WorldWideScience

Sample records for brain tumor imaging

  1. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  2. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  3. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    OpenAIRE

    Sunil L. Bangare; Madhura Patil

    2015-01-01

    This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed wor...

  4. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  5. Brain tumor classification of microscopy images using deep residual learning

    Science.gov (United States)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  6. CARS and non-linear microscopy imaging of brain tumors

    Science.gov (United States)

    Galli, Roberta; Uckermann, Ortrud; Tamosaityte, Sandra; Geiger, Kathrin; Schackert, Gabriele; Steiner, Gerald; Koch, Edmund; Kirsch, Matthias

    2013-06-01

    Nonlinear optical microscopy offers a series of techniques that have the potential to be applied in vivo, for intraoperative identification of tumor border and in situ pathology. By addressing the different content of lipids that characterize the tumors with respect to the normal brain tissue, CARS microscopy enables to discern primary and secondary brain tumors from healthy tissue. A study performed in mouse models shows that the reduction of the CARS signal is a reliable quantity to identify brain tumors, irrespective from the tumor type. Moreover it enables to identify tumor borders and infiltrations at a cellular resolution. Integration of CARS with autogenous TPEF and SHG adds morphological and compositional details about the tissue. Examples of multimodal CARS imaging of different human tumor biopsies demonstrate the ability of the technique to retrieve information useful for histopathological diagnosis.

  7. Metabolic brain imaging correlated with clinical features of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  8. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  9. Imaging brain tumor proliferative activity with [I-124]iododeoxyuridine

    NARCIS (Netherlands)

    Blasberg, RG; Roelcke, U; Weinreich, R; Beattie, B; von Ammon, K; Yonekawa, Y; Landolt, H; Guenther, [No Value; Crompton, NEA; Vontobel, P; Missimer, J; Maguire, RP; Koziorowski, J; Knust, EJ; Finn, RD; Leenders, KL

    2000-01-01

    Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [I-124]IUdR in 20 patients with brain tumors, including meningiomas and gliomas, The PET images were directly compared with gado

  10. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  11. Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection

    Directory of Open Access Journals (Sweden)

    Zi Jun Meng

    2013-01-01

    Full Text Available Magnetic resonance electrical impedance tomography (MREIT is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull’s low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  12. Numerical simulations of MREIT conductivity imaging for brain tumor detection.

    Science.gov (United States)

    Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  13. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  14. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low......- and high-grade glioma patients – manually annotated by up to four raters – and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74...... a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  15. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images.

    Science.gov (United States)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-27

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  16. Pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Poussaint, Tina Y. [Department of Radiology, Boston, MA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Huisman, Thierry A.G.M. [Charlotte R. Bloomberg Children' s Center, Johns Hopkins Hospital, Division of Pediatric Radiology and Pediatric Neuroradiology, Baltimore, MD (United States)

    2015-09-15

    Among all causes of death in children from solid tumors, pediatric brain tumors are the most common. This article includes an overview of a subset of infratentorial and supratentorial tumors with a focus on tumor imaging features and molecular advances and treatments of these tumors. Key to understanding the imaging features of brain tumors is a firm grasp of other disease processes that can mimic tumor on imaging. We also review imaging features of a common subset of tumor mimics. (orig.)

  17. History and evolution of brain tumor imaging: insights through radiology.

    Science.gov (United States)

    Castillo, Mauricio

    2014-11-01

    This review recounts the history of brain tumor diagnosis from antiquity to the present and, indirectly, the history of neuroradiology. Imaging of the brain has from the beginning held an enormous interest because of the inherent difficulty of this endeavor due to the presence of the skull. Because of this, most techniques when newly developed have always been used in neuroradiology and, although some have proved to be inappropriate for this purpose, many were easily incorporated into the specialty. The first major advance in modern neuroimaging was contrast agent-enhanced computed tomography, which permitted accurate anatomic localization of brain tumors and, by virtue of contrast enhancement, malignant ones. The most important advances in neuroimaging occurred with the development of magnetic resonance imaging and diffusion-weighted sequences that allowed an indirect estimation of tumor cellularity; this was further refined by the development of perfusion and permeability mapping. From its beginnings with indirect and purely anatomic imaging techniques, neuroradiology now uses a combination of anatomic and physiologic techniques that will play a critical role in biologic tumor imaging and radiologic genomics.

  18. Automated Brain Tumor Segmentation on MR Images Based on Neutrosophic Set Approach

    OpenAIRE

    Mohan J; Krishnaveni V; Yanhui Huo

    2015-01-01

    Brain tumor segmentation for MR images is a difficult and challenging task due to variation in type, size, location and shape of tumors. This paper presents an efficient and fully automatic brain tumor segmentation technique. This proposed technique includes non local preprocessing, fuzzy intensification to enhance the quality of the MR images, k - means clustering method for brain tumor segmentation.

  19. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Sunil L. Bangare

    2015-04-01

    Full Text Available This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed work is divided in to following Modules: Module 1: Image Pre-Processing Module 2: Feature Extraction, Segmentation using K-Means Algorithm and Fuzzy C-Means Algorithm Module 3: Tumor Area calculation & Stage detection Module 4: Classification and position calculation of tumor using Neural Network

  20. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  1. 3D Brain Tumors and Internal Brain Structures Segmentation in MR Images

    Directory of Open Access Journals (Sweden)

    P.NARENDRAN

    2012-02-01

    Full Text Available The main topic of this paper is to segment brain tumors, their components (edema and necrosis and internal structures of the brain in 3D MR images. For tumor segmentation we propose a framework that is a combination of region-based and boundary-based paradigms. In this framework, segment the brain using a method adapted for pathological cases and extract some global information on the tumor by symmetry based histogram analysis. We propose a new and original method that combines region and boundary information in two phases: initialization and refinement. The method relies on symmetry-based histogram analysis. The initial segmentation of the tumor is refined relying on boundary information of the image. We use a deformable model which is again constrained by the fused spatial relations of the structure. The method was also evaluated on 10 contrast enhanced T1-weighted images to segment the ventricles, caudate nucleus and thalamus.

  2. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    Science.gov (United States)

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  3. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjae; Kim, Ho Sung [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  4. Emerging techniques in brain tumor imaging: What radiologists need to know

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jae; Kim, Ho Sung [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2016-09-15

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  5. Fetal brain tumors: Prenatal diagnosis by ultrasound and magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Hérbene; José; Milani; Edward; Araujo; Júnior; Sérgio; Cavalheiro; Patrícia; Soares; Oliveira; Wagner; Jou; Hisaba; Enoch; Quinderé; Sá; Barreto; Maurício; Mendes; Barbosa; Luciano; Marcondes; Nardozza; Antonio; Fernandes; Moron

    2015-01-01

    Congenital central nervous system tumors diagnosed during pregnancy are rare, and often have a poor prognosis. The most frequent type is the teratoma. Use of ultrasound and magnetic resonance image allows the suspicion of brain tumors during pregnancy. However, the definitive diagnosis is only confirmed after birth by histology. The purpose of this mini-review article is to describe the general clinical aspects of intracranial tumors and describe the main fetal brain tumors.

  6. Level set method with automatic selective local statistics for brain tumor segmentation in MR images.

    Science.gov (United States)

    Thapaliya, Kiran; Pyun, Jae-Young; Park, Chun-Su; Kwon, Goo-Rak

    2013-01-01

    The level set approach is a powerful tool for segmenting images. This paper proposes a method for segmenting brain tumor images from MR images. A new signed pressure function (SPF) that can efficiently stop the contours at weak or blurred edges is introduced. The local statistics of the different objects present in the MR images were calculated. Using local statistics, the tumor objects were identified among different objects. In this level set method, the calculation of the parameters is a challenging task. The calculations of different parameters for different types of images were automatic. The basic thresholding value was updated and adjusted automatically for different MR images. This thresholding value was used to calculate the different parameters in the proposed algorithm. The proposed algorithm was tested on the magnetic resonance images of the brain for tumor segmentation and its performance was evaluated visually and quantitatively. Numerical experiments on some brain tumor images highlighted the efficiency and robustness of this method.

  7. Diffusion tensor magnetic resonance imaging of glial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri, E-mail: ferda@fnplzen. [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Kastner, Jan [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Mukensnabl, Petr [Sikl' s Institute of Pathological Anatomy, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Choc, Milan [Department of Neurosurgery, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic); Horemuzova, Jana; Ferdova, Eva; Kreuzberg, Boris [Department of Radiology, Charles University Hospital Plzen, Medical Faculty Plzen, Alej Svobody 80, 304 60 Plzen (Czech Republic)

    2010-06-15

    Aim: To evaluate the author's experience with the use of diffusion tensor magnetic resonance imaging (DTI) on patients with glial tumors. Methods: A retrospective evaluation of a group of 24 patients with glial tumors was performed. There were eight patients with Grade II, eight patients with Grade III and eight patients with Grade IV tumors with a histologically proven diagnosis. All the patients underwent routine imaging including T2 weighted images, multidirectional diffusion weighted imaging (measured in 60 non-collinear directions) and T1 weighted non-enhanced and contrast enhanced images. The imaging sequence and evaluation software were produced by Massachusetts General Hospital Corporation (Boston, MA, USA). Fractional anisotropy (FA) maps were calculated in all patients. The white matter FA changes were assessed within the tumorous tissue, on the tumorous borderline and in the normally appearing white matter adjacent to the tumor. A three-dimensional model of the white matter tract was created to demonstrate the space relationship of the tumor and the capsula interna or corpus callosum in each case using the following fiber tracing parameters: FA step 0.25 and a tensor declination angle of 45 gr. An additional assessment of the tumorous tissue enhancement was performed. Results: A uniform homogenous structure with sharp demargination of the Grade II tumors and the wide rim of the intermedial FA in all Grade III tumors respectively, were found during the evaluation of the FA maps. In Grade IV tumors a variable demargination was noted on the FA maps. The sensitivity and specificity for the discrimination of low- and high-grade glial tumors using FA maps was revealed to be 81% and 87% respectively. If the evaluation of the contrast enhancement was combined with the evaluation of the FA maps, both sensitivity and specificity were 100%. Conclusion: Although the evaluation of the fractional anisotropy maps is not sufficient for glioma grading, the

  8. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  9. Third harmonic generation imaging for fast, label-free pathology of human brain tumors.

    Science.gov (United States)

    Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L

    2016-05-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.

  10. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  11. Cerebral infarction mimicking brain tumor on Tc-99m tetrofosmin brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon [College of Medicine, Dongguk Univ., Gyeongju (Korea, Republic of); Zeon, Seok Kil; Won, Kyoung Sook [School of Medicine, Keimyung Univ., Daegu (Korea, Republic of)

    2004-06-01

    A 43-year-old man was presented with persistent headache for two weeks. T2 weighted MR imaging showed high signal intensity with surrounding edema in the left frontal lobe. These findings were considered with intracranial tumor such as glioma or metastasis. Tc-99m tetrofosmin SPECT showed focal radiotracer accumulation in the left frontal lobe. The operative specimen contained cerebral infarction with organizing leptomeningeal hematoma by pathologist. Another 73-year-old man was hospitalized for chronic headache. Initial CT showed ill-defined hypodensity with mass effect in the right parietal lobe. Tc-99m tetrofosmin SPECT showed focal radiotracer uptake in the right parietal lobe. These findings were considered with low-grade glioma or infarction. Follow-up CT after 5 months showed slightly decreased in size of low density in the right parietal lobe, and cerebral infarction is more likely than others. Tc-99m tetrofosmin has been proposed as a cardiotracer of myocardial perfusion imaging and an oncotropic radiotracer. Tc-99 tetrofosmin SPECT image provides a better attractive alternative agent than TI-201 as a tumor-imaging agent, with characteristics such as high-energy flux, short half-life, favorable biodistribution, dosimetry and lower background radioactivity. We have keep in mind on the analysis of Tc-99m tetrofosmin imaging when cerebral infarction is being differentiated from brain tumor.

  12. Optimizing brain tumor resection. High-field interventional MR imaging.

    Science.gov (United States)

    Tummala, R P; Chu, R M; Liu, H; Truwit, C L; Hall, W A

    2001-11-01

    High-field strength iMRI guidance is an effective tool for brain tumor resection. Although its use lengthens the average time for a craniotomy, the reward is a more extensive tumor excision compared with conventional neurosurgery without an increased risk to the patient (Table 4). Although intraoperative patient transfer into and out of the magnet is cumbersome, the possibility for complete resection, especially for a low-grade glioma, makes the effort worthwhile. The cost and technical support required for this system presently limits its use to only a few sites worldwide. As with any technology, further refinements will make this system less expensive and more attainable. Practical consideration aside, high-field strength iMRI is presently [table: see text] the most effective tool available for brain tumor resection. Because of its novelty, future studies are necessary to determine if this technology lowers the incidence of and extends the duration to tumor recurrence as the preliminary data in children suggests. These are the ultimate measures of efficacy for any brain tumor treatment. Based on the rapid advancement of technology, will today's high-field strength interventional magnet become tomorrow's low-field system? Very high-field strength designs may improve diagnostic capabilities through higher resolution, but their interventional applications may be hindered by increased sensitivity for clinically insignificant abnormalities and decreased specificity for clinically relevant lesions. As new technology is developed, clinicians must continue to explore and refine the existing high-field strength iMRI to make it cost-effective and widely applicable.

  13. Detection of Brain Tumor and Extraction of Texture Features using Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Prof. Dilip Kumar Gandhi

    2012-10-01

    Full Text Available Brain Cancer Detection system is designed. Aim of this paper is to locate the tumor and determine the texture features from a Brain Cancer affected MRI. A computer based diagnosis is performed in order to detect the tumors from given Magnetic Resonance Image. Basic image processing techniques are used to locate the tumor region. Basic techniques consist of image enhancement, image bianarization, and image morphological operations. Texture features are computed using the Gray Level Co-occurrence Matrix. Texture features consists of five distinct features. Selective features or the combination of selective features will be used in the future to determine the class of the query image. Astrocytoma type of Brain Cancer affected images are used only for simplicity

  14. NI-78LABEL-FREE MULTIPHOTON MICROSCOPY: A NOVEL TOOL FOR THE IMAGING OF BRAIN TUMORS

    Science.gov (United States)

    Uckermann, Ortrud; Galli, Roberta; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Changes in tissue composition caused by brain tumor growth involve a series of complex biochemical alterations which can be imaged on unstained native tissue using multiphoton microscopy: We used coherent anti-Stokes Raman scattering (CARS) imaging that resonantly excites the symmetric stretching vibration of CH2 groups at 2850 cm−1 and visualizes lipid content in combination with imaging of endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) to discern different types of tumors from normal tissue in unstained, native brain samples. Experimental brain tumors were induced in nude mice NMRI nu/nu (n = 25) by stereotactic implantation of glioblastoma (U87), melanoma (A375) and breast cancer (MCF-7) cell lines. Label-free multiphoton microscopy of brain cryosections provided exhaustive information of the tumor morphochemistry. The tumor border was defined with cellular resolution by a strong reduction of CARS signal intensity to 61% (glioblastoma), 71% (melanoma) and 68% (breast cancer). This reduction of lipid content within the tumor was confirmed by Raman spectroscopy. Micrometastases infiltrating normal tissue (size 50 - 200 µm) were identified in glioblastoma and melanoma. Additionally, multiphoton microscopy proved a reduction of CARS signal intensity in all human glioblastoma samples analyzed (to 72%, n = 6). Additionally, relevant SHG and TPEF signals were detected in human primary and secondary brain tumor samples and enabled to image variations in tumor associated vasculature, fibrosis, necrosis and nuclear size and density. All primary or secondary brain tumors investigated were characterized by a lower intensity of the CARS signal, therefore offering a simple tool for objective tumor detection and delineation. The combination of techniques allows retrieving a quantity of information on native unstained tissue which is comparable to H&E staining. Therefore, label-free multiphoton microscopy has the potential to become a

  15. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  16. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  17. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  18. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI).

    Science.gov (United States)

    Panigrahy, Ashok; Blüml, Stefan

    2009-11-01

    In this review, the basic magnetic resonance concepts used in the imaging approach of a pediatric brain tumor are described with respect to different factors including understanding the significance of the patient's age. Also discussed are other factors directly related to the magnetic resonance scan itself including evaluating the location of the tumor, determining if the lesion is extra-axial or intra-axial, and evaluating the contrast characteristics of the lesion. Of note, there are key imaging features of pediatric brain tumors, which can give information about the cellularity of the lesion, which can then be confirmed with advanced magnetic resonance imaging (MRI) techniques. The second part of this review will provide an overview of the major advanced MRI techniques used in pediatric imaging, particularly, magnetic resonance diffusion, magnetic resonance spectroscopy, and magnetic resonance perfusion. The last part of the review will provide more specific information about the use of advanced magnetic resonance techniques in the evaluation of pediatric brain tumors.

  19. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability

    OpenAIRE

    Uematsu, Hidemasa; Maeda, Masayuki

    2006-01-01

    Perfusion-weighted magnetic resonance (MR) imaging using contrast agents plays a key role in characterizing tumors of the brain. We have shown that double-echo perfusion-weighted MR imaging (DEPWI) is potentially useful in assessing brain tumors. Quantitative indices, such as tumor blood volume, are obtained using DEPWI, which allows correction of underestimation of tumor blood volume due to leakage of contrast agents from tumor vessels, in addition to simultaneous acquisition of tumor vessel...

  20. Optimizing brain tumor resection. Midfield interventional MR imaging.

    Science.gov (United States)

    Alexander, E

    2001-11-01

    The development of the intraoperative MR imager represents an important example of creative vision and interdisciplinary teamwork. The result is a remarkable tool for neurosurgical applications. MRT allows surgical manipulation under direct visualization of the intracranial contents through the eye of the surgeon and through the volumetric images of the MR imaging system. This technology can be applied to cranial and spinal cases, and forseeably can encompass application to the entire gamut of neurosurgical efforts. The author's experience has been that this device is easy and comfortable for the surgeon to use. Image acquisition, giving views in the plane of choice, lasts no more than 2 to 60 seconds (depending on the imaging method), and does not increase the duration of a given procedure substantially. The author believes that the information received through intraoperative MR imaging scanning ultimately will contribute to decreasing the duration of surgery. Future possibilities include combining the intraoperative MR imager with other technologies, such as the endoscope, focused ultrasound, robotics, and the evaluation of brain function intraoperatively. The development of the intraoperative MR imager marks a significant advance in neurosurgery, an advance that will revolutionize intraoperative visualization as fully as the operating microscope. The combination of intraoperative visualization and precise surgical navigation is unparalleled, and its enhancement of surgical applications will be widespread. Considering the remarkable potential of the intraoperative MR imager for neurosurgical applications, optimal magnet design, image quality, and navigational methods are necessary to capitalize on the advantages of this revolutionary tool. The intraoperative MR imaging system that the author's team has developed and used has combined these features, and allows the performance of open surgical procedures without the need of patient or magnet repositioning. By

  1. Brain Tumors (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  2. Fluorescence microscopy studies of a peripheral-benzodiazepine-receptor-targeted molecular probe for brain tumor imaging

    Science.gov (United States)

    Marcu, Laura; Vernier, P. Thomas; Manning, H. Charles; Salemi, Sarah; Li, Aimin; Craft, Cheryl M.; Gundersen, Martin A.; Bornhop, Darryl J.

    2003-10-01

    This study investigates the potential of a new multi-modal lanthanide chelate complex for specifically targeting brain tumor cells. We report here results from ongoing studies of up-take, sub-cellular localization and binding specificity of this new molecular imaging probe. Fluorescence microscopy investigations in living rat C6 glioma tumor cells demonstrate that the new imaging agent has affinity for glioma cells and binds to mitochondria.

  3. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  4. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Hidemasa [University of Fukui, Department of Radiology, Faculty of Medical Sciences, Fukui (Japan); Maeda, Masayuki [Mie University School of Medicine, Department of Radiology, Mie (Japan)

    2006-01-01

    Perfusion-weighted magnetic resonance (MR) imaging using contrast agents plays a key role in characterizing tumors of the brain. We have shown that double-echo perfusion-weighted MR imaging (DEPWI) is potentially useful in assessing brain tumors. Quantitative indices, such as tumor blood volume, are obtained using DEPWI, which allows correction of underestimation of tumor blood volume due to leakage of contrast agents from tumor vessels, in addition to simultaneous acquisition of tumor vessel permeability. This article describes basic concepts of DEPWI and demonstrates clinical applications in brain tumors. (orig.)

  5. Segmentation of Brain Tumors in MRI Images Using Three-Dimensional Active Contour without Edge

    Directory of Open Access Journals (Sweden)

    Ali M. Hasan

    2016-11-01

    Full Text Available Brain tumor segmentation in magnetic resonance imaging (MRI is considered a complex procedure because of the variability of tumor shapes and the complexity of determining the tumor location, size, and texture. Manual tumor segmentation is a time-consuming task highly prone to human error. Hence, this study proposes an automated method that can identify tumor slices and segment the tumor across all image slices in volumetric MRI brain scans. First, a set of algorithms in the pre-processing stage is used to clean and standardize the collected data. A modified gray-level co-occurrence matrix and Analysis of Variance (ANOVA are employed for feature extraction and feature selection, respectively. A multi-layer perceptron neural network is adopted as a classifier, and a bounding 3D-box-based genetic algorithm is used to identify the location of pathological tissues in the MRI slices. Finally, the 3D active contour without edge is applied to segment the brain tumors in volumetric MRI scans. The experimental dataset consists of 165 patient images collected from the MRI Unit of Al-Kadhimiya Teaching Hospital in Iraq. Results of the tumor segmentation achieved an accuracy of 89% ± 4.7% compared with manual processes.

  6. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography

    Directory of Open Access Journals (Sweden)

    Coralie Genevois

    2016-10-01

    Full Text Available Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI using the firefly luciferase (Fluc as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI, fluorescence diffuse optical tomography (fDOT, and fluorescence molecular Imaging (FMT®. A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.

  7. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  8. Molecular imaging of brain tumors personal experience and review of the literature.

    Science.gov (United States)

    Schaller, Bernhard J; Cornelius, Jan F; Sandu, Nora; Buchfelder, Michael

    2008-12-01

    Non-invasive energy metabolism measurements in brain tumors in vivo are now performed widely as molecular imaging by positron emission tomography. This capability has developed from a large number of basic and clinical science investigations that have cross fertilized one another. Apart from precise anatomical localization and quantification, the most intriguing advantage of such imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Most importantly, molecular imaging represents a key-technology in translational research, helping to develop experimental protocols that may later be applied to human patients. Common clinical indications for molecular imaging of primary brain tumors therefore contain (i) primary brain tumor diagnosis, (ii) identification of the metabolically most active brain tumor reactions (differentiation of viable tumor tissue from necrosis), and (iii) prediction of treatment response by measurement of tumor perfusion, or ischemia. The key-question remains whether the magnitude of biochemical alterations demonstrated by molecular imaging reveals prognostic value with respect to survival. Molecular imaging may identify early disease and differentiate benign from malignant lesions. Moreover, an early identification of treatment effectiveness could influence patient management by providing objective criteria for evaluation of therapeutic strategies for primary brain tumors. Specially, its novel potential to visualize metabolism and signal transduction to gene expression is used in reporter gene assays to trace the location and temporal level of expression of therapeutic and endogenous genes. The authors present here illustrative data of PET imaging: the thymidine kinase gene expression in experimentally transplanted F98 gliomas in cat brain indicates, that [(18)F]FHBG visualizes cells expressing TK-GFP gene in transduced gliomas as well as quantities and localizes transduced

  9. A Review of Fully Automated Techniques for Brain Tumor Detection From MR Images

    Directory of Open Access Journals (Sweden)

    Anjum Hayat Gondal

    2013-02-01

    Full Text Available Radiologists use medical images to diagnose diseases precisely. However, identification of brain tumor from medical images is still a critical and complicated job for a radiologist. Brain tumor identification form magnetic resonance imaging (MRI consists of several stages. Segmentation is known to be an essential step in medical imaging classification and analysis. Performing the brain MR images segmentation manually is a difficult task as there are several challenges associated with it. Radiologist and medical experts spend plenty of time for manually segmenting brain MR images, and this is a non-repeatable task. In view of this, an automatic segmentation of brain MR images is needed to correctly segment White Matter (WM, Gray Matter (GM and Cerebrospinal Fluid (CSF tissues of brain in a shorter span of time. The accurate segmentation is crucial as otherwise the wrong identification of disease can lead to severe consequences. Taking into account the aforesaid challenges, this research is focused towards highlighting the strengths and limitations of the earlier proposed segmentation techniques discussed in the contemporary literature. Besides summarizing the literature, the paper also provides a critical evaluation of the surveyed literature which reveals new facets of research. However, articulating a new technique is beyond the scope of this paper.

  10. Intraoperative fluorescence imaging for personalized brain tumor resection: Current state and future directions

    Directory of Open Access Journals (Sweden)

    Evgenii Belykh

    2016-10-01

    Full Text Available Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical theranostics. In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients, as well as future applications of recent laboratory and translational studies.Methods: Review of the literature.Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-ALA and ICG, less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine can be used for rapid tumor detection and pathological tissue examination. Other emerging agents such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.Conclusion: We are standing on the doorstep of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

  11. Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases.

    Science.gov (United States)

    Thorsen, Frits; Fite, Brett; Mahakian, Lisa M; Seo, Jai W; Qin, Shengping; Harrison, Victoria; Johnson, Sarah; Ingham, Elizabeth; Caskey, Charles; Sundstrøm, Terje; Meade, Thomas J; Harter, Patrick N; Skaftnesmo, Kai Ove; Ferrara, Katherine W

    2013-12-28

    Our goal was to develop strategies to quantify the accumulation of model therapeutics in small brain metastases using multimodal imaging, in order to enhance the potential for successful treatment. Human melanoma cells were injected into the left cardiac ventricle of immunodeficient mice. Bioluminescent, MR and PET imaging were applied to evaluate the limits of detection and potential for contrast agent extravasation in small brain metastases. A pharmacokinetic model was applied to estimate vascular permeability. Bioluminescent imaging after injecting d-luciferin (molecular weight (MW) 320 D) suggested that tumor cell extravasation had already occurred at week 1, which was confirmed by histology. 7T T1w MRI at week 4 was able to detect non-leaky 100 μm sized lesions and leaky tumors with diameters down to 200 μm after contrast injection at week 5. PET imaging showed that (18)F-FLT (MW 244 Da) accumulated in the brain at week 4. Gadolinium-based MRI tracers (MW 559 Da and 2.066 kDa) extravasated after 5 weeks (tumor diameter 600 μm), and the lower MW agent cleared more rapidly from the tumor (mean apparent permeabilities 2.27 × 10(-5)cm/s versus 1.12 × 10(-5)cm/s). PET imaging further demonstrated tumor permeability to (64)Cu-BSA (MW 65.55 kDa) at week 6 (tumor diameter 700 μm). In conclusion, high field T1w MRI without contrast may improve the detection limit of small brain metastases, allowing for earlier diagnosis of patients, although the smallest lesions detected with T1w MRI were permeable only to d-luciferin and the amphipathic small molecule (18)F-FLT. Different-sized MR and PET contrast agents demonstrated the gradual increase in leakiness of the blood tumor barrier during metastatic progression, which could guide clinicians in choosing tailored treatment strategies.

  12. Development of image-processing software for automatic segmentation of brain tumors in MR images

    Directory of Open Access Journals (Sweden)

    C Vijayakumar

    2011-01-01

    Full Text Available Most of the commercially available software for brain tumor segmentation have limited functionality and frequently lack the careful validation that is required for clinical studies. We have developed an image-analysis software package called ′Prometheus,′ which performs neural system-based segmentation operations on MR images using pre-trained information. The software also has the capability to improve its segmentation performance by using the training module of the neural system. The aim of this article is to present the design and modules of this software. The segmentation module of Prometheus can be used primarily for image analysis in MR images. Prometheus was validated against manual segmentation by a radiologist and its mean sensitivity and specificity was found to be 85.71±4.89% and 93.2±2.87%, respectively. Similarly, the mean segmentation accuracy and mean correspondence ratio was found to be 92.35±3.37% and 0.78±0.046, respectively.

  13. Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    Directory of Open Access Journals (Sweden)

    Binjie Qin

    2009-12-01

    Full Text Available This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM, is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case.

  14. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy.

    Science.gov (United States)

    Nemoz, Christian; Kibleur, Astrid; Hyacinthe, Jean Noël; Berruyer, Gilles; Brochard, Thierry; Bräuer-Krisch, Elke; Le Duc, Géraldine; Brun, Emmanuel; Elleaume, Hélène; Serduc, Raphaël

    2016-01-01

    A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This study is the first reporting an image guided method for soft tissue synchrotron radiotherapy. It allowed microbeam radiation therapy irradiation fields to be reduced by a factor of ∼20 compared with previous studies. It permitted more targeted, more efficient brain tumor microbeam treatments and reduces normal brain toxicity of the radiation treatment.

  15. Fluorescence and Bioluminescence Imaging of Orthotopic Brain Tumors in Mice.

    Science.gov (United States)

    McKinnon, Emilie; Moore, Alfred; Dixit, Suraj; Zhu, Yun; Broome, Ann-Marie

    2017-01-01

    Optical imaging strategies, such as fluorescence and bioluminescence imaging, are non-invasive, in vivo whole body imaging techniques utilized to study cancer. Optical imaging is widely used in preclinical work because of its ease of use and cost-friendliness. It also provides the opportunity to study animals and biological responses longitudinally over time. Important considerations include depth of tissue penetration, photon scattering, absorption and the choice of light emitting probe, all of which affect the resolution (image quality and data information) and the signal to noise ratio of the image. We describe how to use bioluminescence and fluorescence imaging to track a chemotherapeutic delivery nanocarrier conjugated with a fluorophore to determine its localization in vivo.

  16. Comparison of CT and MRI brain tumor imaging using a canine glioma model.

    Science.gov (United States)

    Whelan, H T; Clanton, J A; Wilson, R E; Tulipan, N B

    1988-01-01

    A canine gliosarcoma model was used to study the effectiveness of magnetic resonance imaging (MRI) with gadolinium contrast enhancement in defining the histologic margins of brain tumors. The effectiveness of this technique was compared to conventional computed tomography (CT) using iodinated contrast enhancement. Cultured canine gliosarcoma cells were injected into the left hemisphere of adult mongrel dogs. The dogs developed brain tumors and progressive clinical signs. Serial MRI with and without gadolinium diethylene triamine penta-acetic acid was compared to serial CT with and without sodium iothalamate obtained on the same days. After the final scans, animals were sacrificed; the brains were removed and processed for routine histopathologic study. All tumors were visualized with contrast-enhanced MRI which proved most sensitive. Gadolinium di-ethylene triamine penta-acetic acid caused bright enhancement of tumors in a distribution that consistently corresponded to areas of pathologically proved tumor infiltration. Gross and microscopic autopsy findings correlated better with MRI than with CT which tended to produce poorer resolution and underrepresent the size of viable tumor. Gadolinium-enhanced MRI is more accurate than unenhanced MRI, unenhanced CT, or enhanced CT in defining the histologic margins of tumors.

  17. Childhood Brain Tumors

    Science.gov (United States)

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  18. Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN

    Science.gov (United States)

    Pradhan, Nandita; Sinha, A. K.

    2008-03-01

    This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.

  19. Epidemiology of Brain Tumors.

    Science.gov (United States)

    McNeill, Katharine A

    2016-11-01

    Brain tumors are the commonest solid tumor in children, leading to significant cancer-related mortality. Several hereditary syndromes associated with brain tumors are nonfamilial. Ionizing radiation is a well-recognized risk factor for brain tumors. Several industrial exposures have been evaluated for a causal association with brain tumor formation but the results are inconclusive. A casual association between the common mutagens of tobacco, alcohol, or dietary factors has not yet been established. There is no clear evidence that the incidence of brain tumors has changed over time. This article presents the descriptive epidemiology of the commonest brain tumors of children and adults.

  20. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique

    Science.gov (United States)

    Jones, Timothy L.; Byrnes, Tiernan J.; Yang, Guang; Howe, Franklyn A.; Bell, B. Anthony; Barrick, Thomas R.

    2015-01-01

    Background There is an increasing demand for noninvasive brain tumor biomarkers to guide surgery and subsequent oncotherapy. We present a novel whole-brain diffusion tensor imaging (DTI) segmentation (D-SEG) to delineate tumor volumes of interest (VOIs) for subsequent classification of tumor type. D-SEG uses isotropic (p) and anisotropic (q) components of the diffusion tensor to segment regions with similar diffusion characteristics. Methods DTI scans were acquired from 95 patients with low- and high-grade glioma, metastases, and meningioma and from 29 healthy subjects. D-SEG uses k-means clustering of the 2D (p,q) space to generate segments with different isotropic and anisotropic diffusion characteristics. Results Our results are visualized using a novel RGB color scheme incorporating p, q and T2-weighted information within each segment. The volumetric contribution of each segment to gray matter, white matter, and cerebrospinal fluid spaces was used to generate healthy tissue D-SEG spectra. Tumor VOIs were extracted using a semiautomated flood-filling technique and D-SEG spectra were computed within the VOI. Classification of tumor type using D-SEG spectra was performed using support vector machines. D-SEG was computationally fast and stable and delineated regions of healthy tissue from tumor and edema. D-SEG spectra were consistent for each tumor type, with constituent diffusion characteristics potentially reflecting regional differences in tissue microstructure. Support vector machines classified tumor type with an overall accuracy of 94.7%, providing better classification than previously reported. Conclusions D-SEG presents a user-friendly, semiautomated biomarker that may provide a valuable adjunct in noninvasive brain tumor diagnosis and treatment planning. PMID:25121771

  1. Content-based image retrieval using spatial layout information in brain tumor T1-weighted contrast-enhanced MR images.

    Directory of Open Access Journals (Sweden)

    Meiyan Huang

    Full Text Available This study aims to develop content-based image retrieval (CBIR system for the retrieval of T1-weighted contrast-enhanced MR (CE-MR images of brain tumors. When a tumor region is fed to the CBIR system as a query, the system attempts to retrieve tumors of the same pathological category. The bag-of-visual-words (BoVW model with partition learning is incorporated into the system to extract informative features for representing the image contents. Furthermore, a distance metric learning algorithm called the Rank Error-based Metric Learning (REML is proposed to reduce the semantic gap between low-level visual features and high-level semantic concepts. The effectiveness of the proposed method is evaluated on a brain T1-weighted CE-MR dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor. Using the BoVW model with partition learning, the mean average precision (mAP of retrieval increases beyond 4.6% with the learned distance metrics compared with the spatial pyramid BoVW method. The distance metric learned by REML significantly outperforms three other existing distance metric learning methods in terms of mAP. The mAP of the CBIR system is as high as 91.8% using the proposed method, and the precision can reach 93.1% when the top 10 images are returned by the system. These preliminary results demonstrate that the proposed method is effective and feasible for the retrieval of brain tumors in T1-weighted CE-MR Images.

  2. Content-based image retrieval using spatial layout information in brain tumor T1-weighted contrast-enhanced MR images.

    Science.gov (United States)

    Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Gao, Yang; Chen, Yang; Feng, Qianjin; Chen, Wufan; Lu, Zhentai

    2014-01-01

    This study aims to develop content-based image retrieval (CBIR) system for the retrieval of T1-weighted contrast-enhanced MR (CE-MR) images of brain tumors. When a tumor region is fed to the CBIR system as a query, the system attempts to retrieve tumors of the same pathological category. The bag-of-visual-words (BoVW) model with partition learning is incorporated into the system to extract informative features for representing the image contents. Furthermore, a distance metric learning algorithm called the Rank Error-based Metric Learning (REML) is proposed to reduce the semantic gap between low-level visual features and high-level semantic concepts. The effectiveness of the proposed method is evaluated on a brain T1-weighted CE-MR dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). Using the BoVW model with partition learning, the mean average precision (mAP) of retrieval increases beyond 4.6% with the learned distance metrics compared with the spatial pyramid BoVW method. The distance metric learned by REML significantly outperforms three other existing distance metric learning methods in terms of mAP. The mAP of the CBIR system is as high as 91.8% using the proposed method, and the precision can reach 93.1% when the top 10 images are returned by the system. These preliminary results demonstrate that the proposed method is effective and feasible for the retrieval of brain tumors in T1-weighted CE-MR Images.

  3. Brain MR Image Segmentation for Tumor Detection using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Monica Subashini.M

    2013-04-01

    Full Text Available Detection, diagnosis and evaluation of Brain tumour is an important task in recent days. MRI is the current technology which enables the detection, diagnosis and evaluation. The medical problems are severe if tumour is detected at the later stage. Hence diagnosis is necessary at the earliest. In this work, pulse coupled neural network is applied for enhancing the MR Images. The enhanced images aresegmented and classified using back propagation networks. The Classification involves labelling the images into normal and abnormal (tumor detected. If the input MRI brain images are more in number,the physician could seek the help of this model and the network would help the physician to save time for further analysis. PCNN and BPN are less complex in nature and hence the processing of MRI brainimages is very simple. The term ‘abnormal’ indicates the presence of tumour. The tumour may be benign or malignant and it needs medical support for further classification.

  4. Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique

    Directory of Open Access Journals (Sweden)

    S. S. Shanbhag

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG parameter. The relative increase in the SIG values (RSIG for the subjects with glioma and meningioma was in the range of 10.08–28.36 times and 5.60–9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P<0.01, with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative.

  5. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  6. Characterization of normal brain and brain tumor pathology by chisquares parameter maps of diffusion-weighted image data

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Stephan E. E-mail: stephan@bwh.harvard.edu; Mamata, Hatsuho; Mulkern, Robert V

    2003-03-01

    Objective: To characterize normal and pathologic brain tissue by quantifying the deviation of diffusion-related signal from a simple monoexponential decay, when measured over a wider than usual range of b-factors. Methods and materials: Line scan diffusion imaging (LSDI), with diffusion weighting at multiple b-factors between 100 and 5000 s/mm{sup 2}, was performed on 1.5 T clinical scanners. Diffusion data of single slice sections were acquired in five healthy subjects and 19 brain tumor patients. In-patients, conventional T2-weighted and contrast-enhanced T1-weighted images were obtained for reference purposes. The chisquare ({chi}{sup 2}) error parameter associated with the monoexponential fits of the measured tissue water signals was then used to quantify the departure from a simple monoexponential signal decay on a pixel-by-pixel basis. Results: Diffusion-weighted images over a wider b-factor range than typically used were successfully obtained in all healthy subjects and patients. Normal and pathologic tissues demonstrated signal decays, which clearly deviate from a simple monoexponential behavior. The {chi}{sup 2} of cortical and deep grey matter was considerably lower than in white matter. In peritumoral edema, however, {chi}{sup 2} was 68% higher than in normal white matter. In highly malignant brain tumors, such as glioblastoma multiforme (GBM) or anaplastic astrocytoma, {chi}{sup 2} values were on average almost 400% higher than in normal white matter, while for one low grade astrocytoma and two cases of metastasis, {chi}{sup 2} was not profoundly different from the {chi}{sup 2} value of white matter. Maps of the {chi}{sup 2} values provide good visualization of spatial details. However, the tumor tissue contrast generated appeared in many cases to be different from the enhancement produced by paramagnetic contrast agents. For example, in cases where the contrast agent only highlighted the rim of the tumor, {chi}{sup 2} enhancement was present within the

  7. Pediatric Brain Tumor Foundation

    Science.gov (United States)

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Cancer Foundation joins the PBTF Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  8. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    Science.gov (United States)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  9. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Directory of Open Access Journals (Sweden)

    Carlo Ciulla

    2015-11-01

    Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  10. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Science.gov (United States)

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A.

