WorldWideScience

Sample records for brain tumor stem-like

  1. Chemo-predictive assay for targeting cancer stem-like cells in patients affected by brain tumors.

    Directory of Open Access Journals (Sweden)

    Sarah E Mathis

    Full Text Available Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID, which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1 and a 5-month female (patient 2, affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity

  2. Global expression profile of tumor stem-like cells isolated from MMQ rat prolactinoma cell

    OpenAIRE

    Su, Zhipeng; Cai, Lin; Lu, Jianglong; Li, Chuzhong; Gui, Songbai; Liu, Chunhui; Wang, Chengde; Li, Qun; Zhuge, Qichuan; Zhang, Yazhuo

    2017-01-01

    Background Cancer stem cells (CSCs), which have been isolated from various malignancies, were closely correlated with the occurrence, progression, metastasis and recurrence of the malignant cancer. Little is known about the tumor stem-like cells (TSLCs) isolated from benign tumors. Here we want to explore the global expression profile of RNA of tumor stem-like cells isolated from MMQ rat prolactinoma cells. Methods In this study, total RNA was extracted from MMQ cells and MMQ tumor stem-like ...

  3. Global expression profile of tumor stem-like cells isolated from MMQ rat prolactinoma cell.

    Science.gov (United States)

    Su, Zhipeng; Cai, Lin; Lu, Jianglong; Li, Chuzhong; Gui, Songbai; Liu, Chunhui; Wang, Chengde; Li, Qun; Zhuge, Qichuan; Zhang, Yazhuo

    2017-01-01

    Cancer stem cells (CSCs), which have been isolated from various malignancies, were closely correlated with the occurrence, progression, metastasis and recurrence of the malignant cancer. Little is known about the tumor stem-like cells (TSLCs) isolated from benign tumors. Here we want to explore the global expression profile of RNA of tumor stem-like cells isolated from MMQ rat prolactinoma cells. In this study, total RNA was extracted from MMQ cells and MMQ tumor stem-like cells. RNA expression profiles were determined by Agilent Rat 8 × 60 K Microarray. Then we used the qRT-PCR to test the result of Microarray, and found VEGFA had a distinct pattern of expression in MMQ tumor stem-like cells. Then WB and ELISA were used to confirm the VEGFA protein level of tumor sphere cultured from both MMQ cell and human prolactinoma cell. Finally, CCK-8 was used to evaluate the reaction of MMQ tumor stem-like cells to small interfering RNAs intervention and bevacizumab treatment. The results of Microarray showed that 566 known RNA were over-expressed and 532 known RNA were low-expressed in the MMQ tumor stem-like cells. These genes were mainly involved in 15 different signaling pathways. In pathway in cancer and cell cycle, Bcl2, VEGFA, PTEN, Jun, Fos, APC2 were up-regulated and Ccna2, Cdc25a, Mcm3, Mcm6, Ccnb2, Mcm5, Cdk1, Gadd45a, Myc were down-regulated in the MMQ tumor stem-like cells. The expression of VEGFA were high in tumor spheres cultured from both MMQ cell and human prolactinomas. Down-regulation of VEGFA by small interfering RNAs partially decreased cell viability of MMQ tumor stem-like cells in vitro. Bevacizumab partially suppressed the proliferation of MMQ tumor stem-like cells. Our findings characterize the pattern of RNA expression of tumor stem-like cells isolated from MMQ cells. VEGFA may act as a potential therapeutic target for tumor stem-like cells of prolactinomas.

  4. Molecular Imaging in Tracking Tumor Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Tian Xia

    2012-01-01

    Full Text Available Cancer remains a major public health problem in many countries. It was found to contain a subset of cancer stem cells (CSCs that are capable of proliferation and self-renewal, and differentiation into various types of cancer cells. CSCs often display characteristics of chemotherapy resistance and radiotherapy resistance. Numerous putative biomarkers of CSCs are currently identified including CD133, CD44, CD24, ALDH (aldehyde dehydrogenase, and ABCG2. Interestingly, no single marker is exclusively expressed by CSCs. Thus, the various combinations of different biomarkers will be possible to identify CSCs, and considerable work is being done to recognize new ones. In order to demonstrate the mechanisms of resistance and response to therapy and predict the outcome as well as prognosis, the ways to track and identify CSCs will be extremely important. The technologies of molecular imaging will reveal mechanisms of cancer progression and provide visual targets for novel therapeutics. Limited studies were investigated on the detection of various types of CSCs by molecular imaging. Although the tracking of circulating CSCs is still hampered by technological challenges, personalized diagnosis and therapies of cancers are expected to be established based on increased understanding of molecular imaging of cancer stem-like cells biomarkers.

  5. HSP DNAJB8 Controls Tumor-Initiating Ability in Renal Cancer Stem-like Cells

    NARCIS (Netherlands)

    Nishizawa, Satoshi; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Takahashi, Akari; Tamura, Yasuaki; Mori, Takashi; Kanaseki, Takayuki; Kamiguchi, Kenjiro; Asanuma, Hiroko; Morita, Rena; Sokolovskaya, Alice; Matsuzaki, Junichi; Yamada, Ren; Fujii, Reona; Kampinga, Harm H.; Kondo, Toru; Hasegawa, Tadashi; Hara, Isao; Sato, Noriyuki

    2012-01-01

    Cancer stem-like cells (CSC) are a small population of cancer cells with superior tumor initiating, self-renewal, and differentiation properties. In this study, we show that the cancer-testis antigen and HSP40 family member DNAJB8 contributes to the CSC phenotype in renal cell carcinoma (RCC).

  6. Gene transfection in primary stem-like cells of giant cell tumor of bone

    Directory of Open Access Journals (Sweden)

    Shalini Singh

    2010-09-01

    Full Text Available Shalini Singh1, Isabella Mak1, Patricia Power1, Melissa Cunnigham2, Robert Turcotte3, Michelle Ghert11Departments of Surgery, 2Biology, McMaster University, Hamilton, Ontario; 3Department of Orthopaedic Surgery, McGill University Medical Centre, Montreal, Quebec, CanadaAbstract: The neoplastic stem-like stromal cell of giant cell tumor of bone (GCT survives for multiple passages in primary culture with a stable phenotype, and exhibits multipotent characteristics. The pathophysiology of this tumor has been studied through the primary culture of these cells. However, successful gene transfer of these cells has not been reported to date. In this short report, we describe the development of the first reported technique that results in efficient gene transfection in primary stem-like cells of GCT.Keywords: gene, transfection, primary cells, TWIST, giant cell tumor

  7. Genetic Evolution of Glioblastoma Stem-Like Cells From Primary to Recurrent Tumor.

    Science.gov (United States)

    Orzan, Francesca; De Bacco, Francesca; Crisafulli, Giovanni; Pellegatta, Serena; Mussolin, Benedetta; Siravegna, Giulia; D'Ambrosio, Antonio; Comoglio, Paolo M; Finocchiaro, Gaetano; Boccaccio, Carla

    2017-11-01

    Glioblastoma (GBM) is a lethal tumor that displays remarkable genetic heterogeneity. It is also known that GBM contains a cell hierarchy driven by GBM stem-like cells (GSCs), responsible for tumor generation, therapeutic resistance, and relapse. An important and still open issue is whether phylogenetically related GSCs can be found in matched primary and recurrent GBMs, and reflect tumor genetic evolution under therapeutic pressure. To address this, we analyzed the mutational profile of GSCs isolated from either human primary GBMs (primary GSCs) or their matched tumors recurring after surgery and chemoradiotherapy (recurrent GSCs). We found that recurrent GSCs can accumulate temozolomide-related mutations over primary GSCs, following both linear and branched patterns. In the latter case, primary and recurrent GSCs share a common set of lesions, but also harbor distinctive mutations indicating that primary and recurrent GSCs derive from a putative common ancestor GSC by divergent genetic evolution. Interestingly, TP53 mutations distinctive of recurrent GSCs were detectable at low frequency in the corresponding primary tumors and likely marked pre-existent subclones that evolved under therapeutic pressure and expanded in the relapsing tumor. Consistently, recurrent GSCs displayed in vitro greater therapeutic resistance than primary GSCs. Overall, these data indicate that (a) phylogenetically related GSCs are found in matched primary and recurrent GBMs and (b) recurrent GSCs likely pre-exist in the untreated primary tumor and are both mutagenized and positively selected by chemoradiotherapy. Stem Cells 2017;35:2218-2228. © 2017 AlphaMed Press.

  8. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  9. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    DEFF Research Database (Denmark)

    Kristoffersen, Karina

    2013-01-01

    for new molecular and cellular targets that can improve the prognosis for GBM patients. One such target is the brain cancer stem-like cells (bCSC) that are believed to be responsible for tumor initiation, progression, treatment resistance and ultimately relapse. bCSC are identified based...... treatment. The overall aim of the present PhD project has been to study the functional role of EGFR and Notch activity in bCSCs stem cell-like features and tumorigenic potential with the purpose of deepen our knowledge about the significance of these pathways in the bCSC population in GBM. By establishing...

  10. HDAC1 Upregulation by NANOG Promotes Multidrug Resistance and a Stem-like Phenotype in Immune Edited Tumor Cells.

    Science.gov (United States)

    Song, Kwon-Ho; Choi, Chel Hun; Lee, Hyo-Jung; Oh, Se Jin; Woo, Seon Rang; Hong, Soon-Oh; Noh, Kyung Hee; Cho, Hanbyoul; Chung, Eun Joo; Kim, Jae-Hoon; Chung, Joon-Yong; Hewitt, Stephen M; Baek, Seungki; Lee, Kyung-Mi; Yee, Cassian; Son, Minjoo; Mao, Chih-Ping; Wu, T C; Kim, Tae Woo

    2017-09-15

    Cancer immunoediting drives the adaptation of tumor cells to host immune surveillance. Immunoediting driven by antigen (Ag)-specific T cells enriches NANOG expression in tumor cells, resulting in a stem-like phenotype and immune resistance. Here, we identify HDAC1 as a key mediator of the NANOG-associated phenotype. NANOG upregulated HDAC1 through promoter occupancy, thereby decreasing histone H3 acetylation on K14 and K27. NANOG-dependent, HDAC1-driven epigenetic silencing of cell-cycle inhibitors CDKN2D and CDKN1B induced stem-like features. Silencing of TRIM17 and NOXA induced immune and drug resistance in tumor cells by increasing antiapoptotic MCL1. Importantly, HDAC inhibition synergized with Ag-specific adoptive T-cell therapy to control immune refractory cancers. Our results reveal that NANOG influences the epigenetic state of tumor cells via HDAC1, and they encourage a rational application of epigenetic modulators and immunotherapy in treatment of NANOG+ refractory cancer types. Cancer Res; 77(18); 5039-53. ©2017 AACR. ©2017 American Association for Cancer Research.

  11. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  12. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages

    DEFF Research Database (Denmark)

    Raggi, Chiara; Correnti, Margherita; Sica, Antonio

    2017-01-01

    BACKGROUND AND AIMS: Therapeutically challenging subset, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may a...

  13. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  14. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  15. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  16. Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells

    Science.gov (United States)

    Chen, Chia-Lin; Tsukamoto, Hidekazu; Liu, Jian-Chang; Kashiwabara, Claudine; Feldman, Douglas; Sher, Linda; Dooley, Steven; French, Samuel W.; Mishra, Lopa; Petrovic, Lydia; Jeong, Joseph H.; Machida, Keigo

    2013-01-01

    Tumor-initiating stem-like cells (TICs) are resistant to chemotherapy and associated with hepatocellular carcinoma (HCC) caused by HCV and/or alcohol-related chronic liver injury. Using HCV Tg mouse models and patients with HCC, we isolated CD133+ TICs and identified the pluripotency marker NANOG as a direct target of TLR4, which drives the tumor-initiating activity of TICs. These TLR4/NANOG–dependent TICs were defective in the TGF-β tumor suppressor pathway. Functional oncogene screening of a TIC cDNA library identified Yap1 and Igf2bp3 as NANOG-dependent genes that inactivate TGF-β signaling. Mechanistically, we determined that YAP1 mediates cytoplasmic retention of phosphorylated SMAD3 and suppresses SMAD3 phosphorylation/activation by the IGF2BP3/AKT/mTOR pathway. Silencing of both YAP1 and IGF2BP3 restored TGF-β signaling, inhibited pluripotency genes and tumorigenesis, and abrogated chemoresistance of TICs. Mice with defective TGF-β signaling (Spnb2+/– mice) exhibited enhanced liver TLR4 expression and developed HCC in a TLR4-dependent manner. Taken together, these results suggest that the activated TLR4/NANOG oncogenic pathway is linked to suppression of cytostatic TGF-β signaling and could potentially serve as a therapeutic target for HCV-related HCC. PMID:23921128

  17. β-Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Bing Yan

    2013-01-01

    Full Text Available Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro. These cells were also more superior in spheroid colony formation (in vitro and tumorigenicity (in vivo and positively associated with microvessel density (in vivo. β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro. β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.

  18. Circulating tumor cells with stem-like phenotypes for diagnosis, prognosis and therapeutic response evaluation in hepatocellular carcinoma.

    Science.gov (United States)

    Fan, Jia; Guo, Wei; Sun, Yun-Fan; Shen, Minna; Ma, Xiao-Lu; Wu, Jiong; Zhang, Chunyan; Zhou, Yan; Xu, Yang; Hu, Bo; Zhang, Min; Wang, Gang; Chen, Wei-Qin; Guo, Lin; Lu, Renquan; Zhou, Chao-Hui; Zhang, Xin; Shi, Ying-Hong; Qiu, Shuang-Jian; Pan, Bai-Shen; Cao, Ya; Zhou, Jian; Yang, Xin-Rong

    2018-01-26

    In present study, we assessed the clinical value of circulating tumor cells (CTCs) with stem-like phenotypes for diagnosis, prognosis and surveillance in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) by an optimized QPCR-based detection platform. Differing subsets of CTCs were investigated, and a multimarker diagnostic CTC panel was constructed in a multicenter-patient study with independent validation (total n=1006), including healthy individuals, patients with chronic hepatitis B infection (CHB), liver cirrhosis (LC), benign hepatic lesion (BHL) and HBV-related HCC, with area under the receiver operating characteristic curve (AUC-ROC) reflecting diagnostic accuracy. The role of CTC panel in treatment response surveillance and its prognostic significance were further investigated. The AUC of CTC panel was 0.88 in training set [sensitivity=72·5%, specificity=95.0%, positive predictive value (PPV) =92.4, negative predictive value (NPV)=77.8] and 0.93 in validation set (sensitivity=82·1%; specificity=94.2%, PPV=89.9, NPV=89.3). This panel performed equally well in detecting early-stage and α-fetoprotein (AFP)-negative HCC, as well as differentiating HCC from CHB, LC and BHL. The CTC load was decreased significantly after tumor resection, and patients with persistently high CTC load showed a propensity of tumor recurrence after surgery. The prognostic significance of CTC panel in predicting tumor recurrence was further confirmed (training: HR=2.692, 95% CI, 1.617-4.483, P <0.001; validation: HR=3.127, 95% CI, 1.360-7.190, P =0.007). Our CTC panel showed high sensitivity and specificity in HCC diagnosis and could be a real-time parameter for risk prediction and treatment monitoring, enabling early decision-making to tailor effective antitumor strategies. Copyright ©2018, American Association for Cancer Research.

  19. Brain tumor (image)

    Science.gov (United States)

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  20. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Needs a Kidney Transplant Vision Facts and Myths Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  1. Brain Tumor Diagnosis

    Science.gov (United States)

    ... Young Adult Guidelines For brain tumor information and support Call: 800-886-ABTA (2282) or Complete our contact form Brain Tumor Information Brain Anatomy Brain Tumor Symptoms Diagnosis Newly Diagnosed Neurological Exam ...

  2. Brain Tumor Symptoms

    Science.gov (United States)

    ... Young Adult Guidelines For brain tumor information and support Call: 800-886-ABTA (2282) or Complete our contact form Brain Tumor Information Brain Anatomy Brain Tumor Symptoms Headaches Seizures Memory Depression Mood ...

  3. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... navigate their brain tumor diagnosis. WATCH AND SHARE Brain tumors and their treatment can be deadly so ... Pediatric Central Nervous System Cancers Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  4. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  5. Fibroblasts induce expression of FGF4 in ovarian cancer stem-like cells/cancer-initiating cells and upregulate their tumor initiation capacity.

    Science.gov (United States)

    Yasuda, Kazuyo; Torigoe, Toshihiko; Mariya, Tasuku; Asano, Takuya; Kuroda, Takafumi; Matsuzaki, Junichi; Ikeda, Kanae; Yamauchi, Makoto; Emori, Makoto; Asanuma, Hiroko; Hasegawa, Tadashi; Saito, Tsuyoshi; Hirohashi, Yoshihiko; Sato, Noriyuki

    2014-12-01

    Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cells within cancer that contribute to cancer initiation and progression. Cancer-associated fibroblasts (CAFs) are stromal fibroblasts surrounding tumor cells, and they have important roles in tumor growth and tumor progression. It has been suggested that stromal fibroblasts and CSCs/CICs might mutually cooperate to enhance their growth and tumorigenic capacity. In this study, we investigated the effects of fibroblasts on tumor-initiating capacity and stem-like properties of ovarian CSCs/CICs. CSCs/CICs were isolated from the ovarian carcinoma cell line HTBoA as aldehyde dehydrogenase 1 high (ALDH1(high)) population by the ALDEFLUOR assay. Histological examination of tumor tissues derived from ALDH1(high) cells revealed few fibrous stroma, whereas those derived from fibroblast-mixed ALDH1(high) cells showed abundant fibrous stroma formation. In vivo tumor-initiating capacity and in vitro sphere-forming capacity of ALDH1(high) cells were enhanced in the presence of fibroblasts. Gene expression analysis revealed that fibroblast-mixed ALDH1(high) cells had enhanced expression of fibroblast growth factor 4 (FGF4) as well as stemness-associated genes such as SOX2 and POU5F1. Sphere-forming capacity of ALDH1(high) cells was suppressed by small-interfering RNA (siRNA)-mediated knockdown of FGFR2, the receptor for FGF4 which was expressed preferentially in ALDH1(high) cells. Taken together, the results indicate that interaction of fibroblasts with ovarian CSCs/CICs enhanced tumor-initiating capacity and stem-like properties through autocrine and paracrine FGF4-FGFR2 signaling.

  6. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  7. Children's Brain Tumor Foundation

    Science.gov (United States)

    ... 2 Family Donate Volunteer Justin's Hope Fund Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  8. Metastatic brain tumor

    Science.gov (United States)

    ... JavaScript. A metastatic brain tumor is cancer that started in another part of the body ... of cancer rarely spread to the brain, such as colon cancer and prostate cancer. In other rare cases, a tumor can ...

  9. Tumor Types: Understanding Brain Tumors

    Science.gov (United States)

    ... to reveal the vast diversity of genetic and epigenetic alterations that exist between brain tumors. This biological ... social workers, psychologists, and nurses. A supportive family environment is also helpful. Surgery GBM’s capacity to wildly ...

  10. Brain Tumor Surgery

    Science.gov (United States)

    ... tumor surgery include: Seizures Weakness Balance/coordination difficulties Memory or cognitive problems Spinal fluid leakage Meningitis Brain swelling Stroke Excess fluid in the brain Coma Death Recovery Time Recovery time depends on: The procedure performed. ...

  11. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway

    Energy Technology Data Exchange (ETDEWEB)

    An, Hyunsook; Kim, Ji Young; Lee, Nahyun; Cho, Youngkwan; Oh, Eunhye [Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of); Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of); Seo, Jae Hong, E-mail: cancer@korea.ac.kr [Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of); Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of)

    2015-10-30

    Cancer stem cells (CSCs) play important roles in the formation, growth and recurrence of tumors, particularly following therapeutic intervention. Salinomycin has received recent attention for its ability to target breast cancer stem cells (BCSCs), but the mechanisms of action involved are not fully understood. In the present study, we sought to investigate the mechanisms responsible for salinomycin's selective targeting of BCSCs and its anti-tumor activity. Salinomycin suppressed cell viability, concomitant with the downregulation of cyclin D1 and increased p27{sup kip1} nuclear accumulation. Mammosphere formation assays revealed that salinomycin suppresses self-renewal of ALDH1-positive BCSCs and downregulates the transcription factors Nanog, Oct4 and Sox2. TUNEL analysis of MDA-MB-231-derived xenografts revealed that salinomycin administration elicited a significant reduction in tumor growth with a marked downregulation of ALDH1 and CD44 levels, but seemingly without the induction of apoptosis. Our findings shed further light on the mechanisms responsible for salinomycin's effects on BCSCs. - Highlights: • Salinomycin suppresses mammosphere formation. • Salinomycin reduces ALDH1 activity and downregulates Nanog, Oct4 and Sox2. • Salinomycin targets BCSCs via an apoptosis-independent pathway.

  12. 8-bromo-7-methoxychrysin Reversed M2 Polarization of Tumor-associated Macrophages Induced by Liver Cancer Stem-like Cells.

    Science.gov (United States)

    Sun, Shuwen; Cui, Yinghong; Ren, Kaiqun; Quan, Meifang; Song, Zhenwei; Zou, Hui; Li, Duo; Zheng, Yu; Cao, Jianguo

    2017-01-01

    Hepatocellular carcinoma (HCC) is related to chronic liver inflammation. M2 polarization of tumor-associated macrophages (TAMs) in the tumor microenvironment promotes liver cancer stem-like cell (LCSLC) self-renewal capability and carcinogenicity. Therefore, reversing M2 polarization of TAMs could be an effective approach to cure HCC. To evaluate whether 8-bromo-7-methoxychrysin (BrMC) has an effect on M2 polarization of TAMs. LCSLC and conditional medium were obtained by sphere forming assay. Identification of LCSLC were analyzed by sphere forming, wound-healing and invasion assay. TAM and effects of BrMC on it were validated by immunofluorescence staining, ELISA and griess assay. Expressions of cancer stem cell and macrophage marker were analyzed by western blotting. Our results showed that BrMC significantly suppressed the expression of the M2 macrophage marker CD163. Furthermore, BrMC influenced the secretion profile of cytokines of TAMs. Mechanistically, BrMC reversed M2 polarization of TAMs due to inhibition of NF-κB activation. BrMC may be a potentially novel flavonoid agent that can be applied for disrupting the interaction of LCSLCs and TAMs.

  13. Brain Tumors and Fatigue

    Science.gov (United States)

    ... can help calm the mind. Meditation, guided imagery, music therapy, and yoga are just a few worth investigating. Home Donor and Privacy Policies Find Resources Disclaimer Donate Subscribe Login American Brain Tumor Association 8550 W. Bryn Mawr Ave. Ste ...

  14. Brain Tumors - Multiple Languages

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Brain Tumors URL of this page: https://medlineplus.gov/languages/braintumors.html Other topics A-Z Expand Section ...

  15. The perivascular niche microenvironment in brain tumor progression

    Science.gov (United States)

    Charles, Nikki

    2010-01-01

    Glioblastoma, the most frequent and aggressive malignant brain tumor, has a very poor prognosis of approximately 1-year. The associated aggressive phenotype and therapeutic resistance of glioblastoma is postulated to be due to putative brain tumor stem-like cells (BTSC). The best hope for improved therapy lies in the ability to understand the molecular biology that controls BTSC behavior. The tumor vascular microenvironment of brain tumors has emerged as important regulators of BTSC behavior. Emerging data have identified the vascular microenvironment as home to a multitude of cell types engaged in various signaling that work collectively to foster a supportive environment for BTSCs. Characterization of the signaling pathways and intercellular communication between resident cell types in the microvascular niche of brain tumors is critical to the identification of potential BTSC-specific targets for therapy. PMID:20714216

  16. Epilepsy and brain tumors

    Science.gov (United States)

    ENGLOT, DARIO J.; CHANG, EDWARD F.; VECHT, CHARLES J.

    2016-01-01

    Seizures are common in patients with brain tumors, and epilepsy can significantly impact patient quality of life. Therefore, a thorough understanding of rates and predictors of seizures, and the likelihood of seizure freedom after resection, is critical in the treatment of brain tumors. Among all tumor types, seizures are most common with glioneuronal tumors (70–80%), particularly in patients with frontotemporal or insular lesions. Seizures are also common in individuals with glioma, with the highest rates of epilepsy (60–75%) observed in patients with low-grade gliomas located in superficial cortical or insular regions. Approximately 20–50% of patients with meningioma and 20–35% of those with brain metastases also suffer from seizures. After tumor resection, approximately 60–90% are rendered seizure-free, with most favorable seizure outcomes seen in individuals with glioneuronal tumors. Gross total resection, earlier surgical therapy, and a lack of generalized seizures are common predictors of a favorable seizure outcome. With regard to anticonvulsant medication selection, evidence-based guidelines for the treatment of focal epilepsy should be followed, and individual patient factors should also be considered, including patient age, sex, organ dysfunction, comorbidity, or cotherapy. As concomitant chemotherapy commonly forms an essential part of glioma treatment, enzyme-inducing anticonvulsants should be avoided when possible. Seizure freedom is the ultimate goal in the treatment of brain tumor patients with epilepsy, given the adverse effects of seizures on quality of life. PMID:26948360

  17. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  18. Drugs Approved for Brain Tumors

    Science.gov (United States)

    ... Ask about Your Treatment Research Drugs Approved for Brain Tumors This page lists cancer drugs approved by the ... that are not listed here. Drugs Approved for Brain Tumors Afinitor (Everolimus) Afinitor Disperz (Everolimus) Avastin (Bevacizumab) Becenum ( ...

  19. Metabolic Reprogramming in Brain Tumors.

    Science.gov (United States)

    Venneti, Sriram; Thompson, Craig B

    2017-01-24

    Next-generation sequencing has substantially enhanced our understanding of the genetics of primary brain tumors by uncovering several novel driver genetic alterations. How many of these genetic modifications contribute to the pathogenesis of brain tumors is not well understood. An exciting paradigm emerging in cancer biology is that oncogenes actively reprogram cellular metabolism to enable tumors to survive and proliferate. We discuss how some of these genetic alterations in brain tumors rewire metabolism. Furthermore, metabolic alterations directly impact epigenetics well beyond classical mechanisms of tumor pathogenesis. Metabolic reprogramming in brain tumors is also influenced by the tumor microenvironment contributing to drug resistance and tumor recurrence. Altered cancer metabolism can be leveraged to noninvasively image brain tumors, which facilitates improved diagnosis and the evaluation of treatment effectiveness. Many of these aspects of altered metabolism provide novel therapeutic opportunities to effectively treat primary brain tumors.

  20. [Markers of brain tumors].

    Science.gov (United States)

    Fumagalli, R; Pezzotta, S; Bernini, F; Racagni, G

    1984-05-19

    Biological markers of tumors are compounds or enzymatic activities measurable in body fluids. Their presence or concentration must be linked to tumoral growth. The markers of the central nervous system tumors are detected in CSF. Alpha-feto-protein, carcinoembryonic antigen, human chorionic gonadotropin, adenohypophyseal peptide hormones, enzymes, etc., have found some application in the early diagnosis of leptomeningeal metastasis. Other applications involve the early detection and recurrency of primary brain tumors, as well as the evaluation of efficacy of their therapy. The tests based on the CSF content of desmosterol and polyamines have been studied extensively. Their rationale is discussed and specificity, sensitivity, efficiency and predictive value are considered. Experimental results concerning a new possible biochemical marker, based on CSF concentration of cyclic adenosine monophosphate, are reported.

  1. Epidemiological features of brain tumors

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2013-01-01

    Full Text Available Brain tumors account for 1.4% of all cancers and 2.4% of all cancer-related deaths. The incidence of brain tumors varies and it is higher in developed countries of Western Europe, North America, Australia and New Zealand. In Serbia, according to data from 2009, malignant brain tumors account for 2. 2 of all tumors, and from all cancer­related deaths, 3.2% is caused by malignant brain tumors. According to recent statistical reports, an overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 persons/year. The most common benign brain tumor in adults is meningioma, which is most present in women, and the most common malignant tumor is glioblastoma, which is most present in adult men. Due to high mortality, especially in patients diagnosed with glioblastoma and significant brain tumor morbidity, there is a constant interest in understanding its etiology in order to possibly prevent tumor occurrence in future and enable more efficient treatment strategies for this fatal brain disease. Despite the continuously growing number of epidemiological studies on possible factors of tumor incidence, the etiology remains unclear. The only established environmental risk factor of gliomas is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor of brain tumor development. However, studies have been inconsistent and inconclusive, so more definite results are still expected.

  2. Epilepsy-related brain tumors.

    Science.gov (United States)

    Ertürk Çetin, Özdem; İşler, Cihan; Uzan, Mustafa; Özkara, Çiğdem

    2017-01-01

    Seizures are among the most common presentations of brain tumors. Several tumor types can cause seizures in varying rates; neuroglial tumors and the gliomas are the most common ones. Brain tumors are the second most common cause of focal intractable epilepsy in epilepsy surgery series, with the highest frequency being dysembryoplastic neuroepithelial tumors and gangliogliomas. Seizure management is an important part of the treatment of patients with brain tumors. This review discusses clinical features and management of seizures in patients with brain tumors, including, neuroglial tumors, gliomas, meningioma and metastases; with the help of recent literature data. Tumor-related seizures are focal seizures with or without secondary generalization. Seizures may occur either as initial symptom or during the course of the disease. Brain tumors related epilepsy tends to be resistant to antiepileptic drugs and treatment of tumor is main step also for the seizure treatment. Early surgery and extent of the tumor removal are important factors for achieving seizure freedom particularly in neuroglial tumors and low grade gliomas. During selection of the appropriate antiepileptic drug, the general approach to partial epilepsies can be followed. There are several factors influencing epileptogenesis in brain tumor-related epilepsy which also explains clinical heterogeneity of epilepsy among tumor types. Identification of molecular markers may guide future therapeutic approaches and further studies are needed to prove antitumor effects of different antiepileptic drugs. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch s...

  4. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...... and medulloblastoma. In this chapter we will cover the present findings of Notch signaling in human glioma and medulloblastoma and try to create an overall picture of its relevance in the pathogenesis of these tumors....

  5. Segmenting Brain Tumors with Symmetry

    OpenAIRE

    Zhang, Hejia; Zhu, Xia; Willke, Theodore L.

    2017-01-01

    We explore encoding brain symmetry into a neural network for a brain tumor segmentation task. A healthy human brain is symmetric at a high level of abstraction, and the high-level asymmetric parts are more likely to be tumor regions. Paying more attention to asymmetries has the potential to boost the performance in brain tumor segmentation. We propose a method to encode brain symmetry into existing neural networks and apply the method to a state-of-the-art neural network for medical imaging s...

  6. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  7. MELK and EZH2 Cooperate to Regulate Medulloblastoma Cancer Stem-like Cell Proliferation and Differentiation.

    Science.gov (United States)

    Liu, Hailong; Sun, Qianwen; Sun, Youliang; Zhang, Junping; Yuan, Hongyu; Pang, Shuhuan; Qi, Xueling; Wang, Haoran; Zhang, Mingshan; Zhang, Hongwei; Yu, Chunjiang; Gu, Chunyu

    2017-09-01

    Medulloblastoma is the most common malignant brain tumor in children. Although accumulated research has suggested that cancer stem-like cells play a key role in medulloblastoma tumorigenesis, the specific molecular mechanism regarding proliferation remains elusive. Here, we reported more abundant expression of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) in medulloblastoma stem-like cells than in neural stem cells and the interaction between the two proteins could mediate the self-renewal of sonic hedgehog subtype medulloblastoma. In human medulloblastoma, extensive nodularity and large-cell/anaplastic subgroups differed according to the staining levels of MELK and EZH2 from the other two subgroups. The proportion of MELK- or EZH2-positive staining status could be considered as a potential indicator for survival. Mechanistically, MELK bound to and phosphorylated EZH2, and its methylation was induced by EZH2 in medulloblastoma, which could regulate the proliferation of cancer stem-like cells. In xenografts, loss of MELK or EZH2 attenuated medulloblastoma stem-like cell-derived tumor growth and promoted differentiation. These findings indicate that MELK-induced phosphorylation and EZH2-mediated methylation in MELK/EZH2 pathway are essential for medulloblastoma stem-like cell-derived tumor proliferation, thereby identifying a potential therapeutic strategy for these patients.Implications: This study demonstrates that the interaction occurring between MELK and EZH2 promotes self-proliferation and stemness, thus representing an attractive therapeutic target and potential candidate for diagnosis of medulloblastoma. Mol Cancer Res; 15(9); 1275-86. ©2017 AACR. ©2017 American Association for Cancer Research.

  8. Brain tumor survivors speak out.

    Science.gov (United States)

    Carlson-Green, Bonnie

    2009-01-01

    Although progress has been made in the treatment of childhood brain tumors,work remains to understand the complexities of disease, treatment, and contextual factors that underlie individual differences in outcome. A combination of both an idiographic approach (incorporating observations made by adult survivors of childhood brain tumors) and a nomothetic approach (reviewing the literature for brain tumor survivors as well as childhood cancer survivors) is presented. Six areas of concern are reviewed from both an idiographic and nomothetic perspective, including social/emotional adjustment, insurance, neurocognitive late effects, sexuality and relationships, employment, and where survivors accessed information about their disease and treatment and possible late effects. Guidelines to assist health care professionals working with childhood brain tumor survivors are offered with the goal of improving psychosocial and neurocognitive outcomes in this population.

  9. Craniotomy for supratentorial brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, Mads; Bundgaard, Helle; Cold, Georg Emil

    2004-01-01

    physiological data) predictive of brain swelling through the dural opening. As a secondary aim the authors attempted to define subdural ICP thresholds associated with brain swelling. METHODS: The study population consisted of 692 patients (mean age 50+/-15 years) scheduled for elective craniotomy...... for supratentorial brain tumors. Brain swelling through the dural opening was estimated according to a four-point scale. The patients were dichotomized as those without cerebral swelling (that is, brain below the dura mater [59 patients] or brain at the level of the dura mater [386 patients]) and those with cerebral...... swelling (that is, moderate brain swelling [205 patients] or pronounced brain swelling [42 patients]). Logistic regression analysis was used to identify subdural ICP (odds ratio [OR] 1.9, 95% confidence interval [CI] 1.72-2.1, p

  10. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...... signaling plays a fundamental role during development. Recent findings have shown that Notch signaling is dysregulated, and contributes to the malignant potential of these tumors. Growing evidence point towards an important role for cancer stem cells in the initiation and maintenance of glioma...... and medulloblastoma. In this chapter we will cover the present findings of Notch signaling in human glioma and medulloblastoma and try to create an overall picture of its relevance in the pathogenesis of these tumors....

  11. Monitoring Radiographic Brain Tumor Progression

    Directory of Open Access Journals (Sweden)

    John H. Sampson

    2011-03-01

    Full Text Available Determining radiographic progression in primary malignant brain tumors has posed a significant challenge to the neuroncology community. Glioblastoma multiforme (GBM, WHO Grade IV through its inherent heterogeneous enhancement, growth patterns, and irregular nature has been difficult to assess for progression. Our ability to detect tumor progression radiographically remains inadequate. Despite the advanced imaging techniques, detecting tumor progression continues to be a clinical challenge. Here we review the different criteria used to detect tumor progression, and highlight the inherent challenges with detection of progression.

  12. Brain Tumor Risk Factors

    Science.gov (United States)

    ... Professional Meetings Order Materials Clinical Trials Support Group Leader Training Adolescent and Young Adult Guidelines For brain ... nitrites), cigarette smoking, cell phone use, and residential power line exposure, for example—are true risk factors ...

  13. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Kobayashi, Alisa [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Maeda, Takeshi [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Fu, Qibin [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Oikawa, Masakazu [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yang, Gen, E-mail: gen.yang@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Konishi, Teruaki, E-mail: tkonishi@nirs.go.jp [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Uchihori, Yukio [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); and others

    2015-03-15

    Highlights: • Existence of radiation induced bystander effects (RIBE) between cancer stem-like cells (CSCs) and non stem-like cancer cells (NSCCs) in human fibrosarcoma HT1080 cells. • Existence of significant difference in generation and response of bystander signals between CSCs and NSCCs. • CSCs are significantly less sensitive to NO scavenger than that of NSCCs in terms of DNA double strand breaks induced by RIBE. - Abstract: Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.

  14. Brain tumors; Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Langen, K.J. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Biophysik; Stoffels, G. [Duesseldorf Univ. (Germany). C. und O. Vogt Inst. fuer Hirnforschung

    2007-09-15

    Magnetic Resonance Tomography (MRT) is the method of choice for the diagnostics of cerebral gliomas, but the differentiation of tumour tissue from unspecific tissue changes is limited. Positron emission tomography (PET) and Single-Photon-Emission-Computed Tomography (SPECT) may offer relevant additional information which allows for a more accurate diagnostics in unclear situations. Especially, radiolabeled amino acids offer a better delineation of cerebral gliomas which allows an improved guidance of biopsy, planning of surgery and radiation therapy. Furthermore, amino acid imaging appears to be useful to differentiate tumor recurrence from unspecific posttherapeutic tissue, to predict the prognosis especially in low grade gliomas and to monitor the metabolic response during tumor therapy. (orig.)

  15. Pediatric brain tumors; Kindliche Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Bodea, S. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany); Muehl-Benninghaus, R.

    2017-09-15

    Brain tumors differ between children and adults both in histology and localization. Malignant gliomas and meningiomas predominate in adults while medulloblastomas and low-grade astrocytomas are the most frequent brain tumors in children. More than one half (50-70%) of pediatric brain tumors have an infratentorial location but only approximately 30% in adults. Brain tumors can be recognized in sonography, cranial computed tomography (CCT) and magnetic resonance imaging (MRI) by their space-consuming character and by their divergent density and intensity in comparison to normal brain parenchyma. They can grow extrusively, even infiltrate the parenchyma or originate from it. Besides clinical symptoms and diagnostics this article describes the most common pediatric brain tumors, i.e. astrocytoma, medulloblastoma, brainstem glioma, craniopharyngioma, neurofibromatosis and ganglioglioma. The most important imaging criteria are outlined. (orig.) [German] Sowohl Histologie als auch Lokalisation von Hirntumoren unterscheiden sich bei Kindern und Erwachsenen. Waehrend maligne Gliome und Meningeome bei Erwachsenen vorherrschen, kommen bei Kindern ueberwiegend Medulloblastome und niedriggradige Astrozytome vor. Mehr als die Haelfte (50-70 %) aller kindlichen Hirntumoren sind infratentoriell lokalisiert, dagegen sind es bei Erwachsenen nur etwa 30 %. Im Ultraschall, in der kranialen CT (CCT) oder MRT koennen Hirntumoren durch ihren raumfordernden Charakter und ihrer zum normalen Parenchym abweichenden Dichte oder Signalintensitaet erkannt werden. Sie koennen verdraengend wachsen, z. T. auch das Parenchym infiltrieren oder von diesem ausgehen. Neben der klinischen Symptomatik und Diagnostik werden im vorliegenden Artikel die haeufigsten kindlichen Hirntumoren, das Astrozytom, Medulloblastom, Hirnstammgliom, Kraniopharyngeom, die Neurofibromatose und das Gangliogliom beschrieben. Die wichtigsten bildgebende Kriterien werden dargestellt. (orig.)

  16. Pathological classification of brain tumors.

    Science.gov (United States)

    Pollo, B

    2012-04-01

    The tumors of the central nervous system are classified according to the last international classification published by World Health Organization. The Classification of Tumors of the Central Nervous System was done on 2007, based on morphological features, growth pattern and molecular profile of neoplastic cells, defining malignancy grade. The neuropathological diagnosis and the grading of each histotype are based on identification of histopathological criteria and immunohistochemical data. The histopathology, also consisting of findings with prognostic or predictive relevance, plays a critical role in the diagnosis and treatment of brain tumors. The recent progresses on radiological, pathological, immunohistochemical, molecular and genetic diagnosis improved the characterization of brain tumors. Molecular and genetic profiles may identify different tumor subtypes varying in biological and clinical behavior. To investigate new therapeutic approaches is important to study the molecular pathways that lead the processes of proliferation, invasion, angiogenesis, anaplastic transformation. Different molecular biomarkers were identified by genetic studies and some of these are used in neuro-oncology for the evaluation of glioma patients, in particular combined deletions of the chromosome arms 1p and 19q in oligodendroglial tumors, methylation status of the O-6 methylguanine- DNA methyltransferase gene promoter and alterations in the epidermal growth factor receptor pathway in adult malignant gliomas, isocitrate dehydrogenase 1 (IDH1) and IDH2 gene mutations in diffuse gliomas, as well as BRAF status in pilocytic astrocytomas. The prognostic evaluation and the therapeutic strategies for patients depend on synthesis of clinical, pathological and biological data: histological diagnosis, malignancy grade, gene-molecular profile, radiological pictures, surgical resection and clinical findings (age, tumor location, "performance status").

  17. What You Need to Know about Brain Tumors

    Science.gov (United States)

    ... Publications Reports What You Need To Know About™ Brain Tumors This booklet is about tumors that begin in the brain. These tumors are called primary brain tumors. Cancer that spreads to the brain from another ...

  18. The Expression of Connexins and SOX2 Reflects the Plasticity of Glioma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Joana Balça-Silva

    2017-08-01

    Full Text Available Glioblastoma (GBM is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs. This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.

  19. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells.

    Science.gov (United States)

    Liu, Yu; Kobayashi, Alisa; Maeda, Takeshi; Fu, Qibin; Oikawa, Masakazu; Yang, Gen; Konishi, Teruaki; Uchihori, Yukio; Hei, Tom K; Wang, Yugang

    2015-03-01

    Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Targeting Malignant Brain Tumors with Antibodies

    OpenAIRE

    Rok Razpotnik; Neža Novak; Vladka Čurin Šerbec; Uros Rajcevic

    2017-01-01

    Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain deli...

  1. Harnessing the apoptotic programs in cancer stem-like cells.

    Science.gov (United States)

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  2. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease

    NARCIS (Netherlands)

    Leenstra, S.; Troost, D.; Das, P. K.; Claessen, N.; Becker, A. E.; Bosch, D. A.

    1993-01-01

    The endothelial cell marker PAL-E is not reactive to vessels in the normal brain. The present study concerns the PAL-E reactivity in brain tumors in contrast to normal brain and nonneoplastic brain disease. A total of 122 specimens were examined: brain tumors (n = 94), nonneoplastic brain disease (n

  3. Bleomycin treatment of brain tumors: an evaluation

    DEFF Research Database (Denmark)

    Linnert, Mette; Gehl, Julie

    2009-01-01

    Bleomycin has been used in the treatment of brain tumors for over 30 years. Currently, we are evaluating electrochemotherapy (the use of electric pulses to enhance uptake of bleomycin) for patients with secondary brain tumors. We, therefore, reviewed the literature with specific reference...... to the tolerability and toxicity of bleomycin. Using the keywords 'brain' and 'bleomycin', a database search without date restriction was performed and over 500 articles were found. Twenty-five articles were used for this study based on relevance determined by: (i) clinical studies, (ii) use of bleomycin, and (iii......) direct injection into brain tissue or cysts. There were two main indications for the use of bleomycin directly into the brain: (i) cystic tumors in the form of craniopharyngiomas and (ii) solid brain tumors such as glioblastomas and astrocytomas. The most frequent adverse effects reported were transient...

  4. Brain tumors in children; Hirntumoren beim Kind

    Energy Technology Data Exchange (ETDEWEB)

    Harting, I.; Seitz, A. [Universitaetsklinikum Heidelberg (Germany). Abt. Neuroradiologie

    2009-06-15

    Brain tumors are common in children; in Germany approximately 400 children are diagnosed every year. In the posterior fossa, cerebellar neoplasms outnumber brainstem gliomas. In contrast to their rarity in adults, brainstem gliomas are not uncommon in children. Supratentorial tumors can be subdivided by location into neoplasms of the cerebral hemispheres, suprasellar and pineal tumors. Astrocytoma is the most common pediatric brain tumor followed by medulloblastoma, ependymoma and craniopharyngeoma. The combination of imaging morphology, tumor localisation and patient age at manifestation form the basis of the neuroradiological differential diagnosis. (orig.)

  5. Glioblastoma Stem-Like Cells—Biology and Therapeutic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Gürsel, Demirkan B., E-mail: jab2029@nyp.org; Shin, Benjamin J.; Burkhardt, Jan-Karl; Kesavabhotla, Kartik; Schlaff, Cody D.; Boockvar, John A., E-mail: jab2029@nyp.org [Laboratory for Translational Brain Tumor and Stem Cell Research, Department of Neurological Surgery, Weill Cornell Brain Tumor Center, Weill Cornell Medical College, New York, NY 10021 (United States)

    2011-06-10

    The cancer stem-cell hypothesis proposes that malignant tumors are likely to encompass a cellular hierarchy that parallels normal tissue and may be responsible for the maintenance and recurrence of glioblastoma multiforme (GBM) in patients. The purpose of this manuscript is to review methods for optimizing the derivation and culturing of stem-like cells also known as tumor stem cells (TSCs) from patient-derived GBM tissue samples. The hallmarks of TSCs are that they must be able to self-renew and retain tumorigenicity. The isolation, optimization and derivation of TSCs as outlined in this review, will be important in understanding biology and therapeutic applications related to these cells.

  6. Brain tumor stem cell dancing

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2014-09-01

    Full Text Available Background. Issues regarding cancer stem cell (CSC movement are important in neurosphere biology as cell-cell or cell-environment interactions may have significant impacts on CSC differentiation and contribute to the heterogeneity of the neurosphere. Aims. Despite the growing body of literature data on the biology of brain tumor stem cells, floating CSC-derived neurospheres have been scarcely characterized from a morphological and ultrastructural point of view. Results. Here we report a morphological and ultrastructural characterization performed by live imaging and scanning electron microscopy. Glioblastoma multiforme (GBM CSC-derived neurospheres are heterogeneous and are constituted by cells, morphologically different, capable of forming highly dynamic structures. These dynamic structures are regulated by not serendipitous cell-cell interactions, and they synchronously pulsate following a cyclic course made of "fast" and "slow" alternate phases. Autocrine/paracrine non canonical Wnt signalling appears to be correlated with the association status of neurospheres. Conclusions. The results obtained suggest that GBM CSCs can behave both as independents cells and as "social" cells, highly interactive with other members of its species, giving rise to a sort of "multicellular organism".

  7. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  8. Brain's tumor image processing using shearlet transform

    Science.gov (United States)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  9. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.

    Science.gov (United States)

    Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi

    2017-09-01

    Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore); Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong [Brain Tumour Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore (Singapore)

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  11. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    OpenAIRE

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  12. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway.

    Directory of Open Access Journals (Sweden)

    Mayumi Jijiwa

    Full Text Available Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6 in BTSC of a subset of glioblastoma multiforme (GBM. Patients with CD44(high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44(high GBM but not from CD44(low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN, increased expression of phosphorylated AKT in CD44(high GBM, but not in CD44(low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKT pathway.

  13. Fluorescent Nanoparticle Uptake for Brain Tumor Visualization

    Directory of Open Access Journals (Sweden)

    Rachel Tréhin

    2006-04-01

    Full Text Available Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP tumors, mean overestimations of 2 and 24 µm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon and primary (Gli36 glioma brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.

  14. Multiparametric MR assessment of pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tzika, A.A. [Department of Radiology, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States); NMR Surgical Laboratory, Massachusetts General Hospital and Shriners Burns Institute, Harvard Medical School, 51 Blossom Street, Boston, MA 02114 (United States); Astrakas, L.G.; Zarifi, M.K.; Petridou, N.; Young-Poussaint, T. [Department of Radiology, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States); Goumnerova, L.; Black, P.McL. [Department of Neurosurgery, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States); Zurakowski, D. [Department of Biostatistics, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States); Anthony, D.C. [Department of Pathology, Children' s Hospital, Harvard Medical School, Boston, MA 02114 (United States)

    2003-01-01

    MR assessment of pediatric brain tumors has expanded to include physiologic information related to cellular metabolites, hemodynamic and diffusion parameters. The purpose of this study was to investigate the relationship between MR and proton MR spectroscopic imaging in children with primary brain tumors. Twenty-one patients (mean age 9 years) with histologically verified brain tumors underwent conventional MR imaging, hemodynamic MR imaging (HMRI) and proton MR spectroscopic imaging (MRSI). Fourteen patients also had diffusion-weighted MR imaging (DWMRI). Metabolic indices including choline-containing compounds (Cho), total creatine (tCr) and lipids/lactate (L) were derived by proton MRSI, relative cerebral blood volume (rCBV) by HMRI, and apparent tissue water diffusion coefficients (ADC) by DWMRI. Variables were examined by linear regression and correlation as well as by ANOVA. Cho (suggestive of tumor cellularity and proliferative activity) correlated positively with rCBV, while the relationship between Cho and ADC (suggestive of cellular density) was inverse (P<0.001). The relationship between rCBV and ADC was also inverse (P=0.004). Cho and lipids (suggestive of necrosis and/or apoptosis) were not significantly correlated (P=0.51). A positive relationship was found between lipids and ADC (P=0.002). The relationships between Cho, rCBV, ADC and lipids signify that tumor physiology is influenced by the tumor's physical and chemical environment. Normalized Cho and lipids distinguished high-grade from low-grade tumors (P<0.05). Multiparametric MR imaging using MRSI, HMRI and DWMRI enhances assessment of brain tumors in children and improves our understanding of tumor physiology while promising to distinguish higher- from lower-malignancy tumors, a distinction that is particularly clinically important among inoperable tumors. (orig.)

