conditions in laboratory environments, but also by patients and end-users, controlling applications in their homes or clinics, without the BCI experts around. But are the technology and the field mature enough for this? Especially the successful operation of applications - like text entry systems or assistive mobility devices such as tele-presence robots - requires a good level of BCI control. How much training is needed to achieve such a level? Is it possible to train naïve end-users in 10 days to successfully control such applications? In this work, we report our experiences of training 24 motor-disabled participants at rehabilitation clinics or at the end-users' homes, without BCI experts present. We also share the lessons that we have learned through transferring BCI technologies from the lab to the user's home or clinics. The most important outcome is that 50% of the participants achieved good BCI performance and could successfully control the applications (tele-presence robot and text-entry system). In the case of the tele-presence robot the participants achieved an average performance ratio of 0.87 (max. 0.97) and for the text entry application a mean of 0.93 (max. 1.0). The lessons learned and the gathered user feedback range from pure BCI problems (technical and handling), to common communication issues among the different people involved, and issues encountered while controlling the applications. The points raised in this paper are very widely applicable and we anticipate that they might be faced similarly by other groups, if they move on to bringing the BCI technology to the end-user, to home environments and towards application prototype control. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Brain-computer interface controlled gaming: evaluation of usability by severely motor restricted end-users.

    Science.gov (United States)

    Holz, Elisa Mira; Höhne, Johannes; Staiger-Sälzer, Pit; Tangermann, Michael; Kübler, Andrea

    2013-10-01

    Connect-Four, a new sensorimotor rhythm (SMR) based brain-computer interface (BCI) gaming application, was evaluated by four severely motor restricted end-users; two were in the locked-in state and had unreliable eye-movement. Following the user-centred approach, usability of the BCI prototype was evaluated in terms of effectiveness (accuracy), efficiency (information transfer rate (ITR) and subjective workload) and users' satisfaction. Online performance varied strongly across users and sessions (median accuracy (%) of end-users: A=.65; B=.60; C=.47; D=.77). Our results thus yielded low to medium effectiveness in three end-users and high effectiveness in one end-user. Consequently, ITR was low (0.05-1.44bits/min). Only two end-users were able to play the game in free-mode. Total workload was moderate but varied strongly across sessions. Main sources of workload were mental and temporal demand. Furthermore, frustration contributed to the subjective workload of two end-users. Nevertheless, most end-users accepted the BCI application well and rated satisfaction medium to high. Sources for dissatisfaction were (1) electrode gel and cap, (2) low effectiveness, (3) time-consuming adjustment and (4) not easy-to-use BCI equipment. All four end-users indicated ease of use as being one of the most important aspect of BCI. Effectiveness and efficiency are lower as compared to applications using the event-related potential as input channel. Nevertheless, the SMR-BCI application was satisfactorily accepted by the end-users and two of four could imagine using the BCI application in their daily life. Thus, despite moderate effectiveness and efficiency BCIs might be an option when controlling an application for entertainment. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. BNCI Horizon 2020 : towards a roadmap for the BCI community

    NARCIS (Netherlands)

    Brunner, Clemens; Birbaumer, Niels; Blankertz, Benjamin; Guger, Christoph; Kübler, Andrea; Mattia, Donatella; Millán, José del R.; Miralles, Felip; Nijholt, Anton; Opisso, Eloy; Ramsey, Nick; Salomon, Patric; Müller-Putz, Gernot R.

    2015-01-01

    The brain-computer interface (BCI) field has grown dramatically over the past few years, but there are still no coordinated efforts to ensure efficient communication and collaboration among key stakeholders. The European Commission (EC) has recently renewed their efforts to establish such a

  13. BNCI Horizon 2020: towards a roadmap for the BCI community

    NARCIS (Netherlands)

    Brunner, Clemens; Birbaumer, Niels; Blankertz, Benjamin; Guger, Christoph; Kübler, Andrea; Mattia, Donatella; Millán, Jose del R.; Miralles, Felip; Nijholt, Antinus; Opisso, Eloy; Ramsey, Nick; Salomon, Patric; Müller-Putz, Gernot R.

    2015-01-01

    The brain-computer interface (BCI) field has grown dramatically over the past few years, but there are still no coordinated efforts to ensure efficient communication and collaboration among key stakeholders. The European Commission (EC) has recently renewed their efforts to establish such a

  14. Classification of BCI Users Based on Cognition

    Directory of Open Access Journals (Sweden)

    N. Firat Ozkan

    2018-01-01

    Full Text Available Brain-Computer Interfaces (BCI are systems originally developed to assist paralyzed patients allowing for commands to the computer with brain activities. This study aims to examine cognitive state with an objective, easy-to-use, and easy-to-interpret method utilizing Brain-Computer Interface systems. Seventy healthy participants completed six tasks using a Brain-Computer Interface system and participants’ pupil dilation, blink rate, and Galvanic Skin Response (GSR data were collected simultaneously. Participants filled Nasa-TLX forms following each task and task performances of participants were also measured. Cognitive state clusters were created from the data collected using the K-means method. Taking these clusters and task performances into account, the general cognitive state of each participant was classified as low risk or high risk. Logistic Regression, Decision Tree, and Neural Networks were also used to classify the same data in order to measure the consistency of this classification with other techniques and the method provided a consistency between 87.1% and 100% with other techniques.

  15. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals

    Science.gov (United States)

    Felton, E. A.; Radwin, R. G.; Wilson, J. A.; Williams, J. C.

    2009-10-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals.

  16. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.

    Science.gov (United States)

    Vasilyev, Anatoly; Liburkina, Sofya; Yakovlev, Lev; Perepelkina, Olga; Kaplan, Alexander

    2017-03-01

    Motor imagery (MI) is considered to be a promising cognitive tool for improving motor skills as well as for rehabilitation therapy of movement disorders. It is believed that MI training efficiency could be improved by using the brain-computer interface (BCI) technology providing real-time feedback on person's mental attempts. While BCI is indeed a convenient and motivating tool for practicing MI, it is not clear whether it could be used for predicting or measuring potential positive impact of the training. In this study, we are trying to establish whether the proficiency in BCI control is associated with any of the neurophysiological or psychological correlates of motor imagery, as well as to determine possible interrelations among them. For that purpose, we studied motor imagery in a group of 19 healthy BCI-trained volunteers and performed a correlation analysis across various quantitative assessment metrics. We examined subjects' sensorimotor event-related EEG events, corticospinal excitability changes estimated with single-pulse transcranial magnetic stimulation (TMS), BCI accuracy and self-assessment reports obtained with specially designed questionnaires and interview routine. Our results showed, expectedly, that BCI performance is dependent on the subject's capability to suppress EEG sensorimotor rhythms, which in turn is correlated with the idle state amplitude of those oscillations. Neither BCI accuracy nor the EEG features associated with MI were found to correlate with the level of corticospinal excitability increase during motor imagery, and with assessed imagery vividness. Finally, a significant correlation was found between the level of corticospinal excitability increase and kinesthetic vividness of imagery (KVIQ-20 questionnaire). Our results suggest that two distinct neurophysiological mechanisms might mediate possible effects of motor imagery: the non-specific cortical sensorimotor disinhibition and the focal corticospinal excitability increase

  17. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials.

    Science.gov (United States)

    Jin, Jing; Allison, Brendan Z; Wang, Xingyu; Neuper, Christa

    2012-04-15

    Brain-computer interfaces (BCIs) allow users to communicate via brain activity alone. Many BCIs rely on the P300 and other event-related potentials (ERPs) that are elicited when target stimuli flash. Although there have been considerable research exploring ways to improve P300 BCIs, surprisingly little work has focused on new ways to change visual stimuli to elicit more recognizable ERPs. In this paper, we introduce a "combined" BCI based on P300 potentials and motion-onset visual evoked potentials (M-VEPs) and compare it with BCIs based on each simple approach (P300 and M-VEP). Offline data suggested that performance would be best in the combined paradigm. Online tests with adaptive BCIs confirmed that our combined approach is practical in an online BCI, and yielded better performance than the other two approaches (P<0.05) without annoying or overburdening the subject. The highest mean classification accuracy (96%) and practical bit rate (26.7bit/s) were obtained from the combined condition. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition

    Directory of Open Access Journals (Sweden)

    Gopikrishna Deshpande

    2017-06-01

    Full Text Available A Brain-Computer Interface (BCI is a setup permitting the control of external devices by decoding brain activity. Electroencephalography (EEG has been extensively used for decoding brain activity since it is non-invasive, cheap, portable, and has high temporal resolution to allow real-time operation. Due to its poor spatial specificity, BCIs based on EEG can require extensive training and multiple trials to decode brain activity (consequently slowing down the operation of the BCI. On the other hand, BCIs based on functional magnetic resonance imaging (fMRI are more accurate owing to its superior spatial resolution and sensitivity to underlying neuronal processes which are functionally localized. However, due to its relatively low temporal resolution, high cost, and lack of portability, fMRI is unlikely to be used for routine BCI. We propose a new approach for transferring the capabilities of fMRI to EEG, which includes simultaneous EEG/fMRI sessions for finding a mapping from EEG to fMRI, followed by a BCI run from only EEG data, but driven by fMRI-like features obtained from the mapping identified previously. Our novel data-driven method is likely to discover latent linkages between electrical and hemodynamic signatures of neural activity hitherto unexplored using model-driven methods, and is likely to serve as a template for a novel multi-modal strategy wherein cross-modal EEG-fMRI interactions are exploited for the operation of a unimodal EEG system, leading to a new generation of EEG-based BCIs.

  19. Investigating effects of different artefact types on motor imagery BCI

    DEFF Research Database (Denmark)

    Frølich, Laura; Winkler, Irene; Muller, Klaus-Robert

    2015-01-01

    Artefacts in recordings of the electroencephalogram (EEG) are a common problem in Brain-Computer Interfaces (BCIs). Artefacts make it difficult to calibrate from training sessions, resulting in low test performance, or lead to artificially high performance when unintentionally used for BCI control...... that muscle, but not ocular, artefacts adversely affect BCI performance when all 119 EEG channels are used. Artefacts have little influence when using 48 centrally located EEG channels in a configuration previously found to be optimal....

  20. Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

    Science.gov (United States)

    Huggins, Jane E.; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O.; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K. R.; Ramsey, Nick F.; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J.; Mattia, Donatella; Lance, Brent J.; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H.; Collinger, Jennifer L.; Chavarriaga, Ricardo; Chase, Steven M.; Bleichner, Martin G.; Batista, Aaron; Anderson, Charles W.; Aarnoutse, Erik J.

    2017-01-01

    The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain–machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development. PMID:29152523

  1. User-customized brain computer interfaces using Bayesian optimization

    Science.gov (United States)

    Bashashati, Hossein; Ward, Rabab K.; Bashashati, Ali

    2016-04-01

    Objective. The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject’s brain characteristics. Approach. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. Main Results. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Significance. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  2. On the role of cost-sensitive learning in multi-class brain-computer interfaces.

    Science.gov (United States)

    Devlaminck, Dieter; Waegeman, Willem; Wyns, Bart; Otte, Georges; Santens, Patrick

    2010-06-01

    Brain-computer interfaces (BCIs) present an alternative way of communication for people with severe disabilities. One of the shortcomings in current BCI systems, recently put forward in the fourth BCI competition, is the asynchronous detection of motor imagery versus resting state. We investigated this extension to the three-class case, in which the resting state is considered virtually lying between two motor classes, resulting in a large penalty when one motor task is misclassified into the other motor class. We particularly focus on the behavior of different machine-learning techniques and on the role of multi-class cost-sensitive learning in such a context. To this end, four different kernel methods are empirically compared, namely pairwise multi-class support vector machines (SVMs), two cost-sensitive multi-class SVMs and kernel-based ordinal regression. The experimental results illustrate that ordinal regression performs better than the other three approaches when a cost-sensitive performance measure such as the mean-squared error is considered. By contrast, multi-class cost-sensitive learning enables us to control the number of large errors made between two motor tasks.

  3. A novel task-oriented optimal design for P300-based brain-computer interfaces.

    Science.gov (United States)

    Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen

    2014-10-01

    Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.

  4. Predicting BCI subject performance using probabilistic spatio-temporal filters.

    Directory of Open Access Journals (Sweden)

    Heung-Il Suk

    Full Text Available Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.

  5. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients

    OpenAIRE

    Xiaokang Shu; Shugeng Chen; Lin Yao; Xinjun Sheng; Dingguo Zhang; Ning Jiang; Jie Jia; Xiangyang Zhu

    2018-01-01

    Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10–50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variab...

  6. The effect of monitor raster latency on VEPs, ERPs and Brain-Computer Interface performance.

    Science.gov (United States)

    Nagel, Sebastian; Dreher, Werner; Rosenstiel, Wolfgang; Spüler, Martin

    2018-02-01

    Visual neuroscience experiments and Brain-Computer Interface (BCI) control often require strict timings in a millisecond scale. As most experiments are performed using a personal computer (PC), the latencies that are introduced by the setup should be taken into account and be corrected. As a standard computer monitor uses a rastering to update each line of the image sequentially, this causes a monitor raster latency which depends on the position, on the monitor and the refresh rate. We technically measured the raster latencies of different monitors and present the effects on visual evoked potentials (VEPs) and event-related potentials (ERPs). Additionally we present a method for correcting the monitor raster latency and analyzed the performance difference of a code-modulated VEP BCI speller by correcting the latency. There are currently no other methods validating the effects of monitor raster latency on VEPs and ERPs. The timings of VEPs and ERPs are directly affected by the raster latency. Furthermore, correcting the raster latency resulted in a significant reduction of the target prediction error from 7.98% to 4.61% and also in a more reliable classification of targets by significantly increasing the distance between the most probable and the second most probable target by 18.23%. The monitor raster latency affects the timings of VEPs and ERPs, and correcting resulted in a significant error reduction of 42.23%. It is recommend to correct the raster latency for an increased BCI performance and methodical correctness. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A comparison of two spelling Brain-Computer Interfaces based on visual P3 and SSVEP in Locked-In Syndrome.

    Directory of Open Access Journals (Sweden)

    Adrien Combaz

    Full Text Available We study the applicability of a visual P3-based and a Steady State Visually Evoked Potentials (SSVEP-based Brain-Computer Interfaces (BCIs for mental text spelling on a cohort of patients with incomplete Locked-In Syndrome (LIS.Seven patients performed repeated sessions with each BCI. We assessed BCI performance, mental workload and overall satisfaction for both systems. We also investigated the effect of the quality of life and level of motor impairment on the performance.All seven patients were able to achieve an accuracy of 70% or more with the SSVEP-based BCI, compared to 3 patients with the P3-based BCI, showing a better performance with the SSVEP BCI than with the P3 BCI in the studied cohort. Moreover, the better performance of the SSVEP-based BCI was accompanied by a lower mental workload and a higher overall satisfaction. No relationship was found between BCI performance and level of motor impairment or quality of life.Our results show a better usability of the SSVEP-based BCI than the P3-based one for the sessions performed by the tested population of locked-in patients with respect to all the criteria considered. The study shows the advantage of developing alternative BCIs with respect to the traditional matrix-based P3 speller using different designs and signal modalities such as SSVEPs to build a faster, more accurate, less mentally demanding and more satisfying BCI by testing both types of BCIs on a convenience sample of LIS patients.

  8. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  9. Machine Learning Classification to Identify the Stage of Brain-Computer Interface Therapy for Stroke Rehabilitation Using Functional Connectivity

    Directory of Open Access Journals (Sweden)

    Rosaleena Mohanty

    2018-05-01

    Full Text Available Interventional therapy using brain-computer interface (BCI technology has shown promise in facilitating motor recovery in stroke survivors; however, the impact of this form of intervention on functional networks outside of the motor network specifically is not well-understood. Here, we investigated resting-state functional connectivity (rs-FC in stroke participants undergoing BCI therapy across stages, namely pre- and post-intervention, to identify discriminative functional changes using a machine learning classifier with the goal of categorizing participants into one of the two therapy stages. Twenty chronic stroke participants with persistent upper-extremity motor impairment received neuromodulatory training using a closed-loop neurofeedback BCI device, and rs-functional MRI (rs-fMRI scans were collected at four time points: pre-, mid-, post-, and 1 month post-therapy. To evaluate the peak effects of this intervention, rs-FC was analyzed from two specific stages, namely pre- and post-therapy. In total, 236 seeds spanning both motor and non-motor regions of the brain were computed at each stage. A univariate feature selection was applied to reduce the number of features followed by a principal component-based data transformation used by a linear binary support vector machine (SVM classifier to classify each participant into a therapy stage. The SVM classifier achieved a cross-validation accuracy of 92.5% using a leave-one-out method. Outside of the motor network, seeds from the fronto-parietal task control, default mode, subcortical, and visual networks emerged as important contributors to the classification. Furthermore, a higher number of functional changes were observed to be strengthening from the pre- to post-therapy stage than the ones weakening, both of which involved motor and non-motor regions of the brain. These findings may provide new evidence to support the potential clinical utility of BCI therapy as a form of stroke

  10. Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills.

    Science.gov (United States)

    Mahmoudi, Babak; Erfanian, Abbas

    2006-11-01

    Mental imagination is the essential part of the most EEG-based communication systems. Thus, the quality of mental rehearsal, the degree of imagined effort, and mind controllability should have a major effect on the performance of electro-encephalogram (EEG) based brain-computer interface (BCI). It is now well established that mental practice using motor imagery improves motor skills. The effects of mental practice on motor skill learning are the result of practice on central motor programming. According to this view, it seems logical that mental practice should modify the neuronal activity in the primary sensorimotor areas and consequently change the performance of EEG-based BCI. For developing a practical BCI system, recognizing the resting state with eyes opened and the imagined voluntary movement is important. For this purpose, the mind should be able to focus on a single goal for a period of time, without deviation to another context. In this work, we are going to examine the role of mental practice and concentration skills on the EEG control during imaginative hand movements. The results show that the mental practice and concentration can generally improve the classification accuracy of the EEG patterns. It is found that mental training has a significant effect on the classification accuracy over the primary motor cortex and frontal area.