    2015-01-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional. PMID:26644943

  11. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor

    Science.gov (United States)

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S.; Zhau, Haiyen E.; Chung, Leland W.K.

    2016-01-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic aniontransporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors. PMID:26197410

  12. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor.

    Science.gov (United States)

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S; Zhau, Haiyen E; Chung, Leland W K

    2015-10-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.

  13. Brain Tumor Surgery

    Science.gov (United States)

    ... Meningitis Brain swelling Stroke Excess fluid in the brain Coma Death Recovery Time Recovery time depends on: The procedure performed. The part of the brain where the tumor is/was located. The areas ...

  14. Dose to craniofacial region through portal imaging of pediatric brain tumors.

    Science.gov (United States)

    Hitchen, Christine J; Osa, Etin-Osa; Dewyngaert, J Keith; Chang, Jenghwa; Narayana, Ashwatha

    2012-01-05

    The purpose of this study was to determine dose to the planning target volume (PTV) and organs at risk (OARs) from portal imaging (PI) of the craniofacial region in pediatric brain tumor patients treated with intensity-modulated radiation therapy (IMRT). Twenty pediatric brain tumor patients were retrospectively studied. Each received portal imaging of treatment fields and orthogonal setup fields in the craniofacial region. The number of PI and monitor units used for PI were documented for each patient. Dose distributions and dose-volume histograms were generated to quantify the maximum, minimum, and mean dose to the PTV, and the mean dose to OARs through PI acquisition. The doses resulting from PI are reported as percentage of prescribed dose. The average maximum, minimum, and mean doses to PTV from PI were 2.9 ± 0.7%, 2.2 ± 1.0%, and 2.5 ± 0.7%, respectively. The mean dose to the OARs from PI were brainstem 2.8 ± 1.1%, optic nerves/chiasm 2.6 ± 0.9%, cochlea 2.6 ± 0.9%, hypothalamus/pituitary 2.4 ± 0.6%, temporal lobes 2.3 ± 0.6%, thyroid 1.6 ± 0.8%, and eyes 2.6 ± 0.9%. The mean number of portal images and the mean number of PI monitor units per patient were 58.8 and 173.3, respectively. The dose from PI while treating pediatric brain tumors using IMRT is significant (2%-3% of the prescribed dose). This may result in exceeding the tolerance limit of many critical structures and lead to unwanted late complications and secondary malignancies. Dose contributions from PI should be considered in the final documented dose. Attempts must be made in PI practices to lower the imaging dose when feasible.

  15. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    Science.gov (United States)

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.

  16. Brain Tumor Detection and Classification Using Deep Learning Classifier on MRI Images

    Directory of Open Access Journals (Sweden)

    V.P. Gladis Pushpa Rathi

    2015-05-01

    Full Text Available Magnetic Resonance Imaging (MRI has become an effective tool for clinical research in recent years and has found itself in applications such as brain tumour detection. In this study, tumor classification using multiple kernel-based probabilistic clustering and deep learning classifier is proposed. The proposed technique consists of three modules, namely segmentation module, feature extraction module and classification module. Initially, the MRI image is pre-processed to make it fit for segmentation and de-noising process is carried out using median filter. Then, pre-processed image is segmented using Multiple Kernel based Probabilistic Clustering (MKPC. Subsequently, features are extracted for every segment based on the shape, texture and intensity. After features extraction, important features will be selected using Linear Discriminant Analysis (LDA for classification purpose. Finally, deep learning classifier is employed for classification into tumor or non-tumor. The proposed technique is evaluated using sensitivity, specificity and accuracy. The proposed technique results are also compared with existing technique which uses Feed-Forward Back Propagation Network (FFBN. The proposed technique achieved an average sensitivity, specificity and accuracy of 0.88, 0.80 and 0.83, respectively with the highest values as about 1, 0.85 and 0.94. Improved results show the efficiency of the proposed technique.

  17. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Abdulbaqi, Hayder Saad [School of Physics, Universiti Sains Malaysia, 11700, Penang (Malaysia); Department of Physics, College of Education, University of Al-Qadisiya, Al-Qadisiya (Iraq); Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin [School of Physics, Universiti Sains Malaysia, 11700, Penang (Malaysia); Abood, Loay Kadom [Department of Computer Science, College of Science, University of Baghdad, Baghdad (Iraq)

    2015-04-24

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  18. Epilepsy and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhi-yi Sha

    2009-01-01

    @@ Epidemiology It is estimated 61,414 new cases of primary brain tumors are expected to be diagnosed in 2009 in the U.S. The incidence statistic of 61,414 persons diagnosed per year includes both malignant (22,738) and non-malignant (38,677) brain tumors. (Data from American Brain Tumor Association). During the years 2004-2005, approximately 359,000 people in the United States were living with the diagnosis of a primary brain or central nervous system tumor. Specifically, more than 81,000 persons were living with a malignant tumor, more than 267,000 persons with a benign tumor. For every 100,000 people in the United States, approximately 131 are living following the diagnosis of a brain tumor. This represents a prevalence rate of 130.8 per 100,000 person years[1].

  19. A Hybrid DE-RGSO-ELM for Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    K. Kothavari

    2014-01-01

    Full Text Available Medical diagnostics, a technique used for visualizing the internal structures and functions of human body, serves as a scientific tool to assist physicians and involves direct use of digital imaging system analysis. In this scenario, identification of brain tumors is complex in the diagnostic process. Magnetic resonance imaging (MRI technique is noted to best assist tissue contrast for anatomical details and also carries out mechanisms for investigating the brain by functional imaging in tumor predictions. Considering 3D MRI model, analyzing the anatomy features and tissue characteristics of brain tumor is complex in nature. Henceforth, in this work, feature extraction is carried out by computing 3D gray-level cooccurence matrix (3D GLCM and run-length matrix (RLM and feature subselection for dimensionality reduction is performed with basic differential evolution (DE algorithm. Classification is performed using proposed extreme learning machine (ELM, with refined group search optimizer (RGSO technique, to select the best parameters for better simplification and training of the classifier for brain tissue and tumor characterization as white matter (WM, gray matter (GM, cerebrospinal fluid (CSF, and tumor. Extreme learning machine outperforms the standard binary linear SVM and BPN for medical image classifier and proves better in classifying healthy and tumor tissues. The comparison between the algorithms proves that the mean and standard deviation produced by volumetric feature extraction analysis are higher than the other approaches. The proposed work is designed for pathological brain tumor classification and for 3D MRI tumor image segmentation. The proposed approaches are applied for real time datasets and benchmark datasets taken from dataset repositories.

  20. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis

    Institute of Scientific and Technical Information of China (English)

    Lian Yanyun; Song Zhijian

    2014-01-01

    Background Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning,treatment planning,monitoring of therapy.However,manual tumor segmentation commonly used in clinic is time-consuming and challenging,and none of the existed automated methods are highly robust,reliable and efficient in clinic application.An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results.Methods Based on the symmetry of human brain,we employed sliding-window technique and correlation coefficient to locate the tumor position.At first,the image to be segmented was normalized,rotated,denoised,and bisected.Subsequently,through vertical and horizontal sliding-windows technique in turn,that is,two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image,along with calculating of correlation coefficient of two windows,two windows with minimal correlation coefficient were obtained,and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor.At last,the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length,and threshold segmentation and morphological operations were used to acquire the final tumor region.Results The method was evaluated on 3D FSPGR brain MR images of 10 patients.As a result,the average ratio of correct location was 93.4% for 575 slices containing tumor,the average Dice similarity coefficient was 0.77 for one scan,and the average time spent on one scan was 40 seconds.Conclusions An fully automated,simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use.Correlation coefficient is a new and effective feature for tumor

  1. Diffusion tensor imaging using a high-temperature superconducting resonator in a 3 T magnetic resonance imaging for a spontaneous rat brain tumor

    Science.gov (United States)

    Lin, In-Tsang; Yang, Hong-Chang; Chen, Jyh-Horng

    2013-02-01

    This study investigates the peri-tumor signal abnormalities of a spontaneous brain tumor in a rat by using a 4 cm high-temperature superconducting (HTS) surface resonator. Fractional anisotropy (FA) values derived from diffusion tensor imaging reflect the interstitial characteristic of the peri-lesional tissues of brain tumors. Low FA indicates interstitial tumor infiltration and tissue injury, while high FA indicates better tissue integrity. Better delineation of tissue contents obtained by the HTS surface resonator at 77 K may facilitate therapeutic strategy and improve clinical outcomes.

  2. Adult Pilomyxoid Astrocytoma Mimicking a Cortical Brain Tumor: MR Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Chang; Weon, Young Cheol; Suh, Jae Hee; Kim, Young; Hwang, Jae Cheol [Ulsan University Hospital, Ulsan (Korea, Republic of)

    2010-08-15

    A pilomyxoid astrocytoma (PMA) is a recently identified low-grade neoplasm that was previously classified as a pilocytic astrocytoma (PA), yet demonstrates unique histological features and more aggressive behavior. Although a PMA is generally a tumor of early childhood and typically occurs in the hypothalamic/chiasmatic region, it can mimic cortical tumors, especially in adults. We report the MR findings of a PMA presenting as a cortical brain tumor in an adult with neurofibromatosis 1 (NF1)

  3. Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database.

    NARCIS (Netherlands)

    Julia-Sape, M.; Acosta, D.M.; Majos, C.; Moreno-Torres, A.; Wesseling, P.; Acebes, J.J.; Griffiths, J.R.; Arus, C.

    2006-01-01

    OBJECT: The aim of this study was to estimate the accuracy of routine magnetic resonance (MR) imaging studies in the classification of brain tumors in terms of both cell type and grade of malignancy. METHODS: The authors retrospectively assessed the correlation between neuroimaging classifications a

  4. USE OF PROTON MAGNETIC RESONANCE SPECTROSCOPIC IMAGING DATA IN PLANNING FOCAL RADIATION THERAPIES FOR BRAIN TUMORS

    Directory of Open Access Journals (Sweden)

    Edward E Graves

    2011-05-01

    Full Text Available Advances in radiation therapy for malignant neoplasms have produced techniques such as Gamma Knife radiosurgery, capable of delivering an ablative dose to a specific, irregular volume of tissue. However, efficient use of these techniques requires the identification of a target volume that will produce the best therapeutic response while sparing surrounding normal brain tissue. Accomplishing this task using conventional computed tomography (CT and contrast-enhanced magnetic resonance imaging (MRI techniques has proven difficult because of the difficulties in identifying the effective tumor margin. Magnetic resonance spectroscopic imaging (MRSI has been shown to offer a clinically-feasible metabolic assessment of the presence and extent of neoplasm that can complement conventional anatomic imaging. This paper reviews current Gamma Knife protocols and MRSI acquisition, reconstruction, and interpretation techniques, and discusses the motivation for including magnetic resonance spectroscopy findings while planning focal radiation therapies. A treatment selection and planning strategy incorporating MRSI is then proposed, which can be used in the future to assess the efficacy of spectroscopy-based therapy planning.

  5. Monitoring Radiographic Brain Tumor Progression

    Directory of Open Access Journals (Sweden)

    John H. Sampson

    2011-03-01

    Full Text Available Determining radiographic progression in primary malignant brain tumors has posed a significant challenge to the neuroncology community. Glioblastoma multiforme (GBM, WHO Grade IV through its inherent heterogeneous enhancement, growth patterns, and irregular nature has been difficult to assess for progression. Our ability to detect tumor progression radiographically remains inadequate. Despite the advanced imaging techniques, detecting tumor progression continues to be a clinical challenge. Here we review the different criteria used to detect tumor progression, and highlight the inherent challenges with detection of progression.

  6. Brain Tumors and Fatigue

    Science.gov (United States)

    ... can help calm the mind. Meditation, guided imagery, music therapy, and yoga are just a few worth investigating. Home Donor and Privacy Policies Find Resources Disclaimer Donate Subscribe Login American Brain Tumor Association 8550 W. Bryn Mawr Ave. Ste ...

  7. Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM

    Science.gov (United States)

    Ray, Arun Kumar; Thethi, Har Pal

    2017-01-01

    The segmentation, detection, and extraction of infected tumor area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated Berkeley wavelet transformation (BWT) based brain tumor segmentation. Furthermore, to improve the accuracy and quality rate of the support vector machine (SVM) based classifier, relevant features are extracted from each segmented tissue. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 96.51% accuracy, 94.2% specificity, and 97.72% sensitivity, demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 0.82 dice similarity index coefficient, which indicates better overlap between the automated (machines) extracted tumor region with manually extracted tumor region by radiologists. The simulation results prove the significance in terms of quality parameters and accuracy in comparison to state-of-the-art techniques.

  8. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells.

    Science.gov (United States)

    Wang, Xueqin; Tu, Miaomiao; Tian, Baoming; Yi, Yanjie; Wei, ZhenZhen; Wei, Fang

    2016-11-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future.

  9. Free magnesium levels in normal human brain and brain tumors: sup 31 P chemical-shift imaging measurements at 1. 5 T

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.S.; Vigneron, D.B.; Murphy-Boesch, J.; Nelson, S.J.; Kessler, H.B.; Coia, L.; Curran, W.; Brown, T.R. (Fox Chase Cancer Center, Philadelphia, PA (United States))

    1991-08-01

    The authors have studied a series of normal subjects and patients with brain tumors, by using {sup 31}P three-dimensional chemical shift imaging to obtain localized {sup 31}P spectra of the brain. A significant proportion of brain cytosolic ATP in normal brain is not complexed to Mg{sup 2+}, as indicated by the chemical shift {delta} of the {beta}-P resonance of ATP. The ATP {beta}P resonance position in brain thus is sensitive to changes in intracellular free Mg{sup 2+} concentration and in the proportion of ATP complexed with Mg because this shift lies on the rising portion of the {delta} vs. Mg{sup 2+} titration curve for ATP. They have measured the ATP {beta}-P shift and compared intracellular free Mg{sup 2+} concentration and fractions of free ATP for normal individuals and a limited series of patients with brain tumors. In four of the five spectra obtained from brain tissue containing a substantial proportion of tumor, intracellular free Mg{sup 2+} was increased, and the fraction of free ATP was decreased, compared with normal brain.

  10. Brain tumor delineation based on CT and MR imaging. Implications for radiotherapy treatment planning

    NARCIS (Netherlands)

    Heesters, M A; Wijrdeman, H K; Struikmans, H; Witkamp, T; Moerland, M A

    1993-01-01

    This paper deals with the impact MRI may have on radiotherapy treatment planning of brain tumors. The authors analyzed differences in size and position of treatment fields as indicated by three observers (two radiotherapists and one neuroradiologist) using CT or MR based radiotherapy planning proced

  11. Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection.

    Science.gov (United States)

    Su, Hai; Xing, Fuyong; Yang, Lin

    2016-06-01

    Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96.

  12. Metastatic Brain Tumors

    Directory of Open Access Journals (Sweden)

    Ersin Haciyakupoglu

    2014-04-01

    Full Text Available Metastatic tumor is secondary spread to the central nervous system of primer systemic cancers originating from tissues other than the central nervous system. In adults; there are metastases respectively from lungs, breasts, malign melanoma, renal cell carcinoma, colon and thyroid cancers. 30-60% of lung cancers metastasis to the brain. In children there are quite a few cerebral metastases. Most commonly leukemia, lymphoma, osteogenic sarcoma, rhabdomyosarcoma and germ cell tumors metastasis to the brain. %50 of malign melanoma, lung, breast and colon cancers intend to make multipl metastases but renal cell cancers intend to make solitary metastasis.While lung cancers metastasis to brain in 6-9 months after the definitive diagnosis, renal cancers in 1 year, colon cancers in 2 years, breast cancers and malign melanoma in 3 years metastasis to brain. In 6% of cases there are cerebral metastasis while there isn’t a symptom of a primary tumor. For treatment corticosteroids, surgery, Radiotherapy(RT, Chemotherapy(CT and Stereotactic Radiosurgery(SRS can be implemented. Small cell lung cancers, lymphoma, germ cell tumors are sensitive to RT and CT. Non small cell lung cancers, renal, colon cancers and malign melanoma are radioresistant. The purposes in the surgery of the metastatic brain tumors are; total resection of tumors without neurologic deficits, decreasing the intracranial pressure and decreasing the dose of postoperative radiotherapy. Key Words: Metastatic brain tumors, Stereotactic radiosurgery, Malign melanoma, Lung cancers, Renal cell carcinoma, Radiotherapy, Chemotherapy [Cukurova Med J 2014; 39(2.000: 191-202

  13. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M. [Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Seelos, K.; Yousry, T. [Department of Neuroradiology, Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Exner, H. [Institute for Medical Epidemiology, Klinikum Grosshadern, University of Munich, Munich (Germany); Rosen, B.R. [Department of Radiology, Massachusetts General Hospital, NMR Center, Charlestown, MA (United States)

    1999-09-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.) With 3 figs., 3 tabs., 27 refs.

  14. Imaging in Pediatric Infratentorial Tumors

    Directory of Open Access Journals (Sweden)

    S. Hajiahmadi

    2008-01-01

    Full Text Available Intracranial tumors are the second cause of malignancies in childhood following leukemia. The overall incidence varies between 1:20000 and 1:100000 in different series. They are the most common solid tumors that occur in childhood .The most important diagnostic feature of an intracranial mass is its location. They can be supratentorial or infratentorial. With the exception of the first year of life, infratentorial brain tumors are more frequent than supratentorial tumors in the first decade of life. In particular, these are cerebellar low-grade astrocytomas, medulloblastomas, brain stem gliomas and ependymomas of the fourth ventricle. .Posterior fossa tumors also are readily identified with both CT and MRI. Spectroscopy in the analysis of brain tumors has recently come on the scene but may be of limited practical value when it comes to differentiating tumors. However, CT and especially MRI are the primary imaging modalities for the investigation of brain tumors. Sonography can be used in the neonates. With modern imaging, it is relatively easy to detect the presence of a tumor in most patients. The purpose of this essay is to illustrate the imaging features of various infratentorial brain tumors to make a clue for differentiation them by these features.

  15. Synthesis and Biological Evaluation of an 18Fluorine-Labeled COX Inhibitor—[18F]Fluorooctyl Fenbufen Amide—For Imaging of Brain Tumors

    OpenAIRE

    Ying-Cheng Huang; Yu-Chia Chang; Chun-Nan Yeh; Chung-Shan Yu

    2016-01-01

    Molecular imaging of brain tumors remains a great challenge, despite the advances made in imaging technology. An anti-inflammatory compound may be a useful tool for this purpose because there is evidence of inflammatory processes in brain tumor micro-environments. Fluorooctylfenbufen amide (FOFA) was prepared from 8-chlorooctanol via treatment with potassium phthalimide, tosylation with Ts2O, fluorination with KF under phase transfer catalyzed conditions, deprotection using aqueous hydrazine,...

  16. Brain tumors in infants

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Ghodsi

    2015-01-01

    Full Text Available Background: Brain tumors in infants have different clinical presentations, anatomical distribution, histopathological diagnosis, and clinical prognosis compared with older children. Materials and Methods: A retrospective analysis was done in patients <12 months old who were operated on for primary brain tumor in Children's Hospital Medical Center since 2008 to 2014. Results: Thirty-one infants, 20 males and 11 females, with the mean age of 7.13 months (0.5–12 were enrolled. There were 16 supratentorial and 15 infratentorial tumors. The presenting symptoms included increased head circumference (16; bulge fontanel (15; vomiting (15; developmental regression (11; sunset eye (7; seizure (4; loss of consciousness (4; irritability (3; nystagmus (2; visual loss (2; hemiparesis (2; torticollis (2; VI palsy (3; VII, IX, X nerve palsy (each 2; and ptosis (1. Gross total and subtotal resection were performed in 19 and 11 cases, respectively. Fourteen patients needed external ventricular drainage in the perioperative period, from whom four infants required a ventriculoperitoneal shunt. One patient underwent ventriculoperitoneal shunting without tumor resection. The most common histological diagnoses were primitive neuroectodermal tumor (7, followed by anaplastic ependymoma (6 and grade II ependymoma. The rate of 30-day mortality was 19.3%. Eighteen patients are now well-controlled with or without adjuvant therapy (overall survival; 58%, from whom 13 cases are tumor free (disease free survival; 41.9%, 3 cases have residual masses with fixed or decreased size (progression-free survival; 9.6%, and 2 cases are still on chemotherapy. Conclusion: Brain tumors in infants should be treated with surgical resection, followed by chemotherapy when necessary.

  17. Imaging features of brain tumor-like lesions; Diferentes aspectos de imagem das lesoes pseudotumorais no encefalo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Matheus Fonseca Barbosa; Lisboa, Joao Paulo Ribeiro; Pontes, Bruno de Castro Nogueira; Guedes, Marcelo dos Santos; Silva, Marcia Lopes da [Hospital Alvorada de Moema, SP (Brazil). Setor de Diagnostico por Imagem]. E-mail: doc.es@uol.com.br; Mello, Marco Antonio Rocha [Hospitais Alvorada, Sao Paulo, SP (Brazil). Centro de Diagnostico por Imagem

    2008-07-01

    The purpose of this study is to demonstrate the image aspects of the main pathologies of the brain that may simulate tumors. It was made a retrospective evaluation of our institution patients. The following pathologies were diagnosed: multiple sclerosis, neurosarcoidosis, neurocysticercosis, neurotoxoplasmosis, radionecrosis and stroke. Differential diagnosis among these diseases and neoplastic lesions can be difficult, though imaging technology has advanced rapidly and associated to the current knowledge of the main findings of each one of them may become this task less strenuous. (author)

  18. Dynamic perfusion CT in brain tumors.

    Science.gov (United States)

    Yeung, Timothy Pok Chi; Bauman, Glenn; Yartsev, Slav; Fainardi, Enrico; Macdonald, David; Lee, Ting-Yim

    2015-12-01

    Dynamic perfusion CT (PCT) is an imaging technique for assessing the vascular supply and hemodynamics of brain tumors by measuring blood flow, blood volume, and permeability-surface area product. These PCT parameters provide information complementary to histopathologic assessments and have been used for grading brain tumors, distinguishing high-grade gliomas from other brain lesions, differentiating true progression from post-treatment effects, and predicting prognosis after treatments. In this review, the basic principles of PCT are described, and applications of PCT of brain tumors are discussed. The advantages and current challenges, along with possible solutions, of PCT are presented.

  19. Epidemiological features of brain tumors

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2013-01-01

    Full Text Available Brain tumors account for 1.4% of all cancers and 2.4% of all cancer-related deaths. The incidence of brain tumors varies and it is higher in developed countries of Western Europe, North America, Australia and New Zealand. In Serbia, according to data from 2009, malignant brain tumors account for 2. 2 of all tumors, and from all cancer­related deaths, 3.2% is caused by malignant brain tumors. According to recent statistical reports, an overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 persons/year. The most common benign brain tumor in adults is meningioma, which is most present in women, and the most common malignant tumor is glioblastoma, which is most present in adult men. Due to high mortality, especially in patients diagnosed with glioblastoma and significant brain tumor morbidity, there is a constant interest in understanding its etiology in order to possibly prevent tumor occurrence in future and enable more efficient treatment strategies for this fatal brain disease. Despite the continuously growing number of epidemiological studies on possible factors of tumor incidence, the etiology remains unclear. The only established environmental risk factor of gliomas is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor of brain tumor development. However, studies have been inconsistent and inconclusive, so more definite results are still expected.

  20. Brain tumors in children; Hirntumoren beim Kind

    Energy Technology Data Exchange (ETDEWEB)

    Harting, I.; Seitz, A. [Universitaetsklinikum Heidelberg (Germany). Abt. Neuroradiologie

    2009-06-15

    Brain tumors are common in children; in Germany approximately 400 children are diagnosed every year. In the posterior fossa, cerebellar neoplasms outnumber brainstem gliomas. In contrast to their rarity in adults, brainstem gliomas are not uncommon in children. Supratentorial tumors can be subdivided by location into neoplasms of the cerebral hemispheres, suprasellar and pineal tumors. Astrocytoma is the most common pediatric brain tumor followed by medulloblastoma, ependymoma and craniopharyngeoma. The combination of imaging morphology, tumor localisation and patient age at manifestation form the basis of the neuroradiological differential diagnosis. (orig.)

  1. Peritumoral edema of meningiomas and metastatic brain tumors: differences in diffusion characteristics evaluated with diffusion-tensor MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toh, Cheng-Hong; Wong, Alex M.-C; Wong, Ho-Fai; Wan, Yung-Liang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Wei, Kuo-Chen [Chang Gung Memorial Hospital, Department of Neurosurgery, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Ng, Shu-Hang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Chang Gung Memorial Hospital, Molecular Image Center, Tao-Yuan (China)

    2007-06-15

    We prospectively compared the fractional anisotropy (FA) and mean diffusivity (MD) of the peritumoral edema of meningiomas and metastatic brain tumors with diffusion-tensor magnetic resonance (MR) imaging. The study protocol was approved by the local ethics committee, and written informed consent was obtained. Preoperative diffusion-tensor MR imaging was performed in 15 patients with meningiomas and 11 patients with metastatic brain tumors. Regions of interest (ROI) were placed in the peritumoral edema and normal-appearing white matter (NAWM) of the contralateral hemisphere to measure the FA and MD. The FA and MD ratios were calculated for each ROI in relation to the NAWM of the contralateral hemisphere. Changes in peritumoral MD and FA, in terms of primary values and ratios, were compared using a two-sample t-test; P < 0.05 was taken as indicating statistical significance. The mean MD values (x 10{sup -3} mm{sup 2}/s) of the peritumoral edema for metastases and meningiomas, respectively, were 0.902 {+-} 0.057 and 0.820 {+-} 0.094, the mean MD ratios were 220.3 {+-} 22.6 and 193.1 {+-} 23.4, the mean FA values were 0.146 {+-} 0.026 and 0.199 {+-} 0.052, and the mean FA ratios were 32.3 {+-} 5.9 and 46.0 {+-} 12.1. All the values were significantly different between metastases and meningiomas (MD values P = 0.016, MD ratios P = 0.006, FA values P = 0.005, FA ratios P = 0.002). The peritumoral edema of metastatic brain tumors and meningiomas show different MD and FA on diffusion-tensor MR imaging. (orig.)

  2. Diffusion tensor imaging and proton magnetic resonance spectroscopy in brain tumorCorrelation between structure and metabolism

    Institute of Scientific and Technical Information of China (English)

    Zhigang Min; Chen Niu; Netra Rana; Huanmei Ji; Ming Zhang

    2013-01-01

    Proton magnetic resonance spectroscopy and diffusion tensor imaging are non-invasive techniques used to detect metabolites and water diffusion in vivo. Previous studies have confirmed a positive correlation of individual fractional anisotropy values with N-acetylaspartate/creatine and N-acetylaspartate/choline ratios in tumors, edema, and normal white matter. This study divided the brain parenchyma into tumor, peritumoral edema, and normal-appearing white matter according to MRI data, and analyzed the correlation of metabolites with water molecular diffusion. Results demonstrated that in normal-appearing white matter, N-acetylaspartate/creatine ratios were positively correlated with fractional anisotropy values, negatively correlated with radial diffusivities, and positively correlated with maximum eigenvalues. Maximum eigenvalues and radial diffusivities in peritumoral edema showed a negative correlation with choline, N-acetylaspartate, and creatine. Radial diffusivities in tumor demonstrated a negative correlation with choline. These data suggest that the relationship between metabolism and structure is markedly changed from normal white matter to peritumoral edema and tumor. Neural metabolism in the peritumoral edema area decreased with expanding extracellular space. The normal relationship of neural function and microstructure disappeared in the tumor region.

  3. Tumor Microenvironment in the Brain

    Energy Technology Data Exchange (ETDEWEB)

    Lorger, Mihaela [Leeds Institute of Molecular Medicine, University of Leeds, St. James’s University Hospital, Beckett Street, Leeds, LS9 7TF (United Kingdom)

    2012-02-22

    In addition to malignant cancer cells, tumors contain a variety of different stromal cells that constitute the tumor microenvironment. Some of these cell types provide crucial support for tumor growth, while others have been suggested to actually inhibit tumor progression. The composition of tumor microenvironment varies depending on the tumor site. The brain in particular consists of numerous specialized cell types such as microglia, astrocytes, and brain endothelial cells. In addition to these brain-resident cells, primary and metastatic brain tumors have also been shown to be infiltrated by different populations of bone marrow-derived cells. The role of different cell types that constitute tumor microenvironment in the progression of brain malignancies is only poorly understood. Tumor microenvironment has been shown to be a promising therapeutic target and diagnostic marker in extracranial malignancies. A better understanding of tumor microenvironment in the brain would therefore be expected to contribute to the development of improved therapies for brain tumors that are urgently required due to a poor availability of treatments for these malignancies. This review summarizes some of the known interactions between brain tumors and different stromal cells, and also discusses potential therapeutic approaches within this context.

  4. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...

  5. Tumor Types: Understanding Brain Tumors

    Science.gov (United States)

    ... Classification of Tumors of the Central Nervous System Purchase WHO Blue Book NBTS Official Statement Questions and ... Privacy Copyright Site Search Search term Submit Submit Facebook Twitter YouTube Flickr

  6. MRI Brain Tumor Segmentation Methods- A Review

    OpenAIRE

    Gursangeet, Kaur; Jyoti, Rani

    2016-01-01

    Medical image processing and its segmentation is an active and interesting area for  researchers. It has reached at the tremendous place in diagnosing tumors after the discovery of CT and MRI. MRI is an useful tool to detect the brain tumor and segmentation is performed to carry out the useful portion from an image. The purpose of this paper is to provide an overview of different image segmentation methods like watershed algorithm, morphological operations, neutrosophic sets, thresholding, K-...

  7. Cortical mapping by functional magnetic resonance imaging in patients with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Majos, Agata; Stefanczyk, Ludomir; Goraj, Bozena [Medical University of Lodz, Department of Radiology, Lodz (Poland); Tybor, Krzysztof [Medical University of Lodz, Department of Neurosurgery, Lodz (Poland)

    2005-06-01

    The aim of our study was to establish the effectiveness of the functional MRI (fMRI) technique in comparison with intraoperative cortical stimulation (ICS) in planning cortex-saving neurosurgical interventions. The combination of sensory and motor stimulation during fMRI experiments was used to improve the exactness of central sulcus localization. The study subjects were 30 volunteers and 33 patients with brain tumors in the rolandic area. Detailed topographical relations of activated areas in fMRI and intraoperative techniques were compared. The agreement in the location defined by the two methods for motor centers was found to be 84%; for sensory centers it was 83%. When both kinds of activation are taken into account this agreement increases to 98%. A significant relation was found between fMRI and ICS for the agreement of the distance both for motor and sensory centers (p=0.0021-0.0024). Also a strong dependence was found between the agreement of the location and the agreement of the distance for both kinds of stimulation. The spatial correlation between fMRI and ICS methods for the sensorimotor cortex is very high. fMRI combining functional and structural information is very helpful for preoperative neurosurgical planning. The sensitivity of the fMRI technique in brain mapping increases when using both motor and sensory paradigms in the same patient. (orig.)

  8. NANOROBOTS IN BRAIN TUMOR

    Directory of Open Access Journals (Sweden)

    Sayyed Tarannum, Garje Dattatray H

    2011-02-01

    Full Text Available Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured today, including the interaction of nanostructured materials with biological systems. The authors predict that technology-assisted medicine and robotics in particular, will have a significant impact over the next few decades. Robots will augment the surgeon’s motor performance, diagnosis capability, and senses with haptics (feel, augmented reality (sight, and ultrasound (sound. Robotic devices have been used in cardiac surgery, urology, fetal surgery, pediatrics, neurosurgery, orthopedics, and many other medical disciplines. In this article, we present the Nanorobot drug delivery to brain tumor, paying special attention to the transformation trends of organizations, and the integration of robots in brain tumor and underscoring potential repercussions which may deserve more attention and further research.

  9. Differentiation of Glioblastomas from Metastatic Brain Tumors by Tryptophan Uptake and Kinetic Analysis: A Positron Emission Tomographic Study with Magnetic Resonance Imaging Comparison

    Directory of Open Access Journals (Sweden)

    David O. Kamson

    2013-07-01

    Full Text Available Differentiating high-grade gliomas from solitary brain metastases is often difficult by conventional magnetic resonance imaging (MRI; molecular imaging may facilitate such discrimination. We tested the accuracy of α[11C]methyl-L-tryptophan (AMT–positron emission tomography (PET to differentiate newly diagnosed glioblastomas from brain metastases. AMT-PET was performed in 36 adults with suspected brain malignancy. Tumoral AMT accumulation was measured by standardized uptake values (SUVs. Tracer kinetic analysis was also performed to separate tumoral net tryptophan transport (by AMT volume of distribution [VD] from unidirectional uptake rates using dynamic PET and blood input function. Differentiating the accuracy of these PET variables was evaluated and compared to conventional MRI. For glioblastoma/metastasis differentiation, tumoral AMT SUV showed the highest accuracy (74% and the tumor/cortex VD ratio had the highest positive predictive value (82%. The combined accuracy of MRI (size of contrast-enhancing lesion and AMT-PET reached up to 93%. For ring-enhancing lesions, tumor/cortex SUV ratios were higher in glioblastomas than in metastatic tumors and could differentiate these two tumor types with > 90% accuracy. These results demonstrate that evaluation of tryptophan accumulation by PET can enhance pretreatment differentiation of glioblastomas and metastatic brain tumors. This approach may be particularly useful in patients with a newly diagnosed solitary ring-enhancing mass.

  10. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  11. Asymptomatic brain tumor detected at brain check-up

    Energy Technology Data Exchange (ETDEWEB)

    Onizuka, Masanari; Suyama, Kazuhiko; Shibayama, Akira; Hiura, Tsuyoshi; Horie, Nobutaka; Miyazaki, Hisaya [Sankoukai Miyazaki Hospital, Isahaya, Nagasaki (Japan)

    2001-09-01

    Brain check-up was performed in 4000 healthy subjects who underwent medical and radiological examinations for possible brain diseases in our hospital from April 1996 to March 2000. Magnetic resonance imaging revealed 11 brain tumors which consisted of six meningiomas, three pituitary adenomas, one astrocytoma, and one epidermoid cyst. The detection rate of incidental brain tumor in our hospital was 0.3%. Nine patients underwent surgery, with one case of morbidity due to postoperative transient oculomotor nerve paresis. The widespread use of brain check-up may increasingly detect asymptomatic brain tumors. Surgical indications for such lesions remain unclear, and the strategy for treatment should be determined with consideration of the patient's wishes. (author)

  12. GLCM textural features for Brain Tumor Classification

    Directory of Open Access Journals (Sweden)

    N S Zulpe

    2012-05-01

    Full Text Available Automatic recognition system for medical images is challenging task in the field of medical image processing. Medical images acquired from different modalities such as Computed Tomography (CT, Magnetic Resonance Imaging (MRI, etc which are used for the diagnosis purpose. In the medical field, brain tumor classification is very important phase for the further treatment. Human interpretation of large number of MRI slices (Normal or Abnormal may leads to misclassification hence there is need of such a automated recognition system, which can classify the type of the brain tumor. In this research work, we used four different classes of brain tumors and extracted the GLCM based textural features of each class, and applied to two-layered Feed forward Neural Network, which gives 97.5% classification rate.

  13. MRI and MRS of human brain tumors.

    Science.gov (United States)

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM).

  14. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  15. In vitro influence of hypoxia on bioluminescence imaging in brain tumor cells

    Science.gov (United States)

    Moriyama, Eduardo H.; Jarvi, Mark; Niedre, Mark; Mocanu, Joseph D.; Moriyama, Yumi; Li, Buhong; Lilge, Lothar; Wilson, Brian C.

    2007-02-01

    Bioluminescence Imaging (BLI) has been employed as an imaging modality to identify and characterize fundamental processes related to cancer development and response at cellular and molecular levels. This technique is based on the reaction of luciferin with oxygen in the presence of luciferase and ATP. A major concern in this technique is that tumors are generally hypoxic, either constitutively and/or as a result of treatment, therefore the oxygen available for the bioluminescence reaction could possibly be reduced to limiting levels, and thus leading to underestimation of the actual number of luciferase-labeled cells during in vivo procedures. In this report, we present the initial in vitro results of the oxygen dependence of the bioluminescence signal in rat gliosarcoma 9L cells tagged with the luciferase gene (9L luc cells). Bioluminescence photon emission from cells exposed to different oxygen tensions was detected by a sensitive CCD camera upon exposure to luciferin. The results showed that bioluminescence signal decreased at administered pO II levels below about 5%, falling by approximately 50% at 0.2% pO II. Additional experiments showed that changes in BLI was due to the cell inability to maintain normal levels of ATP during the hypoxic period reducing the ATP concentration to limiting levels for BLI.

  16. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review.

    Science.gov (United States)

    Johnson, Kimberly J; Cullen, Jennifer; Barnholtz-Sloan, Jill S; Ostrom, Quinn T; Langer, Chelsea E; Turner, Michelle C; McKean-Cowdin, Roberta; Fisher, James L; Lupo, Philip J; Partap, Sonia; Schwartzbaum, Judith A; Scheurer, Michael E

    2014-12-01

    Childhood brain tumors are the most common pediatric solid tumor and include several histologic subtypes. Although progress has been made in improving survival rates for some subtypes, understanding of risk factors for childhood brain tumors remains limited to a few genetic syndromes and ionizing radiation to the head and neck. In this report, we review descriptive and analytical epidemiology childhood brain tumor studies from the past decade and highlight priority areas for future epidemiology investigations and methodological work that is needed to advance our understanding of childhood brain tumor causes. Specifically, we summarize the results of a review of studies published since 2004 that have analyzed incidence and survival in different international regions and that have examined potential genetic, immune system, developmental and birth characteristics, and environmental risk factors. Cancer Epidemiol Biomarkers Prev; 23(12); 2716-36. ©2014 AACR.

  17. Shift of the pyramidal tract during resection of the intraaxial brain tumors estimated by intraoperative diffusion-weighted imaging.

    Science.gov (United States)

    Ozawa, Norihiko; Muragaki, Yoshihiro; Nakamura, Ryoichi; Hori, Tomokatsu; Iseki, Hiroshi

    2009-02-01

    The present study evaluated the shift of the pyramidal tract during resection of 17 proximal intraaxial brain tumors. In each case intraoperative diffusion-weighted (iDW) magnetic resonance imaging with a motion-probing gradient applied in the anteroposterior direction was performed using a scanner with a 0.3 T vertical magnetic field. The position of the white matter bundles containing the pyramidal tract was estimated on the coronal images before and after resection of the neoplasm, and both quantitative and directional evaluation of its displacement was done. In all cases iDW imaging provided visualization of the structure of interest. The magnitude of the pyramidal tract displacement due to removal of the neoplasm varied from 0.5 to 8.7 mm (mean 4.4 +/- 2.5 mm) on the lesion side and from 0 to 3.6 mm (mean 1.3 +/- 1.1 mm) on the normal side (p iDW imaging with updated neuronavigation.

  18. Monte Carlo simulation studies on scintillation detectors and image reconstruction of brain-phantom tumors in TOFPET

    Directory of Open Access Journals (Sweden)

    Mondal Nagendra

    2009-01-01

    Full Text Available This study presents Monte Carlo Simulation (MCS results of detection efficiencies, spatial resolutions and resolving powers of a time-of-flight (TOF PET detector systems. Cerium activated Lutetium Oxyorthosilicate (Lu 2 SiO 5 : Ce in short LSO, Barium Fluoride (BaF 2 and BriLanCe 380 (Cerium doped Lanthanum tri-Bromide, in short LaBr 3 scintillation crystals are studied in view of their good time and energy resolutions and shorter decay times. The results of MCS based on GEANT show that spatial resolution, detection efficiency and resolving power of LSO are better than those of BaF 2 and LaBr 3 , although it possesses inferior time and energy resolutions. Instead of the conventional position reconstruction method, newly established image reconstruction (talked about in the previous work method is applied to produce high-tech images. Validation is a momentous step to ensure that this imaging method fulfills all purposes of motivation discussed by reconstructing images of two tumors in a brain phantom.