  15. Impact of Microenvironment and Stem-Like Plasticity in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Raggi, Chiara; Invernizzi, Pietro; Andersen, Jesper Bøje

    2014-01-01

    Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying diversity of CCA growth patterns remain a key issue and a clinical concern...... or tumor microenvironment (TME) likely promotes initiation and progression of this malignancy contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA....

  16. The proteomic landscape of glioma stem-like cells

    Directory of Open Access Journals (Sweden)

    Cheryl F. Lichti

    2015-09-01

    Full Text Available Glioma stem-like cells (GSCs are hypothesized to provide a repository of cells in tumors that can self-replicate and are radio- and chemo-resistant. GSC lines, representing several glioma subtypes, have been isolated and characterized at the transcript level. We sought to characterize 35 GSC lines at the protein level using label-free quantitative proteomics. Resulting relative fold changes were used to drive unsupervised hierarchical clustering for the purpose of classifying the cell lines based on proteomic profiles. Bioinformatics analysis identified synoviolin, serine/arginine-rich splicing factor 2, symplekin, and IL-5 as molecules of interest in progression and/or treatment of glioma.

  17. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  18. [Brain tumor immunotherapy: Illusion or hope?

    Science.gov (United States)

    Migliorini, Denis; Dutoit, Valérie; Walker, Paul R; Dietrich, Pierre-Yves

    2017-05-01

    Immunotherapy has proven efficient for many tumors and is now part of standard of care in many indications. What is the picture for brain tumors? The recent development of anti-CTLA-4 and PD1 immune checkpoint inhibitors, which have the ability to restore T lymphocytes activity, has gathered enthusiasm and is now paving the way towards more complex models of immune system manipulation. These models include, among others, vaccination and adoptive T cell transfer technologies. Complementary to those strategies, molecules capable of reshaping the immune tumor microenvironment are currently being investigated in early phase trials. Indeed, the tumor bed is hostile to anti-tumor immune responses due to many escape mechanisms, and this is particularly true in the context of brain tumors, a master in eliciting immunosuppressive cells and molecules. The goal of this review is to describe the hopes and challenges of brain tumors immunotherapy and to propose an inventory of the current clinical research with specific focus on the therapies targeting the tumor microenvironment. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  19. Expression and Prognostic Value of Oct-4 in Astrocytic Brain Tumors.

    Science.gov (United States)

    Krogh Petersen, Jeanette; Jensen, Per; Dahl Sørensen, Mia; Winther Kristensen, Bjarne

    2016-01-01

    Glioblastomas are the most frequent type of malignant primary brain tumor with a median overall survival less than 15 months. Therapy resistance of glioblastomas has been attributed to the presence of tumor initiating stem-like cells (TSCs). TSC-related markers have therefore been suggested to have promising potentials as prognostic markers in gliomas. The aim of the present study was to investigate the expression and prognostic impact of the TSC-related marker Oct-4 in astrocytic brain tumors of increasing grade. In total 114 grade II, III and IV astrocytic brain tumors were immunohistochemically stained for Oct-4, and the fraction and intensity of Oct-4 positive cells were determined by morphometric analysis of full tumor sections. Oct-4 was expressed in all tumors, and the Oct-4 positive cell fraction increased with tumor grade (p = 0.045). There was no association between survival and Oct-4 positive cell fraction, neither when combining all tumor grades nor in analysis of individual grades. Oct-4 intensity was not associated with grade, but taking IDH1 status into account we found a tendency for high Oct-4 intensity to be associated with poor prognosis in anaplastic astrocytomas. Double immunofluorescence stainings showed co-localization in the perivascular niches of Oct-4 and two other TSC markers CD133 and nestin in glioblastomas. In some areas Oct-4 was expressed independently of CD133 and nestin. In conclusion, high Oct-4 fraction was associated with tumor malignancy, but seemed to be without independent prognostic influence in glioblastomas. Identification of a potential prognostic value in anaplastic astrocytomas requires additional studies using larger patient cohorts.

  20. Unusual radiological characteristics of teratoid/rhabdoid brain tumor ...

    African Journals Online (AJOL)

    We report a case of atypical teratoid rhabdoid brain tumor for 4 months old male child, who presented with unusual radiological findings, that can be confused with other brain tumors ,so we high light these unusual imaging features to aid in making correct diagnosis. Keywords: atypical teratoid–rhabdoid tumor, brain tumor, ...

  1. Adenoviral virotherapy for malignant brain tumors

    OpenAIRE

    Nandi, Suvobroto; Lesniak, Maciej S

    2009-01-01

    Glioblastoma multiforme (GBM) is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors (CAR) on surface of gliomas provides for inefficien...

  2. Within-brain classification for brain tumor segmentation.

    Science.gov (United States)

    Havaei, Mohammad; Larochelle, Hugo; Poulin, Philippe; Jodoin, Pierre-Marc

    2016-05-01

    In this paper, we investigate a framework for interactive brain tumor segmentation which, at its core, treats the problem of interactive brain tumor segmentation as a machine learning problem. This method has an advantage over typical machine learning methods for this task where generalization is made across brains. The problem with these methods is that they need to deal with intensity bias correction and other MRI-specific noise. In this paper, we avoid these issues by approaching the problem as one of within brain generalization. Specifically, we propose a semi-automatic method that segments a brain tumor by training and generalizing within that brain only, based on some minimum user interaction. We investigate how adding spatial feature coordinates (i.e., i, j, k) to the intensity features can significantly improve the performance of different classification methods such as SVM, kNN and random forests. This would only be possible within an interactive framework. We also investigate the use of a more appropriate kernel and the adaptation of hyper-parameters specifically for each brain. As a result of these experiments, we obtain an interactive method whose results reported on the MICCAI-BRATS 2013 dataset are the second most accurate compared to published methods, while using significantly less memory and processing power than most state-of-the-art methods.

  3. Carbonic anhydrase IX in oligodendroglial brain tumors

    Directory of Open Access Journals (Sweden)

    Pastorekova Silvia

    2008-01-01

    Full Text Available Abstract Background Carbonic anhydrase IX is a hypoxia-induced enzyme that has many biologically important functions, including its role in cell adhesion and invasion. Methods This study was set out to investigate the role of CA IX in a series of 86 oligodendroglial brain tumors (71 primary and 15 recurrent; 48 pure oligodendrogliomas and 40 mixed oligoastrocytomas. Results 80% of the tumors showed CA IX expression by immunohistochemistry. Tumors with moderate or strong CA IX expression had decreased level of cell proliferation compared to weak or no CA IX expression (median 2.9 vs. 5.8, p = 0.015. CA IX correlated with two antioxidative enzymes, manganese superoxide dismutase (MnSOD and regulatory gammaglutamylcysteine synthetase (GLCL-R: CA IX expression was significantly higher in MnSOD-positive tumors (p = 0.008 and decreased in GLCL-R-positive tumors (p = 0.044. In Cox multivariate analysis CA IX expression, patient age and histological component (pure oligodendroglioma vs. mixed oligoastrocytoma showed independent prognostic values (p = 0.009, p = 0.003 and p = 0.022, respectively, CA IX positivity predicting poorer outcome. Conclusion CA IX was proved to be an independent prognostic indicator in oligodendroglial brain tumors, and it also correlates reversely with cell proliferation. It may have a role in the biology of oligodendrogliomas, and most interestingly, as it is mainly expressed in tumor tissue, CA IX could serve as a target molecule for anticancer treatments.

  4. Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells.

    Science.gov (United States)

    Ahmed, Mehreen; Chaudhari, Kritika; Babaei-Jadidi, Roya; Dekker, Lodewijk V; Shams Nateri, Abdolrahman

    2017-04-01

    Increasing evidence suggests that cancer cell populations contain a small proportion of cells that display stem-like cell properties and which may be responsible for overall tumor maintenance. These cancer stem-like cells (CSCs) appear to have unique tumor-initiating ability and innate survival mechanisms that allow them to resist cancer therapies, consequently promoting relapses. Selective targeting of CSCs may provide therapeutic benefit and several recent reports have indicated this may be possible. In this article, we review drugs targeting CSCs, in selected epithelial cell-derived cancers. Stem Cells 2017;35:839-850. © 2017 AlphaMed Press.

  5. A CDC20-APC/SOX2 Signaling Axis Regulates Human Glioblastoma Stem-like Cells

    Directory of Open Access Journals (Sweden)

    Diane D. Mao

    2015-06-01

    Full Text Available Glioblastoma harbors a dynamic subpopulation of glioblastoma stem-like cells (GSCs that can propagate tumors in vivo and is resistant to standard chemoradiation. Identification of the cell-intrinsic mechanisms governing this clinically important cell state may lead to the discovery of therapeutic strategies for this challenging malignancy. Here, we demonstrate that the mitotic E3 ubiquitin ligase CDC20-anaphase-promoting complex (CDC20-APC drives invasiveness and self-renewal in patient tumor-derived GSCs. Moreover, CDC20 knockdown inhibited and CDC20 overexpression increased the ability of human GSCs to generate brain tumors in an orthotopic xenograft model in vivo. CDC20-APC control of GSC invasion and self-renewal operates through pluripotency-related transcription factor SOX2. Our results identify a CDC20-APC/SOX2 signaling axis that controls key biological properties of GSCs, with implications for CDC20-APC-targeted strategies in the treatment of glioblastoma.

  6. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI

    Science.gov (United States)

    Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.

    2017-03-01

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  7. Fetal microchimerism in human brain tumors.

    Science.gov (United States)

    Broestl, Lauren; Rubin, Joshua B; Dahiya, Sonika

    2017-09-18

    Sex differences in cancer incidence and survival, including central nervous system tumors, are well documented. Multiple mechanisms contribute to sex differences in health and disease. Recently, the presence of fetal-in-maternal microchimeric cells has been shown to have prognostic significance in breast and colorectal cancers. The frequency and potential role of these cells has not been investigated in brain tumors. We therefore selected two common primary adult brain tumors for this purpose: meningioma, which is sex hormone responsive and has a higher incidence in women, and glioblastoma, which is sex hormone independent and occurs more commonly in men. Quantitative PCR was used to detect the presence of male DNA in tumor samples from women with a positive history of male pregnancy and a diagnosis of either glioblastoma or meningioma. Fluorescence in situ hybridization for the X and Y chromosomes was used to verify the existence of intact male cells within tumor tissue. Fetal microchimerism was found in approximately 80% of glioblastoma cases and 50% of meningioma cases. No correlations were identified between the presence of microchimerism and commonly used clinical or molecular diagnostic features of disease. The impact of fetal microchimeric cells should be evaluated prospectively. © 2017 International Society of Neuropathology.

  8. Targeted toxins in brain tumor therapy.

    Science.gov (United States)

    Li, Yan Michael; Hall, Walter A

    2010-11-01

    Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.

  9. Heterogeneous data fusion for brain tumor classification.

    Science.gov (United States)

    Metsis, Vangelis; Huang, Heng; Andronesi, Ovidiu C; Makedon, Fillia; Tzika, Aria

    2012-10-01

    Current research in biomedical informatics involves analysis of multiple heterogeneous data sets. This includes patient demographics, clinical and pathology data, treatment history, patient outcomes as well as gene expression, DNA sequences and other information sources such as gene ontology. Analysis of these data sets could lead to better disease diagnosis, prognosis, treatment and drug discovery. In this report, we present a novel machine learning framework for brain tumor classification based on heterogeneous data fusion of metabolic and molecular datasets, including state-of-the-art high-resolution magic angle spinning (HRMAS) proton (1H) magnetic resonance spectroscopy and gene transcriptome profiling, obtained from intact brain tumor biopsies. Our experimental results show that our novel framework outperforms any analysis using individual dataset.

  10. Targeting Malignant Brain Tumors with Antibodies.

    Science.gov (United States)

    Razpotnik, Rok; Novak, Neža; Čurin Šerbec, Vladka; Rajcevic, Uros

    2017-01-01

    Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood-brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs), and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv) with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A "Trojan horse" method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT). Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs) are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts), are making their way into glioma treatment as another type of cell-based therapy using the

  11. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  12. Maternal high fat diet promotion of mammary tumor risk in adult progeny is associated with early expansion of mammary cancer stem-like cells and increased maternal oxidative environment

    Science.gov (United States)

    Many adult chronic diseases might be programmed during early life by maternal nutritional history. Here, we evaluated effects of maternal high fat diet on mammary gland development and tumor formation in adult progeny. Female Wnt-1 transgenic mice exposed to high fat (HFD, 45% kcal fat) or control C...

  13. Targeted disruption of the JAK2/STAT3 pathway in combination with systemic administration of paclitaxel inhibits the priming of ovarian cancer stem-like cells leading to a reduced tumor burden

    Directory of Open Access Journals (Sweden)

    Khalid eAbubaker

    2014-04-01

    Full Text Available Chemotherapy resistance associated with recurrent disease is the major cause of poor survival of ovarian cancer patients. We have recently demonstrated activation of the JAK2/STAT3 pathway and the enhancement of a cancer stem cell (CSC-like phenotype in ovarian cancer cells treated in vitro with chemotherapeutic agents. To elucidate further these mechanisms in vivo, we used a two tiered paclitaxel treatment approach in nude mice inoculated with ovarian cancer cells. In the first approach, we demonstrate that a single intraperitoneal administration of paclitaxel in mice 7 days after subcutaneous transplantation of the HEY ovarian cancer cell line resulted in a significant increase in the expression of CA125, Oct4 and CD117 in mice xenografts compared to control mice xenografts which did not receive paclitaxel. In the second approach, mice were administered once weekly with paclitaxel and/or a daily dose of the JAK2 specific inhibitor, CYT387, over four weeks. Mice receiving paclitaxel only demonstrated a significant decrease in tumor volume compared to control mice. At the molecular level, mouse tumors remaining after paclitaxel administration showed a significant increase in the expression of Oct4 and CD117 coinciding with a significant activation of the JAK2/STAT3 pathway compared to control tumors. The addition of CYT387 with paclitaxel resulted in the suppression of JAK2/STAT3 activation and abrogation of Oct4 and CD117 expression in mouse xenografts. This coincided with significantly smaller tumors in mice administered CYT387 in addition to paclitaxel, compared to the control group and the group of mice receiving paclitaxel only. These data suggest that the systemic administration of paclitaxel enhances Oct4 and CD117 associated CSC-like marker expression in surviving cancer cells in vivo, which can be suppressed by the addition of the JAK2 specific inhibitor CYT387, leading to a significantly smaller tumor burden. These novel findings have

  14. Astrocytes enhance the invasion potential of glioblastoma stem-like cells.

    Directory of Open Access Journals (Sweden)

    Barbara H Rath

    Full Text Available Glioblastomas (GBMs are characterized as highly invasive; the contribution of GBM stem-like cells (GSCs to the invasive phenotype, however, has not been completely defined. Towards this end, we have defined the invasion potential of CD133+ GSCs and their differentiated CD133- counterparts grown under standard in vitro conditions and in co-culture with astrocytes. Using a trans-well assay, astrocytes or astrocyte conditioned media in the bottom chamber significantly increased the invasion of GSCs yet had no effect on CD133- cells. In addition, a monolayer invasion assay showed that the GSCs invaded farther into an astrocyte monolayer than their differentiated progeny. Gene expression profiles were generated from two GSC lines grown in trans-well culture with astrocytes in the bottom chamber or directly in contact with astrocyte monolayers. In each co-culture model, genes whose expression was commonly increased in both GSC lines involved cell movement and included a number of genes that have been previously associated with tumor cell invasion. Similar gene expression modifications were not detected in CD133- cells co-cultured under the same conditions with astrocytes. Finally, evaluation of the secretome of astrocytes grown in monolayer identified a number of chemokines and cytokines associated with tumor cell invasion. These data suggest that astrocytes enhance the invasion of CD133+ GSCs and provide additional support for a critical role of brain microenvironment in the regulation of GBM biology.

  15. Adenoviral virotherapy for malignant brain tumors.

    Science.gov (United States)

    Nandi, Suvobroto; Lesniak, Maciej S

    2009-06-01

    Glioblastoma multiforme is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are overexpressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor-specific promoter elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review examines current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications.

  16. ROCK Inhibition Facilitates In Vitro Expansion of Glioblastoma Stem-Like Cells.

    Directory of Open Access Journals (Sweden)

    Samantha G Tilson

    Full Text Available Due to their stem-like characteristics and their resistance to existing chemo- and radiation therapies, there is a growing appreciation that cancer stem cells (CSCs are the root cause behind cancer metastasis and recurrence. However, these cells represent a small subpopulation of cancer cells and are difficult to propagate in vitro. Glioblastoma is an extremely deadly form of brain cancer that is hypothesized to have a subpopulation of CSCs called glioblastoma stem cells (GSCs; also called brain tumor initiating cells, BTICs. We propose the use of selective Rho-kinase (ROCK inhibitors, Y-27632 and fasudil, to promote GSC/BTIC-like cell survival and propagation in vitro. ROCK inhibitors have been implicated in suppressing apoptosis, and it was hypothesized that they would increase the number of GSC/BTIC-like cells grown in vitro and improve cloning efficiencies. Indeed, our data demonstrate that transient and continuous supplementation of non-toxic concentrations of Y-27632 and fasudil inhibited apoptosis, enhanced the cells' ability to form spheres, and increased stem cell marker expressing GSC/BTIC-like cell subpopulation. Our data indicated that pharmacological and genetic (siRNA inhibitions of the ROCK pathway facilitates in vitro expansion of GSC/BTIC-like cells. Thus, ROCK pathway inhibition shows promise for future optimization of CSC culture media.

  17. Subacute brain atrophy after radiation therapy for malignant brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Asai, A.; Matsutani, M.; Kohno, T.; Nakamura, O.; Tanaka, H.; Fujimaki, T.; Funada, N.; Matsuda, T.; Nagata, K.; Takakura, K.

    1989-05-15

    Brain atrophy with mental and neurologic deterioration developing a few months after radiation therapy in patients without residual or recurrent brain tumors has been recognized. Two illustrative case reports of this pathologic entity are presented. Six autopsy cases with this entity including the two cases were reviewed neurologically, radiographically, and histopathologically. All patients presented progressive disturbances of mental status and consciousness, akinesia, and tremor-like involuntary movement. Computerized tomography (CT) demonstrated marked enlargement of the ventricles, moderate widening of the cortical sulci, and a moderately attenuated CT number for the white matter in all six patients. Four of the six patients had CSF drainage (ventriculoperitoneal shunt or continuous lumbar drainage), however, none of them improved. Histologic examination demonstrated swelling and loss of the myelin sheath in the white matter in all patients, and reactive astrocytosis in three of the six patients. Neither prominent neuronal loss in the cerebral cortex or basal ganglia, nor axonal loss in the white matter was generally identified. The blood vessels of the cerebral cortex and white matter were normal. Ependymal layer and the surrounding brain tissue were normal in all patients. These findings suggested that this pathologic condition results from demyelination secondary to direct neurotoxic effect of irradiation. The authors' previous report was reviewed and the differential diagnoses, the risk factors for this pathologic entity, and the indication for radiation therapy in aged patients with a malignant brain tumor are discussed.

  18. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    Science.gov (United States)

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org. © The Author(s) 2013.

  19. Brain tumor mutations detected in cerebral spinal fluid.

    Science.gov (United States)

    Pan, Wenying; Gu, Wei; Nagpal, Seema; Gephart, Melanie Hayden; Quake, Stephen R

    2015-03-01

    Detecting tumor-derived cell-free DNA (cfDNA) in the blood of brain tumor patients is challenging, presumably owing to the blood-brain barrier. Cerebral spinal fluid (CSF) may serve as an alternative "liquid biopsy" of brain tumors by enabling measurement of circulating DNA within CSF to characterize tumor-specific mutations. Many aspects about the characteristics and detectability of tumor mutations in CSF remain undetermined. We used digital PCR and targeted amplicon sequencing to quantify tumor mutations in the cfDNA of CSF and plasma collected from 7 patients with solid brain tumors. Also, we applied cancer panel sequencing to globally characterize the somatic mutation profile from the CSF of 1 patient with suspected leptomeningeal disease. We detected tumor mutations in CSF samples from 6 of 7 patients with solid brain tumors. The concentration of the tumor mutant alleles varied widely between patients, from tumor biopsy. Tumor mutations were detectable in cfDNA from the CSF of patients with different primary and metastatic brain tumors. We designed 2 strategies to characterize tumor mutations in CSF for potential clinical diagnosis: the targeted detection of known driver mutations to monitor brain metastasis and the global characterization of genomic aberrations to direct personalized cancer care. © 2014 American Association for Clinical Chemistry.

  20. Deep learning for brain tumor classification

    Science.gov (United States)

    Paul, Justin S.; Plassard, Andrew J.; Landman, Bennett A.; Fabbri, Daniel

    2017-03-01

    Recent research has shown that deep learning methods have performed well on supervised machine learning, image classification tasks. The purpose of this study is to apply deep learning methods to classify brain images with different tumor types: meningioma, glioma, and pituitary. A dataset was publicly released containing 3,064 T1-weighted contrast enhanced MRI (CE-MRI) brain images from 233 patients with either meningioma, glioma, or pituitary tumors split across axial, coronal, or sagittal planes. This research focuses on the 989 axial images from 191 patients in order to avoid confusing the neural networks with three different planes containing the same diagnosis. Two types of neural networks were used in classification: fully connected and convolutional neural networks. Within these two categories, further tests were computed via the augmentation of the original 512×512 axial images. Training neural networks over the axial data has proven to be accurate in its classifications with an average five-fold cross validation of 91.43% on the best trained neural network. This result demonstrates that a more general method (i.e. deep learning) can outperform specialized methods that require image dilation and ring-forming subregions on tumors.

  1. Intraoperative MRI in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhri, Asim F. [Le Bonheur Children' s Hospital, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Siddiqui, Adeel [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Klimo, Paul; Boop, Frederick A. [University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States); St. Jude Children' s Hospital, Division of Neurosurgery, Department of Surgery, Memphis, TN (United States)

    2015-09-15

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  2. miR-367 promotes proliferation and stem-like traits in medulloblastoma cells.

    Science.gov (United States)

    Kaid, Carolini; Silva, Patrícia B G; Cortez, Beatriz A; Rodini, Carolina O; Semedo-Kuriki, Patricia; Okamoto, Oswaldo K

    2015-09-01

    In medulloblastoma, abnormal expression of pluripotency factors such as LIN28 and OCT4 has been correlated with poor patient survival. The miR-302/367 cluster has also been shown to control self-renewal and pluripotency in human embryonic stem cells and induced pluripotent stem cells, but there is limited, mostly correlational, information about these pluripotency-related miRNA in cancer. We evaluated whether aberrant expression of such miRNA could affect tumor cell behavior and stem-like traits, thereby contributing to the aggressiveness of medulloblastoma cells. Basal expression of primary and mature forms of miR-367 were detected in four human medulloblastoma cell lines and expression of the latter was found to be upregulated upon enforced expression of OCT4A. Transient overexpression of miR-367 significantly enhanced tumor features typically correlated with poor prognosis; namely, cell proliferation, 3-D tumor spheroid cell invasion and the ability to generate neurosphere-like structures enriched in CD133 expressing cells. A concurrent downregulation of the miR-367 cancer-related targets RYR3, ITGAV and RAB23, was also detected in miR-367-overexpressing cells. Overall, these findings support the pro-oncogenic activity of miR-367 in medulloblastoma and reveal a possible mechanism contributing to tumor aggressiveness, which could be further explored to improve patient stratification and treatment of this important type of pediatric brain cancer. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  3. Phosphorylethanolamine content of human brain tumors.

    Science.gov (United States)

    Kinoshita, Y; Yokota, A; Koga, Y

    1994-12-01

    Phosphorylethanolamine (PEA) is the major component of the phosphomonoester peak detected by phosphorus-31 magnetic resonance spectroscopy, but the absolute concentration has not been determined. This study measured the PEA concentration in biopsy specimens of brain tumors and lobectomized cerebral cortex using high-performance liquid chromatography. The concentration of PEA was 118.5 +/- 10.0 mumol/100 g wet wt in cortex, and was significantly higher in malignant gliomas, metastatic pulmonary adenocarcinoma, and neurinoma. The concentration of PEA was especially high in pituitary adenoma, malignant lymphoma, and medulloblastoma.

  4. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    Science.gov (United States)

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  5. Fetal antigen 2 in primary and secondary brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, H Boje; Teisner, B; Schrøder, H D

    1991-01-01

    Immunohistochemical deposition and distribution of fetal antigen 2 (FA2) was examined in normal brain tissue and in primary and metastatic tumors of the brain. In normal brain tissue FA2 was exclusively found linearly around the vessels, along pia and in arachnoidea. A similar localization was seen...... in primary brain tumors except in gliosarcoma where FA2 was distributed diffusely in the sarcoma region and was absent in the glioma region. In metastatic carcinoma with tumor stroma a diffuse staining reaction was seen in the stroma and with a basement membrane (BM) like staining at the tumor cell....../stroma interface. Intracytoplasmic FA2 staining of the tumor cells was seen in areas without tumor stroma. In metastatic melanoma a BM like FA2 staining was seen around and between individual tumor cells. The staining patterns seen in the metastatic tumors were in accordance with that of the corresponding primary...

  6. Establishment of 9L/F344 rat intracerebral glioma model of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Zong-yu XIAO

    2015-04-01

    Full Text Available Objective To establish the 9L/F344 rat intracerebral glioma model of brain tumor stem cells.  Methods Rat 9L gliosarcoma stem-like cells were cultured in serum-free suspension. The expression of CD133 and nestin were tested by immunohistochemistry. A total of 48 inbredline male F344 rats were randomly divided into 2 groups, and 9L tumor sphere cells and 9L monolayer cells were respectively implanted into the right caudate nucleus of F344 rats in 2 groups. Survival time was observed and determined using the method of Kaplan-Meier survival analysis. Fourteen days after implantation or when the rats were dying, their brains were perfused and sectioned for HE staining, and CD133 and nestin were detected by immunohistochemistry.  Results Rat 9L tumor spheres were formed with suspension culture in serum-free medium. The gliomas formed in both groups were invasive without obvious capsule. More new vessels, bleeding and necrosis could be detected in 9L tumor spheres group. The tumor cells in both groups were positive for CD133 and nestin. There was no significant difference in the expression of CD133 and nestin between 2 groups (P > 0.05, for all. According to the expression of nestin, the tumors formed by 9L tumor sphere cells were more invasive. The median survival time of the rats bearing 9L tumor sphere cells was 15 d (95%CI: 15.219-15.781, and the median survival time of the rats bearing 9L monolayer cells was 21 d (95%CI: 20.395-21.605. There was significant difference between 2 groups (χ2 = 12.800, P = 0.000.  Conclusions 9L/F344 rat intracerebral glioma model of brain tumor stem cells is successfully established, which provides a glioma model for the future research. DOI: 10.3969/j.issn.1672-6731.2015.04.012

  7. Pineal calcification is associated with pediatric primary brain tumor.

    Science.gov (United States)

    Tuntapakul, Supinya; Kitkhuandee, Amnat; Kanpittaya, Jaturat; Johns, Jeffrey; Johns, Nutjaree Pratheepawanit

    2016-12-01

    Melatonin has been associated with various tumors, including brain tumor, and shown to inhibit growth of neuroblastoma cells and gliomas in animal models. Likewise, patients with glioblastoma receiving melatonin reported better survival than controls. Pineal calcification may lead to a decreased production of melatonin by calcified glands. This study assessed association between pineal calcification and primary brain tumor in pediatric/adolescent patients. Medical chart review was conducted in 181 patients brain computed tomography (CT) during 2008-2012. Pineal calcification was identified using brain CT scan by an experienced neurosurgeon. Primary brain tumor was confirmed by CT scan and histology, and association with pineal calcification was estimated using multiple logistic regression, adjusted for age and gender. Primary brain tumor was detected in 51 patients (mean age 9.0, standard deviation 4.0 years), with medulloblastoma being the most common (11 patients). Pineal calcification was detected in 12 patients (23.5%) with primary brain tumor, while only 11 patients (8.5%) without tumor had pineal calcification. Adjusted for patients' ages and genders, pineal calcification was associated with an increase in primary brain tumor of 2.82-fold (odds ratio 2.82; 95% confidence interval 1.12-7.08, P = 0.027). Pineal calcification appears to be associated with primary brain tumor. Further studies to explore this link are discussed and warranted. © 2016 John Wiley & Sons Australia, Ltd.

  8. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Proteomic analysis of human Sonic Hedgehog (SHH) medulloblastoma stem-like cells.

    Science.gov (United States)

    Ronci, Maurizio; Catanzaro, Giuseppina; Pieroni, Luisa; Po, Agnese; Besharat, Zein Mersini; Greco, Viviana; Levi Mortera, Stefano; Screpanti, Isabella; Ferretti, Elisabetta; Urbani, Andrea

    2015-06-01

    Human medulloblastoma (MB) is a malignant brain tumor that comprises four distinct molecular subgroups including the Sonic Hedgehog (SHH)-MB group. A leading cause of the SHH subgroup is an aberrant activation of the SHH pathway, a developmental signaling that regulates postnatal development of the cerebellum by promoting the mitotic expansion of granule neural precursors (GNPs) in the external granule layer (EGL). The abnormal SHH signaling pathway drives not only SHH-MB but also its cancer stem-like cells (SLCs), which represent a fraction of the tumor cell population that maintain cancer growth and have been associated with high grade tumors. Here, we report the first proteomic analysis of human SHH-MB SLCs before and after Retinoic Acid (RA)-induced differentiation. A total of 994 nLC-MS buckets were statistically analysed returning 68 modulated proteins between SLCs and their differentiated counterparts. Heat Shock Protein 70 (Hsp70) was one of the proteins that characterized the protein profile of SLCs. By means of Ingenuity Pathway Analysis (IPA), Genomatix analysis and extending the network obtained using the differentially expressed proteins we found a correlation between Hsp70 and the NF-κB complex. A key driver of the SHH-MB group is cMET whose downstream proliferation/survival signalling is indeed via PI3K/Akt/NF-κB. We confirmed the results of the proteomic analysis by western blot, underlining that a P-p65/NF-κB activatory complex is highly expressed in SLCs. Taking together these results we define a new protein feature of SHH-MB SLCs.

  10. Photodynamic therapy for implanted VX2 tumor in rabbit brains

    Science.gov (United States)

    Li, Fei; Feng, Hua; Lin, Jiangkai; Zhu, Gang; Chen, Zhi; Li, Cong-yan

    2005-07-01

    To evaluate the therapeutic effect and the safety of single photodynamic therapy (PDT) with hematoporphyrin derivative produced in China, 60 New Zealand adult rabbits with VX2 tumor implanted into the brain were divided randomly into non-PDT-group and PDT-group. 36 rabbits of the PDT-group were performed photodynamic therapy. The survival time, neurological deteriorations, intracranial pressure (ICP), histology, pathology, tumor volume and brain water content were measured. Other 12 rabbits were received hematoporphyrin derivative and light irradiation of the normal brain. The ICP, histology, pathology, and brain water content were measured. The result indicated that Simple PDT may elongate the average survival time of the rabbits with VX2 tumors significantly; kill tumor cells; cause transient brain edema and increase ICP, but it is safe to be used in treating brain tumor.

  11. Fractal analysis of tumoral lesions in brain.

    Science.gov (United States)

    Martín-Landrove, Miguel; Pereira, Demian; Caldeira, María E; Itriago, Salvador; Juliac, María

    2007-01-01

    In this work, it is proposed a method for supervised characterization and classification of tumoral lesions in brain, based on the analysis of irregularities at the lesion contour on T2-weighted MR images. After the choice of a specific image, a segmentation procedure with a threshold selected from the histogram of intensity levels is applied to isolate the lesion, the contour is detected through the application of a gradient operator followed by a conversion to a "time series" using a chain code procedure. The correlation dimension is calculated and analyzed to discriminate between normal or malignant structures. The results found showed that it is possible to detect a differentiation between benign (cysts) and malignant (gliomas) lesions suggesting the potential of this method as a diagnostic tool.

  12. Brain Tumor Trials Collaborative | Center for Cancer Research

    Science.gov (United States)

    Brain Tumor Trials Collaborative In Pursuit of a Cure The mission of the BTTC is to develop and perform state-of-the-art clinical trials in a collaborative and collegial environment, advancing treatments for patients with brain tumors, merging good scientific method with concern for patient well-being and outcome.

  13. Diagnosis and prognosis of brain tumors in clinical trials

    NARCIS (Netherlands)

    T.S. Gorlia (Thierry)

    2013-01-01

    textabstractAccording to the Central Brain Registry Of The United States (CBTRUS) statistical report (February 2012) the incidence rate of all primary non malignant and malignant brain and central nervous system tumors is 19.89 cases per 100.000 (11.58 for non-malignant tumors and 7.31 for malignant

  14. Anticonvulsant therapy in brain-tumor related epilepsy

    Directory of Open Access Journals (Sweden)

    Fröscher Walter

    2016-06-01

    Full Text Available Background. The lifetime risk of patients with brain tumors to have focal epileptic seizures is 10-100%; the risk depends on different histology. Specific guidelines for drug treatment of brain tumor-related seizures have not yet been established.

  15. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    Science.gov (United States)

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.

  16. Stimulated Raman scattering microscopy for rapid brain tumor histology

    Directory of Open Access Journals (Sweden)

    Yifan Yang

    2017-09-01

    Full Text Available Rapid histology of brain tissues with sufficient diagnostic information has the great potential to aid neurosurgeons during operations. Stimulated Raman Scattering (SRS microscopy is an emerging label-free imaging technique, with the intrinsic chemical resolutions to delineate brain tumors from normal tissues without the need of time-consuming tissue processing. Growing number of studies have shown SRS as a “virtual histology” tool for rapid diagnosis of various types of brain tumors. In this review, we focus on the basic principles and current developments of SRS microscopy, as well as its applications for brain tumor imaging.

  17. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  18. Neuropsychiatric presentations of pediatrics brain tumors: cases series

    Directory of Open Access Journals (Sweden)

    Khairkar Praveen

    2016-12-01

    Full Text Available Brain tumors constitute the second most common tumors in the pediatric age group after the leukemias. Symptoms and signs depend on growth rate of tumor, its location in the central nervous system, the extent of peri-tumoral vasogenic edema and the age of the child. Most common neuropsychiatric problems reported in children with brain tumor(s include adjustment problems, anxiety disorder, neurocognitive deficits and depressive disorder as reported by very few case reports and isolated observational data. To the best of our knowledge no similar data or reports are as yet published from India on the similar lines. We wish to report case series of neuropsychiatric presentations in different types of brain tumors observed at our rural tertiary care multi-speciality hospital.

  19. CARS and non-linear microscopy imaging of brain tumors

    Science.gov (United States)

    Galli, Roberta; Uckermann, Ortrud; Tamosaityte, Sandra; Geiger, Kathrin; Schackert, Gabriele; Steiner, Gerald; Koch, Edmund; Kirsch, Matthias

    2013-06-01

    Nonlinear optical microscopy offers a series of techniques that have the potential to be applied in vivo, for intraoperative identification of tumor border and in situ pathology. By addressing the different content of lipids that characterize the tumors with respect to the normal brain tissue, CARS microscopy enables to discern primary and secondary brain tumors from healthy tissue. A study performed in mouse models shows that the reduction of the CARS signal is a reliable quantity to identify brain tumors, irrespective from the tumor type. Moreover it enables to identify tumor borders and infiltrations at a cellular resolution. Integration of CARS with autogenous TPEF and SHG adds morphological and compositional details about the tissue. Examples of multimodal CARS imaging of different human tumor biopsies demonstrate the ability of the technique to retrieve information useful for histopathological diagnosis.

  20. A case of metastatic brain tumor causing multifocal cerebral embolism.

    Science.gov (United States)

    Kawaguchi, Takuya; Yamanouchi, Yasuo; Numa, Yoshihiro; Sakurai, Yasuo; Yamahara, Takahiro; Seno, Toshitaka; Shikata, Nobuaki; Asai, Akio; Kawamoto, Keiji

    2012-01-01

    The patient was a 72-year-old woman who had previously undergone treatment for femoral chondrosarcoma (histologically rated as myxofibrosarcoma). She suddenly developed left homonymous hemianopsia and was diagnosed with cerebral embolism. Because she had atrial fibrillation, we treated her for cardiogenic cerebral embolism. About 3 months later, however, she developed left hemiplegia, and head magnetic resonance imaging revealed multiple tumorous lesions affecting the previously detected infracted area and several new areas. We assumed that a tumor embolus had caused cerebral embolism, which resulted in growth of the tumor from the embolus and formation of a metastatic brain tumor. The metastatic foci formed from the tumor embolus were visualized by diagnostic imaging, and histological examination of the resected tumor confirmed that the brain tumor had occluded the brain vessel (tumorigenic cerebral embolism). No such case has been reported to date, and this case seems to be important.

  1. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: tullio.florio@unige.it [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  2. Intermittent Hypoxia Regulates Stem-like Characteristics and Differentiation of Neuroblastoma Cells

    Science.gov (United States)

    Bhaskara, Vasantha Kumar; Mohanam, Indra; Rao, Jasti S.; Mohanam, Sanjeeva

    2012-01-01

    Background Neuroblastomas are the most common extracranial solid tumors in children. Neuroblastomas are derived from immature cells of the sympathetic nervous system and are characterized by clinical and biological heterogeneity. Hypoxia has been linked to tumor progression and increased malignancy. Intermittent hypoxia or repeated episodes of hypoxia followed by re-oxygenation is a common phenomenon in solid tumors including neuroblastoma and it has a significant influence on the outcome of therapies. The present study focuses on how intermittent hypoxia modulates the stem-like properties and differentiation in neuroblastoma cells. Methods and Findings Cell survival was assessed by clonogenic assay and cell differentiation was determined by morphological characterization. Hypoxia-inducible genes were analyzed by real-time PCR and Western blotting. Immunofluorescence, real-time PCR and Western blotting were utilized to study stem cell markers. Analysis of neural crest / sympathetic nervous system (SNS) markers and neuronal differentiation markers were done by real-time PCR and Western blotting, respectively. Intermittent hypoxia stimulated the levels of HIF-1α and HIF-2 α proteins and enhanced stem-like properties of neuroblastoma cells. In intermittent hypoxia-conditioned cells, downregulation of SNS marker genes and upregulation of genes expressed in the neural crest were observed. Intermittent hypoxia suppressed the retinoic acid-induced differentiation of neuroblastoma cells. Conclusions Our results suggest that intermittent hypoxia enhances stem-like characteristics and suppresses differentiation propensities in neuroblastoma cells. PMID:22363512

  3. Characterization of stem-like cells in a new astroblastoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Esra Aydemir; Kasikci, Ezgi [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Karatas, Omer Faruk [Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum (Turkey); Suakar, Oznur; Kuskucu, Aysegul [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey); Altunbek, Mine [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Türe, Uğur [Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul (Turkey); Sahin, Fikrettin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Bayrak, Omer Faruk, E-mail: ofbayrak@yeditepe.edu.tr [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey)

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.

  4. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    Science.gov (United States)

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  5. Lassa-vesicular stomatitis chimeric virus safely destroys brain tumors.

    Science.gov (United States)

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N; Cepko, Connie; van den Pol, Anthony N

    2015-07-01

    High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We tested a series of

  6. Multifractal texture estimation for detection and segmentation of brain tumors.

    Science.gov (United States)

    Islam, Atiq; Reza, Syed M S; Iftekharuddin, Khan M

    2013-11-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available.

  7. Gamma Knife Surgery for Metastatic Brain Tumors from Gynecologic Cancer.

    Science.gov (United States)

    Matsunaga, Shigeo; Shuto, Takashi; Sato, Mitsuru

    2016-05-01

    The incidences of metastatic brain tumors from gynecologic cancer have increased. The results of Gamma Knife surgery (GKS) for the treatment of patients with brain metastases from gynecologic cancer (ovarian, endometrial, and uterine cervical cancers) were retrospectively analyzed to identify the efficacy and prognostic factors for local tumor control and survival. The medical records were retrospectively reviewed of 70 patients with 306 tumors who underwent GKS for brain metastases from gynecologic cancer between January 1995 and December 2013 in our institution. The primary cancers were ovarian in 33 patients with 147 tumors and uterine in 37 patients with 159 tumors. Median tumor volume was 0.3 cm(3). Median marginal prescription dose was 20 Gy. The local tumor control rates were 96.4% at 6 months and 89.9% at 1 year. There was no statistically significant difference between ovarian and uterine cancers. Higher prescription dose and smaller tumor volume were significantly correlated with local tumor control. Median overall survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and solitary brain metastasis were significantly correlated with satisfactory overall survival. Median activities of daily living (ADL) preservation survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and higher Karnofsky Performance Status score were significantly correlated with better ADL preservation. GKS is effective for control of tumor progression in patients with brain metastases from gynecologic cancer, and may provide neurologic benefits and preservation of the quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Distinctive responses of brain tumor cells to TLR2 ligands.

    Science.gov (United States)

    Yoon, Hee Jung; Jeon, Sae-Bom; Koh, Han Seok; Song, Jae-Young; Kim, Sang Soo; Kim, In-Hoo; Park, Eun Jung

    2015-05-01

    Malignant brain tumor mass contains significant numbers of infiltrating glial cells that may intimately interact with tumor cells and influence cancer treatments. Understanding of characteristic discrepancies between normal GLIA and tumor cells would, therefore, be valuable for improving anticancer therapeutics. Here, we report distinct differences in toll-like receptors (TLR)-2-mediated responses between normal glia and primary brain tumor cell lines. We found that tyrosine phosphorylation of STAT1 by TLR2 ligands and its downstream events did not occur in mouse, rat, or human brain tumor cell lines, but were markedly induced in normal primary microglia and astrocytes. Using TLR2-deficient, interferon (IFN)-γ-deficient, and IFNγ-receptor-1-deficient mice, we revealed that the impaired phosphorylation of STAT1 might be linked with defective TLR2 system in tumor cells, and that a TLR2-dependent pathway, not IFNγ-receptor machinery, might be critical for tyrosine STAT1 phosphorylation by TLR2 ligands. We also found that TLR2 and its heterodimeric partners, TLR1 and 6, on brain tumor cells failed to properly respond to TLR2 ligands, and representative TLR2-dependent cellular events, such as inflammatory responses and cell death, were not detected in brain tumor cells. Similar results were obtained in in vitro and in vivo experiments using orthotopic mouse and rat brain tumor models. Collectively, these results suggest that primary brain tumor cells may exhibit a distinctive dysfunction of TLR2-associated responses, resulting in abnormal signaling and cellular events. Careful targeting of this distinctive property could serve as the basis for effective therapeutic approaches against primary brain tumors. © 2015 Wiley Periodicals, Inc.

  9. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    Science.gov (United States)

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  10. Brain tumor classification of microscopy images using deep residual learning

    Science.gov (United States)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  11. Dynamics of leukemia stem-like cell extinction in acute promyelocytic leukemia

    Science.gov (United States)

    Werner, Benjamin; Gallagher, Robert E.; Paietta, Elisabeth M.; Litzow, Mark R.; Tallman, Martin S.; Wiernik, Peter H.; Slack, James L.; Willman, Cheryl L.; Sun, Zhuoxin; Traulsen, Arne; Dingli, David

    2014-01-01

    Many tumors are believed to be maintained by a small number of cancer stem-like cells where cure is thought to require eradication of this cell population. In this study, we investigated the dynamics of acute promyelocytic leukemia (APL) before and during therapy with regard to disease initiation, progression and therapeutic response. This investigation employed a mathematical model of hematopoiesis and a dataset derived from the North American Intergroup Study INT0129. The known phenotypic constraints of APL could be explained by a combination of differentiation blockade of PML-RARα positive cells and suppression of normal hematopoiesis. ATRA neutralizes the differentiation block and decreases the proliferation rate of leukemic stem cells in vivo. Prolonged ATRA treatment after chemotherapy can cure APL patients by eliminating the stem-like cell population over the course of approximately one year. To our knowledge, this study offers the first estimate of the average duration of therapy that is required to eliminate stem-like cancer cells from a human tumor, with the potential for the refinement of treatment strategies to better manage human malignancy. PMID:25082816

  12. Labeled Putrescine as a Probe in Brain Tumors

    Science.gov (United States)

    Volkow, Nora; Goldman, Stephen S.; Flamm, Eugene S.; Cravioto, Humberto; Wolf, Alfred P.; Brodie, Jonathan D.

    1983-08-01

    The polyamine metabolism of transplanted N-nitrosomethylurea-derived rat glioma was determined with radiolabeled putrescine used as a marker for malignancy. The uptake of putrescine in vivo was complete within 5 minutes and was specific for tumor tissue. The conversion of putrescine to spermine and other metabolites by the tumor was rapid, in contrast to the case for adjacent normal brain. These results suggest that putrescine labeled with carbon-11 may be used as a positron-emission tomographic tracer for the selective metabolic imaging of brain tumor and may be used in an appropriate model as a marker for tumor growth rate.

  13. Applications of nanotechnology to imaging and therapy of brain tumors.

    Science.gov (United States)

    Mohs, Aaron M; Provenzale, James M

    2010-08-01

    In the past decade, numerous advances in the understanding of brain tumor physiology, tumor imaging, and tumor therapy have been attained. In some cases, these advances have resulted from refinements of pre-existing technologies (eg, improvements of contrast-enhanced magnetic resonance imaging). In other instances, advances have resulted from development of novel technologies. The development of nanomedicine (ie, applications of nanotechnology to the field of medicine) is an example of the latter. In this review, the authors explain the principles that underlay nanoparticle design and function as well as the means by which nanoparticles can be used for imaging and therapy of brain tumors. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Local specific absorption rate in brain tumors at 7 tesla.

    Science.gov (United States)

    Restivo, Matthew C; van den Berg, Cornelis A T; van Lier, Astrid L H M W; Polders, Daniël L; Raaijmakers, Alexander J E; Luijten, Peter R; Hoogduin, Hans

    2016-01-01

    MR safety at 7 Tesla relies on accurate numerical simulations of transmit electromagnetic fields to fully assess local specific absorption rate (SAR) safety. Numerical simulations for SAR safety are currently performed using models of healthy patients. These simulations might not be useful for estimating SAR in patients who have large lesions with potentially abnormal dielectric properties, e.g., brain tumors. In this study, brain tumor patient models are constructed based on scans of four patients with high grade brain tumors. Dielectric properties for the modeled tumors are assigned based on electrical properties tomography data for the same patients. Simulations were performed to determine SAR. Local SAR increases in the tumors by as much as 30%. However, the location of the maximum 10-gram averaged SAR typically occurs outside of the tumor, and thus does not increase. In the worst case, if the tumor model is moved to the location of maximum electric field intensity, then we do observe an increase in the estimated peak 10-gram SAR directly related to the tumor. Peak local SAR estimation made on the results of a healthy patient model simulation may underestimate the true peak local SAR in a brain tumor patient. © 2015 Wiley Periodicals, Inc.

  15. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  16. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  17. Modeling and Targeting MYC Genes in Childhood Brain Tumors.

    Science.gov (United States)

    Hutter, Sonja; Bolin, Sara; Weishaupt, Holger; Swartling, Fredrik J

    2017-03-23

    Brain tumors are the second most common group of childhood cancers, accounting for about 20%-25% of all pediatric tumors. Deregulated expression of the MYC family of transcription factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic approaches for pharmacological inhibition of MYC activity in these tumors.

  18. Imaging cerebral tryptophan metabolism in brain tumor-associated depression.

    Science.gov (United States)

    Bosnyák, Edit; Kamson, David O; Behen, Michael E; Barger, Geoffrey R; Mittal, Sandeep; Juhász, Csaba

    2015-12-01

    Depression in patients with brain tumors is associated with impaired quality of life and shorter survival. Altered metabolism of tryptophan to serotonin and kynurenine metabolites may play a role in tumor-associated depression. Our recent studies with alpha[(11)C]methyl-L-tryptophan (AMT)-PET in brain tumor patients indicated abnormal tryptophan metabolism not only in the tumor mass but also in normal-appearing contralateral brain. In the present study, we explored if tryptophan metabolism in such brain regions is associated with depression. Twenty-one patients (mean age: 57 years) with a brain tumor (10 meningiomas, 8 gliomas, and 3 brain metastases) underwent AMT-PET scanning. MRI and AMT-PET images were co-registered, and AMT kinetic parameters, including volume of distribution (VD', an estimate of net tryptophan transport) and K (unidirectional uptake, related to tryptophan metabolism), were measured in the tumor mass and in unaffected cortical and subcortical regions contralateral to the tumor. Depression scores (based on the Beck Depression Inventory-II [BDI-II]) were correlated with tumor size, grade, type, and AMT-PET variables. The mean BDI-II score was 12 ± 10 (range: 2-33); clinical levels of depression were identified in seven patients (33 %). High BDI-II scores were most strongly associated with high thalamic AMT K values both in the whole group (Spearman's rho = 0.63, p = 0.004) and in the subgroup of 18 primary brain tumors (r = 0.68, p = 0.004). Frontal and striatal VD' values were higher in the depressed subgroup than in non-depressed patients (p Tumor size, grade, and tumor type were not related to depression scores. Abnormalities of tryptophan transport and metabolism in the thalamus, striatum, and frontal cortex, measured by PET, are associated with depression in patients with brain tumor. These changes may indicate an imbalance between the serotonin and kynurenine pathways and serve as a molecular imaging marker of

  19. FDTD analysis of a noninvasive hyperthermia system for brain tumors.

    Science.gov (United States)

    Yacoob, Sulafa M; Hassan, Noha S

    2012-08-14

    Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  20. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  1. Long-term psychiatric outcomes in pediatric brain tumor survivors.