  11. A dry EEG-system for scientific research and brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Thorsten Oliver Zander

    2011-05-01

    Full Text Available Although it ranks among the oldest tools in neuroscientific research, electroencephalography (EEG still forms the method of choice in a wide variety of clinical and research applications. In the context of Brain-Computer Interfacing (BCI, EEG recently has become a tool to enhance Human-Machine Interaction (HMI. EEG could be employed in a wider range of environments, especially for the use of BCI systems in a clinical context or at the homes of patients. However, the application of EEG in these contexts is impeded by the cumbersome preparation of the electrodes with conductive gel that is necessary to lower the impedance between electrodes and scalp. Dry electrodes could provide a solution to this barrier and allow for EEG applications outside the laboratory. In addition, dry electrodes may reduce the time needed for neurological exams in clinical practice. This study evaluates a prototype of a three-channel dry electrode EEG system, comparing it to state-of-the-art conventional EEG electrodes. Two experimental paradigms were used: first, Event-Related Potentials (ERP were investigated with a variant of the oddball paradigm. Second, features of the frequency domain were compared by a paradigm inducing occipital alpha. Furthermore, both paradigms were used to evaluate BCI classification accuracies of both EEG systems. Amplitude and temporal structure of ERPs as well as features in the frequency domain did not differ significantly between the EEG systems. BCI classification accuracies were equally high in both systems when the frequency domain was considered. With respect to the oddball classification accuracy, there were slight differences between the wet and dry electrode systems. We conclude that the tested dry electrodes were capable to detect EEG signals with good quality and that these signals can be used for research or BCI applications. Easy to handle electrodes may help to foster the use of EEG among a wider range of potential users.

  12. Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces.

    Science.gov (United States)

    Wei, Qingguo; Wei, Zhonghai

    2015-01-01

    A brain-computer interface (BCI) enables people suffering from affective neurological diseases to communicate with the external world. Common spatial pattern (CSP) is an effective algorithm for feature extraction in motor imagery based BCI systems. However, many studies have proved that the performance of CSP depends heavily on the frequency band of EEG signals used for the construction of covariance matrices. The use of different frequency bands to extract signal features may lead to different classification performances, which are determined by the discriminative and complementary information they contain. In this study, the broad frequency band (8-30 Hz) is divided into 10 sub-bands of band width 4 Hz and overlapping 2 Hz. Binary particle swarm optimization (BPSO) is used to find the best sub-band set to improve the performance of CSP and subsequent classification. Experimental results demonstrate that the proposed method achieved an average improvement of 6.91% in cross-validation accuracy when compared to broad band CSP.

  13. Brain-computer interface using P300 and virtual reality: a gaming approach for treating ADHD.

    Science.gov (United States)

    Rohani, Darius Adam; Sorensen, Helge B D; Puthusserypady, Sadasivan

    2014-01-01

    This paper presents a novel brain-computer interface (BCI) system aiming at the rehabilitation of attention-deficit/hyperactive disorder in children. It uses the P300 potential in a series of feedback games to improve the subjects' attention. We applied a support vector machine (SVM) using temporal and template-based features to detect these P300 responses. In an experimental setup using five subjects, an average error below 30% was achieved. To make it more challenging the BCI system has been embedded inside an immersive 3D virtual reality (VR) classroom with simulated distractions, which was created by combining a low-cost infrared camera and an "off-axis perspective projection" algorithm. This system is intended for kids by operating with four electrodes, as well as a non-intrusive VR setting. With the promising results, and considering the simplicity of the scheme, we hope to encourage future studies to adapt the techniques presented in this study.

  14. Influence of P300 latency jitter on event related potential-based brain-computer interface performance

    Science.gov (United States)

    Aricò, P.; Aloise, F.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F.

    2014-06-01

    Objective. Several ERP-based brain-computer interfaces (BCIs) that can be controlled even without eye movements (covert attention) have been recently proposed. However, when compared to similar systems based on overt attention, they displayed significantly lower accuracy. In the current interpretation, this is ascribed to the absence of the contribution of short-latency visual evoked potentials (VEPs) in the tasks performed in the covert attention modality. This study aims to investigate if this decrement (i) is fully explained by the lack of VEP contribution to the classification accuracy; (ii) correlates with lower temporal stability of the single-trial P300 potentials elicited in the covert attention modality. Approach. We evaluated the latency jitter of P300 evoked potentials in three BCI interfaces exploiting either overt or covert attention modalities in 20 healthy subjects. The effect of attention modality on the P300 jitter, and the relative contribution of VEPs and P300 jitter to the classification accuracy have been analyzed. Main results. The P300 jitter is higher when the BCI is controlled in covert attention. Classification accuracy negatively correlates with jitter. Even disregarding short-latency VEPs, overt-attention BCI yields better accuracy than covert. When the latency jitter is compensated offline, the difference between accuracies is not significant. Significance. The lower temporal stability of the P300 evoked potential generated during the tasks performed in covert attention modality should be regarded as the main contributing explanation of lower accuracy of covert-attention ERP-based BCIs.

  15. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.

    Science.gov (United States)

    Stawicki, Piotr; Gembler, Felix; Volosyak, Ivan

    2016-01-01

    Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system.

  16. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children

    Science.gov (United States)

    Kinney-Lang, E.; Auyeung, B.; Escudero, J.

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. • BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. • A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. • Indirect studies discovered

  17. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children.

    Science.gov (United States)

    Kinney-Lang, E; Auyeung, B; Escudero, J

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. •  BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. •  A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. •  Indirect studies

  18. On the control of brain-computer interfaces by users with cerebral palsy.

    Science.gov (United States)

    Daly, Ian; Billinger, Martin; Laparra-Hernández, José; Aloise, Fabio; García, Mariano Lloria; Faller, Josef; Scherer, Reinhold; Müller-Putz, Gernot

    2013-09-01

    Brain-computer interfaces (BCIs) have been proposed as a potential assistive device for individuals with cerebral palsy (CP) to assist with their communication needs. However, it is unclear how well-suited BCIs are to individuals with CP. Therefore, this study aims to investigate to what extent these users are able to gain control of BCIs. This study is conducted with 14 individuals with CP attempting to control two standard online BCIs (1) based upon sensorimotor rhythm modulations, and (2) based upon steady state visual evoked potentials. Of the 14 users, 8 are able to use one or other of the BCIs, online, with a statistically significant level of accuracy, without prior training. Classification results are driven by neurophysiological activity and not seen to correlate with occurrences of artifacts. However, many of these users' accuracies, while statistically significant, would require either more training or more advanced methods before practical BCI control would be possible. The results indicate that BCIs may be controlled by individuals with CP but that many issues need to be overcome before practical application use may be achieved. This is the first study to assess the ability of a large group of different individuals with CP to gain control of an online BCI system. The results indicate that six users could control a sensorimotor rhythm BCI and three a steady state visual evoked potential BCI at statistically significant levels of accuracy (SMR accuracies; mean ± STD, 0.821 ± 0.116, SSVEP accuracies; 0.422 ± 0.069). Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces.

    Directory of Open Access Journals (Sweden)

    Florent Bocquelet

    2016-11-01

    Full Text Available Restoring natural speech in paralyzed and aphasic people could be achieved using a Brain-Computer Interface (BCI controlling a speech synthesizer in real-time. To reach this goal, a prerequisite is to develop a speech synthesizer producing intelligible speech in real-time with a reasonable number of control parameters. We present here an articulatory-based speech synthesizer that can be controlled in real-time for future BCI applications. This synthesizer converts movements of the main speech articulators (tongue, jaw, velum, and lips into intelligible speech. The articulatory-to-acoustic mapping is performed using a deep neural network (DNN trained on electromagnetic articulography (EMA data recorded on a reference speaker synchronously with the produced speech signal. This DNN is then used in both offline and online modes to map the position of sensors glued on different speech articulators into acoustic parameters that are further converted into an audio signal using a vocoder. In offline mode, highly intelligible speech could be obtained as assessed by perceptual evaluation performed by 12 listeners. Then, to anticipate future BCI applications, we further assessed the real-time control of the synthesizer by both the reference speaker and new speakers, in a closed-loop paradigm using EMA data recorded in real time. A short calibration period was used to compensate for differences in sensor positions and articulatory differences between new speakers and the reference speaker. We found that real-time synthesis of vowels and consonants was possible with good intelligibility. In conclusion, these results open to future speech BCI applications using such articulatory-based speech synthesizer.

  20. Keeping Disability in Mind: A Case Study in Implantable Brain-Computer Interface Research.

    Science.gov (United States)

    Sullivan, Laura Specker; Klein, Eran; Brown, Tim; Sample, Matthew; Pham, Michelle; Tubig, Paul; Folland, Raney; Truitt, Anjali; Goering, Sara

    2018-04-01

    Brain-Computer Interface (BCI) research is an interdisciplinary area of study within Neural Engineering. Recent interest in end-user perspectives has led to an intersection with user-centered design (UCD). The goal of user-centered design is to reduce the translational gap between researchers and potential end users. However, while qualitative studies have been conducted with end users of BCI technology, little is known about individual BCI researchers' experience with and attitudes towards UCD. Given the scientific, financial, and ethical imperatives of UCD, we sought to gain a better understanding of practical and principled considerations for researchers who engage with end users. We conducted a qualitative interview case study with neural engineering researchers at a center dedicated to the creation of BCIs. Our analysis generated five themes common across interviews. The thematic analysis shows that participants identify multiple beneficiaries of their work, including other researchers, clinicians working with devices, device end users, and families and caregivers of device users. Participants value experience with device end users, and personal experience is the most meaningful type of interaction. They welcome (or even encourage) end-user input, but are skeptical of limited focus groups and case studies. They also recognize a tension between creating sophisticated devices and developing technology that will meet user needs. Finally, interviewees espouse functional, assistive goals for their technology, but describe uncertainty in what degree of function is "good enough" for individual end users. Based on these results, we offer preliminary recommendations for conducting future UCD studies in BCI and neural engineering.

  1. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery

    Science.gov (United States)

    Ahn, Sangtae; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan

    2014-12-01

    Objective. We propose a new hybrid brain-computer interface (BCI) system that integrates two different EEG tasks: tactile selective attention (TSA) using a vibro-tactile stimulator on the left/right finger and motor imagery (MI) of left/right hand movement. Event-related desynchronization (ERD) from the MI task and steady-state somatosensory evoked potential (SSSEP) from the TSA task are retrieved and combined into two hybrid senses. Approach. One hybrid approach is to measure two tasks simultaneously; the features of each task are combined for testing. Another hybrid approach is to measure two tasks consecutively (TSA first and MI next) using only MI features. For comparison with the hybrid approaches, the TSA and MI tasks are measured independently. Main results. Using a total of 16 subject datasets, we analyzed the BCI classification performance for MI, TSA and two hybrid approaches in a comparative manner; we found that the consecutive hybrid approach outperformed the others, yielding about a 10% improvement in classification accuracy relative to MI alone. It is understood that TSA may play a crucial role as a prestimulus in that it helps to generate earlier ERD prior to MI and thus sustains ERD longer and to a stronger degree; this ERD may give more discriminative information than ERD in MI alone. Significance. Overall, our proposed consecutive hybrid approach is very promising for the development of advanced BCI systems.

  2. Optimizing event-related potential based brain-computer interfaces: a systematic evaluation of dynamic stopping methods

    Science.gov (United States)

    Schreuder, Martijn; Höhne, Johannes; Blankertz, Benjamin; Haufe, Stefan; Dickhaus, Thorsten; Tangermann, Michael

    2013-06-01

    Objective. In brain-computer interface (BCI) research, systems based on event-related potentials (ERP) are considered particularly successful and robust. This stems in part from the repeated stimulation which counteracts the low signal-to-noise ratio in electroencephalograms. Repeated stimulation leads to an optimization problem, as more repetitions also cost more time. The optimal number of repetitions thus represents a data-dependent trade-off between the stimulation time and the obtained accuracy. Several methods for dealing with this have been proposed as ‘early stopping’, ‘dynamic stopping’ or ‘adaptive stimulation’. Despite their high potential for BCI systems at the patient's bedside, those methods are typically ignored in current BCI literature. The goal of the current study is to assess the benefit of these methods. Approach. This study assesses for the first time the existing methods on a common benchmark of both artificially generated data and real BCI data of 83 BCI sessions, allowing for a direct comparison between these methods in the context of text entry. Main results. The results clearly show the beneficial effect on the online performance of a BCI system, if the trade-off between the number of stimulus repetitions and accuracy is optimized. All assessed methods work very well for data of good subjects, and worse for data of low-performing subjects. Most methods, however, are robust in the sense that they do not reduce the performance below the baseline of a simple no stopping strategy. Significance. Since all methods can be realized as a module between the BCI and an application, minimal changes are needed to include these methods into existing BCI software architectures. Furthermore, the hyperparameters of most methods depend to a large extend on only a single variable—the discriminability of the training data. For the convenience of BCI practitioners, the present study proposes linear regression coefficients for directly estimating

  3. Fast attainment of computer cursor control with noninvasively acquired brain signals

    Science.gov (United States)

    Bradberry, Trent J.; Gentili, Rodolphe J.; Contreras-Vidal, José L.

    2011-06-01

    Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (~20 min) and subject practice (~20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.

  4. Operation of a P300-based brain-computer interface by individuals with cervical spinal cord injury.

    Science.gov (United States)

    Ikegami, Shiro; Takano, Kouji; Saeki, Naokatsu; Kansaku, Kenji

    2011-05-01

    This study evaluates the efficacy of a P300-based brain-computer interface (BCI) with green/blue flicker matrices for individuals with cervical spinal cord injury (SCI). Ten individuals with cervical SCI (age 26-53, all male) and 10 age- and sex-matched able-bodied controls (age 27-52, all male) with no prior BCI experience were asked to input hiragana (Japanese alphabet) characters using the P300 BCI with two distinct types of visual stimuli, white/gray and green/blue, in an 8×10 flicker matrix. Both online and offline performance were evaluated. The mean online accuracy of the SCI subjects was 88.0% for the white/gray and 90.7% for the green/blue flicker matrices. The accuracy of the control subjects was 77.3% and 86.0% for the white/gray and green/blue, respectively. There was a significant difference in online accuracy between the two types of flicker matrix. SCI subjects performed with greater accuracy than controls, but the main effect was not significant. Individuals with cervical SCI successfully controlled the P300 BCI, and the green/blue flicker matrices were associated with significantly higher accuracy than the white/gray matrices. The P300 BCI with the green/blue flicker matrices is effective for use not only in able-bodied subjects, but also in individuals with cervical SCI. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Calibrating EEG-based motor imagery brain-computer interface from passive movement.

    Science.gov (United States)

    Ang, Kai Keng; Guan, Cuntai; Wang, Chuanchu; Phua, Kok Soon; Tan, Adrian Hock Guan; Chin, Zheng Yang

    2011-01-01

    EEG data from performing motor imagery are usually collected to calibrate a subject-specific model for classifying the EEG data during the evaluation phase of motor imagery Brain-Computer Interface (BCI). However, there is no direct objective measure to determine if a subject is performing motor imagery correctly for proper calibration. Studies have shown that passive movement, which is directly observable, induces Event-Related Synchronization patterns that are similar to those induced from motor imagery. Hence, this paper investigates the feasibility of calibrating EEG-based motor imagery BCI from passive movement. EEG data of 12 healthy subjects were collected during motor imagery and passive movement of the hand by a haptic knob robot. The calibration models using the Filter Bank Common Spatial Pattern algorithm on the EEG data from motor imagery were compared against using the EEG data from passive movement. The performances were compared based on the 10×10-fold cross-validation accuracies of the calibration data, and off-line session-to-session transfer kappa values to other sessions of motor imagery performed on another day. The results showed that the calibration performed using passive movement yielded higher model accuracy and off-line session-to-session transfer (73.6% and 0.354) than the calibration performed using motor imagery (71.3% and 0.311), and no significant differences were observed between the two groups (p=0.20, 0.23). Hence, this study shows that it is feasible to calibrate EEG-based motor imagery BCI from passive movement.

  6. Flight simulation using a Brain-Computer Interface: A pilot, pilot study.

    Science.gov (United States)

    Kryger, Michael; Wester, Brock; Pohlmeyer, Eric A; Rich, Matthew; John, Brendan; Beaty, James; McLoughlin, Michael; Boninger, Michael; Tyler-Kabara, Elizabeth C

    2017-01-01

    As Brain-Computer Interface (BCI) systems advance for uses such as robotic arm control it is postulated that the control paradigms could apply to other scenarios, such as control of video games, wheelchair movement or even flight. The purpose of this pilot study was to determine whether our BCI system, which involves decoding the signals of two 96-microelectrode arrays implanted into the motor cortex of a subject, could also be used to control an aircraft in a flight simulator environment. The study involved six sessions in which various parameters were modified in order to achieve the best flight control, including plane type, view, control paradigm, gains, and limits. Successful flight was determined qualitatively by evaluating the subject's ability to perform requested maneuvers, maintain flight paths, and avoid control losses such as dives, spins and crashes. By the end of the study, it was found that the subject could successfully control an aircraft. The subject could use both the jet and propeller plane with different views, adopting an intuitive control paradigm. From the subject's perspective, this was one of the most exciting and entertaining experiments she had performed in two years of research. In conclusion, this study provides a proof-of-concept that traditional motor cortex signals combined with a decoding paradigm can be used to control systems besides a robotic arm for which the decoder was developed. Aside from possible functional benefits, it also shows the potential for a new recreational activity for individuals with disabilities who are able to master BCI control. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. SSVEP recognition using common feature analysis in brain-computer interface.