  19. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  20. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Gajjar, Amar; Broniscer, Alberto [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Li Yimei [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, TN (United States); Glenn, George R.; Kun, Larry E.; Ogg, Robert J. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2012-04-01

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4-39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54-59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6-5.0 years). The median mean dose to the pons was 56 Gy (range, 7-59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response in

  1. Brain tumor survivors speak out.

    Science.gov (United States)

    Carlson-Green, Bonnie

    2009-01-01

    Although progress has been made in the treatment of childhood brain tumors,work remains to understand the complexities of disease, treatment, and contextual factors that underlie individual differences in outcome. A combination of both an idiographic approach (incorporating observations made by adult survivors of childhood brain tumors) and a nomothetic approach (reviewing the literature for brain tumor survivors as well as childhood cancer survivors) is presented. Six areas of concern are reviewed from both an idiographic and nomothetic perspective, including social/emotional adjustment, insurance, neurocognitive late effects, sexuality and relationships, employment, and where survivors accessed information about their disease and treatment and possible late effects. Guidelines to assist health care professionals working with childhood brain tumor survivors are offered with the goal of improving psychosocial and neurocognitive outcomes in this population.

  2. Fluorescent Nanoparticle Uptake for Brain Tumor Visualization

    Directory of Open Access Journals (Sweden)

    Rachel Tréhin

    2006-04-01

    Full Text Available Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP tumors, mean overestimations of 2 and 24 µm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon and primary (Gli36 glioma brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.

  3. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors

    DEFF Research Database (Denmark)

    Larsson, H B; Stubgaard, M; Frederiksen, Jette Lautrup Battistini;

    1990-01-01

    In this study quantitation of the degree of deficiency of the blood-brain barrier (BBB) in patients with multiple sclerosis or brain tumors, by using MRI, is shown to be possible. As a measure of permeability of the BBB to Gadolinium-DTPA (Gd-DTPA) the flux per unit of distribution volume per unit...

  4. Which is the best advanced MR imaging protocol for predicting recurrent metastatic brain tumor following gamma-knife radiosurgery: focused on perfusion method

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Myeong Ju; Kim, Ho Sung; Choi, Choong Gon; Kim, Sang Joon [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Songpa-Gu, Seoul (Korea, Republic of)

    2015-04-01

    High spatial resolution of dynamic contrast-enhanced (DCE) MR imaging allows characterization of heterogenous tumor microenvironment. Our purpose was to determine which is the best advanced MR imaging protocol, focused on additional MR perfusion method, for predicting recurrent metastatic brain tumor following gamma-knife radiosurgery (GKRS). Seventy-two consecutive patients with post-GKRS metastatic brain tumor were enrolled. Two readers independently calculated the percentile histogram cutoffs for normalized cerebral blood volume (nCBV) from dynamic susceptibility contrast (DSC) imaging and initial area under the time signal-intensity curve (IAUC) from DCE imaging, respectively. Area under the receiver operating characteristic curve (AUC) and interreader agreement were assessed. For differentiating tumor recurrence from therapy effect, adding DCE imaging to diffusion-weighted imaging (DWI) significantly improved AUC from 0.79 to 0.95 for reader 1 and from 0.80 to 0.96 for reader 2, respectively. There was no significant difference of AUC between the combination of DWI with DSC imaging and the combination of DWI with DCE imaging for both readers. With the combination of DWI and DCE imaging, the sensitivity and specificity were 86.7 and 88.1 % for reader 1 and 90.0 and 85.7 % for reader 2, respectively. The intraclass correlation coefficient (ICC) between readers was highest for calculation of the 90th percentile histogram cutoffs for IAUC (ICC, 0.87). Adding perfusion MR imaging to DWI significantly improves the prediction of recurrent metastatic tumor; however, the diagnostic performance is not affected by selection of either DSC or DCE MR perfusion method. (orig.)

  5. Synthesis and Biological Evaluation of an (18)Fluorine-Labeled COX Inhibitor--[(18)F]Fluorooctyl Fenbufen Amide--For Imaging of Brain Tumors.

    Science.gov (United States)

    Huang, Ying-Cheng; Chang, Yu-Chia; Yeh, Chun-Nan; Yu, Chung-Shan

    2016-03-21

    Molecular imaging of brain tumors remains a great challenge, despite the advances made in imaging technology. An anti-inflammatory compound may be a useful tool for this purpose because there is evidence of inflammatory processes in brain tumor micro-environments. Fluorooctylfenbufen amide (FOFA) was prepared from 8-chlorooctanol via treatment with potassium phthalimide, tosylation with Ts2O, fluorination with KF under phase transfer catalyzed conditions, deprotection using aqueous hydrazine, and coupling with fenbufen. The corresponding radiofluoro product [(18)F]FOFA, had a final radiochemical yield of 2.81 mCi and was prepared from activated [(18)F]F(-) (212 mCi) via HPLC purification and concentration. The radiochemical purity was determined to be 99%, and the specific activity was shown to exceed 22 GBq/μmol (EOS) based on decay-corrected calculations. Ex-vivo analysis of [(18)F]FOFA in plasma using HPLC showed that the agent had a half-life of 15 min. PET scanning showed significant accumulation of [(18)F]FOFA over tumor loci with reasonable contrast in C6-glioma bearing rats. These results suggest that this molecule is a promising agent for the visualization of brain tumors. Further investigations should focus on tumor micro-environments.

  6. Synthesis and Biological Evaluation of an 18Fluorine-Labeled COX Inhibitor—[18F]Fluorooctyl Fenbufen Amide—For Imaging of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Ying-Cheng Huang

    2016-03-01

    Full Text Available Molecular imaging of brain tumors remains a great challenge, despite the advances made in imaging technology. An anti-inflammatory compound may be a useful tool for this purpose because there is evidence of inflammatory processes in brain tumor micro-environments. Fluorooctylfenbufen amide (FOFA was prepared from 8-chlorooctanol via treatment with potassium phthalimide, tosylation with Ts2O, fluorination with KF under phase transfer catalyzed conditions, deprotection using aqueous hydrazine, and coupling with fenbufen. The corresponding radiofluoro product [18F]FOFA, had a final radiochemical yield of 2.81 mCi and was prepared from activated [18F]F− (212 mCi via HPLC purification and concentration. The radiochemical purity was determined to be 99%, and the specific activity was shown to exceed 22 GBq/μmol (EOS based on decay-corrected calculations. Ex-vivo analysis of [18F]FOFA in plasma using HPLC showed that the agent had a half-life of 15 min. PET scanning showed significant accumulation of [18F]FOFA over tumor loci with reasonable contrast in C6-glioma bearing rats. These results suggest that this molecule is a promising agent for the visualization of brain tumors. Further investigations should focus on tumor micro-environments.

  7. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials

    NARCIS (Netherlands)

    B.M. Ellingson (Benjamin M.); M. Bendszus (Martin); J. Boxerman (Jerrold); D. Barboriak (Daniel); B.J. Erickson (Bradley J.); M. Smits (Marion); S.J. Nelson (Sarah J.); E. Gerstner (Elizabeth); B. Alexander (Brian); G. Goldmacher (Gregory); W. Wick (Wolfgang); M.A. Vogelbaum (Michael); M. Weller (Michael); E. Galanis (Evanthia); J. Kalpathy-Cramer (Jayashree); L. Shankar; P. Jacobs (Paula); W.B. Pope (Whitney B.); D. Yang (Dewen); C. Chung (Caroline); R.H. Knopp; S. Cha (Soonme); M.J. van den Bent (Martin); S.M. Chang (Susan); W.K. Al Yung; T.F. Cloughesy (Timothy F.); P.Y. Wen (Patrick Y.); M.R. Gilbert (Mark R.); A. Whitney (Andrew); D. Sandak (David); A. Musella (Al); C. Haynes (Chas); M. Wallace (Max); D.F. Arons (David F.); A. Kingston (Ann)

    2015-01-01

    textabstractA recent joint meeting was held on January 30, 2014, with the US Food and Drug Administration (FDA), National Cancer Institute (NCI), clinical scientists, imaging experts, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocate groups to discuss ima

  8. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  9. Advantages of stereotaxic needle biopsy of brain tumor using interventional magnetic resonance imaging. Report of 12 cases

    Energy Technology Data Exchange (ETDEWEB)

    Terao, Tohru; Hashimoto, Takuo; Koyama, Tsutomu; Takahashi, Koichi; Harada, Junta [Jikei Univ., Chiba (Japan). Kashiwa Hospital; Abe, Toshiaki

    1998-12-01

    Interventional MRI, an advanced neuroimaging system, was used to perform stereotaxic needle biopsy of brain tissue (AIRIS, 0.3 Tesla, Hitachi) in 12 patients (9 males, 3 females) with intraparenchymal abnormal lesions. This system permits accurate and safe biopsy of brain tissue in real time. Patient ages ranged from 31 to 79 years (mean 61.5 years). We evaluated the abnormal lesion and dominant hemisphere of these patients preoperatively by using CT, MRI and cerebral angiography. Lesions were located in the left frontal lobe in 3 cases, the right frontal lobe in 1 case, the left temporal lobe in 1 case, the right temporal lobe in 1 case, the left parietal lobe in 2 cases, the right parietal lobe in 1 case, the left occipital lobe in 1 case, the bilateral basal ganglia in 1 case and the corpus callosum in 1 case. The sampling points were in the dominant hemisphere in 7 cases and in the non-dominant hemisphere in 5 cases. The diagnosis based on stereotaxic needle biopsy using this system were 4 gliomas, 1 brain abscess, 1 metastatic brain tumor, 1 granuloma, 2 cerebral infarctions, 2 malignant lymphomas and 1 normal brain tissue. Success rate of biopsy for our 12 cases using this system was 91.7%. Brain hemorrhage was a complication in 1 case but there was no case of meningitis or convulsion. This method is useful in patients with inoperable lesions, including deep lesion or lesions in the brainstem diencephalon or dominant hemisphere, in patients with serious complications, and in geriatric patients. In the future, this MRI system may be applied to minimally invasive therapies such as tumor ablation, cryosurgery, chemoablation, and ventrolateral thalamotomy for parkinsonism. (author)

  10. [Differential infratentorial brain tumor diagnosis in children].

    Science.gov (United States)

    Warmuth-Metz, M; Kühl, J; Rutkowski, S; Krauss, J; Solymosi, L

    2003-11-01

    With the exception of the first year of life, infratentorial brain tumors are more frequent in the first decade than tumors in the supratentorial compartment. In particular these are cerebellar low-grade astrocytomas, medulloblastomas, brainstem gliomas and ependymomas of the fourth ventricle. The morphology on MRI and CT and the mode of dissemination permit differential diagnosis in many cases. To allow correct stratification into different treatments in possibly disseminating malignant brain tumors, knowledge of the status of dissemination is essential, and therefore not only cranial but also spinal MRI is indispensable for staging. If the spinal MRI is performed in the immediate postoperative period, knowledge of the normal non-specific purely postoperative changes, often seen as enhancement in the subdural spinal spaces, is necessary in order to avoid misinterpretation as meningial seeding. The differential diagnosis of pediatric infratentorial brain tumors and the morphology of subdural enhancement are illustrated with typical images. The natural history of the most frequent tumors and its importance for treatment decisions is discussed in light of the literature.

  11. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors

    DEFF Research Database (Denmark)

    Larsson, H B; Stubgaard, M; Frederiksen, J L;

    1990-01-01

    In this study quantitation of the degree of deficiency of the blood-brain barrier (BBB) in patients with multiple sclerosis or brain tumors, by using MRI, is shown to be possible. As a measure of permeability of the BBB to Gadolinium-DTPA (Gd-DTPA) the flux per unit of distribution volume per unit......, and the results were comparable to results obtained from similar studies using positron emission tomography. The improved possibility of quantitating the defect of the BBB by MRI may give new information about pathogenesis or etiology, and leads to improved methods in monitoring the efficacy of treatments...

  12. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution

    Directory of Open Access Journals (Sweden)

    Kim SM

    2015-12-01

    Full Text Available Seong Muk Kim,1 Chang Hyun Jeong,2 Ji Sun Woo,2 Chung Heon Ryu,1 Jeong-Hwa Lee,3 Sin-Soo Jeun1,21Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea; 2Department of Neurosurgery, Seoul St Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea; 3Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, KoreaAbstract: Mesenchymal stem cell (MSC-based gene therapy is a promising tool for the treatment of various neurological diseases, including brain tumors. However, the tracking of in vivo stem cell migration, distribution, and survival need to be defined for their clinical application. The systemic routes of stem cell delivery must be determined because direct intracerebral injection as a cure for brain tumors is an invasive method. In this study, we show for the first time that near-infrared (NIR imaging can reveal the distribution and tumor tropism of intravenously injected MSCs in an intracranial xenograft glioma model. MSCs were labeled with NIR fluorescent nanoparticles, and the effects of the NIR dye on cell proliferation and migratory capacity were evaluated in vitro. We investigated the tumor-targeting properties and tissue distribution of labeled MSCs introduced by intravenous injection and followed by in vivo imaging analysis, histological analysis, and real-time quantitative polymerase chain reaction. We observed no cytotoxicity or change in the overall growth rate and characteristics of labeled MSCs compared with control MSCs. NIR fluorescent imaging showed the organ distribution and targeted tumor tropism of systemically injected human MSCs. A significant number of MSCs accumulated specifically at the tumor site in the mouse brain. These results suggest that NIR-based cell tracking is a potentially useful imaging technique to visualize cell survival, migration, and distribution for the application of MSC

  13. Stereoselective synthesis and biological evaluation of syn-1-amino-3-[18F]fluorocyclobutyl-1-carboxylic acid as a potential positron emission tomography brain tumor imaging agent.

    Science.gov (United States)

    Yu, Weiping; Williams, Larry; Camp, Vernon M; Malveaux, Eugene; Olson, Jeffrey J; Goodman, Mark M

    2009-03-01

    Amino acid syn-1-amino-3-fluoro-cyclobutyl-1-carboxylic acid (syn-FACBC) 12, the isomer of anti-FACBC, has been selectively synthesized and [(18)F] radiofluorinated in 52% decay-corrected yield using no-carrier-added [(18)F]fluoride. The key step in the synthesis of the desired isomer involved stereoselective reduction using lithium alkylborohydride/zinc chloride, which improved the ratio of anti-alcohol to syn-alcohol from 17:83 to 97:3. syn-FACBC 12 entered rat 9L gliosarcoma cells primarily via L-type amino acid transport in vitro with high uptake of 16% injected dose per 5 x 10(5) cells. Biodistribution studies in rats with 9L gliosarcoma brain tumors demonstrated high tumor to brain ratio of 12:1 at 30 min post injection. In this model, amino acid syn-[(18)F]FACBC 12 is a promising metabolically based radiotracer for positron emission tomography brain tumor imaging.

  14. State of the art survey on MRI brain tumor segmentation.

    Science.gov (United States)

    Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar

    2013-10-01

    Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized.

  15. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors.

    Science.gov (United States)

    White, Carissa M; Pope, Whitney B; Zaw, Taryar; Qiao, Joe; Naeini, Kourosh M; Lai, Albert; Nghiemphu, Phioanh L; Wang, J J; Cloughesy, Timothy F; Ellingson, Benjamin M

    2014-01-01

    The objective of the current study was to evaluate the regional and voxel-wise correlation between dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) measurement of cerebral blood flow (CBF) in patients with brain tumors. Thirty patients with histologically verified brain tumors were evaluated in the current study. DSC-MRI was performed by first using a preload dose of gadolinium contrast, then collecting a dynamic image acquisition during a bolus of contrast, followed by posthoc contrast agent leakage correction. Pseudocontinuous ASL was collected using 30 pairs of tag and control acquisition using a 3-dimensional gradient-echo spin-echo (GRASE) acquisition. All images were registered to a high-resolution anatomical atlas. Average CBF measurements within regions of contrast-enhancement and T2 hyperintensity were evaluated between the two modalities. Additionally, voxel-wise correlation between CBF measurements obtained with DSC and ASL were assessed. Results demonstrated a positive linear correlation between DSC and ASL measurements of CBF when regional average values were compared; however, a statistically significant voxel-wise correlation was only observed in around 30-40% of patients. These results suggest DSC and ASL may provide regionally similar, but spatially different measurements of CBF.

  16. Intraoperative MRI in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhri, Asim F. [Le Bonheur Children' s Hospital, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Siddiqui, Adeel [University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Klimo, Paul; Boop, Frederick A. [University of Tennessee Health Science Center, Department of Neurosurgery, Memphis, TN (United States); Le Bonheur Children' s Hospital, Le Bonheur Neuroscience Institute, Memphis, TN (United States); Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States); St. Jude Children' s Hospital, Division of Neurosurgery, Department of Surgery, Memphis, TN (United States)

    2015-09-15

    Intraoperative magnetic resonance imaging (iMRI) has emerged as an important tool in guiding the surgical management of children with brain tumors. Recent advances have allowed utilization of high field strength systems, including 3-tesla MRI, resulting in diagnostic-quality scans that can be performed while the child is on the operating table. By providing information about the possible presence of residual tumor, it allows the neurosurgeon to both identify and resect any remaining tumor that is thought to be safely accessible. By fusing the newly obtained images with the surgical guidance software, the images have the added value of aiding in navigation to any residual tumor. This is important because parenchyma often shifts during surgery. It also gives the neurosurgeon insight into whether any immediate postoperative complications have occurred. If any complications have occurred, the child is already in the operating room and precious minutes lost in transport and communications are saved. In this article we review the three main approaches to an iMRI system design. We discuss the possible roles for iMRI during intraoperative planning and provide guidance to help radiologists and neurosurgeons alike in the collaborative management of these children. (orig.)

  17. Classification of Medical Brain Images

    Institute of Scientific and Technical Information of China (English)

    Pan Haiwei(潘海为); Li Jianzhong; Zhang Wei

    2003-01-01

    Since brain tumors endanger people's living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.

  18. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape

    DEFF Research Database (Denmark)

    Agn, Mikael; Puonti, Oula; Rosenschöld, Per Munck af;

    2016-01-01

    In this paper, we present a fully automated generative method for brain tumor segmentation in multi-modal magnetic resonance images. The method is based on the type of generative model often used for segmenting healthy brain tissues, where tissues are modeled by Gaussian mixture models combined...... with a spatial atlas-based tissue prior. We extend this basic model with a tumor prior, which uses convolutional restricted Boltzmann machines (cRBMs) to model the shape of both tumor core and complete tumor, which includes edema and core. The cRBMs are trained on expert segmentations of training images, without...

  19. Gene therapy for brain tumors.

    Science.gov (United States)

    Bansal, K; Engelhard, H H

    2000-09-01

    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  20. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster.

  1. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET).

    Science.gov (United States)

    Bouhlel, Ahlem; Alyami, Wadha; Li, Aixiao; Yuan, Liya; Rich, Keith; McConathy, Jonathan

    2016-04-14

    Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.

  2. Tumor hypoxia and microscopic diffusion capacity in brain tumors: A comparison of {sup 62}Cu-Diacetyl-Bis (N4-Methylthiosemicarbazone) PET/CT and diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hino-Shishikura, Ayako; Tateishi, Ukihide; Shibata, Hirofumi; Yoneyama, Tomohiro; Nishii, Toshiaki; Torii, Ikuo; Inoue, Tomio [Graduate School of Medicine, Yokohama City University, Department of Radiology, Yokohama (Japan); Tateishi, Kensuke; Ohtake, Makoto; Kawahara, Nobutaka [Graduate School of Medicine, Yokohama City University, Department of Neurosurgery, Yokohama (Japan)

    2014-07-15

    The aim of this study was to clarify the relationship between tumor hypoxia and microscopic diffusion capacity in primary brain tumors using {sup 62}Cu-Diacetyl-Bis (N4-Methylthiosemicarbazone) ({sup 62}Cu-ATSM) PET/CT and diffusion-weighted MR imaging (DWI). This study was approved by the institutional human research committee and was HIPAA compliant, and informed consent was obtained from all patients. {sup 62}Cu-ATSM PET/CT and DWI were performed in a total of 40 primary brain tumors of 34 patients with low grade glioma (LGG, n = 13), glioblastoma (GBM, n = 20), and primary central nervous system lymphoma (PCNSL, n = 7). {sup 62}Cu-ATSM PET/CT parameters and apparent diffusion coefficient (ADC) obtained by DWI were compared. High intensity signals by {sup 62}Cu-ATSM PET/CT and DWI in patients with GBM and PCNSL, and low intensity signals in LGG patients were observed. An inverse correlation was found between maximum SUV (SUV{sub max}) and minimum ADC (ADC{sub min}) (r = -0.583, p < 0.0001), and between tumor/brain ratio (T/B{sub ratio}) and ADC{sub min} for all tumors (r = -0.532, p < 0.0001). Both SUV{sub max} and T/B{sub ratio} in GBM were higher than LGG (p < 0.0001 and p < 0.0001), and those in PCNSL were also higher than GBM (p = 0.033 and p = 0.044). The ADC{sub min} was lower in GBM (p = 0.011) and PCNSL (p = 0.01) than in LGG, while no significant difference was found between GBM and PCNSL (p = 0.90). Tumor hypoxia assessed by {sup 62}Cu-ATSM PET/CT correlated with microscopic diffusion capacity obtained by DWI in brain tumors. Both {sup 62}Cu-ATSM PET/CT and DWI were considered feasible imaging methods for grading glioma. However, {sup 62}Cu-ATSM PET/CT provided additional diagnostic information to differentiate between GBM and PCNSL. (orig.)

  3. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles.

    Science.gov (United States)

    Barker, Jocelyn; Hoogi, Assaf; Depeursinge, Adrien; Rubin, Daniel L

    2016-05-01

    Computerized analysis of digital pathology images offers the potential of improving clinical care (e.g. automated diagnosis) and catalyzing research (e.g. discovering disease subtypes). There are two key challenges thwarting computerized analysis of digital pathology images: first, whole slide pathology images are massive, making computerized analysis inefficient, and second, diverse tissue regions in whole slide images that are not directly relevant to the disease may mislead computerized diagnosis algorithms. We propose a method to overcome both of these challenges that utilizes a coarse-to-fine analysis of the localized characteristics in pathology images. An initial surveying stage analyzes the diversity of coarse regions in the whole slide image. This includes extraction of spatially localized features of shape, color and texture from tiled regions covering the slide. Dimensionality reduction of the features assesses the image diversity in the tiled regions and clustering creates representative groups. A second stage provides a detailed analysis of a single representative tile from each group. An Elastic Net classifier produces a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level. We evaluated our method by automatically classifying 302 brain cancer cases into two possible diagnoses (glioblastoma multiforme (N = 182) versus lower grade glioma (N = 120)) with an accuracy of 93.1% (p Pathology Classification Challenge, in which our method, trained and tested using 5-fold cross validation, produced a classification accuracy of 100% (p < 0.001). Our method showed high stability and robustness to parameter variation, with accuracy varying between 95.5% and 100% when evaluated for a wide range of parameters. Our approach may be useful to automatically differentiate between the two cancer subtypes.

  4. Labeled Putrescine as a Probe in Brain Tumors

    Science.gov (United States)

    Volkow, Nora; Goldman, Stephen S.; Flamm, Eugene S.; Cravioto, Humberto; Wolf, Alfred P.; Brodie, Jonathan D.

    1983-08-01

    The polyamine metabolism of transplanted N-nitrosomethylurea-derived rat glioma was determined with radiolabeled putrescine used as a marker for malignancy. The uptake of putrescine in vivo was complete within 5 minutes and was specific for tumor tissue. The conversion of putrescine to spermine and other metabolites by the tumor was rapid, in contrast to the case for adjacent normal brain. These results suggest that putrescine labeled with carbon-11 may be used as a positron-emission tomographic tracer for the selective metabolic imaging of brain tumor and may be used in an appropriate model as a marker for tumor growth rate.

  5. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    Science.gov (United States)

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness. PMID:27069501

  6. Surgical management of pediatric brain tumors.

    Science.gov (United States)

    Heuer, Gregory G; Jackson, Eric M; Magge, Suresh N; Storm, Phillip B

    2007-12-01

    Brain tumors are the most common cause of cancer-related death and the second most common form of cancer in pediatric patients. Many of these tumors are treated primarily with surgery, either alone or in combination with radiation or chemotherapy. Recent advances have lead to greater survival and decreased morbidities in childhood brain tumor patients. A full understanding of the biology and primary treatment modalities for the particular tumor are essential for any professional treating these patients, including the neurosurgeon. Each tumor type has features in common with, and unique from, other tumors that need to be understood prior to undertaking a rational treatment plan. This article summarizes some of these features.

  7. Cell Mediated Photothermal Therapy of Brain Tumors.

    Science.gov (United States)

    Hirschberg, Henry; Madsen, Steen J

    2017-03-01

    Gold based nanoparticles with strong near infra-red (NIR) absorption are ideally suited for photothermal therapy (PTT) of brain tumors. The goal of PTT is to induce rapid heating in tumor tissues while minimizing thermal diffusion to normal brain. PTT efficacy is sensitively dependent on both nanoparticle concentration and distribution in tumor tissues. Nanoparticle delivery via passive approaches such as the enhanced permeability and retention (EPR) effect is unlikely to achieve sufficient nanoparticle concentrations throughout tumor volumes required for effective PTT. A simple approach for improving tumor biodsitribution of nanoparticles is the use of cellular delivery vehicles. Specifically, this review focuses on the use of monocytes/macrophages (Mo/Ma) as gold nanoparticle delivery vectors for PTT of brain tumors. Although the efficacy of this delivery approach has been demonstrated in both in vitro and animal PTT studies, its clinical potential for the treatment of brain tumors remains uncertain.

  8. Clinical topographical correlation upon brain tumors in children

    Directory of Open Access Journals (Sweden)

    A.M. Dolgov

    2014-01-01

    Full Text Available The aim of the study was to explore the most characteristic clinical manifestations of brain tumors in children, depending on their localization, and to detect the earliest of them. Patients and methods. A total of 56 children (32 boys and 24 girls with brain tumor, aged from 1.5 months to 15 years, were examined. The time elapsed between the onset of disease to the emergence of clinical symptoms was assessed. Neurological symptomatology was compared to the localization of a tumor diagnosed using neuroimaging techniques (computed tomography or magnetic resonance imaging and during surgery. Surgery was performed in 18 children (in all of them, localization of the process was observed in the posterior cranial fossa, PCF. Results. The highest incidence of brain tumors was revealed in children aged 3–13 years; most patients became ill at the age between 3 and 6 years. Tumors of the PCF predominated in terms of their localization (67.9% of cases. Intracerebral tumors of the hemispheres or vermis were observed in most (63.2% patients with tumors of the PCF. In 11 (61% of the 18 operated children with subtentorial tumors, astrocytomas of various degrees of differentiation and medulloblastomas were detected using the histological examination. Tumors of the IV ventricle were ependymal. Tumors of the cerebral hemispheres (19.6%, of the pineal and chiasmosellar regions (8.9% predominated among supratentorial tumors. The time between the emergence of initial symptoms of a disease and admission to hospital ranged from 1 month to 3 years. The most characteristic and earliest symptoms for tumors of the PCF and brain ventricles were headache, nausea and vomiting. For tumors of the cerebellar vermis and hemispheres, these symptoms included impairment of the coordination of movements and the muscle tone change. For brain stem tumors, these symptoms included dysfunction of the cranial nerves. For tumors of the cerebral hemispheres, these were seizures and motor

  9. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis

    Science.gov (United States)

    Meyer, Tobias; Bergner, Norbert; Bielecki, Christiane; Krafft, Christoph; Akimov, Denis; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Dietzek, Benjamin; Popp, Jürgen

    2011-02-01

    Contemporary brain tumor research focuses on two challenges: First, tumor typing and grading by analyzing excised tissue is of utmost importance for choosing a therapy. Second, for prognostication the tumor has to be removed as completely as possible. Nowadays, histopathology of excised tissue using haematoxylin-eosine staining is the gold standard for the definitive diagnosis of surgical pathology specimens. However, it is neither applicable in vivo, nor does it allow for precise tumor typing in those cases when only nonrepresentative specimens are procured. Infrared and Raman spectroscopy allow for very precise cancer analysis due to their molecular specificity, while nonlinear microscopy is a suitable tool for rapid imaging of large tissue sections. Here, unstained samples from the brain of a domestic pig have been investigated by a multimodal nonlinear imaging approach combining coherent anti-Stokes Raman scattering, second harmonic generation, and two photon excited fluorescence microscopy. Furthermore, a brain tumor specimen was additionally analyzed by linear Raman and Fourier transform infrared imaging for a detailed assessment of the tissue types that is required for classification and to validate the multimodal imaging approach. Hence label-free vibrational microspectroscopic imaging is a promising tool for fast and precise in vivo diagnostics of brain tumors.

  10. Bleomycin treatment of brain tumors: an evaluation

    DEFF Research Database (Denmark)

    Linnert, Mette; Gehl, Julie

    2009-01-01

    Bleomycin has been used in the treatment of brain tumors for over 30 years. Currently, we are evaluating electrochemotherapy (the use of electric pulses to enhance uptake of bleomycin) for patients with secondary brain tumors. We, therefore, reviewed the literature with specific reference...... to the tolerability and toxicity of bleomycin. Using the keywords 'brain' and 'bleomycin', a database search without date restriction was performed and over 500 articles were found. Twenty-five articles were used for this study based on relevance determined by: (i) clinical studies, (ii) use of bleomycin, and (iii......) direct injection into brain tissue or cysts. There were two main indications for the use of bleomycin directly into the brain: (i) cystic tumors in the form of craniopharyngiomas and (ii) solid brain tumors such as glioblastomas and astrocytomas. The most frequent adverse effects reported were transient...

  11. DWI诊断小儿幕下脑肿瘤%Diffusion weighted imaging in diagnosis of infratentorial brain tumors in children

    Institute of Scientific and Technical Information of China (English)

    彭雪华; 何玲; 黄开平; 蔡金华; 刘波

    2011-01-01

    Objective To observe the value of diffusion weighted imaging (DWI) and ADC value in the diagnosis and differential diagnosis of pediatric infratentorial brain tumors. Methods Fifty-eight patients with pediatric infratentorial brain tumors confirmed pathologically underwent conventional MR, contrast-enhanced MR and DWI, and the ADC value was calculated in the solid part of tumor. Results Among all 58 pediatric infratentorial brain tumors, there were 25 cases of medulloblastomas with ADC mean (6. 73± 1.55) × 10-4 mm2/s, 24 cases of astrocytomas ( Ⅰ - Ⅱ grade) with ADC mean (14.80±2. 61) × 10-4 mm2/s, 8 cases of ependymoma with ADC mean (11. 08±1.60) × 10-4 mm2/s, and 1 case of oligodendrocytes glioma with ADC (15. 10±2.73)× 10-4 mm2/s. F-test and t-test were used to analyze the ADC values of the first three kinds of tumors. Differences of ADC values among these three different types of tumors were statistically significant (P<0. 01). Conclusion The assessment of the DWI and ADC values in the solid part of pediatric infratentorial brain tumor provides a simple and reliable method for preoperative diagnosis and differential diagnosis of posterior fossa tumors,especially in differential diagnosis of medulloblastoma and astrocytoma.%目的 评价扩散加权成像(DWI)和表观扩散系数(ADC)值诊断及鉴别诊断小儿幕下脑肿瘤的价值.方法 58例经病理证实的幕下脑肿瘤患儿均接受常规MR平扫、增强和DWI扫描,并测量实质病变的ADC值.结果 髓母细胞瘤25例,ADC均值(6.73±1.55)×10-4 mm2/s;星形细胞瘤(Ⅰ~Ⅱ级)24例,ADC均值(14.80±2.61)×10-4 mm2/s;室管膜瘤8例,ADC均值(11.08±1.60)×10-4 mm2/s;少突胶质瘤1例,ADC均值(15.10±2.73)×10-4 mm2/s.对前三种肿瘤实质部分ADC值进行方差分析(F检验)和t检验,其ADC值差异有统计学意义(P<0.01).结论 DWI及ADC值可评估小儿幕下脑肿瘤实质病变,是术前诊断及鉴别诊断后颅窝肿瘤的简单可靠的检查方

  12. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  13. Analysis of the Setup Uncertainty and Margin of the Daily ExacTrac 6D Image Guide System for Patients with Brain Tumors.

    Directory of Open Access Journals (Sweden)

    Se An Oh

    Full Text Available This study evaluated the setup uncertainties for brain sites when using BrainLAB's ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV margin. Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium masks were used to fix the head. The radiotherapy was fractionated into 27-33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with the systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical and rotational (pitch, roll, and yaw dimensions. Optimal PTV margins were calculated based on van Herk et al.'s [margin recipe = 2.5∑ + 0.7σ - 3 mm] and Stroom et al.'s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑ were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.'s and Stroom et al.'s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.

  14. Analysis of the Setup Uncertainty and Margin of the Daily ExacTrac 6D Image Guide System for Patients with Brain Tumors.

    Science.gov (United States)

    Oh, Se An; Yea, Ji Woon; Kang, Min Kyu; Park, Jae Won; Kim, Sung Kyu

    2016-01-01

    This study evaluated the setup uncertainties for brain sites when using BrainLAB's ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27-33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with the systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Optimal PTV margins were calculated based on van Herk et al.'s [margin recipe = 2.5∑ + 0.7σ - 3 mm] and Stroom et al.'s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.'s and Stroom et al.'s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.

  15. Brain tumors in patients primarly treated psychiatrically

    Directory of Open Access Journals (Sweden)

    Ignjatović-Ristić Dragana

    2011-01-01

    Full Text Available Introduction. Psychiatric symptoms are not rare manifestations of brain tumors. Brain tumors presented by symptoms of raised intracranial pressure, focal neurological signs, or convulsions are usually first seen by the neurologist or less frequently by the neurosurgeon in routine diagnostic procedures. On the other hand, when psychiatric symptoms are the first manifestation in “neurologically silent” brain tumors, the patients are sent to the psychiatrist for the treatment of psychiatric symptoms and brain tumors are left misdiagnosed for a long period of time. Case Report. We presented three patients with the diagnosed brain tumor where psychiatrist had been the first specialist to be consulted. In all three cases neurological examination was generally unremarkable with no focal signs or features of raised intracranial pressure. CT scan demonstrated right insular tumor in a female patient with obsessive-compulsive disorder (OCD; right parietal temporal tumor in a patient with delusions and depression and left frontal tumor in a patient with history of alcohol dependency. Conclusion. Psychiatric symptoms/disorders in patients with brain tumors are not specific enough and can have the same clinical presentation as the genuine psychiatric disorder. Therefore, we emphasize the consideration of neuroimaging in patients with abrupt beginning of psychiatric symptoms, in those with a change in mental status, or when headaches suddenly appear or in cases of treatment resistant psychiatric disorders regardless the lack of neurological symptoms.

  16. MRI brain imaging.

    Science.gov (United States)

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  17. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  18. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  19. Cognitive deficits in patients with brain tumor

    Institute of Scientific and Technical Information of China (English)

    SHEN Chao; BAO Wei-min; YANG Bo-jie; XIE Rong; CAO Xiao-yun; LUAN Shi-hai; MAO Ying

    2012-01-01

    Objective To discuss the present status and progress of clinical research on the cognitive effects caused by different types of brain tumors and common treatments.Data sources The data used in this review were mainly from PubMed articles published in English from 1990 to Febuary 2012.Research terms were "cognitive deficits" or "cognitive dysfunction".Study selection Articals including any information about brain tumor related cognitive deficits were selected.Results It is widely accepted that brain tumors and related treatments can impair cognitive function across manydomains,and can impact on patients' quality of life.Tumor localization,lateralization,surgery,drugs,radiotherapy and chemotherapy are all thought to be important factors in this process.However,some conflicting findings regarding brain tumor-related cognitive deficits have been reported.It can be difficult to determine the mechanism of these treatments,such as chemotherapy,antibiotics,antiepileptics,and steroids.Future research is needed to clarify these potential treatment effects.Conclusions Cognitive function is important for patients with brain tumor.Much more focus has been paid on this field.It should be regarded as an important prognostic index for the patients with brain tumor,and neuropsychological tests should be used in regular examinations.

  20. Imaging tumors of the patella

    Energy Technology Data Exchange (ETDEWEB)

    Casadei, R., E-mail: roberto.casadei@ior.it [Department of Orthopaedic Oncology, Istituto Ortopedico Rizzoli, Bologna (Italy); Kreshak, J., E-mail: j.kreshak@yahoo.com [Department of Orthopaedic Oncology, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Pathology, Istituto Ortopedico Rizzoli, Bologna (Italy); Rinaldi, R. [Department of Radiology, Istituto Ortopedico Rizzoli, Bologna (Italy); Rimondi, E., E-mail: eugenio.rimondi@ior.it [Department of Radiology, Istituto Ortopedico Rizzoli, Bologna (Italy); Bianchi, G., E-mail: giuseppe.bianchi@ior.it [Department of Orthopaedic Oncology, Istituto Ortopedico Rizzoli, Bologna (Italy); Alberghini, M., E-mail: marco.alberghini@ior.it [Department of Pathology, Istituto Ortopedico Rizzoli, Bologna (Italy); Ruggieri, P. [Department of Orthopaedic Oncology, Istituto Ortopedico Rizzoli, Bologna (Italy); Vanel, D., E-mail: daniel.vanel@ior.it [Department of Radiology, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Pathology, Istituto Ortopedico Rizzoli, Bologna (Italy)

    2013-12-01

    Background: Patellar tumors are rare; only a few series have been described in the literature and radiographic diagnosis can be challenging. We reviewed all patellar tumors at one institution and reviewed the literature. Materials and methods: In an evaluation of the database at one institution from 1916 to 2009, 23,000 bone tumors were found. Of these, 41 involved the patella. All had imaging studies and microscopic diagnostic confirmation. All medical records, imaging studies, and pathology were reviewed. Results: There were 15 females and 26 males, ranging from 8 to 68 years old (average 30). There were 30 benign tumors; eight giant cell tumors, eight chondroblastomas, seven osteoid osteomas, two aneurysmal bone cysts, two ganglions, one each of chondroma, exostosis, and hemangioma. There were 11 malignant tumors: five hemangioendotheliomas, three metastases, one lymphoma, one plasmacytoma, and one angiosarcoma. Conclusion: Patellar tumors are rare and usually benign. As the patella is an apophysis, the most frequent lesions are giant cell tumor in the adult and chondroblastoma in children. Osteoid osteomas were frequent in our series and easily diagnosed. Metastases are the most frequent malignant diagnoses in the literature; in our series malignant vascular tumors were more common. These lesions are often easily analyzed on radiographs. CT and MR define better the cortex, soft tissue extension, and fluid levels. This study presents the imaging patterns of the more common patellar tumors in order to help the radiologist when confronted with a lesion in this location.