    Science.gov (United States)

    Shah, Sumedh Subodh; Dellarole, Anna; Peterson, Eric Cecala; Bregy, Amade; Komotar, Ricardo; Harvey, Philip D; Elhammady, Mohamed Samy

    2015-05-01

    The increased efficacy of cancer treatments has led to a greater survival rate of patients with pediatric brain cancers. Therefore, it is imperative to explore the long-term consequences of therapies employed to treat pediatric brain tumors. The goal of this study was to provide a review of literature regarding the downstream psychological and psychiatric consequences experienced by adult survivors of pediatric brain cancer as a result of treatment, tumor type, or tumor location. A PubMed MeSH search and additional online database searches were conducted to include pertinent studies that discussed psychological deficits in childhood brain cancer survivors. The studies included were subjected to data extraction to quantify relevant information for further analysis. A total of 17 papers with 5320 pediatric brain tumor patients were incorporated in our review. Mean age at diagnosis (8.13 ± 0.77 years), mean follow-up time (9.98 ± 3.05 years), and male-to-female ratios (1.08:1) were compiled from studies reporting this information. Incidences of depression (19 %), anxiety (20 %), suicidal ideation (10.9 %), schizophrenia and its related psychoses (9.8 %), and behavioral problem (28.7 %) were higher among pediatric brain cancer survivors than in the normal population. Craniospinal radiotherapy and/or surgery corresponded to an increased likelihood of developing adverse deficits. Astrocytomas or other glial tumors were linked to poorer outcomes. Physicians treating pediatric brain tumor patients should be aware of the possible consequences associated with treatment. Psychiatric monitoring is warranted in survivors of pediatric brain tumors, but further investigation is needed to elucidate late outcomes regarding tumor type and location.

  2. Tumor Cells and Micro-environment in Brain Metastases

    Directory of Open Access Journals (Sweden)

    Wen ZHONG

    2016-09-01

    Full Text Available Improvements in survival and quality of life of patients with lung cancer had been achieved due to the progression of early diagnosis and precision medicine at recent years, however, until now, treatments targeted at lesions in central nervous system are far from satisfying, thus threatening livelihood of patients involved. After all, in the issue of prophylaxis and therapeutics of brain metastases, it is crucial to learn about the biological behavior of tumor cells in brain metastases and its mechanism underlying, and the hypothesis ”seed and soil”, that is, tumor cells would generate series of adaptive changes to fit in the new environment, is liable to help explain this process well. In this assay, we reviewed documents concerning tumor cells, brain micro-environments and their interactions in brain metastases, aiming to provide novel insight into the treatments of brain metastases.

  3. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  4. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2016-01-01

    Full Text Available Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs. Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  5. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets.

    Science.gov (United States)

    Sun, Lue; Moritake, Takashi; Ito, Kazuya; Matsumoto, Yoshitaka; Yasui, Hironobu; Nakagawa, Hidehiko; Hirayama, Aki; Inanami, Osamu; Tsuboi, Koji

    2017-01-01

    Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs) by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS) production, mitochondria function, oxygen consumption rate (OCR), energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA) resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability) in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma.

  6. Novel strategies of Raman imaging for brain tumor research.

    Science.gov (United States)

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-10-17

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real-time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I 2930 /I 2845 at 2930 and 2845 cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that

  7. Remission of invasive, cancer stem-like glioblastoma xenografts using lentiviral vector-mediated suicide gene therapy.

    Directory of Open Access Journals (Sweden)

    Peter C Huszthy

    Full Text Available BACKGROUND: Glioblastoma is the most frequent and most malignant primary brain tumor with a poor prognosis. The translation of therapeutic strategies for glioblastoma from the experimental phase into the clinic has been limited by insufficient animal models, which lack important features of human tumors. Lentiviral gene therapy is an attractive therapeutic option for human glioblastoma, which we validated in a clinically relevant animal model. METHODOLOGY/PRINCIPAL FINDINGS: We used a rodent xenograft model that recapitulates the invasive and angiogenic features of human glioblastoma to analyze the transduction pattern and therapeutic efficacy of lentiviral pseudotyped vectors. Both, lymphocytic choriomeningitis virus glycoprotein (LCMV-GP and vesicular stomatitis virus glycoprotein (VSV-G pseudotyped lentiviral vectors very efficiently transduced human glioblastoma cells in vitro and in vivo. In contrast, pseudotyped gammaretroviral vectors, similar to those evaluated for clinical therapy of glioblastoma, showed inefficient gene transfer in vitro and in vivo. Both pseudotyped lentiviral vectors transduced cancer stem-like cells characterized by their CD133-, nestin- and SOX2-expression, the ability to form spheroids in neural stem cell medium and to express astrocytic and neuronal differentiation markers under serum conditions. In a therapeutic approach using the suicide gene herpes simplex virus thymidine kinase (HSV-1-tk fused to eGFP, both lentiviral vectors mediated a complete remission of solid tumors as seen on MRI resulting in a highly significant survival benefit (p<0.001 compared to control groups. In all recurrent tumors, surviving eGFP-positive tumor cells were found, advocating prodrug application for several cycles to even enhance and prolong the therapeutic effect. CONCLUSIONS/SIGNIFICANCE: In conclusion, lentiviral pseudotyped vectors are promising candidates for gene therapy of glioma in patients. The inefficient gene delivery

  8. Toward real-time tumor margin identification in image-guided robotic brain tumor resection

    Science.gov (United States)

    Hu, Danying; Jiang, Yang; Belykh, Evgenii; Gong, Yuanzheng; Preul, Mark C.; Hannaford, Blake; Seibel, Eric J.

    2017-03-01

    For patients with malignant brain tumors (glioblastomas), a safe maximal resection of tumor is critical for an increased survival rate. However, complete resection of the cancer is hard to achieve due to the invasive nature of these tumors, where the margins of the tumors become blurred from frank tumor to more normal brain tissue, but in which single cells or clusters of malignant cells may have invaded. Recent developments in fluorescence imaging techniques have shown great potential for improved surgical outcomes by providing surgeons intraoperative contrast-enhanced visual information of tumor in neurosurgery. The current near-infrared (NIR) fluorophores, such as indocyanine green (ICG), cyanine5.5 (Cy5.5), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), are showing clinical potential to be useful in targeting and guiding resections of such tumors. Real-time tumor margin identification in NIR imaging could be helpful to both surgeons and patients by reducing the operation time and space required by other imaging modalities such as intraoperative MRI, and has the potential to integrate with robotically assisted surgery. In this paper, a segmentation method based on the Chan-Vese model was developed for identifying the tumor boundaries in an ex-vivo mouse brain from relatively noisy fluorescence images acquired by a multimodal scanning fiber endoscope (mmSFE). Tumor contours were achieved iteratively by minimizing an energy function formed by a level set function and the segmentation model. Quantitative segmentation metrics based on tumor-to-background (T/B) ratio were evaluated. Results demonstrated feasibility in detecting the brain tumor margins at quasi-real-time and has the potential to yield improved precision brain tumor resection techniques or even robotic interventions in the future.

  9. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape

    DEFF Research Database (Denmark)

    Agn, Mikael; Puonti, Oula; Rosenschöld, Per Munck af

    2016-01-01

    In this paper, we present a fully automated generative method for brain tumor segmentation in multi-modal magnetic resonance images. The method is based on the type of generative model often used for segmenting healthy brain tissues, where tissues are modeled by Gaussian mixture models combined...... with a spatial atlas-based tissue prior. We extend this basic model with a tumor prior, which uses convolutional restricted Boltzmann machines (cRBMs) to model the shape of both tumor core and complete tumor, which includes edema and core. The cRBMs are trained on expert segmentations of training images, without...

  10. An Epigenetic Gateway to Brain Tumor Cell Identity

    Science.gov (United States)

    Mack, Stephen C.; Hubert, Christopher G.; Miller, Tyler E.; Taylor, Michael D.; Rich, Jeremy N.

    2017-01-01

    Precise targeting of genetic lesions alone has been insufficient to extend brain tumor patient survival. Brain cancer cells are diverse in their genetic, metabolic, and microenvironmental compositions, accounting for their phenotypic heterogeneity and disparate responses to therapy. These factors converge at the level of the epigenome, representing a unified node that can be disrupted by pharmacologic inhibition. Aberrant epigenomes define many childhood and adult brain cancers, as demonstrated by widespread changes to DNA methylation patterns, redistribution of histone marks, and disruption of chromatin structure. In this review, we describe the convergence of genetic, metabolic, and micro-environmental factors upon mechanisms of epigenetic deregulation in brain cancer. We discuss how aberrant epigenetic pathways identified in brain tumors affect cell identity, cell state, and neoplastic transformation, in addition to the potential to exploit these alterations as novel therapeutic strategies for the treatment of brain cancer. PMID:26713744

  11. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  12. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rae-Kwon; Uddin, Nizam [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Hyun, Jin-Won [College of Medicine and Applied Radiological Science Research Institute, Jeju National University, Jeju-si 690-756 (Korea, Republic of); Kim, Changil [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Suh, Yongjoon, E-mail: hiswork@hanmail.net [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae, E-mail: sj0420@hanyang.ac.kr [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-01

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.

  13. Brain tumor symptoms as antecedents to uncertainty: an integrative review.

    Science.gov (United States)

    Cahill, Jennifer; LoBiondo-Wood, Geri; Bergstrom, Nancy; Armstrong, Terri

    2012-06-01

    Uncertainty is a common experience within human cancer. For brain tumor patients, irregular symptom pattern and presentation may promote uncertainties about treatment response, prognosis, and life quality. We sought to identify the somatic symptom experience associated with primary and secondary brain tumors and the potential impact on illness-related uncertainty. An integrative literature search of Medline and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) was performed. Symptom data were excerpted into tables and reviewed critically against the broader uncertainty-focused oncology literature. Twenty-one studies investigated a diverse range of brain tumor symptoms that persist through the now-expanding, post-treatment survival. While symptoms such as fatigue were common, antecedents and patterns were poorly characterized and inconsistent between and within categories of tumor. Symptom investigation is an emerging and rapidly developing area of neuro-oncology. The extent to which symptoms are familiar, predictable, and understandable can mitigate uncertainty. The unstable nature of symptoms across the trajectory of a brain tumor may be a significant corollary to illness-related uncertainty. Because the majority of brain tumor patients cannot be cured of their cancer, understanding the symptom expanse and potential to promote uncertainty could inform alternative nursing strategies to reduce anxiety and distress, and to preserve life quality where cure is often unattainable. © 2012 Sigma Theta Tau International.

  14. Critical Care Management of Cerebral Edema in Brain Tumors.

    Science.gov (United States)

    Esquenazi, Yoshua; Lo, Victor P; Lee, Kiwon

    2017-01-01

    Cerebral edema associated with brain tumors is extremely common and can occur in both primary and metastatic tumors. The edema surrounding brain tumors results from leakage of plasma across the vessel wall into the parenchyma secondary to disruption of the blood-brain barrier. The clinical signs of brain tumor edema depend on the location of the tumor as well as the extent of the edema, which often exceeds the mass effect induced by the tumor itself. Uncontrolled cerebral edema may result in increased intracranial pressure and acute herniation syndromes that can result in permanent neurological dysfunction and potentially fatal herniation. Treatment strategies for elevated intracranial pressure consist of general measures, medical interventions, and surgery. Alhough the definitive treatment for the edema may ultimately be surgical resection of the tumor, the impact of the critical care management cannot be underestimated and thus patients must be vigilantly monitored in the intensive care unit. In this review, we discuss the pathology, pathophysiology, and clinical features of patients presenting with cerebral edema. Imaging findings and treatment modalities used in the intensive care unit are also discussed. © The Author(s) 2015.

  15. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Nora D Mineva

    Full Text Available Inflammatory Breast Cancer (IBC is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival. Consistently, growth, invasive properties, and survival of IBC cells were reduced by EGCG treatment. EGCG also reduced lymphangiogenesis-promoting genes, in particular VEGF-D. Conditioned media from EGCG-treated IBC cells displayed decreased VEGF-D secretion and reduced ability to promote lymphangiogenesis in vitro as measured by hTERT-HDLEC lymphatic endothelial cell migration and tube formation. Tumorsphere formation by SUM-149 cells was robustly inhibited by EGCG, suggesting effects on self-renewal ability. Stem-like SUM-149 cells with high aldehyde dehydrogenase (ALDH activity, previously implicated in poor patient prognosis, were isolated. EGCG treatment reduced growth and induced apoptosis of the stem-like SUM-149 cells in culture. In an orthotopic mouse model, EGCG decreased growth of pre-existing tumors derived from ALDH-positive stem-like SUM-149 cells and their expression of VEGF-D, which correlated with a significant decrease in peritumoral lymphatic vessel density. Thus, EGCG inhibits the overall aggressive IBC phenotype. Reduction of the stem-like cell compartment by EGCG may explain the decreased risk of breast cancer recurrence among green tea drinkers. Recent clinical trials demonstrate the efficacy of green tea polyphenol extracts in treatment of prostate cancer and lymphocytic leukemia with low toxicity. Given the poor prognosis of IBC patients, our findings suggest further exploration

  16. Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells

    DEFF Research Database (Denmark)

    Raggi, Chiara; Gammella, Elena; Correnti, Margherita

    2017-01-01

    conditions, CSC form 3D spheres (SPH), which retain stem-like tumour-initiating features. Here, we found different expression of iron proteins indicating increased iron content, oxidative stress and higher expression of CSC markers in CCA-SPH compared to tumour cells growing as monolayers. Exposure...

  17. Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells

    DEFF Research Database (Denmark)

    Schonberg, David L; Miller, Tyler E; Wu, Qiulian

    2015-01-01

    Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue-specific progeni...

  18. The social trajectory of brain tumor: a qualitative metasynthesis.

    Science.gov (United States)

    Cubis, Lee; Ownsworth, Tamara; Pinkham, Mark B; Chambers, Suzanne

    2017-04-19

    Research indicates that strong social ties can buffer the adverse effects of chronic illness on psychological well-being. Brain tumor typically leads to serious functional impairments that affect relationships and reduce social participation. This metasynthesis aimed to identify, appraise and integrate the findings of qualitative studies that reveal the impact of brain tumor on social networks. Four major databases (PubMed, CINAHL, Cochrane Library and PsycINFO) were systematically searched from inception to September 2016 for qualitative studies that reported findings on the impact of primary brain tumor on social networks during adulthood. Twenty-one eligible studies were identified and appraised according to the Consolidated Criteria for Reporting Qualitative Research. Key findings of these studies were integrated to form superordinate themes. The metasynthesis revealed the core themes of: 1) Life disrupted; 2) Navigating the new reality of life; and 3) Social survivorship versus separation. Multiple changes typically occur across the social trajectory of brain tumor, including a loss of pre-illness networks and the emergence of new ones. Understanding the barriers and facilitators for maintaining social connection may guide interventions for strengthening social networks and enhancing well-being in the context of brain tumor. Implications for rehabilitation Social networks and roles are disrupted throughout the entire trajectory of living with brain tumor Physical, cognitive and psychological factors represent barriers to social integration Barriers to social integration may be addressed by supportive care interventions Compensatory strategies, adjusting goals and expectations, educating friends and family and accepting support from others facilitate social reintegration throughout the trajectory of living with brain tumor.

  19. Research of the multimodal brain-tumor segmentation algorithm

    Science.gov (United States)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  20. CT-guided laser probe for ablation of brain tumors

    Directory of Open Access Journals (Sweden)

    Abdolhadi Daneshi

    2010-01-01

    Full Text Available   Abstract  In this study, 22 patients (15-75 years old were selected and transferred to CT scan for tumor ablation. For ablations, after prep and drep under the local anesthesia and mild sedation in proper position, small incision made and special needle inserted and guided by proper direction to the core of the tumor. Then, laser probe inserted through the needle and laser energy delivered. Although we have not a good prognosis in metastatic tumors but post-operative follow up and brain CT scan established the effect of laser on resection and evaporation and diminution of mass effect in tumor lesions.

  1. Neoadjuvant chemotherapy for brain tumors in infants and young children.

    Science.gov (United States)

    Iwama, Junya; Ogiwara, Hideki; Kiyotani, Chikako; Terashima, Keita; Matsuoka, Kentaro; Iwafuchi, Hideto; Morota, Nobuhito

    2015-05-01

    Because of their large size and high vascularity, complete removal of brain tumors in infants and young children is often difficult. In most cases the degree of resection is associated with prognosis. Neoadjuvant chemotherapy may facilitate resection by reducing the vascularity of the tumor. The authors evaluated the effectiveness of neoadjuvant chemotherapy in the management of these tumors. The authors performed a retrospective review of infants and young children who underwent tumor removal after neoadjuvant chemotherapy. Nine consecutive patients underwent resection after neoadjuvant chemotherapy during the period February 2004 to December 2012. The mean age at diagnosis was 18 months (range 2-50 months). The average largest tumor diameter was 71 mm (range 30-130 mm) at initial surgery. Five patients underwent partial resection, and 4 underwent biopsy as the initial surgery. The histopathological diagnoses were ependymoma in 2 patients, anaplastic ependymoma in 1, primitive neuroectodermal tumor (PNET) in 2, choroid plexus carcinoma in 1, atypical teratoid/rhabdoid tumor (AT/RT) in 1, glioblastoma in 1, and embryonal tumor with abundant neuropil and true rosettes in 1. After 2-4 courses of multiagent chemotherapy (mainly with vincristine, cyclophosphamide, etoposide, and cisplatin), the second-look surgery was performed. In 1 patient with a PNET, intratumoral hemorrhage was observed after 2 courses of chemotherapy. The mean interval between the initial and the second-look surgery was 3 months. The tumor volume was reduced to varying degrees in 5 patients (56%) after chemotherapy. Intraoperatively, the vascularity of the tumor was considerably reduced, and the tumor was more circumscribed in all cases. Gross-total resection was achieved in 8 patients (89%) and neartotal resection in 1 (11%). Histopathological examination demonstrated fibrotic tissue circumscribing the tumor in 6 of 9 cases (67%). The average blood loss was 20% of the estimated blood volume, and

  2. Brain and Spinal Tumors: Hope through Research

    Science.gov (United States)

    ... called lobes, which handle different neurological functions. The frontal lobes manage voluntary movement, such as writing, and let us set and prioritize goals. A frontal lobe tumor can cause changes in personality, intellect, reasoning, ...

  3. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    Directory of Open Access Journals (Sweden)

    Nina P Connolly

    -associated microglia- and bone marrow-derived macrophages, and the formation of stem-like cell niches within the tumor. This transgenic rat model may enable detailed interspecies comparisons of fundamental cancer pathways and clinically relevant experimental imaging procedures and interventions that are limited by the smaller size of the mouse brain.

  4. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    Science.gov (United States)

    Connolly, Nina P; Stokum, Jesse A; Schneider, Craig S; Ozawa, Tatsuya; Xu, Su; Galisteo, Rebeca; Castellani, Rudolph J; Kim, Anthony J; Simard, J Marc; Winkles, Jeffrey A; Holland, Eric C; Woodworth, Graeme F

    2017-01-01

    -associated microglia- and bone marrow-derived macrophages, and the formation of stem-like cell niches within the tumor. This transgenic rat model may enable detailed interspecies comparisons of fundamental cancer pathways and clinically relevant experimental imaging procedures and interventions that are limited by the smaller size of the mouse brain.

  5. Stem-Like Cells in Bone Sarcomas: Implications for Tumorigenesis

    Directory of Open Access Journals (Sweden)

    C. Parker Gibbs

    2005-11-01

    Full Text Available Bone sarcomas are a clinically and molecularly heterogeneous group of malignancies characterized by varying degrees of mesenchymal differentiation. Despite advances in medical and surgical management, survival rates for high-grade tumors have remained static at 50% to 70%. Tumor stem cells have been recently implicated in the pathogenesis of other heterogeneous, highly malignant tumors. We demonstrate here the existence of a small subpopulation of self-renewing bone sarcoma cells that are capable of forming suspended spherical, clonal colonies, also called “sarcospheres,” in anchorage-independent, serum-starved conditions. These bone sarcoma cells as well as tissue specimens express activated STAT3 and the marker genes of pluripotent embryonic stem (ES cells, Oct 3/4 and Nanog. Expression levels of Oct 3/4 and Nanog are greater in sarcospheres than in adherent cultures. A subset of bone sarcoma cells displays several surface markers of mesenchymal stem cells (Stro-1, CD105, and CD44 as well as attributes of mesodermal, ectodermal, and endodermal differentiation. Although previously documented in brain and breast tumors, our results support the extension of the cancer stem cell hypothesis to include tumors of mesenchymal lineage. Furthermore, they suggest the participation of ES cell homeobox proteins in non-germ cell tumorigenesis.

  6. Convection-enhanced delivery for the treatment of brain tumors

    Science.gov (United States)

    Debinski, Waldemar; Tatter, Stephen B

    2013-01-01

    The brain is highly accessible for nutrients and oxygen, however delivery of drugs to malignant brain tumors is a very challenging task. Convection-enhanced delivery (CED) has been designed to overcome some of the difficulties so that pharmacological agents that would not normally cross the BBB can be used for treatment. Drugs are delivered through one to several catheters placed stereotactically directly within the tumor mass or around the tumor or the resection cavity. Several classes of drugs are amenable to this technology including standard chemotherapeutics or novel experimental targeted drugs. The first Phase III trial for CED-delivered, molecularly targeted cytotoxin in the treatment of recurrent glioblastoma multiforme has been accomplished and demonstrated objective clinical efficacy. The lessons learned from more than a decade of attempts at exploiting CED for brain cancer treatment weigh critically for its future clinical applications. The main issues center around the type of catheters used, number of catheters and their exact placement; pharmacological formulation of drugs, prescreening patients undergoing treatment and monitoring the distribution of drugs in tumors and the tumor-infiltrated brain. It is expected that optimizing CED will make this technology a permanent addition to clinical management of brain malignancies. PMID:19831841

  7. Groupwise registration of MR brain images with tumors

    Science.gov (United States)

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-09-01

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of ‘image registration paths’ to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10-9).

  8. Factors affecting the cerebral network in brain tumor patients.

    Science.gov (United States)

    Heimans, Jan J; Reijneveld, Jaap C

    2012-06-01

    Brain functions, including cognitive functions, are frequently disturbed in brain tumor patients. These disturbances may result from the tumor itself, but also from the treatment directed against the tumor. Surgery, radiotherapy and chemotherapy all may affect cerebral functioning, both in a positive as well as in a negative way. Apart from the anti-tumor treatment, glioma patients often receive glucocorticoids and anti-epileptic drugs, which both also have influence on brain functioning. The effect of a brain tumor on cerebral functioning is often more global than should be expected on the basis of the local character of the disease, and this is thought to be a consequence of disturbance of the cerebral network as a whole. Any network, whether it be a neural, a social or an electronic network, can be described in parameters assessing the topological characteristics of that particular network. Repeated assessment of neural network characteristics in brain tumor patients during their disease course enables study of the dynamics of neural networks and provides more insight into the plasticity of the diseased brain. Functional MRI, electroencephalography and especially magnetoencephalography are used to measure brain function and the signals that are being registered with these techniques can be analyzed with respect to network characteristics such as "synchronization" and "clustering". Evidence accumulates that loss of optimal neural network architecture negatively impacts complex cerebral functioning and also decreases the threshold to develop epileptic seizures. Future research should be focused on both plasticity of neural networks and the factors that have impact on that plasticity as well as the possible role of assessment of neural network characteristics in the determination of cerebral function during the disease course.

  9. Childhood brain tumors and residential electromagnetic fields (EMF).

    Science.gov (United States)

    Kheifets, L I; Sussman, S S; Preston-Martin, S

    1999-01-01

    There are many recent comprehensive reviews of the residential EMF epidemiologic literature, but they do not attempt to cover the issue of childhood brain tumors and EMF in depth. We present here background information on descriptive epidemiology of known or suspected causes of childhood brain tumors and a detailed review of studies that have examined the associations between EMF as represented by various surrogates, and childhood brain tumors. We evaluated nine studies of childhood brain tumors and residential exposure to EMF based on wire codes, distance, measurements, and modeling, and six studies that examined the use of appliances by children or their mothers during pregnancy. For each study we discussed analytical and methodological issues including choice of cutpoints, nonconcurrent control selection, random digit dialing, differential participation, and ability of a study to detect an association. On the basis of this comprehensive review of all available childhood brain cancer studies, we do not see support for an overall association between EMF and childhood brain cancer. This lack of support applied for all surrogates of past magnetic fields, including wire code, distance, measured or calculated fields, and use of appliances by either child or mother.

  10. Pathology Results at Autopsy in Brain-Dead Patients with Brain Tumors.

    Science.gov (United States)

    Sadegh Beigee, Farahnaz; Shahryari, Shagin; Mojtabaee, Meysam; Pourabdollah Toutkaboni, Mihan

    2017-02-01

    Brain tumors are the most challenging causes of brain deaths due to the lack of pathology results in many cases. It is not uncommon to find a brain tumor in a brain-dead patient with no pathology results or neuroradiology reports available; this would exclude the deceased from organ donation. The mortality that occurs while patients are on transplant wait lists motivated us to find a solution to prevent losing brain-dead patients as potential donors. We present our experiences in autopsy examinations of brain tumors and the results of frozen-section pathology. We performed autopsy examinations of 8 brain-dead patients who were suspected of having highly malignant brain tumors and in whom there were no pathology or radiology reports available. The autopsy process began at the conclusion of organ retrieval. First, we performed a complete brain dissection; the tumor was then removed with its adjacent brain tissue and sent for examination by an expert pathologist. Organ transplant was deferred until the pathology examination was completed. Organ transplant was cancelled if the frozen sections revealed a high-grade tumor. For all other results, the transplant was performed. If a medulloblastoma was confirmed, only the heart was transplanted. The duration of the delay for pathologic examination was 30 to 45 minutes. A total of 21 organs were donated that would otherwise have been rejected. It is worth performing an autopsy and frozen-section pathology examination to prevent losing potential organs from donors with brain tumors who are suspected of having a high-grade neoplasm but have no pathology or neuroradiology reports. This process is simple and has the potential to save lives.

  11. Assessment of serum L-fucose in brain tumor cases

    Directory of Open Access Journals (Sweden)

    Manjula S

    2010-01-01

    Full Text Available Background: Glycosylation of altered tumor cell in relation to cellular heterogeneity in human intracranial tumors remains relatively unexposed. Serum protein-bound carbohydrate, L-Fucose is reported to be overexpressed during tumor progression by many investigators. Therefore, there is a need to determine the diagnostic, prognostic, functional significance of glycoprotein elevations in various cases of tumors. Objective: The objective of the present study was to evaluate the clinical utility of serum L-fucose in patients with brain tumor. Materials and Methods: Serum glyco-conjugate levels were estimated in 99 patients with brain tumors. Estimation of L-fucose was carried out colorimetrically by the method of Winzler using cysteine hydrochloride. Results: There was a significant increase in L-fucose level in most of the patients. In the posttreatment cases, the L-fucose levels were apparently low compared to preoperative values. Conclusion: Our results showed that the rise in serum L-fucose may be used as a general marker for brain tumors in addition to other markers.

  12. Characterization of stem-like cells in a new astroblastoma cell line.

    Science.gov (United States)

    Coban, Esra Aydemir; Kasikci, Ezgi; Karatas, Omer Faruk; Suakar, Oznur; Kuskucu, Aysegul; Altunbek, Mine; Türe, Uğur; Sahin, Fikrettin; Bayrak, Omer Faruk

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  14. Recent technological advances in pediatric brain tumor surgery.

    Science.gov (United States)

    Zebian, Bassel; Vergani, Francesco; Lavrador, José Pedro; Mukherjee, Soumya; Kitchen, William John; Stagno, Vita; Chamilos, Christos; Pettorini, Benedetta; Mallucci, Conor

    2017-01-01

    X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.

  15. Multiresolution texture models for brain tumor segmentation in MRI.

    Science.gov (United States)

    Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir

    2011-01-01

    In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.

  16. Differential diagnosis of the epileptogenic supratentorial brain tumors in children

    Directory of Open Access Journals (Sweden)

    V. S. Khalilov

    2015-01-01

    Full Text Available Fifty-six out of 79 pediatric patients with supratentorial brain tumors were noted to have symptomatic epilepsy. Dysembryoplastic neuroepithelial tumors (DNET, diffuse astrocytomas (DA, and gangliogliomas (GG were the most epileptogenic tumors. Seizures were new-onset in all our noted cases of DNET and in 4 patients with GG and the only clinical tumor sign in 6 of 8 cases of DNET. The neuroimaging features of the MRI pattern of DNET, DA, and GG were an iso/hypointense signal on Tl-weighted magnetic resonance images and a signal, the intensity of which varied from heterogeneous to cerebrospinal fluid, on T2-weighted FLAIR images. Cases of DNET and GG displayed no mass effect or perifocal edema, a trend towards location in the temporoinsular regions, and a frequent concurrence with local gray-white matter differentiation disorders and atrophy. The FLAIR images clearly showed the so-called foam-like (multicystic structure with pericystic changes. No significant change in the dimensions of the identified DNET and GG was observed during the follow up period. In low-grade DA, tumor growth was reduced and it is difficult to differentiate minimal perifocal edema from tumor-like tissue. The sensitivity of these tumors to contrast enhancement is ambiguous. Along with DNET (that was epileptogenic in 100% of cases, DA (91,7% and GG (80% were the most common epileptogenic brain tumors.

  17. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition.

    Directory of Open Access Journals (Sweden)

    Jun Cheng

    Full Text Available Automatic classification of tissue types of region of interest (ROI plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor in T1-weighted contrast-enhanced MRI (CE-MRI images. Spatial pyramid matching (SPM, which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM, and bag-of-words (BoW model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

  18. Aerobic Glycolysis as a Marker of Tumor Aggressiveness: Preliminary Data in High Grade Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Andrei G. Vlassenko

    2015-01-01

    Full Text Available Objectives. Glucose metabolism outside of oxidative phosphorylation, or aerobic glycolysis (AG, is a hallmark of active cancer cells that is not directly measured with standard 18F-fluorodeoxyglucose (FDG positron emission tomography (PET. In this study, we characterized tumor regions with elevated AG defined based on PET measurements of glucose and oxygen metabolism. Methods. Fourteen individuals with high-grade brain tumors underwent structural MR scans and PET measurements of cerebral blood flow (CBF, oxygen (CMRO2 and glucose (CMRGlu metabolism, and AG, using 15O-labeled CO, O2 and H2O, and FDG, and were compared to a normative cohort of 20 age-matched individuals. Results. Elevated AG was observed in most high-grade brain tumors and it was associated with decreased CMRO2 and CBF, but not with significant changes in CMRGlu. Elevated AG was a dramatic and early sign of tumor growth associated with decreased survival. AG changes associated with tumor growth were differentiated from the effects of nonneoplastic processes such as epileptic seizures. Conclusions. Our findings demonstrate that high-grade brain tumors exhibit elevated AG as a marker of tumor growth and aggressiveness. AG may detect areas of active tumor growth that are not evident on conventional FDG PET.

  19. Brain MRI tumor image fusion combined with Shearlet and wavelet

    Science.gov (United States)

    Zhang, Changjiang; Fang, Mingchao

    2017-11-01

    In order to extract the effective information in different modalities of the tumor region in brain Magnetic resonance imaging (MRI) images, we propose a brain MRI tumor image fusion method combined with Shearlet and wavelet transform. First, the source images are transformed into Shearlet domain and wavelet domain. Second, the low frequency component of Shearlet domain is fused by Laplace pyramid decomposition. Then the low-frequency fusion image is obtained through inverse Shearlet transform. Third, the high frequency subimages in wavelet domain are fused. Then the high-frequency fusion image is obtained through inverse wavelet transform. Finally, the low-frequency fusion image and high-frequency fusion image are summated to get the final fusion image. Through experiments conducted on 10 brain MRI tumor images, the result shown that the proposed fusion algorithm has the best fusion effect in the evaluation indexes of spatial frequency, edge strength and average gradient. The main spatial frequency of 10 images is 29.22, and the mean edge strength and average gradient is 103.77 and 10.42. Compared with different fusion methods, we find that the proposed method effectively fuses the information of multimodal brain MRI tumor images and improves the clarity of the tumor area well.

  20. Episodic Memory Impairments in Primary Brain Tumor Patients.

    Science.gov (United States)

    Durand, Thomas; Berzero, Giulia; Bompaire, Flavie; Hoffmann, Sabine; Léger, Isabelle; Jego, Virginie; Baruteau, Marie; Delgadillo, Daniel; Taillia, Hervé; Psimaras, Dimitri; Ricard, Damien

    2018-01-04

    Cognitive investigations in brain tumor patients have mostly explored episodic memory without differentiating between encoding, storage, and retrieval deficits. The aim of this study is to offer insight into the memory sub-processes affected in primary brain tumor patients and propose an appropriate assessment method. We retrospectively reviewed the clinical and memory assessments of 158 patients with primary brain tumors who had presented to our departments with cognitive complaints and were investigated using the Free and Cued Selective Reminding Test. Retrieval was the process of episodic memory most frequently affected, with deficits in this domain detected in 92% of patients with episodic memory impairments. Storage and encoding deficits were less prevalent, with impairments, respectively, detected in 41% and 23% of memory-impaired patients. The pattern of episodic memory impairment was similar across different tumor histologies and treatment modalities. Although all processes of episodic memory were found to be impaired, retrieval was by far the most widely affected function. A thorough assessment of all three components of episodic memory should be part of the regular neuropsychological evaluation in patients with primary brain tumors.

  1. Black hairy tongue after chemotherapy for malignant brain tumors.

    Science.gov (United States)

    Yamagishi, Yuki; Maruyama, Keisuke; Kobayashi, Keiichi; Kume, Satoshi; Sasaki, Nobuyoshi; Yokoya, Shigeomi; Saito, Kuniaki; Shiokawa, Yoshiaki; Nagane, Motoo

    2017-01-01

    Black hairy tongue (BHT) developed in five patients (2.6%) among 192 patients undergoing chemotherapy for malignant brain tumors. Three patients with a history of diabetes mellitus developed BHT within 10 days after the initiation of chemotherapy. The other two patients suffered more than 100 days after induction and lymphopenia of grade 3 or worse developed for more than 20 days, which was not observed in the three patients with diabetes. We found that BHT could develop after chemotherapy for malignant brain tumors. Patients with diabetes mellitus presented early after chemotherapy, while patients with longstanding severe lymphopenia presented in late phase.

  2. Air pollution from traffic and risk for brain tumors

    DEFF Research Database (Denmark)

    Poulsen, Aslak Harbo; Sørensen, Mette; Andersen, Zorana J.

    2016-01-01

    to replicate that finding in a large nationwide case-control study. METHODS: We identified all 4,183 adult brain tumor cases in Denmark in the years 2000-2009 and 8,018 risk set sampled population controls matched on gender and year of birth. We extracted residential address histories and estimated mean......PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out...... residential nitrogen oxides (NOx) concentrations since 1971 with a validated dispersion model. Categorical and linear odds ratios (OR) and confidence intervals (CI) were calculated with conditional logistic regression models. RESULTS: The highest risk estimates for any brain cancer were observed among...

  3. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  4. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  5. Brain tumors and anorexia nervosa syndrome.

    Science.gov (United States)

    Chipkevitch, E

    1994-01-01

    This review presents 21 cases, found in the literature, of a CNS lesion (a tumor in 19 of them) associated with emaciation, anorexia and several psychic symptoms that had led to the diagnosis of anorexia nervosa (AN). Anorexia and psychic disturbances preceded the neurologic signs and/or the correct diagnosis in all patients (by a mean of 2.9 years, range = 0.2-17 years). Anorexia had begun before the age of 25 years in 18 patients of which two-thirds were females. Only a few cases fulfilled the DSM-III-R criteria for AN; the majority could be characterized as 'atypical AN'. Although AN is usually conceived as a primarily psychogenic disorder, structural lesions of the hypothalamus (or other sites involved in food regulation) in animal models and in these human cases mimic many features of AN, suggesting the possibility of an as yet unidentified structural hypothalamic disorder to be implicated in the etiopathogeny of AN. The unusually high incidence of germ-cell tumors in this review (33%) suggests that they are more likely than other tumors to influence the limbic system toward an anorectic syndrome.

  6. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  7. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  8. Application of contact laser in microsurgery of brain stem tumors

    Directory of Open Access Journals (Sweden)

    Jian-wen GU

    2011-02-01

    Full Text Available Objective To explore the therapeutic efficacy of a new type sapphire contact laser using wavelength-shifting technique on microsurgery of brain stem tumors.Methods The clinical data were retrospectively analyzed of 23 patients(13 males and 10 females,aged 6 to 69 years with an average of 38 years,and the duration of disease was 14 to 36 months with average of 22 months with brain stem tumor admitted from Mar.2006 to May 2010.The major symptoms of the patients were cranial nerve impairment,cerebellum function impairment or paralysis.All patients received microsurgical resection of brain stem tumor using sapphire contact laser through median suboccipital incision and posterior brain stem approach,and the tumors were resected with precision operation and vaporization and ablation.Results Of the 23 patients,4 were with glioma,15 with cavernous angioma,2 with angioreticuloma and 2 with metastatic tumor.Total resection was achieved in 15 cases,while subtotal resection(more than 80% in 6 cases.Intraoperative hemorrhage was less and no intraoperative blood transfusion was required.A 6-months follow-up showed symptoms recovered in 15 patients,improved in 4,unchanged in 2,and worsen in 1.One patient died of recurrence of tumor.No postoperative intracranial infection was occurred,and 2 patients were undergone tracheotomy after operation.The average hospital stay was 15d.Conclusion The contact laser can precisely dissect and vaporize the tumors,increase the resection rate,reduce intraoperative hemorrhage and accessory injuries,and has a clear and definite effect.

  9. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers.

    Science.gov (United States)

    Zhang, Fan; Mastorakos, Panagiotis; Mishra, Manoj K; Mangraviti, Antonella; Hwang, Lee; Zhou, Jinyuan; Hanes, Justin; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Kannan, Rangaramanujam M

    2015-06-01

    Effective blood-brain tumor barrier penetration and uniform solid tumor distribution can significantly enhance therapeutic delivery to brain tumors. Hydroxyl-functionalized, generation-4 poly(amidoamine) (PAMAM) dendrimers, with their small size, near-neutral surface charge, and the ability to selectively localize in cells associated with neuroinflammation may offer new opportunities to address these challenges. In this study we characterized the intracranial tumor biodistribution of systemically delivered PAMAM dendrimers in an intracranial rodent gliosarcoma model using fluorescence-based quantification methods and high resolution confocal microscopy. We observed selective and homogeneous distribution of dendrimer throughout the solid tumor (∼6 mm) and peritumoral area within fifteen minutes after systemic administration, with subsequent accumulation and retention in tumor associated microglia/macrophages (TAMs). Neuroinflammation and TAMs have important growth promoting and pro-invasive effects in brain tumors. The rapid clearance of systemically administered dendrimers from major organs promises minimal off-target adverse effects of conjugated drugs. Therefore, selective delivery of immunomodulatory molecules to TAM, using hydroxyl PAMAM dendrimers, may hold promise for therapy of glioblastoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. American brain tumor patients treated with BNCT in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  11. Identification of Stem-Like Cells in Atrial Myxoma by Markers CD44, CD19, and CD45

    Science.gov (United States)

    Song, Xianghe; Liu, Danni; Cui, Jian; Zhou, Manqian; Liu, Na

    2016-01-01

    Atrial myxoma is the most frequent tumor arising mainly in atrial septum and its origin remains uncertain. It has been reported that a subpopulation of stem-like cells are present in benign tumors and responsible for tumor initiation and maintenance. In this study, we investigated whether stem-like cells could contribute to the atrial cardiac myxoma. Immunohistology data confirmed that a population of cells bearing the surface markers CD19, CD45, and CD44 resided in a mucopolysaccharide-rich matrix of myxoma. Moreover, we isolated myxoma cells with phase-bright culture method and confirmed that myxoma derived cells express robust level of CD19, CD45, and CD44. Furthermore, the pluripotency of this population of cells also was validated by cardiomyocytes and smooth muscle cells differentiation in vitro. Our results indicate that primary cardiac myxoma may arise from mesenchymal stem cells with the ability to generate tumors with multilineage differentiation. In conclusion, this study for the first time verified that stem-like cells are present in atrial myxoma and this population of cells may have the capacity for myxoma initiation and progression. PMID:28115941

  12. Gonadal status in male survivors following childhood brain tumors

    DEFF Research Database (Denmark)

    Schmiegelow, M; Lassen, S; Poulsen, H S

    2001-01-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males...

  13. Learning Profiles of Survivors of Pediatric Brain Tumors

    Science.gov (United States)

    Barkon, Beverly

    2009-01-01

    By 2010 it is predicted that one in 900 adults will be survivors of some form of pediatric cancer. The numbers are somewhat lower for survivors of brain tumors, though their numbers are increasing. Schools mistakenly believe that these children easily fit pre-existing categories of disability. Though these students share some of the…

  14. Life satisfaction in adult survivors of childhood brain tumors.

    Science.gov (United States)

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. © 2014 by Association of Pediatric Hematology/Oncology Nurses.

  15. Imaging brain tumor proliferative activity with [I-124]iododeoxyuridine

    NARCIS (Netherlands)

    Blasberg, RG; Roelcke, U; Weinreich, R; Beattie, B; von Ammon, K; Yonekawa, Y; Landolt, H; Guenther, [No Value; Crompton, NEA; Vontobel, P; Missimer, J; Maguire, RP; Koziorowski, J; Knust, EJ; Finn, RD; Leenders, KL

    2000-01-01

    Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [I-124]IUdR in 20 patients with brain tumors, including meningiomas and gliomas, The PET images were directly compared with

  16. Genetic abnormality predicts benefit for a rare brain tumor

    Science.gov (United States)

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  17. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches

    Directory of Open Access Journals (Sweden)

    Marco Mineo

    2016-06-01

    Full Text Available Long non-coding RNAs (lncRNAs have an undefined role in the pathobiology of glioblastoma multiforme (GBM. These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2 as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context.

  18. Multi-fractal detrended texture feature for brain tumor classification

    Science.gov (United States)

    Reza, Syed M. S.; Mays, Randall; Iftekharuddin, Khan M.

    2015-03-01

    We propose a novel non-invasive brain tumor type classification using Multi-fractal Detrended Fluctuation Analysis (MFDFA) [1] in structural magnetic resonance (MR) images. This preliminary work investigates the efficacy of the MFDFA features along with our novel texture feature known as multifractional Brownian motion (mBm) [2] in classifying (grading) brain tumors as High Grade (HG) and Low Grade (LG). Based on prior performance, Random Forest (RF) [3] is employed for tumor grading using two different datasets such as BRATS-2013 [4] and BRATS-2014 [5]. Quantitative scores such as precision, recall, accuracy are obtained using the confusion matrix. On an average 90% precision and 85% recall from the inter-dataset cross-validation confirm the efficacy of the proposed method.

  19. Rethinking Brain Cancer Therapy: Tumor Enzyme Activatable Theranostic Nanoparticles.

    Science.gov (United States)

    Daldrup-Link, Heike E

    2017-01-01

    This invited commentary discusses a recent article by Mohanty et al in Molecular Cancer Therapeutics about significant therapeutic efficacies of novel theranostic nanoparticles (TNPs) for the treatment of human brain cancers in mouse models. The TNPs were cleaved by enzymes in the tumor tissue, matrix metalloproteinase (MMP-14), which lead to release of a highly potent therapeutic drug, azademethylcolchicine. Data showed that the TNPs caused selective toxic effects in MMP-14-expressing glioblastoma and not normal brain. In addition, the iron oxide nanoparticle backbone enabled in vivo drug tracking with magnetic resonance imaging (MRI). This commentary discusses previous efforts of MMP-targeted therapeutics as well as opportunities for further refinements of tumor enzyme-activatable TNPs. If successfully translated to clinical applications, the TNPs might hold substantial potential to improving cytotoxic indexes and long-term outcomes of patients with brain cancer compared to standard therapy.

  20. Development of stereotactic mass spectrometry for brain tumor surgery.

    Science.gov (United States)

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  1. Banking Brain Tumor Specimens Using a University Core Facility.

    Science.gov (United States)

    Bregy, Amade; Papadimitriou, Kyriakos; Faber, David A; Shah, Ashish H; Gomez, Carmen R; Komotar, Ricardo J; Egea, Sophie C

    2015-08-01

    Within the past three decades, the significance of banking human cancer tissue for the advancement of cancer research has grown exponentially. The purpose of this article is to detail our experience in collecting brain tumor specimens in collaboration with the University of Miami/Sylvester Tissue Bank Core Facility (UM-TBCF), to ensure the availability of high-quality samples of central nervous system tumor tissue for research. Successful tissue collection begins with obtaining informed consent from patients following institutional IRB and federal HIPAA guidelines, and it needs a well-trained professional staff and continued maintenance of high ethical standards and record keeping. Since starting in 2011, we have successfully banked 225 brain tumor specimens for research. Thus far, the most common tumor histology identified among those specimens has been glioblastoma (22.1%), followed by meningioma (18.1%). The majority of patients were White, non-Hispanics accounting for 45.1% of the patient population; Hispanic/Latinos accounted for 23%, and Black/African Americans accounted for 14%, which represent the particular population of the State of Florida according to the 2010 census data. The most common tumors found in each subgroup were as follows: Black/African American, glioblastoma and meningioma; Hispanic, metastasis and glioblastoma; White, glioblastoma and meningioma. The UM-TBCF is a valuable repository, offering high-quality tumor samples from a unique patient population.

  2. Mitochondrial control by DRP1 in brain tumor initiating cells.

    Science.gov (United States)

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.

  3. Advance MRI for pediatric brain tumors with emphasis on clinical benefits

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Ra, Young Shin [Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of)

    2017-01-15

    Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors.

  4. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low......- and high-grade glioma patients – manually annotated by up to four raters – and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74...... a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  5. History and evolution of brain tumor imaging: insights through radiology.

    Science.gov (United States)

    Castillo, Mauricio

    2014-11-01

    This review recounts the history of brain tumor diagnosis from antiquity to the present and, indirectly, the history of neuroradiology. Imaging of the brain has from the beginning held an enormous interest because of the inherent difficulty of this endeavor due to the presence of the skull. Because of this, most techniques when newly developed have always been used in neuroradiology and, although some have proved to be inappropriate for this purpose, many were easily incorporated into the specialty. The first major advance in modern neuroimaging was contrast agent-enhanced computed tomography, which permitted accurate anatomic localization of brain tumors and, by virtue of contrast enhancement, malignant ones. The most important advances in neuroimaging occurred with the development of magnetic resonance imaging and diffusion-weighted sequences that allowed an indirect estimation of tumor cellularity; this was further refined by the development of perfusion and permeability mapping. From its beginnings with indirect and purely anatomic imaging techniques, neuroradiology now uses a combination of anatomic and physiologic techniques that will play a critical role in biologic tumor imaging and radiologic genomics.

  6. Optical spectroscopy for stereotactic biopsy of brain tumors

    Science.gov (United States)

    Markwardt, Niklas; von Berg, Anna; Fiedler, Sebastian; Goetz, Marcus; Haj-Hosseini, Neda; Polzer, Christoph; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2015-07-01

    Stereotactic biopsy procedure is performed to obtain a tissue sample for diagnosis purposes. Currently, a fiber-based mechano-optical device for stereotactic biopsies of brain tumors is developed. Two different fluorophores are employed to improve the safety and reliability of this procedure: The fluorescence of intravenously applied indocyanine green (ICG) facilitates the recognition of blood vessels and thus helps minimize the risk of cerebral hemorrhages. 5- aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence is used to localize vital tumor tissue. ICG fluorescence detection using a 2-fiber probe turned out to be an applicable method to recognize blood vessels about 1.5 mm ahead of the fiber tip during a brain tumor biopsy. Moreover, the suitability of two different PpIX excitation wavelengths regarding practical aspects was investigated: While PpIX excitation in the violet region (at 405 nm) allows for higher sensitivity, red excitation (at 633 nm) is noticeably superior with regard to blood layers obscuring the fluorescence signal. Contact measurements on brain simulating agar phantoms demonstrated that a typical blood coverage of the tumor reduces the PpIX signal to about 75% and nearly 0% for 633 nm and 405 nm excitation, respectively. As a result, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy.

  7. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  8. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  9. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Science.gov (United States)

    Sztiller-Sikorska, Malgorzata; Koprowska, Kamila; Majchrzak, Kinga; Hartman, Mariusz; Czyz, Malgorzata

    2014-01-01

    Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem-like cells in the combined anti

  10. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    Science.gov (United States)

    2016-11-21

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  11. Intelligence deficits in Chinese patients with brain tumor: the impact of tumor resection.