    Science.gov (United States)

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-04-15

    Canonical correlation analysis (CCA) has been successfully applied to steady-state visual evoked potential (SSVEP) recognition for brain-computer interface (BCI) application. Although the CCA method outperforms the traditional power spectral density analysis through multi-channel detection, it requires additionally pre-constructed reference signals of sine-cosine waves. It is likely to encounter overfitting in using a short time window since the reference signals include no features from training data. We consider that a group of electroencephalogram (EEG) data trials recorded at a certain stimulus frequency on a same subject should share some common features that may bear the real SSVEP characteristics. This study therefore proposes a common feature analysis (CFA)-based method to exploit the latent common features as natural reference signals in using correlation analysis for SSVEP recognition. Good performance of the CFA method for SSVEP recognition is validated with EEG data recorded from ten healthy subjects, in contrast to CCA and a multiway extension of CCA (MCCA). Experimental results indicate that the CFA method significantly outperformed the CCA and the MCCA methods for SSVEP recognition in using a short time window (i.e., less than 1s). The superiority of the proposed CFA method suggests it is promising for the development of a real-time SSVEP-based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain-computer interface device

    Directory of Open Access Journals (Sweden)

    Brittany Mei Young

    2014-07-01

    Full Text Available Brain-computer interface (BCI technology is being incorporated into new stroke rehabilitation devices, but little is known about brain changes associated with its use. We collected anatomical and functional MRI of 9 stroke patients with persistent upper extremity motor impairment before, during, and after therapy using a BCI system. Subjects were asked to perform finger tapping of the impaired hand during fMRI. Action Research Arm Test (ARAT, 9-Hole Peg Test (9-HPT, and Stroke Impact Scale (SIS domains of Hand Function (HF and Activities of Daily Living (ADL were also assessed. Group-level analyses examined changes in whole-brain task-based functional connectivity (FC to seed regions in the motor network observed during and after BCI therapy. Whole-brain FC analyses seeded in each thalamus showed FC increases from baseline at mid-therapy and post-therapy (p< 0.05. Changes in FC between seeds at both the network and the connection levels were examined for correlations with changes in behavioral measures. Average motor network FC was increased post-therapy, and changes in average network FC correlated (p < 0.05 with changes in performance on ARAT (R2=0.21, 9-HPT (R2=0.41, SIS HF (R2=0.27, and SIS ADL (R2=0.40. Multiple individual connections within the motor network were found to correlate in change from baseline with changes in behavioral measures. Many of these connections involved the thalamus, with change in each of four behavioral measures significantly correlating with change from baseline FC of at least one thalamic connection. These preliminary results show changes in FC that occur with the administration of rehabilitative therapy using a BCI system. The correlations noted between changes in FC measures and changes in behavioral outcomes indicate that both adaptive and maladaptive changes in FC may develop with this therapy and also suggest a brain-behavior relationship that may be stimulated by the neuromodulatory component of BCI therapy.

  9. Asynchronous P300-based brain-computer interface to control a virtual environment: initial tests on end users.

    Science.gov (United States)

    Aloise, Fabio; Schettini, Francesca; Aricò, Pietro; Salinari, Serenella; Guger, Christoph; Rinsma, Johanna; Aiello, Marco; Mattia, Donatella; Cincotti, Febo

    2011-10-01

    Motor disability and/or ageing can prevent individuals from fully enjoying home facilities, thus worsening their quality of life. Advances in the field of accessible user interfaces for domotic appliances can represent a valuable way to improve the independence of these persons. An asynchronous P300-based Brain-Computer Interface (BCI) system was recently validated with the participation of healthy young volunteers for environmental control. In this study, the asynchronous P300-based BCI for the interaction with a virtual home environment was tested with the participation of potential end-users (clients of a Frisian home care organization) with limited autonomy due to ageing and/or motor disabilities. System testing revealed that the minimum number of stimulation sequences needed to achieve correct classification had a higher intra-subject variability in potential end-users with respect to what was previously observed in young controls. Here we show that the asynchronous modality performed significantly better as compared to the synchronous mode in continuously adapting its speed to the users' state. Furthermore, the asynchronous system modality confirmed its reliability in avoiding misclassifications and false positives, as previously shown in young healthy subjects. The asynchronous modality may contribute to filling the usability gap between BCI systems and traditional input devices, representing an important step towards their use in the activities of daily living.

  10. A Steady-State Visual Evoked Potential Brain-Computer Interface System Evaluation as an In-Vehicle Warning Device

    Science.gov (United States)

    Riyahi, Pouria

    This thesis is part of current research at Center for Intelligence Systems Research (CISR) at The George Washington University for developing new in-vehicle warning systems via Brain-Computer Interfaces (BCIs). The purpose of conducting this research is to contribute to the current gap between BCI and in-vehicle safety studies. It is based on the premise that accurate and timely monitoring of human (driver) brain's signal to external stimuli could significantly aide in detection of driver's intentions and development of effective warning systems. The thesis starts with introducing the concept of BCI and its development history while it provides a literature review on the nature of brain signals. The current advancement and increasing demand for commercial and non-medical BCI products are described. In addition, the recent research attempts in transportation safety to study drivers' behavior or responses through brain signals are reviewed. The safety studies, which are focused on employing a reliable and practical BCI system as an in-vehicle assistive device, are also introduced. A major focus of this thesis research has been on the evaluation and development of the signal processing algorithms which can effectively filter and process brain signals when the human subject is subjected to Visual LED (Light Emitting Diodes) stimuli at different frequencies. The stimulated brain generates a voltage potential, referred to as Steady-State Visual Evoked Potential (SSVEP). Therefore, a newly modified analysis algorithm for detecting the brain visual signals is proposed. These algorithms are designed to reach a satisfactory accuracy rate without preliminary trainings, hence focusing on eliminating the need for lengthy training of human subjects. Another important concern is the ability of the algorithms to find correlation of brain signals with external visual stimuli in real-time. The developed analysis models are based on algorithms which are capable of generating results

  11. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.

    Science.gov (United States)

    Arico, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Babiloni, Fabio

    2017-07-01

    This minireview aims to highlight recent important aspects to consider and evaluate when passive brain-computer interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications. Electroencephalography (EEG) based pBCI has become an important tool for real-time analysis of brain activity since it could potentially provide covertly-without distracting the user from the main task-and objectively-not affected by the subjective judgment of an observer or the user itself-information about the operator cognitive state. Different examples of pBCI applications in operational environments and new adaptive interface solutions have been presented and described. In addition, a general overview regarding the correct use of machine learning techniques (e.g., which algorithm to use, common pitfalls to avoid, etc.) in the pBCI field has been provided. Despite recent innovations on algorithms and neurotechnology, pBCI systems are not completely ready to enter the market yet, mainly due to limitations of the EEG electrodes technology, and algorithms reliability and capability in real settings. High complexity and safety critical systems (e.g., airplanes, ATM interfaces) should adapt their behaviors and functionality accordingly to the user' actual mental state. Thus, technologies (i.e., pBCIs) able to measure in real time the user's mental states would result very useful in such "high risk" environments to enhance human machine interaction, and so increase the overall safety.

  12. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Exploring methodological frameworks for a mental task-based near-infrared spectroscopy brain-computer interface.

    Science.gov (United States)

    Weyand, Sabine; Takehara-Nishiuchi, Kaori; Chau, Tom

    2015-10-30

    Near-infrared spectroscopy (NIRS) brain-computer interfaces (BCIs) enable users to interact with their environment using only cognitive activities. This paper presents the results of a comparison of four methodological frameworks used to select a pair of tasks to control a binary NIRS-BCI; specifically, three novel personalized task paradigms and the state-of-the-art prescribed task framework were explored. Three types of personalized task selection approaches were compared, including: user-selected mental tasks using weighted slope scores (WS-scores), user-selected mental tasks using pair-wise accuracy rankings (PWAR), and researcher-selected mental tasks using PWAR. These paradigms, along with the state-of-the-art prescribed mental task framework, where mental tasks are selected based on the most commonly used tasks in literature, were tested by ten able-bodied participants who took part in five NIRS-BCI sessions. The frameworks were compared in terms of their accuracy, perceived ease-of-use, computational time, user preference, and length of training. Most notably, researcher-selected personalized tasks resulted in significantly higher accuracies, while user-selected personalized tasks resulted in significantly higher perceived ease-of-use. It was also concluded that PWAR minimized the amount of data that needed to be collected; while, WS-scores maximized user satisfaction and minimized computational time. In comparison to the state-of-the-art prescribed mental tasks, our findings show that overall, personalized tasks appear to be superior to prescribed tasks with respect to accuracy and perceived ease-of-use. The deployment of personalized rather than prescribed mental tasks ought to be considered and further investigated in future NIRS-BCI studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A brain-computer interface as input channel for a standard assistive technology software.

    Science.gov (United States)

    Zickler, Claudia; Riccio, Angela; Leotta, Francesco; Hillian-Tress, Sandra; Halder, Sebastian; Holz, Elisa; Staiger-Sälzer, Pit; Hoogerwerf, Evert-Jan; Desideri, Lorenzo; Mattia, Donatella; Kübler, Andrea

    2011-10-01

    Recently brain-computer interface (BCI) control was integrated into the commercial assistive technology product QualiWORLD (QualiLife Inc., Paradiso-Lugano, CH). Usability of the first prototype was evaluated in terms of effectiveness (accuracy), efficiency (information transfer rate and subjective workload/NASA Task Load Index) and user satisfaction (Quebec User Evaluation of Satisfaction with assistive Technology, QUEST 2.0) by four end-users with severe disabilities. Three assistive technology experts evaluated the device from a third person perspective. The results revealed high performance levels in communication and internet tasks. Users and assistive technology experts were quite satisfied with the device. However, none could imagine using the device in daily life without improvements. Main obstacles were the EEG-cap and low speed.

  15. Experiencing Brain-Computer Interface Control

    NARCIS (Netherlands)

    van de Laar, B.L.A.

    2016-01-01

    Brain-Computer Interfaces (BCIs) are systems that extract information from the user’s brain activity and employ it in some way in an interactive system. While historically BCIs were mainly catered towards paralyzed or otherwise physically handicapped users, the last couple of years applications with

  16. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    Science.gov (United States)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  17. A P300-based Brain-Computer Interface with Stimuli on Moving Objects: Four-Session Single-Trial and Triple-Trial Tests with a Game-Like Task Design

    Science.gov (United States)

    Ganin, Ilya P.; Shishkin, Sergei L.; Kaplan, Alexander Y.

    2013-01-01

    Brain-computer interfaces (BCIs) are tools for controlling computers and other devices without using muscular activity, employing user-controlled variations in signals recorded from the user’s brain. One of the most efficient noninvasive BCIs is based on the P300 wave of the brain’s response to stimuli and is therefore referred to as the P300 BCI. Many modifications of this BCI have been proposed to further improve the BCI’s characteristics or to better adapt the BCI to various applications. However, in the original P300 BCI and in all of its modifications, the spatial positions of stimuli were fixed relative to each other, which can impose constraints on designing applications controlled by this BCI. We designed and tested a P300 BCI with stimuli presented on objects that were freely moving on a screen at a speed of 5.4°/s. Healthy participants practiced a game-like task with this BCI in either single-trial or triple-trial mode within four sessions. At each step, the participants were required to select one of nine moving objects. The mean online accuracy of BCI-based selection was 81% in the triple-trial mode and 65% in the single-trial mode. A relatively high P300 amplitude was observed in response to targets in most participants. Self-rated interest in the task was high and stable over the four sessions (the medians in the 1st/4th sessions were 79/84% and 76/71% in the groups practicing in the single-trial and triple-trial modes, respectively). We conclude that the movement of stimulus positions relative to each other may not prevent the efficient use of the P300 BCI by people controlling their gaze, e.g., in robotic devices and in video games. PMID:24302977

  18. Brain-computer interface analysis of a dynamic visuo-motor task.

    Science.gov (United States)

    Logar, Vito; Belič, Aleš

    2011-01-01

    The area of brain-computer interfaces (BCIs) represents one of the more interesting fields in neurophysiological research, since it investigates the development of the machines that perform different transformations of the brain's "thoughts" to certain pre-defined actions. Experimental studies have reported some successful implementations of BCIs; however, much of the field still remains unexplored. According to some recent reports the phase coding of informational content is an important mechanism in the brain's function and cognition, and has the potential to explain various mechanisms of the brain's data transfer, but it has yet to be scrutinized in the context of brain-computer interface. Therefore, if the mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by brain signals, using appropriate signal-processing methods. In our previous studies we have shown that by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant information on the current motor action in the brain from electroencephalographic (EEG) data. In this paper the authors would like to present a continuation of their previous work on the brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the currently performed motor action to be successfully extracted by using the appropriate signal-processing and identification methods. The aim of this paper is therefore to present a mathematical model, which by means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by each subject during the task in simulated or real time (BCI analysis). However, several modifications to the existing methodology are needed to achieve optimal decoding results and a real-time, data-processing ability. The information extracted from the EEG could

  19. Brain-computer interface based on detection of movement intention as a means of brain wave modulation enhancement

    Science.gov (United States)

    Pulido Castro, Sergio D.; López López, Juan M.

    2017-11-01

    Movement intention (MI) is the mental state in which it is desired to make an action that implies movement. There are certain signals that are directly related with MI; mainly obtained in the primary motor cortex. These signals can be used in a brain-computer interface (BCI). BCIs have a wide variety of applications for the general population, classified in two groups: optimization of conventional neuromuscular performances and enhancement of conventional neuromuscular performances beyond normal capacities. The main goal of this project is to analyze if neural rhythm modulation enhancement could be achieved by practicing, through a BCI based on MI detection, which was designed in a previous study. A six-session experiment was made with eight healthy subjects. Each session was composed by two stages: a training stage and a testing stage, which allowed control of a videogame. The scores in the game were recorded and analyzed. Changes in alpha and beta bands were also analyzed in order to observe if attention could in fact be enhanced. The obtained results were partially satisfactory, as most subjects showed a clear improvement in performance at some point in the trials. As well, the alpha to beta wave ratio of all the tasks was analyzed to observe if there are changes as the experiment progresses. The results are promising, and a different protocol must be implemented to assess the impact of the BCI on the attention span, which can be analyzed with the alpha and beta waves.

  20. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users.

    Science.gov (United States)

    Perdikis, Serafeim; Tonin, Luca; Saeedi, Sareh; Schneider, Christoph; Millán, José Del R

    2018-05-01

    This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain-computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI-user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface-application, BCI output, and electroencephalography (EEG) neuroimaging-with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.

  1. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users.

    Directory of Open Access Journals (Sweden)

    Serafeim Perdikis

    2018-05-01

    Full Text Available This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI brain-computer interface (BCI by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level as equally significant could lead to a BCI-user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI, were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface-application, BCI output, and electroencephalography (EEG neuroimaging-with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.

  2. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.

    Science.gov (United States)

    Pahwa, Mrinal; Kusner, Matthew; Hacker, Carl D; Bundy, David T; Weinberger, Kilian Q; Leuthardt, Eric C

    2015-01-01

    Previous studies suggest stable and robust control of a brain-computer interface (BCI) can be achieved using electrocorticography (ECoG). Translation of this technology from the laboratory to the real world requires additional methods that allow users operate their ECoG-based BCI autonomously. In such an environment, users must be able to perform all tasks currently performed by the experimenter, including manually switching the BCI system on/off. Although a simple task, it can be challenging for target users (e.g., individuals with tetraplegia) due to severe motor disability. In this study, we present an automated and practical strategy to switch a BCI system on or off based on the cognitive state of the user. Using a logistic regression, we built probabilistic models that utilized sub-dural ECoG signals from humans to estimate in pseudo real-time whether a person is awake or in a sleep-like state, and subsequently, whether to turn a BCI system on or off. Furthermore, we constrained these models to identify the optimal anatomical and spectral parameters for delineating states. Other methods exist to differentiate wake and sleep states using ECoG, but none account for practical requirements of BCI application, such as minimizing the size of an ECoG implant and predicting states in real time. Our results demonstrate that, across 4 individuals, wakeful and sleep-like states can be classified with over 80% accuracy (up to 92%) in pseudo real-time using high gamma (70-110 Hz) band limited power from only 5 electrodes (platinum discs with a diameter of 2.3 mm) located above the precentral and posterior superior temporal gyrus.

  3. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.

    Directory of Open Access Journals (Sweden)

    Mrinal Pahwa

    Full Text Available Previous studies suggest stable and robust control of a brain-computer interface (BCI can be achieved using electrocorticography (ECoG. Translation of this technology from the laboratory to the real world requires additional methods that allow users operate their ECoG-based BCI autonomously. In such an environment, users must be able to perform all tasks currently performed by the experimenter, including manually switching the BCI system on/off. Although a simple task, it can be challenging for target users (e.g., individuals with tetraplegia due to severe motor disability. In this study, we present an automated and practical strategy to switch a BCI system on or off based on the cognitive state of the user. Using a logistic regression, we built probabilistic models that utilized sub-dural ECoG signals from humans to estimate in pseudo real-time whether a person is awake or in a sleep-like state, and subsequently, whether to turn a BCI system on or off. Furthermore, we constrained these models to identify the optimal anatomical and spectral parameters for delineating states. Other methods exist to differentiate wake and sleep states using ECoG, but none account for practical requirements of BCI application, such as minimizing the size of an ECoG implant and predicting states in real time. Our results demonstrate that, across 4 individuals, wakeful and sleep-like states can be classified with over 80% accuracy (up to 92% in pseudo real-time using high gamma (70-110 Hz band limited power from only 5 electrodes (platinum discs with a diameter of 2.3 mm located above the precentral and posterior superior temporal gyrus.

  4. Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges

    Science.gov (United States)

    Millán, J. d. R.; Rupp, R.; Müller-Putz, G. R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A.; Leeb, R.; Neuper, C.; Müller, K.-R.; Mattia, D.

    2010-01-01

    In recent years, new research has brought the field of electroencephalogram (EEG)-based brain–computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely, “Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user–machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human–computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices. PMID:20877434

  5. "Enheduanna-A Manifesto of Falling" Live Brain-Computer Cinema Performance: Performer and Audience Participation, Cognition and Emotional Engagement Using Multi-Brain BCI Interaction.