  1. Imaging Tumor Necrosis with Ferumoxytol.

    Directory of Open Access Journals (Sweden)

    Maryam Aghighi

    Full Text Available Ultra-small superparamagnetic iron oxide nanoparticles (USPIO are promising contrast agents for magnetic resonance imaging (MRI. USPIO mediated proton relaxation rate enhancement is strongly dependent on compartmentalization of the agent and can vary depending on their intracellular or extracellular location in the tumor microenvironment. We compared the T1- and T2-enhancement pattern of intracellular and extracellular USPIO in mouse models of cancer and pilot data from patients. A better understanding of these MR signal effects will enable non-invasive characterizations of the composition of the tumor microenvironment.Six 4T1 and six MMTV-PyMT mammary tumors were grown in mice and imaged with ferumoxytol-enhanced MRI. R1 relaxation rates were calculated for different tumor types and different tumor areas and compared with histology. The transendothelial leakage rate of ferumoxytol was obtained by our measured relaxivity of ferumoxytol and compared between different tumor types, using a t-test. Additionally, 3 patients with malignant sarcomas were imaged with ferumoxytol-enhanced MRI. T1- and T2-enhancement patterns were compared with histopathology in a descriptive manner as a proof of concept for clinical translation of our observations.4T1 tumors showed central areas of high signal on T1 and low signal on T2 weighted MR images, which corresponded to extracellular nanoparticles in a necrotic core on histopathology. MMTV-PyMT tumors showed little change on T1 but decreased signal on T2 weighted images, which correlated to compartmentalized nanoparticles in tumor associated macrophages. Only 4T1 tumors demonstrated significantly increased R1 relaxation rates of the tumor core compared to the tumor periphery (p<0.001. Transendothelial USPIO leakage was significantly higher for 4T1 tumors (3.4±0.9x10-3 mL/min/100cm3 compared to MMTV-PyMT tumors (1.0±0.9x10-3 mL/min/100 cm3. Likewise, ferumoxytol imaging in patients showed similar findings with

  2. Tumor Extension in High-Grade Gliomas Assessed with Diffusion Magnetic Resonance Imaging: Values and Lesion-to-Brain Ratios of Apparent Diffusion Coefficient and Fractional Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Westen, D. van; Laett, J.; Englund, E.; Brockstedt, S.; Larsson, E.M. [Lund Univ. Hospital (Sweden). Depts. of Radiology, of Medical Radiation Physics and of Pathology and Cytology

    2006-04-15

    Purpose: To determine whether the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) can distinguish tumor-infiltrated edema in gliomas from pure edema in meningiomas and metastases. Material and Methods: Thirty patients were studied: 18 WHO grade III or IV gliomas, 7 meningiomas, and 5 metastatic lesions. ADC and FA were determined from ROIs placed in peritumoral areas with T2-signal changes, adjacent normal appearing white matter (NAWM), and corresponding areas in the contralateral healthy brain. Values and lesion-to-brain ratios from gliomas were compared to those from meningiomas and metastases. Results: Values and lesion-to-brain ratios of ADC and FA in peritumoral areas with T2-signal changes did not differ between gliomas, meningiomas, and metastases (P = 0.40, P = 0.40, P = 0.61, P 0.34). Values of ADC and FA and the lesion-to-brain ratio of FA in the adjacent NAWM did not differ between tumor types (P = 0.74, P = 0.25, and P = 0.31). The lesion-to-brain ratio of ADC in the adjacent NAWM was higher in gliomas than in meningiomas and metastases (P = 0.004), but overlapped between tumor types. Conclusion: Values and lesion-to-brain ratios of ADC and FA in areas with T2-signal changes surrounding intracranial tumors and adjacent NAWM were not helpful for distinguishing pure edema from tumor-infiltrated edema when data from gliomas, meningiomas, and metastases were compared.

  3. Tumor Molecular Imaging with Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhen Cheng

    2016-03-01

    Full Text Available Molecular imaging (MI can provide not only structural images using traditional imaging techniques but also functional and molecular information using many newly emerging imaging techniques. Over the past decade, the utilization of nanotechnology in MI has exhibited many significant advantages and provided new opportunities for the imaging of living subjects. It is expected that multimodality nanoparticles (NPs can lead to precise assessment of tumor biology and the tumor microenvironment. This review addresses topics related to engineered NPs and summarizes the recent applications of these nanoconstructs in cancer optical imaging, ultrasound, photoacoustic imaging, magnetic resonance imaging (MRI, and radionuclide imaging. Key challenges involved in the translation of NPs to the clinic are discussed.

  4. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  5. Development of multifunctional nanoparticles for brain tumor diagnosis and therapy

    Science.gov (United States)

    Veiseh, Omid

    Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents developed for magnetic resonance (MR) imaging and drug delivery. MNPs have traditionally been developed for disease imaging via passive targeting, but recent advances in nanotechnology have enabled cellular-specific targeting, drug delivery and multi-modal imaging using these nanoparticles. Opportunities now exist to engineer MNP with designated features (e.g., size, coatings, and molecular functionalizations) for specific biomedical applications. The goal of this interdisciplinary research project is to develop targeting multifunctional nanoparticles, serving as both contrast agents and drug carriers that can effectively pass biological barriers, for diagnosis, staging and treatment of brain tumors. The developed nanoparticle system consists of a superparamagnetic iron oxide nanoparticle core (NP) and a shell comprised of biodegradable polymers such as polyethylene glycol (PEG) and chitosan. Additionally, near-infrared fluorescing (NIRF) molecules were integrated onto the NP shell to enable optical detection. Tumor targeting was achieved by the addition of chlorotoxin, a peptide with that has high affinity to 74 out of the 79 classifications of primary brain tumors and ability to illicit a therapeutic effect. This novel NP system was tested both in vitro and in vivo and was shown to specifically target gliomas in tissue culture and medulloblastomas in transgenic mice with an intact blood brain barriers (BBB), and delineate tumor boundaries in both MR and optical imaging. Additionally, the therapeutic potential of this NP system was explored in vitro, which revealed a unique nanoparticle-enabled pathway that enhances the therapeutic potential of bound peptides by promoting the internalization of membrane bound cell surface receptors. This NP system was further modified with siRNA and evaluated as a carrier for brain tumor targeted gene therapy. Most significantly, the evaluation of

  6. Classification of Brain Tumor Using Support Vector Machine Classfiers

    Directory of Open Access Journals (Sweden)

    Dr.D. J. Pete

    2014-03-01

    Full Text Available Magnetic resonance imagi ng (MRI is an imaging technique that has played an important role in neuro science research for studying brain images. Classification is an important part in order to distinguish between normal patients and those who have the possibility of having abnormalities or tumor. The proposed method consists of two stages: feature extraction and classification. In first stage features are extracted from images using GLCM. In the next stage, extracted features are fed as input to Kernel-Based SVM classifier. It classifies the images between normal and abnormal along with Grade of tumor depending upon features. For Brain MRI images; features extracted with GLCM gives 98% accuracy with Kernel-Based SVM Classifiesr. Software used is MATLAB R2011a.

  7. Primary intracranial Parachordoma: An unusual tumor in brain

    Directory of Open Access Journals (Sweden)

    Rajesh K Ghanta

    2014-01-01

    Full Text Available Background: Parachordomas are rare soft tissue tumors commonly occurring in limbs, chest, Abdomen, and back. The World Health Organization (WHO classification includes parachordomas in the same group as mixed tumors and myoepitheliomas. Exact histogenesis of this tumor is unclear. Case Description: A 52-year-old male presented with headache and blurring of vision since one month. Preoperative computed tomography (CT scan of brain revealed left parieto-occipital tumor extending up to the trigone. Total excision of the tumor was done. Histopathologically, the tumor was composed of relatively uniform cells with eosinophilic cytoplasm in a myxoid stroma and with cartilaginous and osseous metaplasia. The tumoral cells were immunoreactive for cytokeratin, epithelial membrane antigen (EMA, S-100, and vimentin. The constellation of findings revealed the tumor to be parachordoma. Magnetic resonance imaging (MRI brain during follow-up at one year showed no recurrent tumor. No adjuvant therapy was given to this patient. Conclusion: This is the first reported case of primary intracranial parachordoma. It is difficult to diagnose the lesion preoperatively by imaging alone. Long-term follow-up is necessary in view of few reports in literature of recurrence and metastasis, of parachordomas in other anatomical locations.

  8. Critical Care Management of Cerebral Edema in Brain Tumors.

    Science.gov (United States)

    Esquenazi, Yoshua; Lo, Victor P; Lee, Kiwon

    2017-01-01

    Cerebral edema associated with brain tumors is extremely common and can occur in both primary and metastatic tumors. The edema surrounding brain tumors results from leakage of plasma across the vessel wall into the parenchyma secondary to disruption of the blood-brain barrier. The clinical signs of brain tumor edema depend on the location of the tumor as well as the extent of the edema, which often exceeds the mass effect induced by the tumor itself. Uncontrolled cerebral edema may result in increased intracranial pressure and acute herniation syndromes that can result in permanent neurological dysfunction and potentially fatal herniation. Treatment strategies for elevated intracranial pressure consist of general measures, medical interventions, and surgery. Alhough the definitive treatment for the edema may ultimately be surgical resection of the tumor, the impact of the critical care management cannot be underestimated and thus patients must be vigilantly monitored in the intensive care unit. In this review, we discuss the pathology, pathophysiology, and clinical features of patients presenting with cerebral edema. Imaging findings and treatment modalities used in the intensive care unit are also discussed.

  9. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition.

    Science.gov (United States)

    Cheng, Jun; Huang, Wei; Cao, Shuangliang; Yang, Ru; Yang, Wei; Yun, Zhaoqiang; Wang, Zhijian; Feng, Qianjin

    2015-01-01

    Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

  10. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition.

    Directory of Open Access Journals (Sweden)

    Jun Cheng

    Full Text Available Automatic classification of tissue types of region of interest (ROI plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor in T1-weighted contrast-enhanced MRI (CE-MRI images. Spatial pyramid matching (SPM, which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM, and bag-of-words (BoW model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

  11. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  12. (18)F-Fluorodeoxyglucose PET/Computed Tomography for Primary Brain Tumors

    DEFF Research Database (Denmark)

    Antonsen Segtnan, Eivind; Hess, Søren; Grupe, Peter

    2015-01-01

    Structural imaging with computed tomography (CT) and MR imaging is the mainstay in primary diagnosis of primary brain tumors, but these modalities depend on morphologic appearance and an intact blood-brain barrier, and important aspects of tumor biology are not addressed. Such issues may...... be alleviated by (18)F-fluorodeoxyglucose (FDG)-PET and FDG-PET/CT imaging, which may provide clinically important information with regard to primary differentiation between tumor types, initial staging and risk stratification, therapy planning, response evaluation, and recurrence detection. This article...... describes some of the potential contemporary applications of FDG and PET in primary brain tumors....

  13. The therapy of infantile malignant brain tumors: current status?

    Science.gov (United States)

    Kalifa, Chantal; Grill, Jacques

    2005-12-01

    Malignant brain tumors are not uncommon in infants as their occurrence before the age of three represents 20-25% of all malignant brain tumors in childhood [1]. Genetic predisposition to infantile malignant brain tumors are known in Gorlin syndrome for example who present with desmoplastic medulloblastoma in about 5% of the affected patients. In addition, sequelae from tumor and its treatment are more severe at this age [2]. Thus, malignant brain tumors represent a true therapeutic challenge in neuro-oncology. Before the era of modern imaging and modern neurosurgery these malignant brain tumors were misdiagnosed or could not benefit of the surgical procedures as well as older children because of increased risks in this age group. Since the end of the 80s, noninvasive imaging procedures produce accurate diagnosis of brain tumors and improvement in neurosurgery, neuroanesthesia and perioperative intensive care permit safe tumor resections or at least biopsies. Consequently, the pediatric oncologists are more often confronted with very young children who need a complementary treatment. Before the development of specific approaches for this age group, these children received the same kind of treatment than the older children did, but their survival and quality of life were significantly worse. The reasons of these poor results were probably due in part to the fear of late effects induced by radiation therapy, leading to decrease the necessary doses of irradiation which increased treatment failures without avoiding treatment related complications [3]. At the end of the 80s, pilot studies were performed using postoperative chemotherapy in young medulloblastoma patients. Van Eys treated 12 selected children with medulloblastoma with MOPP regimen and without irradiation; 8 of them were reported to be long term survivors [4]. Subsequently, the pediatric oncology cooperative groups studies have designed therapeutic trials for very young children with malignant brain tumors

  14. Tumor cerebral e gravidez Brain tumors and pregnancy

    Directory of Open Access Journals (Sweden)

    José Carlos Lynch

    2007-12-01

    Full Text Available O diagnóstico de um tumor cerebral durante a gravidez é um fato raro que coloca a mãe e o concepto em risco de vida. OBJETIVO: Avaliar a melhor forma de conduzir uma paciente grávida portadora de um tumor cerebral. MÉTODO: Realizamos análise retrospectiva dos prontuários e imagens de seis pacientes grávidas portadoras de tumor cerebral. RESULTADOS: Vários tipos histológicos de tumor cerebral podem estar associados à gravidez. O meningioma é o mais freqüente. Nessa série não observamos óbito cirúrgico materno. Em duas pacientes, o parto ocorreu antes da craniotomia e em outras quatro o parto foi realizado após a neurocirurgia. CONCLUSÃO: O momento mais adequado para a realização da craniotomia para remoção tumoral irá depender da gravidade do quadro neurológico, do tipo histológico presumível da lesão, e da idade gestacional do embrião.BACKGROUND: Despite not being a common fact, the occurrence of brain tumors during pregnancy poses a risk to both the mother and infant. AIM: To identify the best medical procedure to be followed for a pregnant patient harboring a brain tumor. METHOD: The records of 6 patients with brain tumors, diagnosed during pregnancy were examined. RESULTS: Several types of brain tumors have been associated with pregnancy, but the meningioma is, by far, the most frequent. It seems that pregnancy aggravates the clinical course of intracranial tumors. There were no operative mortality in these series. In 2 patients the labor occurred before the craniotomy and in others, the delivery occurred after the surgery. CONCLUSION: The best moment to recommend the craniotomy and the neurosurgical removal of the tumor will depend of the mother’s neurological condition, the tumor histological type as well as the gestational age.

  15. Confronting pediatric brain tumors: parent stories.

    Science.gov (United States)

    McMillan, Gigi

    2014-01-01

    This narrative symposium brings to light the extreme difficulties faced by parents of children diagnosed with brain tumors. NIB editorial staff and narrative symposium editors, Gigi McMillan and Christy A. Rentmeester, developed a call for stories that was distributed on several list serves and posted on Narrative Inquiry in Bioethics' website. The call asks parents to share their personal experience of diagnosis, treatment, long-term effects of treatment, social issues and the doctor-patient-parent dynamic that develops during this process. Thirteen stories are found in the print version of the journal and an additional six supplemental stories are published online only through Project MUSE. One change readers may notice is that the story authors are not listed in alphabetical order. The symposium editors had a vision for this issue that included leading readers through the timeline of this topic: diagnosis-treatment-acute recovery-recurrence-treatment (again)-acute recovery (again)-long-term quality of life-(possibly) end of life. Stories are arranged to help lead the reader through this timeline.Gigi McMillan is a patient and research subject advocate, co-founder of We Can, Pediatric Brain Tumor Network, as well as, the mother of a child who suffered from a pediatric brain tumor. She also authored the introduction for this symposium. Christy Rentmeester is an Associate Professor of Health Policy and Ethics in the Creighton University School of Medicine. She served as a commentator for this issue. Other commentators for this issue are Michael Barraza, a clinical psychologist and board member of We Can, Pediatric Brain Tumor Network; Lisa Stern, a pediatrician who has diagnosed six children with brain tumors in her 20 years of practice; and Katie Rose, a pediatric brain tumor patient who shares her special insights about this world.

  16. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  17. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  18. The delivery of BCNU to brain tumors.

    Science.gov (United States)

    Wang, C C; Li, J; Teo, C S; Lee, T

    1999-08-27

    This paper reports the development of three-dimensional simulations to study the effect of various factors on the delivery of 1-3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to brain tumors. The study yields information on the efficacy of various delivery methods, and the optimal location of polymer implantation. Two types of drug deliveries, namely, systemic administration and controlled release from polymers, were simulated using fluid dynamics analysis package (FIDAP) to predict the temporal and spatial variation of drug distribution. Polymer-based delivery provides higher mean concentration, longer BCNU exposure time and reduced systemic toxicity than bolus injection. Polymer implanted in the core gives higher concentration of drug in both the core and viable zone than the polymer in the viable zone case. The penetration depth of BCNU is very short. This is because BCNU can get drained out of the system before diffusing to any appreciable distance. Since transvascular permeation is the dominant means of BCNU delivery, the interstitial convection has minor effect because of the extremely small transvascular Peclet number. The reaction of BCNU with brain tissues reduces the drug concentration in all regions and its effect increases with rate constant. The implantation of BCNU/ethylene-vinyl acetate copolymer (EVAc) matrix at the lumen of the viable zone immediately following the surgical removal of 80% of the tumor may be an effective treatment for the chemotherapy of brain tumors. The present study provides a quantitative examination on the working principle of Gliadel wafer for the treatment of brain tumors.

  19. MicroRNA and Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    MicroRNAs (miRNAs) were first described in 1993 by Lee and colleagues, and the term microRNA was only introduced in 2001 in a set of three articles in Science[1]. One of the biggest surprises in the past few years has been the emergence of miRNAs as a major new class of gene expression regulators. Recent studies suggest that miRNA alterations are involved in the initiation and progression of human cancer. The brain tumor,glioblastoma multiforme, is the most malignant and deadly form of gliomas.The prognosis is poor and the median survival with combined radiotherapy and chemotherapy is only 14.6 months. With the discovery of miRNA, the miRNA profiles may become useful biomarkers for brain tumor diagnostics,and miRNA therapy could be a powerful tool for brain tumor prevention and therapeutics. This review outlines the background of miRNA and its expression and therapeutic potential for brain tumors.

  20. Radiosurgery-induced brain tumor. Case report.

    Science.gov (United States)

    Kaido, T; Hoshida, T; Uranishi, R; Akita, N; Kotani, A; Nishi, N; Sakaki, T

    2001-10-01

    The authors describe a case of glioblastoma multiforme (GBM) associated with previous gamma knife radiosurgery for a cerebral arteriovenous malformation (AVM). A 14-year-old boy had undergone radiosurgery for an AVM, which was performed using a 201-source 60Co gamma knife system at another institution. The maximum and margin radiation doses used in the procedure were 40 and 20 Gy, respectively. One year after radiosurgery, the patient noticed onset of mild left hemiparesis due to radiation necrosis. Six and one-half years after radiosurgery, at the age of 20 years, the patient experienced an attack of generalized tonic-clonic seizure. Magnetic resonance (MR) imaging revealed the existence of a brain tumor in the right parietal lobe. The patient underwent an operation and the histological diagnosis of the lesion was GBM. Ten months following the operation, that is, 99 months postradiosurgery, this patient died. To the best of the authors' knowledge, this is the first reported case of a neoplasm induced by radiosurgery for an AVM and the second case in which it occurred following radiosurgery for intracranial disease.

  1. Perivascular Wall Tumor in the Brain of a Dog

    Directory of Open Access Journals (Sweden)

    Margaret Cohn-Urbach

    2015-01-01

    Full Text Available A 9-year-old spayed female German shepherd mixed-breed dog presented for seizures. Magnetic resonance imaging revealed an irregularly marginated intraparenchymal cerebral mass. Microscopic examination of brain tissue collected postmortem demonstrated perivascular whorling and interwoven bundles of spindle-shaped cells. On immunohistochemistry, the tumor cells tested positive for vimentin and negative for factor VIII-related antigen, CD18, CD45, CD3, CD20, GFAP, S-100, and desmin. Immunohistochemistry results, in combination with histopathologic morphology, were suggestive of a perivascular wall tumor. To the authors’ knowledge, this is the first case report to utilize both histopathology and immunohistochemistry to describe a perivascular wall tumor in the brain of a dog.

  2. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  3. Analysis of p53- immunoreactivity in astrocytic brain tumors

    Directory of Open Access Journals (Sweden)

    Shinkarenko T.V.

    2016-12-01

    Full Text Available P53 is an antioncogene with the frequently occured mutations in human tumor cells, leading to corresponding protein overexpression which can be detected by immunohistochemistry. Researches dedicated to the investigation of possibilities of using this technique gave controversial results. The authors investigated features of p53 protein expression in astrocytic brain tumors with different degrees of malignancy. Analyzed the relationship of the expression level of p53 by tumor cells with clinical parameters and Ki-67 proliferation index (PI as well. Tissues were collected from 52 cases with diagnosed astrocytic brain tumors. The sections were immunohistochemically stained with p53 and Ki-67. For each marker, 1000 tumor cells were counted and the ratio of positive tumor cells was calculated using software package ImageJ 1,47v. In normal brain tissue p53- expression was not identified. p53-immunoreactive tumor cells were detected in 25% (1/4 pilocytic astrocytomas, 33.3% (2/6 of diffuse astrocytomas, 53.8% (7/13 anaplastic astrocytomas, 58.6% (17/29 glioblastomas. A high proportion of p53-immunoreactive cells (> 30% was observed only in glioblastomas. The level of p53-imunoreactivity was not related to the age, gender and Grade WHO (p> 0,05. Spearman correlation coefficient between the relative quantity of ki-67- and p53-immunoreactive nuclei showed weak direct correlation (0.023, but the one was not statistically significant (p> 0,05. The level of p53-imunoreactivity is not dependent from age and sex of patients, Grade (WHO and proliferative activity (p>0,05 but the high level of p53-immunoreactive cells (>30% is found in glioblastoma specimens only, that may be due to the accumulation of mutations in DNA of tumor cells. There is insignificant weak relationship between relative quantities of ki-67- and p53-immunoreactive tumor cells (p>0,05.

  4. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  5. Brain tumors: Special characters for research and banking

    Directory of Open Access Journals (Sweden)

    Majid Kheirollahi

    2015-01-01

    Full Text Available A brain tumor is an intracranial neoplasm within the brain or in the central spinal canal. Primary malignant brain tumors affect about 200,000 people worldwide every year. Brain cells have special characters. Due to the specific properties of brain tumors, including epidemiology, growth, and division, investigation of brain tumors and the interpretation of results is not simple. Research to identify the genetic alterations of human tumors improves our knowledge of tumor biology, genetic interactions, progression, and preclinical therapeutic assessment. Obtaining data for prevention, diagnosis, and therapy requires sufficient samples, and brain tumors have a wide range. As a result, establishing the bank of brain tumors is very important and essential.

  6. Invited review--neuroimaging response assessment criteria for brain tumors in veterinary patients.

    Science.gov (United States)

    Rossmeisl, John H; Garcia, Paulo A; Daniel, Gregory B; Bourland, John Daniel; Debinski, Waldemar; Dervisis, Nikolaos; Klahn, Shawna

    2014-01-01

    The evaluation of therapeutic response using cross-sectional imaging techniques, particularly gadolinium-enhanced MRI, is an integral part of the clinical management of brain tumors in veterinary patients. Spontaneous canine brain tumors are increasingly recognized and utilized as a translational model for the study of human brain tumors. However, no standardized neuroimaging response assessment criteria have been formulated for use in veterinary clinical trials. Previous studies have found that the pathophysiologic features inherent to brain tumors and the surrounding brain complicate the use of the response evaluation criteria in solid tumors (RECIST) assessment system. Objectives of this review are to describe strengths and limitations of published imaging-based brain tumor response criteria and propose a system for use in veterinary patients. The widely used human Macdonald and response assessment in neuro-oncology (RANO) criteria are reviewed and described as to how they can be applied to veterinary brain tumors. Discussion points will include current challenges associated with the interpretation of brain tumor therapeutic responses such as imaging pseudophenomena and treatment-induced necrosis, and how advancements in perfusion imaging, positron emission tomography, and magnetic resonance spectroscopy have shown promise in differentiating tumor progression from therapy-induced changes. Finally, although objective endpoints such as MR imaging and survival estimates will likely continue to comprise the foundations for outcome measures in veterinary brain tumor clinical trials, we propose that in order to provide a more relevant therapeutic response metric for veterinary patients, composite response systems should be formulated and validated that combine imaging and clinical assessment criteria.

  7. Perivascular Wall Tumor in the Brain of a Dog

    OpenAIRE

    Margaret Cohn-Urbach; Annie Chen; Gary Haldorson; Stephanie Thomovsky

    2015-01-01

    A 9-year-old spayed female German shepherd mixed-breed dog presented for seizures. Magnetic resonance imaging revealed an irregularly marginated intraparenchymal cerebral mass. Microscopic examination of brain tissue collected postmortem demonstrated perivascular whorling and interwoven bundles of spindle-shaped cells. On immunohistochemistry, the tumor cells tested positive for vimentin and negative for factor VIII-related antigen, CD18, CD45, CD3, CD20, GFAP, S-100, and desmin. Immunohistoc...

  8. Bilateral Symmetry Information for Brain Tumor Detection

    Directory of Open Access Journals (Sweden)

    Krunal J Pimple,

    2014-03-01

    Full Text Available Image segmentation is used to separate an image into several “meaningful” parts. It is an old research topic, which started around 1970, but there is still no robust solution toward it. There are two main reasons; the first is that the content variety of images is too large, and the second one is that there is no benchmark standard to judge the performance. Various subjects that are paired usually are not identically the same, asymmetry is perfectly normal but sometimes asymmetry can benoticeable too much. Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective. Brain asymmetry is one of such examples, which is a difference in size or shape, or both. Asymmetry analysis of brain has great importance because it is not only indicator for brain cancer but also predict future potential risk for the same. In our work, we have concentrated to segment the anatomical regions of brain, isolate the two halves of brain and to investigate each half for the presence of asymmetry of anatomical regions in MRI.

  9. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    Directory of Open Access Journals (Sweden)

    Ong John M

    2007-03-01

    Full Text Available Abstract Background The blood-brain tumor barrier (BTB impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB permeability in brain tumors, but not in normal brain. Iberiotoxin, a KCa channel antagonist, significantly attenuated NS1619-induced BTB permeability increase. We found KCa channels and bradykinin type 2 receptors (B2R expressed in cultured human metastatic brain tumor cells (CRL-5904, non-small cell lung cancer, metastasized to brain, human brain microvessel endothelial cells (HBMEC and human lung cancer brain metastasis tissues. Potentiometric assays demonstrated the activity of KCa channels in metastatic brain tumor cells and HBMEC. Furthermore, we detected higher expression of KCa channels in the metastatic brain tumor tissue and tumor capillary endothelia as compared to normal brain tissue. Co-culture of metastatic brain tumor cells and brain microvessel endothelial cells showed an upregulation of KCa channels, which may contribute to the overexpression of KCa channels in tumor microvessels and selectivity of BTB opening. Conclusion These findings suggest that KCa channels in metastatic brain tumors may serve as an effective target for biochemical modulation of BTB permeability to enhance selective delivery of chemotherapeutic drugs to metastatic brain tumors.

  10. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors

    Science.gov (United States)

    Sampson, John H.; Crotty, Laura E.; Lee, Samson; Archer, Gary E.; Ashley, David M.; Wikstrand, Carol J.; Hale, Laura P.; Small, Clayton; Dranoff, Glenn; Friedman, Allan H.; Friedman, Henry S.; Bigner, Darell D.

    2000-01-01

    The epidermal growth factor receptor (EGFR) is often amplified and rearranged structurally in tumors of the brain, breast, lung, and ovary. The most common mutation, EGFRvIII, is characterized by an in-frame deletion of 801 base pairs, resulting in the generation of a novel tumor-specific epitope at the fusion junction. A murine homologue of the human EGFRvIII mutation was created, and an IgG2a murine mAb, Y10, was generated that recognizes the human and murine equivalents of this tumor-specific antigen. In vitro, Y10 was found to inhibit DNA synthesis and cellular proliferation and to induce autonomous, complement-mediated, and antibodydependent cell-mediated cytotoxicity. Systemic treatment with i.p. Y10 of s.c. B16 melanomas transfected to express stably the murine EGFRvIII led to long-term survival in all mice treated (n = 20; P < 0.001). Similar therapy with i.p. Y10 failed to increase median survival of mice with EGFRvIII-expressing B16 melanomas in the brain; however, treatment with a single intratumoral injection of Y10 increased median survival by an average 286%, with 26% long-term survivors (n = 117; P < 0.001). The mechanism of action of Y10 in vivo was shown to be independent of complement, granulocytes, natural killer cells, and T lymphocytes through in vivo complement and cell subset depletions. Treatment with Y10 in Fc receptor knockout mice demonstrated the mechanism of Y10 to be Fc receptor-dependent. These data indicate that an unarmed, tumor-specific mAb may be an effective immunotherapy against human tumors and potentially other pathologic processes in the “immunologically privileged” central nervous system. PMID:10852962

  11. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.

    Science.gov (United States)

    Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A

    2008-05-01

    We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor.

  12. Measles may be a Risk Factor for Malignant Brain Tumors

    OpenAIRE

    Lehrer, Steven; Green, Sheryl; Rendo, Angela; Rosenzweig, Kenneth E.

    2015-01-01

    Background A possible risk factor for brain tumor might be measles, since late neurologic sequelae are part of measles pathology. Subacute sclerosing panencephalitis, a devastating neurologic illness, is prone to develop years after measles infection. Methods Because measles damage to the brain might increase the risk of brain tumor, we examined the relationship of measles incidence in 1960 and brain tumor incidence in 50 US States and the District of Columbia, 2004-2007. Data on number of ca...

  13. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  14. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    Science.gov (United States)

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org.

  15. [Interdisciplinary neuro-oncology: part 2: systemic therapy of primary brain tumors].

    Science.gov (United States)

    Tabatabai, G; Hattingen, E; Schlegel, J; Stummer, W; Schlegel, U

    2014-08-01

    By combining the expertise of clinical neuroscience, the aim of neuro-oncology is to optimize diagnostic planning and therapy of primary brain tumors in an interdisciplinary setting together with radio-oncology and medical oncology. High-end imaging frequently allows brain tumors to be diagnosed preoperatively with respect to tumor entity and even tumor malignancy grade. Moreover, neuroimaging is indispensable for guidance of biopsy resection and monitoring of therapy. Surgical resection of intracranial lesions with preservation of neurological function has become dramatically more extensive. Tools to achieve this goal are, for example neuronavigation, functional magnetic resonance imaging (fMRI), tractography, intraoperative cortical stimulation and precise intraoperative definition of tumor margins by virtue of various techniques. In addition to classical histopathological diagnosis and tumor classification, modern neuropathology is supplemented by molecular characterization of brain tumors in order to provide clinicians with prognostic and predictive (of therapy) markers, such as codeletion of chromosomes 1p and 19q in anaplastic gliomas and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastomas. Although this is not yet individualized tumor therapy, the increasingly more detailed analysis of the molecular pathogenesis of an individual glioma will eventually lead to specific pharmacological blockade of disturbed intracellular pathways in individual patients. This article gives an overview of the state of the art of interdisciplinary neuro-oncology whereby part 1 deals with the diagnostics and surgical therapy of primary brain tumors and part 2 describes the medical therapy of primary brain tumors.

  16. [Interdisciplinary neuro-oncology: part 1: diagnostics and operative therapy of primary brain tumors].

    Science.gov (United States)

    Tabatabai, G; Hattingen, E; Schlegel, J; Stummer, W; Schlegel, U

    2014-08-01

    By combining the expertise of clinical neuroscience, the aim of neuro-oncology is to optimize diagnostic planning and therapy of primary brain tumors in an interdisciplinary setting together with radio-oncology and medical oncology. High-end imaging frequently allows brain tumors to be diagnosed preoperatively with respect to tumor entity and even tumor malignancy grade. Moreover, neuroimaging is indispensable for guidance of biopsy resection and monitoring of therapy. Surgical resection of intracranial lesions with preservation of neurological function is increasingly feasible. Tools to achieve this goal are, for example neuronavigation, functional magnetic resonance imaging (fMRI), tractography, intraoperative cortical stimulation and precise intraoperative definition of tumor margins by virtue of various techniques. In addition to classical histopathological diagnosis and tumor classification, modern neuropathology is supplemented by molecular characterization of brain tumors in order to provide clinicians with prognostic and predictive (of therapy) markers, such as codeletion of chromosomes 1p and 19q in anaplastic gliomas and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastomas. Although this is not yet individualized tumor therapy, the increasingly more detailed analysis of the molecular pathogenesis of an individual glioma will eventually lead to specific pharmacological blockade of disturbed intracellular pathways in individual patients. This article gives an overview of the state of the art of interdisciplinary neuro-oncology whereby part 1 deals with the diagnostics and surgical therapy of primary brain tumors and part 2 describes the medical therapy of primary brain tumors.

  17. Imaging of brain tumors in AIDS patients by means of dual-isotope thallium-201 and technetium-99m sestamibi single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    De La Pena, R.C.; Ketonen, L.; Villanueva-Meyer, J. [Dept. of Radiology, Univ. of Texas, Galveston (United States)

    1998-10-01

    Our aim was to evaluate the use of dual-isotope thallium-201 (Tl) and technetium-99m sestamibi (sestamibi) simultaneous acquisition in brain single-photon emission tomography (SPET) for the differentiation between brain lymphoma and benign central nervous system (CNS) lesions in AIDS patients. Thirty-six consecutive patients with enhancing mass lesions on magnetic resonance (MR) imaging were included in the study. SPET of the brain was performed to obtain simultaneous Tl and sestamibi images. Regions-of-interest were drawn around the lesion and on the contralateral side to calculate uptake ratios. The final diagnosis was reached by pathologic findings in 17 patients and clinical and/or MR follow-up in 19 patients. Of the 36 patients, 11 had brain lymphoma, 1 glioblastoma multiforme, 15 toxoplasmosis and 9 other benign CNS lesions. Correlation between SPET and the final diagnosis revealed in 10 true-positive, 23 true-negative, 1 false-positive and 2 false-negative studies. All patients with toxoplasmosis had negative scans. A patient with a purulent infection had positive scans. Tl and sestamibi scans were concordant in every lesion. The same lesions that took up Tl were also visualized with sestamibi. However, sestamibi scans showed higher lesion-to-normal tissue uptake ratios (3.7{+-}1.8) compared with those of Tl (2.3{+-}0.8, P<0.002). Simultaneous acquisition of Tl and sestamibi can help differentiate CNS lymphoma from benign brain lesions in AIDS patients. (orig.) With 2 figs., 2 tabs., 34 refs.

  18. Stereotactic Radiosurgery in Treating Patients With Brain Tumors

    Science.gov (United States)

    2012-03-21

    Adult Central Nervous System Germ Cell Tumor; Adult Malignant Meningioma; Adult Medulloblastoma; Adult Noninfiltrating Astrocytoma; Adult Oligodendroglioma; Adult Craniopharyngioma; Adult Meningioma; Brain Metastases; Adult Ependymoma; Adult Pineal Parenchymal Tumor; Adult Brain Stem Glioma; Adult Infiltrating Astrocytoma; Mixed Gliomas; Stage IV Peripheral Primitive Neuroectodermal Tumor

  19. Simultaneous assessment of cerebral blood volume and diffusion heterogeneity using hybrid IVIM and DK MR imaging: initial experience with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-Chau [National Taiwan University, Graduate Institute of Oncology, Taipei (China); National Taiwan University, Graduate Institute of Clinical Medicine, Taipei (China); National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Yang, Shun-Chung; Chen, Ya-Fang; My, Pei-Chi [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Tseng, Han-Min [National Taiwan University Hospital, Department of Neurology, Taipei (China)

    2017-01-15

    To investigate the feasibility of simultaneously assessing cerebral blood volume and diffusion heterogeneity using hybrid diffusion-kurtosis (DK) and intravoxel-incoherent-motion (IVIM) MR imaging. Fifteen healthy volunteers and 30 patients with histologically proven brain tumours (25 WHO grade II-IV gliomas and five metastases) were recruited. On a 3-T system, diffusion-weighted imaging was performed with six b-values ranging from 0 to 1,700 s/mm{sup 2}. Nonlinear least-squares fitting was employed to extract diffusion coefficient (D), diffusion kurtosis coefficient (K, a measure of the degree of non-Gaussian and heterogeneous diffusion) and intravascular volume fraction (f, a measure proportional to cerebral blood volume). Repeated-measures multivariate analysis of variance and receiver operating characteristic analysis were performed to assess the ability of D/K/f in differentiating contrast-enhanced tumour from peritumoral oedema and normal-appearing white matter. Based on our imaging setting (baseline signal-to-noise ratio = 32-128), coefficient of variation was 14-20 % for K, ∝6 % for D and 26-44 % for f. The indexes were able to differentiate contrast-enhanced tumour (Wilks' λ = 0.026, p < 10{sup -3}), and performance was greatest with K, followed by f and D. Hybrid DK IVIM imaging is capable of simultaneously measuring cerebral perfusion and diffusion indexes that together may improve brain tumour diagnosis. (orig.)

  20. Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents

    Science.gov (United States)

    Fortin, Pierre-Yves; Genevois, Coralie; Koenig, Anne; Heinrich, Emilie; Texier, Isabelle; Couillaud, Franck

    2012-12-01

    Near-infrared fluorescence-enhanced diffuse optical tomography (fDOT) is used to localize tumors in mice using fluorescent nanoparticles as a blood pool contrast agent. The infrared dye DiR is loaded in the lipid core of nontargeted nanoparticles (DiR-lipidots) and injected systemically via the tail vein in mice bearing U87 tumors. Distribution and time-course of DiR-lipidots are followed using in vivo fluorescence reflectance imaging and reveal enhanced fluorescent signal within the subcutaneous tumors up to seven days due to the enhanced permeability and retention effect. Tumor growth into the brain is followed using bioluminescent imaging, and tumor localization is further determined by magnetic resonance imaging. The fDOT provides three-dimensional fluorescent maps that allow for consistent localization for both subcutaneous and brain tumors.

  1. Brain tumor segmentation based on a hybrid clustering technique

    Directory of Open Access Journals (Sweden)

    Eman Abdel-Maksoud

    2015-03-01

    This paper presents an efficient image segmentation approach using K-means clustering technique integrated with Fuzzy C-means algorithm. It is followed by thresholding and level set segmentation stages to provide an accurate brain tumor detection. The proposed technique can get benefits of the K-means clustering for image segmentation in the aspects of minimal computation time. In addition, it can get advantages of the Fuzzy C-means in the aspects of accuracy. The performance of the proposed image segmentation approach was evaluated by comparing it with some state of the art segmentation algorithms in case of accuracy, processing time, and performance. The accuracy was evaluated by comparing the results with the ground truth of each processed image. The experimental results clarify the effectiveness of our proposed approach to deal with a higher number of segmentation problems via improving the segmentation quality and accuracy in minimal execution time.

  2. Brain image Compression, a brief survey

    Directory of Open Access Journals (Sweden)

    Saleha Masood

    2013-01-01

    Full Text Available Brain image compression is known as a subfield of image compression. It allows the deep analysis and measurements of brain images in different modes. Brain images are compressed to analyze and diagnose in an effective manner while reducing the image storage space. This survey study describes the different existing techniques regarding brain image compression. The techniques come under different categories. The study also discusses these categories.

  3. Positron Scanner for Locating Brain Tumors

    Science.gov (United States)

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  4. Spiral Perfusion Imaging With Consecutive Echoes (SPICE™) for the Simultaneous Mapping of DSC- and DCE-MRI Parameters in Brain Tumor Patients: Theory and Initial Feasibility

    Science.gov (United States)

    Paulson, Eric S.; Prah, Douglas E.; Schmainda, Kathleen M.