    Science.gov (United States)

    Shen, Chao; Xie, Rong; Cao, Xiaoyun; Bao, Weimin; Yang, Bojie; Mao, Ying; Gao, Chao

    2013-01-01

    Intelligence is much important for brain tumor patients after their operation, while the reports about surgical related intelligence deficits are not frequent. It is not only theoretically important but also meaningful for clinical practice. Wechsler Adult Intelligence Scale was employed to evaluate the intelligence of 103 patients with intracranial tumor and to compare the intelligence quotient (IQ), verbal IQ (VIQ), and performance IQ (PIQ) between the intracerebral and extracerebral subgroups. Although preoperative intelligence deficits appeared in all subgroups, IQ, VIQ, and PIQ were not found to have any significant difference between the intracerebral and extracerebral subgroups, but with VIQ lower than PIQ in all the subgroups. An immediate postoperative follow-up demonstrated a decline of IQ and PIQ in the extracerebral subgroup, but an improvement of VIQ in the right intracerebral subgroup. Pituitary adenoma resection exerted no effect on intelligence. In addition, age, years of education, and tumor size were found to play important roles. Brain tumors will impair IQ, VIQ, and PIQ. The extracerebral tumor resection can deteriorate IQ and PIQ. However, right intracerebral tumor resection is beneficial to VIQ, and transsphenoidal pituitary adenoma resection performs no effect on intelligence.

  12. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Federica Ciregia

    2017-08-01

    Full Text Available Extracellular vesicles (EVs can be classified into apoptotic bodies, microvesicles (MVs, and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM, neuroblastoma (NB, medulloblastoma (MB, and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis.

  13. Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases

    Science.gov (United States)

    Ciregia, Federica; Urbani, Andrea; Palmisano, Giuseppe

    2017-01-01

    Extracellular vesicles (EVs) can be classified into apoptotic bodies, microvesicles (MVs), and exosomes, based on their origin or size. Exosomes are the smallest and best characterized vesicles which derived from the endosomal system. These vesicles are released from many different cell types including neuronal cells and their functions in the nervous system are investigated. They have been proposed as novel means for intercellular communication, which takes part not only to the normal neuronal physiology but also to the transmission of pathogenic proteins. Indeed, exosomes are fundamental to assemble and transport proteins during development, but they can also transfer neurotoxic misfolded proteins in pathogenesis. The present review will focus on their roles in neurological diseases, specifically brain tumors, such as glioblastoma (GBM), neuroblastoma (NB), medulloblastoma (MB), and metastatic brain tumors and chronic neurodegenerative diseases, such as Alzheimer, Parkinson, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington, and Prion diseseases highlighting their involvement in spreading neurotoxicity, in therapeutics, and in pathogenesis. PMID:28912682

  14. Specific features of epilepsy in children with brain tumors

    Directory of Open Access Journals (Sweden)

    G. V. Kalmykova

    2015-01-01

    Full Text Available Objective: to study the specific features of epilepsy in children and adolescents with brain tumors and to define the optimal tactics of management and antiepileptic therapy after surgical treatment. Patients and methods. Sixty-one patients aged 5 months to 15 years were examined. All the patients were diagnosed as having a brain tumor found in the presence of symptomatic epilepsy. They were all followed up for 5 years postsurgery or during their lifetime (in case of death. Comprehensive examination encompassing the assessment of history data and concomitant complaints, brain magnetic resonance imaging, video-EEC monitoring, and the neurological status (the presence of cognitive impairments and eye ground changes was done in all the cases. The probability of epileptic seizures in the clinical presentation of the disease, their semiology, and frequency were studied. Results and discussion. Epileptic seizures were the major complaint in all the patients at the first visit to their doctor. The disease occurred with status epilepticus in 9% of the patients. Different types of generalized seizures were more common (53%; p≥0.05. The tumor was located above the tentorium of the cerebellum in most examinees (77% and beneath it in the others (23%; p≤0.05. The significant clinical sign of a brain tumor in the epileptic children is focal neurological symptoms (72% of the cases. MRI was performed in children who had no focal neurological symptoms in the late periods. There was cerebrospinal fluid hypertension in 51% of the patients (p≥0.05 and cognitive impairments in 33% (p<0.05. The maximum number (74% of children with psycho-speech disorders and cognitive impairments were registered in the age group of 7–15 years. Eye ground changes characteristic of intracranial hypertension were identified in 19 epileptic children; they occurred in 27 patients more than 1 year after the onset of seizures. The late (few months-to-14 years diagnosis of a brain

  15. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  16. Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients

    Directory of Open Access Journals (Sweden)

    Douw Linda

    2010-08-01

    Full Text Available Abstract Background Both epilepsy patients and brain tumor patients show altered functional connectivity and less optimal brain network topology when compared to healthy controls, particularly in the theta band. Furthermore, the duration and characteristics of epilepsy may also influence functional interactions in brain networks. However, the specific features of connectivity and networks in tumor-related epilepsy have not been investigated yet. We hypothesize that epilepsy characteristics are related to (theta band connectivity and network architecture in operated glioma patients suffering from epileptic seizures. Included patients participated in a clinical study investigating the effect of levetiracetam monotherapy on seizure frequency in glioma patients, and were assessed at two time points: directly after neurosurgery (t1, and six months later (t2. At these time points, magnetoencephalography (MEG was recorded and information regarding clinical status and epilepsy history was collected. Functional connectivity was calculated in six frequency bands, as were a number of network measures such as normalized clustering coefficient and path length. Results At the two time points, MEG registrations were performed in respectively 17 and 12 patients. No changes in connectivity or network topology occurred over time. Increased theta band connectivity at t1 and t2 was related to a higher total number of seizures. Furthermore, higher number of seizures was related to a less optimal, more random brain network topology. Other factors were not significantly related to functional connectivity or network topology. Conclusions These results indicate that (pathologically increased theta band connectivity is related to a higher number of epileptic seizures in brain tumor patients, suggesting that theta band connectivity changes are a hallmark of tumor-related epilepsy. Furthermore, a more random brain network topology is related to greater vulnerability to

  17. Computer-Aided Detection of Brain Tumors Using Morphological Reconstruction

    Directory of Open Access Journals (Sweden)

    Buket DOĞAN

    2016-11-01

    Full Text Available Computer aided detection (CAD systems helps the detection of abnormalities in medical images using advanced image processing and pattern recognition techniques. CAD has advantages in accelerating decision-making and reducing the human error in detection process. In this study, a CAD system is developed which is based on morphological reconstruction and classification methods with the use of morphological features of the regions of interest to detect brain tumors from brain magnetic resonance (MR images. The CAD system consists of four stages: the preprocessing, the segmentation, region of interest specification and tumor detection stages. The system is evaluated on REMBRANDT dataset with 497 MR image slices of 10 patients. In the classification stage the performance of CAD has achieved accuracy of 93.36% with Decision Tree Algorithm, 94.89% with Artificial Neural Network (Multilayer Perceptron, 96.93% with K-Nearest Neighbour Algorithm and 96.93% with  Meta-Learner (Decorate Algorithm. These results show that the proposed technique is effective and promising for detecting tumors in brain MR images and enhances the classification process to be more accurate. The using morphological reconstruction method is useful and adaptive than the methods used in other CAD applications.

  18. Cognitive tasks challenging brain tumor survivors at work.

    Science.gov (United States)

    Collins, Courtney; Gehrke, Amanda; Feuerstein, Michael

    2013-12-01

    To identify problematic work tasks involving cognitive function in employed brain tumor survivors. Work tasks involving cognitive functions were compared between employed brain tumor survivors (n = 137) and a disease-free group (n = 96). Multivariable logistic regressions were conducted. In the brain tumor survivors, 44% (26/59) of work tasks were more likely to be problematic. Top five problematic work tasks included were as follows: following the flow of events (odds ratio [OR] = 11.72; 95% confidence interval [CI] = 3.19 to 43.07), remembering train of thought while speaking (OR = 11.70; 95% CI = 5.25 to 26.10), putting together materials for a task (OR = 10.90; 95% CI = 2.80 to 42.38), shifting between tasks (OR = 10.71; 95% CI = 3.62 to 31.74), and following written instructions (OR = 9.96; 95% CI = 2.65 to 37.41). Findings identified problematic work tasks involving major domains of cognitive function.

  19. APOE polymorphisms and cognitive functions in patients with brain tumors.

    Science.gov (United States)

    Correa, Denise D; Satagopan, Jaya; Baser, Raymond E; Cheung, Kenneth; Richards, Elizabeth; Lin, Michael; Karimi, Sasan; Lyo, John; DeAngelis, Lisa M; Orlow, Irene

    2014-07-22

    The goal of this study was to assess whether the APOE ε4 allele and other APOE single nucleotide polymorphisms (SNPs) influence neuropsychological and neuroimaging outcomes in patients with brain tumors. Two hundred eleven patients with brain tumors participated in the study. All patients completed standardized neuropsychological tests and provided a blood sample for APOE genotyping. Ratings of white matter abnormalities were performed on MRI scans. Patients were classified into 2 groups based on the presence (n = 50) or absence (n = 161) of at least one APOE ε4 allele. Additional APOE SNPs were genotyped in a subset of 150 patients. Patients with at least one APOE ε4 allele had significantly lower scores in verbal learning and delayed recall, and marginally significant lower scores in executive function, in comparison to noncarriers of an ε4 allele. Patients with at least one ε4 allele and history of cigarette smoking had significantly higher scores in working memory and verbal learning than ε4 carriers who never smoked. Nine additional APOE SNPs were significantly associated with attention and executive and memory abilities. There were no significant differences between ε4 carriers and noncarriers on the extent of white matter abnormalities on MRI. The findings suggest that patients with brain tumors who are carriers of the APOE ε4 allele may have increased vulnerability to developing memory and executive dysfunction, and that additional SNPs in the APOE gene may be associated with cognitive outcome. © 2014 American Academy of Neurology.

  20. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy.

    Science.gov (United States)

    Woolf, Eric C; Syed, Nelofer; Scheck, Adrienne C

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  1. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy

    Science.gov (United States)

    Woolf, Eric C.; Syed, Nelofer; Scheck, Adrienne C.

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma. PMID:27899882

  2. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy

    Directory of Open Access Journals (Sweden)

    Eric C. Woolf

    2016-11-01

    Full Text Available Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD. The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  3. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Nedergaard, Mette Kjølhede; Villingshøj, Mette

    2014-01-01

    BACKGROUND: Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in the devastating brain tumor glioblastoma multiforme (GBM). bCSC are proposed a central role in tumor initiation, progression, treatment resistance and relapse and as such present...... that more strongly induces angiogenesis if the treatment is not sustained. However, this more differentiated cell type might prove to be more sensitive to conventional therapies....

  4. Volumetric multimodality neural network for brain tumor segmentation

    Science.gov (United States)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  5. Improved Brain Tumor Classification by Sodium MR Imaging: Prediction of IDH Mutation Status and Tumor Progression.

    Science.gov (United States)

    Biller, A; Badde, S; Nagel, A; Neumann, J-O; Wick, W; Hertenstein, A; Bendszus, M; Sahm, F; Benkhedah, N; Kleesiek, J

    2016-01-01

    MR imaging in neuro-oncology is challenging due to inherent ambiguities in proton signal behavior. Sodium-MR imaging may substantially contribute to the characterization of tumors because it reflects the functional status of the sodium-potassium pump and sodium channels. Sodium-MR imaging data of patients with treatment-naïve glioma WHO grades I-IV (n = 34; mean age, 51.29 ± 17.77 years) were acquired by using a 7T MR system. For acquisition of sodium-MR images, we applied density-adapted 3D radial projection reconstruction pulse sequences. Proton-MR imaging data were acquired by using a 3T whole-body system. We demonstrated that the initial sodium signal of a treatment-naïve brain tumor is a significant predictor of isocitrate dehydrogenase (IDH) mutation status (P model confirmed the sodium signal of treatment-naïve brain tumors as a predictor of progression (P = .003). Compared with the molecular signature of IDH mutation status, information criteria of model comparison revealed that the sodium signal is even superior to IDH in progression prediction. In addition, sodium-MR imaging provides a new approach to noninvasive tumor classification. The sodium signal of contrast-enhancing tumor portions facilitates differentiation among most glioma types (P sodium-MR imaging may help to classify neoplasias at an early stage, to reduce invasive tissue characterization such as stereotactic biopsy specimens, and overall to promote improved and individualized patient management in neuro-oncology by novel imaging signatures of brain tumors. © 2016 by American Journal of Neuroradiology.

  6. A Nonparametric model for Brain Tumor Segmentation and Volumetry in Longitudinal MR Sequences

    OpenAIRE

    Alberts, Esther; Charpiat, Guillaume; Tarabalka, Yuliya; Huber, Thomas; Weber, Marc-André; Bauer, Jan; Zimmer, Claus; Menze, Bjoern H.

    2015-01-01

    International audience; Brain tumor image segmentation and brain tumor growth assessment are inter-dependent and benet from a joint evaluation. Starting from a generative model for multimodal brain tumor segmentation, we make use of a nonparametric growth model that is implemented as a conditional random field (CRF) including directed links with infinite weight in order to incorporate growth and inclusion constraints, reflecting our prior belief on tumor occurrence in the dierent image modali...

  7. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    NARCIS (Netherlands)

    Meyners, Thekla; Heisterkamp, Christine; Kueter, Jan-Dirk; Veninga, Theo; Stalpers, Lukas J. A.; Schild, Steven E.; Rades, Dirk

    2010-01-01

    This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI) alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from escalating the

  8. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    NARCIS (Netherlands)

    Meyners, T.; Heisterkamp, C.; Kueter, J.D.; Veninga, T.; Stalpers, L.J.A.; Schild, S.E.; Rades, D.

    2010-01-01

    Background: This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI) alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from

  9. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    Science.gov (United States)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  10. Recent advances in brain tumor-targeted nano-drug delivery systems.

    Science.gov (United States)

    Liu, Yu; Lu, Weiyue

    2012-06-01

    Brain tumors represent one of the most challenging and difficult areas in unmet medical needs. Fortunately, the past decade has seen momentous developments in brain tumor research in terms of brain tumor-targeted novel nano-drug delivery systems with significant important superiority over conventional formulations with respect to decreased toxicity and improved pharmacokinetics/pharmacodynamics. This review first introduces the characteristics of the two major obstacles in brain-tumor targeted delivery, blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), and then reviews recent advances in brain tumor-targeted novel nano-drug delivery systems according to their targeting strategies aimed at different stages of brain tumor development and growth. Based on continuously changing vascular characteristics of brain tumors at different development and growth stages, we propose the concept of 'whole-process targeting' for brain tumor for nano-drug delivery systems, referring to a series of overall targeted drug delivery strategies aimed at key points during the whole development of brain tumors.

  11. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell...

  12. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells

    OpenAIRE

    Burgett, M E; Lathia, J D; Roth, P.; Nowacki, A S; Galileo, D S; Pugacheva, E.; Huang, P.; Vasanji, A.; Li, M.; Byzova, T; Mikkelsen, T; Bao, S.; Rich, J N; Weller, M.; Gladson, C. L.

    2016-01-01

    The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin ?v?3 expressed on ECs to the RGD-peptide...

  13. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  14. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  15. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy

    Science.gov (United States)

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-01-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood–brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors. PMID:22390560

  16. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images.

    Science.gov (United States)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-27

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  17. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Neil V. Klinger

    2016-01-01

    Full Text Available Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin’s ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  18. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    Science.gov (United States)

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-11-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  19. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    Science.gov (United States)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  20. Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors

    Science.gov (United States)

    2015-10-01

    for childhood central nervous system (CNS) tumors, they remain the leading cause of death in pediatric oncology . One potential therapeutic...clinical trial design for pediatric brain tumor patients harboring the mutation. Keywords: Autophagy BRAF Brain tumor Pediatric Resistance...I submitted an abstract of my most recent findings to the Society of Neuro- Oncology Pediatric Neuro- Oncology Basic and Translational Research

  1. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Directory of Open Access Journals (Sweden)

    Akari Takaya

    Full Text Available Human cancer stem-like cells (CSCs/cancer-initiating cells (CICs can be isolated as side population (SP cells, aldehyde dehydrogenase high (ALDHhigh cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  2. Absence of human cytomegalovirus infection in childhood brain tumors.

    Science.gov (United States)

    Sardi, Iacopo; Lucchesi, Maurizio; Becciani, Sabrina; Facchini, Ludovica; Guidi, Milena; Buccoliero, Anna Maria; Moriondo, Maria; Baroni, Gianna; Stival, Alessia; Farina, Silvia; Genitori, Lorenzo; de Martino, Maurizio

    2015-01-01

    Human cytomegalovirus (HCMV) is a common human pathogen which induces different clinical manifestations related to the age and the immune conditions of the host. HCMV infection seems to be involved in the pathogenesis of adult glioblastomas. The aim of our study was to detect the presence of HCMV in high grade gliomas and other pediatric brain tumors. This hypothesis might have important therapeutic implications, offering a new target for adjuvant therapies. Among 106 pediatric patients affected by CNS tumors we selected 27 patients with a positive HCMV serology. The serological analysis revealed 7 patients with positive HCMV IGG (≥14 U/mL), whom had also a high HCMV IgG avidity, suggesting a more than 6 months-dated infection. Furthermore, HCMV IGM were positive (≥22 U/mL) in 20 patients. Molecular and immunohistochemical analyses were performed in all the 27 samples. Despite a positive HCMV serology, confirmed by ELISA, no viral DNA was shown at the PCR analysis in the patients' neoplastic cells. At immunohistochemistry, no expression of HCMV antigens was observed in tumoral cells. Our results are in agreement with recent results in adults which did not evidence the presence of HCMV genome in glioblastoma lesions. We did not find any correlation between HCMV infection and pediatric CNS tumors.

  3. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    Science.gov (United States)

    Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2016-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501

  4. Trends in childhood brain tumor incidence, 1973-2009.

    Science.gov (United States)

    McKean-Cowdin, Roberta; Razavi, Pedram; Barrington-Trimis, Jessica; Baldwin, Rachel Tobias; Asgharzadeh, Shahab; Cockburn, Myles; Tihan, Tarik; Preston-Martin, Susan

    2013-11-01

    In the mid-1980s, there was a rise in incidence rates of childhood brain tumors (CBT) in the United States that appeared to stabilize at a higher rate in the early 1990 s. An updated analysis of the pattern of CBT over the past 2 decades, with commentary on whether the elevated incidence rate has continued, is past due. We used Surveillance, Epidemiology and End Results (SEER) data to examine trends in incidence of CBT from 1973 through 2009. We examined age-adjusted incidence rates (AAIRs) and secular trends for all malignant brain tumors combined (SEER classification) by histologic tumor type and anatomic site. The incidence of CBT remained stable from 1987 to 2009 [annual percent change (APC) = 0.10; 95 % confidence intervals (CI) -0.39 to 0.61] with an AAIR for all CBT of 3.32 (95 % CI 3.22-3.42). The stability of rates in these two decades contrast the change that occurred in the mid-1980s (1983-1986), when the incidence of CBT increased by 53 % (APC = 14.06; 95 % CI 4.05-25.0). From 1983 to 1986, statistically significant rate increases were observed for pilocytic astrocytoma, PNET/medulloblastoma, and mixed glioma. Further, the rate of increase in pilocytic astrocytoma was similar to the rate of decrease for astrocytomas NOS from 1981 to 2009, suggesting a change from a more general to more specific classification. After the increase in rates in the mid-1980s, rates of CBT over the past two decades have stabilized. Changes in incidence rates of subtypes of tumors over this time period reflect changes both in classification of CBT and in diagnostic techniques.

  5. CD271+ osteosarcoma cells display stem-like properties.

    Directory of Open Access Journals (Sweden)

    Jiguang Tian

    Full Text Available Cancer stem cell (CSC theory has been proposed and verified in many cancers. The existence of osteosarcoma CSCs has been confirmed for many years and multiple surface markers have been employed to identify them. In this study, we identified CD271(+ subpopulation of osteosarcoma displaying stem-like properties. CD271, known as the neural crest nerve growth factor receptor, is the marker of bone marrow mesenchymal stem cells (MSCs and human melanoma-initiating cells. We discovered that CD271 was expressed differentially in diverse types of human osteosarcoma and stabilized cell lines. CD271(+ osteosarcoma cells displayed most of the properties of CSC, such as self-renewal, differentiation, drug resistance and tumorigenicity in vivo. Nanog, Oct3/4, STAT3, DNA-PKcs, Bcl-2 and ABCG2 were more expressed in CD271(+ cells compared with CD271- cells. Our study supported the osteosarcoma CSC hypothesis and, to a certain extent, revealed one of the possible mechanisms involved in maintaining CSCs properties.

  6. Comparative Expression Study of the Endo–G Protein Coupled Receptor (GPCR) Repertoire in Human Glioblastoma Cancer Stem-like Cells, U87-MG Cells and Non Malignant Cells of Neural Origin Unveils New Potential Therapeutic Targets

    Science.gov (United States)

    Lennon, Sarah; Carapito, Christine; Dong, Jihu; Van Dorsselaer, Alain; Junier, Marie-Pierre; Chneiweiss, Hervé; Cianférani, Sarah; Haiech, Jacques; Kilhoffer, Marie-Claude

    2014-01-01

    Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets. PMID:24662753

  7. Tumor growth model for atlas based registration of pathological brain MR images

    Science.gov (United States)

    Moualhi, Wafa; Ezzeddine, Zagrouba

    2015-02-01

    The motivation of this work is to register a tumor brain magnetic resonance (MR) image with a normal brain atlas. A normal brain atlas is deformed in order to take account of the presence of a large space occupying tumor. The method use a priori model of tumor growth assuming that the tumor grows in a radial way from a starting point. First, an affine transformation is used in order to bring the patient image and the brain atlas in a global correspondence. Second, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. Finally, the seeded atlas is deformed combining a method derived from optical flow principles and a model for tumor growth (MTG). Results show that an automatic segmentation method of brain structures in the presence of large deformation can be provided.

  8. Profiles of Executive Function Across Children with Distinct Brain Disorders: Traumatic Brain Injury, Stroke, and Brain Tumor.

    Science.gov (United States)

    Araujo, Gabriel C; Antonini, Tanya N; Anderson, Vicki; Vannatta, Kathryn A; Salley, Christina G; Bigler, Erin D; Taylor, H Gerry; Gerhardt, Cynthia; Rubin, Kenneth; Dennis, Maureen; Lo, Warren; Mackay, Mark T; Gordon, Anne; Hajek Koterba, Christine; Gomes, Alison; Greenham, Mardee; Owen Yeates, Keith

    2017-08-01

    This study examined whether children with distinct brain disorders show different profiles of strengths and weaknesses in executive functions, and differ from children without brain disorder. Participants were children with traumatic brain injury (N=82; 8-13 years of age), arterial ischemic stroke (N=36; 6-16 years of age), and brain tumor (N=74; 9-18 years of age), each with a corresponding matched comparison group consisting of children with orthopedic injury (N=61), asthma (N=15), and classmates without medical illness (N=68), respectively. Shifting, inhibition, and working memory were assessed, respectively, using three Test of Everyday Attention: Children's Version (TEA-Ch) subtests: Creature Counting, Walk-Don't-Walk, and Code Transmission. Comparison groups did not differ in TEA-Ch performance and were merged into a single control group. Profile analysis was used to examine group differences in TEA-Ch subtest scaled scores after controlling for maternal education and age. As a whole, children with brain disorder performed more poorly than controls on measures of executive function. Relative to controls, the three brain injury groups showed significantly different profiles of executive functions. Importantly, post hoc tests revealed that performance on TEA-Ch subtests differed among the brain disorder groups. Results suggest that different childhood brain disorders result in distinct patterns of executive function deficits that differ from children without brain disorder. Implications for clinical practice and future research are discussed. (JINS, 2017, 23, 529-538).

  9. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.

    Science.gov (United States)

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C; Heth, Jason A; Maher, Cormac O; Sanai, Nader; Johnson, Timothy D; Freudiger, Christian W; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A

    2015-10-14

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a nondestructive, label-free optical method, to reveal glioma infiltration in animal models. We show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ = 0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density, and protein/lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density, and protein/lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery. Copyright © 2015, American Association for the Advancement of Science.

  10. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells.

    Science.gov (United States)

    Iglesia, Rebeca Piatniczka; Prado, Mariana Brandão; Cruz, Lilian; Martins, Vilma Regina; Santos, Tiago Góss; Lopes, Marilene Hohmuth

    2017-04-17

    Glioblastoma (GBM), a highly aggressive brain tumor, contains a subpopulation of glioblastoma stem-like cells (GSCs) that play roles in tumor maintenance, invasion, and therapeutic resistance. GSCs are therefore a promising target for GBM treatment. Our group identified the cellular prion protein (PrP C ) and its partner, the co-chaperone Hsp70/90 organizing protein (HOP), as potential target candidates due to their role in GBM tumorigenesis and in neural stem cell maintenance. GSCs expressing different levels of PrP C were cultured as neurospheres with growth factors, and characterized with stem cells markers and adhesion molecules markers through immunofluorescence and flow cytometry. We than evaluated GSC self-renewal and proliferation by clonal density assays and BrdU incorporation, respectively, in front of recombinant HOP treatment, combined or not with a HOP peptide which mimics the PrP C binding site. Stable silencing of HOP was also performed in parental and/or PrP C -depleted cell populations, and proliferation in vitro and tumor growth in vivo were evaluated. Migration assays were performed on laminin-1 pre-coated glass. We observed that, when GBM cells are cultured as neurospheres, they express specific stemness markers such as CD133, CD15, Oct4, and SOX2; PrP C is upregulated compared to monolayer culture and co-localizes with CD133. PrP C silencing downregulates the expression of molecules associated with cancer stem cells, upregulates markers of cell differentiation and affects GSC self-renewal, pointing to a pivotal role for PrP C in the maintenance of GSCs. Exogenous HOP treatment increases proliferation and self-renewal of GSCs in a PrP C -dependent manner while HOP knockdown disturbs the proliferation process. In vivo, PrP C and/or HOP knockdown potently inhibits the growth of subcutaneously implanted glioblastoma cells. In addition, disruption of the PrP C -HOP complex by a HOP peptide, which mimics the PrP C binding site, affects GSC self

  11. CCL21/CCR7 Axis Contributed to CD133+ Pancreatic Cancer Stem-Like Cell Metastasis via EMT and Erk/NF-κB Pathway.

    Directory of Open Access Journals (Sweden)

    Lirong Zhang

    Full Text Available Tumor metastasis is driven by malignant cells and stromal cell components of the tumor microenvironment. Cancer stem cells (CSCs are thought to be responsible for metastasis by altering the tumor microenvironment. Epithelial-mesenchymal transition (EMT processes contribute to specific stages of the metastatic cascade, promoted by cytokines and chemokines secreted by stromal cell components in the tumor microenvironment. C-C chemokine receptor 7 (CCR7 interacts with its ligand, chemokine ligand 21(CCL21, to mediate metastasis in some cancer cells lines. This study investigated the role of CCL21/CCR7 in promoting EMT and metastasis of cluster of differentiation 133+ (CD133+ pancreatic cancer stem-like cells.Panc-1, AsPC-1, and MIA PaCa-2 pancreatic cancer cells were selected because of their aggressive invasive potentials. CCR7 expression levels were examined in total, CD133+ and CD133- cell fractions by Immunofluorescence analysis and real time-quantitative polymerase chain reaction (RT-qPCR. The role of CCL21/CCR7 in mediating metastasis and survival of CD133+ pancreatic cancer stem-like cells was detected by Transwell assays and flow cytometry, respectively. EMT and lymph node metastasis related markers (E-cadherin, N- cadherin, LYVE-1 were analyzed by western blot. CCR7 expression levels were analyzed by immunohistochemical staining and RT-qPCR in resected tumor tissues, metastatic lymph nodes, normal lymph nodes and adjacent normal tissues from patients with pancreatic carcinoma.CCR7 expression was significantly increased in CD133+ pancreatic cancer stem-like cells, resected pancreatic cancer tissues, and metastatic lymph nodes, compared with CD133- cancer cells, adjacent normal tissues and normal lymph nodes, respectively. CCL21/CCR7 promoted metastasis and survival of CD133+ pancreatic cancer stem-like cells and regulated CD133+ pancreatic cancer stem-like cells metastasis by modulating EMT and Erk/NF-κB pathway.These results indicate a

  12. Raloxifene and anti-estrogenic Gonadorelin inhibits intestinal tumorigenesis by modulating immune cells and decreasing stem like cells

    Science.gov (United States)

    Janakiram, Naveena B.; Mohammed, Altaf; Brewer, Misty; Bryant, Taylor; Biddick, Laura; Lightfoot, Stan; Pathuri, Gopal; Gali, Hariprasad; Rao, Chinthalapally V.

    2014-01-01

    Studies suggest that estrogen plays a contributing role in colorectal cancer (CRC). This project examined the preventive effects of raloxifene, a selective estrogen receptor modulator (SERM), and gonadorelin, an anti-estrogenic drug, in female ApcMin/+ mouse intestinal tumorigenesis. Six-week-old ApcMin/+ mice were fed diet containing 1 ppm raloxifene or control diet. Gonadorelin (150ng/mouse) was injected subcutaneously into one treatment group. Intestinal tumors were evaluated for tumor multiplicity and size. Mice treated with raloxifene and gonadorelin showed colon tumor inhibition of 80% and 75% respectively. Both drugs significantly inhibited small intestinal tumor multiplicity and size (75 – 65%, PRaloxifene and gonadorelin showed significant tumor inhibition with 98% and 94% inhibition of polyps >2 mm in size. In mice fed with raloxifene or injected with gonadorelin, tumors showed significantly reduced proliferating cell nuclear antigen expression (58-65%, PRaloxifene treatment decreased β-catenin, cyclin D1, laminin 1β, Ccl6 and stem like cells (Lgr 5, EpCAM, CD44/CD24), as well as suppressed inflammatory genes (COX-2, mPGES-1, 5-LOX,). Gonadorelin showed significant decrease in COX-2, mPGES-1, iNOS, and stem like cells or increased NK cells and chemokines required for NK cells. Both drugs were effective in suppressing tumor growth albeit with different mechanisms. These observations show that either suppression of estrogen levels or modulation of estrogen receptor dramatically suppresses small intestinal and colonic tumor formation in female ApcMin/+ mice. These results support the concept of chemoprevention by these agents in reducing endogenous levels of estrogen or modulating ER signaling. PMID:24431404

  13. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles.

    Science.gov (United States)

    Treps, Lucas; Perret, Raul; Edmond, Sébastien; Ricard, Damien; Gavard, Julie

    2017-01-01

    Glioblastoma multiforme (GBM) are mortifying brain tumours that contain a subpopulation of tumour cells with stem-like properties, termed glioblastoma stem-like cells (GSCs). GSCs largely contribute to tumour initiation, propagation and resistance to current anti-cancer therapies. GSCs are situated in perivascular niches, closely associated with brain microvascular endothelial cells, thereby involved in bidirectional molecular and cellular interactions. Moreover, extracellular vesicles are suspected to carry essential information that can adapt the microenvironment to the tumour's needs, including tumour-induced angiogenesis. In GBM, extracellular vesicles produced by differentiated tumour cells and GSCs were demonstrated to disseminate locally and at distance. Here, we report that the pro-angiogenic pro-permeability factor VEGF-A is carried in extracellular vesicles secreted from ex vivo cultured patient-derived GSCs. Of note, extracellular vesicle-derived VEGF-A contributes to the in vitro elevation of permeability and angiogenic potential in human brain endothelial cells. Indeed, VEGF-A silencing in GSCs compromised in vitro extracellular vesicle-mediated increase in permeability and angiogenesis. From a clinical standpoint, extracellular vesicles isolated from circulating blood of GBM patients present higher levels of VEGF-A, as compared to healthy donors. Overall, our results suggest that extracellular vesicle-harboured VEGF-A targets brain endothelial cells and might impact their ability to form new vessels. Thus, tumour-released EV cargo might emerge as an instrumental part of the tumour-induced angiogenesis and vascular permeability modus operandi in GBM.

  14. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications

    Science.gov (United States)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-01

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8

  15. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    El Majdoub, Faycal; Neudorfer, Clemens; Maarouf, Mohammad [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Blau, Tobias; Deckert, Martina [University Hospital of Cologne, Department of Neuropathology, Cologne (Germany); Hellmich, Martin [University Hospital of Cologne, Institute of Statistics, Informatics and Epidemiology, Cologne (Germany); Buehrle, Christian [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2015-12-15

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using {sup 125}iodine seeds ({sup 125}I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with {sup 125}I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.) [German] Die Behandlung oligodendroglialer Hirntumoren durch die interstitielle Brachytherapie

  16. Lunatic Fringe and p53 Cooperatively Suppress Mesenchymal Stem-Like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chung

    2017-11-01

    Full Text Available Claudin-low breast cancer (CLBC is a poor prognosis molecular subtype showing stemness and mesenchymal features. We previously discovered that deletion of a Notch signaling modulator, Lunatic Fringe (Lfng, in the mouse mammary gland induced a subset of tumors resembling CLBC. Here we report that deletion of one copy of p53 on this background not only accelerated mammary tumor development but also led to a complete penetrance of the mesenchymal stem-like phenotype. All mammary tumors examined in the Lfng/p53 compound mutant mice displayed a mesenchymal/spindloid pathology. These tumors showed high level expressions of epithelial-to-mesenchymal transition (EMT markers including Vimentin, Twist, and PDGFRα, a gene known to be enriched in CLBC. Prior to tumor onset, Lfng/p53 mutant mammary glands exhibited increased levels of Vimentin and E-cadherin, but decreased expressions of cytokeratin 14 and cytokeratin 8, accompanied by elevated basal cell proliferation and an expanded mammary stem cell-enriched population. Lfng/p53 mutant glands displayed increased accumulation of Notch3 intracellular fragment, up-regulation of Hes5 and down-regulation of Hes1. Analysis in human breast cancer datasets found the lowest HES1 and second lowest LFNG expressions in CLBC among molecular subtypes, and low level of LFNG is associated with poor survival. Immunostaining of human breast cancer tissue array found correlation between survival and LFNG immunoreactivity. Finally, patients carrying TP53 mutations express lower LFNG than patients with wild type TP53. Taken together, these data revealed genetic interaction between Lfng and p53 in mammary tumorigenesis, established a new mouse model resembling CLBC, and may suggest targeting strategy for this disease.

  17. Sleep complaints in survivors of pediatric brain tumors.

    Science.gov (United States)

    Brimeyer, Chasity; Adams, Leah; Zhu, Liang; Srivastava, Deo Kumar; Wise, Merrill; Hudson, Melissa M; Crabtree, Valerie McLaughlin

    2016-01-01

    Pediatric brain tumor survivors have increased risk of sleep problems, particularly excessive daytime sleepiness (EDS). Few studies have examined sleep disturbances in this population. 153 children and adolescents ages 8-18 and their parents completed questionnaires (Modified Epworth Sleepiness Scale, Kosair Children's Hospital Sleep Questionnaire, Children's Report of Sleep Patterns, Children's Sleep Hygiene Scale) during clinic visits. Participants were at least 5 years from diagnosis and 2 years post-treatment. Group differences in age at diagnosis, body mass index, type of treatment received, and tumor location were examined. One-third of adolescents and one-fifth of children reported EDS. Children and parents had fair concordance (kappa coefficient = .64) in their report of EDS, while adolescents and parents had poor concordance (kappa coefficient = .37). Per parents, most children slept 8 to 9 h per night. Poor bedtime routines were reported for children, while adolescents endorsed poor sleep stability. Extended weekend sleep was reported across age groups. A BMI in the obese range was related to higher parent-reported EDS in children. Sleep-disordered breathing was associated with elevated BMI in adolescents. While survivors reported achieving recommended amounts of sleep each night, 20 to 30% reported EDS. Poor concordance among parent and adolescent report highlights the importance of obtaining self-report when assessing sleep concerns. Obesity is a modifiable factor in reducing symptoms of EDS in this population. Finally, the lack of association between EDS and brain tumor location, BMI, or treatment received was unexpected and warrants further investigation.

  18. Gliomatosis cerebri: no evidence for a separate brain tumor entity.

    Science.gov (United States)

    Herrlinger, Ulrich; Jones, David T W; Glas, Martin; Hattingen, Elke; Gramatzki, Dorothee; Stuplich, Moritz; Felsberg, Jörg; Bähr, Oliver; Gielen, Gerrit H; Simon, Matthias; Wiewrodt, Dorothee; Schabet, Martin; Hovestadt, Volker; Capper, David; Steinbach, Joachim P; von Deimling, Andreas; Lichter, Peter; Pfister, Stefan M; Weller, Michael; Reifenberger, Guido

    2016-02-01

    Gliomatosis cerebri (GC) is presently considered a distinct astrocytic glioma entity according to the WHO classification for CNS tumors. It is characterized by widespread, typically bilateral infiltration of the brain involving three or more lobes. Genetic studies of GC have to date been restricted to the analysis of individual glioma-associated genes, which revealed mutations in the isocitrate dehydrogenase 1 (IDH1) and tumor protein p53 (TP53) genes in subsets of patients. Here, we report on a genome-wide analysis of DNA methylation and copy number aberrations in 25 GC patients. Results were compared with those obtained for 105 patients with various types of conventional, i.e., non-GC gliomas including diffuse astrocytic gliomas, oligodendrogliomas and glioblastomas. In addition, we assessed the prognostic role of methylation profiles and recurrent DNA copy number aberrations in GC patients. Our data reveal that the methylation profiles in 23 of the 25 GC tumors corresponded to either IDH mutant astrocytoma (n = 6), IDH mutant and 1p/19q codeleted oligodendroglioma (n = 5), or IDH wild-type glioblastoma including various molecular subgroups, i.e., H3F3A-G34 mutant (n = 1), receptor tyrosine kinase 1 (RTK1, n = 4), receptor tyrosine kinase 2 (classic) (RTK2, n = 2) or mesenchymal (n = 5) glioblastoma groups. Two tumors showed methylation profiles of normal brain tissue due to low tumor cell content. While histological grading (WHO grade IV vs. WHO grade II and III) was not prognostic, the molecular classification as classic/RTK2 or mesenchymal glioblastoma was associated with worse overall survival. Multivariate Cox regression analysis revealed MGMT promoter methylation as a positive prognostic factor. Taken together, DNA-based large-scale molecular profiling indicates that GC comprises a genetically and epigenetically heterogeneous group of diffuse gliomas that carry DNA methylation and copy number profiles closely matching the common molecularly

  19. Genetic and modifying factors that determine the risk of brain tumors

    DEFF Research Database (Denmark)

    Montelli, Terezinha de Cresci Braga; Peraçoli, Maria Terezinha Serrão; Rogatto, Silvia Regina

    2011-01-01

    . Mutagen sensitivity is associated with cancer risk. The convincing studies that linked DNA damages and DNA repair alterations with brain tumors are also described. Another important modifying factor is immunity. General immune response against cancer, tumor microenvironment and immune response, mechanisms...... established that there is association between brain tumor risk and mutagen sensitivity, which is highly heritable. Primary brain tumors cause depression in systemic host immunity; local immuno-suppressive factors and immunological characteristics of tumor cells may explain the poor prognosis and DNA damages...

  20. Preoperative functional mapping for rolandic brain tumor surgery.

    Science.gov (United States)

    Rizzo, Vincenzo; Terranova, Carmen; Conti, Alfredo; Germanò, Antonino; Alafaci, Concetta; Raffa, Giovanni; Girlanda, Paolo; Tomasello, Francesco; Quartarone, Angelo

    2014-11-07

    The resection of tumors within or close to eloquent motor areas is usually guided by the compromise between the maximal allowed resection and preservation of neurological functions. Navigated transcranial magnetic stimulation (nTMS) is an emerging technology that can be used for preoperative mapping of the motor cortex. We performed pre-surgical mapping by using nTMS in 17 patients with lesions in or close to the precentral gyrus. The study was conducted on consecutive patients scheduled for surgical treatment. nTMS allowed to exactly localize the motor cortex in 88.2% of cases. In 70.6% it provided the surgeon with new unexpected information about functional anatomy of the motor area, influencing the pre-operative planning. Moreover, in 29.4% these functional information had a clear impact on surgery, making necessary a change of surgical strategy to avoid damage to the motor cortex. Our results prove that nTMS has a large benefit in the treatment of rolandic brain tumors. It adds important information about spatial relationship between functional motor cortex and the tumor and reduces surgical-related post-operative motor deficits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Comparison of immune microenvironments between primary tumors and brain metastases in patients with breast cancer.

    Science.gov (United States)

    Ogiya, Rin; Niikura, Naoki; Kumaki, Nobue; Yasojima, Hiroyuki; Iwasa, Tsutomu; Kanbayashi, Chizuko; Oshitanai, Risa; Tsuneizumi, Michiko; Watanabe, Ken-Ichi; Matsui, Akira; Fujisawa, Tomomi; Saji, Shigehira; Masuda, Norikazu; Tokuda, Yutaka; Iwata, Hiroji

    2017-11-28

    Immune checkpoint inhibitors are reported to be effective in patients with brain metastases. However, detailed characteristics of the brain metastasis immune microenvironment remain unexplored. The median tumor-infiltrating lymphocyte (TIL) category in brain metastases was 5% (1-70%). In 46 pair-matched samples, the percentages of TILs were significantly higher in primary breast tumors than in brain metastases (paired t-test, P L1, PD-L2, and HLA class I was also performed. There are significantly fewer TILs in brain metastases than in primary breast tumors.

  2. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Carina [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Ribeiro, Andre Santos [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London (United Kingdom); Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich (Germany); Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal)

    2015-05-18

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm{sup 3}), DTI (dir=30, b=0,800s/mm2, 2x2x2mm{sup 3}), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  3. ATM kinase sustains breast cancer stem-like cells by promoting ATG4C expression and autophagy.

    Science.gov (United States)

    Antonelli, Martina; Strappazzon, Flavie; Arisi, Ivan; Brandi, Rossella; D'Onofrio, Mara; Sambucci, Manolo; Manic, Gwenola; Vitale, Ilio; Barilà, Daniela; Stagni, Venturina

    2017-03-28

    The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels. Transcriptomic analyses revealed that, in mammospheres, ATM modulates the expression of cell cycle-, DNA repair- and autophagy-related genes. Among these, the silencing of the autophagic gene, autophagy related 4C cysteine peptidase (ATG4C), impairs mammosphere formation similarly to ATM depletion. Conversely, ATG4C ectopic expression in cells silenced for ATM expression, rescues mammospheres growth. Finally, tumor array analyses, performed using public data, identify a significant correlation between ATM and ATG4C expression levels in all human breast cancer subtypes, except for the basal-like one.Overall, we uncover a new connection between ATM kinase and autophagy regulation in breast cancer. We demonstrate that, in breast cancer cells, ATM and ATG4C are essential drivers of mammosphere formation, suggesting that their targeting may improve current approaches to eradicate breast cancer cells with a stem-like phenotype.

  4. Spectroscopic optical coherence tomography for ex vivo brain tumor analysis

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Dillmann, Christopher; Gerling, Alexandra; Gerhardt, Nils C.; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2017-02-01

    For neurosurgeries precise tumor resection is essential for the subsequent recovery of the patients since nearby healthy tissue that may be harmed has a huge impact on the life quality after the surgery. However, so far no satisfying methodology has been established to assist the surgeon during surgery to distinguish between healthy and tumor tissue. Optical Coherence Tomography (OCT) potentially enables non-contact in vivo image acquisition at penetration depths of 1-2 mm with a resolution of approximately 1-15 μm. To analyze the potential of OCT for distinction between brain tumors and healthy tissue, we used a commercially available Thorlabs Callisto system to measure healthy tissue and meningioma samples ex vivo. All samples were measured with the OCT system and three dimensional datasets were generated. Afterwards they were sent to the pathology for staining with hematoxylin and eosin and then investigated with a bright field microscope to verify the tissue type. This is the actual gold standard for ex vivo analysis. The images taken by the OCT system exhibit variations in the structure for different tissue types, but these variations may not be objectively evaluated from raw OCT images. Since an automated distinction between tumor and healthy tissue would be highly desirable to guide the surgeon, we applied Spectroscopic Optical Coherence Tomography to further enhance the differences between the tissue types. Pattern recognition and machine learning algorithms were applied to classify the derived spectroscopic information. Finally, the classification results are analyzed in comparison to the histological analysis of the samples.

  5. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software.

    Science.gov (United States)

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-08-01

    Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.

  6. Coating Solid Lipid Nanoparticles with Hyaluronic Acid Enhances Antitumor Activity against Melanoma Stem-like Cells.

    Science.gov (United States)

    Shen, Hongxin; Shi, Sanjun; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2015-01-01

    Successful anticancer chemotherapy requires targeting tumors efficiently and further potential to eliminate cancer stem cell (CSC) subpopulations. Since CD44 is present on many types of CSCs, and it binds specially to hyaluronic acid (HA), we tested whether coating solid lipid nanoparticles with hyaluronan (HA-SLNs)would allow targeted delivery of paclitaxel (PTX) to CD44-overexpressing B16F10 melanoma cells. First, we developed a model system based on melanoma stem-like cells for experiments in vitro and in mouse xenografts, and we showed that cells expressing high levels of CD44 (CD44(+)) displayed a strong CSC phenotype while cells expressing low levels of CD44 (CD44(-)) did not. This phenotype included sphere and colony formation, higher proportion of side population cells, expression of CSC-related markers (ALDH, CD133, Oct-4) and tumorigenicity in vivo. Next we showed that administering PTX-loaded HA-SLNs led to efficient intracellular delivery of PTX and induced substantial apoptosis in CD44(+) cells in vitro. In the B16F10-CD44(+) lung metastasis model, PTX-loaded HA-SLNs targeted the tumor-bearing lung tissues well and subsequently exhibited significant antitumor effects with a relative low dose of PTX, which provided significant survival benefit without evidence of adverse events. These findings suggest that the HA-SLNs targeting system shows promise for enhancing cancer therapy.

  7. Cell-surface Vimentin (csVim): A mislocalized protein for isolating csVimentin+CD133− novel stem-like hepatocellular carcinoma cells expressing EMT markers

    Science.gov (United States)

    Mitra, Abhisek; Satelli, Arun; Xia, Xueqing; Cutrera, Jeffrey; Lopa, Mishra; Li, Shulin

    2014-01-01

    Recent advances in cancer stem cell biology have shown that cancer stem–like cells with epithelial–mesenchymal transition (EMT) phenotypes are more aggressive and cause relapse; however absence of a specific marker to isolate these EMT stem-like cells hampers research in this direction. Cell surface markers have been identified for isolating cancer stem-like cells, but none has been identified for isolating cancer stem-like cells with EMT phenotype. Recently, we discovered that Vimentin, an intracellular EMT tumor cell marker, is present on the surface of colon metastatic tumor nodules in the liver. In this study, we examined the potential of targeting cell surface Vimentin (CSV) to isolate stem-like cancer cells with EMT phenotype, by using a specific CSV-binding antibody, 84-1. Using this antibody, we purified the CSV positive, CD133-negative (csVim+CD133−) cell population from primary liver tumor cell suspensions and characterized for stem cell properties. The results of sphere assays and staining for the stem cell markers Sox2 and Oct4A demonstrated that csVim+CD133− cells have stem-like properties similar to csVim−CD133+ population. Our investigation further revealed that the csVim+CD133− cells had EMT phenotypes, as evidenced by the presence of Twist and Slug in the nucleus, the absence of EpCAM on the cell surface and basal level of expression of epithelial marker E-cadherin. The csVimentin negative CD133 positive stem cells do not have any EMT phenotypes. csVim+CD133− cells exhibited more aggressively metastatic in livers than csVim−CD133+ cells. Our findings indicate that csVim+CD133− cells are promising targets for treatment and prevention of metastatic hepatocellular carcinoma. PMID:25487874

  8. Radiotherapy, especially at young age, increases the risk for de novo brain tumors in patients treated for pituitary tumors

    NARCIS (Netherlands)

    Burman, Pia; Van Beek, André P.; Biller, Beverly M.K.; Camacho-Hubner, Cecilia; Mattsson, Anders F.

    Background: Excess mortality due to de novo malignant brain tumors was recently found in a national study of patients with hypopituitarism following treatment of pituitary tumors. Here, we examined a larger multi-national cohort to corroborate and extend this observation. Objective: To investigate

  9. Role of magnetic resonance spectroscopy & diffusion weighted imaging in differentiation of supratentorial brain tumors

    Directory of Open Access Journals (Sweden)

    Abdel Monem Nooman Darwiesh

    2016-09-01

    Conclusion: Intra-lesional ADC values are not useful in the differentiation between primary and metastatic tumors. Perilesional ADC values can differentiate between primary & metastatic brain tumors. Intralesional MRS values (CHO/Cr ratio were able to grade the tumor and differentiate between high and low grade tumors, while Perilesional MRS values (CHO/Cr ratio could be able to differentiate primary tumors from metastasis.

  10. A murine model for virotherapy of malignant brain tumors

    Directory of Open Access Journals (Sweden)

    E. Gambini

    2011-01-01

    Full Text Available Glioblastomas (GBMs are very aggressive and almost incurable brain tumors. The development of new therapeutical approaches capable of selectively killing cancer cells could represent a step forward to fight cancer. With this aim we tested the efficacy of a novel oncolytic therapy based on recombinant herpes simplex viruses (HSVs infecting exclusively cells expressing the human receptor HER-2 [1, 2], overexpressed in about 15% of GBM model based on PDGF-B embryonic transduction [4, 5]. We engineered cell cultures derived from this model to express HER-2 and we injected intracranically such cultures in NOD/SCID mice. We evaluated the efficacy of R-LM113, a recombinant HSV directed to HER-2, in this glioma model expressing HER-2. We demostrated that mice injected with engineered glioma cells infected with R-LM113 developed glioma with a statistically significant delay compared to mice injected with non-infected engineered glioma cells.