    Science.gov (United States)

    Zioga, Polina; Pollick, Frank; Ma, Minhua; Chapman, Paul; Stefanov, Kristian

    2018-01-01

    The fields of neural prosthetic technologies and Brain-Computer Interfaces (BCIs) have witnessed in the past 15 years an unprecedented development, bringing together theories and methods from different scientific fields, digital media, and the arts. More in particular, artists have been amongst the pioneers of the design of relevant applications since their emergence in the 1960s, pushing the boundaries of applications in real-life contexts. With the new research, advancements, and since 2007, the new low-cost commercial-grade wireless devices, there is a new increasing number of computer games, interactive installations, and performances that involve the use of these interfaces, combining scientific, and creative methodologies. The vast majority of these works use the brain-activity of a single participant. However, earlier, as well as recent examples, involve the simultaneous interaction of more than one participants or performers with the use of Electroencephalography (EEG)-based multi-brain BCIs. In this frame, we discuss and evaluate "Enheduanna-A Manifesto of Falling," a live brain-computer cinema performance that enables for the first time the simultaneous real-time multi-brain interaction of more than two participants, including a performer and members of the audience, using a passive EEG-based BCI system in the context of a mixed-media performance. The performance was realised as a neuroscientific study conducted in a real-life setting. The raw EEG data of seven participants, one performer and two different members of the audience for each performance, were simultaneously recorded during three live events. The results reveal that the majority of the participants were able to successfully identify whether their brain-activity was interacting with the live video projections or not. A correlation has been found between their answers to the questionnaires, the elements of the performance that they identified as most special, and the audience's indicators of

  6. An Asynchronous P300-Based Brain-Computer Interface Web Browser for Severely Disabled People.

    Science.gov (United States)

    Martinez-Cagigal, Victor; Gomez-Pilar, Javier; Alvarez, Daniel; Hornero, Roberto

    2017-08-01

    This paper presents an electroencephalographic (EEG) P300-based brain-computer interface (BCI) Internet browser. The system uses the "odd-ball" row-col paradigm for generating the P300 evoked potentials on the scalp of the user, which are immediately processed and translated into web browser commands. There were previous approaches for controlling a BCI web browser. However, to the best of our knowledge, none of them was focused on an assistive context, failing to test their applications with a suitable number of end users. In addition, all of them were synchronous applications, where it was necessary to introduce a "read-mode" command in order to avoid a continuous command selection. Thus, the aim of this study is twofold: 1) to test our web browser with a population of multiple sclerosis (MS) patients in order to assess the usefulness of our proposal to meet their daily communication needs; and 2) to overcome the aforementioned limitation by adding a threshold that discerns between control and non-control states, allowing the user to calmly read the web page without undesirable selections. The browser was tested with sixteen MS patients and five healthy volunteers. Both quantitative and qualitative metrics were obtained. MS participants reached an average accuracy of 84.14%, whereas 95.75% was achieved by control subjects. Results show that MS patients can successfully control the BCI web browser, improving their personal autonomy.

  7. Recommendations for Integrating a P300-Based Brain Computer Interface in Virtual Reality Environments for Gaming

    Directory of Open Access Journals (Sweden)

    Grégoire Cattan

    2018-05-01

    Full Text Available The integration of a P300-based brain–computer interface (BCI into virtual reality (VR environments is promising for the video games industry. However, it faces several limitations, mainly due to hardware constraints and constraints engendered by the stimulation needed by the BCI. The main limitation is still the low transfer rate that can be achieved by current BCI technology. The goal of this paper is to review current limitations and to provide application creators with design recommendations in order to overcome them. We also overview current VR and BCI commercial products in relation to the design of video games. An essential recommendation is to use the BCI only for non-complex and non-critical tasks in the game. Also, the BCI should be used to control actions that are naturally integrated into the virtual world. Finally, adventure and simulation games, especially if cooperative (multi-user appear the best candidates for designing an effective VR game enriched by BCI technology.

  8. Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents

    Science.gov (United States)

    2016-07-27

    SECURITY CLASSIFICATION OF: Brain Computer Interfaces (BCIs) show great potential in allowing humans to interact with computational environments in a...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot...published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Brain Computer Interfaces for Enhanced

  9. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone.

    Science.gov (United States)

    Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G

    2017-01-01

    Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.

  10. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

    Directory of Open Access Journals (Sweden)

    Sarah Blum

    2017-01-01

    Full Text Available Objective. Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android supports a standardized communication interface to exchange information with external software and hardware. Approach. In order to implement a closed-loop brain-computer interface (BCI on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.

  11. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

    Science.gov (United States)

    Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.

    2017-01-01

    Objective Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. PMID:29349070

  12. Communication and control by listening: towards optimal design of a two-class auditory streaming brain-computer interface

    Directory of Open Access Journals (Sweden)

    N. Jeremy Hill

    2012-12-01

    Full Text Available Most brain-computer interface (BCI systems require users to modulate brain signals in response to visual stimuli. Thus, they may not be useful to people with limited vision, such as those with severe paralysis. One important approach for overcoming this issue is auditory streaming, an approach whereby a BCI system is driven by shifts of attention between two dichotically presented auditory stimulus streams. Motivated by the long-term goal of translating such a system into a reliable, simple yes-no interface for clinical usage, we aim to answer two main questions. First, we asked which of two previously-published variants provides superior performance: a fixed-phase (FP design in which the streams have equal period and opposite phase, or a drifting-phase (DP design where the periods are unequal. We found FP to be superior to DP (p = 0.002: average performance levels were 80% and 72% correct, respectively. We were also able to show, in a pilot with one subject, that auditory streaming can support continuous control and neurofeedback applications: by shifting attention between ongoing left and right auditory streams, the subject was able to control the position of a paddle in a computer game. Second, we examined whether the system is dependent on eye movements, since it is known that eye movements and auditory attention may influence each other, and any dependence on the ability to move one’s eyes would be a barrier to translation to paralyzed users. We discovered that, despite instructions, some subjects did make eye movements that were indicative of the direction of attention. However, there was no correlation, across subjects, between the reliability of the eye movement signal and the reliability of the BCI system, indicating that our system was configured to work independently of eye movement. Together, these findings are an encouraging step forward toward BCIs that provide practical communication and control options for the most severely

  13. Communication and control by listening: toward optimal design of a two-class auditory streaming brain-computer interface.

    Science.gov (United States)

    Hill, N Jeremy; Moinuddin, Aisha; Häuser, Ann-Katrin; Kienzle, Stephan; Schalk, Gerwin

    2012-01-01

    Most brain-computer interface (BCI) systems require users to modulate brain signals in response to visual stimuli. Thus, they may not be useful to people with limited vision, such as those with severe paralysis. One important approach for overcoming this issue is auditory streaming, an approach whereby a BCI system is driven by shifts of attention between two simultaneously presented auditory stimulus streams. Motivated by the long-term goal of translating such a system into a reliable, simple yes-no interface for clinical usage, we aim to answer two main questions. First, we asked which of two previously published variants provides superior performance: a fixed-phase (FP) design in which the streams have equal period and opposite phase, or a drifting-phase (DP) design where the periods are unequal. We found FP to be superior to DP (p = 0.002): average performance levels were 80 and 72% correct, respectively. We were also able to show, in a pilot with one subject, that auditory streaming can support continuous control and neurofeedback applications: by shifting attention between ongoing left and right auditory streams, the subject was able to control the position of a paddle in a computer game. Second, we examined whether the system is dependent on eye movements, since it is known that eye movements and auditory attention may influence each other, and any dependence on the ability to move one's eyes would be a barrier to translation to paralyzed users. We discovered that, despite instructions, some subjects did make eye movements that were indicative of the direction of attention. However, there was no correlation, across subjects, between the reliability of the eye movement signal and the reliability of the BCI system, indicating that our system was configured to work independently of eye movement. Together, these findings are an encouraging step forward toward BCIs that provide practical communication and control options for the most severely paralyzed users.

  14. Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices.

    Science.gov (United States)

    Takano, Kouji; Komatsu, Tomoaki; Hata, Naoki; Nakajima, Yasoichi; Kansaku, Kenji

    2009-08-01

    The white/gray flicker matrix has been used as a visual stimulus for the so-called P300 brain-computer interface (BCI), but the white/gray flash stimuli might induce discomfort. In this study, we investigated the effectiveness of green/blue flicker matrices as visual stimuli. Ten able-bodied, non-trained subjects performed Alphabet Spelling (Japanese Alphabet: Hiragana) using an 8 x 10 matrix with three types of intensification/rest flicker combinations (L, luminance; C, chromatic; LC, luminance and chromatic); both online and offline performances were evaluated. The accuracy rate under the online LC condition was 80.6%. Offline analysis showed that the LC condition was associated with significantly higher accuracy than was the L or C condition (Tukey-Kramer, p < 0.05). No significant difference was observed between L and C conditions. The LC condition, which used the green/blue flicker matrix was associated with better performances in the P300 BCI. The green/blue chromatic flicker matrix can be an efficient tool for practical BCI application.

  15. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

    Science.gov (United States)

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided. PMID:28790910

  16. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

    Directory of Open Access Journals (Sweden)

    Keum-Shik Hong

    2017-07-01

    Full Text Available In this article, non-invasive hybrid brain–computer interface (hBCI technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG, due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS, electromyography (EMG, electrooculography (EOG, and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.

  17. Vibrotactile Feedback for Brain-Computer Interface Operation

    Directory of Open Access Journals (Sweden)

    Febo Cincotti

    2007-01-01

    Full Text Available To be correctly mastered, brain-computer interfaces (BCIs need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury, we compared vibrotactile and visual feedback, addressing: (I the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II the compatibility of this form of feedback in presence of a visual distracter; (III the performance in presence of a complex visual task on the same (visual or different (tactile sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users.

  18. How Well Can We Learn With Standard BCI Training Approaches? A Pilot Study.

    OpenAIRE

    Jeunet , Camille; Cellard , Alison; Subramanian , Sriram; Hachet , Martin; N'Kaoua , Bernard; Lotte , Fabien

    2014-01-01

    International audience; While being very promising, brain-computer interfaces (BCI) remain barely used outside laboratories because they are not reliable enough. It has been suggested that current training approaches may be partly responsible for the poor reliability of BCIs as they do not satisfy recommendations from psychology and are thus inadequate. To determine to which extent such BCI training approaches (i.e., feedback and training tasks) are suitable to learn a skill, we used them in ...

  19. Human-Avatar Symbiosis for the Treatment of Auditory Verbal Hallucinations in Schizophrenia through Virtual/Augmented Reality and Brain-Computer Interfaces.

    Science.gov (United States)

    Fernández-Caballero, Antonio; Navarro, Elena; Fernández-Sotos, Patricia; González, Pascual; Ricarte, Jorge J; Latorre, José M; Rodriguez-Jimenez, Roberto

    2017-01-01

    This perspective paper faces the future of alternative treatments that take advantage of a social and cognitive approach with regards to pharmacological therapy of auditory verbal hallucinations (AVH) in patients with schizophrenia. AVH are the perception of voices in the absence of auditory stimulation and represents a severe mental health symptom. Virtual/augmented reality (VR/AR) and brain computer interfaces (BCI) are technologies that are growing more and more in different medical and psychological applications. Our position is that their combined use in computer-based therapies offers still unforeseen possibilities for the treatment of physical and mental disabilities. This is why, the paper expects that researchers and clinicians undergo a pathway toward human-avatar symbiosis for AVH by taking full advantage of new technologies. This outlook supposes to address challenging issues in the understanding of non-pharmacological treatment of schizophrenia-related disorders and the exploitation of VR/AR and BCI to achieve a real human-avatar symbiosis.

  20. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.

    Science.gov (United States)

    Hwang, Han-Jeong; Han, Chang-Hee; Lim, Jeong-Hwan; Kim, Yong-Wook; Choi, Soo-In; An, Kwang-Ok; Lee, Jun-Hak; Cha, Ho-Seung; Hyun Kim, Seung; Im, Chang-Hwan

    2017-03-01

    Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experiments involving five patients with LIS, thereby providing researchers with useful information that can potentially help them to design BCI experiments for patients with LIS. In our experiments, a four-class online SSVEP-based BCI system was implemented and applied to four of five patients repeatedly on multiple days to investigate its test-retest reliability. In the last experiments with two of the four patients, the practical usability of our BCI system was tested using a questionnaire survey. All five patients showed clear and distinct SSVEP responses at all four fundamental stimulation frequencies (6, 6.66, 7.5, 10 Hz), and responses at harmonic frequencies were also observed in three patients. Mean classification accuracy was 76.99% (chance level = 25%). The test-retest reliability experiments demonstrated stable performance of our BCI system over different days even when the initial experimental settings (e.g., electrode configuration, fixation time, visual angle) used in the first experiment were used without significant modifications. Our results suggest that SSVEP-based BCI paradigms might be successfully used to implement clinically feasible BCI systems for severely paralyzed patients. © 2016 Society for Psychophysiological Research.

  1. Overcoming Inter-Subject Variability in BCI Using EEG-Based Identification

    Directory of Open Access Journals (Sweden)

    J. Stastny

    2014-04-01

    Full Text Available The high dependency of the Brain Computer Interface (BCI system performance on the BCI user is a well-known issue of many BCI devices. This contribution presents a new way to overcome this problem using a synergy between a BCI device and an EEG-based biometric algorithm. Using the biometric algorithm, the BCI device automatically identifies its current user and adapts parameters of the classification process and of the BCI protocol to maximize the BCI performance. In addition to this we present an algorithm for EEG-based identification designed to be resistant to variations in EEG recordings between sessions, which is also demonstrated by an experiment with an EEG database containing two sessions recorded one year apart. Further, our algorithm is designed to be compatible with our movement-related BCI device and the evaluation of the algorithm performance took place under conditions of a standard BCI experiment. Estimation of the mu rhythm fundamental frequency using the Frequency Zooming AR modeling is used for EEG feature extraction followed by a classifier based on the regularized Mahalanobis distance. An average subject identification score of 96 % is achieved.

  2. Control of Brain Activity in hMT+/V5 at Three Response Levels Using fMRI-Based Neurofeedback/BCI.

    Science.gov (United States)

    Sousa, Teresa; Direito, Bruno; Lima, João; Ferreira, Carlos; Nunes, Urbano; Castelo-Branco, Miguel

    2016-01-01

    A major challenge in brain-computer interface (BCI) research is to increase the number of command classes and levels of control. BCI studies often use binary control level approaches (level 0 and 1 of brain activation for each class of control). Different classes may often be achieved but not different levels of activation for the same class. The increase in the number of levels of control in BCI applications may allow for larger efficiency in neurofeedback applications. In this work we test the hypothesis whether more than two modulation levels can be achieved in a single brain region, the hMT+/V5 complex. Participants performed three distinct imagery tasks during neurofeedback training: imagery of a stationary dot, imagery of a dot with two opposing motions in the vertical axis and imagery of a dot with four opposing motions in vertical or horizontal axes (imagery of 2 or 4 motion directions). The larger the number of motion alternations, the higher the expected hMT+/V5 response. A substantial number (17 of 20) of participants achieved successful binary level of control and 12 were able to reach even 3 significant levels of control within the same session, confirming the whole group effects at the individual level. With this simple approach we suggest that it is possible to design a parametric system of control based on activity modulation of a specific brain region with at least 3 different levels. Furthermore, we show that particular imagery task instructions, based on different number of motion alternations, provide feasible achievement of different control levels in BCI and/or neurofeedback applications.

  3. “Enheduanna—A Manifesto of Falling” Live Brain-Computer Cinema Performance: Performer and Audience Participation, Cognition and Emotional Engagement Using Multi-Brain BCI Interaction

    Science.gov (United States)

    Zioga, Polina; Pollick, Frank; Ma, Minhua; Chapman, Paul; Stefanov, Kristian

    2018-01-01

    The fields of neural prosthetic technologies and Brain-Computer Interfaces (BCIs) have witnessed in the past 15 years an unprecedented development, bringing together theories and methods from different scientific fields, digital media, and the arts. More in particular, artists have been amongst the pioneers of the design of relevant applications since their emergence in the 1960s, pushing the boundaries of applications in real-life contexts. With the new research, advancements, and since 2007, the new low-cost commercial-grade wireless devices, there is a new increasing number of computer games, interactive installations, and performances that involve the use of these interfaces, combining scientific, and creative methodologies. The vast majority of these works use the brain-activity of a single participant. However, earlier, as well as recent examples, involve the simultaneous interaction of more than one participants or performers with the use of Electroencephalography (EEG)-based multi-brain BCIs. In this frame, we discuss and evaluate “Enheduanna—A Manifesto of Falling,” a live brain-computer cinema performance that enables for the first time the simultaneous real-time multi-brain interaction of more than two participants, including a performer and members of the audience, using a passive EEG-based BCI system in the context of a mixed-media performance. The performance was realised as a neuroscientific study conducted in a real-life setting. The raw EEG data of seven participants, one performer and two different members of the audience for each performance, were simultaneously recorded during three live events. The results reveal that the majority of the participants were able to successfully identify whether their brain-activity was interacting with the live video projections or not. A correlation has been found between their answers to the questionnaires, the elements of the performance that they identified as most special, and the audience's indicators

  4. “Enheduanna—A Manifesto of Falling” Live Brain-Computer Cinema Performance: Performer and Audience Participation, Cognition and Emotional Engagement Using Multi-Brain BCI Interaction

    Directory of Open Access Journals (Sweden)

    Polina Zioga

    2018-04-01

    Full Text Available The fields of neural prosthetic technologies and Brain-Computer Interfaces (BCIs have witnessed in the past 15 years an unprecedented development, bringing together theories and methods from different scientific fields, digital media, and the arts. More in particular, artists have been amongst the pioneers of the design of relevant applications since their emergence in the 1960s, pushing the boundaries of applications in real-life contexts. With the new research, advancements, and since 2007, the new low-cost commercial-grade wireless devices, there is a new increasing number of computer games, interactive installations, and performances that involve the use of these interfaces, combining scientific, and creative methodologies. The vast majority of these works use the brain-activity of a single participant. However, earlier, as well as recent examples, involve the simultaneous interaction of more than one participants or performers with the use of Electroencephalography (EEG-based multi-brain BCIs. In this frame, we discuss and evaluate “Enheduanna—A Manifesto of Falling,” a live brain-computer cinema performance that enables for the first time the simultaneous real-time multi-brain interaction of more than two participants, including a performer and members of the audience, using a passive EEG-based BCI system in the context of a mixed-media performance. The performance was realised as a neuroscientific study conducted in a real-life setting. The raw EEG data of seven participants, one performer and two different members of the audience for each performance, were simultaneously recorded during three live events. The results reveal that the majority of the participants were able to successfully identify whether their brain-activity was interacting with the live video projections or not. A correlation has been found between their answers to the questionnaires, the elements of the performance that they identified as most special, and the

  5. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    Science.gov (United States)

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Neural Correlates of User-initiated Motor Success and Failure - A Brain-Computer Interface Perspective.