    2017-01-01

    Dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) are the perfusion imaging techniques most frequently used to probe the angiogenic character of brain neoplasms. With these methods, T1- and T2/T2*-weighted imaging sequences are used to image the distribution of gadolinium (Gd)-based contrast agents. However, it is well known that Gd exhibits combined T1, T2, and T2* shortening effects in tissue, and therefore, the results of both DCE- and DSC-MRI can be confounded by these opposing effects. In particular, residual susceptibility effects compete with T1 shortening, which can confound DCE-MRI parameters, whereas dipolar T1 and T2 leakage and residual susceptibility effects can confound DSC-MRI parameters. We introduce here a novel perfusion imaging acquisition and postprocessing method termed Spiral Perfusion Imaging with Consecutive Echoes (SPICE) that can be used to simultaneously acquire DCE- and DSC-MRI data, which requires only a single dose of the Gd contrast agent, does not require the collection of a precontrast T1 map for DCE-MRI processing, and eliminates the confounding contrast agent effects due to contrast extravasation. A detailed mathematical description of SPICE is provided here along with a demonstration of its utility in patients with high-grade glioma. PMID:28090589

  5. Phyllodes tumor: review of key imaging characteristics.

    Science.gov (United States)

    Plaza, Michael Jonathan; Swintelski, Cara; Yaziji, Hadi; Torres-Salichs, Manuel; Esserman, Lisa E

    2015-01-01

    Phyllodes tumor of the breast is rare and often resembles the more commonly seen fibroadenoma at imaging and histologically. As core biopsy cannot always distinguish the two, assessing radiologic-pathologic concordance is essential to guide appropriate clinical management. We review the imaging characteristics of phyllodes tumor at mammography, ultrasound, and MRI to help the interpreting radiologist be aware of key imaging features that should alert him to the possibility of a phyllodes tumor even if not verified by initial core biopsy.

  6. IMPROVED HYBRID SEGMENTATION OF BRAIN MRI TISSUE AND TUMOR USING STATISTICAL FEATURES

    OpenAIRE

    S. Allin Christe; K. Malathy; A.Kandaswamy

    2010-01-01

    Medical image segmentation is the most essential and crucial process in order to facilitate the characterization and visualization of the structure of interest in medical images. Relevant application in neuroradiology is the segmentation of MRI data sets of the human brain into the structure classes gray matter, white matter and cerebrospinal fluid (CSF) and tumor. In this paper, brain image segmentation algorithms such as Fuzzy C means (FCM) segmentation and Kohonen means(K means) segmentati...

  7. Three-dimensional magnetic resonance reconstruction images before and after surgical therapy of spontaneous canine brain tumors Imagens de reconstrução tri-dimensional por ressonância magnética antes e depois de tratamento cirúrgico de tumores cerebrais espontâneos caninos

    Directory of Open Access Journals (Sweden)

    Julio Carlos Canola

    2007-08-01

    Full Text Available Specific software was used for reconstruction of spontaneous intracranial tumor volume from magnetic resonance images (MRI in three dogs. Histopathologically confirmed meningioma, cystic meningioma, and choroid plexus tumors were evaluated before and after surgery. The software allowed the whole-volume segmentation of the skin, brain, tumor, edema, and cyst. Manipulation of the three-dimensional images (3D allowed visualization of all anatomical structures, aided clinical understanding, surgical planning, and treatment monitoring.Um programa de computador específico foi utilizado para reconstrução do volume tumoral intracraniano espontâneo por imagens de ressonância magnética (IRM em três cães. Tumores histopatologicamente confirmados como meningioma, meningioma cístico e tumor do plexo coróide foram avaliados antes e após cirurgia. O programa de computador permitiu a segmentação por completo da pele, do cérebro, do tumor, do edema e do cisto. A manipulação das imagens tridimensionais permitiu a visibilização de todas as estruturas anatômicas, além da compreensão clínica, do planejamento cirúrgico e da monitorização do tratamento.

  8. Fetal antigen 2 in primary and secondary brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, H Boje; Teisner, B; Schrøder, H D

    1991-01-01

    Immunohistochemical deposition and distribution of fetal antigen 2 (FA2) was examined in normal brain tissue and in primary and metastatic tumors of the brain. In normal brain tissue FA2 was exclusively found linearly around the vessels, along pia and in arachnoidea. A similar localization was seen...... in primary brain tumors except in gliosarcoma where FA2 was distributed diffusely in the sarcoma region and was absent in the glioma region. In metastatic carcinoma with tumor stroma a diffuse staining reaction was seen in the stroma and with a basement membrane (BM) like staining at the tumor cell....../stroma interface. Intracytoplasmic FA2 staining of the tumor cells was seen in areas without tumor stroma. In metastatic melanoma a BM like FA2 staining was seen around and between individual tumor cells. The staining patterns seen in the metastatic tumors were in accordance with that of the corresponding primary...

  9. Predictive value of clinical evaluation in the follow-up of children with a brain tumor.

    NARCIS (Netherlands)

    Graaf, N. de; Hew, J.M.; Fock, J.M.; Kamps, W.A.; Graaf, S.S.N. de

    2002-01-01

    BACKGROUND: During follow-up of children with a brain tumor, traditionally surveillance-imaging studies are done in addition to clinical evaluations. The purpose of this study was to determine the role of clinical evaluations by a multidisciplinary team for the detection of recurrent tumor. PROCEDUR

  10. Predictive value of clinical evaluation in the follow-up of children with a brain tumor

    NARCIS (Netherlands)

    Hew, JM; Fock, JM; Kamps, WA

    2002-01-01

    Background. During follow-up of children with a brain tumor, traditionally surveillance-imaging studies are done in addition to clinical evaluations, The purpose of this study was to determine the role of clinical evaluations by a multidisciplinary team for the detection of recurrent tumor. Procedur

  11. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  12. Specific features of epilepsy in children with brain tumors

    Directory of Open Access Journals (Sweden)

    G. V. Kalmykova

    2015-01-01

    Full Text Available Objective: to study the specific features of epilepsy in children and adolescents with brain tumors and to define the optimal tactics of management and antiepileptic therapy after surgical treatment. Patients and methods. Sixty-one patients aged 5 months to 15 years were examined. All the patients were diagnosed as having a brain tumor found in the presence of symptomatic epilepsy. They were all followed up for 5 years postsurgery or during their lifetime (in case of death. Comprehensive examination encompassing the assessment of history data and concomitant complaints, brain magnetic resonance imaging, video-EEC monitoring, and the neurological status (the presence of cognitive impairments and eye ground changes was done in all the cases. The probability of epileptic seizures in the clinical presentation of the disease, their semiology, and frequency were studied. Results and discussion. Epileptic seizures were the major complaint in all the patients at the first visit to their doctor. The disease occurred with status epilepticus in 9% of the patients. Different types of generalized seizures were more common (53%; p≥0.05. The tumor was located above the tentorium of the cerebellum in most examinees (77% and beneath it in the others (23%; p≤0.05. The significant clinical sign of a brain tumor in the epileptic children is focal neurological symptoms (72% of the cases. MRI was performed in children who had no focal neurological symptoms in the late periods. There was cerebrospinal fluid hypertension in 51% of the patients (p≥0.05 and cognitive impairments in 33% (p<0.05. The maximum number (74% of children with psycho-speech disorders and cognitive impairments were registered in the age group of 7–15 years. Eye ground changes characteristic of intracranial hypertension were identified in 19 epileptic children; they occurred in 27 patients more than 1 year after the onset of seizures. The late (few months-to-14 years diagnosis of a brain

  13. What Are Brain and Spinal Cord Tumors in Children?

    Science.gov (United States)

    ... cells in the brain. They transmit chemical and electric signals that determine thought, memory, emotion, speech, muscle movement, ... brain and spinal cord. This helps neurons send electric signals through the axons. Tumors starting in these cells ...

  14. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  15. Atypical pyogenic brain abscess evaluation by diffusion-weighted imaging: diagnosis with multimodality MR imaging.

    Science.gov (United States)

    Ozbayrak, Mustafa; Ulus, Ozden Sila; Berkman, Mehmet Zafer; Kocagoz, Sesin; Karaarslan, Ercan

    2015-10-01

    Whether a brain abscess is apparent by imaging depends on the stage of the abscess at the time of imaging, as well as the etiology of the infection. Because conventional magnetic resonance imaging (MRI) is limited in its ability to distinguish brain abscesses from necrotic tumors, advanced techniques are required. The management of these two disease entities differs and can potentially affect the clinical outcome. We report a case having atypical imaging features of a pyogenic brain abscess on advanced MRI, in particular, on diffusion-weighted and perfusion imaging, in a patient with osteosarcoma undergoing chemotherapy.

  16. Management of childhood brain tumors: consensus report by the Pediatric Hematology Oncology (PHO) Chapter of Indian Academy of Pediatrics (IAP).

    Science.gov (United States)

    Bhat, Sunil; Yadav, Satya Prakash; Suri, Vaishali; Patir, Rana; Kurkure, Purna; Kellie, Stewart; Sachdeva, Anupam

    2011-12-01

    Brain tumors are the second most common childhood tumors and remain the leading cause of cancer related deaths in children. Appropriate diagnosis and management of these tumors are essential to improve survival. There are no clinical practical guidelines available for the management of brain tumors in India. This document is a consensus report prepared after a National Consultation on Pediatric Brain Tumors held in Delhi on 06 Nov 2008. The meeting was attended by eminent experts from all over the country, in the fields of Neurosurgery, Radiation Oncology, Pediatric Oncology, Neuropathology, Diagnostic Imaging, Pediatric Endocrinology and Allied Health Professionals. This article highlights that physicians looking after children with brain tumors should work as part of a multidisciplinary team to improve the survival, quality of life, neuro-cognitive outcomes and standards of care for children with brain tumors. Recommendations for when to suspect, diagnostic workup, initial management, long-term follow up and specific management of individual tumors are outlined.

  17. Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors.

    Science.gov (United States)

    Miladi, Imen; Duc, Géraldine Le; Kryza, David; Berniard, Aurélie; Mowat, Pierre; Roux, Stéphane; Taleb, Jacqueline; Bonazza, Pauline; Perriat, Pascal; Lux, François; Tillement, Olivier; Billotey, Claire; Janier, Marc

    2013-09-01

    Gadolinium-based nanoparticles are novel objects with interesting physical properties, allowing their use for diagnostic and therapeutic applications. Gadolinium-based nanoparticles were imaged following intravenous injection in healthy rats and rats grafted with 9L gliosarcoma tumors using magnetic resonance imaging and scintigraphic imaging. Quantitative biodistribution using gamma-counting of each sampled organ confirmed that these nanoparticles were rapidly cleared essentially by renal excretion. Accumulation of these nanoparticles in 9L gliosarcoma tumors implanted in the rat brain was quantitated. This passive and long-duration accumulation of gadolinium-based nanoparticles in tumor, which is related to disruption of the blood-brain barrier, is in good agreement with the use of these nanoparticles as radiosensitizers for brain tumors.

  18. Therapeutic vaccines for malignant brain tumors

    Directory of Open Access Journals (Sweden)

    Michael P Gustafson

    2008-12-01

    Full Text Available Michael P Gustafson1, Keith L Knutson2, Allan B Dietz11Division of Transfusion Medicine; 2Department of Immunology, Mayo Clinic, Rochester, MN, USAAbstract: Malignant gliomas are the most common and aggressive form of brain tumors. Current therapy consists of surgical resection, followed by radiation therapy and concomitant chemotherapy. Despite these treatments, the prognosis for patients is poor. As such, investigative therapies including tumor vaccines have targeted this devastating condition. Recent clinical trials involving immunotherapy, specifically dendritic cell (DC based vaccines, have shown promising results. Overall, these vaccines are well tolerated with few documented side effects. In many patients receiving vaccines, tumor progression was delayed and the median overall survival of these patients was prolonged. Despite these encouraging results, several factors have limited the efficacy of DC vaccines. Here we discuss the potential of DC vaccines as adjuvant therapy and current obstacles of generating highly pure and potent DC vaccines in the context of malignant glioma. Taken together, the results from earlier clinical studies justify additional clinical trials aimed at improving the efficacy of DC vaccines.Keywords: malignant glioma, glioblastoma multiforme, vaccine, immunotherapy, dendritic cells

  19. Multimodality Imaging of Tumor Response to Doxil

    Directory of Open Access Journals (Sweden)

    Fan Zhang, Lei Zhu, Gang Liu, Naoki Hida, Guangming Lu, Henry S. Eden, Gang Niu, Xiaoyuan Chen

    2011-01-01

    Full Text Available Purpose: Early assessment of tumor responses to chemotherapy could enhance treatment outcomes by ensuring that, from the beginning, treatments meet the individualized needs of patients. In this study, we applied multiple modality molecular imaging techniques to pre-clinical monitoring of early tumor responses to Doxil, focusing on imaging of apoptosis.Methods: Mice bearing UM-SCC-22B human head and neck squamous cancer tumors received either PBS or 1 to 2 doses of Doxil® (doxorubicin HCl liposome injection (10 mg/kg/dose. Bioluminescence signals from an apoptosis-responsive reporter gene were captured for apoptosis evaluation. Tumor metabolism and proliferation were assessed by 18F-FDG and 3'-18F-fluoro-3'-deoxythymidine (18F-FLT positron emission tomography. Diffusion-weighted magnetic resonance imaging (DW-MRI was performed to calculate averaged apparent diffusion coefficients (ADCs for the whole tumor volume. After imaging, tumor samples were collected for histological evaluation, including terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL, anti-CD31, and Ki-67 immunostaining.Results: Two doses of Doxil significantly inhibited tumor growth. Bioluminescence imaging (BLI indicated apoptosis of tumor cells after just 1 dose of Doxil treatment, before apparent tumor shrinkage. 18F-FDG and 18F-FLT PET imaging identified decreased tumor metabolism and proliferation at later time points than those at which BLI indicated apoptosis. MRI measurements of ADC altered in response to Doxil, but only after tumors were treated with 2 doses. Decreased tumor proliferation and increased apoptotic cells were confirmed by changes of Ki-67 index and apoptotic ratio.Conclusion: Our study of tumor responses to different doses of Doxil demonstrated that it is essential to combine apoptosis imaging strategies with imaging of other critical biological or pathological pathways, such as metabolism and proliferation, to improve clinical decision making

  20. Minireview of Stereoselective Brain Imaging

    DEFF Research Database (Denmark)

    Smith, Donald F.; Jakobsen, Steen

    2014-01-01

    Stereoselectivity is a fundamental principle in living systems. Stereoselectivity reflects the dependence of molecular processes on the spatial orientation of constituent atoms. Stereoselective processes govern many aspects of brain function and direct the course of many psychotropic drugs. Today...... animals and awake humans. The studies have demonstrated how many aspects of neurotransmission consist of crucial stereoselective events that can affect brain function in health and disease. Here, we present a brief account of those findings in hope of stimulating further interest in the vital topic......., modern imaging techniques such as SPECT and PET provide a means for studying stereoselective processes in the living brain. Chemists have prepared numerous radiolabelled stereoisomers for use in SPECT and PET in order to explore various molecular processes in the living brain of anesthetized laboratory...

  1. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  2. Photodynamic therapy for implanted VX2 tumor in rabbit brains

    Science.gov (United States)

    Li, Fei; Feng, Hua; Lin, Jiangkai; Zhu, Gang; Chen, Zhi; Li, Cong-yan

    2005-07-01

    To evaluate the therapeutic effect and the safety of single photodynamic therapy (PDT) with hematoporphyrin derivative produced in China, 60 New Zealand adult rabbits with VX2 tumor implanted into the brain were divided randomly into non-PDT-group and PDT-group. 36 rabbits of the PDT-group were performed photodynamic therapy. The survival time, neurological deteriorations, intracranial pressure (ICP), histology, pathology, tumor volume and brain water content were measured. Other 12 rabbits were received hematoporphyrin derivative and light irradiation of the normal brain. The ICP, histology, pathology, and brain water content were measured. The result indicated that Simple PDT may elongate the average survival time of the rabbits with VX2 tumors significantly; kill tumor cells; cause transient brain edema and increase ICP, but it is safe to be used in treating brain tumor.

  3. Imaging Tumor Cell Movement In Vivo

    OpenAIRE

    Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E

    2013-01-01

    This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging th...

  4. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  5. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Carina [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Ribeiro, Andre Santos [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London (United Kingdom); Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich (Germany); Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal)

    2015-05-18

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm{sup 3}), DTI (dir=30, b=0,800s/mm2, 2x2x2mm{sup 3}), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  6. Brain Tumor Segmentation Based on Random Forest

    Directory of Open Access Journals (Sweden)

    László Lefkovits

    2016-09-01

    Full Text Available In this article we present a discriminative model for tumor detection from multimodal MR images. The main part of the model is built around the random forest (RF classifier. We created an optimization algorithm able to select the important features for reducing the dimensionality of data. This method is also used to find out the training parameters used in the learning phase. The algorithm is based on random feature properties for evaluating the importance of the variable, the evolution of learning errors and the proximities between instances. The detection performances obtained have been compared with the most recent systems, offering similar results.

  7. Growth Patterns of Microscopic Brain Tumors

    CERN Document Server

    Sander, L M; Sander, Leonard M.; Deisboeck, Thomas S.

    2002-01-01

    Highly malignant brain tumors such as Glioblastoma Multiforme (GBM) form complex growth patterns in vitro in which invasive cells organize in tenuous branches. Here, we formulate a chemotaxis model for this sort of growth. A key element controlling the pattern is homotype attraction, i.e., the tendency for invasive cells to follow pathways previously explored. We investigate this in two ways: we show that there is an intrinsic instability in the model, which leads to branch formation. We also give a discrete description for the expansion of the invasive zone, and a continuum model for the nutrient supply. The results indicate that both, strong heterotype chemotaxis and strong homotype chemo-attraction are required for branch formation within the invasive zone. Our model thus can give a way to assess the importance of the various processes, and a way to explore and analyze transitions between different growth regimes.

  8. Consistent 4D Brain Extraction of Serial Brain MR Images

    OpenAIRE

    Wang, Yaping; Li, Gang; Nie, Jingxin; Yap, Pew-Thian; Guo, Lei; Shen, Dinggang

    2013-01-01

    Accurate and consistent skull stripping of serial brain MR images is of great importance in longitudinal studies that aim to detect subtle brain morphological changes. To avoid inconsistency and the potential bias introduced by independently performing skull-stripping for each time-point image, we propose an effective method that is capable of skull-stripping serial brain MR images simultaneously. Specifically, all serial images of the same subject are first affine aligned in a groupwise mann...

  9. Monkey brain cortex imaging by photoacoustic tomography

    OpenAIRE

    Yang, Xinmai; Wang, Lihong V.

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultras...

  10. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  11. Anticonvulsant therapy in brain-tumor related epilepsy

    Directory of Open Access Journals (Sweden)

    Fröscher Walter

    2016-06-01

    Full Text Available Background. The lifetime risk of patients with brain tumors to have focal epileptic seizures is 10-100%; the risk depends on different histology. Specific guidelines for drug treatment of brain tumor-related seizures have not yet been established.

  12. Bone Mineral Density Reduction Following Irradiation of Brain Tumors

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-11-01

    Full Text Available Total body bone mineral density (TBBMD was measured by X-ray absorptiometry in 46 brain tumor patients aged from 3.8 to 28.7 years (mean 14.9 y at a mean of 6.4 y (range 1.4-14.8 y after end of treatment for brain tumor.

  13. Diagnosis and prognosis of brain tumors in clinical trials

    NARCIS (Netherlands)

    T.S. Gorlia (Thierry)

    2013-01-01

    textabstractAccording to the Central Brain Registry Of The United States (CBTRUS) statistical report (February 2012) the incidence rate of all primary non malignant and malignant brain and central nervous system tumors is 19.89 cases per 100.000 (11.58 for non-malignant tumors and 7.31 for malignant

  14. Image based modeling of tumor growth.

    Science.gov (United States)

    Meghdadi, N; Soltani, M; Niroomand-Oscuii, H; Ghalichi, F

    2016-09-01

    Tumors are a main cause of morbidity and mortality worldwide. Despite the efforts of the clinical and research communities, little has been achieved in the past decades in terms of improving the treatment of aggressive tumors. Understanding the underlying mechanism of tumor growth and evaluating the effects of different therapies are valuable steps in predicting the survival time and improving the patients' quality of life. Several studies have been devoted to tumor growth modeling at different levels to improve the clinical outcome by predicting the results of specific treatments. Recent studies have proposed patient-specific models using clinical data usually obtained from clinical images and evaluating the effects of various therapies. The aim of this review is to highlight the imaging role in tumor growth modeling and provide a worthwhile reference for biomedical and mathematical researchers with respect to tumor modeling using the clinical data to develop personalized models of tumor growth and evaluating the effect of different therapies.

  15. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    Science.gov (United States)

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients.

  16. Single-photon emission computed tomography/computed tomography in brain tumors.

    Science.gov (United States)

    Schillaci, Orazio; Filippi, Luca; Manni, Carlo; Santoni, Riccardo

    2007-01-01

    Anatomic imaging procedures (computed tomography [CT] and magnetic resonance imaging [MRI]) have become essential tools for brain tumor assessment. Functional images (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]) can provide additional information useful during the diagnostic workup to determine the degree of malignancy and as a substitute or guide for biopsy. After surgery and/or radiotherapy, nuclear medicine examinations are essential to assess persistence of tumor, to differentiate recurrence from radiation necrosis and gliosis, and to monitor the disease. The combination of functional images with anatomic ones is of the utmost importance for a full evaluation of these patients, which can be obtained by means of imaging fusion. Despite the fast-growing diffusion of PET, in most cases of brain tumors, SPECT studies are adequate and provide results that parallel those obtained with PET. The main limitation of SPECT imaging with brain tumor-seeking radiopharmaceuticals is the lack of precise anatomic details; this drawback is overcome by the fusion with morphological studies that provide an anatomic map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT or MRI demonstrated usefulness for brain tumor assessment, but this process is often time consuming and not practical for everyday nuclear medicine studies. The recent development of dual-modality integrated imaging systems, which allow the acquisition of SPECT and CT images in the same scanning session, and their co-registration by means of the hardware, has facilitated this process. In SPECT studies of brain tumors with various radiopharmaceuticals, fused images are helpful in providing the precise localization of neoplastic lesions, and in excluding the disease in sites of physiologic tracer uptake. This information is useful for optimizing diagnosis, therapy monitoring, and radiotherapy treatment planning, with a

  17. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2017-01-17

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  18. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    Science.gov (United States)

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting.

  19. Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor

    Science.gov (United States)

    Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli

    2007-02-01

    Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.

  20. Neuroimaging in Traumatic Brain Imaging

    OpenAIRE

    Lee, Bruce; Newberg, Andrew

    2005-01-01

    Summary: Traumatic brain injury (TBI) is a common and potentially devastating clinical problem. Because prompt proper management of TBI sequelae can significantly alter the clinical course especially within 48 h of the injury, neuroimaging techniques have become an important part of the diagnostic work up of such patients. In the acute setting, these imaging studies can determine the presence and extent of injury and guide surgical planning and minimally invasive interventions. Neuroimaging a...

  1. How do brain tumors alter functional connectivity? : A magnetoencephalography study

    NARCIS (Netherlands)

    Bartolomei, Fabrice; Bosma, Ingeborg; Klein, Martin; Baayen, Johannes C; Reijneveld, Jaap C; Postma, Tjeerd J; Heimans, Jan J; van Dijk, Bob W; de Munck, Jan C; de Jongh, Arent; Cover, Keith S; Stam, Cornelis J

    2006-01-01

    OBJECTIVE: This study was undertaken to test the hypothesis that brain tumors interfere with normal brain function by disrupting functional connectivity of brain networks. METHODS: Functional connectivity was assessed by computing the synchronization likelihood in a broad band (0.5-60Hz) or in the g

  2. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  3. Spatial organization and correlations of cell nuclei in brain tumors.

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    Full Text Available Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system.

  4. Research on Perfusion CT in Rabbit Brain Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Bon Chul; Kwak, Byung Kook; Jung, Ji Sung [Dept. of Diagnostic Radiology, Chung Ang University Hospital, Seoul (Korea, Republic of); Lim, Cheong Hwan; Jung, Hong Ryang [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2012-06-15

    We investigated the vascular characteristics of tumors and normal tissue using perfusion CT in the rabbit brain tumor model. The VX2 carcinoma concentration of 1 x 10{sup 7} cells/ml(0.1 ml) was implanted in the brain of nine New Zealand white rabbits (weight: 2.4 kg-3.0 kg, mean: 2.6 kg). The perfusion CT was scanned when the tumors were grown up to 5 mm. The tumor volume and perfusion value were quantitatively analyzed by using commercial workstation (advantage windows workstation, AW, version 4.2, GE, USA). The mean volume of implanted tumors was 316{+-}181 mm{sup 3}, and the biggest and smallest volumes of tumor were 497 mm{sup 3} and 195 mm{sup 3}, respectively. All the implanted tumors in rabbits are single-nodular tumors, and intracranial metastasis was not observed. In the perfusion CT, cerebral blood volume (CBV) were 74.40{+-}9.63, 16.8{+-}0.64, 15.24{+-}3.23 ml/100g in the tumor core, ipsilateral normal brain, and contralateral normal brain, respectively (p{<=}0.05). In the cerebral blood flow (CBF), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (962.91{+-}75.96 vs. 357.82{+-}12.82 vs. 323.19{+-}83.24 ml/100g/min). In the mean transit time (MTT), there were significant differences between the tumor core and both normal brains (p{<=}0.05), but no significant differences between ipsilateral and contralateral normal brains (4.37{+-}0.19 vs. 3.02{+-}0.41 vs. 2.86{+-}0.22 sec). In the permeability surface (PS), there were significant differences among the tumor core, ipsilateral and contralateral normal brains (47.23{+-}25.44 vs. 14.54{+-}1.60 vs. 6.81{+-}4.20 ml/100g/min)(p{<=}0.05). In the time to peak (TTP) were no significant differences among the tumor core, ipsilateral and contralateral normal brains. In the positive enhancement integral (PEI), there were significant differences among the tumor core, ipsilateral and

  5. Clinical application of several tumor imaging agents

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Neoplasms is one of the main diseases for harming health.It is difficult to prevent the neoplasms because the factors of bringing out them are complex.To raise survival rate the early diagnosis of tumors is very important.Radionuclide imaging is useful to detect recurrent or residual diseaseand to identificate benign or malignant tumor.Several tumorimaging agents as following have clinical significance indiagnosing tumors.

  6. Imaging brain development: the adolescent brain.

    Science.gov (United States)

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain.

  7. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    Science.gov (United States)

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  8. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    Directory of Open Access Journals (Sweden)

    Seyfried Thomas N

    2005-08-01

    Full Text Available Abstract Background Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL and the Arg tRNA. Methods In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. Results Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. Conclusion None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors.

  9. Stem Cells and the Origin and Propagation of Brain Tumors

    OpenAIRE

    2008-01-01

    In recent years there has been a flood of interest in the relationship between brain tumors and stem cells. Some investigators have focused on the sensitivity of normal stem cells to transformation, others have described phenotypic or functional similarities between tumor cells and stem cells, and still others have suggested that tumors contain a subpopulation of “cancer stem cells” that is crucial for tumor maintenance or propagation. While all these concepts are interesting and provide insi...

  10. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications

    Science.gov (United States)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-01

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8

  11. MR imaging manifestations of skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong-hyon; Kim, Jee Young [The Catholic University of Korea, Department of Diagnostic Radiology, St. Vincent' s Hospital, Suwon, Gyeonggi-do (Korea); Chun, Kyung Ah [The Catholic University of Korea, Department of Diagnostic Radiology, Uijeongbu St. Mary Hospital, Uijeongbu, Gyeonggi-do (Korea); Jee, Won-Hee [The Catholic University of Korea, Department of Diagnostic Radiology, Kangnam St. Mary' s Hospital, Seoul (Korea); Sung, Mi-Sook [The Catholic University of Korea, Department of Diagnostic Radiology, Holy family Hospital, Bucheon, Gyeonggi-do (Korea)

    2008-11-15

    In this study, we evaluated MR imaging findings of skin tumors and categorized them into four types: (1) discrete mass lesions of the dermis and epidermis, (2) mass lesions of the subcutis with or without abutment to the skin, (3) diffuse or localized skin thickening without a true mass, and (4) a skin mass with bone destruction. The categorization of MR images may be useful in the differential diagnosis of skin tumors. (orig.)

  12. Brain imaging, genetics and emotion.

    Science.gov (United States)

    Aleman, André; Swart, Marte; van Rijn, Sophie

    2008-09-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other polymorphisms (e.g. the COMT val158met polymorphism, tryptophan hydroxylase-2 -703 G/T) and putative effects on affective processing in cortical and limbic regions. A different line of research concerns studies with genetic disorders. Although at a less fine-grained level, studies with individuals with aneuploidies of the X chromosome (Turner syndrome and Klinefelter syndrome), who display impairments in emotion processing, have resulted in new insights and hypotheses with regard to X chromosomal influences on brain systems supporting cognition and emotion. These have also implicated a key role for the amygdala. Integration of the emerging evidence, suggests that the study of polymorphisms using brain imaging can potentially elucidate biological pathways and mechanisms contributing to individual differences in brain circuits that may bias behavior and affect risk for psychiatric illness.

  13. Evaluation of therapeutic effects of radiosurgery using 99 Tcm-MIBI brain SPECT in patients with brain tumor

    Institute of Scientific and Technical Information of China (English)

    FAN Yi-xiang; SHI Wei-min; PENG Wu-he

    2002-01-01

    Objective: To evaluate the therapeutic effects of radiosurgery on brain tumor using 99Tcm-MIBI brain single-photon emission computed tomography (SPECT). Methods : Fifteen normal volunteers and 49patients with brain tumor underwent 99Tcm-MIBI brain SPECT, and the tumor to non-tumor ratio (T/N)was calculated and compared before and after radiosurgery. The patients were regrouped according to different schedules for postoperative reexamination, and diagnostic sensitivity and specificity of 99Tcm-MIBI SPECT evaluated against that of conventional CT and magnetic resonance imaging. Results: After radiosurgery, the lesions were reduced or even disappeared in 22 cases, and tumor remnants or recurrence were found in 27 cases. The sensitivity, specificity and accuracy of 99Tcm-MIBI brain SPECT were 85.2%, 68. 2% and 77.6%,respectively. The sensitivity of postoperative 99Tcm-MIBI brain SPECT at 5.8 months was 92%, significantly higher than that at 3.1 months (89%, u=2. 2545, P<0. 05), and its accuracy was also higher than those at3. 1 months (u=2. 5927, P<0. 05) and at 9. 4 months (u=2. 1760, P<0. 05). The preoperative T/N ratio averaged 9.5±7. 6, significantly lowered to 2.9±5.1 postoperatively (t=4. 4373, P<0. 001). T/N ratio of recurrence group was remarkably higher than those of tumor remnants group (t=2. 1496, P<0. 05), edema group (t= 9. 2186, P<0. 001) and cicatrization group (t= 6. 3906, P<0. 001). Conclusion: 99Tcm-MIBI brain SPECT is more accurate than CT in distinguishing tumor residuals from benign lesions such as edema and cicatrization. At about 6 months after radiosurgery, 99Tcm-MIBI SPECT can obtain optimal diagnostic effects.

  14. Efficacy and toxicity in brain tumor treatment - quantitative Measurements using advanced MRI

    DEFF Research Database (Denmark)

    Ravn, Søren

    2016-01-01

    and are now being used for presurgical and radiation therapy (RT) planning. More advanced MRI sequences have gained attention. Sequences such as diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and functional magnetic resonance imaging (fMRI) have entered the clinical world concurrently......From the clinical introduction in the 1980s, MRI has grown to become an indispensable brain imaging modality, mainly due to its excellent ability to visualize soft tissues. Morphologically, T1- and T2-weighted brain tumor MRI have been part of routine diagnostic radiology for more than two decades...... with the introduction of magnets with higher field strength. Ongoing technical development has enabled a change from semiquantitative measurements to a true quantitative approach. This step is expected to have a great impact on the treatment of brain tumor patients in the future. The aim of this Ph.D. dissertation...

  15. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    Science.gov (United States)

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  16. MR imaging of gestational trophoblastic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Bum; Ha, Hyun Kwon; Kim, Hak Hee; Lee, Eun Ja; Lee, Jae Hee; Song, Ha Hun; Kim, Taek Geun; Ro, Sang Chun; Jee, Mi Kyung; Chung, Jae Geun [Catholic University Medical College, Seoul (Korea, Republic of)

    1994-09-15

    To evaluate the MR findings of gestational trophoblastic tumor(GTT) in correlation with pathological results. Nine patients who confirmed the diagnosis (four choriocarcinomas and five invasive moles) constituted the basis of our study. Pathologic specimens were taken from the tumors corresponding to the regions of interest on MR images The MR images were analyzed in respect of the morphology and signal intensity of the tumors, uterine and adnexal vascularity, and the adnexal lesion. The MR findings of four choriocarcinomas were well-defined, hemorrhagic masses with central necrosis; the masses were hyperintense on T1-weighted images. In contrast, the five invasive moles showed irregular and permeative masses with densely enhanced solid components and tiny cystic lesion. The trophoblstic proliferation, coagulation necrosis, and molar villi had variable signal intensities on T1- and T2-weighted images. Our results suggest that MR imaging is a promising tool for noninvasive morphologic analysis of GTTS.

  17. Air pollution from traffic and risk for brain tumors

    DEFF Research Database (Denmark)

    Poulsen, Aslak Harbo; Sørensen, Mette; Andersen, Zorana J

    2016-01-01

    PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out to replic......PURPOSE: Air pollution is an established lung carcinogen, and there is increasing evidence that air pollution also negatively affects the brain. We have previously reported an association between air pollution and risk of brain tumors in a cohort study based on only 95 cases. We set out...... to replicate that finding in a large nationwide case-control study. METHODS: We identified all 4,183 adult brain tumor cases in Denmark in the years 2000-2009 and 8,018 risk set sampled population controls matched on gender and year of birth. We extracted residential address histories and estimated mean...... and risk of brain tumors which was found in our previous study. The suggestion of an increased brain tumor risk at high exposures merits further attention as does the differing results according to tumor morphology....

  18. TUMORS INVADING PARAPHARYNGEAL SPACE: REFINED IMAGING DIAGNOSIS

    Institute of Scientific and Technical Information of China (English)

    Zhuang Qixin; Cheng Yingsheng; Yang Shixun; Shang kezhong; Yan Xinhua

    1998-01-01

    Objective: To investigate imaging findings of tumors invading parapharyngeal space. Methods: Magnetic resonance imaging (MRI) computerized tomography (CT), magnetic resonance angiography (MRA)and digital subtruation angiography (DSA) findings of 19patients with tumors infiltrating parapharyngeal space by surgery and pathology were analysed, including four branchial cleft cysts, three jugular glomus tumors, four carotid body tumors, three neurilemomas and five carcinomas of nasopharynx involving parapharyngeal space. Fifteen patients underwent MRI scanning nine patients had CT scanning, three patients MRA and five patients DSA. Results: MRI provided clinically useful informations about the size, shape, extent and site of the parapharyngeal space tumors, and also their effects on adjacent structures. The main MRI features of paraganglioma presented as many low signal tortuous and creeping vessels in the tumor. The main CT features of jugular glomus tumor revealed as jugular foramen enlargement with bone destruction. Tumor vessels were clearly displayed by MRA and DSA. Conclusion: MRI was superior to CT in the diagnosis of tumors invading parapharyngeal space. The location and nature of the lesions could be diagnosed accurately by MRI combined with CT or DSA.

  19. Imaging of childhood inflammatory myofibroblastic tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oguz, Berna; Ozcan, Hatice Nursun; Omay, Burak; Ozgen, Burce; Haliloglu, Mithat [Division of Pediatric Radiology, Hacettepe University Faculty of Medicine, Department of Radiology, Altindag / Sihhiye, Ankara (Turkey)

    2015-10-15

    Inflammatory myofibroblastic tumor is a rare benign neoplasm and most commonly involves the lung but occurs in extrapulmonary locations. To present imaging findings in inflammatory myofibroblastic tumors in children based on a single-centre experience. We retrospectively reviewed CT and MRI findings of children diagnosed with inflammatory myofibroblastic tumor in a single institution. We identified 15 children (range: 1-17 years) with inflammatory myofibroblastic tumor. The tumor was localized to the lung (n = 5), mediastinum (n = 3), trachea (n = 1), bronchus (n = 1), abdomen (n = 2) and orbit (n = 3). All the extraorbital tumors were solid masses with homogeneous or heterogeneous enhancement. Four lung tumors and one posterior mediastinal tumor contained calcification. Local recurrence following surgical removal occurred in two children with invasion of the esophagus and of the left atrium in one. Localized masses were seen in all children with orbital tumour. Two of these had episcleritis and perineuritis; one had episcleritis, tendonitis, perineuritis, myositis and dacryoadenitis. The locations and imaging features of inflammatory myofibroblastic tumors are variable. (orig.)

  20. Atlas to patient registration with brain tumor based on a mesh-free method.

    Science.gov (United States)

    Diaz, Idanis; Boulanger, Pierre

    2015-08-01

    Brain atlas to patient registration in the presence of tumors is a challenging task because its presence cause brain structure deformations and introduce large intensity variation between the affected areas. This large dissimilarity affects the results of traditional registration methods based on intensity or shape similarities. In order to overcome these problems, we propose a novel method that brings closer the atlas and the patient's image by simulating the mechanical behavior of brain deformation under a tumor pressure. The proposed method use a mesh-free total Lagrangian Explicit Dynamic algorithm for the simulation of atlas deformation and a data driven model of the tumor using multi-modal MRI segmentation. Experimental results look structurally very similar to the patient's image and outperform two of the top ranking algorithms.

  1. Characterizing intraocular tumors with photoacoustic imaging

    Science.gov (United States)

    Xu, Guan; Xue, Yafang; Gursel, Zeynep; Slimani, Naziha; Wang, Xueding; Demirci, Hakan

    2016-03-01

    Intraocular tumors are life-threatening conditions. Long-term mortality from uveal melanoma, which accounts for 80% of primary intraocular tumors, could be as high as 25% depending on the size, ciliary body involvement and extraocular extension. The treatments of intraocular tumors include eye-sparing approaches such as radiotherapy and thermotherapy, and the more aggressive enucleation. The accurate diagnosis of intraocular tumors is thereby critical in the management and follow-up of the patients. The diagnosis of intraocular tumors is usually based on clinical examination with acoustic backscattering based ultrasonography. By analyzing the high frequency fluctuations within the ultrasound (US) signals, microarchitecture information inside the tumor can be characterized. However, US cannot interrogate the histochemical components formulating the microarchitecture. One representative example is the inability of US imaging (and other contemporary imaging modalities as well) in differentiating nevoid and melanoma cells as the two types of cells possesses similar acoustic backscattering properties. Combining optical and US imaging, photoacoustic (PA) measurements encode both the microarchitecture and histochemical component information in biological tissue. This study attempts to characterize ocular tumors by analyzing the high frequency signal components in the multispectral PA images. Ex vivo human eye globes with melanoma and retinoblastoma tumors were scanned using less than 6 mJ per square centimeters laser energy with tunable range of 600-1700 nm. A PA-US parallel imaging system with US probes CL15-7 and L22-14 were used to acquire the high frequency PA signals in real time. Preliminary results show that the proposed method can identify uveal melanoma against retinoblastoma tumors.