  11. Significant predictors of patients' uncertainty in primary brain tumors.

    Science.gov (United States)

    Lin, Lin; Chien, Lung-Chang; Acquaye, Alvina A; Vera-Bolanos, Elizabeth; Gilbert, Mark R; Armstrong, Terri S

    2015-05-01

    Patients with primary brain tumors (PBT) face uncertainty related to prognosis, symptoms and treatment response and toxicity. Uncertainty is correlated to negative mood states and symptom severity and interference. This study identified predictors of uncertainty during different treatment stages (newly-diagnosed, on treatment, followed-up without active treatment). One hundred eighty six patients with PBT were accrued at various points in the illness trajectory. Data collection tools included: a clinical checklist/a demographic data sheet/the Mishel Uncertainty in Illness Scale-Brain Tumor Form. The structured additive regression model was used to identify significant demographic and clinical predictors of illness-related uncertainty. Participants were primarily white (80 %) males (53 %). They ranged in age from 19-80 (mean = 44.2 ± 12.6). Thirty-two of the 186 patients were newly-diagnosed, 64 were on treatment at the time of clinical visit with MRI evaluation, 21 were without MRI, and 69 were not on active treatment. Three subscales (ambiguity/inconsistency; unpredictability-disease prognoses; unpredictability-symptoms and other triggers) were different amongst the treatment groups (P uncertainty during active treatment was as high as in newly-diagnosed period. Other than treatment stages, change of employment status due to the illness was the most significant predictor of illness-related uncertainty. The illness trajectory of PBT remains ambiguous, complex, and unpredictable, leading to a high incidence of uncertainty. There was variation in the subscales of uncertainty depending on treatment status. Although patients who are newly diagnosed reported the highest scores on most of the subscales, patients on treatment felt more uncertain about unpredictability of symptoms than other groups. Due to the complexity and impact of the disease, associated symptoms, and interference with functional status, comprehensive assessment of patients is necessary throughout the

  12. Perfusion magnetic resonance imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dallery, F.; Michel, D.; Constans, J.M.; Gondry-Jouet, C. [University Hospital, Department of Radiology, Amiens (France); Bouzerar, R.; Promelle, V.; Baledent, O. [University Hospital, Department of Imaging and Biophysics, Amiens (France); Attencourt, C. [University Hospital, Departement of Pathology, Amiens (France); Peltier, J. [University Hospital, Departement of Neurosurgery, Amiens (France)

    2017-11-15

    The use of DSC-MR imaging in pediatric neuroradiology is gradually growing. However, the number of studies listed in the literature remains limited. We propose to assess the perfusion and permeability parameters in pediatric brain tumor grading. Thirty children with a brain tumor having benefited from a DSC-MR perfusion sequence have been retrospectively explored. Relative CBF and CBV were computed on the ROI with the largest lesion coverage. Assessment of the lesion's permeability was also performed through the semi-quantitative PSR parameter and the K2 model-based parameter on the whole-lesion ROI and a reduced ROI drawn on the permeability maps. A statistical comparison of high- and low-grade groups (HG, LG) as well as a ROC analysis was performed on the histogram-based parameters. Our results showed a statistically significant difference between LG and HG groups for mean rCBV (p < 10{sup -3}), rCBF (p < 10{sup -3}), and for PSR (p = 0.03) but not for the K2 factor (p = 0.5). However, the ratio K2/PSR was shown to be a strong discriminating factor between the two groups of lesions (p < 10{sup -3}). For rCBV and rCBF indicators, high values of ROC AUC were obtained (> 0.9) and mean value thresholds were observed at 1.07 and 1.03, respectively. For K2/PSR in the reduced area, AUC was also superior to 0.9. The implementation of a dynamic T2* perfusion sequence provided reliable results using an objective whole-lesion ROI. Perfusion parameters as well as a new permeability indicator could efficiently discriminate high-grade from low-grade lesions in the pediatric population. (orig.)

  13. Cerebral effect of acute normovolemic hemodilution during brain tumor resection.

    Science.gov (United States)

    Daif, Ahmed Attia Atwa; Hassan, Younis Mohamed Abd El Mageed; Ghareeb, Nawal Abd El-Galil; Othman, Mahmoud Mahmoud; Mohamed, Sherif Abdo Mousa

    2012-01-01

    Acute normovolemic hemodilution (ANH) is used in major surgery expected to be accompanied by excessive blood loss. Reducing the hemoglobin content may disturb cerebral oxygen balance. The aim of this study was to assess the effect of ANH on cerebral oxygen balance in patients subjected to brain tumor resection. Forty patients were randomly allocated into 2 groups (hemodilution and control). In the hemodilution group (HG), 1000 mL of blood was drawn and replaced with the same volume of HES 130/0.4 (6%, Voluven) colloid. In the control group (CG), no blood was drawn, and hemodynamics were stabilized using normal saline until allogenic blood was needed. Arterial and jugular bulb blood samples obtained after induction (basal, sample 1), 40 minutes after induction (or on completion of hemodilution, sample 2), after surgical hemostasis (sample 3), and just before extubation (sample 4) were used for the calculation of arterial-jugular oxygen content difference "Ca-jO(2)," cerebral oxygen extraction "CEO(2)," estimated cerebral metabolic rate for oxygen "eCMRO(2)," cerebral blood flow equivalent "CBFe," and jugular-arterial lactate difference "J-ALD" in both groups. Jugular oxygen saturation "SjvO(2)", CEO(2), and J-ALD showed no significant difference when the 2 groups were compared at the corresponding time points and when the values obtained at different time points were compared with the basal value in the same group. In CG, "Ca-jO(2)" significantly decreased at the end of surgery and before tracheal extubation (Pcerebral oxygenation parameters in patients subjected to brain tumor resection.

  14. Brain Tumor Epidemiology - A Hub within Multidisciplinary Neuro-oncology. Report on the 15th Brain Tumor Epidemiology Consortium (BTEC) Annual Meeting, Vienna, 2014.

    Science.gov (United States)

    Woehrer, Adelheid; Lau, Ching C; Prayer, Daniela; Bauchet, Luc; Rosenfeld, Myrna; Capper, David; Fisher, Paul G; Kool, Marcel; Müller, Martin; Kros, Johan M; Kruchko, Carol; Wiemels, Joseph; Wrensch, Margaret; Danysh, Heather E; Zouaoui, Sonia; Heck, Julia E; Johnson, Kimberly J; Qi, Xiaoyang; O'Neill, Brian P; Afzal, Samina; Scheurer, Michael E; Bainbridge, Matthew N; Nousome, Darryl; Bahassi, El Mustapha; Hainfellner, Johannes A; Barnholtz-Sloan, Jill S

    2015-01-01

    The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 - 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year's meeting, which will be held at the Mayo Clinic at Rochester, MN, USA.

  15. PET imaging in the surgical management of pediatric brain tumors.

    Science.gov (United States)

    Pirotte, Benoit; Acerbi, Francesco; Lubansu, Alphonse; Goldman, Serge; Brotchi, Jacques; Levivier, Marc

    2007-07-01

    The present article illustrates whether positron-emission tomography (PET) imaging may improve the surgical management of pediatric brain tumors (PBT) at different steps. Among 400 consecutive PBT treated between 1995 and 2005 at Erasme Hospital, Brussels, Belgium, we have studied with (18) F-2-fluoro-2-deoxy-D-glucose (FDG)-PET and/or L-(methyl-(11)C)methionine (MET)-PET and integrated PET images in the diagnostic workup of 126 selected cases. The selection criteria were mainly based on the lesion appearance on magnetic resonance (MR) sequences. Cases were selected when MR imaging showed limitations for (1) assessing the evolving nature of an incidental lesion (n = 54), (2) selecting targets for contributive and accurate biopsy (n = 32), and (3) delineating tumor tissue for maximal resection (n = 40). Whenever needed, PET images were integrated in the planning of image-guided surgical procedures (frame-based stereotactic biopsies (SB), frameless navigation-based resections, or leksell gamma knife radiosurgery). Like in adults, PET imaging really helped the surgical management of the 126 children explored, which represented about 30% of all PBT, especially when the newly diagnosed brain lesion was (1) an incidental finding so that the choice between surgery and conservative MR follow-up was debated, and (2) so infiltrative or ill-defined on MR that the choice between biopsy and resection was hardly discussed. Integrating PET into the diagnostic workup of these two selected groups helped to (1) take a more appropriate decision in incidental lesions by detecting tumor/evolving tissue; (2) better understand complex cases by differentiating indolent and active components of the lesion; (3) improve target selection and diagnostic yield of stereotactic biopsies in gliomas; (4) illustrate the intratumoral histological heterogeneity in gliomas; (5) provide additional prognostic information; (6) reduce the number of trajectories in biopsies performed in eloquent areas such

  16. The efficiency of adjusted-da-chai-ling-tang in radiation-induced brain edema in patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Da-Tong Ju

    2015-01-01

    Full Text Available Background: Brain edema induced by radiotherapy is a common complication in patients with brain tumors, for which medical treatment is the treatment of choice. Adjusted-Da-Chai-Ling-Tang, a Chinese herbal formulation, has been confirmed to be protective against the radiation-induced edema. In this study, we investigated the efficiency of adjusted-Da-Chai-Ling-Tang in radiation-induced brain edema in patients with brain tumors. Materials and Methods: A total of 46 patients with brain tumors treated with radiotherapy alone or combined with surgery were enrolled. These patients were divided into two groups: The experimental group with adjusted-Da-Chai-Ling-Tang and the control group with conventional medical treatment. Clinical data including symptoms and serologic results were collected pretreatment and on the 4 th , 7 th and 10 th day posttreatment. Magnetic resonance imaging of the brain was performed to investigate changes in brain edema. Results: Clinical symptoms including headache, dizziness, nausea/vomiting and fatigue significantly improved in the experimental group (P < 0.05. No difference in serological results was observed. Brain edema was significantly reduced in the experimental group in magnetic resonance imaging (P < 0.05. Conclusion: Adjusted-Da-Chai-Ling-Tang is effective in the treatment of radiation-induced brain edema in patients with brain tumors. No obvious side effects were observed.

  17. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment

    NARCIS (Netherlands)

    Tellingen, O. van; Yetkin-Arik, B.; Gooijer, M.C. de; Wesseling, P.; Wurdinger, T.; Vries, H.E. de

    2015-01-01

    Gliomas are the most common primary brain tumors. Particularly in adult patients, the vast majority of gliomas belongs to the heterogeneous group of diffuse gliomas, i.e. glial tumors characterized by diffuse infiltrative growth in the preexistent brain tissue. Unfortunately, glioblastoma, the most

  18. Timed performance weaknesses on computerized tasks in pediatric brain tumor survivors: A comparison with sibling controls

    NARCIS (Netherlands)

    Ruiter, M.A. de; Grootenhuis, M.A.; Mourik, R. van; Maurice-Stam, H.; Breteler, M.H.M.; Gidding, C.E.M.; Beek, L.R.; Granzen, B.; Vuurden, D.G. van; Schouten-van Meeteren, A.Y.N.; Oosterlaan, J.

    2017-01-01

    With more children surviving a brain tumor, insight into the late effects of the disease and treatment is of high importance. This study focused on profiling the neurocognitive functions that might be affected after treatment for a pediatric brain tumor, using a broad battery of computerized tests.

  19. Drug-Resistant Brain Metastases: A Role for Pharmacology, Tumor Evolution, and Too-Late Therapy.

    Science.gov (United States)

    Stricker, Thomas; Arteaga, Carlos L

    2015-11-01

    Two recent studies report deep molecular profiling of matched brain metastases and primary tumors. In both studies, somatic alterations in the brain metastases were frequently discordant with those in the primary tumor, suggesting divergent evolution at metastatic sites and raising questions about the use of biomarkers in patients in clinical trials with targeted therapies. ©2015 American Association for Cancer Research.

  20. Health-related quality of life in long-term survivors of childhood brain tumors

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Mortensen, Erik Lykke; Nysom, Karsten

    2009-01-01

    BACKGROUND: To identify predictors for health-related quality of life (HRQOL) in survivors of childhood brain tumors and its relationship to cognitive function. PROCEDURE: One hundred twenty-six consecutive Danish childhood brain tumor patients treated 1970-1997 and being 7.9-40.4 years at follow...

  1. Brain tumors in children and adolescents and exposure to animals and farm life

    DEFF Research Database (Denmark)

    Christensen, Jeppe Schultz; Mortensen, Laust Hvas; Röösli, Martin

    2012-01-01

    The etiology of brain tumors in children and adolescents is largely unknown, and very few environmental risk factors have been identified. The aim of this study was to examine the relationship between pre- or postnatal animal contacts or farm exposures and the risk of childhood brain tumors (CBTs...

  2. Caring for patients with brain tumor: The patient and care giver ...

    African Journals Online (AJOL)

    Background: Patients with brain tumors form a heterogeneous group in terms of clinical presentation and pathology. However, the impact of the disease on patients' families is often more homogenous and frequently quite profound. A considerable body of literature is available on the management of brain tumors and ...

  3. Cognitive deficits in long-term survivors of childhood brain tumors: Identification of predictive factors

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Ehrenfels, Susanne; Mortensen, Erik Lykke

    2003-01-01

    To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors.......To describe cognitive function and to evaluate the association between potentially predictive factors and cognitive outcome in an unselected population of survivors of childhood brain tumors....

  4. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors

    Directory of Open Access Journals (Sweden)

    Wagner LM

    2017-04-01

    Full Text Available Lars M Wagner,1 Val R Adams2 1Division of Pediatric Hematology/Oncology, 2Department of Pharmacy Practice and Science, University of Kentucky, Lexington, KY, USA Abstract: While remarkable advances have been made in the treatment of pediatric leukemia over the past decades, new therapies are needed for children with advanced solid tumors and high-grade brain tumors who fail standard chemotherapy regimens. Immunotherapy with immune checkpoint inhibitors acting through the programmed cell death-1 (PD-1 pathway has shown efficacy in some chemotherapy-resistant adult cancers, generating interest that these agents may also be helpful to treat certain refractory pediatric malignancies. In this manuscript we review current strategies for targeting the PD-1 pathway, highlighting putative biomarkers and the rationale for investigation of these drugs to treat common pediatric tumors such as sarcoma, neuroblastoma, and high-grade glioma. We summarize the completed and ongoing clinical trial data available, and suggest potential applications for further study. Keywords: PD-1, nivolumab, pembrolizumab, pediatric, sarcoma, neuroblastoma, glioma

  5. [A case of cerebral syphilitic gumma mimicking a brain tumor].

    Science.gov (United States)

    Hamauchi, Akiko; Abe, Takenori; Nihira, Atsuko; Mizobuchi, Masahiro; Sako, Kazuya; Ito, Tamio

    2014-01-01

    We report a case of young immunocompetent woman who was presented with a left parieto-temporal mass as the first and single manifestation of syphilis. A 23 year-old woman with no significant past medical history was reffered to our hospital due to 3 month history of headache. She had a single unprotected sexual intercourse with a promiscuous man 6 month before the time of admission. Physical and neurological examinations revealed no obvious abnormalities. A brain tumor was firstly suggested according to the findings of brain magnetic resonance imaging (MRI). However, the serologic and cerebrospinal fluid test of syphilis proved to be positive, syphilitic gumma was most likely suspected. She responded dramatically to benzylpenicillin potassium. Cerebral syphilitic gumma is a rare manifestations of the neurosyphilis. Treponemal invasion of the cerebrospinal fluid occurs in approximately 25 to 60% of patients after the infection, but most cases spend asymptomatic. Cerebral gumma should be considered in differential diagnosis of any intracranial mass lesions, even in the early syphilitic stages.

  6. (18)F-Fluorodeoxyglucose PET/Computed Tomography for Primary Brain Tumors

    DEFF Research Database (Denmark)

    Antonsen Segtnan, Eivind; Hess, Søren; Grupe, Peter

    2015-01-01

    Structural imaging with computed tomography (CT) and MR imaging is the mainstay in primary diagnosis of primary brain tumors, but these modalities depend on morphologic appearance and an intact blood-brain barrier, and important aspects of tumor biology are not addressed. Such issues may...... be alleviated by (18)F-fluorodeoxyglucose (FDG)-PET and FDG-PET/CT imaging, which may provide clinically important information with regard to primary differentiation between tumor types, initial staging and risk stratification, therapy planning, response evaluation, and recurrence detection. This article...... describes some of the potential contemporary applications of FDG and PET in primary brain tumors....

  7. Separation of the tumor and brain surface by "water jet" in cases of meningiomas.

    Science.gov (United States)

    Toth, S; Vajda, J; Pasztor, E; Toth, Z

    1987-01-01

    In the surgery of meningiomas one of the most delicate problems is the separation of the tumor from the brain surface. The authors generally recommend microsurgery to preserve the brain surface anatomically and functionally. For this purpose we have developed a new surgical technique according to our concepts of tissue care. After excavating the tumor from inside the tumor brain surface was separated by repeated "water jets" into the tumor arachnoideal space. The "water jet" was produced by an ordinary bulb syringe. The front pressure of the jets was 300-1000 mm of water and the side pressure 100-300 mm of water. In the tumor-arachnoideal space the spreading water (phys. NaCl) separates the brain from the tumor with utmost care. We operated on 55 meningiomas of different types with the "water jet" technique. The immediate results were anatomically excellent. Intraoperative and postoperative acute and late edemas appeared only in a few cases. The functions of the nearby brain were generally preserved. The surgery was uneventful when the tumor surface was smooth and the tumor was spherical. When the tumor surface was uneven, one part of the tumor extended under the dura as a thin layer or the tumor was multilobulated with expanded vessels between the lobules, more microseparation was necessary. We compared the results of the "water jet" technique with the results of the "pre-water jet" series. The surgery with the "water jet" technique was much shorter and its results were better than those of microsurgery alone.

  8. Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake

    Science.gov (United States)

    Flavahan, William A.; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E.; Weil, Robert J.; Nakano, Ichiro; Sarkaria, Jann N.; Stringer, Brett W.; Day, Bryan W.; Li, Meizhang; Lathia, Justin D.; Rich, Jeremy N.; Hjelmeland, Anita B.

    2013-01-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) due to preferential BTIC survival and adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3 and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, TICs may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may instruct the tumor hierarchy and portend poor prognosis. PMID:23995067

  9. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability.

    Science.gov (United States)

    Uematsu, Hidemasa; Maeda, Masayuki

    2006-01-01

    Perfusion-weighted magnetic resonance (MR) imaging using contrast agents plays a key role in characterizing tumors of the brain. We have shown that double-echo perfusion-weighted MR imaging (DEPWI) is potentially useful in assessing brain tumors. Quantitative indices, such as tumor blood volume, are obtained using DEPWI, which allows correction of underestimation of tumor blood volume due to leakage of contrast agents from tumor vessels, in addition to simultaneous acquisition of tumor vessel permeability. This article describes basic concepts of DEPWI and demonstrates clinical applications in brain tumors.

  10. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Science.gov (United States)

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  11. Donepezil in Treating Young Patients With Primary Brain Tumors Previously Treated With Radiation Therapy to the Brain

    Science.gov (United States)

    2017-07-31

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Children; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment; Radiation Toxicity

  12. 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.

    Science.gov (United States)

    Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin

    2012-07-01

    Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational

  13. •Primary brain tumors: Proton magnetic resonance spectroscopic analysis and histopathological correlation

    Directory of Open Access Journals (Sweden)

    Abdurrahim Dusak

    2014-06-01

    Full Text Available Objective: Recent advances in treatment of primary brain tumors have increased the interest in radiological imaging in respect to both the diagnosis of tumor and the evaluation of the efficiency of therapy. Conventional Magnetic Resonance (MR imaging is commonly used for diagnosis and follows up of the primary brain tumors, but it fails in grading of the tumors. MR spectroscopy permits in-vivo biochemical evaluation of brain lesions. Methods: Twenty three patients with histopathologic diagnosis of primary brain tumor and control group consisting of 23 healthy volunteers were investigated. In addition to conventional MR imaging of all patients were underwent point resolved spectroscopy (PRESS sequence via single voxel MR spectroscopy. Using MR spectroscopy, metabolites [N-acetyl aspartate (NAA, choline (Cho, myo-inositol (mI, lipid, lactate and alanine] and their ratio to creatine (Cr were measured quantitatively. Results: MR spectroscopic imaging of neuroglial primary brain tumors revealed that the NAA/Cr and mI/Cr ratios were decreased. In extra axial primary brain tumors, which consist of meningioma, NAA wasn’t detected, Cho/Cr ratio was remarkably increased, mI/Cr, lipid/Cr and lactate/Cr ratios were mildly increased. Alanine peak was detected only in meningioma. In high grade neuroglial tumors in proportion to low grade ones NAA/Cr and mI/Cr ratios were decreased, Cho/Cr, lipid/Cr and lactate/Cr ratios were remarkably increased. Conclusion: MR spectroscopy provides extra information in classification of primary brain tumors as intra-axial and extra-axial, and in grading of neuroglial primary brain tumors as high grade or low grade. It was concluded that using conventional MR imaging in cooperation with MR spectroscopy is beneficial in differential diagnosis and in grading of primary brain tumors. J Clin Exp Invest 2014; 5 (2: 233-241

  14. SPARC was overexpressed in human endometrial cancer stem-like cells and promoted migration activity.

    Science.gov (United States)

    Yusuf, Nurismangul; Inagaki, Tetsunori; Kusunoki, Soshi; Okabe, Hitomi; Yamada, Izumi; Matsumoto, Akemi; Terao, Yasuhisa; Takeda, Satoru; Kato, Kiyoko

    2014-08-01

    We previously demonstrated that side-population (SP) cells found in human endometrial cancer tissue have features of cancer stem cells (CSCs). Endometrial cancer SP cells show enhanced migration, the potential to differentiate into the mesenchymal cell lineage, and they are associated with the epithelial-mesenchymal transition (EMT). In this study, we analyzed the expression and function of a specific protein, SPARC (secreted protein acidic and rich in cysteine) which we found to be up-regulated in endometrial cancer. We performed microarray expression analysis to screen for up-regulated genes in CSCs using a set of RK12V-SP cells and -non-SP (NSP) cells. We used the MetaCore package to identify the Gene GO pathway MAPs associated with the up-regulated genes. Here, we investigated the expression and functions of SPARC, one of the genes up-regulated in endometrial CSCs. We established SPARC-overexpressing cells by transfecting endometrial cancer cells (Ishikawa cells [IK-SPARC cells]). We characterized these cells' growth rate, tumorigenicity, migration and invasion activity. The levels and locations of SPARC protein expression in Hec1SP cells-derived tumors and endometrial cancer tissues were examined by immunohistochemistry. SPARC was detected by microarray expression analysis during screens for up-regulated genes in SP and NSP CSC. The level of SPARC expression was enhanced in Hec1 SP cells compared with that in Hec1 non-SP cells. SPARC enhanced fibronectin expression and promoted migration activity in IK cells. SPARC expression suppressed tumor growth but promoted formation of tumor stroma. SPARC was expressed in endometrial cancer tissues, in particular, poorly differentiated endometrioid adenocarcinoma, clear and serous adenocarcinoma,but not in normal endometrial tissue. This is the first report of overexpression of SPARC in endometrial cancer stem-like cells. SPARC expression is associated with cell migration and stroma formation. Copyright © 2014 Elsevier

  15. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy

    DEFF Research Database (Denmark)

    Galldiks, Norbert; Law, Ian; Pope, Whitney B

    2017-01-01

    Routine diagnostics and treatment monitoring of brain tumors is usually based on contrast-enhanced MRI. However, the capacity of conventional MRI to differentiate tumor tissue from posttherapeutic effects following neurosurgical resection, chemoradiation, alkylating chemotherapy, radiosurgery, and......),O-(2-[18F]fluoroethyl)-l-tyrosine (FET) and 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (FDOPA) and summarizes investigations regarding monitoring of brain tumor therapy....

  16. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  17. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI

    NARCIS (Netherlands)

    Sauwen, Nicolas; Sima, Diana M.; Van Cauter, Sofie; Veraart, Jelle; Leemans, Alexander; Maes, Frederik; Himmelreich, Uwe; Van Huffel, Sabine

    2015-01-01

    Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor

  18. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells.

    Science.gov (United States)

    Zhang, Daming; Yang, Guang; Chen, Xin; Li, Chunmei; Wang, Lu; Liu, Yaohua; Han, Dayong; Liu, Huailei; Hou, Xu; Zhang, Weiguang; Li, Chenguang; Han, Zhanqiang; Gao, Xin; Zhao, Shiguang

    2014-08-01

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells.

  19. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways.

    Science.gov (United States)

    Kahlert, U D; Mooney, S M; Natsumeda, M; Steiger, H-J; Maciaczyk, J

    2017-01-01

    Cancer stem-like cells (CSCs) are thought to be the main cause of tumor occurrence, progression and therapeutic resistance. Strong research efforts in the last decade have led to the development of several tailored approaches to target CSCs with some very promising clinical trials underway; however, until now no anti-CSC therapy has been approved for clinical use. Given the recent improvement in our understanding of how onco-proteins can manipulate cellular metabolic networks to promote tumorigenesis, cancer metabolism research may well lead to innovative strategies to identify novel regulators and downstream mediators of CSC maintenance. Interfering with distinct stages of CSC-associated metabolics may elucidate novel, more efficient strategies to target this highly malignant cell population. Here recent discoveries regarding the metabolic properties attributed to CSCs in glioblastoma (GBM) and malignant colorectal cancer (CRC) were summarized. The association between stem cell markers, the response to hypoxia and other environmental stresses including therapeutic insults as well as developmentally conserved signaling pathways with alterations in cellular bioenergetic networks were also discussed. The recent developments in metabolic imaging to identify CSCs were also summarized. This summary should comprehensively update basic and clinical scientists on the metabolic traits of CSCs in GBM and malignant CRC. © 2016 UICC.

  20. Accumulation efficiency of cancer stem-like cells post {gamma}-ray and proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Quan Yi; WangWeikang; Fu Qibin; Mei Tao; Wu Jingwen; Li Jia [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Yang, Gen, E-mail: gen.yang@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Wang Yugang [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2012-09-01

    Ionizing radiation (IR) has been proven to be a powerful medical treatment in cancer therapy. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Increasing evidence supports that cancer stem-like cells (CSCs) play an important role in tumor regrowth and spread post radiotherapy, for they are resistant to various therapy methods including radiation. Presently, SW620 colon carcinoma monolayer culture cells were irradiated with {gamma}-rays and protons of 2 Gy. Then apoptosis, clonogenic survival and the expression of CD133{sup +} protein were examined. The results showed that there was no significantly difference either on long-term clonogenic survival or on short-term apoptosis ratio. However, compared with {gamma}-rays, irradiation with protons was less efficient to accumulate CSCs at the same dose, although both protons and {gamma}-rays can significantly accumulate the CD133{sup +} CSCs subpopulation. In addition, the results of sphere formation assay also confirmed that proton irradiation is less efficient in CSCs accumulation, suggesting proton irradiation might have higher efficiency in CSCs elimination for cancer radiotherapy.

  1. mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells

    KAUST Repository

    Zhang, Daming

    2014-01-28

    MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells. © 2014 Springer Science+Business Media.

  2. Brain Metastasis from Gastrointestinal Stromal Tumor: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Hideaki Naoe

    2011-10-01

    Full Text Available Metastasis of gastrointestinal stromal tumor (GIST into the central nervous system is extremely rare. We report a patient with synchronous GIST and brain metastasis. At disease onset, there was left hemiplegia and ptosis of the right eyelids. Resection cytology of the brain tumor was reported as metastasis of GIST. After positron emission tomography examination, another tumor in the small bowel was discovered, which suggested a small bowel GIST associated with intracranial metastasis. Immunohistochemical analysis of the intestinal tumor specimen obtained by double balloon endoscopy showed a pattern similar to the brain tumor, with the tumors subsequently identified as intracranial metastases of jejunal GIST. After surgical resection of one brain tumor, the patient underwent whole brain radiation therapy followed by treatment with imatinib mesylate (Gleevec; Novartis Pharma, Basel, Switzerland. Mutational analysis of the original intestinal tumor revealed there were no gene alterations in KIT or PDGFRα. Since the results indicated the treatment had no apparent effect on either of the tumors, and because ileus developed due to an intestinal primary tumor, the patient underwent surgical resection of the intestinal lesion. However, the patient’s condition gradually worsen and she subsequently died 4 months after the initial treatment.

  3. Symptoms and management of pediatric patients with incurable brain tumors in palliative home care.

    Science.gov (United States)

    Kuhlen, Michaela; Hoell, Jessica; Balzer, Stefan; Borkhardt, Arndt; Janssen, Gisela

    2016-03-01

    Brain tumors have the highest disease-related mortality rate of all pediatric cancers. The goal of this study was to determine whether all children with incurable brain tumors cared for by a pediatric palliative care team in a home setting suffer from the same symptoms towards the end of their lives or whether there are differences between the tumor localizations with implications for palliative care. This study was conducted as a retrospective, single center chart review including all patients treated between January 1st 2000 and December 31st 2013. 70 children, adolescents and young adults were included in the analysis. Symptom burden was high with a mean number of symptoms of 7.2 per patient. 74% of the symptoms already existed one week before death. Within the last week of life, impaired consciousness (75.7%) most often occurred. Furthermore, symptoms considerably depended on tumor localization. Patients with supratentorial tumors presented more frequently with seizures (p paralysis (p brain stem tumors. 84.3% of the patients needed analgesics, only 64.4% WHO class III analgesics. Anticonvulsants were given more often in supratentorial tumors (p child suffering from a brain tumor needs increased awareness of the neurological deterioration. The symptom pattern strongly depends on the tumor localization and significantly differs between supratentorial, infratentorial and brain stem tumors. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. 18F-FDG PET and MR Imaging Associations Across a Spectrum of Pediatric Brain Tumors: A Report from the Pediatric Brain Tumor Consortium

    Science.gov (United States)

    Zukotynski, Katherine; Fahey, Frederic; Kocak, Mehmet; Kun, Larry; Boyett, James; Fouladi, Maryam; Vajapeyam, Sridhar; Treves, Ted; Poussaint, Tina Y.

    2014-01-01

    The purpose of this study was to describe 18F-FDG uptake across a spectrum of pediatric brain tumors and correlate 18F-FDG PET with MR imaging variables, progression-free survival (PFS), and overall survival (OS). Methods A retrospective analysis was conducted of children enrolled in phase I/II clinical trials through the Pediatric Brain Tumor Consortium from August 2000 to June 2010. PET variables were summarized within diagnostic categories using descriptive statistics. Associations of PET with MR imaging variables and PFS and OS by tumor types were evaluated. Results Baseline 18F-FDG PET was available in 203 children; 66 had newly diagnosed brain tumors, and 137 had recurrent/refractory brain tumors before enrolling in a Pediatric Brain Tumor Consortium trial. MR imaging was performed within 2 wk of PET and before therapy in all cases. The 18F-FDG uptake pattern and MR imaging contrast enhancement (CE) varied by tumor type. On average, glioblastoma multiforme and medulloblastoma had uniform, intense uptake throughout the tumor, whereas brain stem gliomas (BSGs) had low uptake in less than 50% of the tumor and ependymoma had low uptake throughout the tumor. For newly diagnosed BSG, correlation of 18F-FDG uptake with CE portended reduced OS (P = 0.032); in refractory/recurrent BSG, lack of correlation between 18F-FDG uptake and CE suggested decreased PFS (P = 0.023). In newly diagnosed BSG for which more than 50% of the tumor had 18F-FDG uptake, there was a suggestion of lower apparent diffusion coefficient (P = 0.061) and decreased PFS (P = 0.065). Conclusion 18F-FDG PET and MR imaging showed a spectrum of patterns depending on tumor type. In newly diagnosed BSG, the correlation of 18F-FDG uptake and CE suggested decreased OS, likely related to more aggressive disease. When more than 50% of the tumor had 18F-FDG uptake, the apparent diffusion coefficient was lower, consistent with increased cellularity. In refractory/recurrent BSG, poor correlation between 18F

  5. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality

    NARCIS (Netherlands)

    Jansma, J. M.; Ramsey, N.; Rutten, G.J.M.

    2015-01-01

    Aim. Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MM can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on

  6. Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery

    Science.gov (United States)

    Klein, Justin S.; Mitchell, Gregory S.; Cherry, Simon R.

    2017-05-01

    Cerenkov luminescence imaging (CLI) is a developing imaging modality that detects radiolabeled molecules via visible light emitted during the radioactive decay process. We used a Monte Carlo based computer simulation to quantitatively investigate CLI compared to direct detection of the ionizing radiation itself as an intraoperative imaging tool for assessment of brain tumor margins. Our brain tumor model consisted of a 1 mm spherical tumor remnant embedded up to 5 mm in depth below the surface of normal brain tissue. Tumor to background contrast ranging from 2:1 to 10:1 were considered. We quantified all decay signals (e±, gamma photon, Cerenkov photons) reaching the brain volume surface. CLI proved to be the most sensitive method for detecting the tumor volume in both imaging and non-imaging strategies as assessed by contrast-to-noise ratio and by receiver operating characteristic output of a channelized Hotelling observer.

  7. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Martins-Neves Sara R

    2012-04-01

    Full Text Available Abstract Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma.

  8. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.

    Science.gov (United States)

    Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P

    2017-11-01

    Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.

  9. Preclinical impact of bevacizumab on brain and tumor distribution of irinotecan and temozolomide.

    Science.gov (United States)

    Goldwirt, Lauriane; Beccaria, Kevin; Carpentier, Alexandre; Idbaih, Ahmed; Schmitt, Charlotte; Levasseur, Camille; Labussiere, Marianne; Milane, Aline; Farinotti, Robert; Fernandez, Christine

    2015-04-01

    Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Prognosis of GBM patients is poor with median overall survival around 15 months. Temozolomide is the chemotherapeutic agent used in the standard of care of newly diagnosed GBM patients relying on radiotherapy with concurrent chemotherapy followed by chemotherapy alone. Irinotecan has shown some efficacy in recurrent malignant gliomas. Bevacizumab has been combined with irinotecan in the treatment of recurrent GBM and with temozolomide in newly diagnosed GBM. As the efficacy of GBM treatments relies on their brain distribution through the blood brain barrier, the aim of the present preclinical work was to study, in in vivo models, the impact of bevacizumab on brain and tumor distribution of temozolomide and irinotecan. Our results show that bevacizumab pre-treatment was associated with a reduced temozolomide brain distribution in tumor-free mice. In tumor bearing mice, bevacizumab increased temozolomide tumor distribution, although not statistically significant. In both tumor-free and tumor-bearing mice, bevacizumab does not modify brain distribution of irinotecan and its metabolite SN-38. Bevacizumab impacts brain distribution of some anti-tumor drugs and potentially their efficacy in GBM. Further studies are warranted to investigate other therapeutic combination.

  10. Brain Tumor Tropism of Transplanted Human Neural Stem Cells Is Induced by Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Nils Ole Schmidt

    2005-06-01

    Full Text Available The transplantation of neural stem cells (NSCs offers a new potential therapeutic approach as a cell-based delivery system for gene therapy in brain tumors. This is based on the unique capacity of NSCs to migrate throughout the brain and to target invading tumor cells. However, the signals controlling the targeted migration of transplanted NSCs are poorly defined. We analyzed the in vitro and in vivo effects of angiogenic growth factors and protein extracts from surgical specimens of brain tumor patients on NSC migration. Here, we demonstrate that vascular endothelial growth factor (VEGF is able to induce a long-range attraction of transplanted human NSCs from distant sites in the adult brain. Our results indicate that tumorupregulated VEGF and angiogenic-activated microvasculature are relevant guidance signals for NSC tropism toward brain tumors.

  11. Altered brain anatomical networks and disturbed connection density in brain tumor patients revealed by diffusion tensor tractography.

    Science.gov (United States)

    Yu, Zhou; Tao, Ling; Qian, Zhiyu; Wu, Jiangfen; Liu, Hongyi; Yu, Yun; Song, Jiantai; Wang, Shaobo; Sun, Jinyang

    2016-11-01

    Brain tumor patients are usually accompanied by impairments in cognitive functions, and these dysfunctions arise from the altered diffusion tensor of water molecules and disrupted neuronal conduction in white matter. Diffusion tensor imaging (DTI) is a powerful noninvasive imaging technique that can reflect diffusion anisotropy of water and brain white matter neural connectivity in vivo. This study was aimed to analyze the topological properties and connection densities of the brain anatomical networks in brain tumor patients based on DTI and provide new insights into the investigation of the structural plasticity and compensatory mechanism of tumor patient's brain. In this study, the brain anatomical networks of tumor patients and healthy controls were constructed using the tracking of white matter fiber bundles based on DTI and the topological properties of these networks were described quantitatively. The statistical comparisons were performed between two groups with six DTI parameters: degree, regional efficiency, local efficiency, clustering coefficient, vulnerability, and betweenness centrality. In order to localize changes in structural connectivity to specific brain regions, a network-based statistic approach was utilized. By comparing the edge connection density of brain network between two groups, the edges with greater difference in connection density were associated with three functional systems. Compared with controls, tumor patients show a significant increase in small-world feature of cerebral structural network. Two-sample two-tailed t test indicates that the regional properties are altered in 17 regions ([Formula: see text]). Study reveals that the positive and negative changes in vulnerability take place in the 14 brain areas. In addition, tumor patients lose 3 hub regions and add 2 new hubs when compared to normal controls. Eleven edges show much significantly greater connection density in the patients than in the controls. Most of the edges with

  12. Intranasal Delivery of Camptothecin-Loaded Tat-Modified Nanomicells for Treatment of Intracranial Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yuuki Takashima

    2012-10-01

    Full Text Available The blood-brain barrier is a substantial obstacle for delivering anticancer agents to brain tumors, and new strategies for bypassing it are sorely needed for brain tumor therapy. Intranasal delivery provides a practical, noninvasive method for delivering therapeutic agents to the brain. Intranasal application of nano-sized micelles that have been modified with Tat peptide facilitates brain delivery of fluorescent model materials. In this study, we evaluated a nose-to-brain delivery system for brain tumor therapy. We nasally administered the anti-tumor drug camptothecin (CPT in solution and in methoxy poly(ethylene glycol (MPEG/poly(e-caprolactone (PCL amphiphilic block copolymers (MPEG-PCL and cell penetrating peptide, Tat analog-modified MPEG-PCL (MPEG-PCL-Tat MPEG-PCL-Tat to rats bearing intracranial glioma tumors and quantified the cytotoxicity against glioma cells, and the therapeutic effects. CPT-loaded MPEG-PCL-Tat micelles showed higher cytotoxicity than CPT-loaded MPEG-PCL. CPT-free MPEG-PCL-Tat didn’t show any cytotoxicity, even at high concentrations (2 mmol/mL. CPT-loaded MPEG-PCL-Tat micelles significantly prolonged the median survival of rats. These results indicate that intranasal delivery of anti-cancer drugs with cell penetrating peptide-modified nanomicelles might be an effective therapy for brain tumors.

  13. 2016 Updates to the WHO Brain Tumor Classification System: What the Radiologist Needs to Know.

    Science.gov (United States)

    Johnson, Derek R; Guerin, Julie B; Giannini, Caterina; Morris, Jonathan M; Eckel, Lawrence J; Kaufmann, Timothy J

    2017-01-01

    Radiologists play a key role in brain tumor diagnosis and management and must stay abreast of developments in the field to advance patient care and communicate with other health care providers. In 2016, the World Health Organization (WHO) released an update to its brain tumor classification system that included numerous significant changes. Several previously recognized brain tumor diagnoses, such as oligoastrocytoma, primitive neuroectodermal tumor, and gliomatosis cerebri, were redefined or eliminated altogether. Conversely, multiple new entities were recognized, including diffuse leptomeningeal glioneuronal tumor and multinodular and vacuolating tumor of the cerebrum. The glioma category has been significantly reorganized, with several infiltrating gliomas in children and adults now defined by genetic features for the first time. These changes were driven by increased understanding of important genetic factors that directly impact tumorigenesis and influence patient care. The increased emphasis on genetic factors in brain tumor diagnosis has important implications for radiology, as we now have tools that allow us to evaluate some of these alterations directly, such as the identification of 2-hydroxyglutarate within infiltrating gliomas harboring mutations in the genes for the isocitrate dehydrogenases. For other tumors, such as medulloblastoma, imaging can demonstrate characteristic patterns that correlate with particular disease subtypes. The purpose of this article is to review the changes to the WHO brain tumor classification system that are most pertinent to radiologists. ©RSNA, 2017.

  14. Pediatric Brain Tumors: Innovative Genomic Information Is Transforming the Diagnostic and Clinical Landscape.

    Science.gov (United States)

    Gajjar, Amar; Bowers, Daniel C; Karajannis, Matthias A; Leary, Sarah; Witt, Hendrik; Gottardo, Nicholas G

    2015-09-20

    Pediatric neuro-oncology has undergone an exciting and dramatic transformation during the past 5 years. This article summarizes data from collaborative group and institutional trials that have advanced the science of pediatric brain tumors and survival of patients with these tumors. Advanced genomic analysis of the entire spectrum of pediatric brain tumors has heralded an era in which stakeholders in the pediatric neuro-oncology community are being challenged to reconsider their current research and diagnostic and treatment strategies. The incorporation of this new information into the next-generation treatment protocols will unleash new challenges. This review succinctly summarizes the key advances in our understanding of the common pediatric brain tumors (ie, medulloblastoma, low- and high-grade gliomas, diffuse intrinsic pontine glioma, and ependymoma) and some selected rare tumors (ie, atypical teratoid/rhabdoid tumor and CNS primitive neuroectodermal tumor). The potential impact of this new information on future clinical protocols also is discussed. Cutting-edge genomics technologies and the information gained from such studies are facilitating the identification of molecularly defined subgroups within patients with particular pediatric brain tumors. The number of evaluable patients in each subgroup is small, particularly in the subgroups of rare diseases. Therefore, international collaboration will be crucial to draw meaningful conclusions about novel approaches to treating pediatric brain tumors. © 2015 by American Society of Clinical Oncology.

  15. Targeting c-Met receptor overcomes TRAIL-resistance in brain tumors.

    Directory of Open Access Journals (Sweden)

    Wanlu Du

    Full Text Available Tumor necrosis factor related apoptosis-inducing ligand (TRAIL induced apoptosis specifically in tumor cells. However, with approximately half of all known tumor lines being resistant to TRAIL, the identification of TRAIL sensitizers and their mechanism of action become critical to broadly use TRAIL as a therapeutic agent. In this study, we explored whether c-Met protein contributes to TRAIL sensitivity. We found a direct correlation between the c-Met expression level and TRAIL resistance. We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR 5. This interruption greatly induces the formation of death-inducing signaling complex (DISC and subsequent downstream apoptosis signaling. Using intracranially implanted brain tumor cells and stem cell (SC lines engineered with different combinations of fluorescent and bioluminescent proteins, we show that SC expressing a potent and secretable TRAIL (S-TRAIL have a significant anti-tumor effect in mice bearing c-Met knock down of TRAIL-resistant brain tumors. To our best knowledge, this is the first study that demonstrates c-Met contributes to TRAIL sensitivity of brain tumor cells and has implications for developing effective therapies for brain tumor patients.

  16. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells

    National Research Council Canada - National Science Library

    Hou, Zhi-Jie; Luo, Xi; Zhang, Wei; Peng, Fei; Cui, Bai; Wu, Si-Jin; Zheng, Fei-Meng; Xu, Jie; Xu, Ling-Zhi; Long, Zi-Jie; Wang, Xue-Ting; Li, Guo-Hui; Wan, Xian-Yao; Yang, Yong-Liang; Liu, Quentin

    2015-01-01

    Cancer stem-like cell (CS-like cell) is considered to be responsible for recurrence and drug resistance events in breast cancer, which makes it a potential target for novel cancer therapeutic strategy...

  17. Myc mediates cancer stem-like cells and EMT changes in triple negative breast cancers cells.

    Directory of Open Access Journals (Sweden)

    Shuping Yin

    Full Text Available Women with triple negative breast cancer (TNBC have poor prognosis compared to other breast cancer subtypes. There were several reports indicating racial disparity in breast cancer outcomes between African American (AA and European American (EA women. For example, the mortality rates of AA breast cancer patients were three times higher than of EA patients, even though, the incidence is lower in AA women. Our in vitro studies indicate that cancer stem-like cells (CSCs derived from AA TNBC cell lines have significantly higher self-renewal potential (mammosphere formation than CSCs derived from EA cell lines. TNBC tumors express high levels of Myc compared to luminal A or HER2 expressing breast cancers. We studied the effects of c-Myc overexpression on CSCs and chemotherapy in AA, and EA derived TNBC cell line(s. Overexpression of c-Myc in AA derived MDA-MB-468 (Myc/MDA-468 cells resulted in a significant increase in CSCs and with minimal changes in epithelial-to-mesenchymal transition (EMT compared to the control group. In contrast, overexpression of c-Myc in EA derived MDA-MB-231(Myc/MDA-231 cells led to increased epithelial-to-mesenchymal transition (EMT, with a minimal increase in CSCs compared to the control group. Myc/MDA-468 cells were resistant to standard chemotherapeutic treatments such as iniparib (PARP inhibitor plus cisplatin, / iniparib, cisplatin, paclitaxel and docetaxel. However, Myc/MDA-231 cells, which showed EMT changes responded to iniparib with cisplatin, but were resistant to other drugs, such as iniparib, cisplatin, paclitaxel and docetaxel. Collectively, our results indicate that intrinsic differences in the tumor biology may contribute to the breast cancer disparities.

  18. Phosphorylation of Sox2 at Threonine 116 is a Potential Marker to Identify a Subset of Breast Cancer Cells with High Tumorigenecity and Stem-Like Features.

    Science.gov (United States)

    Gupta, Nidhi; Gopal, Keshav; Wu, Chengsheng; Alshareef, Abdulraheem; Chow, Alexandra; Wu, Fang; Wang, Peng; Ye, Xiaoxia; Bigras, Gilbert; Lai, Raymond

    2018-02-03

    We have previously identified a novel phenotypic dichotomy in breast cancer (BC) based on the response to a SRR2 (Sox2 regulatory region 2) reporter, with reporter responsive (RR) cells being more tumorigenic/stem-like than reporter unresponsive (RU) cells. Since the expression level of Sox2 is comparable between the two cell subsets, we hypothesized that post-translational modifications of Sox2 contribute to their differential reporter response and phenotypic differences. By liquid chromatography-mass spectrometry, we found Sox2 to be phosphorylated in RR but not RU cells. Threonine 116 is an important phosphorylation site, since transfection of the T116A mutant into RR cells significantly decreased the SRR2 reporter luciferase activity and the RR-associated phenotype. Oxidative stress-induced conversion of RU into RR cells was accompanied by Sox2 phosphorylation at T116 and increased Sox2-DNA binding. In a cohort of BC, we found significant correlations between the proportion of tumor cells immuno-reactive with anti-phosphorylated Sox2T116 and a high tumor grade (p = 0.006), vascular invasion (p = 0.001) and estrogen receptor expression (p = 0.032). In conclusion, our data suggests that phosphorylation of Sox2T116 contributes to the tumorigenic/stem-like features in RR cells. Detection of phospho-Sox2T116 may be useful in identifying a small subset of tumor cells carrying stem-like/tumorigenic features in BC.

  19. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    Science.gov (United States)

    MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu

    2016-01-01

    Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On

  20. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model.

    Directory of Open Access Journals (Sweden)

    Jennifer A MacDiarmid

    Full Text Available Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers.EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT and magnetic resonance imaging (MRI. Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973. No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs.Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of

  1. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    Science.gov (United States)

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  2. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    Directory of Open Access Journals (Sweden)

    Daniel C Stewart

    Full Text Available While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  3. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms

    Science.gov (United States)

    Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392

  4. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer.

    Science.gov (United States)

    Shan, Naing Lin; Wahler, Joseph; Lee, Hong Jin; Bak, Min Ji; Gupta, Soumyasri Das; Maehr, Hubert; Suh, Nanjoo

    2017-10-01

    Triple-negative breast cancer is one of the least responsive breast cancer subtypes to available targeted therapies due to the absence of hormonal receptors, aggressive phenotypes, and the high rate of relapse. Early breast cancer prevention may therefore play an important role in delaying the progression of triple-negative breast cancer. Cancer stem cells are a subset of cancer cells that are thought to be responsible for tumor progression, treatment resistance, and metastasis. We have previously shown that vitamin D compounds, including a Gemini vitamin D analog BXL0124, suppress progression of ductal carcinoma in situ in vivo and inhibit cancer stem-like cells in MCF10DCIS mammosphere cultures. In the present study, the effects of vitamin D compounds in regulating breast cancer stem-like cells and differentiation in triple-negative breast cancer were assessed. Mammosphere cultures, which enriches for breast cancer cells with stem-like properties, were used to assess the effects of 1α,25(OH)2D3 and BXL0124 on cancer stem cell markers in the triple-negative breast cancer cell line, SUM159. Vitamin D compounds significantly reduced the mammosphere forming efficiency in primary, secondary and tertiary passages of mammospheres compared to control groups. Key markers of cancer stem-like phenotype and pluripotency were analyzed in mammospheres treated with 1α,25(OH)2D3 and BXL0124. As a result, OCT4, CD44 and LAMA5 levels were decreased. The vitamin D compounds also down-regulated the Notch signaling molecules, Notch1, Notch2, Notch3, JAG1, JAG2, HES1 and NFκB, which are involved in breast cancer stem cell maintenance. In addition, the vitamin D compounds up-regulated myoepithelial differentiating markers, cytokeratin 14 and smooth muscle actin, and down-regulated the luminal marker, cytokeratin 18. Cytokeratin 5, a biomarker associated with basal-like breast cancer, was found to be significantly down-regulated by the vitamin D compounds. These results suggest that

  5. Blockade of Inhibitors of Apoptosis Proteins in Combination with Conventional Chemotherapy Leads to Synergistic Antitumor Activity in Medulloblastoma and Cancer Stem-Like Cells.