    Science.gov (United States)

    Yazmir, Boris; Reiner, Miriam

    2018-05-15

    Any motor action is, by nature, potentially accompanied by human errors. In order to facilitate development of error-tailored Brain-Computer Interface (BCI) correction systems, we focused on internal, human-initiated errors, and investigated EEG correlates of user outcome successes and errors during a continuous 3D virtual tennis game against a computer player. We used a multisensory, 3D, highly immersive environment. Missing and repelling the tennis ball were considered, as 'error' (miss) and 'success' (repel). Unlike most previous studies, where the environment "encouraged" the participant to perform a mistake, here errors happened naturally, resulting from motor-perceptual-cognitive processes of incorrect estimation of the ball kinematics, and can be regarded as user internal, self-initiated errors. Results show distinct and well-defined Event-Related Potentials (ERPs), embedded in the ongoing EEG, that differ across conditions by waveforms, scalp signal distribution maps, source estimation results (sLORETA) and time-frequency patterns, establishing a series of typical features that allow valid discrimination between user internal outcome success and error. The significant delay in latency between positive peaks of error- and success-related ERPs, suggests a cross-talk between top-down and bottom-up processing, represented by an outcome recognition process, in the context of the game world. Success-related ERPs had a central scalp distribution, while error-related ERPs were centro-parietal. The unique characteristics and sharp differences between EEG correlates of error/success provide the crucial components for an improved BCI system. The features of the EEG waveform can be used to detect user action outcome, to be fed into the BCI correction system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. L1-Penalized N-way PLS for subset of electrodes selection in BCI experiments

    Science.gov (United States)

    Eliseyev, Andrey; Moro, Cecile; Faber, Jean; Wyss, Alexander; Torres, Napoleon; Mestais, Corinne; Benabid, Alim Louis; Aksenova, Tetiana

    2012-08-01

    Recently, the N-way partial least squares (NPLS) approach was reported as an effective tool for neuronal signal decoding and brain-computer interface (BCI) system calibration. This method simultaneously analyzes data in several domains. It combines the projection of a data tensor to a low dimensional space with linear regression. In this paper the L1-Penalized NPLS is proposed for sparse BCI system calibration, allowing uniting the projection technique with an effective selection of subset of features. The L1-Penalized NPLS was applied for the binary self-paced BCI system calibration, providing selection of electrodes subset. Our BCI system is designed for animal research, in particular for research in non-human primates.

  8. Competing and collaborating brains: multi-brain computer interfacing

    NARCIS (Netherlands)

    Nijholt, Antinus; Hassanieu, Aboul Ella; Azar, Ahmad Taher

    2015-01-01

    In this chapter we survey the possibilities of brain-computer interface applications that assume two or more users, where at least one of the users’ brain activity is used as input to the application. Such ‘applications’ were already explored by artists who introduced artistic EEG applications in

  9. A Novel Mu Rhythm-based Brain Computer Interface Design that uses a Programmable System on Chip.

    Science.gov (United States)

    Joshi, Rohan; Saraswat, Prateek; Gajendran, Rudhram

    2012-01-01

    This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the BCI, preliminary testing is carried out by training three subjects who were able to demonstrate control over their electroencephalogram by moving a cursor present at the center of the screen towards the indicated direction with an average accuracy greater than 70% and a bit communication rate of up to 7 bits/min.

  10. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

    OpenAIRE

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spec...

  11. Differentiating closed-loop cortical intention from rest: building an asynchronous electrocorticographic BCI

    Science.gov (United States)

    Williams, Jordan J.; Rouse, Adam G.; Thongpang, Sanitta; Williams, Justin C.; Moran, Daniel W.

    2013-08-01

    Objective. Recent experiments have shown that electrocorticography (ECoG) can provide robust control signals for a brain-computer interface (BCI). Strategies that attempt to adapt a BCI control algorithm by learning from past trials often assume that the subject is attending to each training trial. Likewise, automatic disabling of movement control would be desirable during resting periods when random brain fluctuations might cause unintended movements of a device. To this end, our goal was to identify ECoG differences that arise between periods of active BCI use and rest. Approach. We examined spectral differences in multi-channel, epidural micro-ECoG signals recorded from non-human primates when rest periods were interleaved between blocks of an active BCI control task. Main Results. Post-hoc analyses demonstrated that these states can be decoded accurately on both a trial-by-trial and real-time basis, and this discriminability remains robust over a period of weeks. In addition, high gamma frequencies showed greater modulation with desired movement direction, while lower frequency components demonstrated greater amplitude differences between task and rest periods, suggesting possible specialized BCI roles for these frequencies. Significance. The results presented here provide valuable insight into the neurophysiology of BCI control as well as important considerations toward the design of an asynchronous BCI system.

  12. Investigation of different classifiers and channel configurations of a mobile P300-based brain-computer interface.

    Science.gov (United States)

    Ludwig, Simone A; Kong, Jun

    2017-12-01

    Innovative methods and new technologies have significantly improved the quality of our daily life. However, disabled people, for example those that cannot use their arms and legs anymore, often cannot benefit from these developments, since they cannot use their hands to interact with traditional interaction methods (such as mouse or keyboard) to communicate with a computer system. A brain-computer interface (BCI) system allows such a disabled person to control an external device via brain waves. Past research mostly dealt with static interfaces, which limit users to a stationary location. However, since we are living in a world that is highly mobile, this paper evaluates a speller interface on a mobile phone used in a moving condition. The spelling experiments were conducted with 14 able-bodied subjects using visual flashes as the stimulus to spell 47 alphanumeric characters (38 letters and 9 numbers). This data was then used for the classification experiments. In par- ticular, two research directions are pursued. The first investigates the impact of different classification algorithms, and the second direction looks at the channel configuration, i.e., which channels are most beneficial in terms of achieving the highest classification accuracy. The evaluation results indicate that the Bayesian Linear Discriminant Analysis algorithm achieves the best accuracy. Also, the findings of the investigation on the channel configuration, which can potentially reduce the amount of data processing on a mobile device with limited computing capacity, is especially useful in mobile BCIs.

  13. Attention-level transitory response: a novel hybrid BCI approach

    Science.gov (United States)

    Diez, Pablo F.; Garcés Correa, Agustina; Orosco, Lorena; Laciar, Eric; Mut, Vicente

    2015-10-01

    Objective. People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the ‘Midas touch effect’, i.e., the BCI can detect an SSVEP even when the user is not gazing at the stimulus. Then, these incorrect detections deteriorate the performance of the system, especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel transitory response of the attention-level of the user is reported. It was used to develop a hybrid BCI (hBCI). Approach. Three methods are proposed to detect the attention-level of the user. They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented along with these methods. Hence, the hBCI sends a command only when the user is at a high-level of attention, or in other words, when the user is really focused on the task being performed. The hBCI was tested over two different EEG datasets. Main results. The performance of the hybrid approach is superior to the standard one. Improvements of 20% in accuracy and 10 bits min-1 are reported. Moreover, the attention-level is extracted from the same EEG channels used in SSVEP detection and this way, no extra hardware is needed. Significance. A transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable of reducing the Midas touch effect.

  14. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study.

    Science.gov (United States)

    Irimia, Danut C; Cho, Woosang; Ortner, Rupert; Allison, Brendan Z; Ignat, Bogdan E; Edlinger, Guenter; Guger, Christoph

    2017-11-01

    Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment. The patients were instructed to imagine the movement of either the left or right hand in random order. During these two MI tasks, two types of feedback were provided: a bar extending to the left or right side of a monitor as visual feedback and passive hand opening stimulated from FES as proprioceptive feedback. Both types of feedback relied on the BCI classification result achieved using common spatial patterns and a linear discriminant analysis classifier. After 10 sessions of recoveriX training, one patient partially regained control of wrist extension in her paretic wrist and the other patient increased the range of middle finger movement by 1 cm. A controlled group study is planned with a new version of the recoveriX system, which will have several improvements. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. User Adapted Motor-Imaginary Brain-Computer Interface by means of EEG Channel Selection Based on Estimation of Distributed Algorithms

    Directory of Open Access Journals (Sweden)

    Aitzol Astigarraga

    2016-01-01

    Full Text Available Brain-Computer Interfaces (BCIs have become a research field with interesting applications, and it can be inferred from published papers that different persons activate different parts of the brain to perform the same action. This paper presents a personalized interface design method, for electroencephalogram- (EEG- based BCIs, based on channel selection. We describe a novel two-step method in which firstly a computationally inexpensive greedy algorithm finds an adequate search range; and, then, an Estimation of Distribution Algorithm (EDA is applied in the reduced range to obtain the optimal channel subset. The use of the EDA allows us to select the most interacting channels subset, removing the irrelevant and noisy ones, thus selecting the most discriminative subset of channels for each user improving accuracy. The method is tested on the IIIa dataset from the BCI competition III. Experimental results show that the resulting channel subset is consistent with motor-imaginary-related neurophysiological principles and, on the other hand, optimizes performance reducing the number of channels.

  16. Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction

    Directory of Open Access Journals (Sweden)

    Shishkin S. L.

    2017-09-01

    Full Text Available Background. Human-machine interaction technology has greatly evolved during the last decades, but manual and speech modalities remain single output channels with their typical constraints imposed by the motor system’s information transfer limits. Will brain-computer interfaces (BCIs and gaze-based control be able to convey human commands or even intentions to machines in the near future? We provide an overview of basic approaches in this new area of applied cognitive research. Objective. We test the hypothesis that the use of communication paradigms and a combination of eye tracking with unobtrusive forms of registering brain activity can improve human-machine interaction. Methods and Results. Three groups of ongoing experiments at the Kurchatov Institute are reported. First, we discuss the communicative nature of human-robot interaction, and approaches to building a more e cient technology. Specifically, “communicative” patterns of interaction can be based on joint attention paradigms from developmental psychology, including a mutual “eye-to-eye” exchange of looks between human and robot. Further, we provide an example of “eye mouse” superiority over the computer mouse, here in emulating the task of selecting a moving robot from a swarm. Finally, we demonstrate a passive, noninvasive BCI that uses EEG correlates of expectation. This may become an important lter to separate intentional gaze dwells from non-intentional ones. Conclusion. The current noninvasive BCIs are not well suited for human-robot interaction, and their performance, when they are employed by healthy users, is critically dependent on the impact of the gaze on selection of spatial locations. The new approaches discussed show a high potential for creating alternative output pathways for the human brain. When support from passive BCIs becomes mature, the hybrid technology of the eye-brain-computer (EBCI interface will have a chance to enable natural, fluent, and the

  17. Brain-controlled body movement assistance devices and methods

    Energy Technology Data Exchange (ETDEWEB)

    Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob; Moran, Daniel W.

    2017-01-10

    Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of the brain-controlled body movement assistance device.

  18. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

    Science.gov (United States)

    Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T

    2017-01-07

    One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

  19. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Science.gov (United States)

    Hill, N. J.; Schölkopf, B.

    2012-04-01

    We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

  20. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Science.gov (United States)

    Hill, N J; Schölkopf, B

    2012-01-01

    We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135

  1. User Experience May be Producing Greater Heart Rate Variability than Motor Imagery Related Control Tasks during the User-System Adaptation in Brain-Computer Interfaces

    Science.gov (United States)

    Alonso-Valerdi, Luz M.; Gutiérrez-Begovich, David A.; Argüello-García, Janet; Sepulveda, Francisco; Ramírez-Mendoza, Ricardo A.

    2016-01-01

    Brain-computer interface (BCI) is technology that is developing fast, but it remains inaccurate, unreliable and slow due to the difficulty to obtain precise information from the brain. Consequently, the involvement of other biosignals to decode the user control tasks has risen in importance. A traditional way to operate a BCI system is via motor imagery (MI) tasks. As imaginary movements activate similar cortical structures and vegetative mechanisms as a voluntary movement does, heart rate variability (HRV) has been proposed as a parameter to improve the detection of MI related control tasks. However, HR is very susceptible to body needs and environmental demands, and as BCI systems require high levels of attention, perceptual processing and mental workload, it is important to assess the practical effectiveness of HRV. The present study aimed to determine if brain and heart electrical signals (HRV) are modulated by MI activity used to control a BCI system, or if HRV is modulated by the user perceptions and responses that result from the operation of a BCI system (i.e., user experience). For this purpose, a database of 11 participants who were exposed to eight different situations was used. The sensory-cognitive load (intake and rejection tasks) was controlled in those situations. Two electrophysiological signals were utilized: electroencephalography and electrocardiography. From those biosignals, event-related (de-)synchronization maps and event-related HR changes were respectively estimated. The maps and the HR changes were cross-correlated in order to verify if both biosignals were modulated due to MI activity. The results suggest that HR varies according to the experience undergone by the user in a BCI working environment, and not because of the MI activity used to operate the system. PMID:27458384

  2. Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication.

    Science.gov (United States)

    Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas

    2012-01-01

    Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.

  3. Empathy, Motivation, and P300 BCI performance

    Directory of Open Access Journals (Sweden)

    Sonja C Kleih

    2013-10-01

    Full Text Available Motivation moderately influences Brain-Computer Interface (BCI performance in healthy subjects when monetary reward is used to manipulate extrinsic motivation. However, the motivation to use a BCI of severely paralyzed patients, who are potentially in need for BCI, could mainly be internal and thus, an intrinsic motivator may be more powerful. Also healthy subjects who participate in BCI studies could be intrinsically motivated as they may wish to contribute to research and thus extrinsic motivation by monetary reward would be less important than the content of the study. In this respect, motivation could be defined as motivation-to-help. The aim of this study was to investigate, whether subjects with high motivation for helping and who are highly empathic would perform better with a BCI controlled by event-related potentials (P300-BCI. We included N=20 healthy young participants naïve to BCI and grouped them according to their motivation for participating in a BCI study in a low and highly motivated group. Motivation was further manipulated with interesting or boring presentations about BCI and the possibility to help patients. Motivation for helping did neither influence BCI performance nor the P300 amplitude. Post-hoc, subjects were re-grouped according to their ability for perspective taking. We found significantly higher P300 amplitudes on parietal electrodes in participants with a low ability for perspective taking and therefore, lower empathy, as compared to participants with higher empathy. The lack of an effect of motivation on BCI performance contradicts previous findings and thus, requires further investigation. We speculate that subjects with higher empathy were less able to focus attention on the BCI task. Good perspective takers with regards to patients in potential need of BCI, may be more emotionally involved and therefore, less able to allocate attention on the BCI task at hand.

  4. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study.

    Science.gov (United States)

    Holz, Elisa Mira; Botrel, Loic; Kaufmann, Tobias; Kübler, Andrea

    2015-03-01

    Despite intense brain-computer interface (BCI) research for >2 decades, BCIs have hardly been established at patients' homes. The current study aimed at demonstrating expert independent BCI home use by a patient in the locked-in state and the effect it has on quality of life. In this case study, the P300 BCI-controlled application Brain Painting was facilitated and installed at the patient's home. Family and caregivers were trained in setting up the BCI system. After every BCI session, the end user indicated subjective level of control, loss of control, level of exhaustion, satisfaction, frustration, and enjoyment. To monitor BCI home use, evaluation data of every session were automatically sent and stored on a remote server. Satisfaction with the BCI as an assistive device and subjective workload was indicated by the patient. In accordance with the user-centered design, usability of the BCI was evaluated in terms of its effectiveness, efficiency, and satisfaction. The influence of the BCI on quality of life of the end user was assessed. At the patient's home. A 73-year-old patient with amyotrophic lateral sclerosis in the locked-in state. Not applicable. The BCI has been used by the patient independent of experts for >14 months. The patient painted in about 200 BCI sessions (1-3 times per week) with a mean painting duration of 81.86 minutes (SD=52.15, maximum: 230.41). BCI improved quality of life of the patient. In most of the BCI sessions the end user's satisfaction was high (mean=7.4, SD=3.24; range, 0-10). Dissatisfaction occurred mostly because of technical problems at the beginning of the study or varying BCI control. The subjective workload was moderate (mean=40.61; range, 0-100). The end user was highy satisfied with all components of the BCI (mean 4.42-5.0; range, 1-5). A perfect match between the user and the BCI technology was achieved (mean: 4.8; range, 1-5). Brain Painting had a positive impact on the patient's life on all three dimensions: competence

  5. Engineering brain-computer interfaces: past, present and future.

    Science.gov (United States)

    Hughes, M A

    2014-06-01

    Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community.

  6. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.

    Science.gov (United States)

    Siuly; Li, Yan; Paul Wen, Peng

    2014-03-01

    Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns

    Science.gov (United States)

    Townsend, G.; LaPallo, B.K.; Boulay, C.B.; Krusienski, D.J.; Frye, G.E.; Hauser, C.K.; Schwartz, N.E.; Vaughan, T.M.; Wolpaw, J.R.; Sellers, E.W.

    2010-01-01

    Objective An electroencephalographic brain-computer interface (BCI) can provide a non-muscular means of communication for people with amyotrophic lateral sclerosis (ALS) or other neuromuscular disorders. We present a novel P300-based BCI stimulus presentation – the checkerboard paradigm (CBP). CBP performance is compared to that of the standard row/column paradigm (RCP) introduced by Farwell and Donchin (1988). Methods Using an 8×9 matrix of alphanumeric characters and keyboard commands, 18 participants used the CBP and RCP in counter-balanced fashion. With approximately 9 – 12 minutes of calibration data, we used a stepwise linear discriminant analysis for online classification of subsequent data. Results Mean online accuracy was significantly higher for the CBP, 92%, than for the RCP, 77%. Correcting for extra selections due to errors, mean bit rate was also significantly higher for the CBP, 23 bits/min, than for the RCP, 17 bits/min. Moreover, the two paradigms produced significantly different waveforms. Initial tests with three advanced ALS participants produced similar results. Furthermore, these individuals preferred the CBP to the RCP. Conclusions These results suggest that the CBP is markedly superior to the RCP in performance and user acceptability. Significance The CBP has the potential to provide a substantially more effective BCI than the RCP. This is especially important for people with severe neuromuscular disabilities. PMID:20347387

  8. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.