  2. Quantitative Apparent Diffusion Coefficients in the Characterization of Brain Tumors and Associated Peritumoral Edema

    Energy Technology Data Exchange (ETDEWEB)

    Server, A.; Schellhorn, T.; Nakstad, P.H. (Dept. of Neuroradiology, Div. of Radiology, Ullevaal Univ. Hospital, Univ. of Oslo, Oslo (Norway)); Kulle, B. (Epi-Gen Faculty Div. Akershus Univ. Hospital and Dept. of Biostatistics, Univ. of Oslo, Oslo (Norway)); Maehlen, J.; Kumar, T. (Dept. of Pathology, Ullevaal Univ. Hospital, Univ. of Oslo, Oslo (Norway)); Josefsen, R. (Dept. of Neurosurgery, Ullevaal Univ. Hospital, Univ. of Oslo, Oslo (Norway)); Langberg, C.W. (Cancer Centre, Ullevaal Univ. Hospital, Univ. of Oslo, Oslo (Norway))

    2009-07-15

    Background: Conventional magnetic resonance (MR) imaging has a number of limitations in the diagnosis of the most common intracranial brain tumors, including tumor specification and the detection of tumoral infiltration in regions of peritumoral edema. Purpose: To prospectively assess if diffusion-weighted MR imaging (DWI) could be used to differentiate between different types of brain tumors and to distinguish between peritumoral infiltration in high-grade gliomas, lymphomas, and pure vasogenic edema in metastases and meningiomas. Material and Methods: MR imaging and DWI was performed on 93 patients with newly diagnosed brain tumors: 59 patients had histologically verified high-grade gliomas (37 glioblastomas multiforme, 22 anaplastic astrocytomas), 23 patients had metastatic brain tumors, five patients had primary cerebral lymphomas, and six patients had meningiomas. Apparent diffusion coefficient (ADC) values of tumor (enhancing regions or the solid portion of tumor) and peritumoral edema, and ADC ratios (ADC of tumor or peritumoral edema to ADC of contralateral white matter, ADC of tumor to ADC of peritumoral edema) were compared with the histologic diagnosis. ADC values and ratios of high-grade gliomas, primary cerebral lymphomas, metastases, and meningiomas were compared by using ANOVA and multiple comparisons. Optimal thresholds of ADC values and ADC ratios for distinguishing high-grade gliomas from metastases were determined by receiver operating characteristic (ROC) curve analysis. Results: Statistically significant differences were found for minimum and mean of ADC tumor and ADC tumor ratio values between metastases and high-grade gliomas when including only one factor at a time. Including a combination of in total four parameters (mean ADC tumor, and minimum, maximum and mean ADC tumor ratio) resulted in sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of 72.9, 82.6, 91.5, and 54.3% respectively. In the ROC curve analysis

  3. Clinical results of BNCT for malignant brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [Department of Neurosurgery, Kagawa National Children' s Hospital, Kagawa 765-8501 (Japan)], E-mail: ynakagawa0517@yahoo.co.jp; Kageji, Teruyoshi; Mizobuchi, Yoshifumi [Department of Neurosurgery, University of Tokushima, Tokushima 770-8503 (Japan); Kumada, Hiroaki [Department of Research Reactor, Japan Atomic Energy Research Institute, Ibaragi 319-1195 (Japan); Nakagawa, Yoshiaki [Department of Medical Informatics, Post Graduated School, Kyoto University, Kyoto (Japan)

    2009-07-15

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  4. Current state of our knowledge on brain tumor epidemiology.

    Science.gov (United States)

    Ostrom, Quinn T; Barnholtz-Sloan, Jill S

    2011-06-01

    The overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 person-years; 11.52 per 100,000 person-years for benign tumors and 7.19 per 100,000 person-years for malignant tumors. Incidence, response to treatment, and survival after diagnosis vary greatly by age at diagnosis, histologic type of tumor, and degree of neurologic compromise. The only established environmental risk factor for brain tumors is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor for brain tumor development. However, studies have been inconsistent and inconclusive due to systematic differences in study designs and difficulty of accurately measuring cell phone use. Recently studies of genetic risk factors for brain tumors have expanded to genome-wide association studies. In addition, genome-wide studies of somatic genetic changes in tumors show correlation with clinical outcomes.

  5. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  6. Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Powathil, G [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Kohandel, M [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Sivaloganathan, S [Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Oza, A [Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, Ontario M5T 3J1 (Canada); Milosevic, M [Radiation Medicine Program, Princess Margaret Hospital, and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2007-06-07

    Gliomas, the most common primary brain tumors, are diffusive and highly invasive. The standard treatment for brain tumors consists of a combination of surgery, radiation therapy and chemotherapy. Over the past few years, mathematical models have been applied to study untreated and treated brain tumors. In an effort to improve treatment strategies, we consider a simple spatio-temporal mathematical model, based on proliferation and diffusion, that incorporates the effects of radiotherapeutic and chemotherapeutic treatments. We study the effects of different schedules of radiation therapy, including fractionated and hyperfractionated external beam radiotherapy, using a generalized linear quadratic (LQ) model. The results are compared with published clinical data. We also discuss the results for combination therapy (radiotherapy plus temozolomide, a new chemotherapy agent), as proposed in recent clinical trials. We use the model to predict optimal sequencing of the postoperative (combination of radiotherapy and adjuvant, neo-adjuvant or concurrent chemotherapy) treatments for brain tumors.

  7. Childhood Brain and Spinal Cord Tumors Treatment Overview

    Science.gov (United States)

    ... the following: Brain Tumor Signs and Symptoms Morning headache or headache that goes away after vomiting . Frequent nausea and ... Cancer Late Effects of Treatment for Childhood Cancer Adolescents and Young Adults with Cancer Children with Cancer: ...

  8. General Information about Childhood Brain and Spinal Cord Tumors

    Science.gov (United States)

    ... the following: Brain Tumor Signs and Symptoms Morning headache or headache that goes away after vomiting . Frequent nausea and ... Cancer Late Effects of Treatment for Childhood Cancer Adolescents and Young Adults with Cancer Children with Cancer: ...

  9. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    Science.gov (United States)

    ... tumor. This still requires making an incision and drilling a small hole into the skull. The biopsy ... requests, please see our Content Usage Policy . Early Detection, Diagnosis, and Staging Can Brain and Spinal Cord ...

  10. Isolated angiitis in the hypothalamus mimicking brain tumor.

    Science.gov (United States)

    Tsutsumi, Satoshi; Ito, Masanori; Yasumoto, Yukimasa; Kaneda, Kazuhiko

    2008-01-01

    A 64-year-old female presented with exaggerating somnolence without contributory medical and lifestyle histories. She was not aware of any preceding infection or headache. Cerebral magnetic resonance imaging demonstrated an isolated enhanced mass in the hypothalamus without meningeal enhancement. Blood and cerebrospinal fluid examinations showed no significant findings except for hypernatremia and hyperprolactinemia. She underwent an open biopsy via the interhemispheric route. Histological examination revealed marked perivascular lymphocytic aggregation with polyclonal immunostaining both for B and T lymphocytes. No findings suggestive of underlying malignancy were recognized. Extensive work-up aiming at systemic vasculitis and lymphoma revealed no signs of extracranial lesion, so the most probable diagnosis was isolated angiitis in the hypothalamus. Angiitis may originate from the hypothalamus and should be considered in the differential diagnosis of hypothalamic lesion mimicking brain tumor on neuroimaging.

  11. PET tracer for imaging of neuroendocrine tumors

    DEFF Research Database (Denmark)

    2013-01-01

    There is provided a radiolabelled peptide-based compound for diagnostic imaging using positron emission tomography (PET). The compound may thus be used for diagnosis of malignant diseases. The compound is particularly useful for imaging of somatostatin overexpression in tumors, wherein the compound...

  12. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model.

    Directory of Open Access Journals (Sweden)

    Jennifer A MacDiarmid

    Full Text Available Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers.EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT and magnetic resonance imaging (MRI. Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973. No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs.Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of

  13. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    Science.gov (United States)

    MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu

    2016-01-01

    Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On

  14. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  15. A Comparison of Two Human Brain Tumor Segmentation Methods for MRI Data

    CERN Document Server

    Egger, Jan; Bauer, Miriam H A; Kuhnt, Daniela; Carl, Barbara; Freisleben, Bernd; Kolb, Andreas; Nimsky, Christopher

    2011-01-01

    The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the preoperative tumor volume is essential. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming process that can be overcome with the help of computerized segmentation methods. In this contribution, two methods for World Health Organization (WHO) grade IV glioma segmentation in the human brain are compared using magnetic resonance imaging (MRI) patient data from the clinical routine. One method uses balloon inflation forces, and relies on detection of high intensity tumor boundaries that are coupled with the use of contrast agent gadolinium. The other method sets up a directed and weighted graph and performs a min-cut for optimal segmentation results. The ground truth of the tumor boundaries - for evaluating the methods on 27 cases - is manually extracted by neurosurgeons with several years of experience in the resection of glio...

  16. Brain tumor classification and segmentation using sparse coding and dictionary learning.

    Science.gov (United States)

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.

  17. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy.

  18. Monkey brain cortex imaging by photoacoustic tomography.

    Science.gov (United States)

    Yang, Xinmai; Wang, Lihong V

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultrasound signal attenuation and distortion caused by a relatively thick skull.

  19. Nanocarrier drugs in the treatment of brain tumors

    Institute of Scientific and Technical Information of China (English)

    Tereza Cerna; Marie Stiborova; Vojtech Adam; Rene Kizek; Tomas Eckschlager

    2016-01-01

    Nanoparticle-mediated targeted delivery of drugs might signiifcantly reduce the dosage and optimize their release properties, increase speciifcity and bioavailability, improve shelf life, and reduce toxicity. Some nanodrugs are able to overcome the blood-brain barrier that is an obstacle to treatment of brain tumors. Vessels in tumors have abnormal architecture and are highly permeable; moreover, tumors also have poor lymphatic drainage, allowing for accumulation of macromolecules greater than approximately 40 kDa within the tumor microenvironment. Nanoparticles exploit this feature, known as the enhanced permeability and retention effect, to target solid tumors. Active targeting, i.e. surface modiifcation of nanoparticles, is a way to decrease uptake in normal tissue and increase accumulation in a tumor, and it usually involves targeting surface membrane proteins that are upregulated in cancer cells. The targeting molecules are typically antibodies or their fragments; aptamers; oligopeptides or small molecules. There are currently several FDA-approved nanomedicines, but none approved for brain tumor therapy. This review, based both on the study of literature and on the authors own experimental work describes a comprehensive overview of preclinical and clinical research of nanodrugs in therapy of brain tumors.

  20. Using Integrins for Tumor Imaging

    OpenAIRE

    Roland Haubner; Weber, Wolfgang A.; Beer, Ambros J.; Eugenija Vabuliene; Daniel Reim; Mario Sarbia; Karl-Friedrich Becker; Michael Goebel; Rüdiger Hein; Hans-Jürgen Wester; Horst Kessler; Markus Schwaiger

    2005-01-01

    BACKGROUND: The integrin alphavbeta3 plays an important role in angiogenesis and tumor cell metastasis, and is currently being evaluated as a target for new therapeutic approaches. Several techniques are being studied to enable noninvasive determination of alphavbeta3 expression. We developed [(18)F]Galacto-RGD, a (18)F-labeled glycosylated alphavbeta3 antagonist, allowing monitoring of alphavbeta3 expression with positron emission tomography (PET). METHODS AND FINDINGS: Here we show by quant...

  1. Crossing the barrier: treatment of brain tumors using nanochain particles.

    Science.gov (United States)

    Karathanasis, Efstathios; Ghaghada, Ketan B

    2016-09-01

    Despite advancements in surgery and radiotherapy, the aggressive forms of brain tumors, such as gliomas, are still uniformly lethal with current therapies offering only palliation complicated by significant toxicities. Gliomas are characteristically diffuse with infiltrating edges, resistant to drugs and nearly inaccessible to systemic therapies due to the brain-tumor barrier. Currently, aggressive efforts are underway to further understand brain-tumor's microenvironment and identify brain tumor cell-specific regulators amenable to pharmacologic interventions. While new potent agents are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. To tackle the drug delivery issues, a multicomponent chain-like nanoparticle has been developed. These nanochains are comprised of iron oxide nanospheres and a drug-loaded liposome chemically linked into a 100-nm linear, chain-like assembly with high precision. The nanochain possesses a unique ability to scavenge the tumor endothelium. By utilizing effective vascular targeting, the nanochains achieve rapid deposition on the vascular bed of glioma sites establishing well-distributed drug reservoirs on the endothelium of brain tumors. After reaching the target sites, an on-command, external low-power radiofrequency field can remotely trigger rapid drug release, due to mechanical disruption of the liposome, facilitating widespread and effective drug delivery into regions harboring brain tumor cells. Integration of the nanochain delivery system with the appropriate combination of complementary drugs has the potential to unfold the field and allow significant expansion of therapies for the disease where success is currently very limited. WIREs Nanomed Nanobiotechnol 2016, 8:678-695. doi: 10.1002/wnan.1387 For further resources related to this article, please visit the WIREs website.

  2. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    El Majdoub, Faycal; Neudorfer, Clemens; Maarouf, Mohammad [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Blau, Tobias; Deckert, Martina [University Hospital of Cologne, Department of Neuropathology, Cologne (Germany); Hellmich, Martin [University Hospital of Cologne, Institute of Statistics, Informatics and Epidemiology, Cologne (Germany); Buehrle, Christian [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2015-12-15

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using {sup 125}iodine seeds ({sup 125}I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with {sup 125}I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.) [German] Die Behandlung oligodendroglialer Hirntumoren durch die interstitielle Brachytherapie

  3. Development in NMR spiral imaging and application to the assessment of the permeability of the blood-brain barrier on 2 models of brain tumors; Developpements en imagerie RMN spirale et application a la caracterisation de la permeabilite de la barriere hemato-encephalique sur deux modeles de tumeurs intracerebrales

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, M

    2007-12-15

    The results presented in this work were obtained as part of methodological developments in magnetic resonance imaging. First of all, the setting of the rapid imaging technique using a k-space sampling scheme along a variable density spiral is described. Numerical simulations were used to optimize the acquisitions parameters and to compare different reconstruction techniques. An original approach to calibrate the k-space trajectory was proposed. Then, spiral imaging was used to implement a method to measure the blood brain barrier permeability to Gd-DOTA. This protocol was combined to blood volume and vessel size index measurements using Sinerem. The results obtained highlighted differences between the microvascular parameters measured on C6 and RG2 tumor models. The presence of Sinerem induces a mean decrease of the transfer constant across the vascular wall (Ktrans), in the tumor, of 24 per cent. This study also showed extravasation of the Sinerem, during the first two hours after the product injection, only in the RG2 tumors. (author)

  4. Differentiation of brain abscesses from glioblastomas and metastatic brain tumors: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging before and after mathematic contrast leakage correction.

    Directory of Open Access Journals (Sweden)

    Cheng Hong Toh

    Full Text Available PURPOSE: To compare the diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MRI before and after mathematic contrast leakage correction in differentiating pyogenic brain abscesses from glioblastomas and/or metastatic brain tumors. MATERIALS AND METHODS: Cerebral blood volume (CBV, leakage-corrected CBV and leakage coefficient K2 were measured in enhancing rims, perifocal edema and contralateral normal appearing white matter (NAWM of 17 abscesses, 19 glioblastomas and 20 metastases, respectively. The CBV and corrected CBV were normalized by dividing the values in the enhancing rims or edema to those of contralateral NAWM. For each study group, a paired t test was used to compare the K2 of the enhancing rims or edema with those of NAWM, as well as between CBV and corrected CBV of the enhancing rims or edema. ANOVA was used to compare CBV, corrected CBV and K2 among three lesion types. The diagnostic performance of CBV and corrected CBV was assessed with receiver operating characteristic (ROC curve analysis. RESULTS: The CBV and correction CBV of enhancing rim were 1.45±1.17 and 1.97±1.01 for abscesses, 3.85±2.19 and 4.39±2.33 for glioblastomas, and 2.39±0.90 and 2.97±0.78 for metastases, respectively. The CBV and corrected CBV in the enhancing rim of abscesses were significantly lower than those of glioblastomas and metastases (P = 0.001 and P = 0.007, respectively. In differentiating abscesses from glioblastomas and metastases, the AUC values of corrected CBV (0.822 were slightly higher than those of CBV (0.792. CONCLUSIONS: Mathematic leakage correction slightly increases the diagnostic performance of CBV in differentiating pyogenic abscesses from necrotic glioblastomas and cystic metastases. Clinically, DSC perfusion MRI may not need mathematic leakage correction in differentiating abscesses from glioblastomas and/or metastases.

  5. Brain Image Representation and Rendering: A Survey

    Directory of Open Access Journals (Sweden)

    Mudassar Raza

    2012-09-01

    Full Text Available Brain image representation and rendering processes are basically used for evaluation, development and investigation consent experimental examination and formation of brain images of a variety of modalities that includes the major brain types like MEG, EEG, PET, MRI, CT or microscopy. So, there is a need to conduct a study to review the existing work in this area. This paper provides a review of different existing techniques and methods regarding the brain image representation and rendering. Image Rendering is the method of generating an image by means of a model, through computer programs. The basic purpose of brain image representation and rendering processes is to analyze the brain images precisely in order to effectively diagnose and examine the diseases and problems. The basic objective of this study is to evaluate and discuss different techniques and approaches proposed in order to handle different brain imaging types. The paper provides a short overview of different methods, in the form of advantages and limitations, presented in the prospect of brain image representation and rendering along with their sub categories proposed by different authors.

  6. MR spectroscopy in children: protocols and pitfalls in non-tumorous brain pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jacques F. [University Children' s Hospital Basel (UKBB), Basel (Switzerland)

    2016-06-15

    Proton nuclear magnetic resonance spectroscopy (MRS) delivers information about cell content and metabolism in a noninvasive manner. The diagnostic strength of MRS lies in its evaluation of pathologies in combination with conventional magnetic resonance imaging (MRI). MRS in children has been most widely used to evaluate brain conditions like tumors, infections, metabolic diseases or learning disabilities and especially in neonates with hypoxic-ischemic encephalopathy. This article reviews some basic theoretical considerations, routine procedures, protocols and pitfalls and will illustrate the range of spectrum alterations occurring in some non-tumorous pediatric brain pathologies. (orig.)

  7. Functional Assays for Specific Targeting and Delivery of RNA Nanoparticles to Brain Tumor

    Science.gov (United States)

    Lee, Tae Jin; Haque, Farzin; Vieweger, Mario; Yoo, Ji Young; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M.

    2017-01-01

    Cumulative progress in nanoparticle development has opened a new era of targeted delivery of therapeutics to cancer cells and tissue. However, developing proper detection methods has lagged behind resulting in the lack of precise evaluation and monitoring of the systemically administered nanoparticles. RNA nanoparticles derived from the bacteriophage phi29 DNA packaging motor pRNA have emerged as a new generation of drugs for cancer therapy. Multifunctional RNA nanoparticles can be fabricated by bottom-up self-assembly of engineered RNA fragments harboring targeting (RNA aptamer or chemical ligand), therapeutic (siRNA, miRNA, ribozymes, and small molecule drugs), and imaging (fluorophore, radiolabels) modules. We have recently demonstrated that RNA nanoparticles can reach and target intracranial brain tumors in mice upon systemic injection with little or no accumulation in adjacent healthy brain tissues or in major healthy internal organs. Herein, we describe various functional imaging methods (fluorescence confocal microscopy, flow cytometry, fluorescence whole body imaging, and magnetic resonance imaging) to evaluate and monitor RNA nanoparticle targeting to intracranial brain tumors in mice. Such imaging techniques will allow in-depth evaluation of specifically delivered RNA therapeutics to brain tumors. PMID:25896001

  8. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  9. A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation - With Application to Tumor and Stroke

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Van Leemput, Koen; Lashkari, Danial

    2016-01-01

    jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model...... patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the extended discriminative-discriminative model to be one of the top ranking methods in the BRATS...

  10. Nanobubbles for enhanced ultrasound imaging of tumors

    Directory of Open Access Journals (Sweden)

    Yin T

    2012-02-01

    Full Text Available Tinghui Yin1*, Ping Wang1*, Rongqin Zheng1, Bowen Zheng1, Du Cheng2, Xinling Zhang1, Xintao Shuai21Department of Medical Ultrasonic, Third Affiliated Hospital, 2PCFM Laboratory of the Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China*These authors contributed equally to this workAbstract: The fabrication and initial applications of nanobubbles (NBs have shown promising results in recent years. A small particle size is a basic requirement for ultrasound contrast-enhanced agents that penetrate tumor blood vessel pores to allow for targeted imaging and therapy. However, the nanoscale size of the particles used has the disadvantage of weakening the imaging ability of clinical diagnostic ultrasound. In this work, we fabricated a lipid NBs contrast-enhanced ultrasound agent and evaluated its passive targeting ability in vivo. The results showed that the NBs were small (436.8 ± 5.7 nm, and in vitro ultrasound imaging suggested that the ultrasonic imaging ability is comparable to that of microbubbles (MBs. In vivo experiments confirmed the ability of NBs to passively target tumor tissues. The NBs remained in the tumor area for a longer period because they exhibited enhanced permeability and retention. Direct evidence was obtained by direct observation of red fluorescence-dyed NBs in tumor tissue using confocal laser scanning microscopy. We have demonstrated the ability to fabricate NBs that can be used for the in vivo contrast-enhanced imaging of tumor tissue and that have potential for drug/gene delivery.Keywords: phospholipids, ultrasound, contrast agent, tumor-targeted

  11. Imaging findings in primary intracranial atypical teratoid/rhabdoid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Hemant; Shroff, Manohar [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Hawkins, Cynthia [Hospital for Sick Children, Department of Neuropathology, Toronto, ON (Canada); Bouffet, Eric [Hospital for Sick Children, Department of Neuro-Oncology, Toronto, ON (Canada); Rutka, James [Hospital for Sick Children, Department of Neurosurgery, Toronto, ON (Canada)

    2006-02-01

    Intracranial atypical teratoid/rhabdoid tumors (AT/RT) are rare and extremely aggressive neoplasms seen primarily in childhood. Imaging features are often considered non-specific. However, correct diagnosis of AT/RT is important because these tumors have a markedly different clinical prognosis and require more aggressive therapy. To determine the imaging features of AT/RT. We retrospectively analyzed imaging findings in 11 patients with primary intracranial AT/RT presenting over a period of 5 years. CT (n=11), MR (n=7), clinical (n=11) and pathological (n=11) features were evaluated. FISH analysis showing monosomy of chromosome 22 (absence of bcr 22q11 locus) was available for three patients. Immunohistochemical staining for INI-1 (BAF47) was performed on all tumors. There were 11 patients, 6 boys and 5 girls. The age of presentation varied from 1 month to 15 years (average age 3 years 8 months). Six tumors were located in the posterior fossa and five in the supratentorial compartment. The tumors showed a hyperdense solid component (64%) that showed moderate to marked enhancement with contrast medium. On MR imaging, the predominant signal pattern was isointensity on T1-weighted images (57%) and T2 shortening with heterogeneity on T2-weighted images (86%). All tumors were large in size (average 4.2 x 3.7 cm), and there was a tendency for calcification (36%), hemorrhage (46%), necrosis (46%) and perifocal edema (100%). There was also a high tendency for subarachnoid dissemination, with five patients (46%) demonstrating brain and/or spinal metastasis. At follow-up (n=7), six patients showed local recurrence. At the time of recurrence, all these patients showed extensive leptomeningeal spread of the disease in both intracranial and intraspinal compartments. There are no specific imaging features for intracranial AT/RT. But a high tendency toward large size, a hyperdense solid component on CT scan with calcification, hemorrhage, necrosis and subarachnoid spread suggest

  12. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Directory of Open Access Journals (Sweden)

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  13. Brain and Spinal Tumors: Hope through Research

    Science.gov (United States)

    ... which can trigger neurological conditions and symptoms including hyperthyroidism and Cushing’s syndrome (the harmful over-production of the hormone cortisol). Treatment options include tumor resection, radiation therapy, and drug ...

  14. Linking brain imaging signals to visual perception.

    Science.gov (United States)

    Welchman, Andrew E; Kourtzi, Zoe

    2013-11-01

    The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.

  15. Fusing in vivo and ex vivo NMR sources of information for brain tumor classification

    Science.gov (United States)

    Croitor-Sava, A. R.; Martinez-Bisbal, M. C.; Laudadio, T.; Piquer, J.; Celda, B.; Heerschap, A.; Sima, D. M.; Van Huffel, S.

    2011-11-01

    In this study we classify short echo-time brain magnetic resonance spectroscopic imaging (MRSI) data by applying a model-based canonical correlation analyses algorithm and by using, as prior knowledge, multimodal sources of information coming from high-resolution magic angle spinning (HR-MAS), MRSI and magnetic resonance imaging. The potential and limitations of fusing in vivo and ex vivo nuclear magnetic resonance sources to detect brain tumors is investigated. We present various modalities for multimodal data fusion, study the effect and the impact of using multimodal information for classifying MRSI brain glial tumors data and analyze which parameters influence the classification results by means of extensive simulation and in vivo studies. Special attention is drawn to the possibility of considering HR-MAS data as a complementary dataset when dealing with a lack of MRSI data needed to build a classifier. Results show that HR-MAS information can have added value in the process of classifying MRSI data.

  16. Multi-fractal texture features for brain tumor and edema segmentation

    Science.gov (United States)

    Reza, S.; Iftekharuddin, K. M.

    2014-03-01

    In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.

  17. New approach to optical imaging of tumors

    Science.gov (United States)

    Achilefu, Samuel I.; Bugaj, Joseph E.; Dorshow, Richard B.; Jimenez, Hermo N.; Rajagopalan, Raghavan

    2001-07-01

    Site specific delivery of drugs and contrast agents to tumors protects normal tissues from the cytotoxic effect of drugs, and enhances the contrast between normal and diseased tissues. In optical medicine, biocompatible dyes can be used as phototherapeutics or as contrast agents. Previous studies have shown that the use of covalent or non-covalent dye conjugates of carriers such as antibiodies, liposomes, and polysaccharides improves the delivery of such molecules to tumors. However, large biomolecules can elicit adverse immunogenic reactions and also result in long blood clearance times, delaying visualization of target tissues. A viable alternative to this strategy is to use small bioactive molecule-dye conjugates. These molecules have several advantages over large biomolecules, including ease of synthesis of a variety of high purity compounds for combinatorial screening of new targets, enhanced diffusivity to solid tumors, and the ability to affect the pharmacokinetics of the conjugates by minor structural changes. Thus, we conjugated a near infrared absorbing dye to several bioactive peptides that specifically target overexpressed tumor receptors in established rat tumor lines. High tumor uptake of the conjugates was obtained without loss of either the peptide receptor affinity or the dye fluorescence. These findings demonstrate the efficacy of a small peptide-dye conjugate strategy for in vivo tumor imaging. Site-specific delivery of photodynamic therapy agents may also benefit from this approach.

  18. AN ARTIFICIAL FISH SWARM OPTIMIZED FUZZY MRI IMAGE SEGMENTATION APPROACH FOR IMPROVING IDENTIFICATION OF BRAIN TUMOUR

    OpenAIRE

    Jagadeesan, R; S.N. Sivanandam

    2013-01-01

    In image processing, it is difficult to detect the abnormalities in brain especially in MRI brain images. Also the tumor segmentation from MRI image data is an important; however it is time consumingwhile carried out by medical specialists. A lot of methods have been proposed to solve MR images problems, quite difficult to develop an automated recognition system which could process on a large information of patient and provide a correct estimation. Hence enhanced k-means and fuzzy c-means wit...

  19. Assessment of serum L-fucose in brain tumor cases

    Directory of Open Access Journals (Sweden)

    Manjula S

    2010-01-01

    Full Text Available Background: Glycosylation of altered tumor cell in relation to cellular heterogeneity in human intracranial tumors remains relatively unexposed. Serum protein-bound carbohydrate, L-Fucose is reported to be overexpressed during tumor progression by many investigators. Therefore, there is a need to determine the diagnostic, prognostic, functional significance of glycoprotein elevations in various cases of tumors. Objective: The objective of the present study was to evaluate the clinical utility of serum L-fucose in patients with brain tumor. Materials and Methods: Serum glyco-conjugate levels were estimated in 99 patients with brain tumors. Estimation of L-fucose was carried out colorimetrically by the method of Winzler using cysteine hydrochloride. Results: There was a significant increase in L-fucose level in most of the patients. In the posttreatment cases, the L-fucose levels were apparently low compared to preoperative values. Conclusion: Our results showed that the rise in serum L-fucose may be used as a general marker for brain tumors in addition to other markers.

  20. Functional brain imaging across development.

    Science.gov (United States)

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  1. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  2. Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael; Christen, Thomas; Farion, Regine; Bouchet, Audrey; Sanden, Boudewijn van der; Segebarth, Christoph; Remy, Chantal; Barbier, Emmanuel L [INSERM, U836, F38043 Grenoble (France); Laissue, Jean [Institute of Pathology, University of Bern (Switzerland); Braeuer-Krisch, Elke; Duc, Geraldine Le; Bravin, Alberto [European Synchrotron Radiation Facility, F38043 Grenoble (France)], E-mail: serduc@esrf.fr

    2008-07-07

    The aim of this work focuses on the description of the short-term response of a 9L brain tumor model and its vasculature to microbeam radiation therapy (MRT) using magnetic resonance imaging (MRI). Rat 9L gliosarcomas implanted in nude mice brains were irradiated by MRT 13 days after tumor inoculation using two orthogonal arrays of equally spaced 28 planar microbeams (25 {mu}m width, 211 {mu}m spacing and dose 500 Gy). At 1, 7 and 14 days after MRT, apparent diffusion coefficient, blood volume and vessel size index were mapped by MRI. Mean survival time after tumor inoculation increased significantly between MRT-treated and untreated groups (23 and 28 days respectively, log-rank test, p < 0.0001). A significant increase of apparent diffusion coefficient was observed 24 h after MRT in irradiated tumors versus non-irradiated ones. In the untreated group, both tumor size and vessel size index increased significantly (from 7.6 {+-} 2.2 to 19.2 {+-} 4.0 mm{sup 2} and +23%, respectively) between the 14th and the 21st day after tumor cell inoculation. During the same period, in the MRT-treated group, no difference in tumor size was observed. The vessel size index measured in the MRT-treated group increased significantly (+26%) between 14 and 28 days of tumor growth. We did not observe the significant difference in blood volume between the MRT-treated and untreated groups. MRT slows 9L tumor growth in a mouse brain but MRI results suggest that the increase in survival time after our MRT approach may be rather due to a cytoreduction than to early direct effects of ionizing radiation on tumor vessels. These results suggest that MRT parameters need to be optimized to further damage tumor vessels.

  3. Histone modification as a drug resistance driver in brain tumors

    Institute of Scientific and Technical Information of China (English)

    Guifa Xi; Barbara Mania-Farnell; Ting Lei; Tadanori Tomita

    2016-01-01

    Patients with brain tumors, specificaly, malignant forms such as glioblastoma, meduloblas-toma and ependymoma, exhibit dismal survival rates despite advances in treatment strategies. Chemotherapeutics, the primary adjuvant treatment for human brain tumors folowing surgery, commonly lack eficacy due to either intrinsic or acquired drug resistance. New treatments tar-geting epigenetic factors are being explored. Post-translational histone modification provides a critical regulatory platform for processes such as chromosome condensation and segregation, apoptosis, gene transcription, and DNA replication and repair. This work reviews how aberrant histone modifications and alterations in histone-modifying enzymes can drive the acquisition of drug resistance in brain tumors. Elucidating these mechanisms should lead to new treatments for overcoming drug resistance.

  4. Brain MR imaging in dietarily treated phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, L. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Smet, M.H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Johannik, K. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Hecke, P. van [Dept. of Radiology, University Hospitals, Leuven (Belgium); Francois, B. [L. Willems Inst., Diepenbeek (Belgium); Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Bosmans, H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Marchal, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Jaeken, J. [Dept. of Pediatrics, University Hospitals, Leuven (Belgium); Demaerel, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium)

    1994-08-01

    Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases. The main purpose of our study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pathologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/tyr levels during 1 year preceding MR examination and with phe tolerance. The residual activity of phenylalanine hydroxylase was defined for each patient by an oral phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination). (orig.)

  5. MR imaging of intradural extramedullary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.H.; Holtaas, S.; Larsson, E.M. (Lund Univ. Hospital (Sweden). Dept. of Diagnostic Radiology)

    1992-05-01

    Thirty-one consecutive intradual extramedullary spinal tumors examined with MR at 0.3 T were reviewed. In 13 of the patients myelography had been performed. There were 11 patients with meningeoma, 14 with neuroma, one ependymoma, 3 metastases, and 2 lipomas. All tumours were surgically removed and verified by histology. The intradural extramedullary location of the tumors was accurately assessed by MR imaging in all patients and by myelography in 10 of 13. The MR diagnoses were in accordance with the histologic findings in 74% of cases. Compression of the spinal cord of cauda equina with widening of the subarachnoid space above and below the mass or outward displacement of epidural fat was characteristic of the intradural extramedullary tumors. The signal intensity of meningeoma as well as neuroma was slightly lower or equal to that of the cord on T1-weighted images, and equal to or higher than cord signal on T2-weighted images. Neuroma had a lower signal intensity on T1-weighted images and a higher signal intensity on T2-weighted images than meningeoma. Meningeoma appeared more homogeneous than neuroma and had a broad base towards the dura. (orig.).

  6. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  7. Gonadal status in male survivors following childhood brain tumors

    DEFF Research Database (Denmark)

    Schmiegelow, M; Lassen, S; Poulsen, H S

    2001-01-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males......The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males...

  8. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  9. Clinical features of depressive disorders in patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Ogorenko V.V.

    2014-03-01

    Full Text Available The aim of the study was to examine the structure of psychopathology and clinical features of depressive disorders in patients with brain oncopathology. Polymorphic mental disorders of various clinical content and severity in most cases not only are comorbid to oncological pathology of the brain, but most often are the first clinical signs of early tumors. The study was conducted using the following methods: clinical psychiatric, questionnaire Simptom Check List- 90 -Revised-SCL- 90 -R, Luscher test and mathematical processing methods. Sample included 175 patients with brain tumors with non-psychotic level of mental disorders. The peculiarities of mental disorders and psychopathological structure of nonpsychotic depressive disorders have been a clinical option of cancer debut in patients with brain tumors. We found that nonpsychotic depression is characterized by polymorphism and syndromal incompletion; this causes ambiguity of diagnoses interpretation on stages of diagnostic period. Features of depressive symptoms depending on the signs of malignancy / nonmalignancy of brain tumor were defined.

  10. Dysphagia outcomes in patients with brain tumors undergoing inpatient rehabilitation.

    Science.gov (United States)

    Wesling, Michele; Brady, Susan; Jensen, Mary; Nickell, Melissa; Statkus, Donna; Escobar, Nelson

    2003-01-01

    The purpose of this retrospective study was to compare functional dysphagia outcomes following inpatient rehabilitation for patients with brain tumors with that of patients following a stroke. Group 1 (n = 24) consisted of consecutive admissions to the brain injury program with the diagnosis of brain tumor and dysphagia. Group 2 (n = 24) consisted of matched, consecutive admissions, with the diagnosis of acute stroke and dysphagia. Group 2 was matched for age, site of lesion, and initial composite cognitive FIM score. The main outcome measures for this study included the American Speech-Language-Hearing Association (ASHA) National Outcome Measurement System (NOMS) swallowing scale, length of stay, hospital charges, and medical complications. Results showed that swallowing gains made by both groups as evaluated by the admission and discharge ASHA NOMS levels were considered to be statistically significant. The differences for length of stay, total hospital charges, and speech charges between the two groups were not considered to be statistically significant. Three patients in the brain tumor group (12.5%) demonstrated dysphagia complications of either dehydration or pneumonia during their treatment course as compared to 0% in the stroke group. This study confirms that functional dysphagia gains can be achieved for patients with brain tumors undergoing inpatient rehabilitation and that they should be afforded the same type and intensity of rehabilitation for their swallowing that is provided to patients following a stroke.

  11. Tumor-infiltrating lymphocytes expressing IOT-10 marker. An immunohistochemical study of a series of 185 brain tumors.

    Science.gov (United States)

    Zurita, M; Vaquero, J; Coca, S; Oya, S; Garcia, N

    1993-04-01

    The presence of IOT-10-positive lymphocytes among the tumor-infiltrating-lymphocyte (TIL) population was studied in a series of 185 brain tumors. In most of the tumors, IOT-10-positive lymphocytes were identified, but generally they were scarce and masked among the tumor cells, suggesting that NK-cells exercise a poor participation in the tissular response against brain tumors. Isolated tumor cells showing IOT-10-positivity were found in low-grade astrocytomas, neurinomas and medulloblastomas. IOT-10-positivity on both tumor neuropil and tumor cells was considered a characteristic finding in oligodendrogliomas. The number of IOT-10-positive NK-cells in brain metastases and in cerebellar hemangioblastomas was comparatively greater than in other types of brain tumor. Since in brain metastases, the presence of IOT-10-positive NK-cells can be related to the tissular response to an extracerebral malignancy, their considerable presence in cerebellar hemangioblastomas is an enigmatic finding that deserves further attention.

  12. Phyllodes tumor: diagnostic imaging and histopathology findings.

    Science.gov (United States)

    Venter, Alina Cristiana; Roşca, Elena; Daina, Lucia Georgeta; Muţiu, Gabriela; Pirte, Adriana Nicoleta; Rahotă, Daniela

    2015-01-01

    Phyllodes tumors are rare breast tumors, accounting for less than 1% of all primary tumors of the breast. Histologically, phyllodes tumors can be divided into benign (60%), borderline (20%) and malignant (20%). The mammography examination was performed by means of a digital mammography system Giotto 3D Images; the ultrasound examination was performed through a GE Logiq P6 device and histological confirmation was possible after surgery or following the histological biopsy. We grouped the nine patients who presented clinically palpable nodules into two groups, namely: the six patients presenting histological benign results into Group I, and Group II where we included those with borderline and malignant histological results. Mammography performed in 77.7% revealed a well-circumscribed round or oval opacity or with contour lobules. Ultrasound examination was performed in all patients. Mammography and ultrasound have limitation in differentiating between benign lesion and phyllodes tumor. In the nine analyzed cases, mammographic and ultrasound examinations did not allow the differentiation into the three groups of phyllodes tumor. Histopathological examination is considered the golden standard for their diagnosis. Correlations between mammographic and microscopic aspects were inconclusive for determining the degree of differentiation, ultrasound changes could be correlated with the histopathological aspects.

  13. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors.

    Science.gov (United States)

    Curtin, James F; King, Gwendalyn D; Candolfi, Marianela; Greeno, Remy B; Kroeger, Kurt M; Lowenstein, Pedro R; Castro, Maria G

    2005-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as 'immune privileged', brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important

  14. Pathology, treatment and management of posterior fossa brain tumors in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, K.; Siegel, K.R.

    1988-04-01

    Brain tumors are the second most common childhood malignancy. Between 1975 and 1985, 462 newly diagnosed patients were treated at the Children's Hospital of Philadelphia; 207 (45%) tumors arose in the posterior fossa and 255 (55%) appeared supratentorially. A wide variety of histological subtypes were seen, each requiring tumor-specific treatment approaches. These included primitive neuroectodermal tumor (n = 86, 19%), astrocytoma (n = 135, 30%), brainstem glioma (n = 47, 10%), anaplastic astrocytoma (n = 32, 7%), and ependymoma (n = 30, 6%). Because of advances in diagnostic abilities, surgery, radiotherapy, and chemotherapy, between 60% and 70% of these patients are alive today. Diagnostic tools such as computed tomography and magnetic resonance imaging allow for better perioperative management and follow-up, while the operating microscope, CO/sub 2/ laser, cavitron ultrasonic aspirator and neurosurgical microinstrumentation allow for more extensive and safer surgery. Disease specific treatment protocols, utilizing radiotherapy and adjuvant chemotherapy, have made survival common in tumors such as medulloblastoma. As survival rates increase, cognitive, endocrinologic and psychologic sequelae become increasingly important. The optimal management of children with brain tumors demands a multidisciplinary approach, best facilitated by a neuro-oncology team composed of multiple subspecialists. This article addresses incidence, classification and histology, clinical presentation, diagnosis, pre-, intra- and postoperative management, long-term effects and the team approach in posterior fossa tumors in childhood. Management of specific tumor types is included as well. 57 references.