    Directory of Open Access Journals (Sweden)

    Shu-Mei Chen

    Full Text Available Medulloblastoma (MB is the most common pediatric primary malignant brain tumor. Approximately one-third of MB patients succumb to treatment failure and some survivors suffer detrimental side effects. Hence, the purpose of this study is to explore new therapeutic regimens to overcome chemotherapeutic agent resistance or reduce chemotherapy-induced toxicity.We detected the expression of inhibitors of apoptosis proteins (IAPs in MB and CD133+ MB cell lines and MB tissues using immunoblotting and immunohistochemical staining. The antitumor effects of inhibitors against IAPs on MB or CD133+ MB cells were evaluated by MTT assay, Annexin V/PI analysis, and caspase-3/7 activity. Autophagy was assessed by the conversion of light chain (LC 3-I to LC3-II and Cyto-ID autophagy detection kit.MB cells showed higher expression of IAPs compared to normal astrocytes and normal brain tissues. Conventional chemotherapeutic agents combined with small-molecule IAP inhibitors (LCL161 or LBW242 showed a synergistic effect in MB cells. Combined treatments triggered apoptosis in MB cells through activation of caspase-3/7 and autophagic flux simultaneously. In addition, we found that CD133+ MB cells with features of cancer stem cells displayed higher levels of X-linked inhibitor of apoptosis (XIAP and cellular inhibitor of apoptosis 1/2 (cIAP1/2, and were hypersensitive to treatment with IAP inhibitors.These results shed light on the biological effects of combination therapy on MB cells and illustrate that IAP inhibitors are more effective for CD133+ stem-like MB cells.

  6. [Cognitive functions and personality traits in patients with brain tumors: the role of lesion localization].

    Science.gov (United States)

    Razumnikova, O M; Perfil'ev, A M; Stupak, V V

    2014-01-01

    Personality traits and cognitive functions were studied depending on a tumor localization in the brain in 21 neurosurgical patients and the results were compared with a control group. In patients with brain damage, mostly affected were personality traits associated with emotion regulation and social interaction (neuroticism, psychoticism and social conformity). Increases in psychoticism and decreases in neuroticism were more expressed in patients with a left-hemisphere localization of tumors. The tumor-induced decrease in cognitive abilities was more presented in performing figurative tasks and less in verbal ones. Verbal functions were more decreased in the group with frontal localization of tumor compared to that with parietal localization.

  7. The role of Intravenous Levetiracetam in Treatment of Seizures in Brain Tumor Patients

    Directory of Open Access Journals (Sweden)

    Ekokobe eFonkem

    2013-10-01

    Full Text Available Levetiracetam, tradename Keppra, is a new second generation antiepileptic drug that is being used increasingly in brain tumor patients. In patients suffering with brain tumors, seizures are one of the leading neurologic complications seen in more than 30% of patients. Levetiracetam is a pyrollidine-derivative drug, which has a unique mechanism of action. Unlike other antiepileptic drugs, Levetiracetam is proposed to bind to a synaptic vesicle protein inhibiting calcium release. Brain tumor patients are frequently on chemotherapy or other drugs that induce cytochrome P450, causing significant drug interactions. However, levetiracetam does not induce the P450 system and does not exhibit any relevant drug interactions. Intravenous delivery is as bioavailable as the oral medication allowing it to be used in emergency situations. Levetiracetam is an attractive option for brain tumor patients suffering from seizures, but also can be used prophylactically in patients with brain tumors or patients undergoing neurological surgery. Emerging studies have also demonstrated that levetiracetam can increase the sensitivity of Glioblastoma tumors to the chemotherapy drug Temozolomide. Levetiracetam is a safe alternative to conventional Antiepileptic drugs and an emerging tool for brain tumor patients combating seizures.

  8. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    Science.gov (United States)

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.

  9. Tumor cell endocytosis imaging facilitates delineation of the glioma-brain interface.

    Science.gov (United States)

    Zimmer, C; Wright, S C; Engelhardt, R T; Johnson, G A; Kramm, C; Breakefield, X O; Weissleder, R

    1997-01-01

    We describe a method for measuring tumor cell endocytosis in vivo and provide the anatomic correlate of this tumor cell function using a superparamagnetic and histologically detectable marker for cell uptake (MION). Rats (n = 22) were intrahemispherically implanted with a thymidine kinase (TK)-positive 9L gliosarcoma cell line, where TK served as the tumor marker. Twenty-four hours after intravenous injection of 10 mg Fe/kg of MION, rat brains were removed and underwent MR imaging ex vivo at near-microscopic resolution (isotropic voxel size of 86 microm, 9.4 T) prior to histologic processing. The imaging probe accumulated within tumor cells adjacent to the hyperpermeable tumor-brain interface including microscopic deposits and along finger-like invasions of the tumor into brain, facilitating the demarcation of the true histologic tumor border in three dimensions by MR microscopy. The method has potential research and clinical implications for delineating the tumor-brain interface prior to therapy and/or for providing a rational basis for imaging nanocolloid drug delivery to solid tumors.

  10. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjae; Kim, Ho Sung [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  11. Analysis of Brain Tumors Due to the Usage of Mobile Phones

    Directory of Open Access Journals (Sweden)

    SOOBIA SAEED

    2017-07-01

    Full Text Available The impact of cellular phone radiation on human health is the subject of current mindfulness and is an outcome of the huge increase in phone usage throughout the world. Phones use electromagnetic radiation in the microwave range. The issue is associated with wireless use for 50 minutes and above. The excessive use of mobile phone may cause brain tumors. Nowadays the most commonly developed brain tumor type is GBM (Glioblastoma in multiform and Malignant Astrocytoma. In this paper, we focus on the causes of brain tumor (cancer due to the cell phone as this increase in glucose metabolism. The aim of the study is to address the aforementioned problems associated with the cell phone. MATLAB programming to detect a brain tumor has been used. We have conducted MRI (Magnetic Resonance Imaging study to get the best images and results.

  12. Surviving a brain tumor in childhood: impact on family functioning in adolescence

    NARCIS (Netherlands)

    Beek, Laura; Schappin, Renske; Gooskens, Rob; Huisman, Jaap; Jongmans, Marian

    2015-01-01

    OBJECTIVE: To investigate family functioning in families with an adolescent survivor of a pediatric brain tumor. We explored whether adolescent, parent, disease and treatment factors, and demographic characteristics predicted family functioning. METHODS: In this cross-sectional study, 45 adolescent

  13. Emerging techniques in brain tumor imaging: What radiologists need to know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jae; Kim, Ho Sung [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2016-09-15

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  14. Targeting c-Met receptor overcomes TRAIL-resistance in brain tumors

    National Research Council Canada - National Science Library

    Du, Wanlu; Uslar, Liubov; Sevala, Sindhura; Shah, Khalid

    2014-01-01

    .... We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5...

  15. Targeting c-Met Receptor Overcomes TRAIL-Resistance in Brain Tumors: e95490

    National Research Council Canada - National Science Library

    Wanlu Du; Liubov Uslar; Sindhura Sevala; Khalid Shah

    2014-01-01

    .... We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5...

  16. A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Jennifer L., E-mail: jennifer.dembinski@rr-research.no; Krauss, Stefan [Cellular and Genetic Therapy, Department of Microbiology, Cancer Stem Cell Innovation Center (CAST), Oslo University Hospital, Rikshospitalet, Oslo (Norway)

    2010-11-29

    Pancreatic adenocarcinoma has the worst prognosis of any major malignancy, with <5% of patients surviving five years. This can be contributed to the often late diagnosis, lack of sufficient treatment and metastatic spread. Heterogeneity within tumors is increasingly becoming a focus in cancer research, as novel therapies are required to target the most aggressive subpopulations of cells that are frequently termed cancer stem cells (CSCs). In the current study, we describe the identification of a slow-cycling cancer stem-like population of cells in vivo in BxPC-3 and Panc03.27 xenografts. A distinct slow-cycling label-retaining population of cells (DiI+/SCC) was found both at the edge of tumors, and in small circumscribed areas within the tumors. DiI+/SCC in these areas display an epithelial-to-mesenchymal transition (EMT) fingerprint, including an upregulation of the mesenchymal markers vimentin and N-cadherin and a loss of the epithelial marker E-cadherin. DiI+/SCC also displayed a critical re-localization of beta-catenin from the membrane to the nucleus. Additionally, the DiI+/SCC population was found to express the developmental signaling molecule sonic hedgehog. This study represents a novel step in defining the biological activities of a tumorigenic subpopulation within the heterogeneous tumor microenvironment in vivo. Understanding the interactions and functions of a CSC population within the context of the tumor microenvironment is critical to design targeted therapeutics.

  17. Primary brain tumors and posterior reversible encephalopathy syndrome.

    Science.gov (United States)

    Kamiya-Matsuoka, Carlos; Cachia, David; Olar, Adriana; Armstrong, Terri S; Gilbert, Mark R

    2014-12-01

    Posterior reversible encephalopathy syndrome (PRES) is a neurotoxic encephalopathic state associated with reversible cerebral vasogenic edema. It is an increasingly recognized occurrence in the oncology population. However, it is very uncommon in patients with primary brain tumors (PBTs). The aim of this study was to analyze the clinicoradiological features and report the clinical outcomes of PRES in PBT patients. We identified 4 cases with PBT who developed PRES at MD Anderson Cancer Center (MDACC) between 2012 and 2014. Clinical and radiological data were abstracted from their records. In addition, we also solicited 8 cases from the literature. The median age at PRES onset was 19 years, male-to-female ratio was 1:1, and the syndrome occurred in patients with ependymoma (n = 4), glioblastoma (n = 3), diffuse intrinsic pontine glioma (DIPG; n = 3), juvenile pilocytic astrocytoma (n = 1), and atypical meningioma (n = 1). Two glioblastomas and 2 DIPG cases received bevacizumab and vandetanib before the onset of symptoms, respectively. The most common clinical presentation was seizures (n = 7). Three MDACC patients recovered completely in 3-4 weeks after the onset of symptoms. One patient died due to active cancer and several comorbidities including PRES. Hypertension seems to be the most important coexisting risk factor for development of PRES; however, the potential effects of chemotherapeutic agents in the pathogenesis of PRES should also be examined. The clinicoradiological course of PRES in PBT patients did not vary from the classical descriptions of PRES found in other causes. PRES must be considered as part of the differential diagnosis in patients with PBTs presenting with seizures or acute encephalopathy.

  18. Analysis of Brain Tumors Due to the Usage of Mobile Phones

    OpenAIRE

    SOOBIA SAEED; ASADULLAH SHAIKH; SHABAZ AHMED NOOR

    2017-01-01

    The impact of cellular phone radiation on human health is the subject of current mindfulness and is an outcome of the huge increase in phone usage throughout the world. Phones use electromagnetic radiation in the microwave range. The issue is associated with wireless use for 50 minutes and above. The excessive use of mobile phone may cause brain tumors. Nowadays the most commonly developed brain tumor type is GBM (Glioblastoma) in multiform and Malignant Astrocytoma. In this paper, we focus ...

  19. Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain tumor resection.

    Science.gov (United States)

    Azarnoush, Hamed; Alzhrani, Gmaan; Winkler-Schwartz, Alexander; Alotaibi, Fahad; Gelinas-Phaneuf, Nicholas; Pazos, Valérie; Choudhury, Nusrat; Fares, Jawad; DiRaddo, Robert; Del Maestro, Rolando F

    2015-05-01

    Virtual reality simulator technology together with novel metrics could advance our understanding of expert neurosurgical performance and modify and improve resident training and assessment. This pilot study introduces innovative metrics that can be measured by the state-of-the-art simulator to assess performance. Such metrics cannot be measured in an operating room and have not been used previously to assess performance. Three sets of performance metrics were assessed utilizing the NeuroTouch platform in six scenarios with simulated brain tumors having different visual and tactile characteristics. Tier 1 metrics included percentage of brain tumor resected and volume of simulated "normal" brain tissue removed. Tier 2 metrics included instrument tip path length, time taken to resect the brain tumor, pedal activation frequency, and sum of applied forces. Tier 3 metrics included sum of forces applied to different tumor regions and the force bandwidth derived from the force histogram. The results outlined are from a novice resident in the second year of training and an expert neurosurgeon. The three tiers of metrics obtained from the NeuroTouch simulator do encompass the wide variability of technical performance observed during novice/expert resections of simulated brain tumors and can be employed to quantify the safety, quality, and efficiency of technical performance during simulated brain tumor resection. Tier 3 metrics derived from force pyramids and force histograms may be particularly useful in assessing simulated brain tumor resections. Our pilot study demonstrates that the safety, quality, and efficiency of novice and expert operators can be measured using metrics derived from the NeuroTouch platform, helping to understand how specific operator performance is dependent on both psychomotor ability and cognitive input during multiple virtual reality brain tumor resections.

  20. Coffee and green tea consumption in relation to brain tumor risk in a Japanese population.

    Science.gov (United States)

    Ogawa, Takahiro; Sawada, Norie; Iwasaki, Motoki; Budhathoki, Sanjeev; Hidaka, Akihisa; Yamaji, Taiki; Shimazu, Taichi; Sasazuki, Shizuka; Narita, Yoshitaka; Tsugane, Shoichiro

    2016-12-15

    Few prospective studies have investigated the etiology of brain tumor, especially among Asian populations. Both coffee and green tea are popular beverages, but their relation with brain tumor risk, particularly with glioma, has been inconsistent in epidemiological studies. In this study, we evaluated the association between coffee and greed tea intake and brain tumor risk in a Japanese population. We evaluated a cohort of 106,324 subjects (50,438 men and 55,886 women) in the Japan Public Health Center-Based Prospective Study (JPHC Study). Subjects were followed from 1990 for Cohort I and 1993 for Cohort II until December 31, 2012. One hundred and fifty-seven (70 men and 87 women) newly diagnosed cases of brain tumor were identified during the study period. Hazard ratio (HR) and 95% confidence intervals (95%CIs) for the association between coffee or green tea consumption and brain tumor risk were assessed using a Cox proportional hazards regression model. We found a significant inverse association between coffee consumption and brain tumor risk in both total subjects (≥3 cups/day; HR = 0.47, 95%CI = 0.22-0.98) and in women (≥3 cups/day; HR = 0.24, 95%CI = 0.06-0.99), although the number of cases in the highest category was small. Furthermore, glioma risk tended to decrease with higher coffee consumption (≥3 cups/day; HR = 0.54, 95%CI = 0.16-1.80). No association was seen between green tea and brain tumor risk. In conclusion, our study suggested that coffee consumption might reduce the risk of brain tumor, including that of glioma, in the Japanese population. © 2016 UICC.

  1. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model.

    Directory of Open Access Journals (Sweden)

    Weili Jiang

    Full Text Available Currently, effective and specific diagnostic imaging of brain glioma is a major challenge. Nanomedicine plays an essential role by delivering the contrast agent in a targeted manner to specific tumor cells, leading to improvement in accurate diagnosis by good visualization and specific demonstration of tumor cells. This study investigated the preparation and characterization of a targeted MR contrast agent, transferrin-conjugated superparamagnetic iron oxide nanoparticles (Tf-SPIONs, for brain glioma detection. MR imaging showed the obvious contrast change of brain glioma before and after administration of Tf-SPIONs in C6 glioma rat model in vivo on T2 weighted imaging. Significant contrast enhancement of brain glioma could still be clearly seen even 48 h post injection, due to the retention of Tf-SPIONs in cytoplasm of tumor cells which was proved by Prussian blue staining. Thus, these results suggest that Tf-SPIONs could be a potential targeting MR contrast agent for the brain glioma.

  2. Family history of cancer in benign brain tumor subtypes versus gliomas

    Directory of Open Access Journals (Sweden)

    Quinn eOstrom

    2012-02-01

    Full Text Available Purpose: Family history is associated with gliomas, but this association has not ben established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study (OBTS. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%, 78 meningioma (65%, 49 pituitary adenoma (73.1% and 152 glioma patients (58.2%. The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs and 95% confidence intervals (95% CI. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusions: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases.

  3. Family History of Cancer in Benign Brain Tumor Subtypes Versus Gliomas

    Science.gov (United States)

    Ostrom, Quinn T.; McCulloh, Christopher; Chen, Yanwen; Devine, Karen; Wolinsky, Yingli; Davitkov, Perica; Robbins, Sarah; Cherukuri, Rajesh; Patel, Ashokkumar; Gupta, Rajnish; Cohen, Mark; Barrios, Jaime Vengoechea; Brewer, Cathy; Schilero, Cathy; Smolenski, Kathy; McGraw, Mary; Denk, Barbara; Naska, Theresa; Laube, Frances; Steele, Ruth; Greene, Dale; Kastl, Alison; Bell, Susan; Aziz, Dina; Chiocca, E. A.; McPherson, Christopher; Warnick, Ronald; Barnett, Gene H.; Sloan, Andrew E.; Barnholtz-Sloan, Jill S.

    2012-01-01

    Purpose: Family history is associated with gliomas, but this association has not been established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%), 78 meningioma (65%), 49 pituitary adenoma (73.1%), and 152 glioma patients (58.2%). The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs) and 95% confidence intervals. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusion: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases. PMID:22649779

  4. Comparison of resilience in adolescent survivors of brain tumors and healthy adolescents.

    Science.gov (United States)

    Chen, Chin-Mi; Chen, Yueh-Chih; Wong, Tai-Tong

    2014-01-01

    Resilience is essential for the psychological adjustment of adolescents experiencing difficulty. Comparing differences in resilience between adolescent survivors of brain tumors and healthy adolescents may help identify factors related to resilience in adolescents. The purpose of this study was to clarify how illness impacts the normative development of adolescent survivors of brain tumors by comparing them to healthy adolescents in terms of resilience and how it is affected by various health problems. This cross-sectional, case-control study used convenience sampling to recruit 13- to 18-year-old adolescent survivors of brain tumors and healthy adolescents matched by school level, gender, and living area. Data were collected by structured questionnaires. The sample included 60 adolescent survivors and 120 healthy adolescents. Participants in both groups were predominantly male adolescents (63.3%) and junior high school students (55%). The 2 groups did not differ significantly in resilience, but survivors without emotional problems had a higher mean resilience score than did healthy adolescents and survivors with emotional problems (F = 8.65, P adolescent survivors of brain tumors and healthy adolescents. In addition, the impact of emotional problems on resilience was more severe in brain tumor survivors than in healthy adolescents. Our results suggest that pediatric oncology nurses design interdisciplinary school-based interventions to reduce the impact of emotional problems on resilience in both healthy adolescents and those who survived brain tumors.

  5. Association rule mining based study for identification of clinical parameters akin to occurrence of brain tumor.

    Science.gov (United States)

    Sengupta, Dipankar; Sood, Meemansa; Vijayvargia, Poorvika; Hota, Sunil; Naik, Pradeep K

    2013-01-01

    Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis & treatment of disease from the clinical dataset is therefore increasingly becoming necessary. Aim of this study was to assess the applicability of knowledge discovery in brain tumor data warehouse, applying data mining techniques for investigation of clinical parameters that can be associated with occurrence of brain tumor. In this study, a brain tumor warehouse was developed comprising of clinical data for 550 patients. Apriori association rule algorithm was applied to discover associative rules among the clinical parameters. The rules discovered in the study suggests - high values of Creatinine, Blood Urea Nitrogen (BUN), SGOT & SGPT to be directly associated with tumor occurrence for patients in the primary stage with atleast 85% confidence and more than 50% support. A normalized regression model is proposed based on these parameters along with Haemoglobin content, Alkaline Phosphatase and Serum Bilirubin for prediction of occurrence of STATE (brain tumor) as 0 (absent) or 1 (present). The results indicate that the methodology followed will be of good value for the diagnostic procedure of brain tumor, especially when large data volumes are involved and screening based on discovered parameters would allow clinicians to detect tumors at an early stage of development.

  6. Expression and prognostic value of Oct-4 in astrocytic brain tumors

    DEFF Research Database (Denmark)

    Krogh Petersen, Jeanette; Jensen, Per; Sørensen, M. D.

    2016-01-01

    suggested to have promising potentials as prognostic markers in gliomas. Methodology/Principal Findings: The aim of the present study was to investigate the expression and prognostic impact of the TSC-related marker Oct-4 in astrocytic brain tumors of increasing grade. In total 114 grade II, III and IV...... astrocytic brain tumors were immunohistochemically stained for Oct-4, and the fraction and intensity of Oct-4 positive cells were determined by morphometric analysis of full tumor sections. Oct-4 was expressed in all tumors, and the Oct-4 positive cell fraction increased with tumor grade (p = 0.......045). There was no association between survival and Oct-4 positive cell fraction, neither when combining all tumor grades nor in analysis of individual grades. Oct-4 intensity was not associated with grade, but taking IDH1 status into account we found a tendency for high Oct-4 intensity to be associated with poor prognosis...

  7. Expression of CD44 splice variants in human primary brain tumors

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Morsink, F.; Keehnen, R. M.; Leenstra, S.; Bosch, D. A.; Pals, S. T.

    1995-01-01

    Expression of CD44, particularly of certain splice variants, has been linked to tumor progression and metastatic potential in a number of different animal and human cancers. Although differential expression of CD44 standard epitopes (CD44s) in human brain tumors has been reported, the expression of

  8. Predictive value of clinical evaluation in the follow-up of children with a brain tumor

    NARCIS (Netherlands)

    Hew, JM; Fock, JM; Kamps, WA

    Background. During follow-up of children with a brain tumor, traditionally surveillance-imaging studies are done in addition to clinical evaluations, The purpose of this study was to determine the role of clinical evaluations by a multidisciplinary team for the detection of recurrent tumor.

  9. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  10. Steady-state properties of sodium channels from healthy and tumorous human brain

    NARCIS (Netherlands)

    Frenkel, C.; Wartenberg, H. C.; Duch, D. S.; Urban, B. W.

    1998-01-01

    This extensive bilayer study of unpurified human brain channels from non-diseased and tumorous human brain involves more than 300 lipid bilayer experiments. Single channel conductances and subconductances, single channel fractional open times, the voltage-dependence of tetrodotoxin (TTX) block and

  11. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  12. Quality of life and symptoms in pediatric brain tumor survivors: a systematic review.

    Science.gov (United States)

    Macartney, Gail; Harrison, Margaret B; VanDenKerkhof, Elizabeth; Stacey, Dawn; McCarthy, Patricia

    2014-01-01

    Little is known about the quality of life of children and youth under the age of 20 who have completed treatment for a pediatric brain tumor. This systematic review was conducted to (a) describe the health-related quality of life (HRQL) outcomes in pediatric brain tumor survivors, (b) identify instruments used to measure HRQL, and (c) determine the relationship between symptoms and HRQL. Using a systematic search and review methodology, databases searched included CINAHL, Medline, Embase, and PsycInfo. No date restrictions were used. Search results elicited 485 articles, of which16 met the inclusion criteria. Compared with their healthy peers, pediatric brain tumor survivors did worse on most measures of physical, psychosocial, social, and cognitive domains of HRQL. Compared with other cancer patients, survivors scored themselves significantly lower on the Pediatric Quality of Life Inventory (PedsQL) social functioning scale, and parents of brain tumor survivors reported lower PedsQL social and total functioning scores for their children. Other variables that were associated with decreased HRQL were degree of hypothalamic tumor involvement, osteopenia, need for special education, older age at diagnosis, greater than 1 year since treatment, and radiation treatment. In these studies, pediatric brain tumor survivors fared worse compared with other cancer survivors or healthy peers on several HRQL domains. Only 3 studies explored the relationship between symptoms, including pain or fatigue, and HRQL in pediatric brain tumor survivors. The relationship between symptoms and HRQL was not well elucidated. More research is needed to explore the multidimensional symptom experience and HRQL outcomes in pediatric brain tumor survivors.

  13. Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models.

    Directory of Open Access Journals (Sweden)

    Jinwei Hu

    2010-04-01

    Full Text Available Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB, significantly limiting drug use in brain cancer treatment.We examined the effect of phosphodiesterase 5 (PDE5 inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [(14C]dextran and trastuzumab (Herceptin, a humanized monoclonal antibody against HER2/neu by cultured mouse brain endothelial cells (MBEC. The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [(14C]dextran (2.6-fold increase and to Herceptin (2-fold increase. Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p0.05.These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.

  14. Operator experience determines performance in a simulated computer-based brain tumor resection task.

    Science.gov (United States)

    Holloway, Terrell; Lorsch, Zachary S; Chary, Michael A; Sobotka, Stanislaw; Moore, Maximillian M; Costa, Anthony B; Del Maestro, Rolando F; Bederson, Joshua

    2015-11-01

    Develop measures to differentiate between experienced and inexperienced neurosurgeons in a virtual reality brain surgery simulator environment. Medical students (n = 71) and neurosurgery residents (n = 12) completed four simulated Glioblastoma multiforme resections. Simulated surgeries took place over four days with intermittent spacing in between (average time between surgeries of 4.77 ± 0.73 days). The volume of tumor removed (cc), volume of healthy brain removed (cc), and instrument path length (mm) were recorded. Additionally, surgical effectiveness (% tumor removed divided by % healthy brain removed) and efficiency (% tumor removed divided by instrument movement in mm) were calculated. Performance was compared (1) between groups, and (2) for each participant over time to assess the learning curve. In addition, the effect of real-time instruction ("coaching") was assessed with a randomly selected group of medical students. Neurosurgery residents removed less healthy brain, were more effective in removing tumor and sparing healthy brain tissue, required less instrument movement, and were more efficient in removing tumor tissue than medical students. Medical students approached the resident level of performance over serial sessions. Coached medical students showed more conservative surgical behavior, removing both less tumor and less healthy brain. In sum, neurosurgery residents removed more tumor, removed less healthy brain, and required less instrument movement than medical students. Coaching modified medical student performance. Virtual Reality brain surgery can differentiate operators based on both recent and long-term experience and may be useful in the acquisition and assessment of neurosurgical skills. Coaching alters the learning curve of naïve inexperienced individuals.

  15. Inhibition of PRDM14 expression in pancreatic cancer suppresses cancer stem-like properties and liver metastasis in mice.

    Science.gov (United States)

    Moriya, Chiharu; Taniguchi, Hiroaki; Miyata, Kanjiro; Nishiyama, Nobuhiro; Kataoka, Kazunori; Imai, Kohzoh

    2017-06-01

    Pancreatic cancer is one of the most lethal types of cancer, with aggressive properties characterized by metastasis, recurrence and drug resistance. Cancer stem cells are considered to be responsible for these properties. PRDM14, a transcriptional regulator that maintains pluripotency in embryonic stem cells, is overexpressed in some cancers. Here, we assessed PRDM14 expression and the effects of PRDM14 knockdown on cancer stem-like phenotypes in pancreatic cancer. We observed that PRDM14 protein was overexpressed in pancreatic cancer tissues compared with normal pancreatic tissues. Using lentiviral shRNA-transduced pancreatic cancer cells, we found that PRDM14 knockdown decreased sphere formation, number of side population and cell surface marker-positive cells and subcutaneous xenograft tumors and liver metastasis in mice. This was accompanied by upregulation of some microRNAs (miRNAs), including miR-125a-3p. miR-125a-3p, a tumor suppressor that is down-regulated in pancreatic cancer, has been suggested to regulate the expression of the Src-family kinase, Fyn. In PRDM14-knockdown cells, Fyn was expressed at lower levels and downstream proteins were less activated. These changes were considered to cause suppression of the above cancer phenotypes. In addition, we used small interfering RNA (siRNA)-based therapy targeting PRDM14 in a mouse model of liver metastasis induced using MIA-PaCa2 cells, and this treatment significantly decreased metastasis and in vitro migration. Taken together, these results suggest that targeting the overexpression of PRDM14 suppresses cancer stem-like phenotypes, including liver metastasis, via miRNA regulation and siRNA-based therapy targeting it shows promise as a treatment for patients with pancreatic cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Metronomic photodynamic therapy (mPDT): concepts and technical feasibility in brain tumor

    Science.gov (United States)

    Wilson, Brian C.; Bisland, Stuart K.; Bogaards, Arjen; Lin, Annie; Moriyama, Eduardo H.; Zhang, Kai; Lilge, Lothar D.

    2003-06-01

    The concept of metronomic photodynamic therapy (mPDT) is presented, in which both the photosensitizer and light are delivered continuously at low rates over extended periods in order to increase selective tumor cell kill through apoptosis. The focus of the present work is on mPDT treatment of malignant brain tumors, in which selectivity between damage to tumor cells versus normal brain tissue is critical. Previous studies have shown that low-dose PDT using aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) can induce apoptosis in tumor cells without causing necrosis in either tumor or normal brain tissue or apoptosis in the latter. In order to produce enough tumor cell kill to be an effective therapy, multiple PDT treatments, such as hyperfractionation or metronomic delivery, are likely requried, based on the levels of apoptosis achieved and model calculations of tumor growth rates. mPDT poses two substantial technical challenges: extended delivery of ALA and implantation of interstitial devices for extended light delivery while allowing free movement. In rat models ALA administration via the drinking water has been accomplished at significant doses for up to 10 days, and ex vivo spectrofluorimetry of tumore, normal brain and other tissues post mortem demonstrates a 3-4 increase in the tumor-to-brain concentration of PpIX, without toxicity. Prototype light sources and delivery devices are also shown to be practical, either using a laser diode or light emitting diode (LED) coupled to an implanted optical fiber in the case of the rat model or a directly-implanted LED in rabbits. The combined delivery of both drug and light over an extended period, with survival of the animals, is demonstrated. Preliminary evidence of selective apoptosis of tumor under these conditions is presented.

  17. Neuro-Behçet disease mimicking brain tumor: A case report.

    Science.gov (United States)

    Tramontini, Pedro L; Finkelsztejn, Alessandro; Duarte, Juliana Á; Santos, Guilherme T; Roesler, Rafael; Isolan, Gustavo R

    2017-01-01

    Behçet's disease (BD) is an inflammatory multisystem disease with unknown etiology, and consists of a TRIAD comprising recurrent oral ulcers, genital ulcers, and uveitis. In some cases, the disease affects the central nervous system, called Neuro-Behçet Disease (NBD). Few cases of NBD simulating a brain tumor have been previously reported. Here, we describe the case of a 46-year-old male patient with a previous diagnosis of brain tumor who was later diagnosed for BD. This case highlights the importance of differential diagnosis of lesions with tumoral features. Checking for the possibility of NBD may help avoiding biopsy in these types of cases.

  18. Presence of cerebral microbleeds is associated with worse executive function in pediatric brain tumor survivors.

    Science.gov (United States)

    Roddy, Erika; Sear, Katherine; Felton, Erin; Tamrazi, Benita; Gauvain, Karen; Torkildson, Joseph; Buono, Benedict Del; Samuel, David; Haas-Kogan, Daphne A; Chen, Josephine; Goldsby, Robert E; Banerjee, Anuradha; Lupo, Janine M; Molinaro, Annette M; Fullerton, Heather J; Mueller, Sabine

    2016-11-01

    A specific form of small-vessel vasculopathy-cerebral microbleeds (CMBs)-has been linked to various types of dementia in adults. We assessed the incidence of CMBs and their association with neurocognitive function in pediatric brain tumor survivors. In a multi-institutional cohort of 149 pediatric brain tumor patients who received cranial radiation therapy (CRT) between 1987 and 2014 at age tumor survivors treated with radiation. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587.

    Science.gov (United States)

    Figueroa, Javier; Phillips, Lynette M; Shahar, Tal; Hossain, Anwar; Gumin, Joy; Kim, Hoon; Bean, Andrew J; Calin, George A; Fueyo, Juan; Walters, Edgar T; Kalluri, Raghu; Verhaak, Roel G; Lang, Frederick F

    2017-11-01

    Tumor-stromal communications impact tumorigenesis in ways that are incompletely understood. Here, we show that glioma-associated human mesenchymal stem cells (GA-hMSC), a newly identified stromal component of glioblastoma, release exosomes that increase the proliferation and clonogenicity of tumor-initiating glioma stem-like cells (GSC). This event leads to a significantly greater tumor burden and decreased host survival compared with untreated GSCs in orthotopic xenografts. Analysis of the exosomal content identified miR-1587 as a mediator of the exosomal effects on GSCs, in part via downregulation of the tumor-suppressive nuclear receptor corepressor NCOR1. Our results illuminate the tumor-supporting role for GA-hMSCs by identifying GA-hMSC-derived exosomes in the intercellular transfer of specific miRNA that enhance the aggressiveness of glioblastoma. Cancer Res; 77(21); 5808-19. ©2017 AACR. ©2017 American Association for Cancer Research.

  20. Photodynamic therapy-mediated cancer vaccination enhances stem-like phenotype and immune escape, which can be blocked by thrombospondin-1 signaling through CD47 receptor protein.

    Science.gov (United States)

    Zheng, Yuanhong; Zou, Fangyuan; Wang, Jingjing; Yin, Guifang; Le, Vanminh; Fei, Zhewei; Liu, Jianwen

    2015-04-03

    Like most of the strategies for cancer immunotherapy, photodynamic therapy-mediated vaccination has shown poor clinical outcomes in application. The aim of this study is to offer a glimpse at the mechanisms that are responsible for the failure based on cancer immuno-editing theory and to search for a positive solution. In this study we found that tumor cells were able to adapt themselves to the immune pressure exerted by vaccination. The survived tumor cells exhibited enhanced tumorigenic and stem-like phenotypes as well as undermined immunogenicity. Viewed as a whole, immune-selected tumor cells showed more malignant characteristics and the ability of immune escape, which might contribute to the eventual relapse. Thrombospondin-1 signaling via CD47 helped prevent tumor cells from becoming stem-like and rendered them vulnerable to immune attack. These findings prove that the TSP-1/CD47/SIRP-α signal axis is important to the evolution of tumor cells in the microenvironment of immunotherapy and identify thrombospondin-1 as a key signal with therapeutic benefits in overcoming long term relapse, providing new evidence for the clinical promise of cancer vaccination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay

    Directory of Open Access Journals (Sweden)

    Jingli Wang

    2003-07-01

    Full Text Available We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c. tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia.

  2. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    Energy Technology Data Exchange (ETDEWEB)

    Hartford, Alan C., E-mail: Alan.C.Hartford@Hitchcock.org [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Paravati, Anthony J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Spire, William J. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Li, Zhongze [Biostatistics Shared Resource, Norris Cotton Cancer Center, Lebanon, New Hampshire (United States); Jarvis, Lesley A. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Fadul, Camilo E. [Section of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Rhodes, C. Harker [Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Erkmen, Kadir [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Friedman, Jonathan [Department of Surgery, Texas A and M College of Medicine, College Station, Texas (United States); Gladstone, David J. [Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States); Hug, Eugen B. [ProCure, New York, New York (United States); Roberts, David W.; Simmons, Nathan E. [Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States)

    2013-03-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  3. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.

    Directory of Open Access Journals (Sweden)

    Ninette Amariglio

    2009-02-01

    Full Text Available BACKGROUND: Neural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells. METHODS AND FINDINGS: A boy with ataxia telangiectasia (AT was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patient's peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors. CONCLUSIONS: This is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies.

  4. Evaluation of health-related quality of life in Lithuanian brain tumor patients using the EORTC brain cancer module

    OpenAIRE

    Bunevičius, Adomas; Tamašauskas, Šarūnas; Tamašauskas, Arimantas; Deltuva, Vytenis Pranas

    2012-01-01

    Background and Objective. Health-related quality of life (HRQoL) is considered an important outcome measure in neuro-oncology. The aim of this study was to evaluate the psychometric properties of the brain cancer-specific Quality of Life Questionnaire (QLQ-BN20) of the European Organization for Research and Treatment of Cancer (EORTC) in Lithuanian brain tumor patients. Material and Methods. One hundred consecutive patients (71% of women; mean age, 58±14 years) admitted for elective brain tum...

  5. Detection of an atypical teratoid rhabdoid brain tumor gene deletion in circulating blood using next-generation sequencing.

    Science.gov (United States)

    Chakravadhanula, Madhavi; Tembe, Waibhav; Legendre, Christophe; Carpentieri, David; Liang, Winnie S; Bussey, Kimberly J; Carpten, John; Berens, Michael E; Bhardwaj, Ratan D

    2014-09-01

    Circulating biomarkers such as somatic chromosome mutations are novel diagnostic tools to detect cancer noninvasively. We describe focal deletions found in a patient with atypical teratoid rhabdoid tumor, a highly aggressive early childhood pediatric tumor. First, we used magnetic resonance imaging (MRI) and histopathology to study the tumor anatomy. Next, we used whole genome sequencing (Next Gen Sequencing) and Bioinformatics interrogation to discover the presence of 3 focal deletions in tumor tissue and 2 of these 3 focal deletions in patient's blood also. About 20% of the blood DNA sequencing reads matched the tumor DNA reads at the SMARCB1 gene locus. Circulating, tumor-specific DNA aberrations are a promising biomarker for atypical teratoid rhabdoid tumor patients. The high percentage of tumor DNA detected in blood indicates that either circulating brain tumor cells lyse in the blood or that contents of brain tumor cells traverse a possibly compromised blood-brain barrier in this patient. © The Author(s) 2013.

  6. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors

    Science.gov (United States)

    Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua

    2016-11-01

    The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.

  7. [NOVEL STRATEGY IN THE RADIOTHERAPY OF METASTATIC BRAIN TUMORS: SIMULTANEOUS WHOLE BRAIN RADIOTHERAPY AND INTEGRATED STEREOTACTIC RADIOSURGERY].

    Science.gov (United States)

    Kalincsák, Judit; László, Zoltán; Sebestyén, Zsolt; Kovács, Péter; Horváth, Zsolt; Dóczi, Tamás; Mangel László

    2015-11-30

    Treatment of central nervous system (CNS) tumors has always played an important role in development of radiotherapy techniques. Precise patient immobilisation, non-coplanar field arrangement, conformal treatment, arc therapy, radiosurgery, application of image fusion to radiation planning or re-irradiation were first introduced into clinical routine in the treatment of brain tumors. A modern multifunctional radiation instrument, Novalis TX has been installed at the University of Pécs two years ago. New methods, such as real time 3D image guided therapy, dynamic arc therapy and ultra-conformity offer further progress in treatment of CNS tumors. Whole brain irradiation and simultaneous fractionated stereotactic radiosurgery or integrated boost seem to be an optimal method in the treatment of not only soliter or oligo, but even a higher number (4-9) and not typically radiosensitive brain metastases. The new treatment strategy is illustrated by presentation of four case histories. Treatment protocol was completed in all cases. Treatment period of 1.5 to 3 weeks, and treatment time of only a few minutes were not stressful for the patients. A quite remarkable clinical improvement as to general condition of the patients was experienced in three cases. Follow-up images confirmed either remission or a stable disease. Simultaneous whole brain radiotherapy and integrated stereotactic radiosurgery is a reproducible, safe method that offers an effective irradiation with delivery of definitive dosage even in cases with radio-insensitive brain metastasis.

  8. Group independent component analysis and functional MRI examination of changes in language areas associated with brain tumors at different locations.

    Science.gov (United States)

    Wang, Liya; Chen, Dandan; Yang, Xiaofeng; Olson, Jeffrey J; Gopinath, Kaundinya; Fan, Tianning; Mao, Hui

    2013-01-01

    This study investigates the effect of tumor location on alterations of language network by brain tumors at different locations using blood oxygenation level dependent (BOLD) fMRI and group independent component analysis (ICA). BOLD fMRI data were obtained from 43 right handed brain tumor patients. Presurgical mapping of language areas was performed on all 43 patients with a picture naming task. All data were retrospectively analyzed using group ICA. Patents were divided into three groups based on tumor locations, i.e., left frontal region, left temporal region or right hemisphere. Laterality index (LI) was used to assess language lateralization in each group. The results from BOLD fMRI and ICA revealed the different language activation patterns in patients with brain tumors located in different brain regions. Language areas, such as Broca's and Wernicke's areas, were intact in patients with tumors in the right hemisphere. Significant functional changes were observed in patients with tumor in the left frontal and temporal areas. More specifically, the tumors in the left frontal region affect both Broca's and Wernicke's areas, while tumors in the left temporal lobe affect mainly Wernicke's area. The compensated activation increase was observed in the right frontal areas in patients with left hemisphere tumors. Group ICA provides a model free alternative approach for mapping functional networks in brain tumor patients. Altered language activation by different tumor locations suggested reorganization of language functions in brain tumor patients and may help better understanding of the language plasticity.

  9. In vitro screen of a small molecule inhibitor drug library identifies multiple compounds that synergize with oncolytic myxoma virus against human brain tumor-initiating cells.

    Science.gov (United States)

    McKenzie, Brienne A; Zemp, Franz J; Pisklakova, Alexandra; Narendran, Aru; McFadden, Grant; Lun, Xueqing; Kenchappa, Rajappa S; Kurz, Ebba U; Forsyth, Peter A

    2015-08-01

    Brain tumor-initiating cells (BTICs) are stem-like cells hypothesized to form a disease reservoir that mediates tumor recurrence in high-grade gliomas. Oncolytic virotherapy uses replication-competent viruses to target and kill malignant cells and has been evaluated in clinic for glioma therapy with limited results. Myxoma virus (MyxV) is a safe and highly effective oncolytic virus (OV) in conventional glioma models but, as seen with other OVs, is only modestly effective for patient-derived BTICs. The objective of this study was to determine whether MyxV treatment against human BTICs could be improved by combining chemotherapeutics and virotherapy. A 73-compound library of drug candidates in clinical use or preclinical development was screened to identify compounds that sensitize human BTICs to MyxV treatment in vitro, and synergy was evaluated mathematically in lead compounds using Chou-Talalay analyses. The effects of combination therapy on viral gene expression and viral replication were also assessed. Eleven compounds that enhance MyxV efficacy were identified, and 6 were shown to synergize with the virus using Chou-Talalay analyses. Four of the synergistic compounds were shown to significantly increase viral gene expression, indicating a potential mechanism for synergy. Three highly synergistic compounds (axitinib, a VEGFR inhibitor; rofecoxib, a cyclooxygenase-2 inhibitor; and pemetrexed, a folate anti-metabolite) belong to classes of compounds that have not been previously shown to synergize with oncolytic viruses in vitro. This study has identified multiple novel drug candidates that synergistically improve MyxV efficacy in a preclinical BTIC glioma model. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Regional cerebral blood flow in various types of brain tumor. Effect of the space-occupying lesion on blood flow in brain tissue close to and remote from tumor site

    DEFF Research Database (Denmark)

    Kuroda, K; Skyhøj Olsen, T; Lassen, N A

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured in 23 patients with brain tumors using the 133Xe intra-carotid injection method and a 254 channel gamma camera. The glioblastomas (4) and astrocytomas (4) all showed hyperemia in the tumor and tumor-near region. This was also seen in several...... meningiomas (4 of 7 cases) in which most of the tumor itself did not receive any isotope. Brain metastases (6) usually had a low flow in the tumor and tumor-near region. The glioblastomas tended to show markedly bending 133Xe wash-out curves pointing to pronounced heterogeneity of blood flow. Most of the flow...... maps, regardless of the tumor types, showed widespread abnormalities of rCBF not only in the tumor region but also in the region remote from the tumor. It is concluded that measurement of rCBF cannot yield accurate differential diagnostic information, but that the widespread derangement of the brain...

  11. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    Science.gov (United States)

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Mobile phones, brain tumors, and the interphone study: where are we now?

    Science.gov (United States)

    Swerdlow, Anthony J; Feychting, Maria; Green, Adele C; Leeka Kheifets, Leeka Kheifets; Savitz, David A

    2011-11-01

    In the past 15 years, mobile telephone use has evolved from an uncommon activity to one with > 4.6 billion subscriptions worldwide. However, there is public concern about the possibility that mobile phones might cause cancer, especially brain tumors. We reviewed the evidence on whether mobile phone use raises the risk of the main types of brain tumor—glioma and meningioma—with a particular focus on the recent publication of the largest epidemiologic study yet: the 13-country Interphone Study. Methodological defcits limit the conclusions that can be drawn from the Interphone study, but its results, along with those from other epidemiologic, biological, and animal studies and brain tumor incidence trends, suggest that within about 10–15 years after first use of mobile phones there is unlikely to be a material increase in the risk of brain tumors in adults. Data for childhood tumors and for periods beyond 15 years are currently lacking. Although there remains some uncertainty, the trend in the accumulating evidence is increasingly against the hypothesis that mobile phone use can cause brain tumors in adults.

  13. Investigation of the Association between Genetic Polymorphism of Microsomal Epoxide Hydrolase and Primary Brain Tumor Incidence

    Directory of Open Access Journals (Sweden)

    Ali Aydin

    2013-01-01

    Full Text Available mEH is a critical biotransformation enzyme that catalyzes the conversion of xenobiotic epoxide substrates into more polar diol metabolites: it is also capable of inactivating a large number of structurally different molecules. Two polymorphisms affecting enzyme activity have been described in the exon 3 and 4 of the mEH gene. The hypothesis of this study is that inherent genetic susceptibility to a primary brain tumor is associated with mEH gene polymorphisms. The polymorphisms of the mEH gene were determined with PCR-RFLP techniques and 255 Turkish individuals. Our results indicate that the frequency of the mEH exon 4 polymorphism (in controls is significantly higher than that of primary brain tumor patients (OR = 1.8, 95% CI = 1.0–3.4. This report, however, failed to demonstrate a significant association between mEH exon 3 polymorphism and primary brain tumor susceptibility in this population. Analysis of patients by both histological types of primary brain tumor and gene variants showed no association, although analysis of family history of cancer between cases and controls showed a statistically significant association (χ2=7.0, P=0.01. Our results marginally support the hypothesis that genetic susceptibility to brain tumors may be associated with mEPHX gene polymorphisms.

  14. Intraoperative fluorescence imaging for personalized brain tumor resection: Current state and future directions

    Directory of Open Access Journals (Sweden)

    Evgenii Belykh

    2016-10-01

    Full Text Available Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical theranostics. In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients, as well as future applications of recent laboratory and translational studies.Methods: Review of the literature.Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-ALA and ICG, less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine can be used for rapid tumor detection and pathological tissue examination. Other emerging agents such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.Conclusion: We are standing on the doorstep of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

  15. Dynamic gadolinium uptake in thermally treated canine brain tissue and experimental cerebral tumors.

    Science.gov (United States)

    Kangasniemi, Marko; Stafford, R Jason; Price, Roger E; Jackson, Edward F; Hazle, John D

    2003-02-01

    Thermal coagulation of cerebral tumors induces reactive changes within adjacent brain tissue, which appear as Gd-DTPA enhancement in MR images. This makes assessment of therapeutic success difficult to establish radiographically because the reactive changes can mimic residual tumor. Dynamic Gd-DTPA uptake curves in reactive tissue and tumor were investigated to assess the utility of contrast enhanced (CE)-dynamic MRI to distinguish reactive changes from residual tumor in a canine model. Cerebral thermal necrosis was induced using a 980 nm laser in 11 dogs with intracerebral transmissible venereal tumors (TVTs). A fast spin-echo T1-weighted imaging sequence was used for CE-dynamic MRI. Gd-DTPA uptake data were acquired with 10-second temporal resolution and for untreated TVTs for reactive tissue using a sigmoidal-exponential model. Characteristic gadolinium uptake curves were measured and characterized for reactive brain tissue, and untreated and treated TVTs. Both early and delayed dynamic responses were significantly different in reactive brain tissue compared with TVT. Reactive thermal changes in otherwise normal brain tissue can be distinguished from residual tumor after cerebral thermal therapy using CE-dynamic MRI.

  16. Global incidence of malignant brain and other central nervous system tumors by histology, 2003-2007.

    Science.gov (United States)

    Leece, Rebecca; Xu, Jordan; Ostrom, Quinn T; Chen, Yanwen; Kruchko, Carol; Barnholtz-Sloan, Jill S

    2017-10-19

    Previous reports have shown that overall incidence of malignant brain and other central nervous system (CNS) tumors varied significantly by country. The aim of this study was to estimate histology-specific incidence rates by global region and assess incidence variation by histology and age. Using data from the Central Brain Tumor Registry of the United States (CBTRUS) and the International Agency for Research on Cancer's (IARC) Cancer Incidence in Five Continents X (including over 300 cancer registries), we calculated the age-adjusted incidence rates (AAIR) per 100000 person-years and 95% CIs for brain and other CNS tumors overall and by age groups and histology. There were significant differences in incidence by region. Overall incidence of malignant brain tumors per 100000 person-years in the US was 5.74 (95% CI = 5.71-5.78). Incidence was lowest in Southeast Asia (AAIR = 2.55, 95% CI = 2.44-2.66), India (AAIR = 2.85, 95% CI = 2.78-2.93), and East Asia (AAIR = 3.07, 95% CI = 3.02-3.12). Incidence was highest in Northern Europe (AAIR = 6.59, 95% CI = 6.52-6.66) and Canada (AAIR = 6.53, 95% CI = 6.41-6.66). Astrocytic tumors showed the broadest variation in incidence regionally across the globe. Brain and other CNS tumors are a significant source of cancer-related morbidity and mortality worldwide. Regional differences in incidence may provide clues toward genetic or environmental causes as well as a foundation for broadening knowledge of their epidemiology. Gaining a comprehensive understanding of the epidemiology of malignant brain tumors globally is critical to researchers, public health officials, disease interest groups, and clinicians and contributes to collaborative efforts in future research.