    Science.gov (United States)

    Cao, Lei; Ju, Zhengyu; Li, Jie; Jian, Rongjun; Jiang, Changjun

    2015-09-30

    Steady-state visual evoked potential (SSVEP) has been widely applied to develop brain computer interface (BCI) systems. The essence of SSVEP recognition is to recognize the frequency component of target stimulus focused by a subject significantly present in EEG spectrum. In this paper, a novel statistical approach based on sequence detection (SD) is proposed for improving the performance of SSVEP recognition. This method uses canonical correlation analysis (CCA) coefficients to observe SSVEP signal sequence. And then, a threshold strategy is utilized for SSVEP recognition. The result showed the classification performance with the longer duration of time window achieved the higher accuracy for most subjects. And the average time costing per trial was lower than the predefined recognition time. It was implicated that our approach could improve the speed of BCI system in contrast to other methods. Comparison with existing method(s): In comparison with other resultful algorithms, experimental accuracy of SD approach was better than those using a widely used CCA-based method and two newly proposed algorithms, least absolute shrinkage and selection operator (LASSO) recognition model as well as multivariate synchronization index (MSI) method. Furthermore, the information transfer rate (ITR) obtained by SD approach was higher than those using other three methods for most participants. These conclusions demonstrated that our proposed method was promising for a high-speed online BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Estudio de técnicas de análisis y clasificación de señales EEG en el contexto de sistemas BCI (Brain Computer Interface)

    OpenAIRE

    Henríquez Muñoz, Claudia Nureibis

    2014-01-01

    Máster universitario en Investigación e Innovación en TIC. Las Interfaces Cerebro Computador (BCI) son una tecnología basada en la adquisición y procesamiento de señales cerebrales para el control de diversos dispositivos. Su objetivo principal es proporcionar un nuevo canal de salida al cerebro del usuario que requiere un control adaptativo voluntario. Usualmente los BCI se enfocan en reconocer eventos que son adquiridos por métodos como el Electroencefalograma (EEG). Dicho...

  10. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface

    Science.gov (United States)

    Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Jung, Tzyy-Ping; Gao, Xiaorong

    2015-08-01

    Objective. Recently, canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) due to its high efficiency, robustness, and simple implementation. However, a method with which to make use of harmonic SSVEP components to enhance the CCA-based frequency detection has not been well established. Approach. This study proposed a filter bank canonical correlation analysis (FBCCA) method to incorporate fundamental and harmonic frequency components to improve the detection of SSVEPs. A 40-target BCI speller based on frequency coding (frequency range: 8-15.8 Hz, frequency interval: 0.2 Hz) was used for performance evaluation. To optimize the filter bank design, three methods (M1: sub-bands with equally spaced bandwidths; M2: sub-bands corresponding to individual harmonic frequency bands; M3: sub-bands covering multiple harmonic frequency bands) were proposed for comparison. Classification accuracy and information transfer rate (ITR) of the three FBCCA methods and the standard CCA method were estimated using an offline dataset from 12 subjects. Furthermore, an online BCI speller adopting the optimal FBCCA method was tested with a group of 10 subjects. Main results. The FBCCA methods significantly outperformed the standard CCA method. The method M3 achieved the highest classification performance. At a spelling rate of ˜33.3 characters/min, the online BCI speller obtained an average ITR of 151.18 ± 20.34 bits min-1. Significance. By incorporating the fundamental and harmonic SSVEP components in target identification, the proposed FBCCA method significantly improves the performance of the SSVEP-based BCI, and thereby facilitates its practical applications such as high-speed spelling.

  11. Spelling is Just a Click Away - A User-Centered Brain-Computer Interface Including Auto-Calibration and Predictive Text Entry.

    Science.gov (United States)

    Kaufmann, Tobias; Völker, Stefan; Gunesch, Laura; Kübler, Andrea

    2012-01-01

    Brain-computer interfaces (BCI) based on event-related potentials (ERP) allow for selection of characters from a visually presented character-matrix and thus provide a communication channel for users with neurodegenerative disease. Although they have been topic of research for more than 20 years and were multiply proven to be a reliable communication method, BCIs are almost exclusively used in experimental settings, handled by qualified experts. This study investigates if ERP-BCIs can be handled independently by laymen without expert support, which is inevitable for establishing BCIs in end-user's daily life situations. Furthermore we compared the classic character-by-character text entry against a predictive text entry (PTE) that directly incorporates predictive text into the character-matrix. N = 19 BCI novices handled a user-centered ERP-BCI application on their own without expert support. The software individually adjusted classifier weights and control parameters in the background, invisible to the user (auto-calibration). All participants were able to operate the software on their own and to twice correctly spell a sentence with the auto-calibrated classifier (once with PTE, once without). Our PTE increased spelling speed and, importantly, did not reduce accuracy. In sum, this study demonstrates feasibility of auto-calibrating ERP-BCI use, independently by laymen and the strong benefit of integrating predictive text directly into the character-matrix.

  12. The SSVEP-Based BCI Text Input System Using Entropy Encoding Algorithm

    Directory of Open Access Journals (Sweden)

    Yeou-Jiunn Chen

    2015-01-01

    Full Text Available The so-called amyotrophic lateral sclerosis (ALS or motor neuron disease (MND is a neurodegenerative disease with various causes. It is characterized by muscle spasticity, rapidly progressive weakness due to muscle atrophy, and difficulty in speaking, swallowing, and breathing. The severe disabled always have a common problem that is about communication except physical malfunctions. The steady-state visually evoked potential based brain computer interfaces (BCI, which apply visual stimulus, are very suitable to play the role of communication interface for patients with neuromuscular impairments. In this study, the entropy encoding algorithm is proposed to encode the letters of multilevel selection interface for BCI text input systems. According to the appearance frequency of each letter, the entropy encoding algorithm is proposed to construct a variable-length tree for the letter arrangement of multilevel selection interface. Then, the Gaussian mixture models are applied to recognize electrical activity of the brain. According to the recognition results, the multilevel selection interface guides the subject to spell and type the words. The experimental results showed that the proposed approach outperforms the baseline system, which does not consider the appearance frequency of each letter. Hence, the proposed approach is able to ease text input interface for patients with neuromuscular impairments.

  13. Listen, you are writing!Speeding up online spelling with a dynamic auditory BCI

    Directory of Open Access Journals (Sweden)

    Martijn eSchreuder

    2011-10-01

    Full Text Available Representing an intuitive spelling interface for Brain-Computer Interfaces (BCI in the auditory domain is not straightforward. In consequence, all existing approaches based on event-related potentials (ERP rely at least partially on a visual representation of the interface. This online study introduces an auditory spelling interface that eliminates the necessity for such a visualization. In up to two sessions, a group of healthy subjects (N=21 was asked to use a text entry application, utilizing the spatial cues of the AMUSE paradigm (Auditory Multiclass Spatial ERP. The speller relies on the auditory sense both for stimulation and the core feedback. Without prior BCI experience, 76% of the participants were able to write a full sentence during the first session. By exploiting the advantages of a newly introduced dynamic stopping method, a maximum writing speed of 1.41 characters/minute (7.55 bits/minute could be reached during the second session (average: .94 char/min, 5.26 bits/min. For the first time, the presented work shows that an auditory BCI can reach performances similar to state-of-the-art visual BCIs based on covert attention. These results represent an important step towards a purely auditory BCI.

  14. Individually adapted imagery improves brain-computer interface performance in end-users with disability.

    Science.gov (United States)

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology

  15. Individually adapted imagery improves brain-computer interface performance in end-users with disability.

    Directory of Open Access Journals (Sweden)

    Reinhold Scherer

    Full Text Available Brain-computer interfaces (BCIs translate oscillatory electroencephalogram (EEG patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS tissue damage such as persons with stroke or spinal cord injury (SCI. Motor imagery (MI, that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand, is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association and "dynamic imagery" (e.g. hand and feet MI tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day? and between-day (How well does a model trained on day one perform on unseen data of day two? analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI

  16. On the Relationship Between Attention Processing and P300-Based Brain Computer Interface Control in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Angela Riccio

    2018-05-01

    Full Text Available Our objective was to investigate the capacity to control a P3-based brain-computer interface (BCI device for communication and its related (temporal attention processing in a sample of amyotrophic lateral sclerosis (ALS patients with respect to healthy subjects. The ultimate goal was to corroborate the role of cognitive mechanisms in event-related potential (ERP-based BCI control in ALS patients. Furthermore, the possible differences in such attentional mechanisms between the two groups were investigated in order to unveil possible alterations associated with the ALS condition. Thirteen ALS patients and 13 healthy volunteers matched for age and years of education underwent a P3-speller BCI task and a rapid serial visual presentation (RSVP task. The RSVP task was performed by participants in order to screen their temporal pattern of attentional resource allocation, namely: (i the temporal attentional filtering capacity (scored as T1%; and (ii the capability to adequately update the attentive filter in the temporal dynamics of the attentional selection (scored as T2%. For the P3-speller BCI task, the online accuracy and information transfer rate (ITR were obtained. Centroid Latency and Mean Amplitude of N200 and P300 were also obtained. No significant differences emerged between ALS patients and Controls with regards to online accuracy (p = 0.13. Differently, the performance in controlling the P3-speller expressed as ITR values (calculated offline were compromised in ALS patients (p < 0.05, with a delay in the latency of P3 when processing BCI stimuli as compared with Control group (p < 0.01. Furthermore, the temporal aspect of attentional filtering which was related to BCI control (r = 0.51; p < 0.05 and to the P3 wave amplitude (r = 0.63; p < 0.05 was also altered in ALS patients (p = 0.01. These findings ground the knowledge required to develop sensible classes of BCI specifically designed by taking into account the influence of the cognitive

  17. Gaze-independent brain-computer interfaces based on covert attention and feature attention

    Science.gov (United States)

    Treder, M. S.; Schmidt, N. M.; Blankertz, B.

    2011-10-01

    There is evidence that conventional visual brain-computer interfaces (BCIs) based on event-related potentials cannot be operated efficiently when eye movements are not allowed. To overcome this limitation, the aim of this study was to develop a visual speller that does not require eye movements. Three different variants of a two-stage visual speller based on covert spatial attention and non-spatial feature attention (i.e. attention to colour and form) were tested in an online experiment with 13 healthy participants. All participants achieved highly accurate BCI control. They could select one out of thirty symbols (chance level 3.3%) with mean accuracies of 88%-97% for the different spellers. The best results were obtained for a speller that was operated using non-spatial feature attention only. These results show that, using feature attention, it is possible to realize high-accuracy, fast-paced visual spellers that have a large vocabulary and are independent of eye gaze.

  18. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation

    Directory of Open Access Journals (Sweden)

    Ju-Chi Liu

    2016-01-01

    Full Text Available A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI. The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN, and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM and accuracy-recognition mode (AM, were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR. When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  19. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation.

    Science.gov (United States)

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  20. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    Science.gov (United States)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  1. Empathy, motivation, and P300 BCI performance.

    Science.gov (United States)

    Kleih, Sonja C; Kübler, Andrea

    2013-01-01

    Motivation moderately influences brain-computer interface (BCI) performance in healthy subjects when monetary reward is used to manipulate extrinsic motivation. However, the motivation of severely paralyzed patients, who are potentially in need for BCI, could mainly be internal and thus, an intrinsic motivator may be more powerful. Also healthy subjects who participate in BCI studies could be internally motivated as they may wish to contribute to research and thus extrinsic motivation by monetary reward would be less important than the content of the study. In this respect, motivation could be defined as "motivation-to-help." The aim of this study was to investigate, whether subjects with high motivation for helping and who are highly empathic would perform better with a BCI controlled by event-related potentials (P300-BCI). We included N = 20 healthy young participants naïve to BCI and grouped them according to their motivation for participating in a BCI study in a low and highly motivated group. Motivation was further manipulated with interesting or boring presentations about BCI and the possibility to help patients. Motivation for helping did neither influence BCI performance nor the P300 amplitude. Post hoc, subjects were re-grouped according to their ability for perspective taking. We found significantly higher P300 amplitudes on parietal electrodes in participants with a low ability for perspective taking and therefore, lower empathy, as compared to participants with higher empathy. The lack of an effect of motivation on BCI performance contradicts previous findings and thus, requires further investigation. We speculate that subjects with higher empathy who are good perspective takers with regards to patients in potential need of BCI, may be more emotionally involved and therefore, less able to allocate attention on the BCI task at hand.

  2. Toward a P300 based Brain-Computer Interface for aphasia rehabilitation after stroke: Presentation of theoretical considerations and a pilot feasibility study

    Directory of Open Access Journals (Sweden)

    Sonja C Kleih

    2016-11-01

    Full Text Available People with post-stroke motor aphasia know what they would like to say but cannot express it through motor pathways due to disruption of cortical circuits. We present a theoretical background for our hypothesized connection between attention and aphasia rehabilitation and suggest why in this context, Brain-Computer Interfaces (BCI use might be beneficial for patients diagnosed with aphasia. Not only could BCI technology provide a communication tool, it might support neuronal plasticity by activating language circuits and thereby boost aphasia recovery. However, stroke may lead to heterogeneous symptoms that might hinder BCI use which is why the feasibility of this approach needed to be investigated first. In this pilot study, we included five participants diagnosed with post-stroke aphasia. Four participants were initially unable to use the visual P300 speller paradigm. By adjusting the paradigm to their needs, all participants could successfully learn to use the speller for communication with accuracies up to 100%. We describe necessary adjustments to the paradigm and present future steps to further investigate the here presented approach.

  3. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jennifer L Collinger

    2014-02-01

    Full Text Available After spinal cord injury (SCI, motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation, in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, action observation can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG and functional magnetic resonance imaging (fMRI. Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10-40 Hz and the high-gamma band (65-115 Hz which contains significant movement-related information. We observed significant motor-related high-gamma band activity during action observation in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that action observation could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with

  4. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.

    Science.gov (United States)

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L

    2016-06-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson's r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.

  5. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar

    Science.gov (United States)

    Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-06-01

    Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.

  6. An experimental model of an indigenous BCI based system to help disabled people to communicate

    Science.gov (United States)

    Kabir, Kazi Sadman; Rahman, Chowdhury M. Abid; Farayez, Araf; Ferdous, Mahbuba

    2017-12-01

    In this paper a Brain Computer Interface (BCI) system has been proposed to help patients suffering from motor disease, paralysis or locked in syndrome to communicate via eye blinking. In this proposed BCI system EEG data is fetched by NeuroSky Headset and then analyzed by the help of WPF (Windows Presentation Foundation) based serial monitor to detect the EEG signal when the eye gives a blink. This detection of eye blinking can be used to select predefined texts and those texts can be converted to speech. The experimental result shows that this system can be used as an effective and efficient tool to communicate through brain.

  7. Enhancing Performance and Bit Rates in a Brain-Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs.

    Science.gov (United States)

    Dimitriadis, Stavros I; Marimpis, Avraam D

    2018-01-01

    A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class ( N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class ( N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class ( N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10-25 bits/min . In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.

  8. Exploring the use of tactile feedback in an ERP-based auditory BCI.

    Science.gov (United States)

    Schreuder, Martijn; Thurlings, Marieke E; Brouwer, Anne-Marie; Van Erp, Jan B F; Tangermann, Michael

    2012-01-01

    Giving direct, continuous feedback on a brain state is common practice in motor imagery based brain-computer interfaces (BCI), but has not been reported for BCIs based on event-related potentials (ERP), where feedback is only given once after a sequence of stimuli. Potentially, direct feedback could allow the user to adjust his strategy during a running trial to obtain the required response. In order to test the usefulness of such feedback, directionally congruent vibrotactile feedback was given during an online auditory BCI experiment. Users received either no feedback, short feedback pulses or continuous feedback. The feedback conditions showed reduced performance both on a behavioral task and in terms of classification accuracy. Several explanations are discussed that give interesting starting points for further research on this topic.

  9. Brain-computer interface

    DEFF Research Database (Denmark)

    2014-01-01

    A computer-implemented method of providing an interface between a user and a processing unit, the method comprising : presenting one or more stimuli to a user, each stimulus varying at a respective stimulation frequency, each stimulation frequency being associated with a respective user......-selectable input; receiving at least one signal indicative of brain activity of the user; and determining, from the received signal, which of the one or more stimuli the user attends to and selecting the user-selectable input associated with the stimulation frequency of the determined stimuli as being a user...

  10. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    Science.gov (United States)

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  11. Self-paced brain-computer interface control of ambulation in a virtual reality environment

    Science.gov (United States)

    Wang, Po T.; King, Christine E.; Chui, Luis A.; Do, An H.; Nenadic, Zoran

    2012-10-01

    Objective. Spinal cord injury (SCI) often leaves affected individuals unable to ambulate. Electroencephalogram (EEG) based brain-computer interface (BCI) controlled lower extremity prostheses may restore intuitive and able-body-like ambulation after SCI. To test its feasibility, the authors developed and tested a novel EEG-based, data-driven BCI system for intuitive and self-paced control of the ambulation of an avatar within a virtual reality environment (VRE). Approach. Eight able-bodied subjects and one with SCI underwent the following 10-min training session: subjects alternated between idling and walking kinaesthetic motor imageries (KMI) while their EEG were recorded and analysed to generate subject-specific decoding models. Subjects then performed a goal-oriented online task, repeated over five sessions, in which they utilized the KMI to control the linear ambulation of an avatar and make ten sequential stops at designated points within the VRE. Main results. The average offline training performance across subjects was 77.2±11.0%, ranging from 64.3% (p = 0.001 76) to 94.5% (p = 6.26×10-23), with chance performance being 50%. The average online performance was 8.5±1.1 (out of 10) successful stops and 303±53 s completion time (perfect = 211 s). All subjects achieved performances significantly different than those of random walk (p prosthesis systems may be feasible.

  12. Legal Aspects of Brain-Computer Interfaces

    Czech Academy of Sciences Publication Activity Database

    Krausová, Alžběta

    2014-01-01

    Roč. 8, č. 2 (2014) ISSN 1802-5951 Institutional support: RVO:68378122 Keywords : brain-computer interface * human rights * right to privacy, Subject RIV: AG - Legal Sciences http://mujlt.law.muni.cz/index.php

  13. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.

    Directory of Open Access Journals (Sweden)

    Camille Jeunet

    Full Text Available Mental-Imagery based Brain-Computer Interfaces (MI-BCIs allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG, which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.