  15. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  16. Aerobic Glycolysis as a Marker of Tumor Aggressiveness: Preliminary Data in High Grade Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Andrei G. Vlassenko

    2015-01-01

    Full Text Available Objectives. Glucose metabolism outside of oxidative phosphorylation, or aerobic glycolysis (AG, is a hallmark of active cancer cells that is not directly measured with standard 18F-fluorodeoxyglucose (FDG positron emission tomography (PET. In this study, we characterized tumor regions with elevated AG defined based on PET measurements of glucose and oxygen metabolism. Methods. Fourteen individuals with high-grade brain tumors underwent structural MR scans and PET measurements of cerebral blood flow (CBF, oxygen (CMRO2 and glucose (CMRGlu metabolism, and AG, using 15O-labeled CO, O2 and H2O, and FDG, and were compared to a normative cohort of 20 age-matched individuals. Results. Elevated AG was observed in most high-grade brain tumors and it was associated with decreased CMRO2 and CBF, but not with significant changes in CMRGlu. Elevated AG was a dramatic and early sign of tumor growth associated with decreased survival. AG changes associated with tumor growth were differentiated from the effects of nonneoplastic processes such as epileptic seizures. Conclusions. Our findings demonstrate that high-grade brain tumors exhibit elevated AG as a marker of tumor growth and aggressiveness. AG may detect areas of active tumor growth that are not evident on conventional FDG PET.

  17. Automated Brain Image classification using Neural Network Approach and Abnormality Analysis

    Directory of Open Access Journals (Sweden)

    P.Muthu Krishnammal

    2015-06-01

    Full Text Available Image segmentation of surgical images plays an important role in diagnosis and analysis the anatomical structure of human body. Magnetic Resonance Imaging (MRI helps in obtaining a structural image of internal parts of the body. This paper aims at developing an automatic support system for stage classification using learning machine and to detect brain Tumor by fuzzy clustering methods to detect the brain Tumor in its early stages and to analyze anatomical structures. The three stages involved are: feature extraction using GLCM and the tumor classification using PNN-RBF network and segmentation using SFCM. Here fast discrete curvelet transformation is used to analyze texture of an image which be used as a base for a Computer Aided Diagnosis (CAD system .The Probabilistic Neural Network with radial basis function is employed to implement an automated Brain Tumor classification. It classifies the stage of Brain Tumor that is benign, malignant or normal automatically. Then the segmentation of the brain abnormality using Spatial FCM and the severity of the tumor is analysed using the number of tumor cells in the detected abnormal region.The proposed method reports promising results in terms of training performance and classification accuracies.

  18. Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior

    Directory of Open Access Journals (Sweden)

    Yisu Lu

    2014-01-01

    Full Text Available Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.

  19. Application of {sup 1}H MR spectroscopic imaging in radiation oncology: choline as a marker for determining the relative probability of tumor progression after radiation of glial brain tumors; Einsatz der {sup 1}H-MR-spektroskopischen Bildgebung in der Strahlentherapie: Cholin als Marker fuer die Bestimmung der relativen Wahrscheinlichkeit eines Tumorprogresses nach Bestrahlung glialer Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Lichy, M.P.; Schlemmer, H.P. [Abt. fuer Radiologische Diagnostik, Univ. Tuebingen (Germany); Forschungsschwerpunkt Innovative Krebsdiagnostik und -therapie, Deutsches Krebsforschungszentrum, Heidelberg (dkfz) (Germany); Bachert, P.; Weber, M.A. [Forschungsschwerpunkt Innovative Krebsdiagnostik und -therapie, Deutsches Krebsforschungszentrum, Heidelberg (dkfz) (Germany); Hamprecht, F. [Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR), Ruprecht-Karls-Univ., Heidelberg (Germany); Debus, J.; Schulz-Ertner, D. [Abt. fuer Strahlentherapie, Ruprecht-Karls-Univ., Heidelberg (Germany); Kauczor, H.U. [Abt. Radiologie, Deutsches Krebsforschungszentrum, Heidelberg (Germany)

    2006-06-15

    Purpose: to determine the relative signal intensity ratios of choline (Cho), phosphocreatine (CR) and N-acetyl-aspartate (NAA) in MR spectroscopic imaging (proton-MRSI) for differentiating progressive tumors (PT) from non-progressive tumors (nPT) in follow-up and treatment planning of gliomas. Threshold values to indicate the probability of a progressive tumor were also calculated. Material and methods: thirty-four patients with histologically proven gliomas showing a suspicious brain lesion in MRI after stereotactic radiotherapy were evaluated on a 1.5 Tesla unit (Magnetom vision, Siemens, Erlangen, Germany) using 2D proton MRSI (repetition time/echo time = 1500/135 msec, PRESS; voxel size 9 x 9 x 15 mm{sup 3}). A total of 274 spectra were analyzed (92 voxel were localized within the suspicious brain lesion). Relative signal intensities Cho, Cr and NAA were measured and their ability to discern between PT and nPT was assessed using the linear discrimination method, logistic regression, and the cross-validation method. PT and nPT were differentiated between on the basis of clinical course and follow-up by MRI, CT and positron emission tomography. Results: the Cho parameter and the relative signal intensity ratios of Cr and NAA were most effective in differentiating between PT and nPT. The logistic regression method using the parameter ln(Cho/Cr) and ln(Cho/NAA) had the best predictive results in cross-validation. A sensitivity of 93.8% and specificity of 85.7% were achieved in the differentiation of PT from nPT by proton-MRSI. Conclusion: {sup 1}H-MRSI has a high sensitivity and specificity for differentiating between therapy-related effects and the relapse of irradiated gliomas. This method allows for assessment of the probability of radiotherapy response or failure. (orig.)

  20. Preclinical validation of electrochemotherapy as an effective treatment for brain tumors

    DEFF Research Database (Denmark)

    Agerholm-Larsen, Birgit; Iversen, Helle K; Ibsen, Per

    2011-01-01

    Electrochemotherapy represents a strategy to enhance chemotherapeutic drug uptake by delivering electrical pulses which exceed the dielectric strength of the cell membrane, causing transient formation of structures that enhance permeabilization. Here we show that brain tumors in a rat model can...... treatment. Bleomycin was injected intracranially into male rats inoculated with rat glia-derived tumor cells 2 weeks before the application of the electrical field (32 pulses, 100 V, 0.1 ms, and 1 Hz). In this model, where presence of tumor was confirmed by magnetic resonance imaging (MRI) before treatment......, we found that 9 of 13 rats (69%) receiving electrochemotherapy displayed a complete elimination of tumor, in contrast to control rats treated with bleomycin only, pulses only, or untreated where tumor progression occurred in each case. Necrosis induced by electrochemotherapy was restricted...

  1. Brain imaging in type 2 diabetes.

    Science.gov (United States)

    Brundel, Manon; Kappelle, L Jaap; Biessels, Geert Jan

    2014-12-01

    Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction and dementia. Brain imaging may provide important clues about underlying processes. This review focuses on the relationship between T2DM and brain abnormalities assessed with different imaging techniques: both structural and functional magnetic resonance imaging (MRI), including diffusion tensor imaging and magnetic resonance spectroscopy, as well as positron emission tomography and single-photon emission computed tomography. Compared to people without diabetes, people with T2DM show slightly more global brain atrophy, which increases gradually over time compared with normal aging. Moreover, vascular lesions are seen more often, particularly lacunar infarcts. The association between T2DM and white matter hyperintensities and microbleeds is less clear. T2DM has been related to diminished cerebral blood flow and cerebrovascular reactivity, particularly in more advanced disease. Diffusion tensor imaging is a promising technique with respect to subtle white matter involvement. Thus, brain imaging studies show that T2DM is associated with both degenerative and vascular brain damage, which develops slowly over the course of many years. The challenge for future studies will be to further unravel the etiology of brain damage in T2DM, and to identify subgroups of patients that will develop distinct progressive brain damage and cognitive decline.

  2. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  3. IMPROVED HYBRID SEGMENTATION OF BRAIN MRI TISSUE AND TUMOR USING STATISTICAL FEATURES

    Directory of Open Access Journals (Sweden)

    S. Allin Christe

    2010-08-01

    Full Text Available Medical image segmentation is the most essential and crucial process in order to facilitate the characterization and visualization of the structure of interest in medical images. Relevant application in neuroradiology is the segmentation of MRI data sets of the human brain into the structure classes gray matter, white matter and cerebrospinal fluid (CSF and tumor. In this paper, brain image segmentation algorithms such as Fuzzy C means (FCM segmentation and Kohonen means(K means segmentation were implemented. In addition to this, new hybrid segmentation technique, namely, Fuzzy Kohonen means of image segmentation based on statistical feature clustering is proposed and implemented along with standard pixel value clustering method. The clustered segmented tissue images are compared with the Ground truth and its performance metric is also found. It is found that the feature based hybrid segmentation gives improved performance metric and improved classification accuracy rather than pixel based segmentation.

  4. American brain tumor patients treated with BNCT in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  5. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Zheng Fan

    Full Text Available Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA, a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11 and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  6. A CLINICAL STUDY FOR EVALUATING EARLY RADIOTHERAPY EFFECT IN PATIENTS WITH BRAIN TUMOR USING 99Tcm-HL91 SPECT

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming; ZHANG Yong-xue; ZHANG Cheng-gang; LAN Sheng-min; WANG Zhong-min; ZHANG Xiu-fu

    2006-01-01

    Objective: The purpose of this study was to evaluate the early radiotherapy effect using 99Tcm-HL91 SPECT in patients with brain tumors. Methods: Twenty-one patients with brain tumors who were treated by radiotherapy were studied. KPS grade, tumor size on 99Tcm-HL91 SPECT , tumor size on MRI, and ratio of T/N (tumor counts/sec over normal brain tissue counts/sec) were investigated before ,during and after radiotherapy. Results: The average tumor size on 99Tcm-HL91 SPECT and MRI was 11.34(5.88 cm2, 9.46(5.66 cm2, respectively before radiotherapy. The tumor size on 99Tcm-HL91 SPECT was not in accordance with to that on MRI (P<0.05). KPS grade, tumor size on 99Tcm-HL91 SPECT and ratio of T/N had significance differences before, during and after radiotherapy (P<0.05), but the tumor size on MRI imaging had no significance differences before, during and after radiotherapy (P>0.05). The rate of symptom improvement was 80% during radiotherapy and 100% after radiotherapy. The rates of imaging remission based on the brain tumor size on 99Tcm-HL91 SPECT, MRI and T/N were 75%, 15%, and 80%, respectively during radiotherapy. The agreement rates between imaging remission diagnosed by those three methods and symptom improvement were 70%, 40%, and 60% respectively during radiotherapy. The rates of imaging remission based on the brain tumor sizes on 99Tcm-HL91 SPECT, MRI and T/N were 100%, 25%, and 95% respectively after radiotherapy. The agreement rates between imaging remission diagnosed by those three methods and symptoms improvement were 100%, 20%, and 95% respectively after radiotherapy. Conclusion: The tumor size on 99Tcm-HL91 SPECT is a valuable tool for evaluating early radiotherapy effect of brain tumor in process of radiotherapy. T/N is not a feasible method in evaluating radiotherapy effect of brain tumor because it may show elevation unrelated to the curative effect during radiotherapy.

  7. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors

    Science.gov (United States)

    Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie

    2015-01-01

    Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.

  8. Application of nanoparticles in brain tumor treatment

    CERN Document Server

    Caruso, Gerardo; Raudino, Giuseppe

    2012-01-01

    Despite progress in surgery, radiotherapy, and chemotherapy, an effective treatment of gliomas does not yet exist. This new monograph in the ASME-Momentum Press series on Biomedical & Nanomedical Technologies book shows how nanotechnology could be used both to improve the treatment efficacy and to reduce the adverse side effects. It will explain how nanotechnology-based approaches to targeted delivery of drugs across the brain-blood barrier may potentially be engineered to carry out specific functions as needed.

  9. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  10. Intracranial solitary fibrous tumor: Imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Clarencon, Frederic, E-mail: fredclare5@msn.com [Department of Neuroradiology, Pitie-Salpetriere Hospital, APHP, 75013 Paris (France); Bonneville, Fabrice [Department of Neuroradiology, Hopital Rangueil, Toulouse University Hospital, 31000 Toulouse (France); Rousseau, Audrey [Department of Neuropathology, Pitie-Salpetriere Hospital (France); Galanaud, Damien [Department of Neuroradiology, Pitie-Salpetriere Hospital, APHP, 75013 Paris (France); Kujas, Michele [Department of Neuropathology, Pitie-Salpetriere Hospital (France); Naggara, Olivier [Department of Neuroradiology, St Anne Hospital, 75014 Paris (France); Cornu, Philippe [Department of Neurosurgery, Pitie-Salpetriere Hospital (France); Chiras, Jacques [Department of Neuroradiology, Pitie-Salpetriere Hospital, APHP, 75013 Paris (France)

    2011-11-15

    Objective: To study the neuroimaging features of intracranial solitary fibrous tumors (ISFTs). Materials and methods: Retrospective study of neuroimaging features of 9 consecutive histopathologically proven ISFT cases. Location, size, shape, density, signal intensity and gadolinium uptake were studied at CT and MRI. Data collected from diffusion-weighted imaging (DWI) (3 patients), perfusion imaging and MR spectroscopy (2 patients), and DSA (4 patients) were also analyzed. Results: The tumors most frequently arose from the intracranial meninges (7/9), while the other lesions were intraventricular. Tumor size ranged from 2.5 to 10 cm (mean = 6.6 cm). They presented multilobular shape in 6/9 patients. Most ISFTs were heterogeneous (7/9) with areas of low T2 signal intensity that strongly enhanced after gadolinium administration (6/8). Erosion of the skull was present in about half of the cases (4/9). Components with decreased apparent diffusion coefficient were seen in 2/3 ISFTs on DWI. Spectroscopy revealed elevated peaks of choline and myo-inositol. MR perfusion showed features of hyperperfusion. Conclusion: ISFT should be considered in cases of extra-axial, supratentorial, heterogeneous, hypervascular tumor. Areas of low T2 signal intensity that strongly enhance after gadolinium injection are suggestive of this diagnosis. Restricted diffusion and elevated peak of myo-inositol may be additional valuable features.

  11. Usefulness of Permeability Map by Perfusion MRI of Brain Tumor the Grade Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jin [Dept. of Radiology, Dongsan Hospital, Keimyung University, Daegu (Korea, Republic of); Lee, Joo Young [GE Healthcare, Seoul (Korea, Republic of); Chang, Hyuk Won [Dept. of Radiology, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2009-09-15

    This study was conducted to assess how effective the permeability ratio and relative cerebral blood volume ratio are to tumor through perfusion MRI by measuring and reflecting the grade assessment and differential diagnosis and the permeability and relative cerebral blood volume of contrast media plunged from blood vessel into organ due to breakdown of blood-brain barrier in cerebral. Subject and Method : Subject of study was 29 patients whose diagnosis were confirmed by biopsy after surgery and 550 (11 slice x 50 image) perfusion MRI were used to make image of relative cerebral blood volume with the program furnished on instrument. The other method was to transmit to private computer and the image analysis was made additionally by making image of relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD and permeability using IDL.6.2. In addition, Kruskal-wallis test tonggyein non numerical average by a comparative analysis of brain tumors Results : The rCBV ratio (Functool PF; GE Medical Systems and IDL 6.2 program by analysis) and permeability ratio of tumors were as follows; high grade glioma(n=4), (14.75, 19.25) 13.13. low grade astrocytoma(n=5) (14.80, 15.90) 11.60, glioblastoma(n=5) (10.90, 18.60), 22.00, metastasis(n=6) (11.00, 15.08). 22.33. meningioma(n=6) (18.58, 7.67), 5.58. oliogodendroglioma(n=3) (23.33, 16.33, 15.67. Conclusion : It was not easy to classify the grade with the relative cerebral blood volume ratio measured by using the relative cerebral blood image by type of tumors, however, permeability ratio measured by permeability image revealed that the higher the grade of tumor, the higher the measured permeability ratio, showing the assessment of tumor grade is more effective to differential diagnosis.

  12. Life satisfaction in adult survivors of childhood brain tumors.

    Science.gov (United States)

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population.

  13. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  14. Creation and evaluation of complementary composite three-dimensional image in various brain diseases. An application of three-dimensional brain SPECT image and three-dimensional CT image

    Energy Technology Data Exchange (ETDEWEB)

    Seiki, Yoshikatsu; Shibata, Iekado; Mito, Toshiaki; Sugo, Nobuo [Toho Univ., Tokyo (Japan). School of Medicine

    2000-09-01

    The purpose of this study was to develop 3D composite images for use in functional and anatomical evaluation of various cerebral pathologies. Imaging studies were performed in normal volunteers, patients with hydrocephalus and patients with brain tumor (meningioma and metastatic tumor) using a three-detector SPECT system (Prism 3000) and helical CT scanner (Xvigor). {sup 123}I-IMP was used in normal volunteers and patients with hydrocephalus, and {sup 201}TLCL in patients with brain tumor. An Application Visualization System-Medical Viewer (AVS-MV) was used on a workstation (Titan 2) to generate 3D images. A new program was developed by synthesizing surface rendering and volume rendering techniques. The clinical effects of shunt operations were successfully evaluated in patients with hydrocephalus by means of translucent 3D images of the deep brain. Changes in the hypoperfusion area around the cerebral ventricle were compared with morphological changes in the cerebral ventricle on CT. In addition to the information concerning the characteristics of brain tumors and surrounding edemas, hemodynamic changes and changeable hypoperfusion areas around the tumors were visualized on 3D composite CT and SPECT images. A new method of generating 3D composite images of CT and SPECT was developed by combining graphic data from different systems on the same workstation. Complementary 3D composite images facilitated quantitative analysis of brain volume and functional analysis in various brain diseases. (author)

  15. An Improved Image Mining Technique For Brain Tumour Classification Using Efficient Classifier

    OpenAIRE

    Rajendran, P.; M.Madheswaran

    2010-01-01

    An improved image mining technique for brain tumor classification using pruned association rule with MARI algorithm is presented in this paper. The method proposed makes use of association rule mining technique to classify the CT scan brain images into three categories namely normal, benign and malign. It combines the low-level features extracted from images and high level knowledge from specialists. The developed algorithm can assist the physicians for efficient classification with multiple ...

  16. MRI of intraspinal tumors. Usefulness of the transaxial images

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hiromi; Takemoto, Kazumasa; Fukuda, Teruo

    1987-01-01

    Magnetic resonance (MR) images of 24 patients with intraspinal tumors were reviewed. This study included 8 intramedullary tumors, 11 intradural extramedullary tumors, and 5 extradural tumors. In all cases sagittal spin echo (SE) images with an echo time (TE) of 40 msec and a repetition time (TR) of 600 msec and transaxial SE images with a TE of 40 msec and a TR of 1000 msec were obtained using a 0.5 T MR scanner. Coronal SE images were obtained in 11 of 24 cases. In all intraspinal tumors except for a case of seeding into the subarachnoid space from an intracranial glioblastoma, differentiation of intramedullary tumors from extramedullary ones and intradural extramedullary tumors from extradural ones was able to be made on MR images. The extradural sign, which was demonstrated as a low intensity band between the tumor and the cord, was of diagnostic value in distinguishing intradural tumors from extradural ones. This extradural sign was more frequently shown on the transaxial images than sagittal and coronal images. MR imaging shows the location of intraspinal tumors without an invasive technique. Particularly the transaxial images always provide good delineation of both intraspinal tumors and the spinal cord. Therefore, the transaxial SE images should be routinely obtained in the evaluation of intraspinal tumors by MR imaging.

  17. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Science.gov (United States)

    Klinger, Neil V.

    2016-01-01

    Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  18. Malignant Phyllodes Tumor Presenting in Bone, Brain, Lungs, and Lymph Nodes

    Science.gov (United States)

    Johnson, Eric D.; Gulbahce, Evin; McNally, Joseph; Buys, Saundra S.

    2016-01-01

    Introduction Phyllodes tumors (PTs) are rare fibroepithelial tumors of the breast which are classified as benign, borderline, or malignant. Malignant PTs account for tumors, and borderline tumors have potential to progress to malignant tumors. Metastatic recurrences are most commonly documented in bone and lungs. We report an extremely rare presentation of recurrent malignant PTs involving the brain, lung, lymph nodes, and bone. Case A 66-year-old female presented with a large breast mass. Biopsy identified malignant PT, treated by mastectomy. One year later she presented with acute back pain; imaging showed pathological L4 spinal compression fracture. Core biopsy confirmed PT. Staging identified additional metastases in the lymph nodes, brain, and lung. Discussion PTs are rare and fast-growing tumors that originate from periductal stromal tissues and are composed of both epithelial and stromal components. Histologically, they are classified as benign, borderline, or malignant. The prognosis of the malignant type is poorly defined, with local recurrence occurring in 10–40% and metastases in 10%. Chemotherapy and radiotherapy are generally ineffective in this tumor type. The most common metastatic sites for malignant cases are the lung and bones, but in rare instances, PTs may metastasize elsewhere. Conclusion We report a rare presentation of recurrent malignant PT presenting as pathological fracture of the lumbar spine with impingement on the spinal column, along with cerebellar, nodal, and pulmonary metastases. Only 1 similar case has been previously reported. PMID:28203179

  19. Malignant Phyllodes Tumor Presenting in Bone, Brain, Lungs, and Lymph Nodes

    Directory of Open Access Journals (Sweden)

    Eric D. Johnson

    2016-12-01

    Full Text Available Introduction: Phyllodes tumors (PTs are rare fibroepithelial tumors of the breast which are classified as benign, borderline, or malignant. Malignant PTs account for <1% of malignant breast tumors, and borderline tumors have potential to progress to malignant tumors. Metastatic recurrences are most commonly documented in bone and lungs. We report an extremely rare presentation of recurrent malignant PTs involving the brain, lung, lymph nodes, and bone. Case: A 66-year-old female presented with a large breast mass. Biopsy identified malignant PT, treated by mastectomy. One year later she presented with acute back pain; imaging showed pathological L4 spinal compression fracture. Core biopsy confirmed PT. Staging identified additional metastases in the lymph nodes, brain, and lung. Discussion: PTs are rare and fast-growing tumors that originate from periductal stromal tissues and are composed of both epithelial and stromal components. Histologically, they are classified as benign, borderline, or malignant. The prognosis of the malignant type is poorly defined, with local recurrence occurring in 10–40% and metastases in 10%. Chemotherapy and radiotherapy are generally ineffective in this tumor type. The most common metastatic sites for malignant cases are the lung and bones, but in rare instances, PTs may metastasize elsewhere. Conclusion: We report a rare presentation of recurrent malignant PT presenting as pathological fracture of the lumbar spine with impingement on the spinal column, along with cerebellar, nodal, and pulmonary metastases. Only 1 similar case has been previously reported.

  20. Magnetoencephalography,Magnetic Source Imaging and Brain Tumor%脑磁图、磁源成像和脑肿瘤

    Institute of Scientific and Technical Information of China (English)

    张萍

    2005-01-01

    脑磁图作为一种无创性记录大脑生物磁场的新技术,能相对直接反映神经元的活动状态;并且可将采集到的脑磁信号分析结果重叠到MRI图像上,从而将生理功能和解剖结构融合在一起,这一技术又称为磁源成像(magnetic source imaging,MSI).MSI不仅能够准确地提供癫痫灶及所需要功能区的定位信息,而且可使临床神经外科医生更好地了解肿瘤与癫痫灶、肿瘤与功能区的关系,以便在术前制定出合理有效的手术计划.本文对脑磁图、MSI及其在脑肿瘤方面的应用做一简单综述.

  1. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  2. Novel optical system for neonatal brain imaging

    Science.gov (United States)

    Chen, Yu; Zhou, Shuoming; Nioka, Shoko; Chance, Britton; Anday, Endla; Ravishankar, Sudha; Delivoria-Papadopoulos, Maria

    1999-03-01

    A highly portable, fast, safe and affordable imaging system that provides interpretable images of brain function in full- and pre-term neonates within a few seconds has been applied to neonates with normal and pathological states. We have used a uniquely sensitive optical tomography system, termed phased array, which has revealed significant functional responses, particularly to parietal stimulation in neonate brain. This system can indicate the blood concentration and oxygenation change during the parietal brain activation in full- and pre-term neonates. The preliminary clinical results, especially a longitudinal study of a cardiac arrest neonate, suggest a variety of future applications.

  3. Anti-angiogenic therapy in pediatric brain tumors : An effective strategy?

    NARCIS (Netherlands)

    Sie, Mariska; den Dunnen, Wilfred F. A.; Hoving, Eelco W.; de Bont, Eveline S. J. M.

    2014-01-01

    Brain tumors are still the leading cause of cancer morbidity and mortality among children, despite different therapeutic options including neurosurgery, chemotherapy and radiation. As angiogenesis is highly crucial in brain tumor growth and progression, numerous clinical trials evaluating diverse an

  4. MRI Brain Image Segmentation based on Thresholding

    Directory of Open Access Journals (Sweden)

    G. Evelin Sujji, Y.V.S. Lakshmi, G. Wiselin Jiji

    2013-03-01

    Full Text Available Medical Image processing is one of the mostchallenging topics in research field. The mainobjective of image segmentation is to extract variousfeatures of the image that are used foranalysing,interpretation and understanding of images.Medical Resonance Image plays a major role inMedical diagnostics. Image processing in MRI ofbrain is highlyessential due to accurate detection ofthe type of brain abnormality which can reduce thechance of fatal result. This paper outlines anefficient image segmentation technique that candistinguish the pathological tissues such asedemaandtumourfrom thenormal tissues such as WhiteMatter(WM,GreyMatter(GM, andCerebrospinal Fluid(CSF. Thresholding is simplerand most commonly used techniques in imagesegmentation. This technique can be used to detectthe contour of thetumourin brain.

  5. Magnetic resonance imaging of brain death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.H.; Nathanson, J.A.; Fox, A.J.; Pelz, D.M.; Lownie, S.P.

    1995-06-01

    In order to demonstrate the magnetic resonance imaging (MRI) appearance of the brain in patients with clinical brain death, high-field MRI was performed on 5 patients using conventional T1-weighted and T2-weighted imaging. The study showed MRI exhibited similar features for all of the patients, features which were not found in MRI of comatose patients who were not clinically brain dead. It was stated that up to now the most important limitation in MRI of patients with suspected brain death has been the extreme difficulty of moving them out of the intensive care setting. If this problem can be overcome, and it appears possible with with the advent of MRI-compatible ventilators and noninvasive monitoring, MRI could become an excellent alternative for confirming clinical diagnosis of brain death for such patients. 15 refs., 3 figs.

  6. Magnetic Resonance Spectroscopic Imaging of Tumor Metabolic Markers for Cancer Diagnosis, Metabolic Phenotyping, and Characterization of Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Qiuhong He

    2004-01-01

    Full Text Available Cancer cells display heterogeneous genetic characteristics, depending on the tumor dynamic microenvironment. Abnormal tumor vasculature and poor tissue oxygenation generate a fraction of hypoxic tumor cells that have selective advantages in metastasis and invasion and often resist chemo- and radiation therapies. The genetic alterations acquired by tumors modify their biochemical pathways, which results in abnormal tumor metabolism. An elevation in glycolysis known as the “Warburg effect” and changes in lipid synthesis and oxidation occur. Magnetic resonance spectroscopy (MRS has been used to study tumor metabolism in preclinical animal models and in clinical research on human breast, brain, and prostate cancers. This technique can identify specific genetic and metabolic changes that occur in malignant tumors. Therefore, the metabolic markers, detectable by MRS, not only provide information on biochemical changes but also define different metabolic tumor phenotypes. When combined with the contrast-enhanced Magnetic Resonance Imaging (MRI, which has a high sensitivity for cancer diagnosis, in vivo magnetic resonance spectroscopic imaging (MRSI improves the diagnostic specificity of malignant human cancers and is becoming an important clinical tool for cancer management and care. This article reviews the MRSI techniques as molecular imaging methods to detect and quantify metabolic changes in various tumor tissue types, especially in extracranial tumor tissues that contain high concentrations of fat. MRI/MRSI methods have been used to characterize tumor microenvironments in terms of blood volume and vessel permeability. Measurements of tissue oxygenation and glycolytic rates by MRS also are described to illustrate the capability of the MR technology in probing molecular information non-invasively in tumor tissues and its important potential for studying molecular mechanisms of human cancers in physiological conditions.

  7. Utility of resting fMRI and connectivity in patients with brain tumor

    Directory of Open Access Journals (Sweden)

    Sandhya Manglore

    2013-01-01

    Full Text Available Background: Resting state (task independent Functional Magnetic Resonance Imaging (fMRI has opened a new avenue in cognitive studies and has found practical clinical applications. Materials and Methods: Resting fMRI analysis was performed in six patients with brain tumor in the motor cortex. For comparison, task-related mapping of the motor cortex was done. Connectivity analysis to study the connections and strength of the connections between the primary motor cortex, premotor cortex, and primary somatosensory cortex on the affected side was also performed and compared with the contralateral normal side and the controls. Results: Resting fMRI in patients with brain tumor in the motor cortex mapped the motor cortex in a task-free state and the results were comparable to the motor task paradigm. Decreased connectivity on the tumor-affected side was observed, as compared to the unaffected side. Conclusion: Resting fMRI and connectivity analysis are useful in the presurgical evaluation of patients with brain tumors and may help in uncooperative or pediatric patients. They can also prognosticate the postoperative outcome. This method also has significant applications due to the ease of image acquisition.

  8. Clinicopathological pattern of brain tumors: A 3-year study in a tertiary care hospital in India

    OpenAIRE

    Sajeeb Mondal; Rajashree Pradhan; Subrata Pal; Biswajit Biswas; Arindam Banerjee; Debosmita Bhattacharyya

    2016-01-01

    Background: Brain tumors are heterogeneous group of neoplasms, affecting different age groups. Although some studies have been published regarding pathological pattern of brain tumors from different countries of the world and also from India, comprehensive clinicopathological studies from Eastern India is lacking. Aims: The aim of this study was to observe recent incidence of different brain tumors and to study clinical and histopathological spectrum of brain tumors in Eastern India. Material...

  9. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility

    DEFF Research Database (Denmark)

    Adel Fahmideh, Maral; Lavebratt, Catharina; Schüz, Joachim

    2016-01-01

    Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk.The study...... cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways....

  10. CT scan of the brain (image)

    Science.gov (United States)

    ... CAT scan (computed tomography) is a much more sensitive imaging technique than x-ray, allowing high definition not only of the bony structures, but of the soft tissues. Clear images of organs such as the brain, muscles, joint structures, veins ...

  11. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    Science.gov (United States)

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  12. Normalized fluorescence lifetime imaging for tumor identification and margin delineation

    Science.gov (United States)

    Sherman, Adria J.; Papour, Asael; Bhargava, Siddharth; Taylor, Zach; Grundfest, Warren S.; Stafsudd, Oscar M.

    2013-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a technique that has been proven to produce quantitative and qualitative differentiation and identification of substances with good specificity and sensitivity based on lifetime extracted information. This technique has shown the ability to also differentiate between a wide range of tissue types to identify malignant from benign tissue in vivo and ex vivo. However, the complexity, long duration and effort required to generate this information has limited the adoption of these techniques in a clinical setting. Our group has developed a time-resolved imaging system (patent pending) that does not require the extraction of lifetimes or use of complex curve fitting algorithms to display the needed information. The technique, entitled Lifetime Fluorescence Imaging (LFI, or NoFYI), converts fluorescence lifetime decay information directly into visual contrast. Initial studies using Fluorescein and Rhodamine-B demonstrated the feasibility of this approach. Subsequent studies demonstrated the ability to separate collagen and elastin powders. The technique uses nanosecond pulsed UV LEDs at 375 nm for average illumination intensities of ~4.5 μW on the tissue surface with detection by a gated CCD camera. To date, we have imaged 11 surgical head and neck squamous cell carcinoma and brain cancer biopsy specimens including 5 normal and 6 malignant samples. Images at multiple wavelengths clearly demonstrate differentiation between benign and malignant tissue, which was later confirmed by histology. Contrast was obtained between fluorophores with 35 μm spatial resolution and an SNR of ~30 dB allowing us to clearly define tumor margins in these highly invasive cancers. This method is capable of providing both anatomical and chemical information for the pathologist and the surgeon. These results suggest that this technology has a possible role in identifying tumors in tissue specimens and detecting tumor margins during procedures.

  13. Advantages in functional imaging of the brain

    Directory of Open Access Journals (Sweden)

    Walter eMier

    2015-05-01

    Full Text Available As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET and functional magnetic resonance imaging (fMRI, two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. In the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  14. MR imaging of primary tumors of trigeminal nerve and Meckel's cave.

    Science.gov (United States)

    Yuh, W T; Wright, D C; Barloon, T J; Schultz, D H; Sato, Y; Cervantes, C A

    1988-09-01

    MR imaging features of 11 primary tumors of the trigeminal nerve and Meckel's cave were analyzed. The tumors consisted of two trigeminal schwannomas, five meningiomas, one lipoma, and three epidermoid tumors. The trigeminal schwannomas had homogeneously decreased signal intensity on T1-weighted images and increased signal intensity on T2-weighted images. Three of the five meningiomas had signal intensity similar to that of surrounding brain on both T1- and T2-weighted images. One meningioma had decreased signal intensity on T1-weighted images and increased signal intensity on T2-weighted images. The other had relatively low signal intensity on both T1- and T2-weighted images owing to heavy calcification demonstrated on CT. The lipoma had homogeneous signal intensity that was isointense with orbital and subcutaneous fat on both T1- and T2-weighted images. The epidermoid tumors had decreased signal intensity on T1-weighted images and markedly increased signal intensity on T2-weighted images. In addition, the epidermoids had an insinuating growth pattern and minimal mass effect. The extent of involvement in the trigeminal nerve distribution was well demonstrated in each case. Because of its multiplanar capability, exquisite anatomic detail, and characteristic tissue signal intensity, we conclude that MR is helpful in the differential diagnosis of primary tumors of the trigeminal nerve and Meckel's cave and in the evaluation of tumor involvement for preoperative planning.

  15. Perfusion harmonic imaging of the human brain

    Science.gov (United States)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  16. Pediatric brain tumors of neuroepithelial tissue; Hirntumoren des neuroepithelialen Gewebes im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Politi, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany); Bergmann, M. [Klinikum Bremen-Mitte, Institut fuer Klinische Neuropathologie, Bremen (Germany); Pekrun, A. [Klinikum Bremen-Mitte, Klinik fuer Kinder- und Jugendmedizin, paed. Haematologie/Onkologie, Neonatologie, Bremen (Germany); Juergens, K.U. [Klinikum Bremen-Mitte, ZEMODI-Zentrum fuer moderne Diagnostik, MRT, Nuklearmedizin und PET-CT, Bremen (Germany)

    2014-08-15

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [German] Tumoren des neuroepithelialen Gewebes stellen die mit Abstand groesste Gruppe der paediatrischen Hirntumoren dar und werden je nach deren Ursprung in diversen Subtypen unterteilt. Das Neuropil beinhaltet diverse Subtypen von Gliazellen: Astrozyten, Oligodendrozyten, ependymale Zellen und modifizierte ependymale Zellen, die den Plexus choroideus formen. In diesem Review werden die bildgebenden Aspekte mittels CT und MRT der haeufigsten Tumoren des neuroepithelialen Gewebes diskutiert. (orig.)

  17. Quantitative bioluminescence imaging of mouse tumor models.

    Science.gov (United States)

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-01-05

    Bioluminescence imaging (BLI) has become an essential technique for preclinical evaluation of anticancer therapeutics and provides sensitive and quantitative measurements of tumor burden in experimental cancer models. For light generation, a vector encoding firefly luciferase is introduced into human cancer cells that are grown as tumor xenografts in immunocompromised hosts, and the enzyme substrate luciferin is injected into the host. Alternatively, the reporter gene can be expressed in genetically engineered mouse models to determine the onset and progression of disease. In addition to expression of an ectopic luciferase enzyme, bioluminescence requires oxygen and ATP, thus only viable luciferase-expressing cells or tissues are capable of producing bioluminescence signals. Here, we summarize a BLI protocol that takes advantage of advances in hardware, especially the cooled charge-coupled device camera, to enable detection of bioluminescence in living animals with high sensitivity and a large dynamic range.

  18. Imaging Findings of Scrotal Tumors in Children: A Pictorial Essay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hee [Kang-Dong Hospital, Busan (Korea, Republic of); Kim, Jee Eun [Gachon University, Gil Hospital, Incheon (Korea, Republic of); Kim, Ji Hye [Sungkyunkwan University, Samsung Medical Center, Changwon (Korea, Republic of); Yang, Dal Mo [Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of)

    2011-12-15

    The diagnosis of scrotal tumors in children can be challenging because of the rarity, vague symptoms, and varied imaging features of the tumors. The pathology and frequency of scrotal tumors that occur in children are different from tumors that arise in adults. In this pictorial essay, we illustrate the imaging findings of scrotal tumors in children with pathological correlations. In addition, we present the clinical manifestations that are valuable for a differential diagnosis. Familiarity with the imaging findings and clinical manifestations of pediatric scrotal tumors may be helpful in making an accurate diagnosis and providing proper patient management

  19. Contrast-enhanced three-dimensional computed tomography of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kuroiwa, Toshihiko; Deguchi, Jun; Arai, Motohiro; Tanaka, Hideo; Ohta, Tomio; Narabayashi, Isamu [Osaka Medical Coll., Takatsuki (Japan)

    1997-12-01

    To evaluate the usefulness of contrast-enhanced spiral (helical) scanning computed tomography (CT) in patients with various brain tumors, a non ionic contrast medium was injected intravenously in ten patients with meningioma, five with vestibular schwannoma, and five with pituitary adenoma. Images were taken by spiral scan at an X-ray beam width of 1 or 2 mm. The volume data obtained were combined at 0.5-1 mm intervals for the three-dimensional (3-D) image reconstruction, by the volume rendering method. Each image was separated by CT number into bone, blood vessel, contrast-enhanced tumor, and cerebral parenchyma. In some subjects, a pair of images was reconstructed to allow stereoscopic viewing at a parallax angle of 6 degrees. Three-dimensional relationship between tumors and other structures was easily understood, permitting pre-operative prediction of the operative field and also a view of the area after tumor excision. The present method surpassed conventional CT techniques in terms of clarity of the 3-D relationship, and surpassed MRI and MRA in terms of clarity of relationship between the tumor and skull. These results confirm that this method appears to be applicable in routine clinical situations with minimal invasiveness, high degree of safety, and short examination time. (author)

  20. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    Science.gov (United States)

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment.

  1. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    Science.gov (United States)

    2016-11-21

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  2. Brain congenital tumors of atypical presentation. Tumores cerebrales congenitos de presentacion atipica

    Energy Technology Data Exchange (ETDEWEB)

    Borden Ferre, F.; Menor Serrano, F.; Martinez Fernandez, M.; Moreno Flores, A.; Poyatos, C. (Hospital La Fe. Valencia (Spain))

    1994-01-01

    We present four cases of brain tumor within the first year of life, with atypical clinical and radiological onset. Two astrocytomas of the visual pathway presented with visual changes without involving the ventricular system. The other two, not histologically confirmed, were located in the medial portion of the temporal lobe, the first sign of which was a cyanotic crisis.

  3. Brain imaging, genetics and emotion

    NARCIS (Netherlands)

    Aleman, Andre; Swart, Marte; van Rijn, Sophie

    2008-01-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other po

  4. Imaging of Traumatic Brain Injury

    NARCIS (Netherlands)

    Zagorchev, L.; McAllister, T.