  17. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Targeting brain tumor cAMP: the case for sex-specific therapeutics

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    2015-07-01

    Full Text Available A relationship between cyclic adenosine 3’, 5’-monophosphate (cAMP levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor risk in individuals with Neurofibromatosis type 1 (NF1. Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.

  19. Comparison of CT and MRI brain tumor imaging using a canine glioma model.

    Science.gov (United States)

    Whelan, H T; Clanton, J A; Wilson, R E; Tulipan, N B

    1988-01-01

    A canine gliosarcoma model was used to study the effectiveness of magnetic resonance imaging (MRI) with gadolinium contrast enhancement in defining the histologic margins of brain tumors. The effectiveness of this technique was compared to conventional computed tomography (CT) using iodinated contrast enhancement. Cultured canine gliosarcoma cells were injected into the left hemisphere of adult mongrel dogs. The dogs developed brain tumors and progressive clinical signs. Serial MRI with and without gadolinium diethylene triamine penta-acetic acid was compared to serial CT with and without sodium iothalamate obtained on the same days. After the final scans, animals were sacrificed; the brains were removed and processed for routine histopathologic study. All tumors were visualized with contrast-enhanced MRI which proved most sensitive. Gadolinium di-ethylene triamine penta-acetic acid caused bright enhancement of tumors in a distribution that consistently corresponded to areas of pathologically proved tumor infiltration. Gross and microscopic autopsy findings correlated better with MRI than with CT which tended to produce poorer resolution and underrepresent the size of viable tumor. Gadolinium-enhanced MRI is more accurate than unenhanced MRI, unenhanced CT, or enhanced CT in defining the histologic margins of tumors.

  20. Pharmacologic perturbation as a potential tool to increase the sensitivity of FDG-PET in the evaluation of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Wong, F.C.L.; Kim, E.E.; Yung, W.K.A. [Univ. of Texas M.D. Anderson Cancer Center, Houston, TX (United States)] [and others

    1994-05-01

    The usefulness of F-18 FDG PET in the study of brain tumors is limited by the high baseline cortical uptake which decreases the contrast of the tumor. Two alternatives to increase the tumor/background contrast have been reported: barbiturate-induced coma and postprandial state. This project evaluates the effects of sedation with diazepam or of oral glucose intake on the brain tumor/background contrast during F-18 FDG PET studies.

  1. Immunohistochemical characterization of spontaneous and acrylonitrile-induced brain tumors in the rat.

    Science.gov (United States)

    Kolenda-Roberts, Holly Meredith; Harris, Nancy; Singletary, Emily; Hardisty, Jerry F

    2013-01-01

    Twenty-eight spontaneously occurring glial tumors (previously diagnosed as astrocytomas, oligodendrogliomas, and gliomas) and eleven granular cell tumors (GCTs) were selected for evaluation using a panel of immunohistochemistry (IHC) stains (Ricinus communis agglutinin type 1 [RCA-1], ionized calcium-binding adapter molecule 1 [Iba-1], OX-6/major immunohistocompatibility complex class II, oligodendrocytes transcription factor 2 [Olig2], glial fibrillary acidic protein [GFAP], S100 beta, glutamine synthetase, neurofilament, proliferating cell nuclear antigen). In addition, nine brain tumors from a 2-year drinking water study for acrylonitrile were obtained from the Acrylonitrile Group, Inc. Based on IHC staining characteristics, Olig2+ oligodendrogliomas were the most commonly diagnosed spontaneous tumor in these animals. Many of the spontaneous tumors previously diagnosed as astrocytomas were RCA-1+, Iba-1+ and negative for GFAP, S100beta, and glutamine synthetase; the diagnosis of malignant microglial tumor is proposed for these neoplasms. Three mixed tumors were identified with Olig2+ (oligodendrocytes) and Iba-1+ (macrophage/microglia) cell populations. The term mixed glioma is not recommended for these tumors, as it is generally used to refer to oligoastrocytomas, which were not observed in this study. GCT were positive for RCA-1 and Iba-1. All acrylonitrile tumors were identified as malignant microglial tumors. These results may indicate that oligodendrogliomas are more common as spontaneous tumors, while acrylonitrile-induced neoplasms are microglial/histiocytic in origin. No astrocytomas (GFAP, S100 beta, and/or glutamine synthetase-positive neoplasms) were observed.

  2. Aberrant mesenchymal differentiation of glioma stem-like cells : Implications for therapeutic targeting

    NARCIS (Netherlands)

    Balasubramaniyan, Veerakumar; Vaillant, Brian; Wang, Shuzhen; Gumin, Joy; Butalid, M. Elena; Sai, Ke; Mukheef, Farah; Kim, Se Hoon; Boddeke, H. W. G. M.; Lang, Frederick; Aldape, Kenneth; Sulman, Erik P.; Bhat, Krishna P.; Colman, Howard

    2015-01-01

    Differentiation has been proposed as a therapeutic strategy for glioblastoma (GBM) in part due to observations of stem-like cells in GBM that have been shown to undergo terminal differentiation in response to growth factor withdrawal and BMP activation. However, the effects of long term exposure to

  3. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future

    Science.gov (United States)

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-01-01

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors. PMID:26993776

  4. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future.

    Science.gov (United States)

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-05-31

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors.

  5. Side Population Cells From an Immortalized Human Liver Epithelial Cell Line Exhibit Hepatic Stem-Like Cell Properties.

    Science.gov (United States)

    Tokiwa, Takayoshi; Yamazaki, Taisuke; Enosawa, Shin

    2012-01-01

    The existence of hepatic stem cells in human livers is controversial. We investigated whether the side population (SP) cells derived from an immortalized human liver epithelial cell line THLE-5b possess the properties of hepatic stem-like cells. SP cells derived from THLE-5b were isolated using flow cytometry and were assayed for the expression of phenotypic markers by reverse transcription polymerase chain reaction and immunostaining. THLE-5b SP cells retained the capacity to generate both SP and non-SP cells, showed a capacity for self-renewal, and were more efficient in colony formation than non-SP cells. Neither the SP nor the non-SP cells formed tumors when transplanted into athymic nude mice or severe combined immunodeficient mice. The expression level of stem cell-associated markers such as an ATP-binding cassette membrane transporter, epithelial cell adhesion molecule, c-kit, Thy-1, and octomer binding transcription factor 4 was higher in SP cells than in non-SP cells. When cultivated as rotation-mediated aggregates, the expression of liver-specific genes including tryptophan oxygenase and CYP3A4 was up-regulated in SP cells, suggesting that THLE-5b SP cells have the ability to differentiate into a hepatocyte phenotype. One of the clonal cell lines derived from the SP cells expressed stem cell-associated markers. These results indicate that SP cells derived from THLE-5b possess hepatic stem-like cell properties and suggest that THLE-5b can be used as a model of normal human liver progenitor or stem cell line.

  6. Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Stobbe, Louise

    2014-01-01

    cancer stem-like cells (bCSC), to play a pivotal role in GBM malignancy. bCSC are identified by their resemblance to normal neural stem cells (NSC), and it is speculated that the bCSC have to be targeted in order to improve treatment outcome for GBM patients. One hallmark of GBM is aberrant expression......, differentiation is induced. Furthermore, we show that differentiation leads to decreased tumorigenic and stem cell-like potential of the neurosphere cultures and that by specifically inhibiting EGFR signaling it is possible to target the bCSC population. Our results suggest that differentiation therapy, possibly...

  7. Systems biology of human epilepsy applied to patients with brain tumors.

    Science.gov (United States)

    Mittal, Sandeep; Shah, Aashit K; Barkmeier, Daniel T; Loeb, Jeffrey A

    2013-12-01

    Epilepsy is a disease of recurrent seizures that can be associated with a wide variety of acquired and developmental brain lesions. Current medications for patients with epilepsy can suppress seizures; they do not cure or modify the underlying disease process. On the other hand, surgical removal of focal brain regions that produce seizures can be curative. This surgical procedure can be more precise with the placement of intracranial recording electrodes to identify brain regions that generate seizure activity as well as those that are critical for normal brain function. The detail that goes into these surgeries includes extensive neuroimaging, electrophysiology, and clinical data. Combined with precisely localized tissues removed, these data provide an unparalleled opportunity to learn about the interrelationships of many "systems" in the human brain not possible in just about any other human brain disorder. Herein, we describe a systems biology approach developed to study patients who undergo brain surgery for epilepsy and how we have begun to apply these methods to patients whose seizures are associated with brain tumors. A central goal of this clinical and translational research program is to improve our understanding of epilepsy and brain tumors and to improve diagnosis and treatment outcomes of both. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  8. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, A.H.; Barth, R.F.

    1990-01-01

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  9. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kato, Y.; Holm, David Alberg; Okollie, B.

    2010-01-01

    detection of drug directly in the tumor can be critically important for accessing, predicting, and eventually improving effectiveness of therapy. In this study, in vivo magnetic resonance spectroscopy (MRS) was used to detect an anticancer agent, temozolomide (TMZ), in vivo in murine xenotransplants of U87......MG human brain cancer. Dynamic magnetic resonance imaging (MRI) with the low-molecular-weight contrast agent, gadolinium diethylenetriaminepentaacetic acid (GdDTPA), was used to evaluate tumor vascular parameters. Carbon-13-labeled TMZ ([C-13]TMZ, 99%) was intraperitoneally administered at a dose...... experiments demonstrated slower recovery of MRI signal following an intravenous bolus injection of GdDTPA, higher vascular flow and volume obtained by T-2*-weighted MRI, as well as enhanced uptake of the contrast agent in the brain tumor compared with normal brain detected by T-1-weighted MRI. These data...

  10. Neurocognitive and Family Functioning and Quality of Life Among Young Adult Survivors of Childhood Brain Tumors

    Science.gov (United States)

    Hocking, Matthew C.; Hobbie, Wendy L.; Deatrick, Janet A.; Lucas, Matthew S.; Szabo, Margo M.; Volpe, Ellen M.; Barakat, Lamia P.

    2012-01-01

    Many childhood brain tumor survivors experience significant neurocognitive late effects across multiple domains that negatively affect quality of life. A theoretical model of survivorship suggests that family functioning and survivor neurocognitive functioning interact to affect survivor and family outcomes. This paper reviews the types of neurocognitive late effects experienced by survivors of pediatric brain tumors. Quantitative and qualitative data from three case reports of young adult survivors and their mothers are analyzed according to the theoretical model and presented in this paper to illustrate the importance of key factors presented in the model. The influence of age at brain tumor diagnosis, family functioning, and family adaptation to illness on survivor quality of life and family outcomes are highlighted. Future directions for research and clinical care for this vulnerable group of survivors are discussed. PMID:21722062

  11. Comparison of the molecular profile of brain metastases from colorectal cancer and corresponding primary tumors.

    Science.gov (United States)

    Aprile, Giuseppe; Casagrande, Mariaelena; De Maglio, Giovanna; Fontanella, Caterina; Rihawi, Karim; Bonotto, Marta; Pisa, Federica E; Tuniz, Francesco; Pizzolitto, Stefano; Fasola, Gianpiero

    2017-01-01

    Little is known about molecular biology of brain metastasis (BM) from colorectal cancer and its concordance with matched primary tumors. We identified 56 consecutive colorectal cancer patients who underwent neurosurgical resection of BM. Tumor samples were tested for KRAS, NRAS, BRAF and PIK3CA. The molecular profile of the brain lesion was compared with the corresponding primary tumor. The molecular profile concordance rate was 95.1%. Median survival after neurosurgery was 5.5 months (95% CI: 4.7-6.3); median overall survival was 24.0 months (95% CI: 15.6-32.4). In this cohort, we report a high frequency of KRAS mutations and a very high concordance rate between the molecular status of BM and that of matched primary tumors.

  12. [Reconstruction method of language pathways in the preoperative planning of brain tumor surgery].

    Science.gov (United States)

    Yan, Jing; Lu, Junfeng; Cheng, Jingliang; Wu, Jinsong; Zhang, Jie; Wang, Chaoyan; Nie, Yunfei; Pang, Beibei; Liu, Xianzhi

    2015-05-01

    To propose a clinically practical and simple fiber tracking method for language pathways, and to explore its feasibility in preoperative planning for brain tumors adjacent to the language cortex. Diffusion tensor imaging was examined in 18 healthy subjects and 13 patients with brain tumors adjacent to the language cortex between December 2013 and June 2014. The associated fibers of language pathways were reconstructed using a commercial software (Syngo workstation). Firstly, the feasibility of fiber tracking method for language pathways in healthy subjects were studied, and then its application was assessed in patients with brain tumors. The anatomic relationship between tumors and the associated fibers was analyzed. By selecting appropriate regions of interest, the associated fibers in the dorsal pathways (superior longitudinal fasciculus/arcuate fasciculus, including both direct and indirect pathways) and ventral pathways (uncinate fasciculus, middle longitudinal fasciculus, inferior longitudinal fasciculus and inferiorfronto-occipital fasciculus) were reconstructed in all 18 healthy subjects. In patients with brain tumors, the relationship between the tumors and adjacent associated fibers were divided into two types: adjacent associated fibers could be displaced or separated, and involved the superior longitudinal fasciculus/arcuate fasciculus (n=6), middle longitudinal fasciculus (n=4), uncinate fasciculus (n=3), inferior longitudinal fasciculus (n=3) and inferiorfronto-occipital fasciculus (n=2); alternatively, the adjacent associated fibers were infiltrated or destroyed, and involved the inferiorfronto-occipital fasciculus (n=10), uncinate fasciculus (n=8), middle longitudinal fasciculus (n=5), inferior longitudinal fasciculus (n=4) and superior longitudinal fasciculus/arcuate fasciculus (n=3). The associated fibers of language pathways could be visualized rapidly and in real-time by fiber tracking technology based on diffusion tensor imaging. This is

  13. Cortical hemosiderin is associated with seizures in patients with newly diagnosed malignant brain tumors.

    Science.gov (United States)

    Roelcke, Ulrich; Boxheimer, Larissa; Fathi, Ali Reza; Schwyzer, Lucia; Ortega, Marcos; Berberat, Jatta; Remonda, Luca

    2013-12-01

    Hemorrhage is common in brain tumors. Due to characteristic magnetic field changes induced by hemosiderin it can be detected using susceptibility weighted MRI (SWI). Its relevance to clinical syndromes is unclear. Here we investigated the patterns of intra-tumoral SWI positivity (SWI(pos)) as a surrogate for hemosiderin with regard to the prevalence of epilepsy. We report on 105 patients with newly diagnosed supra-tentorial gliomas and brain metastasis. The following parameters were recorded from pre-operative MRI: (1) SWI(pos) defined as dot-like or fine linear signal changes; (2) allocation of SWI(pos) to tumor compartments (contrast enhancement, central hypointensity, non-enhancing area outside contrast-enhancement); (3) allocation of SWI(pos) to include the cortex, or SWI(pos) in subcortical tumor parts only; (4) tumor size on T2 weighted and gadolinium-enhanced T1 images. 80 tumors (76 %) showed SWI(pos) (4/14 diffuse astrocytoma WHO II, 5/9 anaplastic astrocytoma WHO III, 41/46 glioblastoma WHO IV, 30/36 metastasis). The presence of SWI(pos) depended on tumor size but not on patient's age, medication with antiplatelet drugs or anticoagulation. Seizures occurred in 60 % of patients. Cortical SWI(pos) significantly correlated with seizures in brain metastasis (p = 0.044), and as a trend in glioblastoma (p = 0.062). Cortical SWI(pos) may confer a risk for seizures in patients with newly diagnosed brain metastasis and glioblastoma. Whether development of cortical SWI(pos) induced by treatment or by the natural course of tumors also leads to the new onset of seizures has to be addressed in longitudinal studies in larger patient cohorts.

  14. 3D brain tumor localization and parameter estimation using thermographic approach on GPU.

    Science.gov (United States)

    Bousselham, Abdelmajid; Bouattane, Omar; Youssfi, Mohamed; Raihani, Abdelhadi

    2018-01-01

    The aim of this paper is to present a GPU parallel algorithm for brain tumor detection to estimate its size and location from surface temperature distribution obtained by thermography. The normal brain tissue is modeled as a rectangular cube including spherical tumor. The temperature distribution is calculated using forward three dimensional Pennes bioheat transfer equation, it's solved using massively parallel Finite Difference Method (FDM) and implemented on Graphics Processing Unit (GPU). Genetic Algorithm (GA) was used to solve the inverse problem and estimate the tumor size and location by minimizing an objective function involving measured temperature on the surface to those obtained by numerical simulation. The parallel implementation of Finite Difference Method reduces significantly the time of bioheat transfer and greatly accelerates the inverse identification of brain tumor thermophysical and geometrical properties. Experimental results show significant gains in the computational speed on GPU and achieve a speedup of around 41 compared to the CPU. The analysis performance of the estimation based on tumor size inside brain tissue also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preoperative coiling of coexisting intracranial aneurysm and subsequent brain tumor surgery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Young; Kim, Byung Moon; Kim, Dong Joon [Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-11-15

    Few studies have investigated treatment strategies for brain tumor with a coexisting unruptured intracranial aneurysm (cUIA). The purpose of this study was to evaluate the safety and efficacy of preoperative coiling for cUIA, and subsequent brain tumor surgery. A total of 19 patients (mean age, 55.2 years; M:F = 4:15) underwent preoperative coiling for 23 cUIAs and subsequent brain tumor surgery. Primary brain tumors were meningiomas (n = 7, 36.8%), pituitary adenomas (n = 7, 36.8%), gliomas (n = 3, 15.8%), vestibular schwannoma (n = 1, 5.3%), and Rathke's cleft cyst (n = 1, 5.3%). cUIAs were located at the distal internal carotid artery (n = 9, 39.1%), anterior cerebral artery (n = 8, 34.8%), middle cerebral artery (n = 4, 17.4%), basilar artery top (n = 1, 4.3%), and posterior cerebral artery, P1 segment (n = 1, 4.3%). The outcomes of preoperative coiling of cUIA and subsequent brain tumor surgery were retrospectively evaluated. Single-microcatheter technique was used in 13 cases (56.5%), balloon-assisted in 4 cases (17.4%), double-microcatheter in 4 cases (17.4%), and stent-assisted in 2 cases (8.7%). Complete cUIA occlusion was achieved in 18 cases (78.3%), while residual neck occurred in 5 cases (21.7%). The only coiling-related complication was 1 transient ischemic attack (5.3%). Neurological deterioration did not occur in any patient during the period between coiling and tumor surgery. At the latest clinical follow-up (mean, 29 months; range, 2-120 months), 15 patients (78.9%) had favorable outcomes (modified Rankin Scale, 0-2), while 4 patients (21.1%) had unfavorable outcomes due to consequences of brain tumor surgery. Preoperative coiling and subsequent tumor surgery was safe and effective, making it a reasonable treatment option for patients with brain tumor and cUIA.

  16. Functional characterization of brain tumors: An overview of the potential clinical value

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Arturo; Alfano, Bruno; Soricelli, Andrea; Tedeschi, Enrico; Mainolfi, Ciro; Covelli, Eugenio M.; Aloj, Luigi; Panico, Maria Rosaria; Bazzicalupo, Lucio; Salvatore, Marco

    1996-08-01

    Early detection and characterization are still challenging issues in the diagnostic approach to brain tumors. Among functional imaging techniques, a clinical role for positron emission tomography studies with [{sup 18}F]-fluorodeoxyglucose and for single photon emission computed tomography studies with [{sup 201}Tl]-thallium-chloride has emerged. The clinical role of magnetic resonance spectroscopy is still being defined, whereas functional magnetic resonance imaging seems able to provide useful data for presurgical localization of critical cortical areas. Integration of morphostructural information provided by computed tomography and magnetic resonance imaging, with functional characterization and cyto-histologic evaluation of biologic markers, may assist in answering the open diagnostic questions concerning brain tumors.

  17. Occupational exposure to radio frequency/microwave radiation and the risk of brain tumors

    DEFF Research Database (Denmark)

    Berg, Gabriele; Spallek, Jacob; Schüz, Joachim

    2006-01-01

    It is still under debate whether occupational exposure to radio frequency/microwave electromagnetic fields (RF/MW-EMF) contributes to the development of brain tumors. This analysis examined the role of occupational RF/MW-EMF exposure in the risk of glioma and meningioma. A population-based, case....... No significant association between occupational exposure to RF/MW-EMF and brain tumors was found. For glioma, the adjusted odds ratio for highly exposed persons compared with persons not highly exposed was 1.21 (95% confidence interval: 0.69, 2.13); for meningioma, it was 1.34 (95% confidence interval: 0.64, 2...

  18. MR spectroscopy in children: protocols and pitfalls in non-tumorous brain pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jacques F. [University Children' s Hospital Basel (UKBB), Basel (Switzerland)

    2016-06-15

    Proton nuclear magnetic resonance spectroscopy (MRS) delivers information about cell content and metabolism in a noninvasive manner. The diagnostic strength of MRS lies in its evaluation of pathologies in combination with conventional magnetic resonance imaging (MRI). MRS in children has been most widely used to evaluate brain conditions like tumors, infections, metabolic diseases or learning disabilities and especially in neonates with hypoxic-ischemic encephalopathy. This article reviews some basic theoretical considerations, routine procedures, protocols and pitfalls and will illustrate the range of spectrum alterations occurring in some non-tumorous pediatric brain pathologies. (orig.)

  19. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    Science.gov (United States)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  20. Neural Underpinnings of Working Memory in Adult Survivors of Childhood Brain Tumors.

    Science.gov (United States)

    King, Tricia Z; Na, Sabrina; Mao, Hui

    2015-08-01

    Adult survivors of childhood brain tumors are at risk for cognitive performance deficits that require the core cognitive skill of working memory. Our goal was to examine the neural mechanisms underlying working memory performance in survivors. We studied the working memory of adult survivors of pediatric posterior fossa brain tumors using a letter n-back paradigm with varying cognitive workload (0-, 1-, 2-, and 3-back) and functional magnetic resonance imaging as well as neuropsychological measures. Survivors of childhood brain tumors evidenced lower working memory performance than demographically matched healthy controls. Whole-brain analyses revealed significantly greater blood-oxygen level dependent (BOLD) activation in the left superior / middle frontal gyri and left parietal lobe during working memory (2-back versus 0-back contrast) in survivors. Left frontal BOLD response negatively correlated with 2- and 3-back working memory performance, Auditory Consonant Trigrams (ACT), and Digit Span Backwards. In contrast, parietal lobe BOLD response negatively correlated with 0-back (vigilance task) and ACT. The results revealed that adult survivors of childhood posterior fossa brain tumors recruited additional cognitive control resources in the prefrontal lobe during increased working memory demands. This increased prefrontal activation is associated with lower working memory performance and is consistent with the allocation of latent resources theory.

  1. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.

    Science.gov (United States)

    Zhao, Xiaomei; Wu, Yihong; Song, Guidong; Li, Zhenye; Zhang, Yazhuo; Fan, Yong

    2018-01-01

    Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, treatment planning, and treatment outcome evaluation. Build upon successful deep learning techniques, a novel brain tumor segmentation method is developed by integrating fully convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified framework to obtain segmentation results with appearance and spatial consistency. We train a deep learning based segmentation model using 2D image patches and image slices in following steps: 1) training FCNNs using image patches; 2) training CRFs as Recurrent Neural Networks (CRF-RNN) using image slices with parameters of FCNNs fixed; and 3) fine-tuning the FCNNs and the CRF-RNN using image slices. Particularly, we train 3 segmentation models using 2D image patches and slices obtained in axial, coronal and sagittal views respectively, and combine them to segment brain tumors using a voting based fusion strategy. Our method could segment brain images slice-by-slice, much faster than those based on image patches. We have evaluated our method based on imaging data provided by the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 2013, BRATS 2015 and BRATS 2016. The experimental results have demonstrated that our method could build a segmentation model with Flair, T1c, and T2 scans and achieve competitive performance as those built with Flair, T1, T1c, and T2 scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. FTIR, Raman, and CARS microscopic imaging for histopathologic assessment of brain tumors

    Science.gov (United States)

    Krafft, Christoph; Bergner, Norbert; Matthäus, Christian; Romeike, Bernd; Reichart, Rupert; Kalff, Rolf; Dietzek, B.,; Popp, Jürgen

    2010-02-01

    The contribution demonstrates how the molecular contrast of Fourier transform infrared (FTIR), Raman and coherent anti-Stokes Raman scattering (CARS) microscopic imaging can be applied for the histopathological assessment of brain tumors. Human brain tissue specimens were obtained from patients undergoing neurosurgery. Thin sections of control brain tissue from an epilepsy patient and tumor tissue from a meningioma patient were prepared on calciumfluoride slides which were appropriate substrates for data acquisition in transmission and reflection mode. All CARS images correlate well with the FTIR and Raman images. Whereas CARS images were collected within seconds, exposure times were minutes for FTIR imaging and hours for Raman imaging. CARS images in the interval 2750-3000 cm-1 mainly probed spectral contributions of lipids which are important diagnostic markers of brain tumors. It was demonstrated that the CARS profile in the interval 2750-3000 cm-1 differed between the control sample and meningioma. Full spectral information could be extracted from Raman and FTIR images that enabled to distinguish different tissue types in brain tumors. Based on the current results we suggest a complementary application of FTIR, Raman and CARS imaging. FTIR and Raman imaging defines spectral regions and spectral markers that are essential for tissue classification. CARS images at different Stokes shifts or in the multiplex mode probe these spectral descriptors at video-time frame rates.

  3. Occurrence of brain tumors in rhesus monkeys exposed to 55-MeV protons

    Science.gov (United States)

    Wood, D. H.; Yochmowitz, M. G.; Hardy, K. A.; Salmon, Y. L.

    Twenty-year observation of monkeys exposed to single doses of high energy protons simulating solar particles revealed that the most prevalent fatal cancers were brain tumors in the group of animals exposed to 55-MeV protons. Of 72 animals (50 males and 22 females) receiving 0.25 to 8.0 Gy total body surface dose, nine developed fatal tumors classified as grade IV astrocytoma or glioblastoma multiforme. The latent period for tumor development ranged from 14 months to 20 years, with a median of 5 years. Doses associated with the tumors were 4.0 to 8.0 Gy. Eight males and one female were affected. Depth-dose determinations suggest that the high incidence of cerebral neoplasia is associated with the Bragg Peak energy distribution of the 55-MeV protons. Comparison of the tumor incidence with that in humans with brain exposures incidental to radiotherapy indicates a high biological effectiveness compared with gamma radiation. Studies are in progress to attempt to replicate the results in rodents and establish a dose-response curve for proton-induced brain tumors.

  4. Anesthetic management for surgery of children with brain tumors: systematic review

    OpenAIRE

    NIKIFOROVA S.S.; A.I. Yakovlev

    2016-01-01

    Aim. Based on publications dedicated to anesthetic management for surgery of children with brain neoplasms we aimed to reveal and summarize the specific features of anesthesia of such patients. Materials and Methods. We performed a systematic review and processed the information from Russian and foreign literature published in 2001-2016. The analysis included patients younger than 18 who had undergone surgical procedures due to brain tumor. Results. The conducted analysis allowed us to classi...

  5. Invasion and Evasion: Investigations on Early Glioblastoma Growth Reveal Two Novel Mechanisms of Brain Tumor Progression

    OpenAIRE

    Baker, Gregory Joseph

    2014-01-01

    As glioma cells infiltrate the brain they associate with various microanatomic structures such as blood vessels and myelinated white matter tracts. How distinct invasion patterns coordinate tumor growth and influence clinical outcomes remains poorly understood. We have investigated how perivascular invasion affects glioma growth patterning and response to anti-angiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to common...

  6. Fluorescence intensity and bright spot analyses using a confocal microscope for photodynamic diagnosis of brain tumors.

    Science.gov (United States)

    Yoneyama, Takeshi; Watanabe, Tetsuyo; Kagawa, Hiroyuki; Hayashi, Yutaka; Nakada, Mitsutoshi

    2017-03-01

    In photodynamic diagnosis using 5-aminolevulinic acid (5-ALA), discrimination between the tumor and normal tissue is very important for a precise resection. However, it is difficult to distinguish between infiltrating tumor and normal regions in the boundary area. In this study, fluorescent intensity and bright spot analyses using a confocal microscope is proposed for the precise discrimination between infiltrating tumor and normal regions. From the 5-ALA-resected brain tumor tissue, the red fluorescent and marginal regions were sliced for observation under a confocal microscope. Hematoxylin and eosin (H&E) staining were performed on serial slices of the same tissue. According to the pathological inspection of the H&E slides, the tumor and infiltrating and normal regions on confocal microscopy images were investigated. From the fluorescent intensity of the image pixels, a histogram of pixel number with the same fluorescent intensity was obtained. The fluorescent bright spot sizes and total number were compared between the marginal and normal regions. The fluorescence intensity distribution and average intensity in the tumor were different from those in the normal region. The probability of a difference from the dark enhanced the difference between the tumor and the normal region. The bright spot size and number in the infiltrating tumor were different from those in the normal region. Fluorescence intensity analysis is useful to distinguish a tumor region, and a bright spot analysis is useful to distinguish between infiltrating tumor and normal regions. These methods will be important for the precise resection or photodynamic therapy of brain tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Optical guidance for stereotactic brain tumor biopsy procedures: preliminary clinical evaluation (Conference Presentation)

    Science.gov (United States)

    Haj-Hosseini, Neda; Richter, Johan; Milos, Peter; Hallbeck, Martin; Wârdell, Karin

    2017-02-01

    In the routine of stereotactic biopsy on suspected tumors located deep in the brain or patients with multiple lesions, tissue samples are harvested to determine the type of malignancy. Biopsies are taken from pre-calculated positions based on the preoperative radiologic images susceptible to brain shift. In such cases the biopsy procedure may need to be repeated leading to a longer operation time. To provide guidance for targeting diagnostic tumor tissue and to avoid vessel rupture on the insertion path of the tumor, an application specific fiber optic probe was developed. The setup incorporated spectroscopy for 5-aminolevulinic acid induced protopophyrin IX (PpIX) fluorescence in the tumor and laser Doppler for measuring microvascular blood flow which recorded backscattered light (TLI) at 780 nm and blood perfusion. The recorded signals were compared to the histopathologic diagnosis of the tissue samples (n=16) and to the preoperative radiologic images. All together 146 fluorescence and 276 laser Doppler signals were recorded along 5 trajectories in 4 patients. On all occasions strong PpIX fluorescence peaks were visible during real-time guidance. Comparing the gliotic tumor marginal zone with the tumor, the PpIX (51 vs. 528 a.u., [0-1790], p 0.05) and blood perfusion (8.3 vs. 17 a.u., [0-254], p > 0.05) were not significantly different. In conclusion, the optical guidance probe made real-time tumor detection and vessel tracking possible during the stereotactic biopsy procedures. Moreover, the fluorescence and blood perfusion in the tumor could be studied at controlled positions in the brain and the tumor.

  8. CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics.

    Science.gov (United States)

    Noto, Zenko; Yoshida, Toshiko; Okabe, Motonori; Koike, Chika; Fathy, Moustafa; Tsuno, Hiroaki; Tomihara, Kei; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2013-08-01

    Cancer may be derived from cancer stem-like cells (CSCs), which are tumor-initiating cells that have properties similar to those of stem cells. Identification and isolation of CSCs needs to be improved further. CSCs markers were examined in human oral cancer cell lines by flow cytometry. The stem cell properties of subpopulations expressing different markers were assessed further by in vitro sphere formation assays, expression of stemness genes, drug resistance assays, and the ability to form tumors in nude mice. We demonstrated that CSCs could be isolated by the cell surface markers CD44 and stage-specific embryonic antigen-4 (SSEA-4). CD44+SSEA-4+ cells exhibited cancer stem-like properties, including extensive self-renewal into the bulk of cancer cells. In vivo xenograft experiments indicated that CD44+SSEA-4+ cells exhibit the highest tumorigenic capacity compared with the remaining subpopulations and parental cells. Double-positive cells for CD44 and SSEA-4 exhibited preferential expression of some stemness genes and were more resistant to the anticancer drugs, cisplatin and 5-fluorouracil (5-FU). In addition, cells expressing CD44 and SSEA-4 were detected in all tumor specimens analyzed, while coexpression of CD44 and SSEA-4 was not detectable in normal oral mucosa. Our findings suggest that CD44+SSEA-4+ cells exhibit the characteristics of CSCs in oral squamous cell carcinoma and provide a target for the development of more effective therapies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Brain tumor segmentation using holistically nested neural networks in MRI images.

    Science.gov (United States)

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-10-01

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  10. Computational Modeling of Medical Images of Brain Tumor Patients for Optimized Radiation Therapy Planning

    DEFF Research Database (Denmark)

    Agn, Mikael

    In brain tumor radiation therapy, the aim is to maximize the delivered radiation dose to the targeted tumor and at the same time minimize the dose to sensitive healthy structures – so-called organs-at-risk (OARs). When planning a radiation therapy session, the tumor and the OARs therefore need...... to be delineated on medical images of the patient’s head, to be able to optimize a radiation dose plan. In clinical practice, the delineation is performed manually with limited assistance from automatic procedures, which is both time-consuming and typically suffers from poor reproducibility. There is, therefore...

  11. [Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors].

    Science.gov (United States)

    Kanygin, V V; Kichigin, A I; Gubanova, N V; Taskaev, S Yu

    2015-01-01

    Boron neutron capture therapy (BNCT) that is of the highest attractiveness due to its selective action directly on malignant tumor cells is a promising approach to treating cancers. Clinical interest in BNCT focuses in neuro-oncology on therapy for gliomas, glioblastoma in particular, and BNCT may be used in brain metastatic involvement. This needs an epithermal neutron source that complies with the requirements for BNCT, as well as a 10B-containing agent that will selectively accumulate in tumor tissue. The introduction of BNCT into clinical practice to treat patients with glial tumors will be able to enhance therapeutic efficiency.

  12. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  13. Activation of c-MET induces a stem-like phenotype in human prostate cancer.

    Directory of Open Access Journals (Sweden)

    Geert J L H van Leenders

    Full Text Available Prostate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model or represent an inducible population emerging upon appropriate stimulation of differentiated cells. Hepatocyte Growth Factor (HGF receptor c-MET is specifically expressed in immature prostate cells. Our objective is to determine the role of immature cells in prostate cancer by analysis of the HGF/c-MET pathway.Gene-expression profiling of DU145 prostate cancer cells stimulated with HGF revealed induction of a molecular signature associated with stem cells, characterized by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 ('stem-like signature'. We confirmed the acquisition of a stem-like phenotype by quantitative PCR, FACS analysis and Western blotting. Further, HGF led to activation of the stem cell related Notch pathway by up-regulation of its ligands Jagged-1 and Delta-like 4. Small molecules SU11274 and PHA665752 targeting c-MET activity were both able to block the molecular and biologic effects of HGF. Knock-down of c-MET by shRNA infection resulted in significant reduction and delay of orthotopic tumour-formation in male NMRI mice. Immunohistochemical analysis in prostatectomies revealed significant enrichment of c-MET positive cells at the invasive front, and demonstrated co-expression of c-MET with stem-like markers CD49b and CD49f.In conclusion, activation of c-MET in prostate cancer cells induced a stem-like phenotype, indicating a dynamic relation between differentiated and stem-like cells in this malignancy. Its mediation of efficient tumour-formation in vivo and predominant receptor expression at the invasive front implicate that c-MET regulates tumour infiltration in surrounding tissues putatively by acquisition of a stem-like phenotype.

  14. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice

    Directory of Open Access Journals (Sweden)

    Haveman Jaap

    2007-09-01

    Full Text Available Abstract Background High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models– high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic brain tumors. Methods Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 × 105 U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BEDtumor = 30.6 Gy. Results In the sham group, 9/10 animals (90% showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18% died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals. Conclusion The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy– without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy.

  15. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts1

    Science.gov (United States)

    Herrmann, Kelsey; Erokwu, Bernadette O.; Johansen, Mette L.; Basilion, James P.; Gulani, Vikas; Griswold, Mark A.; Flask, Chris A.; Brady-Kalnay, Susann M.

    2016-01-01

    Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI) techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents. PMID:27084431

  16. Malignant Phyllodes Tumor Presenting in Bone, Brain, Lungs, and Lymph Nodes

    Directory of Open Access Journals (Sweden)

    Eric D. Johnson

    2016-12-01

    Full Text Available Introduction: Phyllodes tumors (PTs are rare fibroepithelial tumors of the breast which are classified as benign, borderline, or malignant. Malignant PTs account for <1% of malignant breast tumors, and borderline tumors have potential to progress to malignant tumors. Metastatic recurrences are most commonly documented in bone and lungs. We report an extremely rare presentation of recurrent malignant PTs involving the brain, lung, lymph nodes, and bone. Case: A 66-year-old female presented with a large breast mass. Biopsy identified malignant PT, treated by mastectomy. One year later she presented with acute back pain; imaging showed pathological L4 spinal compression fracture. Core biopsy confirmed PT. Staging identified additional metastases in the lymph nodes, brain, and lung. Discussion: PTs are rare and fast-growing tumors that originate from periductal stromal tissues and are composed of both epithelial and stromal components. Histologically, they are classified as benign, borderline, or malignant. The prognosis of the malignant type is poorly defined, with local recurrence occurring in 10–40% and metastases in 10%. Chemotherapy and radiotherapy are generally ineffective in this tumor type. The most common metastatic sites for malignant cases are the lung and bones, but in rare instances, PTs may metastasize elsewhere. Conclusion: We report a rare presentation of recurrent malignant PT presenting as pathological fracture of the lumbar spine with impingement on the spinal column, along with cerebellar, nodal, and pulmonary metastases. Only 1 similar case has been previously reported.

  17. Myxoma virus combined with rapamycin treatment enhances adoptive T cell therapy for murine melanoma brain tumors.

    Science.gov (United States)

    Thomas, Diana L; Doty, Rosalinda; Tosic, Vesna; Liu, Jia; Kranz, David M; McFadden, Grant; Macneill, Amy L; Roy, Edward J

    2011-10-01

    Adoptive transfer of tumor-specific T cells has shown some success for treating metastatic melanoma. We evaluated a novel strategy to improve adoptive therapy by administering both T cells and oncolytic myxoma virus to mice with syngeneic B16.SIY melanoma brain tumors. Adoptive transfer of activated CD8(+) 2C T cells that recognize SIY peptide doubled survival time, but SIY-negative tumors recurred. Myxoma virus killed B16.SIY cells in vitro, and intratumoral injection of virus led to selective and transient infection of the tumor. Virus treatment recruited innate immune cells to the tumor and induced IFNβ production in the brain, resulting in limited oncolytic effects in vivo. To counter this, we evaluated the safety and efficacy of co-administering 2C T cells, myxoma virus, and either rapamycin or neutralizing antibodies against IFNβ. Mice that received either triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Importantly, rapamycin treatment did not impair T cell-mediated tumor destruction, supporting the feasibility of combining adoptive immunotherapy and rapamycin-enhanced virotherapy. Myxoma virus may be a useful vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.

  18. Automated detection and quantification of residual brain tumor using an interactive computer-aided detection scheme

    Science.gov (United States)

    Gaffney, Kevin P.; Aghaei, Faranak; Battiste, James; Zheng, Bin

    2017-03-01

    Detection of residual brain tumor is important to evaluate efficacy of brain cancer surgery, determine optimal strategy of further radiation therapy if needed, and assess ultimate prognosis of the patients. Brain MR is a commonly used imaging modality for this task. In order to distinguish between residual tumor and surgery induced scar tissues, two sets of MRI scans are conducted pre- and post-gadolinium contrast injection. The residual tumors are only enhanced in the post-contrast injection images. However, subjective reading and quantifying this type of brain MR images faces difficulty in detecting real residual tumor regions and measuring total volume of the residual tumor. In order to help solve this clinical difficulty, we developed and tested a new interactive computer-aided detection scheme, which consists of three consecutive image processing steps namely, 1) segmentation of the intracranial region, 2) image registration and subtraction, 3) tumor segmentation and refinement. The scheme also includes a specially designed and implemented graphical user interface (GUI) platform. When using this scheme, two sets of pre- and post-contrast injection images are first automatically processed to detect and quantify residual tumor volume. Then, a user can visually examine segmentation results and conveniently guide the scheme to correct any detection or segmentation errors if needed. The scheme has been repeatedly tested using five cases. Due to the observed high performance and robustness of the testing results, the scheme is currently ready for conducting clinical studies and helping clinicians investigate the association between this quantitative image marker and outcome of patients.

  19. Tracking of Brain Tumors using Vision and Neurosonography

    Directory of Open Access Journals (Sweden)

    Rubén Machucho Cadena

    2010-01-01

    Full Text Available We have developed a method to render brain tumours from endoneurosonography. We propose to track an ultrasound probe in successive endoscopic images without relying on an external optic or magnetic tracking system. The probe is tracked using two different methods: one of them based on a generalised Hough transform and the other one based on particle filters. By estimating the pose of the ultrasound probe in several contiguous images, we use conformal geometric algebra to compute the geometric transformations that yield the 3D position of the tumour, which was segmented in the ultrasound image using morphological operators. We use images from brain phantoms to evaluate the performance of the proposed methods, and our results show that they are robust.

  20. Selective acceptance of MHC class I-deficient tumor grafts in the brain

    OpenAIRE

    1988-01-01

    H-2-deficient (H-2-) tumor variants were accepted equally well compared with H-2+ wild-type cells in the brain of syngeneic mice, while the H-2- cells were selectively eliminated when inoculated extracranially. This indicates a specific absence or suppression of the defense against MHC class I-deficient cells in the brain, suggested to be mediated by NK cells. In contrast, T cell-mediated immune reactions could clearly be detected in the brain under the same experimental conditions. This was ...

  1. The value of 11C-methionine PET in the differential diagnosis between brain tumor recurrence and radionecrosis

    NARCIS (Netherlands)

    Glaudemans, Andor W.J.M.; Enting, Roelien H.; Heesters, Martinus; van Rheenen, Ronald; Dierckx, Rudi; Slart, Riemer

    2014-01-01

    C-methionine (MET) positron emission tomography (PET) is one of the most used nuclear imaging modalities in brain tumors. Because of its characteristics, MET-PET should be able to provide us a high detection rate of brain tumors and good lesion delineation. This book chapter provides a clinical

  2. Regional cerebral blood flow in various types of brain tumor. Effect of the space-occupying lesion on blood flow in brain tissue close to and remote from tumor site

    DEFF Research Database (Denmark)

    Kuroda, K; Skyhøj Olsen, T; Lassen, N A

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured in 23 patients with brain tumors using the 133Xe intra-carotid injection method and a 254 channel gamma camera. The glioblastomas (4) and astrocytomas (4) all showed hyperemia in the tumor and tumor-near region. This was also seen in several...

  3. Regional cerebral blood flow in various types of brain tumor. Effect of the space-occupying lesion on blood flow in brain tissue close to and remote from tumor site

    DEFF Research Database (Denmark)

    Kuroda, K; Skyhøj Olsen, T; Lassen, N A

    1982-01-01

    maps, regardless of the tumor types, showed widespread abnormalities of rCBF not only in the tumor region but also in the region remote from the tumor. It is concluded that measurement of rCBF cannot yield accurate differential diagnostic information, but that the widespread derangement of the brain...

  4. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors

    Science.gov (United States)

    Diaz, Roberto Jose; McVeigh, Patrick Z.; O’Reilly, Meaghan A.; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C.; Rutka, James T.

    2014-01-01

    Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50 nm or 120 nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120 nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. PMID:24374363

  5. Significant tumor shift in patients treated with stereotactic radiosurgery for brain metastasis

    Directory of Open Access Journals (Sweden)

    Eline D. Hessen

    2017-02-01

    Conclusion: Our results show that large tumor shifts of brain metastases can occur over time. Because shifts may have a significant impact on the local dose coverage, we recommend minimizing the time between treatment preparation and delivery for Linac based SRS.

  6. Drug and cell encapsulation : Alternative delivery options for the treatment of malignant brain tumors

    NARCIS (Netherlands)

    Bhujbal, Swapnil V.; de Vos, Paul; Niclou, Simone P.

    2014-01-01

    Malignant brain tumors including glioblastoma are incurable cancers. Over the last years a number of promising novel treatment approaches have been investigated including the application of inhibitors of receptor tyrosine kinases and downstream targets, immune-based therapies and anti-angiogenic

  7. Leukemia and brain tumors in Norwegian railway workers, a nested case-control study.

    Science.gov (United States)

    Tynes, T; Jynge, H; Vistnes, A I

    1994-04-01

    In an attempt to assess whether exposure to electromagnetic fields on Norwegian railways induces brain tumors or leukemia, the authors conducted a nested case-control study of railway workers based on incident cases from the Cancer Registry of Norway in a cohort of 13,030 male Norwegian railway workers who had worked on either electric or non-electric railways. The cohort comprised railway line, outdoor station, and electricity workers. The case series comprised 39 men with brain tumors and 52 men with leukemia (follow-up, 1958-1990). Each case was matched on age with four or five controls selected from the same cohort. The exposure of each study subject to electric and magnetic fields was evaluated from cumulative exposure measures based on present measurements and historical data. Limited information on potential confounders such as creosote, solvents, and herbicides was also collected; information on whether the subject had smoked was obtained by interviews with the subjects or work colleagues. The case-control analysis showed that men employed on electric railways, compared with non-electric ones, had an odds ratio for leukemia of 0.70 (adjusted for smoking) and an odds ratio for brain tumor of 0.87. No significant trend was shown for exposure to either magnetic or electric fields. These results do not support an association between exposure to 16 2/3-Hertz electric or magnetic fields and the risk for leukemia or brain tumors.

  8. Brain tumor delineation based on CT and MR imaging. Implications for radiotherapy treatment planning

    NARCIS (Netherlands)

    Heesters, M A; Wijrdeman, H K; Struikmans, H; Witkamp, T; Moerland, M A

    1993-01-01

    This paper deals with the impact MRI may have on radiotherapy treatment planning of brain tumors. The authors analyzed differences in size and position of treatment fields as indicated by three observers (two radiotherapists and one neuroradiologist) using CT or MR based radiotherapy planning

  9. Surviving a brain tumor in childhood : impact on family functioning in adolescence

    NARCIS (Netherlands)

    Beek, Laura; Schappin, R; Gooskens, Rob; Huisman, Jaap; Jongmans, Marian

    ObjectiveTo investigate family functioning in families with an adolescent survivor of a pediatric brain tumor. We explored whether adolescent, parent, disease and treatment factors, and demographic characteristics predicted family functioning. MethodsIn this cross-sectional study, 45 adolescent

  10. Lack of Correlation between Benign Brain Tumors and Markers of Oral Health.

    Science.gov (United States)

    Lehrer, Steven; Green, Sheryl; Rosenzweig, Kenneth E

    2015-04-01

    Case control studies implicating dental X-rays in the genesis of intracranial meningiomas have yielded conflicting results. To further evaluate what risk, if any, that intracranial meningioma might be associated with dental X-rays, we examined the association of benign brain tumor incidence with the number of dentists and other correlates of oral health in U.S. states and the District of Columbia. We compared these correlations to the association of the same markers of oral health with Alzheimer's death rates. Poor oral health, especially periodontal disease, is a well-established risk factor for dementia. Pearson correlations, number of cases (49, no data from Kansas or Maryland) and significance (2 tailed p values) of benign brain tumor incidence and parameters of oral health are presented. None of the correlations approached statistical significance. In contrast, Alzheimer's deaths by state were negatively correlated with number of dentists and other markers of oral health. Our finding of a total lack of correlation between benign brain tumors and markers of oral health and, by implication, dental X-rays, suggests there may be no relationship between dental X-rays and meningioma or other benign brain tumors. This conclusion is strengthened by our demonstration of the known negative correlation between Alzheimer's and dental care.

  11. Social Skills Training Interventions: A Promising Approach for Children Treated for Brain Tumors

    Science.gov (United States)

    Weinberger, Beverley Slome; Barakat, Lamia P.

    2007-01-01

    As a result of their disease, its treatment, and late effects, children treated for brain tumors are at risk for developing problems in social functioning in terms of social competence and peer acceptance, poor social skills, and social isolation. Despite research suggesting the effectiveness of social skills training interventions in improving…

  12. Adding chemo after radiation treatment improves survival for adults with a type of brain tumor

    Science.gov (United States)

    Adults with low-grade gliomas, a form of brain tumor, who received chemotherapy following completion of radiation therapy lived longer than patients who received radiation therapy alone, according to long-term follow-up results from a NIH-supported random

  13. Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla.