  14. Spelling is just a click away – a user-centered brain-computer interface including auto-calibration and predictive text entry

    Directory of Open Access Journals (Sweden)

    Tobias eKaufmann

    2012-05-01

    Full Text Available Brain Computer Interfaces (BCI based on event-related potentials (ERP allow for selection of characters from a visually presented character-matrix and thus provide a communication channel for users with neurodegenerative disease. Although they have been topic of research for more than 20 years and were multiply proven to be a reliable communication method, BCIs are almost exclusively used in experimental settings, handled by qualified experts. This study investigates if ERP-BCIs can be handled independently by laymen without expert interference, which is inevitable for establishing BCIs in end-user’s daily life situations. Furthermore we compared the classic character-by-character text entry against a predictive text entry (PTE that directly incorporates predictive text into the character matrix. N=19 BCI novices handled a user-centred ERP-BCI application on their own without expert interference. The software individually adjusted classifier weights and control parameters in the background, invisible to the user (auto-calibration. All participants were able to operate the software on their own and to twice correctly spell a sentence with the auto-calibrated classifier (once with PTE, once without. Our PTE increased spelling speed and importantly did not reduce accuracy. In sum, this study demonstrates feasibility of auto-calibrating ERP-BCI use, independently by laymen and the strong benefit of integrating predictive text directly into the character-matrix.

  15. Design on the Control System of a Gait Rehabilitation Training Robot Based on Brain-Computer Interface and Virtual Reality Technology

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2012-10-01

    Full Text Available In this paper a control system of a gait rehabilitation training robot based on Brain-Computer Interface (BCI and virtual reality technology is proposed, which makes the patients' rehabilitation training process more interesting. A technique for measuring the mental states of the human and associated applications based on normal brain signals are examined and evaluated firstly. Secondly, the virtual game starts with the information from the BCI and then it runs in the form of a thread, with the singleton design pattern as the main mode. Thirdly, through the synergistic cooperation with the main software, the virtual game can achieve quick and effective access to blood oxygen, heart rate and other physiological information of the patients. At the same time, by means of the hardware control system, the start-up of the gait rehabilitation training robot could be controlled accurately and effectively. Therefore, the plantar pressure information and the velocity information, together with the physiological information of the patients, would be properly reflected in the game lastly and the physical condition of the patients participating in rehabilitation training would also be reflected to a great extent.

  16. A cognitive brain-computer interface for patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Hohmann, M R; Fomina, T; Jayaram, V; Widmann, N; Förster, C; Just, J; Synofzik, M; Schölkopf, B; Schöls, L; Grosse-Wentrup, M

    2016-01-01

    Brain-computer interfaces (BCIs) are often based on the control of sensorimotor processes, yet sensorimotor processes are impaired in patients suffering from amyotrophic lateral sclerosis (ALS). We devised a new paradigm that targets higher-level cognitive processes to transmit information from the user to the BCI. We instructed five ALS patients and twelve healthy subjects to either activate self-referential memories or to focus on a process without mnemonic content while recording a high-density electroencephalogram (EEG). Both tasks are designed to modulate activity in the default mode network (DMN) without involving sensorimotor pathways. We find that the two tasks can be distinguished after only one experimental session from the average of the combined bandpower modulations in the theta- (4-7Hz) and alpha-range (8-13Hz), with an average accuracy of 62.5% and 60.8% for healthy subjects and ALS patients, respectively. The spatial weights of the decoding algorithm show a preference for the parietal area, consistent with modulation of neural activity in primary nodes of the DMN. © 2016 Elsevier B.V. All rights reserved.

  17. Effects of user mental state on EEG-BCI performance

    Directory of Open Access Journals (Sweden)

    Andrew eMyrden

    2015-06-01

    Full Text Available Changes in psychological state have been proposed as a cause of variation in brain-computer interface performance, but little formal analysis has been conducted to support this hypothesis. In this study, we investigated the effects of three mental states - fatigue, frustration, and attention - on BCI performance. Twelve able-bodied participants were trained to use a two-class EEG-BCI based on the performance of user-specific mental tasks. Following training, participants completed three testing sessions, during which they used the BCI to play a simple maze navigation game while periodically reporting their perceived levels of fatigue, frustration, and attention. Statistical analysis indicated that there is a significant relationship between frustration and BCI performance while the relationship between fatigue and BCI performance approached significance. BCI performance was 7% lower than average when self-reported fatigue was low and 10% lower than average when self-reported frustration was low. A multivariate analysis of mental state revealed the presence of contiguous regions in mental state space where BCI performance was more accurate than average, suggesting the importance of moderate fatigue for achieving effortless focus on BCI control, frustration as a potential motivating factor, and attention as a compensatory mechanism to increasing frustration. Finally, a visual analysis showed the sensitivity of underlying class distributions to changes in mental state. Collectively, these results indicate that mental state is closely related to BCI performance, encouraging future development of psychologically adaptive BCIs.

  18. Removal of proprioception by BCI raises a stronger body ownership illusion in control of a humanlike robot.

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-09-22

    Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot's body was confirmed when operators controlled the robot either by performing the desired motion with their body (motion-control) or by employing a brain-computer interface (BCI) that translated motor imagery commands to robot movement (BCI-control). The interesting observation during BCI-control was that the illusion could be induced even with a noticeable delay in the BCI system. Temporal discrepancy has always shown critical weakening effects on body ownership illusions. However the delay-robustness of BOT during BCI-control raised a question about the interaction between the proprioceptive inputs and delayed visual feedback in agency-driven illusions. In this work, we compared the intensity of BOT illusion for operators in two conditions; motion-control and BCI-control. Our results revealed a significantly stronger BOT illusion for the case of BCI-control. This finding highlights BCI's potential in inducing stronger agency-driven illusions by building a direct communication between the brain and controlled body, and therefore removing awareness from the subject's own body.

  19. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update.

    Science.gov (United States)

    Lotte, F; Bougrain, L; Cichocki, A; Clerc, M; Congedo, M; Rakotomamonjy, A; Yger, F

    2018-06-01

    Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.

  20. Embodiment and Estrangement: Results from a First-in-Human "Intelligent BCI" Trial.

    Science.gov (United States)

    Gilbert, F; Cook, M; O'Brien, T; Illes, J

    2017-11-11

    While new generations of implantable brain computer interface (BCI) devices are being developed, evidence in the literature about their impact on the patient experience is lagging. In this article, we address this knowledge gap by analysing data from the first-in-human clinical trial to study patients with implanted BCI advisory devices. We explored perceptions of self-change across six patients who volunteered to be implanted with artificially intelligent BCI devices. We used qualitative methodological tools grounded in phenomenology to conduct in-depth, semi-structured interviews. Results show that, on the one hand, BCIs can positively increase a sense of the self and control; on the other hand, they can induce radical distress, feelings of loss of control, and a rupture of patient identity. We conclude by offering suggestions for the proactive creation of preparedness protocols specific to intelligent-predictive and advisory-BCI technologies essential to prevent potential iatrogenic harms.

  1. Touch-based Brain Computer Interfaces: State of the art

    NARCIS (Netherlands)

    Erp, J.B.F. van; Brouwer, A.M.

    2014-01-01

    Brain Computer Interfaces (BCIs) rely on the user's brain activity to control equipment or computer devices. Many BCIs are based on imagined movement (called active BCIs) or the fact that brain patterns differ in reaction to relevant or attended stimuli in comparison to irrelevant or unattended

  2. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    Science.gov (United States)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  3. Investigating the feasibility of a BCI-driven robot-based writing agent for handicapped individuals

    Science.gov (United States)

    Syan, Chanan S.; Harnarinesingh, Randy E. S.; Beharry, Rishi

    2014-07-01

    Brain-Computer Interfaces (BCIs) predominantly employ output actuators such as virtual keyboards and wheelchair controllers to enable handicapped individuals to interact and communicate with their environment. However, BCI-based assistive technologies are limited in their application. There is minimal research geared towards granting disabled individuals the ability to communicate using written words. This is a drawback because involving a human attendant in writing tasks can entail a breach of personal privacy where the task entails sensitive and private information such as banking matters. BCI-driven robot-based writing however can provide a safeguard for user privacy where it is required. This study investigated the feasibility of a BCI-driven writing agent using the 3 degree-of- freedom Phantom Omnibot. A full alphanumerical English character set was developed and validated using a teach pendant program in MATLAB. The Omnibot was subsequently interfaced to a P300-based BCI. Three subjects utilised the BCI in the online context to communicate words to the writing robot over a Local Area Network (LAN). The average online letter-wise classification accuracy was 91.43%. The writing agent legibly constructed the communicated letters with minor errors in trajectory execution. The developed system therefore provided a feasible platform for BCI-based writing.

  4. Investigating the feasibility of a BCI-driven robot-based writing agent for handicapped individuals

    International Nuclear Information System (INIS)

    Syan, Chanan S; Harnarinesingh, Randy E S; Beharry, Rishi

    2014-01-01

    Brain-Computer Interfaces (BCIs) predominantly employ output actuators such as virtual keyboards and wheelchair controllers to enable handicapped individuals to interact and communicate with their environment. However, BCI-based assistive technologies are limited in their application. There is minimal research geared towards granting disabled individuals the ability to communicate using written words. This is a drawback because involving a human attendant in writing tasks can entail a breach of personal privacy where the task entails sensitive and private information such as banking matters. BCI-driven robot-based writing however can provide a safeguard for user privacy where it is required. This study investigated the feasibility of a BCI-driven writing agent using the 3 degree-of- freedom Phantom Omnibot. A full alphanumerical English character set was developed and validated using a teach pendant program in MATLAB. The Omnibot was subsequently interfaced to a P300-based BCI. Three subjects utilised the BCI in the online context to communicate words to the writing robot over a Local Area Network (LAN). The average online letter-wise classification accuracy was 91.43%. The writing agent legibly constructed the communicated letters with minor errors in trajectory execution. The developed system therefore provided a feasible platform for BCI-based writing

  5. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology.

    Science.gov (United States)

    Zao, John K; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system.

  6. Pervasive Brain Monitoring and Data Sharing based on Multi-tier Distributed Computing and Linked Data Technology

    Directory of Open Access Journals (Sweden)

    John Kar-Kin Zao

    2014-06-01

    Full Text Available EEG-based Brain-computer interfaces (BCI are facing grant challenges in their real-world applications. The technical difficulties in developing truly wearable multi-modal BCI systems that are capable of making reliable real-time prediction of users’ cognitive states under dynamic real-life situations may appear at times almost insurmountable. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report our attempt to develop a pervasive on-line BCI system by employing state-of-art technologies such as multi-tier fog and cloud computing, semantic Linked Data search and adaptive prediction/classification models. To verify our approach, we implement a pilot system using wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end fog servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC as the far-end cloud servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch and the UCSD Movement Disorder Center to use our system in real-life personal stress and in-home Parkinson’s disease patient monitoring experiments. We shall proceed to develop a necessary BCI ontology and add automatic semantic annotation and progressive model refinement capability to our system.

  7. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology

    Science.gov (United States)

    Zao, John K.; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system. PMID:24917804

  8. Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification

    Science.gov (United States)

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Objective. Brain–computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. Approach. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. Main results. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. Significance. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  9. Mushu, a free- and open source BCI signal acquisition, written in Python.

    Science.gov (United States)

    Venthur, Bastian; Blankertz, Benjamin

    2012-01-01

    The following paper describes Mushu, a signal acquisition software for retrieval and online streaming of Electroencephalography (EEG) data. It is written, but not limited, to the needs of Brain Computer Interfacing (BCI). It's main goal is to provide a unified interface to EEG data regardless of the amplifiers used. It runs under all major operating systems, like Windows, Mac OS and Linux, is written in Python and is free- and open source software licensed under the terms of the GNU General Public License.

  10. Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications.

    Science.gov (United States)

    Panoulas, Konstantinos I; Hadjileontiadis, Leontios J; Panas, Stavros M

    2008-01-01

    Brain Computer Interfaces (BCI) usually utilize the suppression of mu-rhythm during actual or imagined motor activity. In order to create a BCI system, a signal processing method is required to extract features upon which the discrimination is based. In this article, the Empirical Mode Decomposition along with the Hilbert-Huang Spectrum (HHS) is found to contain the necessary information to be considered as an input to a discriminator. Also, since the HHS defines amplitude and instantaneous frequency for each sample, it can be used for an online BCI system. Experimental results when the HHS applied to EEG signals from an on-line database (BCI Competition III) show the potentiality of the proposed analysis to capture the imagined motor activity, contributing to a more enhanced BCI performance.

  11. A Novel Approach for Configuring The Stimulator of A BCI Framework Using XML

    Directory of Open Access Journals (Sweden)

    Indar Sugiarto

    2009-08-01

    Full Text Available In a working BCI framework, all aspects must be considered as an integral part that contributes to the successful operation of a BCI system. This also includes the development of robust but flexible stimulator, especially the one that closely related to the feedback of a BCI system. This paper describes a novel approach in providing flexible visual stimulator using XML which has been applied for a BCI (brain-computer interface framework. Using XML file format for configuring the visual stimulator of a BCI system, we can develop BCI applications which can accommodate many experiment strategies in BCI research. The BCI framework and its configuration platform is developed using C++ programming language which incorporate Qt’s most powerful XML parser named QXmlStream. The implementation and experiment shows that the XML configuration file can be well executed within the proposed BCI framework. Beside its capability in presenting flexible flickering frequencies and text formatting for SSVEP-based BCI, the configuration platform also provides 3 shapes, 16 colors, and 5 distinct feedback bars. It is not necessary to increase the number of shapes nor colors since those parameters are less important for the BCI stimulator. The proposed method can then be extended to enhance the usability of currently existed BCI framework such as BF++ Toys and BCI 2000.

  12. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients

    Directory of Open Access Journals (Sweden)

    Xiaokang Shu

    2018-02-01

    Full Text Available Motor imagery (MI based brain-computer interface (BCI has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10–50% of subjects are BCI-inefficient users (accuracy less than 70%. Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI and cortical activation strength (CAS, to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG signals during paretic hand MI tasks (5 trials; approximately 1 min. LI values exhibited a statistically significant correlation with two-class BCI (left vs. right performance (r = −0.732, p < 0.001, and CAS values exhibited a statistically significant correlation with brain-switch BCI (task vs. idle performance (r = 0.641, p < 0.001. Furthermore, the BCI-inefficient users were successfully recognized with a sensitivity of 88.2% and a specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of 100.0% and a specificity of 87.5% in the discrimination of BCI-inefficient users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-inefficiency phenomenon in stroke patients.

  13. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.

    Science.gov (United States)

    Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F

    2016-01-01

    In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. © 2016 Elsevier B.V. All rights reserved.

  14. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Xingwei An

    Full Text Available For Brain-Computer Interface (BCI systems that are designed for users with severe impairments of the oculomotor system, an appropriate mode of presenting stimuli to the user is crucial. To investigate whether multi-sensory integration can be exploited in the gaze-independent event-related potentials (ERP speller and to enhance BCI performance, we designed a visual-auditory speller. We investigate the possibility to enhance stimulus presentation by combining visual and auditory stimuli within gaze-independent spellers. In this study with N = 15 healthy users, two different ways of combining the two sensory modalities are proposed: simultaneous redundant streams (Combined-Speller and interleaved independent streams (Parallel-Speller. Unimodal stimuli were applied as control conditions. The workload, ERP components, classification accuracy and resulting spelling speed were analyzed for each condition. The Combined-speller showed a lower workload than uni-modal paradigms, without the sacrifice of spelling performance. Besides, shorter latencies, lower amplitudes, as well as a shift of the temporal and spatial distribution of discriminative information were observed for Combined-speller. These results are important and are inspirations for future studies to search the reason for these differences. For the more innovative and demanding Parallel-Speller, where the auditory and visual domains are independent from each other, a proof of concept was obtained: fifteen users could spell online with a mean accuracy of 87.7% (chance level <3% showing a competitive average speed of 1.65 symbols per minute. The fact that it requires only one selection period per symbol makes it a good candidate for a fast communication channel. It brings a new insight into the true multisensory stimuli paradigms. Novel approaches for combining two sensory modalities were designed here, which are valuable for the development of ERP-based BCI paradigms.

  15. High performance communication by people with paralysis using an intracortical brain-computer interface

    Science.gov (United States)

    Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H; Sorice, Brittany L; Saab, Jad; Willett, Francis R; Hochberg, Leigh R

    2017-01-01

    Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O’Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4–4.2) and information throughput (by a factor of 2.2–4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function. Clinical Trial No: NCT00912041 DOI: http://dx.doi.org/10.7554/eLife.18554.001 PMID:28220753

  16. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees

    Science.gov (United States)

    Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan

    2017-01-01

    Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016

  17. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Science.gov (United States)

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  18. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  19. Massively Parallel Signal Processing using the Graphics Processing Unit for Real-Time Brain-Computer Interface Feature Extraction.

    Science.gov (United States)

    Wilson, J Adam; Williams, Justin C

    2009-01-01

    The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  20. Massively parallel signal processing using the graphics processing unit for real-time brain-computer interface feature extraction

    Directory of Open Access Journals (Sweden)

    J. Adam Wilson

    2009-07-01

    Full Text Available The clock speeds of modern computer processors have nearly plateaued in the past five years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card (GPU was developed for real-time neural signal processing of a brain-computer interface (BCI. The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter, followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally-intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a CPU-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  1. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state.

    Science.gov (United States)

    Kaufmann, Tobias; Holz, Elisa M; Kübler, Andrea

    2013-01-01

    This paper describes a case study with a patient in the classic locked-in state, who currently has no means of independent communication. Following a user-centered approach, we investigated event-related potentials (ERP) elicited in different modalities for use in brain-computer interface (BCI) systems. Such systems could provide her with an alternative communication channel. To investigate the most viable modality for achieving BCI based communication, classic oddball paradigms (1 rare and 1 frequent stimulus, ratio 1:5) in the visual, auditory and tactile modality were conducted (2 runs per modality). Classifiers were built on one run and tested offline on another run (and vice versa). In these paradigms, the tactile modality was clearly superior to other modalities, displaying high offline accuracy even when classification was performed on single trials only. Consequently, we tested the tactile paradigm online and the patient successfully selected targets without any error. Furthermore, we investigated use of the visual or tactile modality for different BCI systems with more than two selection options. In the visual modality, several BCI paradigms were tested offline. Neither matrix-based nor so-called gaze-independent paradigms constituted a means of control. These results may thus question the gaze-independence of current gaze-independent approaches to BCI. A tactile four-choice BCI resulted in high offline classification accuracies. Yet, online use raised various issues. Although performance was clearly above chance, practical daily life use appeared unlikely when compared to other communication approaches (e.g., partner scanning). Our results emphasize the need for user-centered design in BCI development including identification of the best stimulus modality for a particular user. Finally, the paper discusses feasibility of EEG-based BCI systems for patients in classic locked-in state and compares BCI to other AT solutions that we also tested during the

  2. Assisted closed-loop optimization of SSVEP-BCI efficiency

    Directory of Open Access Journals (Sweden)

    Jacobo eFernandez-Vargas

    2013-02-01

    Full Text Available We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain computer interfaces (BCI based on steady state visually evoked potentials (SSVEP. In traditional paradigms, the control over the BCI-performance completely depends on the subjects’ ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (i a closed-loop search for the best set of SSVEP flicker frequencies and (ii feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects’ state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g. under the new protocol, baseline resting state EEG measures predict subjects’ BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g. as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  3. Design and Implementation of a Brain Computer Interface System for Controlling a Robotic Claw

    Science.gov (United States)

    Angelakis, D.; Zoumis, S.; Asvestas, P.

    2017-11-01

    The aim of this paper is to present the design and implementation of a brain-computer interface (BCI) system that can control a robotic claw. The system is based on the Emotiv Epoc headset, which provides the capability of simultaneous recording of 14 EEG channels, as well as wireless connectivity by means of the Bluetooth protocol. The system is initially trained to decode what user thinks to properly formatted data. The headset communicates with a personal computer, which runs a dedicated software application, implemented under the Processing integrated development environment. The application acquires the data from the headset and invokes suitable commands to an Arduino Uno board. The board decodes the received commands and produces corresponding signals to a servo motor that controls the position of the robotic claw. The system was tested successfully on a healthy, male subject, aged 28 years. The results are promising, taking into account that no specialized hardware was used. However, tests on a larger number of users is necessary in order to draw solid conclusions regarding the performance of the proposed system.

  4. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.

    Science.gov (United States)

    Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo

    2011-01-01

    This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE

  5. Improved signal processing approaches in an offline simulation of a hybrid brain–computer interface

    Science.gov (United States)

    Brunner, Clemens; Allison, Brendan Z.; Krusienski, Dean J.; Kaiser, Vera; Müller-Putz, Gernot R.; Pfurtscheller, Gert; Neuper, Christa

    2012-01-01

    In a conventional brain–computer interface (BCI) system, users perform mental tasks that yield specific patterns of brain activity. A pattern recognition system determines which brain activity pattern a user is producing and thereby infers the user’s mental task, allowing users to send messages or commands through brain activity alone. Unfortunately, despite extensive research to improve classification accuracy, BCIs almost always exhibit errors, which are sometimes so severe that effective communication is impossible. We recently introduced a new idea to improve accuracy, especially for users with poor performance. In an offline simulation of a “hybrid” BCI, subjects performed two mental tasks independently and then simultaneously. This hybrid BCI could use two different types of brain signals common in BCIs – event-related desynchronization (ERD) and steady-state evoked potentials (SSEPs). This study suggested that such a hybrid BCI is feasible. Here, we re-analyzed the data from our initial study. We explored eight different signal processing methods that aimed to improve classification and further assess both the causes and the extent of the benefits of the hybrid condition. Most analyses showed that the improved methods described here yielded a statistically significant improvement over our initial study. Some of these improvements could be relevant to conventional BCIs as well. Moreover, the number of illiterates could be reduced with the hybrid condition. Results are also discussed in terms of dual task interference and relevance to protocol design in hybrid BCIs. PMID:20153371

  6. A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks

    Directory of Open Access Journals (Sweden)

    Tao Geng

    2008-01-01

    Full Text Available A novel 4-class single-trial brain computer interface (BCI based on two (rather than four or more binary linear discriminant analysis (LDA classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms.

  7. A tactile P300 brain-computer interface

    NARCIS (Netherlands)

    Brouwer, A.M.; Erp, J.B.F. van

    2010-01-01

    De werking van de eerste Brain-Computer-Interface gebaseerd op tactiele EEG response wordt gedemonstreerd en het effect van het aantal gebruikte vibro-tactiele tactoren en stimulus-timing parameters wordt onderzocht

  8. Implementation av ett interface till Emotiv Epoc

    OpenAIRE

    Hansson, Nicklas

    2011-01-01

    The eld of Brain-computer interfaces (BCI) concerns linking together an external device with the brain of a human or an animal. By doing this the conventional use of a mouse or keyboard can be circumvented, which can greatly benefit people with different types of diseases that cause paralysis or other loss of motor control, such as Amyotrophic lateral sclerosis (ALS). A BCI can also be used for cognitive training of either healthy or mentally impaired subjects to increase cognitive capabiliti...

  9. Optimizing the stimulus presentation paradigm design for the P300-based brain-computer interface using performance prediction.

    Science.gov (United States)

    Mainsah, B O; Reeves, G; Collins, L M; Throckmorton, C S

    2017-08-01

    The role of a brain-computer interface (BCI) is to discern a user's intended message or action by extracting and decoding relevant information from brain signals. Stimulus-driven BCIs, such as the P300 speller, rely on detecting event-related potentials (ERPs) in response to a user attending to relevant or target stimulus events. However, this process is error-prone because the ERPs are embedded in noisy electroencephalography (EEG) data, representing a fundamental problem in communication of the uncertainty in the information that is received during noisy transmission. A BCI can be modeled as a noisy communication system and an information-theoretic approach can be exploited to design a stimulus presentation paradigm to maximize the information content that is presented to the user. However, previous methods that focused on designing error-correcting codes failed to provide significant performance improvements due to underestimating the effects of psycho-physiological factors on the P300 ERP elicitation process and a limited ability to predict online performance with their proposed methods. Maximizing the information rate favors the selection of stimulus presentation patterns with increased target presentation frequency, which exacerbates refractory effects and negatively impacts performance within the context of an oddball paradigm. An information-theoretic approach that seeks to understand the fundamental trade-off between information rate and reliability is desirable. We developed a performance-based paradigm (PBP) by tuning specific parameters of the stimulus presentation paradigm to maximize performance while minimizing refractory effects. We used a probabilistic-based performance prediction method as an evaluation criterion to select a final configuration of the PBP. With our PBP, we demonstrate statistically significant improvements in online performance, both in accuracy and spelling rate, compared to the conventional row-column paradigm. By accounting for

  10. Comparison of tactile, auditory and visual modality for brain-computer interface use: A case study with a patient in the locked-in state

    Directory of Open Access Journals (Sweden)

    Tobias eKaufmann

    2013-07-01

    Full Text Available This paper describes a case study with a patient in the classic locked-in state, who currently has no means of independent communication. Following a user-centered approach, we investigated event-related potentials elicited in different modalities for use in brain-computer interface systems. Such systems could provide her with an alternative communication channel. To investigate the most viable modality for achieving BCI based communication, classic oddball paradigms (1 rare and 1 frequent stimulus, ratio 1:5 in the visual, auditory and tactile modality were conducted (2 runs per modality. Classifiers were built on one run and tested offline on another run (and vice versa. In these paradigms, the tactile modality was clearly superior to other modalities, displaying high offline accuracy even when classification was performed on single trials only. Consequently, we tested the tactile paradigm online and the patient successfully selected targets without any error. Furthermore, we investigated use of the visual or tactile modality for different BCI systems with more than two selection options. In the visual modality, several BCI paradigms were tested offline. Neither matrix-based nor so-called gaze-independent paradigms constituted a means of control. These results may thus question the gaze-independence of current gaze-independent approaches to BCI. A tactile four-choice BCI resulted in high offline classification accuracies. Yet, online use raised various issues. Although performance was clearly above chance, practical daily life use appeared unlikely when compared to other communication approaches (e.g. partner scanning. Our results emphasize the need for user-centered design in BCI development including identification of the best stimulus modality for a particular user. Finally, the paper discusses feasibility of EEG-based BCI systems for patients in classic locked-in state and compares BCI to other AT solutions that we also tested during the

  11. As above, so below? Towards understanding inverse models in BCI

    Science.gov (United States)

    Lindgren, Jussi T.

    2018-02-01

    Objective. In brain-computer interfaces (BCI), measurements of the user’s brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume. Approach. We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG. Main results. Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches. Significance. The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.

  12. Fuzzy Tracking and Control Algorithm for an SSVEP-Based BCI System

    Directory of Open Access Journals (Sweden)

    Yeou-Jiunn Chen

    2016-09-01

    Full Text Available Subjects with amyotrophic lateral sclerosis (ALS consistently experience decreasing quality of life because of this distinctive disease. Thus, a practical brain-computer interface (BCI application can effectively help subjects with ALS to participate in communication or entertainment. In this study, a fuzzy tracking and control algorithm is proposed for developing a BCI remote control system. To represent the characteristics of the measured electroencephalography (EEG signals after visual stimulation, a fast Fourier transform is applied to extract the EEG features. A self-developed fuzzy tracking algorithm quickly traces the changes of EEG signals. The accuracy and stability of a BCI system can be greatly improved by using a fuzzy control algorithm. Fifteen subjects were asked to attend a performance test of this BCI system. The canonical correlation analysis (CCA was adopted to compare the proposed approach, and the average recognition rates are 96.97% and 94.49% for proposed approach and CCA, respectively. The experimental results showed that the proposed approach is preferable to CCA. Overall, the proposed fuzzy tracking and control algorithm applied in the BCI system can profoundly help subjects with ALS to control air swimmer drone vehicles for entertainment purposes.

  13. (Covert attention and visual speller design in an ERP-based brain-computer interface

    Directory of Open Access Journals (Sweden)

    Treder Matthias S

    2010-05-01

    Full Text Available Abstract Background In a visual oddball paradigm, attention to an event usually modulates the event-related potential (ERP. An ERP-based brain-computer interface (BCI exploits this neural mechanism for communication. Hitherto, it was unclear to what extent the accuracy of such a BCI requires eye movements (overt attention or whether it is also feasible for targets in the visual periphery (covert attention. Also unclear was how the visual design of the BCI can be improved to meet peculiarities of peripheral vision such as low spatial acuity and crowding. Method Healthy participants (N = 13 performed a copy-spelling task wherein they had to count target intensifications. EEG and eye movements were recorded concurrently. First, (covert attention was investigated by way of a target fixation condition and a central fixation condition. In the latter, participants had to fixate a dot in the center of the screen and allocate their attention to a target in the visual periphery. Second, the effect of visual speller layout was investigated by comparing the symbol Matrix to an ERP-based Hex-o-Spell, a two-levels speller consisting of six discs arranged on an invisible hexagon. Results We assessed counting errors, ERP amplitudes, and offline classification performance. There is an advantage (i.e., less errors, larger ERP amplitude modulation, better classification of overt attention over covert attention, and there is also an advantage of the Hex-o-Spell over the Matrix. Using overt attention, P1, N1, P2, N2, and P3 components are enhanced by attention. Using covert attention, only N2 and P3 are enhanced for both spellers, and N1 and P2 are modulated when using the Hex-o-Spell but not when using the Matrix. Consequently, classifiers rely mainly on early evoked potentials in overt attention and on later cognitive components in covert attention. Conclusions Both overt and covert attention can be used to drive an ERP-based BCI, but performance is markedly lower

  14. [Neurophysiological Foundations and Practical Realizations of the Brain-Machine Interfaces the Technology in Neurological Rehabilitation].

    Science.gov (United States)

    Kaplan, A Ya

    2016-01-01

    Technology brain-computer interface (BCI) based on the registration and interpretation of EEG has recently become one of the most popular developments in neuroscience and psychophysiology. This is due not only to the intended future use of these technologies in many areas of practical human activity, but also to the fact that IMC--is a completely new paradigm in psychophysiology, allowing test hypotheses about the possibilities of the human brain to the development of skills of interaction with the outside world without the mediation of the motor system, i.e. only with the help of voluntary modulation of EEG generators. This paper examines the theoretical and experimental basis, the current state and prospects of development of training, communicational and assisting complexes based on BCI to control them without muscular effort on the basis of mental commands detected in the EEG of patients with severely impaired speech and motor system.

  15. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    Science.gov (United States)

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  16. Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients

    Directory of Open Access Journals (Sweden)

    Jessica Cantillo-Negrete

    2018-01-01

    Full Text Available Motor imagery-based brain-computer interfaces (BCI have shown potential for the rehabilitation of stroke patients; however, low performance has restricted their application in clinical environments. Therefore, this work presents the implementation of a BCI system, coupled to a robotic hand orthosis and driven by hand motor imagery of healthy subjects and the paralysed hand of stroke patients. A novel processing stage was designed using a bank of temporal filters, the common spatial pattern algorithm for feature extraction and particle swarm optimisation for feature selection. Offline tests were performed for testing the proposed processing stage, and results were compared with those computed with common spatial patterns. Afterwards, online tests with healthy subjects were performed in which the orthosis was activated by the system. Stroke patients’ average performance was 74.1 ± 11%. For 4 out of 6 patients, the proposed method showed a statistically significant higher performance than the common spatial pattern method. Healthy subjects’ average offline and online performances were of 76.2 ± 7.6% and 70 ± 6.7, respectively. For 3 out of 8 healthy subjects, the proposed method showed a statistically significant higher performance than the common spatial pattern method. System’s performance showed that it has a potential to be used for hand rehabilitation of stroke patients.

  17. Selección de Canales en Sistemas BCI basados en Potenciales P300 mediante Inteligencia de Enjambre

    Directory of Open Access Journals (Sweden)

    V. Martínez-Cagigal

    2017-10-01

    Full Text Available Resumen: Los sistemas Brain-Computer Interface (BCI se definen como sistemas de comunicación que monitorizan la actividad cerebral y traducen determinadas características, correspondientes a las intenciones del usuario, en comandos de control de un dispositivo. La selección de canales en los sistemas BCI es fundamental para evitar el sobre-entrenamiento del clasificador, reducir la carga computacional y aumentar la comodidad del usuario. A pesar de que se han desarrollado varios algoritmos con anterioridad para tal fin, las metaheurísticas basadas en inteligencia de enjambre aún no han sido suficientemente explotadas en los sistemas BCI basados en potenciales P300. En este estudio se muestra una comparativa entre cinco métodos de enjambre, basados en el comportamiento de sistemas biológicos, aplicados con el objetivo de optimizar la selección de canales en este tipo de sistemas. Los métodos se han evaluado sobre la base de datos de la “III BCI Competition 2005”, reportando precisiones similares o, en algunos casos, incluso más altas que las obtenidas sin realizar ningún tipo de selección. Dado que los cinco métodos se han demostrado capaces de disminuir drásticamente los 64 canales originales a menos de la mitad sin comprometer el rendimiento del sistema, así como de superar el conjunto típico de 8 canales y el método backward elimination, se concluye que todos ellos son adecuados para su aplicación en la selección de canales en sistemas P300-BCI. Abstract: Brain-Computer Interfaces (BCI are direct communication pathways between the brain and the environment that translate certain features, which correspond to users’ intentions, into device control commands. Channel selection in BCI systems is essential to avoid over-fitting, to reduce the computational cost and to increase the users’ comfort. Although several algorithms have previously developed for that purpose

  18. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment.

    Science.gov (United States)

    Aricò, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Colosimo, Alfredo; Bonelli, Stefano; Golfetti, Alessia; Pozzi, Simone; Imbert, Jean-Paul; Granger, Géraud; Benhacene, Raïlane; Babiloni, Fabio

    2016-01-01

    Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under - and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (É cole Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload.

  19. An auditory multiclass brain-computer interface with natural stimuli: Usability evaluation with healthy participants and a motor impaired end user.

    Science.gov (United States)

    Simon, Nadine; Käthner, Ivo; Ruf, Carolin A; Pasqualotto, Emanuele; Kübler, Andrea; Halder, Sebastian

    2014-01-01

    Brain-computer interfaces (BCIs) can serve as muscle independent communication aids. Persons, who are unable to control their eye muscles (e.g., in the completely locked-in state) or have severe visual impairments for other reasons, need BCI systems that do not rely on the visual modality. For this reason, BCIs that employ auditory stimuli were suggested. In this study, a multiclass BCI spelling system was implemented that uses animal voices with directional cues to code rows and columns of a letter matrix. To reveal possible training effects with the system, 11 healthy participants performed spelling tasks on 2 consecutive days. In a second step, the system was tested by a participant with amyotrophic lateral sclerosis (ALS) in two sessions. In the first session, healthy participants spelled with an average accuracy of 76% (3.29 bits/min) that increased to 90% (4.23 bits/min) on the second day. Spelling accuracy by the participant with ALS was 20% in the first and 47% in the second session. The results indicate a strong training effect for both the healthy participants and the participant with ALS. While healthy participants reached high accuracies in the first session and second session, accuracies for the participant with ALS were not sufficient for satisfactory communication in both sessions. More training sessions might be needed to improve spelling accuracies. The study demonstrated the feasibility of the auditory BCI with healthy users and stresses the importance of training with auditory multiclass BCIs, especially for potential end-users of BCI with disease.

  20. An auditory multiclass brain-computer interface with natural stimuli: usability evaluation with healthy participants and a motor impaired end user

    Directory of Open Access Journals (Sweden)

    Nadine eSimon

    2015-01-01

    Full Text Available Brain-computer interfaces (BCIs can serve as muscle independent communication aids. Persons, who are unable to control their eye muscles (e.g. in the completely locked-in state or have severe visual impairments for other reasons, need BCI systems that do not rely on the visual modality. For this reason, BCIs that employ auditory stimuli were suggested. In this study, a multiclass BCI spelling system was implemented that uses animal voices with directional cues to code rows and columns of a letter matrix. To reveal possible training effects with the system, 11 healthy participants performed spelling tasks on two consecutive days. In a second step, the system was tested by a participant with amyotrophic lateral sclerosis (ALS in two sessions. In the first session, healthy participants spelled with an average accuracy of 76% (3.29 bits/min that increased to 90% (4.23 bits/min on the second day. Spelling accuracy by the participant with ALS was 20% in the first and 47% in the second session. The results indicate a strong training effect for both the healthy participants and the participant with ALS. While healthy participants reached high accuracies in the first session and second session, accuracies for the participant with ALS were not sufficient for satisfactory communication in both sessions. More training sessions might be needed to improve spelling accuracies. The study demonstrated the feasibility of the auditory BCI with healthy users and stresses the importance of training with auditory multiclass BCIs, especially for potential end-users of BCI with disease.