    Science.gov (United States)

    Nöbauer-Huhmann, Iris-Melanie; Ba-Ssalamah, Ahmed; Mlynarik, Vladimir; Barth, Markus; Schöggl, Alexander; Heimberger, Karl; Matula, Christian; Fog, Amura; Kaider, Alexandra; Trattnig, Siegfried

    2002-03-01

    To compare the diagnostic efficacy of a standard dose of MRI contrast agent in the evaluation of primary brain tumors and metastases using a high-field 3 tesla MR unit versus a 1.5 tesla MR unit. Sixteen patients with brain tumors were examined at both field strengths using identical axial T1-SE protocols pre- and postcontrast (0.1 mmol/kg gadolinium), and postcontrast coronal 3D GRE with magnetization preparation (MP-RAGE), which was adjusted separately for each field strength. Evaluation of the images was performed quantitatively and, in the case of T1-SE images, also by visual assessment. Tumor-to-brain-contrast after gadolinium administration using statistical evaluation of MP-RAGE scans was significantly higher at 3 tesla (97.5) than at 1.5 tesla (46.3). The same was true for T1-SE sequences (93.0 vs. 72.1). Signal enhancement of the lesions in T1-SE sequences was not significantly different between both field strengths. Administration of a gadolinium contrast agent produces higher contrast between tumor and normal brain at 3 tesla than at 1.5 tesla.

  14. Executive Functions and Social Skills in Survivors of Pediatric Brain Tumor

    Science.gov (United States)

    Wolfe, Kelly R.; Walsh, Karin S.; Reynolds, Nina C.; Mitchell, Frances; Reddy, Alyssa T.; Paltin, Iris; Madan-Swain, Avi

    2012-01-01

    Medical advances have resulted in increased survival rates for children with brain tumors. Consequently, issues related to survivorship have become more critical. The use of multimodal treatment, in particular cranial radiation therapy, has been associated with subsequent cognitive decline. Specifically, deficits in executive functions have been reported in survivors of various types of pediatric brain tumor. Survivors are left with difficulties, particularly in self-monitoring, initiation, inhibition, and planning, to name a few. Another domain in which survivors of pediatric brain tumor have been reported to show difficulty is that of social skills. Parents, teachers, and survivors themselves have reported decreased social functioning following treatment. Deficits in executive functions and social skills are likely interrelated in this population, as executive skills are needed to navigate various aspects of social interaction; however, this has yet to be studied empirically. Twenty-four survivors of pediatric brain tumor were assessed using a computerized task of executive functions, as well as paper and pencil measures of social skills and real world executive skills. Social functioning was related to a specific aspect of executive functions, i.e., the survivors’ variability in response time, such that inconsistent responding was associated with better parent-report and survivor-report social skills, independent of intellectual abilities. Additionally, parent-reported real-world global executive abilities predicted parent-reported social skills. The implications of these findings for social skills interventions and future research are discussed. PMID:22420326

  15. Care for consequences in children treated for leukemia or brain tumor

    NARCIS (Netherlands)

    Aukema, E.J.

    2013-01-01

    This thesis demonstrates that long-term brain tumor survivors suffer from several late effects of their disease and their treatment many years after having been cured. Not only survivors who were treated with surgery and adjuvant therapy, but also survivors who were treated with surgery only can

  16. Molecular characterization of the porcine deleted in malignant brain tumors 1 gene (DMBT1)

    DEFF Research Database (Denmark)

    Haase, Bianca; Humphray, Sean J; Lyer, Stefan

    2006-01-01

    The human gene deleted in malignant brain tumors 1 (DMBT1) is considered to play a role in tumorigenesis and pathogen defense. It encodes a protein with multiple scavenger receptor cysteine-rich (SRCR) domains, which are involved in recognition and binding of a broad spectrum of bacterial pathogens...

  17. Kinome Profiling in Pediatric Brain Tumors as a New Approach for Target Discovery

    NARCIS (Netherlands)

    Sikkema, Arend H.; Diks, Sander H.; den Dunnen, Wilfred F. A.; ter Elst, Arja; Scherpen, Frank J. G.; Hoving, Eelco W.; Ruijtenbeek, Rob; Boender, Piet J.; de Wijn, Rik; Kamps, Willem A.; Peppelenbosch, Maikel P.; de Bont, Eveline S. J. M.

    2009-01-01

    Progression in pediatric brain tumor growth is thought to be the net result of signaling through various protein kinase-mediated networks driving cell proliferation. Defining new targets for treatment of human malignancies, without a priori knowledge on aberrant cell signaling activity, remains

  18. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells.

    Science.gov (United States)

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A; Entrena, José M; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A

    2016-01-11

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.

  19. Breaking the invulnerability of cancer stem cells: two-step strategy to kill the stem-like cell subpopulation of multiple myeloma.

    Science.gov (United States)

    Morgenroth, Agnieszka; Vogg, Andreas T J; Zlatopolskiy, Boris D; Siluschek, Monika; Oedekoven, Caroline; Mottaghy, Felix M

    2014-01-01

    In multiple myeloma, the presence of highly resistant cancer stem cells (CSC) that are responsible for tumor metastasis and relapse has been proven. Evidently, for achieving complete response, new therapeutic paradigms that effectively eradicate both, CSCs and bulk cancer populations, need to be developed. For achieving that goal, an innovative two-step treatment combining targeting of thymidine de novo synthesis pathway and a nanoirradiation by the Auger electron emitting thymidine analogue (123/125)I-5-iodo-4'-thio-2'-deoxyuridine ((123/125)I-ITdU) could be a promising approach. The pretreatment with thymidylate synthase inhibitor 5-fluoro-2'-deoxyuridine (FdUrd, 1 μmol/L for 1 hour) efficiently induced proliferation and terminal differentiation of isolated myeloma stem-like cells. Moreover, FdUrd stimulation led to a decreased activity of a functional CSC marker, aldehyde dehydrogenase (ALDH). The metabolic conditioning by FdUrd emerged to be essential for enhanced incorporation of (125)I-ITdU (incubation with 50 kBq/2 × 10(4) cells for 4 days) and, consequently, for the induction of irreparable DNA damage. (125)I-ITdU showed a pronounced antimyeloma effect on isolated tumor stem-like cells. More than 85% of the treated cells were apoptotic, despite activation of DNA repair mechanisms. Most important, exposure of metabolically conditioned cells to (125)I-ITdU resulted in a complete inhibition of clonogenic recovery. This is the first report showing that pretreatment with FdUrd sensitizes the stem-like cell compartment in multiple myeloma to apoptosis induced by (125)I-ITdU-mediated nanoirradiation of DNA.

  20. Evaluation of miR-362 Expression in Astrocytoma of Human Brain Tumors

    Science.gov (United States)

    Kheirollahi, Majid; Moodi, Mahdiye; Ashouri, Saeideh; Nikpour, Parvaneh; Kazemi, Mohammad

    2017-01-01

    Background: Patients affected by gliomas have a poor prognosis. Astrocytoma is a subtype of glioma. Identification of biomarkers could be an effective way to an early diagnosis of tumor or to distinguish more aggressive tumors that need more intensive therapy. In this study, we investigated whether the expression of miR-362 was increased or decreased in patients with different grades of astrocytoma. Materials and Methods: miR-362 expression was compared in 25 patients with astrocytoma with that of 4 normal nonneoplastic brain tissues. Results: In all tumor tissues, the expression of miR-362 was significantly decreased relative to its expression in normal brain tissues. However, there was no significant difference between miR-362 expressions in high and low grades of astrocytoma. Conclusions: In conclusion, miR-362 showed a down-regulation pattern in astrocytoma tissues that was different from the pattern obtained from previously published microarray studies. PMID:29142892

  1. SHOCK SYNDROME IN A PATIENT WITH HYPOPITUITARISM DUE TO BRAIN TUMOR

    Directory of Open Access Journals (Sweden)

    Andreja Sinkovič

    2004-04-01

    Full Text Available Background. Shock syndrome is an acute tissue hypoperfusion. Early diagnosis and adequate symptomatic and causal treatment are mandatory. In spite of different etiologies (dehidration, bleeding, heart failure, sepsis, clinical signs and symptomes are similar (hypotension, tachicardia, tachipnoe, pallor, cold and wet skin, oliguria and metabolic acidosis. Rarely, the shock syndrome is the consequence of the adrenal insufficiency due to hypopituitarism caused by brain tumor where early treatment with hydrocortisone is urgent.Methods. This article presents a patient with a shock syndrome and multiorgan failure. Endocrinological testing and brain CT demonstrated an endocrinologically inactive tumor of hypophysis. The tumor was growing into adjacent hypophyseal tissue and causing hypopituitarism with secondary hypothyroidism and adrenal insufficiency and deficit of both gonadotropins and growth hormone.Conclusions. Primary or secondary adrenal insufficiency are among rare causes of shock syndrome. Whenever it is suspected, estimation of serum levels of cortisol and ACTH is necessary and immediate treatment with hydrocortisone should be instituted.

  2. BRAIN TUMOR SEGMENTATION WITH SYMMETRIC TEXTURE AND SYMMETRIC INTENSITY-BASED DECISION FORESTS.

    Science.gov (United States)

    Bianchi, Anthony; Miller, James V; Tan, Ek Tsoon; Montillo, Albert

    2013-04-01

    Accurate automated segmentation of brain tumors in MR images is challenging due to overlapping tissue intensity distributions and amorphous tumor shape. However, a clinically viable solution providing precise quantification of tumor and edema volume would enable better pre-operative planning, treatment monitoring and drug development. Our contributions are threefold. First, we design efficient gradient and LBPTOP based texture features which improve classification accuracy over standard intensity features. Second, we extend our texture and intensity features to symmetric texture and symmetric intensity which further improve the accuracy for all tissue classes. Third, we demonstrate further accuracy enhancement by extending our long range features from 100mm to a full 200mm. We assess our brain segmentation technique on 20 patients in the BraTS 2012 dataset. Impact from each contribution is measured and the combination of all the features is shown to yield state-of-the-art accuracy and speed.

  3. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    Science.gov (United States)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  4. [fMRI study of the dominant hemisphere for language in patients with brain tumor].

    Science.gov (United States)

    Buklina, S B; Podoprigora, A E; Pronin, I N; Shishkina, L V; Boldyreva, G N; Bondarenko, A A; Fadeeva, L M; Kornienko, V N; Zhukov, V Iu

    2013-01-01

    Paper describes a study of language lateralization of patients with brain tumors, measured by preoperative functional magnetic resonance imaging (fMRI) and comparison results with tumor histology and profile of functional asymmetry. During the study 21 patient underwent fMRI scan. 15 patients had a tumor in the left and 6 in the right hemisphere. Tumors were localized mainly in the frontal, temporal and fronto-temporal regions. Histological diagnosis in 8 cases was malignant Grade IV, in 13 cases--Grade I-III. fMRI study was perfomed on scanner "Signa Exite" with a field strength of 1.5 As speech test reciting the months of the year in reverse order was used. fMRI scan results were compared with the profile of functional asymmetry, which was received with the results of questionnaire Annette and dichotic listening test. Broca's area was found in 7 cases in the left hemisphere, 6 had a tumor Grade I-III. And one patient with glioblastoma had a tumor of the right hemisphere. Broca's area in the right hemisphere was found in 3 patients (2 patients with left sided tumor, and one with right-sided tumor). One patient with left-sided tumor had mild motor aphasia. Bilateral activation in both hemispheres of the brain was observed in 6 patients. All of them had tumor Grade II-III of the left hemisphere. Signs of left-handedness were revealed only in half of these patients. Broca's area was not found in 4 cases. All of them had large malignant tumors Grade IV. One patient couldn't handle program of the research. Results of fMRI scans, questionnaire Annette and dichotic listening test frequently were not the same, which is significant. Bilateral activation in speech-loads may be a reflection of brain plasticity in cases of long-growing tumors. Thus it's important to consider the full range of clinical data in studying the problem of the dominant hemisphere for language.

  5. A survival score for patients with brain metastases from less radiosensitive tumors treated with whole-brain radiotherapy alone

    Energy Technology Data Exchange (ETDEWEB)

    Dziggel, L.; Rades, D. [University Hospital Schleswig-Holstein, Department of Radiation Oncology, Luebeck (Germany); Segedin, B.; Podvrsnik, N.H.; Oblak, I. [Institute of Oncology, Division of Radiation Oncology, Ljubljana (Slovenia); Schild, S.E. [Mayo Clinic Scottsdale, Department of Radiation Oncology, Scottsdale, Arizona (United States)

    2014-01-15

    This study aimed to develop and validate a scoring system to predict the survival of patients receiving whole-brain radiotherapy (WBRT) alone for brain metastases from less radiosensitive tumors. The study included data from 176 patients with brain metastasis from renal cell carcinoma, malignant melanoma or colorectal cancer. Patients were divided into a test group (N=88) and a validation group (N=88). In the multivariate analysis of the test group, age, Karnofsky Performance Status and extracranial metastasis were significantly associated with survival. These three factors were included in the scoring system. The score for each factor was determined by dividing the 6-month survival rate (in %) by 10. The total score represented the sum of the three scores. According to the total scores - which ranged from 5 to14 points - three prognostic groups were created. The 6-month survival rates in the test group were 11% for 5-8 points (N=47, group A), 38% for 9-11 points (N=29, group B) and 83% for 12-14 points (N=12, group C). In the validation group the 6-month survival rates were 12, 31 and 75%, respectively. Comparisons between the prognostic groups A, B and C of the test group with those of the validation group did not reveal any significant differences. The new scoring system based on three independent prognostic factors can help to estimate the survival of patients with brain metastases from a less radiosensitive tumor. The score appears to be valid and reproducible. (orig.)

  6. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Schild Steven E

    2010-10-01

    Full Text Available Abstract Background This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from escalating the radiation dose was investigated. Methods Data from 220 patients were retrospectively analyzed for overall survival and local control. Nine potential prognostic factors were evaluated: tumor type, WBI schedule, age, gender, Karnofsky performance score, number of brain metastases, extracerebral metastases, interval from diagnosis of cancer to WBI, and recursive partitioning analysis (RPA class. Results Survival rates at 6 and 12 months were 32% and 19%, respectively. In the multivariate analysis, WBI doses >30 Gy (p = 0.038, KPS ≥70 (p Conclusions Improved outcomes were associated with WBI doses >30 Gy, better performance status, fewer brain metastases, lack of extracerebral metastases, and lower RPA class. Patients receiving WBI alone appear to benefit from WBI doses >30 Gy. However, such a benefit is limited to RPA class 1 or 2 patients.

  7. Efficacy and toxicity in brain tumor treatment - quantitative Measurements using advanced MRI

    DEFF Research Database (Denmark)

    Ravn, Søren

    2016-01-01

    From the clinical introduction in the 1980s, MRI has grown to become an indispensable brain imaging modality, mainly due to its excellent ability to visualize soft tissues. Morphologically, T1- and T2-weighted brain tumor MRI have been part of routine diagnostic radiology for more than two decades...... was to explore how different advanced MRI techniques could contribute to a higher degree of individualized treatment of brain tumor patients. The thesis is based on three studies in which advanced MRI is used to evaluate the possible role of fMRI in presurgical planning, Diffusion Tensor Imaging (DTI...... and are now being used for presurgical and radiation therapy (RT) planning. More advanced MRI sequences have gained attention. Sequences such as diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and functional magnetic resonance imaging (fMRI) have entered the clinical world concurrently...

  8. SU-E-T-471: Improvement of Gamma Knife Treatment Planning Through Tumor Control Probability for Metastatic Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z [East Carolina University, Greenville, NC (United States); Feng, Y [East Carolina Univ, Rockville, MD (United States); Lo, S [Case Western Reserve University, Cleveland, OH (United States); Grecula, J [Ohio State University, Columbus, OH (United States); Mayr, N; Yuh, W [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: The dose–volume histogram (DVH) has been normally accepted as a tool for treatment plan evaluation. However, spatial information is lacking in DVH. As a supplement to the DVH in three-dimensional treatment planning, the differential DVH (DDVH) provides the spatial variation, the size and magnitude of the different dose regions within a region of interest, which can be incorporated into tumor control probability model. This study was to provide a method in evaluating and improving Gamma Knife treatment planning. Methods: 10 patients with brain metastases from different primary tumors including melanoma (#1,#4,#5, #10), breast cancer (#2), prostate cancer (#3) and lung cancer (#6–9) were analyzed. By using Leksell GammaPlan software, two plans were prepared for each patient. Special attention was given to the DDVHs that were different for different plans and were used for a comparison between two plans. Dose distribution inside target and tumor control probability (TCP) based on DDVH were calculated, where cell density and radiobiological parameters were adopted from literature. The plans were compared based on DVH, DDVH and TCP. Results: Using DVH, the coverage and selectivity were the same between plans for 10 patients. DDVH were different between two plans for each patient. The paired t-test showed no significant difference in TCP between the two plans. For brain metastases from melanoma (#1, #4–5), breast cancer (#2) and lung cancer (#6–8), the difference in TCP was less than 5%. But the difference in TCP was about 6.5% for patient #3 with the metastasis from prostate cancer, 10.1% and 178.7% for two patients (#9–10) with metastasis from lung cancer. Conclusion: Although DVH provides average dose–volume information, DDVH provides differential dose– volume information with respect to different regions inside the tumor. TCP provides radiobiological information and adds additional information on improving treatment planning as well as adaptive

  9. Automated identification of brain tumors from single MR images based on segmentation with refined patient-specific priors

    OpenAIRE

    Sanjuán Tomás, Ana; Price, Cathy J.; Mancini, Laura; Josse, Goulven; Grogan, Alice; Yamamoto, Adam K.; Geva, Sharon; Leff, Alex P.; Yousry, Tarek A; Seghier, Mohamed L.

    2013-01-01

    Brain tumors can have different shapes or locations, making their identification very challenging. In functional MRI, it is not unusual that patients have only one anatomical image due to time and financial constraints. Here, we provide a modified automatic lesion identification (ALI) procedure which enables brain tumor identification from single MR images. Our method rests on (A) a modified segmentation-normalization procedure with an explicit “extra prior” for the tumor and (B) an outlier d...

  10. Automated identification of brain tumors from single MR images based on segmentation with refined patient-specific priors.

    OpenAIRE

    Sanjuán, A.; Price, C. J.; Mancini, L.; Josse, G.; Grogan, A.; Yamamoto, A. K.; Geva, S.; Leff, A.P.; Yousry, T. A.; Seghier, M.L.

    2013-01-01

    Brain tumors can have different shapes or locations, making their identification very challenging. In functional MRI, it is not unusual that patients have only one anatomical image due to time and financial constraints. Here, we provide a modified automatic lesion identification (ALI) procedure which enables brain tumor identification from single MR images. Our method rests on (A) a modified segmentation-normalization procedure with an explicit "extra prior" for the tumor and (B) an outlier d...

  11. Cell phones and brain tumors: a review including the long-term epidemiologic data.

    Science.gov (United States)

    Khurana, Vini G; Teo, Charles; Kundi, Michael; Hardell, Lennart; Carlberg, Michael

    2009-09-01

    The debate regarding the health effects of low-intensity electromagnetic radiation from sources such as power lines, base stations, and cell phones has recently been reignited. In the present review, the authors attempt to address the following question: is there epidemiologic evidence for an association between long-term cell phone usage and the risk of developing a brain tumor? Included with this meta-analysis of the long-term epidemiologic data are a brief overview of cell phone technology and discussion of laboratory data, biological mechanisms, and brain tumor incidence. In order to be included in the present meta-analysis, studies were required to have met all of the following criteria: (i) publication in a peer-reviewed journal; (ii) inclusion of participants using cell phones for > or = 10 years (ie, minimum 10-year "latency"); and (iii) incorporation of a "laterality" analysis of long-term users (ie, analysis of the side of the brain tumor relative to the side of the head preferred for cell phone usage). This is a meta-analysis incorporating all 11 long-term epidemiologic studies in this field. The results indicate that using a cell phone for > or = 10 years approximately doubles the risk of being diagnosed with a brain tumor on the same ("ipsilateral") side of the head as that preferred for cell phone use. The data achieve statistical significance for glioma and acoustic neuroma but not for meningioma. The authors conclude that there is adequate epidemiologic evidence to suggest a link between prolonged cell phone usage and the development of an ipsilateral brain tumor.

  12. Optimal factors of diffusion tensor imaging predicting cortico spinal tract injury in patients with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Min, Zhi Gang; Niu, Chen; Zhang, Qiu Li; Zhang, Ming [Dept. of Radiology, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an (China); Qian, Yu Cheng [Dept. of Medical Imaging, School of Medicine, Jiangsu University, Zhenjiang (China)

    2017-09-15

    To identify the optimal factors in diffusion tensor imaging for predicting corticospinal tract (CST) injury caused by brain tumors. This prospective study included 33 patients with motor weakness and 64 patients with normal motor function. The movement of the CST, minimum distance between the CST and the tumor, and relative fractional anisotropy (rFA) of the CST on diffusion tensor imaging, were compared between patients with motor weakness and normal function. Logistic regression analysis was used to obtain the optimal factor predicting motor weakness. In patients with motor weakness, the displacement (8.44 ± 6.64 mm) of the CST (p = 0.009), minimum distance (3.98 ± 7.49 mm) between the CST and tumor (p < 0.001), and rFA (0.83 ± 0.11) of the CST (p < 0.001) were significantly different from those of the normal group (4.64 ± 6.65 mm, 14.87 ± 12.04 mm, and 0.98 ± 0.05, respectively) (p = 0.009, p < 0.001, and p < 0.001). The frequencies of patients with the CST passing through the tumor (6%, p = 0.002), CST close to the tumor (23%, p < 0.001), CST close to a malignant tumor (high grade glioma, metastasis, or lymphoma) (19%, p < 0.001), and CST passing through infiltrating edema (19%, p < 0.001) in the motor weakness group, were significantly different from those of the patients with normal motor function (0, 8, 1, and 10%, respectively). Logistic regression analysis showed that decreased rFA and CST close to a malignant tumor were effective variables related to motor weakness. Decreased fractional anisotropy, combined with closeness of a malignant tumor to the CST, is the optimal factor in predicting CST injury caused by a brain tumor.

  13. Demographic and histopathologic profile of pediatric brain tumors: A hospital-based study

    Directory of Open Access Journals (Sweden)

    Harshil C Shah

    2015-01-01

    Full Text Available Background: Very few hospital-based or population-based studies are published in the context to the epidemiologic profile of pediatric brain tumors (PBTs in India and Indian subcontinent. Aim: To study the demographic and histopathologic profile of PBTs according to World Health Organization 2007 classification in a single tertiary health care center in India. Materials and Methods: Data regarding age, gender, topography, and histopathology of 76 pediatric patients (0–19 years with brain tumors operated over a period of 24 months (January-2012 to December-2013 was collected retrospectively and analyzed using EpiInfo 7. Chi-square test and test of proportions (Z-test were used wherever necessary. Results: PBTs were more common in males (55.3% as compared to females (44.7% with male to female ratio of 1.23:1. Mean age was 10.69 years. Frequency of tumors was higher in childhood age group (65.8% when compared to adolescent age group (34.2%. The most common anatomical site was cerebellum (39.5%, followed by hemispheres (22.4%. Supratentorial tumors (52.6% were predominant than infratentorial tumors (47.4%. Astrocytomas (40.8% and embryonal tumors (29.0% were the most common histological types almost contributing more than 2/3rd of all tumors. Craniopharyngiomas (11.8% and ependymomas (6.6% were the third and fourth most common tumors, respectively. Conclusion: Astrocytomas and medulloblastomas are the most common tumors among children and adolescents in our region, which needs special attention from the neurosurgical department of our institute. Demographic and histopathologic profile of cohort in the present study do not differ substantially from that found in other hospital-based and population-based studies except for slight higher frequency of craniopharyngiomas.

  14. Brain tumor segmentation and characterization by pattern analysis of multispectral NMR images.

    Science.gov (United States)

    Soltanian-Zadeh, H; Peck, D J; Windham, J P; Mikkelsen, T

    1998-01-01

    A major problem in tumor treatment planning and evaluation is determination of the tumor extent. This paper presents a pattern analysis methodology for segmentation and characterization of brain tumors from multispectral NMR images. The proposed approach has been used in 15 clinical studies of cerebral tumor patients who have been scheduled for surgical biopsy and resection. The tissue biopsy results, obtained at specific spatial coordinates determined in the analysis, have been utilized to validate the methodology. It was found that in all cases the lesion had extended into normal tissue, at least to the location where the sample was taken. In most cases, the proposed method suggested that the lesion had extended several millimetres beyond the point from where the biopsy sample was taken. In some cases, the extent of the lesion into normal tissue was well beyond the boundary seen on T1- or T2-weighted images. It is concluded that the proposed approach indicates brain tumor infiltration more precisely than what is visualized in the original NMR images and therefore its utilization facilitates proper treatment planning for the cerebral tumor patients.

  15. ABERRANT SPLICING OF A BRAIN-ENRICHED ALTERNATIVE EXON ELIMINATES TUMOR SUPPRESSOR FUNCTION AND PROMOTES ONCOGENE FUNCTION DURING BRAIN TUMORIGENESIS

    Science.gov (United States)

    Bredel, Markus; Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; Elverfeldt, Dominik v.; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.

    2014-01-01

    BACKGROUND: Tissue-specific alternative splicing is known to be critical to emergence of tissue identity during development, yet its role in malignant transformation is undefined. Tissue-specific splicing involves evolutionary-conserved, alternative exons, which represent only a minority of total alternative exons. Many, however, have functional features that influence activity in signaling pathways to profound biological effect. Given that tissue-specific splicing has a determinative role in brain development and the enrichment of genes containing tissue-specific exons for proteins with roles in signaling and development, it is thus plausible that changes in such exons could rewire normal neurogenesis towards malignant transformation. METHODS: We used integrated molecular genetic and cell biology analyses, computational biology, animal modeling, and clinical patient profiles to characterize the effect of aberrant splicing of a brain-enriched alternative exon in the membrane-binding tumor suppressor Annexin A7 (ANXA7) on oncogene regulation and brain tumorigenesis. RESULTS: We show that aberrant splicing of a tissue-specific cassette exon in ANXA7 diminishes endosomal targeting and consequent termination of the signal of the EGFR oncoprotein during brain tumorigenesis. Splicing of this exon is mediated by the ribonucleoprotein Polypyrimidine Tract-Binding Protein 1 (PTBP1), which is normally repressed during brain development but, we find, is excessively expressed in glioblastomas through either gene amplification or loss of a neuron-specific microRNA, miR-124. Silencing of PTBP1 attenuates both malignancy and angiogenesis in a stem cell-derived glioblastoma animal model characterized by a high native propensity to generate tumor endothelium or vascular pericytes to support tumor growth. We show that EGFR amplification and PTBP1 overexpression portend a similarly poor clinical outcome, further highlighting the importance of PTBP1-mediated activation of EGFR

  16. Brain tumor presenting as somnambulism in an adolescent.

    Science.gov (United States)

    Prashad, Priya S; Marcus, Carole L; Brown, Lawrence W; Dlugos, Dennis J; Feygin, Tamara; Harding, Brian N; Heuer, Gregory G; Mason, Thornton B Alexander

    2013-09-01

    Sleepwalking is typically a benign and self-limited non-rapid eye movement parasomnia of childhood. We describe an unusual 15-year-old boy referred to our sleep center for new-onset sleepwalking. An overnight polysomnogram was normal from a respiratory standpoint, but a concurrent extended electroencephalogram montage showed frequent epileptiform discharges from the right parietal-temporal region and two electroclinical seizures arising from the right-frontal-central-temporal region during sleep. Magnetic resonance imaging scan revealed a right parasagittal parietal region lesion consistent with a low-grade neoplasm, and surgical resection of the lesion demonstrated a right parietal dysembryoplastic neuroepithelial tumor. Complex partial seizures and sleepwalking remitted completely with anticonvulsant therapy following surgery. This patient highlights the differential diagnosis of nocturnal events appearing to be typical parasomnias, especially when they arise abruptly at an older age. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Cortical plasticity catalyzed by prehabilitation enables extensive resection of brain tumors in eloquent areas.

    Science.gov (United States)

    Rivera-Rivera, Paola A; Rios-Lago, Marcos; Sanchez-Casarrubios, Sandra; Salazar, Osman; Yus, Miguel; González-Hidalgo, Mercedes; Sanz, Ana; Avecillas-Chasin, Josué; Alvarez-Linera, Juan; Pascual-Leone, Alvaro; Oliviero, Antonio; Barcia, Juan A

    2017-04-01

    OBJECTIVE The extent of resection is the most important prognostic factor following brain glioma surgery. However, eloquent areas within tumors limit the extent of resection and, thus, critically affect outcomes. The authors hypothesized that presurgical suppression of the eloquent areas within a tumor by continuous cortical electrical stimulation, coupled with appropriate behavioral training ("prehabilitation"), would induce plastic reorganization and enable a more extensive resection. METHODS The authors report on 5 patients harboring gliomas involving eloquent brain areas within tumors as identified on intraoperative stimulation mapping. A grid of electrodes was placed over the residual tumor, and continuous cortical electrical stimulation was targeted to the functional areas. The stimulation intensity was adjusted daily to provoke a mild functional impairment while the function was intensively trained. RESULTS The stimulation intensity required to impair function increased progressively in all patients, and all underwent another operation a mean of 33.6 days later (range 27-37 days), when the maximal stimulation voltage in all active contacts induced no functional deficit. In all cases, a substantially more extensive resection of the tumor was possible. Intraoperative mapping and functional MRI demonstrated a plastic reorganization, and most previously demonstrated eloquent areas within the tumor were silent, while there was new functional activation of brain areas in the same region or toward the contralateral hemisphere. CONCLUSIONS Prehabilitation with continuous cortical electrical stimulation and appropriate behavioral training prior to surgery in patients with WHO Grade II and III gliomas affecting eloquent areas accelerate plastic changes. This can help maximize tumor resection and, thus, improve survival while maintaining function.

  18. A prospective pilot study of two-session Gamma Knife surgery for large metastatic brain tumors.

    Science.gov (United States)

    Yomo, Shoji; Hayashi, Motohiro; Nicholson, Claire

    2012-08-01

    The purpose of this prospective study is to evaluate the efficacy and limitations of two-session Gamma Knife radiosurgery (GKS) alone for large metastatic brain tumors. Inclusion criteria were as follows: (i) patients with large metastatic brain tumors (volume >15 cm(3) in the supratentorial region or >10 cm(3) in the infratentorial region), and (ii) tumors not causing clinical signs of impending cerebral herniation. Twenty-eight lesions in 27 consecutive patients (18 men and 9 women, age range 32 to 88 years, median age 65 years) were included in this study. The radiosurgical protocol was as follows: 20-30 Gy given in two fractions 3-4 weeks apart. The local tumor control rate and the overall survival rate were calculated by using the Kaplan-Meier method. Median tumor volumes were 17.8 cm(3) at first GKS and 9.7 cm(3) at second GKS. Median follow-up time was 8.9 months. The local control rate was 85 % at 6 months and 61 % at 12 months. The overall survival rate after GKS was 63 % at 6 months and 45 % at 12 months. The 1-year rate of prevention of neurological death was maintained at 78 %. Mean Karnofsky performance status (KPS) improved from 61 [95 % confidence interval (CI), 57-71] at first GKS to 80 (95 % CI, 74-85) at second GKS; the best follow-up mean KPS was 85 (95 % CI, 78-91) (p session GKS for large brain metastases appears to be an effective treatment in terms of both local tumor control and neurological palliation with minimal treatment-related morbidity. These data suggest that two-session GKS could be used as an alternative to surgical resection of large tumors in patients with significant comorbidity and/or at an advanced age. The optimum regimen for dose and fraction schedule remains to be established.

  19. Development of the Japanese version of the Pediatric Quality of Life Inventory™ Brain Tumor Module

    Directory of Open Access Journals (Sweden)

    Terasaki Mizuhiko

    2010-04-01

    Full Text Available Abstract Background The Pediatric Quality of Life Inventory™ (PedsQL™ is a widely-used modular instrument for measuring health-related quality of life in children aged 2 to 18 years. The PedsQL™ Brain Tumor Module is comprised of six scales: Cognitive Problems, Pain and Hurt, Movement and Balance, Procedural Anxiety, Nausea, and Worry. In the present study, we developed the Japanese version of the PedsQL™ Brain Tumor Module and investigated its feasibility, reliability, and validity among Japanese children and their parents. Methods Translation equivalence and content validity were verified using the standard back-translation method and cognitive debriefing tests. Participants were recruited from 6 hospitals in Japan and the Children's Cancer Association of Japan, and questionnaires were completed by 137 children with brain tumors and 166 parents. Feasibility of the questionnaire was determined based on the amount of time required to complete the form and the percentage of missing values. Internal consistency was assessed using Cronbach's coefficient alpha. Test-retest reliability was assessed by retesting 22 children and 27 parents. Factorial validity was verified by exploratory factor analyses. Known-groups validity was described with regard to whole brain irradiation, developmental impairment, infratentorial tumors, paresis, and concurrent chemotherapy. Convergent and discriminant validity were determined using Generic Core Scales and State-Trait Anxiety Inventory for children. Results Internal consistency was relatively high for all scales (Cronbach's coefficient alpha > 0.70 except the Pain and Hurt scale for the child-report, and sufficient test-retest reliability was demonstrated for all scales (intraclass correlation coefficient = 0.45-0.95. Factorial validity was supported through exploratory factor analysis (factor-item correlation = 0.33-0.96 for children, 0.55-1.00 for parents. Evaluation of known-groups validity confirmed

  20. Brain Tumor Immunotherapy: What have We Learned so Far?

    Science.gov (United States)

    Van Gool, Stefaan Willy

    2015-01-01

    High grade glioma is a rare brain cancer, incurable in spite of modern neurosurgery, radiotherapy, and chemotherapy. Novel approaches are in research, and immunotherapy emerges as a promising strategy. Clinical experiences with active specific immunotherapy demonstrate feasibility, safety and most importantly, but incompletely understood, prolonged long-term survival in a fraction of the patients. In relapsed patients, we developed an immunotherapy schedule and we categorized patients into clinically defined risk profiles. We learned how to combine immunotherapy with standard multimodal treatment strategies for newly diagnosed glioblastoma multiforme patients. The developmental program allows further improvements related to newest scientific insights. Finally, we developed a mode of care within academic centers to organize cell-based therapies for experimental clinical trials in a large number of patients.

  1. Brain tumor immunotherapy. What have we learned so far ?

    Directory of Open Access Journals (Sweden)

    Stefaan Willy Van Gool

    2015-06-01

    Full Text Available High grade glioma (HGG is a rare brain cancer, incurable in spite of modern neurosurgery, radiotherapy and chemotherapy. Novel approaches are in research, and immunotherapy emerges as a promising strategy. Clinical experiences with active specific immunotherapy demonstrate feasibility, safety and most importantly, but incompletely understood, prolonged long-term survival in a fraction of the patients. In relapsed patients, we developed an immunotherapy schedule and we categorized patients into clinically defined risk profiles. We learned how to combine immunotherapy with standard multimodal treatment strategies for newly diagnosed glioblastoma multiforme (GBM patients. The developmental program allows further improvements related to newest scientific insights. Finally we developed a mode of care within academic centers to organize cell-based therapies for experimental clinical trials in a large number of patients.

  2. The NSL chromatin-modifying complex subunit KANSL2 regulates cancer stem-like properties in glioblastoma that contribute to tumorigenesis

    Science.gov (United States)

    Ferreyra-Solari, Nazarena; Belforte, Fiorella S.; Canedo, Lucía; Videla-Richardson, Guillermo A.; Espinosa, Joaquín M.; Rossi, Mario; Serna, Eva; Riudavets, Miguel A.; Martinetto, Horacio; Sevlever, Gustavo; Perez-Castro, Carolina

    2016-01-01

    KANSL2 is an integral subunit of the Non-Specific Lethal (NSL) chromatin-modifying complex which contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. PMID:27406830

  3. Impacts of Blood-Brain Barrier in Drug Delivery and Targeting of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2012-02-01

    Full Text Available Introduction: Entry of blood circulating agents into the brain is highly selectively controlled by specific transport machineries at the blood brain barrier (BBB, whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. Methods: Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. Results: Brain capillary endothelial cells (BCECs form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics. Conclusion: The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.

  4. Obesity and Risk for Brain/CNS Tumors, Gliomas and Meningiomas: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Theodoros N Sergentanis

    Full Text Available This meta-analysis aims to examine the association between being overweight/obese and risk of meningiomas and gliomas as well as overall brain/central nervous system (CNS tumors.Potentially eligible publications were sought in PubMed up to June 30, 2014. Random-effects meta-analysis and dose-response meta-regression analysis was conducted. Cochran Q statistic, I-squared and tau-squared were used for the assessment of between-study heterogeneity. The analysis was performed using Stata/SE version 13 statistical software.A total of 22 studies were eligible, namely 14 cohort studies (10,219 incident brain/CNS tumor cases, 1,319 meningioma and 2,418 glioma cases in a total cohort size of 10,143,803 subjects and eight case-control studies (1,009 brain/CNS cases, 1,977 meningioma cases, 1,265 glioma cases and 8,316 controls. In females, overweight status/obesity was associated with increased risk for overall brain/CNS tumors (pooled RR = 1.12, 95%CI: 1.03-1.21, 10 study arms, meningiomas (pooled RR = 1.27, 95%CI: 1.13-1.43, 16 study arms and gliomas (pooled RR = 1.17, 95%CI: 1.03-1.32, six arms. Obese (BMI>30 kg/m2 females seemed particularly aggravated in terms of brain/CNS tumor (pooled RR = 1.19, 95%CI: 1.05-1.36, six study arms and meningioma risk (pooled RR = 1.48, 95%CI: 1.28-1.71, seven arms. In males, overweight/obesity status correlated with increased meningioma risk (pooled RR = 1.58, 95%CI: 1.22-2.04, nine study arms, whereas the respective association with overall brain/CNS tumor or glioma risk was not statistically significant. Dose-response meta-regression analysis further validated the findings.Our findings highlight obesity as a risk factor for overall brain/CNS tumors, meningiomas and gliomas among females, as well as for meningiomas among males.

  5. Pediatric brain tumors of neuroepithelial tissue; Hirntumoren des neuroepithelialen Gewebes im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Politi, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany); Bergmann, M. [Klinikum Bremen-Mitte, Institut fuer Klinische Neuropathologie, Bremen (Germany); Pekrun, A. [Klinikum Bremen-Mitte, Klinik fuer Kinder- und Jugendmedizin, paed. Haematologie/Onkologie, Neonatologie, Bremen (Germany); Juergens, K.U. [Klinikum Bremen-Mitte, ZEMODI-Zentrum fuer moderne Diagnostik, MRT, Nuklearmedizin und PET-CT, Bremen (Germany)

    2014-08-15

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [German] Tumoren des neuroepithelialen Gewebes stellen die mit Abstand groesste Gruppe der paediatrischen Hirntumoren dar und werden je nach deren Ursprung in diversen Subtypen unterteilt. Das Neuropil beinhaltet diverse Subtypen von Gliazellen: Astrozyten, Oligodendrozyten, ependymale Zellen und modifizierte ependymale Zellen, die den Plexus choroideus formen. In diesem Review werden die bildgebenden Aspekte mittels CT und MRT der haeufigsten Tumoren des neuroepithelialen Gewebes diskutiert. (orig.)

  6. Plasticity of cognitive functions before and after awake brain tumor surgery

    Directory of Open Access Journals (Sweden)

    Djaina Satoer

    2015-04-01

    Results: P1 and P2 showed opposite preoperative cognitive profiles. P1 obtained normal cognitive results and P2 had clinically significant impairments in all cognitive domains, (language, memory, attentional and executive deficits (z-score ≥-1.50. P3 and P4 also demonstrate opposite preoperative profiles. P4 obtained intact cognitive results, whereas P3 was impaired in memory and executive functions (z-score ≥-1.50. Intraoperatively, in both P3 and P4 positive language sites were found (left inferior frontal gyrus and left parietal lobe. At 3 months postoperatively, P3 presented language deficits followed by recovery at 12 months, whereas P4 appeared to have recovered at 3 months postoperatively from the observed premorbid impairments in memory and executive functioning (z-score <-1.50. Pathological examination revealed a slow growing brain tumor (low-grade in P1 and P3 and a fast growing brain tumor (high-grade in P2 and P4. Conclusion: In patients with similar brain tumor localizations, we found distinct cognitive profiles, possibly affected by different neural plasticity processes. Preoperatively, a favorable plasticity effect on cognition was found in P1 (temporoparietal area, potentially affected by tumor grade. Preserved cognitive functions was possibly facilitated by the slow growth rate of a low-grade tumor allowing functional reorganization (Mandonnet et al., 2003. However, P2 with a brain tumor in the same area showed preoperative deficits in several domains (language, memory and attention/executive functions. A faster growth rate of a high-grade tumor could have more aggressively affected cognition. In P3 and P4 with the same localization (insula, we found a different effect on the cognitive recovery process; at short term (3 months, improvement of the preoperatively observed cognitive impairments in a low-grade tumor P3, whereas a more gradual functional reorganization was found in language (3-12 months in P4, a high-grade tumor, contrasting Habets

  7. Cerebrospinal fluid and serum IL-8, CCL2, and ICAM-1 concentrations in astrocytic brain tumor patients.

    Science.gov (United States)

    Koper, O M; Kamińska, J; Sawicki, K; Reszeć, J; Rutkowski, R; Jadeszko, M; Mariak, Z; Dymicka-Piekarska, V; Kemona, H

    2017-10-30

    The aim of the study was the evaluation of serum and CSF concentrations of CCL2, IL-8, and sICAM-1 in patients with astrocytic tumors as compared to a group of non-tumoral patients. Chemokine concentrations were measured using the ELISA method. Regardless of the parameter tested and the patient group (brain tumor or non-tumoral patients), statistical differences (P < 0.05) were found between concentrations obtained in CSF compared to values obtained in serum for all proteins tested. CSF IL-8 concentrations were significantly elevated in CNS tumor patients as compared to non-tumoral individuals (P = 0.000); serum CCL2 and sICAM-1 concentrations were significantly decreased in CNS tumors in comparison with the comparative group (P = 0.002 and P = 0.026, respectively). Among proteins tested in the serum, a higher area under the ROC curve (AUC) revealed CCL2 compared to sICAM-1 in differentiating subjects with CNS brain tumors from non-tumoral subjects. AUC for CSF IL-8 was higher than for its index (CSF IL-8/serum IL-8). For individual biomarkers (IL-8 and CCL2, sICAM-1), measured in CNS brain tumor patients, the appropriate material, respectively CSF or serum, should be chosen and quantitatively tested. Increased cerebrospinal fluid IL-8 with decreased serum CCL2 create a pattern of biomarkers, which may be helpful in the management of CNS astrocytic brain tumors.

  8. Multisession stereotactic radiosurgery for large benign brain tumors of >3cm- early clinical outcomes

    Science.gov (United States)

    Memon, Muhammad Ali; Ahmed, Usman; Saleem, Muhammad Abid; Bhatti, Amer Iqtidar; Ahmed, Naveed; Hashim, Abdul Sattar M.

    2012-01-01

    Objective To evaluate the clinical outcome of linear accelerator based multisession stereotactic radiosurgery (SRS) for large benign brain tumors of >3cm. Methods Between June 2009 and May 2011, 35 patients having large benign brain tumors of >3cm (≥15 cm3) were treated by multisession stereotactic radiosurgery. This retrospective study was carried out at Neurospinal & Medical Institute Karachi. There were 17 (48.6 %) males and 18(51.4 %) females. Median age was 36 years (range: 13-65 years). Median target volume was 49.4 cm3 (range: 15-184 cm3). The median marginal dose was 25 Gy (range: 20–27.5Gy) prescribed to a median 75% isodose line (range: 65-100 %). Median number of 5 fractions were used ranging 3-5 fractions. Results All the patients tolerated treatment very well. 21 (58.3%) patients had remarkable clinical improvement of neurological symptoms, 14 (38.9%) patients had stable symptoms, and only one patient had transient worsening of symptoms. No permanent neurological damage or radiation injury was seen. Radiologically, 9 (25.7%) patients achieved reduction in size of the tumor, 26(74.3 %) patients were having stable disease, and overall control rate was found to be 100 %. Median follow-up time from the end of SRS was 6.4 months (range: 1-22.5months). Conclusion Linear accelerator based multisession stereotactic radiosurgery for large benign brain tumors of >3cm is effective and well tolerated. PMID:29296340

  9. Systematic review of wireless phone use and brain cancer and other head tumors.

    Science.gov (United States)

    Repacholi, Michael H; Lerchl, Alexander; Röösli, Martin; Sienkiewicz, Zenon; Auvinen, Anssi; Breckenkamp, Jürgen; d'Inzeo, Guglielmo; Elliott, Paul; Frei, Patrizia; Heinrich, Sabine; Lagroye, Isabelle; Lahkola, Anna; McCormick, David L; Thomas, Silke; Vecchia, Paolo

    2012-04-01

    We conducted a systematic review of scientific studies to evaluate whether the use of wireless phones is linked to an increased incidence of the brain cancer glioma or other tumors of the head (meningioma, acoustic neuroma, and parotid gland), originating in the areas of the head that most absorb radiofrequency (RF) energy from wireless phones. Epidemiology and in vivo studies were evaluated according to an agreed protocol; quality criteria were used to evaluate the studies for narrative synthesis but not for meta-analyses or pooling of results. The epidemiology study results were heterogeneous, with sparse data on long-term use (≥ 10 years). Meta-analyses of the epidemiology studies showed no statistically significant increase in risk (defined as P cancer or other head tumors from wireless phone use. Analyses of the in vivo oncogenicity, tumor promotion, and genotoxicity studies also showed no statistically significant relationship between exposure to RF fields and genotoxic damage to brain cells, or the incidence of brain cancers or other tumors of the head. Assessment of the review results using the Hill criteria did not support a causal relationship between wireless phone use and the incidence of adult cancers in the areas of the head that most absorb RF energy from the use of wireless phones. There are insufficient data to make any determinations about longer-term use (≥ 10 years). © 2011 Wiley Periodicals, Inc.

  10. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  11. Headache as a risk factor for neurovascular events in pediatric brain tumor patients.

    Science.gov (United States)

    Kranick, Sarah M; Campen, Cynthia J; Kasner, Scott E; Kessler, Sudha K; Zimmerman, Robert A; Lustig, Robert A; Phillips, Peter C; Beslow, Lauren A; Ichord, Rebecca; Fisher, Michael J

    2013-04-16

    To determine whether severe recurrent headache is a risk factor for neurovascular events in children who received radiation for brain tumors. This is a retrospective cohort study of children with brain tumors who received cranial irradiation at a large tertiary care center, aged 0-21 years at diagnosis, with initial treatment between January 1, 1993 and December 31, 2002, and 2 or more follow-up visits. Patients were considered to have severe recurrent headache if this appeared as a complaint on 2 or more visits. Headaches attributed to tumor progression, shunt malfunction, or infection, or appearing at the end of life, were excluded. Medical records were reviewed for events of stroke or TIA. Of 265 subjects followed for a median of 6.0 years (interquartile range 1.7-9.2 years), stroke or TIA occurred in 7/37 (19%) with severe headaches compared to 6/228 (3%) without these symptoms (hazard ratio 5.3, 95% confidence interval 1.8-15.9, p = 0.003). Adjusting for multiple variables did not remove the significance of this risk. Median time to first neurovascular event for the entire cohort was 4.9 years (interquartile range 1.7-5.5 years). Severe recurrent headache appears to be a risk factor or predictor for subsequent cerebral ischemia in pediatric brain tumor survivors treated with radiation. This finding has clinical implications for both monitoring survivors and targeting a specific population for primary stroke prevention.

  12. Correlation between MR imaging and histopathological findings of cystic metastatic brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Fukusumi, Akio [Nara Medical Univ., Kashihara (Japan); Iwasaki, Satoru; Ohkawa, Naosumi [and others

    1996-12-01

    To clarify the correlation between the histopathological findings and MR signal intensity of the cyst wall, fifteen cystic metastatic brain tumors of eleven patients were imaged using a 0.5T MR unit just before surgery, and the MRI findings were correlated with the histopathological findings of resected lesions. On T2-weighted images, all cyst walls showed hypointensity. On T1-weighted images, the intensity of the cyst wall could be classified into three groups, compared with the cerebral cortex. Walls with hyperintensity on T1WI (group H; n=6) consisted of ample tumor cells, blood vessels and connective tissues, suggesting viable tumor cells. Iso-intense walls on T1WI (group I; n=3) had abundant reactive glial tissues. Hypointense walls on T1WI (group L; n=5) revealed hemorrhage and/or hemosiderin in the wall, suggesting hemorrhagic necrosis. Thus a good correlation was demonstrated between the MR signal intensities and histopathological findings of cyst walls of cystic metastatic brain tumors. This may contribute not only to more precise diagnosis on MRI but also to more planning for treatment of cystic brain metastases. (author)

  13. Covalent nano delivery systems for selective imaging and treatment of brain tumors.

    Science.gov (United States)

    Ljubimova, Julia Y; Sun, Tao; Mashouf, Leila; Ljubimov, Alexander V; Israel, Liron L; Ljubimov, Vladimir A; Falahatian, Vida; Holler, Eggehard

    2017-04-01

    Nanomedicine is a rapidly evolving form of therapy that holds a great promise for