    2011-01-01

    Traumatic brain injury (TBI) represents an enormous public health challenge and is often associated with life long neurobehavioral sequelae in survivors. Several factors including higher percentages of individuals surviving TBI, as well as increasing concern about potential long term sequelae of ev

  5. Drosophila neural stem cells in brain development and tumor formation.

    Science.gov (United States)

    Jiang, Yanrui; Reichert, Heinrich

    2014-01-01

    Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the central nervous system. Significant progress has been made in understanding the mechanisms regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages. Deregulation of these mechanisms can lead to severe developmental defects and the formation of malignant brain tumors. Here, the authors review the molecular genetics of Drosophila neuroblasts and discuss some recent advances in stem cell and cancer biology using this model system.

  6. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  7. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  8. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  9. Amino acid analogs for tumor imaging

    Science.gov (United States)

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  10. Computed tomographic aspects of primary brain tumors in dogs and cats; Aspectos tomograficos de tumores cerebrais primarios em caes e gatos

    Energy Technology Data Exchange (ETDEWEB)

    Babicsak, Viviam Rocco; Zardo, Karen Maciel; Santos, Debora Rodrigues dos; Silva, Luciana Carandina da; Machado, Vania Maria de Vasconcelos; Vulcano, Luiz Carlos, E-mail: viviam.babicsak@gmail.com [Setor de Diagnostico por Imagem - FMVZ - UNESP/Botucatu, SP (Brazil)

    2011-07-01

    Over the years, the Veterinary Medicine has made great advances, enabling thus the diagnosis of many diseases. As a result of this new situation, there was an increased expectation of life of animals resulting in an increase in the number of clinical care of older animals. Thus, diseases considered unusual in the past, begin to be diagnosed more frequently, as is the case of brain damage. Recently, computed tomography has been widely used in Brazil as a tool to aid in the diagnosis of several diseases. This noninvasive imaging technique allows the identification and evaluation of lesions of central nervous tissue such as brain tumors. This provides information about the size, shape and location of the lesion, in addition to the magnitude of compression and invasion of adjacent structures by the tumor and its side effects (such as the peritumoral edema and hydrocephalus). The image obtained from computed tomography may suggest the presence of a certain type brain tumor, data of great importance for the prognosis and treatment of the animal. This review covers the computed tomography aspects of primary brain tumors such as meningiomas, astrocytomas, oligodendrogliomas, choroid plexus tumors and ependymomas. However, despite the computed tomography provide much information about the changes inside the skull; no way replace histopathological examination in determining the definitive diagnosis. (author)

  11. Measurement of blood-brain barrier permeability with t1-weighted dynamic contrast-enhanced MRI in brain tumors: a comparative study with two different algorithms.

    Science.gov (United States)

    Bergamino, Maurizio; Saitta, Laura; Barletta, Laura; Bonzano, Laura; Mancardi, Giovanni Luigi; Castellan, Lucio; Ravetti, Jean Louis; Roccatagliata, Luca

    2013-01-01

    The purpose of this study was to assess the feasibility of measuring different permeability parameters with T1-weighted dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in order to investigate the blood brain-barrier permeability associated with different brain tumors. The Patlak algorithm and the extended Tofts-Kety model were used to this aim. Twenty-five adult patients with tumors of different histological grades were enrolled in this study. MRI examinations were performed at 1.5 T. Multiflip angle, fast low-angle shot, and axial 3D T1-weighted images were acquired to calculate T1 maps, followed by a DCE acquisition. A region of interest was placed within the tumor of each patient to calculate the mean value of different permeability parameters. Differences in permeability measurements were found between different tumor grades, with higher histological grades characterized by higher permeability values. A significant difference in transfer constant (K (trans)) values was found between the two methods on high-grade tumors; however, both techniques revealed a significant correlation between the histological grade of tumors and their K (trans) values. Our results suggest that DCE acquisition is feasible in patients with brain tumors and that K (trans) maps can be easily obtained by these two algorithms, even if the theoretical model adopted could affect the final results.

  12. Gene markers in brain tumors: what the epileptologist should know.

    Science.gov (United States)

    Ostrom, Quinn; Cohen, Mark L; Ondracek, Annie; Sloan, Andrew; Barnholtz-Sloan, Jill

    2013-12-01

    Gene markers or biomarkers can be used for diagnostic or prognostic purposes for all different types of complex disease, including brain tumors. Prognostic markers can be useful to explain differences not only in overall survival but also in response to treatment and for development of targeted therapies. Multiple genes with specific types of alterations have now been identified that are associated with improved response to chemotherapy and radiotherapy, such as O(6)-methylguanine methyltranferase (MGMT) or loss of chromosomes 1p and/or 19q. Other alterations have been identified that are associated with improved overall survival, such as mutations in isocitrate dehydrogenase 1 (IDH1) and/or isocitrate dehydrogenase 2 (IDH2) or having the glioma CpG island DNA methylator phenotype (G-CIMP). There are many biomarkers that may have relevance in brain tumor-associated epilepsy that do not respond to treatment. Given the rapidly changing landscape of high throughput "omics" technologies, there is significant potential for gaining further knowledge via integration of multiple different types of high genome-wide data. This knowledge can be translated into improved therapies and clinical outcomes for patients with brain tumors.

  13. Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    Hua HU; Er-qing WEI; Gao CHEN; Jian-min ZHANG; Wei-ping ZHANG; Lei ZHANG; Qiu-fu GE; Hong-tian YAO; Wei DING; Zhong CHEN

    2005-01-01

    Aim: To determine the distribution of cysteinyl leukotriene receptor 2 (CysLT2),one of the cysteinyl leukotriene receptors, in human brains with traumatic injury and tumors. Methods: Brain specimens were obtained from patients who underwent brain surgery. CysLT2 in brain tissues was examined using immunohistochemical analysis. Results: CysLT2 was expressed in the smooth muscle cells (not in the endothelial cells) of arteries and veins. CysLT2 was also expressed in the granulocytes in both vessels and in the brain parenchyma. In addition, CysLT2 was detected in neuron- and glial-appearing cells in either the late stages of traumatic injury or in the area surrounding the tumors. Microvessels regenerated 8 d after trauma and CysLT2 expression was recorded in their endothelial cells.Conclusion: CysLT2 is distributed in vascular smooth muscle cells and granulocytes, and brain trauma and tumor can induce its expression in vascular endothelial cells and in a number of other cells.

  14. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    Science.gov (United States)

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  15. Brain 'imaging' in the Renaissance.

    Science.gov (United States)

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  16. Molecular cytogenetic analysis in the study of brain tumors: findings and applications.

    Science.gov (United States)

    Bayani, Jane; Pandita, Ajay; Squire, Jeremy A

    2005-11-15

    Classic cytogenetics has evolved from black and white to technicolor images of chromosomes as a result of advances in fluorescence in situ hybridization (FISH) techniques, and is now called molecular cytogenetics. Improvements in the quality and diversity of probes suitable for FISH, coupled with advances in computerized image analysis, now permit the genome or tissue of interest to be analyzed in detail on a glass slide. It is evident that the growing list of options for cytogenetic analysis has improved the understanding of chromosomal changes in disease initiation, progression, and response to treatment. The contributions of classic and molecular cytogenetics to the study of brain tumors have provided scientists and clinicians alike with new avenues for investigation. In this review the authors summarize the contributions of molecular cytogenetics to the study of brain tumors, encompassing the findings of classic cytogenetics, interphase- and metaphase-based FISH studies, spectral karyotyping, and metaphase- and array-based comparative genomic hybridization. In addition, this review also details the role of molecular cytogenetic techniques in other aspects of understanding the pathogenesis of brain tumors, including xenograft, cancer stem cell, and telomere length studies.

  17. Localized fibrous tumor of the liver: imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Lecesne, R.; Drouillard, J.; Laurent, F. [Service d`Imagerie Medicale-Radiologie Diagnostique et Therapeutique, Hopital du Haut-Leveque, CHU Bordeaux, Pessac (France); Le Bail, B. [Department d`Anatomie et Cytologie Pathologiques, Groupe Hospitalier Pellegrin, CHU Bordeaux, Place Amelie Raba-Leon, Bordeaux (France); Saric, J. [Service de Chirurgie Digestive, Groupe Saint-Andre, CHU Bordeaux (France); Balabaud, C. [Service des Maladies de L`Appareil Digestif, Groupe Saint-Andre, CHU Bordeaux (France)

    1998-02-01

    We report the imaging of a localized fibrous tumor of the liver, focusing on color Doppler US, CT, MR imaging, and angiographic findings. We discuss the differential diagnosis of such a rare, benign lesion of the liver. Detailed imaging of this tumor has not been reported in the literature previously. (orig.) With 6 figs., 10 refs.

  18. Tumor metabolism, the ketogenic diet and β-hydroxybutyrate: novel approaches to adjuvant brain tumor therapy

    Directory of Open Access Journals (Sweden)

    Eric C. Woolf

    2016-11-01

    Full Text Available Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD. The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  19. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy

    Science.gov (United States)

    Woolf, Eric C.; Syed, Nelofer; Scheck, Adrienne C.

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma. PMID:27899882

  20. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    Science.gov (United States)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  1. Simultaneous imaging of MR angiographic image and brain surface image using steady-state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Takane, Atsushi; Tsuda, Munetaka (Hitachi Ltd., Katsuta, Ibaraki (Japan)); Koizumi, Hideaki; Koyama, Susumu; Yoshida, Takeyuki

    1993-09-01

    Synthesis of a brain surface image and an angiographic image representing brain surface vasculatures can be useful for pre-operational contemplation of brain surgery. Both brain surface images and brain surface vasculature images were successfully acquired simultaneously utilizing both FID signals and time-reversed FID signals created under steady-state free precession (SSFP). This simultaneous imaging method has several advantages. No positional discrepancies between both images and prolongation of scan time are anticipated because of concurrent acquisition of the two kinds of image data. Superimposition and stereo-display of both images enable understanding of their spatial relationship, and therefore afford a useful means for pre-operational simulation of brain surgery. (author).

  2. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  3. Brain CT of non-pineal intracranial germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hang Young; Chung, Eun Cheul; Lee, Dong Ho; Choo, In Wook; Chang, Kee Hyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1986-02-15

    19 cases of non-pineal intracranial germ cell tumors were reviewed retrospectively with both radiologic and clinical features. The results were as follows: 1. The age distribution was 8 to 32 year old (16 year old of mean age) and the sex distribution shows male predominance (15:4). 2. The histopathologic diagnosis includes 11 cases of germinoma, 2 case of mixed germ cell tumor, 1 case of embryonal cell carcinoma and 5 cases of unknown. 3. The location of tumors was the sarsaparilla region in 8 cases, the left basal ganglia and thalamus in 5 cases, and the right frontal lobe in 1 case. Among 11 cases of germinoma, 6 cases involve the sarsaparilla region and 3 cases the left basal ganglia and thalamus. 4. In clinical features, there were visual disturbance, diabetes indispose, increased ICP signs, motor weakness, hormonal disorders, and personal changes in order. 5. In tumor marker study of 6 cases of germinoma, 5 cases show increase in HCG titer, but all 6 cases were normal in AFP titer. 6. In brain CT, most of all revealed well-defined homogeneous high density with or without small central low density and homogeneous enhancement at solid portion, and there was calcification in only case with mixed germ cell tumor.

  4. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  5. An Improved Image Mining Technique For Brain Tumour Classification Using Efficient Classifier

    Directory of Open Access Journals (Sweden)

    P. Rajendran

    2009-12-01

    Full Text Available An improved image mining technique for brain tumor classification using pruned association rule with MARI algorithm is presented in this paper. The method proposed makes use of association rule mining technique to classify the CT scan brain images into three categories namely normal, benign and malign. It combines the low-level features extracted from images and high level knowledge from specialists. The developed algorithm can assist the physicians for efficient classification with multiple keywords per image to improve the accuracy. The experimental result on pre-diagnosed database of brain images showed 96% and 93% sensitivity and accuracy respectively.Keywords- Data mining; Image ming; Association rule mining; Medical Imaging; Medical image diagnosis; Classification;

  6. Tumor-Like Lesions of the Brain in MRI and CT-scan

    Directory of Open Access Journals (Sweden)

    Gholamreza Bakhshandehpour

    2009-01-01

    Full Text Available "nIntroduction: The objective of this paper is to demonstrate a variety of non-neoplastic pathologies that may present with a mass effect and/or abnormal enhancement, thus simulating neoplasia. "nMaterials and Methods: We collected 77 cases of various tumor mimics from teaching files of three institutions. All patients presented with intra- and/or extra–axial lesions and imaging findings that could, potentially, mimic brain neoplasia. "nResults: Assessment of central nervous system pathology may be very challenging. The usual description of mass effect and abnormal enhancement, typical of brain neoplasia, can also be shared by a variety of non-neoplastic etiologies. Radiologists should be familiar with these tumor mimics, and shold be included as differential diagnoses. We categorized and these non-neoplastic lesions, which could potentially mimic extra-and/or intra- axial brain tumors, into the following groups: "n1 Normal variant (giant (tumefactive perivascular spaces "n2 Infection (tuberculosis, cysticercosis, and fungal lesions "n3 Syndromes (NF1, Rosai-Dorfman Syndrome, Lhermitte-Duclos, Krabbe Disease (adult type. "n4 Vascular lesions (vascular malformations, aneurysms and cerebral venous sinus thrombosis "n5 Autoimmune and inflammatory processes (MS, ADEM, encephalitis, sarcoidosis and PML "n6 Idiopathic (idiopathic hypertrophic pachymeningitis "n7 Congenital brain lesions (cortical dysgenesis and heterotopias "n8 Miscellaneous (postictal brain lesions "nConclusion: In this paper, we present a large collection of non-neoplastic tumor mimics. Awareness, understanding, and recognition of these mimics may permit the radiologist to play a significant role in the prevention of unwanted surgical interventions or extensive diagnostic evaluation procedures.  

  7. Brain Imaging Studies of Developmental Stuttering.

    Science.gov (United States)

    Ingham, Roger J.

    2001-01-01

    A review of research on brain imaging of developmental stuttering concludes that findings increasingly point to a failure of normal temporal lobe activation during speech that may either contribute to (or is the result of) a breakdown in the sequencing of processing among premotor regions implicated in phonologic planning. (Contains references.)…

  8. Anatomy of the Brain

    Science.gov (United States)

    ... Menu Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ... form Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of Tumors Risk Factors ...

  9. Radiosurgery in the management of pediatric brain tumors.

    Science.gov (United States)

    Raco, A; Raimondi, A J; D'Alonzo, A; Esposito, V; Valentino, V

    2000-05-01

    A total of 114 patients with benign and malignant intracranial tumors were treated by Valentino at the Flaminia Radiosurgical Center using a Philips 6-MeV linear accelerator between 1987 and 1995. The tumor locations break down as follows: 36 in the cerebral hemispheres, 14 in the region of the hypothalamus/optic chiasm, 21 in the III ventricle/pineal region, 3 in the basal ganglia, 27 in the posterior fossa, 13 in the brain stem. Seventy-nine patients had multivariate/combined treatment consisting of surgery or biopsy followed by chemotherapy, radiotherapy and/or radiosurgery. Thirty-five were not operated on or biopsied but were treated primarily by radiosurgery, which was associated with chemotherapy and conventional radiotherapy. The short- and long-term results were evaluated separately for each pathology in an attempt to derive guidelines for future treatment. For tumors of the pineal region, we are of the opinion that radiosurgery is the treatment of choice in children and that more than one-third of patients can be cured by this means. The remaining patients require surgery and/or chemotherapy in addition. For medulloblastomas radiosurgery may be useful to control local recurrence if coupled with chemotherapy. In the case of ependymomas, partly because of the extreme malignancy of the lesions in our series, radiosurgery did not succeed in controlling local recurrence. We fear that limiting treatment to radiosurgery, rather than prescribing conventional radiotherapy when indicated, could permit CNS seeding. For craniopharyngiomas radiosurgery proved useful for controlling solid remnants. In glial tumors radiosurgery helped either to "sterilize" the tumor bed after removal or to treat remnants of the lesions in critical areas; for diffuse brain stem gliomas it should be considered the treatment of choice.

  10. Brain imaging of affective disorders and schizophrenia.

    Science.gov (United States)

    Kishimoto, H; Yamada, K; Iseki, E; Kosaka, K; Okoshi, T

    1998-12-01

    We review recent findings in human brain imaging, for example, which brain areas are used during perception of colors, moving objects, human faces, facial expressions, sadness and happiness etc. One study used fluorine-18-labeled deoxyglucose positron emission tomography (PET) in patients with unipolar depression and bipolar depression, and found hypometabolism in the left anterolateral prefrontal cortex. Another study reported increased regional cerebral blood flow in the amygdala in familial pure depressive disease. Using 11C-glucose PET, we reported that the glutamic acid pool was reduced in cortical areas of the brain in patients with major depression. We also found that the thalamic and cingulate areas were hyperactive in drug-naive (never medicated) acute schizophrenics, while the associative frontal, parietal, temporal gyri were hypoactive in drug-naive chronic schizophrenics. Brain biochemical disturbances of schizophrenic patients involved glutamic acid, N-acetyl aspartic acid, phosphatidylcholine and sphingomyelin which are important chemical substances in the working brain. The areas of the thalamus and the cingulate which become hyperactive in acute schizophrenic patients are important brain areas for perception and communication. The association areas of the cortex which become disturbed in chronic schizophrenia are essential brain areas in human creativity (language, concepts, formation of cultures and societies) and exist only in human beings.

  11. Analysis of Dynamic Brain Imaging Data

    CERN Document Server

    Mitra, P

    1998-01-01

    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based repres...

  12. Imaging Study Confirms Brain Differences in People with ADHD

    Science.gov (United States)

    ... Imaging Study Confirms Brain Differences in People With ADHD Attention-deficit/hyperactivity should be considered a brain ... Researchers who pinpointed brain differences in people with attention-deficit/hyperactivity disorder (ADHD) say their findings show the condition should ...

  13. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  14. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  15. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  16. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Neil V. Klinger

    2016-01-01

    Full Text Available Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin’s ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors.

  17. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    Science.gov (United States)

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-11-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  18. Automatic segmentation of brain images: selection of region extraction methods

    Science.gov (United States)

    Gong, Leiguang; Kulikowski, Casimir A.; Mezrich, Reuben S.

    1991-07-01

    In automatically analyzing brain structures from a MR image, the choice of low level region extraction methods depends on the characteristics of both the target object and the surrounding anatomical structures in the image. The authors have experimented with local thresholding, global thresholding, and other techniques, using various types of MR images for extracting the major brian landmarks and different types of lesions. This paper describes specifically a local- binary thresholding method and a new global-multiple thresholding technique developed for MR image segmentation and analysis. The initial testing results on their segmentation performance are presented, followed by a comparative analysis of the two methods and their ability to extract different types of normal and abnormal brain structures -- the brain matter itself, tumors, regions of edema surrounding lesions, multiple sclerosis lesions, and the ventricles of the brain. The analysis and experimental results show that the global multiple thresholding techniques are more than adequate for extracting regions that correspond to the major brian structures, while local binary thresholding is helpful for more accurate delineation of small lesions such as those produced by MS, and for the precise refinement of lesion boundaries. The detection of other landmarks, such as the interhemispheric fissure, may require other techniques, such as line-fitting. These experiments have led to the formulation of a set of generic computer-based rules for selecting the appropriate segmentation packages for particular types of problems, based on which further development of an innovative knowledge- based, goal directed biomedical image analysis framework is being made. The system will carry out the selection automatically for a given specific analysis task.

  19. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  20. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  1. Forthergillian Lecture. Imaging human brain function.

    Science.gov (United States)

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  2. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  3. Optical Coherence Tomography for Brain Imaging

    Science.gov (United States)

    Liu, Gangjun; Chen, Zhongping

    Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

  4. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  5. Perfusion MR imaging and proton MR spectroscopy in a case of dysembryroplastic neuroepithelial tumor

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; LI Kun-cheng; CHEN Li; LU De-hong; ZHANG Guo-jun; LI Yong-jie

    2005-01-01

    @@ Dysembryoplastic neuroepithelial tumors (DNTs), which were first described by Daumas-Duport in 1988, are one of rare benign tumors usually associated with medically intractable seizures which date from childhood.1 The clinical, pathologic and neuroradiologic findings of DNT have been described.2 Recent advances in magnetic resonance imaging (MRI) technology allow the acquisition of cerebral microcirculation parameters by perfusion weighted imaging (PWI) and brain metabolic indices by MR spectroscopy (MRS). Several studies have shown the utility of PWI and MRS can improve the diagnostic accuracy of brain tumor,3 we combine the two techniques to evaluate a case with DNT and suggest that wider application of these techniques is warranted.

  6. A New Metric for Detecting Change in Slowly Evolving Brain Tumors: Validation in Meningioma Patients

    Science.gov (United States)

    Pohl, Kilian M.; Konukoglu, Ender; Novellas, Sebastian; Ayache, Nicholas; Fedorov, Andriy; Talos, Ion-Florin; Golby, Alexandra; Wells, William M.; Kikinis, Ron; Black, Peter M.

    2011-01-01

    Background Change detection is a critical component in the diagnosis and monitoring of many slowly evolving pathologies. Objective This article describes a semi-automatic monitoring approach using longitudinal medical images. We test the method on brain scans of meningioma patients, which experts found difficult to monitor as the tumor evolution is very slow and may be obscured by artifacts related to image acquisition. Methods We describe a semi-automatic procedure targeted towards identifying difficult-to-detect changes in brain tumor imaging. The tool combines input from a medical expert with state-of-the-art technology. The software is easy to calibrate and, in less than five minutes, returns the total volume of tumor change in mm3. We test the method on post-gadolinium, T1-weighted Magnetic Resonance Images of ten meningioma patients and compare our results to experts’ findings. We also perform benchmark testing with synthetic data. Results Our experiments indicated that experts’ visual inspections are not sensitive enough to detect subtle growth. Measurements based on experts’ manual segmentations were highly accurate but also labor intensive. The accuracy of our approach was comparable to the experts’ results. However, our approach required far less user input and generated more consistent measurements. Conclusion The sensitivity of experts’ visual inspection is often too low to detect subtle growth of meningiomas from longitudinal scans. Measurements based on experts’ segmentation are highly accurate but generally too labor intensive for standard clinical settings. We described an alternative metric that provides accurate and robust measurements of subtle tumor changes while requiring a minimal amount of user input. PMID:21206318

  7. Electromagnetic imaging of dynamic brain activity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.; Leahy, R. [University of Southern California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Lewis, P.; Lewine, J.; George, J. [Los Alamos National Lab., NM (United States); Singh, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Radiology

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  8. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  9. Impacts of Blood-Brain Barrier in Drug Delivery and Targeting of Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2012-02-01

    Full Text Available Introduction: Entry of blood circulating agents into the brain is highly selectively controlled by specific transport machineries at the blood brain barrier (BBB, whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. Methods: Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. Results: Brain capillary endothelial cells (BCECs form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics. Conclusion: The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.

  10. Intracranial yolk sac tumor in an adult patient: MRI, diffusion-weighted imaging and 1H MR spectroscopy features

    Directory of Open Access Journals (Sweden)

    Mačvanski Marija

    2012-01-01

    Full Text Available Introduction. Yolk sac tumors represent only 5%-7% of intracranial germ cell tumors, which comprise about 1% of all primary brain tumors in adults. Literature data about nonspecific imaging characteristics of these tumors are scant. We presented magnetic resonance imaging findings with diffusion-weighted imaging and proton magnetic resonance spectroscopy of this rare type of tumor in an adult patient. Case report. A 55-year-old man with progressive left side weakness, headache, dizziness and ataxia, underwent preoperative magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy. After surgical resection and histological analysis, the final diagnosis of yolk sac tumor was established. Retrospective imaging analysis were performed in order to determine imaging and biochemical parameters that could be useful in the diagnostic evaluation of this tumor type. Conclusion. Though the imaging features of yolk sac tumor are not specific, morphoanatomical and metabolic imaging could offer the information that provides new insights into this tumor that may facilitate further therapeutic decision process and potentially provides better information regarding the disease prognosis.

  11. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    Science.gov (United States)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja; Majumdar, Subrata; Jain, Sanjay K.

    2013-11-01

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  12. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    Energy Technology Data Exchange (ETDEWEB)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India); Majumdar, Subrata [Bose Institute, Division of Molecular Medicine (India); Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2013-11-15

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  13. Imaging guided differentiation of parotid tumors; Bildgebende Differenzierung von Parotistumoren

    Energy Technology Data Exchange (ETDEWEB)

    Kloth, C.; Horger, M.; Haap, M.; Ioanoviciu, S.D.; Boesmueller, H.

    2015-09-15

    Imaging guided differentiation of parotid tumors is helping diagnosis and therapy decision making. It is necessary to consider seldom tumor forms and their characteristic appearance. Modern techniques as diffusion supported NMR imaging sequences and correlated contrast agent kinetics may be helpful besides computer tomography and PET techniques.

  14. Peritumoral hemorrhage after radiosurgery for metastatic brain tumor; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Motozaki, Takahiko (Nishinomiya City General Hospital, Hyogo (Japan)); Ban, Sadahiko; Yamamoto, Toyoshiro; Hamasaki, Masatake

    1994-08-01

    An unusual case of peritumoral hemorrhage after radiosurgery for the treatment of metastatic brain tumor is reported. This 64-year-old woman had a history of breast cancer and underwent right mastectomy in 1989. She remained well until January 1993, when she started to have headache, nausea and speech disturbance, and was hospitalized on February 25, 1993. Neurological examination disclosed right hemiparesis and bilateral papilledema. CT scan and MR imaging showed a solitary round mass lesion in the left basal ganglia region. It was a well-demarcated, highly enhanced mass, 37 mm in diameter. Cerebral angiography confirmed a highly vascular mass lesion in the same location. She was treated with radiosurgery on March 8 (maximum dose was 20 Gy in the center and 10 Gy in the peripheral part of the tumor). After radiosurgery, she had an uneventful course and clinical and radiosurgical improvement could be detected. Her neurological symptoms and signs gradually improved and reduction of the tumor size and perifocal edema could be seen one month after radiosurgery. However, 6 weeks after radiosurgery, she suddenly developed semicoma and right hemiplegia. CT scan disclosed a massive peritumoral hemorrhage. Then, emergency craniotomy, evacuation of the hematoma and total removal of the tumor were performed on April 24. Histopathological diagnosis was adenocarcinoma. It was the same finding as that of the previous breast cancer. Histopathological examination revealed necrosis without tumor cells in the center and residual tumor cells in the peripheral part of the tumor. It is postulated that peritumoral hemorrhage was caused by hemodynamic changes in the vascular-rich tumor after radiosurgery and breakdown of the fragile abnormal vessels in the peripheral part of the tumor. (author).

  15. Benign bone tumors and tumor-like lesions: value of cross-sectional imaging

    Energy Technology Data Exchange (ETDEWEB)

    Woertler, Klaus [Department of Radiology, Technische Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675, Munich (Germany)

    2003-08-01

    This article reviews the role of CT and MR imaging in the diagnosis of benign bone tumors and tumor-like lesions of bone with with regard to differential diagnosis, the assessment of tumor-related complications, and the detection of postoperative recurrence. Indications for cross-sectional imaging of specific lesions, including osteoid osteoma, osteoblastoma, enchondroma, osteochondroma, intraosseous lipoma, hemangioma, giant cell tumor, aneurysmal bone cyst, simple bone cyst, and eosinophilic granuloma, are discussed, and advantages and disadvantages of the different imaging modalities are illustrated on the basis of pathologically confirmed cases. (orig.)

  16. Primary spinal primitive neuroectodermal tumor on MR imaging.

    Science.gov (United States)

    Thoriya, Prashant J; Watal, Pankaj; Bahri, Nandini U; Rathod, Ketan

    2015-01-01

    Neoplasms in the region of filum terminale are not uncommon. Myxopapillary ependymoma is the commonest tumor at this location. The differentials reported for this entity are nerve sheath tumor, meningioma, paraganglioma, intradural metastases, lymphoma, other varieties of ependymoma, subependymoma, astrocytoma, ganglioglioma, hemangioblastoma, and primitive neuroectodermal tumor (PNET). PNET may very rarely present as an intradural thoracolumbar mass. We present pre- and post-therapy magnetic resonance imaging (MRI) features of a patient with proven primary spinal primitive neuroectodermal tumor (PSPNET) of peripheral subtype.

  17. Outcome of supratentorial intraaxial extra ventricular primary pediatric brain tumors: A prospective study

    Directory of Open Access Journals (Sweden)

    Mohana Rao Patibandla

    2014-01-01

    Full Text Available Introduction: Tumors of the central nervous system (CNS are the second most frequent malignancy of childhood and the most common solid tumor in this age group. CNS tumors represent approximately 17% of all malignancies in the pediatric age range, including adolescents. Glial neoplasms in children account for up to 60% of supratentorial intraaxial tumors. Their histological distribution and prognostic features differ from that of adults. Aims and Objectives: To study clinical and pathological characteristics, and to analyze the outcome using the Engel′s classification for seizures, Karnofsky′s score during the available follow-up period of minimum 1 year following the surgical and adjuvant therapy of supratentorial intraaxial extraventricular primary pediatric (SIEPP brain tumors in children equal or less than 18 years. Materials and Methods: The study design is a prospective study done in NIMS from October 2008 to January 2012. All the patients less than 18 years of age operated for SIEPP brain tumors proven histopathologically were included in the study. All the patients with recurrent or residual primary tumors or secondaries were excluded from the study. Post operative CT or magnetic resonance imaging (MRI is done following surgery. Results and Analysis: There were 2, 8 and 20 patients in the age range of 0-2 years, >2-10 years and 10-18 years, respectively. There were 21 male patients and 9 female patients. Out of 30 patients, 16 had lesion in the temporal lobe, 6 in frontal lobe, 4 in thalamus, 3 in parietal lobe and 1 in occipital lobe. Out of 30 patients, 11 patients had malignant lesions and nineteen patients had benign lesions. Gross total excision could be achieved in 19 patients and subtotal in 11 patients. Seven patients had mortality and four of the remaining 23 patients had increased deficits postoperatively. Remaining 19 patients either improved or remained same. Conclusions: SIEPP brain tumors have male preponderance, occur

  18. Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone

    Energy Technology Data Exchange (ETDEWEB)

    Shiroishi, Mark S.; Nelson, Marvin D. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Pediatric Radiology, Pittsburgh, PA (United States); Moore, Kevin R. [Primary Children' s Medical Center, Department of Radiology, Salt Lake City, UT (United States); Gilles, Floyd H. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Pathology, Los Angeles, CA (United States); Gonzalez-Gomez, Ignacio [All Children' s Hospital, Department of Pathology, St. Petersburg, FL (United States); Blueml, Stefan [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States)

    2015-09-15

    The specific goal of this study was to determine whether the inclusion of MRS had a measureable and positive impact on the accuracy of pre-surgical MR examinations of untreated pediatric brain tumors over that of MRI alone in clinical practice. Final imaging reports of 120 pediatric patients with newly detected brain tumors who underwent combined MRI/MRS examinations were retrospectively reviewed. Final pathology was available in all cases. Group A comprised 60 subjects studied between June 2001 and January 2005, when MRS was considered exploratory and radiologists utilized only conventional MRI to arrive at a diagnosis. For group B, comprising 60 subjects studied between January 2005 and March 2008, the radiologists utilized information from both MRI and MRS. Furthermore, radiologists revisited group A (blind review, time lapse >4 years) to determine whether the additional information from MRS would have altered their interpretation. Sixty-three percent of patients in group A were diagnosed correctly, whereas in 10 % the report was partially correct with the final tumor type mentioned (but not mentioned as most likely tumor), while in 27 % of cases the reports were wrong. For group B, the diagnoses were correct in 87 %, partially correct in 5 %, and incorrect in 8 % of the cases, which is a significant improvement (p < 0.005). Re-review of combined MRI and MRS of group A resulted 87 % correct, 7 % partially correct, and 7 % incorrect diagnoses, which is a significant improvement over the original diagnoses (p < 0.05). Adding MRS to conventional MRI significantly improved diagnostic accuracy in preoperative pediatric patients with untreated brain tumors. (orig.)

  19. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner.

    Science.gov (United States)

    Karabeber, Hazem; Huang, Ruimin; Iacono, Pasquale; Samii, Jason M; Pitter, Ken; Holland, Eric C; Kircher, Moritz F

    2014-10-28

    The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room.

  20. Terahertz spectroscopy and detection of brain tumor in rat fresh-tissue samples

    Science.gov (United States)

    Yamaguchi, S.; Fukushi, Y.; Kubota, O.; Itsuji, T.; Yamamoto, S.; Ouchi, T.

    2015-03-01

    Terahertz (THz) spectroscopy and imaging of biomedical samples is expected to be an important application of THz analysis techniques. Identification and localization of tumor tissue, imaging of biological samples, and analysis of DNA by THz spectroscopy have been reported. THz time-domain spectroscopy (TDS) is useful for obtaining the refractive index over a broad frequency range. However, THz-TDS spectra of fresh tissue samples are sensitive to procedures such as sample preparation, and a standardized measurement protocol is required. Therefore, in this work, we establish a protocol for measurements of THz spectra of fresh tissue and demonstrate reliable detection of rat brain tumor tissue. We use a reflection THz-TDS system to measure the refractive index spectra of the samples mounted on a quartz plate. The tissue samples were measured immediately after sectioning to avoid sample denaturalization during storage. Special care was taken in THz data processing to eliminate parasitic reflections and reduce noise. The error level in our refractive index measurements was as low as 0.02 in the frequency range 0.8-1.5 THz. With increasing frequency, the refractive index in the tumor and normal regions monotonically decreased, similarly to water, and it was 0.02 higher in the tumor regions. The spectral data suggest that the tumor regions have higher water content. Hematoxylin-eosin stained images showed that increased cell density was also responsible for the observed spectral features. A set of samples from 10 rats showed consistent results. Our results suggest that reliable tumor detection in fresh tissue without pretreatment is possible with THz spectroscopy measurements. THz spectroscopy has the potential to become a real-time in vivo diagnostic method.

  1. Advances in brain imaging of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-yong; TAO Wei; LI Yong-jie

    2008-01-01

    Objective To review the literature on the use of brain imaging,including functional magnetic resonance imaging(fMRI), positron emission tomography(PET),magnetic resonance spectroscopy(MRS)and voxel-based morphometry(VBM)in investigation of the activity in diverse brain regions that creates and modulates chronic neuropathic pain. Data sources English literatures from January 1,2000 to July 31,2007 that examined human brain activity in chronic neuropathic pain were accessed through MEDLINE/CD ROM,using PET,fMRI,VBM,MRS and receptor binding. Study selection Published articles about the application of fMRI,PET,VBM,MRS and chronic neuropathic pain were selected. Data extraction Data were mainly extracted from 40 representative articles as the research basis. Results The PET studies suggested that spontaneous neuropathic pain is associated with changes in thalamic activity. Both PET and fMRI have been used to investigate the substrate of allodynia.The VBM demonstrated that brain structural changes are involved in chronic neuropathic pain,which is not seen in a matched control group.However,the results obtained had a large variety,which may be due to different pain etiology,pain distribution,lesion tomography,symptoms and stimulation procedures. Conclusions Application of the techniques of brain imaging plays a very important role in the study of structural and functional reorganization In patients with neuropathic pain.However,a unique"pain matrix" has not been defined.Future studies should be conducted using a prospective longitudinal research design,which would guarantee the control for many confounding factors.

  2. Optimized Discretization Schemes For Brain Images

    Directory of Open Access Journals (Sweden)

    USHA RANI.N,

    2011-02-01

    Full Text Available In medical image processing active contour method is the important technique in segmenting human organs. Geometric deformable curves known as levelsets are widely used in segmenting medical images. In this modeling , evolution of the curve is described by the basic lagrange pde expressed as a function of space and time. This pde can be solved either using continuous functions or discrete numerical methods.This paper deals with the application of numerical methods like finite diffefence and TVd-RK methods for brain scans. The stability and accuracy of these methods are also discussed. This paper also deals with the more accurate higher order non-linear interpolation techniques like ENO and WENO in reconstructing the brain scans like CT,MRI,PET and SPECT is considered.

  3. Brain SPECT imaging in Sydenham's chorea

    Directory of Open Access Journals (Sweden)

    Barsottini O.G.P.

    2002-01-01

    Full Text Available The objective of the present study was to determine whether brain single-photon emission computed tomography (SPECT imaging is capable of detecting perfusional abnormalities. Ten Sydenham's chorea (SC patients, eight females and two males, 8 to 25 years of age (mean 13.4, with a clinical diagnosis of SC were submitted to brain SPECT imaging. We used HMPAO labeled with technetium-99m at a dose of 740 MBq. Six examinations revealed hyperperfusion of the basal ganglia, while the remaining four were normal. The six patients with abnormal results were females and their data were not correlated with severity of symptoms. Patients with abnormal brain SPECT had a more recent onset of symptoms (mean of 49 days compared to those with normal SPECT (mean of 85 days but this difference did not reach statistical significance. Brain SPECT can be a helpful method to determine abnormalities of the basal ganglia in SC patients but further studies on a larger number of patients are needed in order to detect the phase of the disease during which the examination is more sensitive.

  4. Clinicopathological pattern of brain tumors: A 3-year study in a tertiary care hospital in India

    Directory of Open Access Journals (Sweden)

    Sajeeb Mondal

    2016-01-01

    Full Text Available Background: Brain tumors are heterogeneous group of neoplasms, affecting different age groups. Although some studies have been published regarding pathological pattern of brain tumors from different countries of the world and also from India, comprehensive clinicopathological studies from Eastern India is lacking. Aims: The aim of this study was to observe recent incidence of different brain tumors and to study clinical and histopathological spectrum of brain tumors in Eastern India. Materials and Methods: The present study was a cross-sectional observational study involving 130 cases of brain tumors which were diagnosed during the 3-year study period (January 2010–December 2012. Data regarding clinical presentation and radiological features of all cases were collected from all patients. Histopathological diagnosis was correlated with clinical and radiological diagnosis. Results: We found 130 cases of brain tumor with a male preponderance. The cases were distributed in a wide age range from 4 years to 78 years with the mean age of 42.38 years. Most common tumor type in our study was neuroepithelial tumor (92 cases, 70.76%. Among the neuroepithelial tumors, most frequent subtype was astrocytic tumor (54 cases, 41.5%. The second most frequent brain tumor was meningioma (20 cases, 15.3%. We found higher incidence of oligodendroglial tumor (8.46% and medulloblastoma (7.69% in our series. Conclusion: Males are more predispose to brain tumors in comparison to females. Astrocytic tumors are most common subtype in Eastern India. However, the WHO Grade I neoplasms are more frequent brain tumors.

  5. Metastatic Brain Tumors: A Retrospective Review in East Azarbyjan (Tabriz

    Directory of Open Access Journals (Sweden)

    Zinat Miabi

    2011-02-01

    Full Text Available A set of one hundred and twenty nine patients with known primary malignancy and suspected brain metastasis was reviewed in present study. The patients were selected among patients presented to the MRI section of Imam Khomeini Hospital or a private MRI center in Tabriz (Iran. Primary tumor site, clinical manifestations, number and site of lesions were identified in this patient population. The primary tumor site was breast in 55 patients (42.6%, followed by lung (40.3%, kidney (7.7%, colorectal (4.6%, lymphoma (3.1% and melanoma (1.5%. Most patients were presented with features of increased intracranial pressure (headaches and vomiting, seizures and focal neurologic signs. Single brain metastasis occurred in 16.3% of patients, while multiple lesions accounted for 83.7% of patients. Ninety seven patients had supratentorial metastases (75.2%. Twenty cases (15.5% had metastases in both compartments. Infratentorial lesions were observed only in twelve patients (9.3%.

  6. Endocrine abnormalities after radiation therapy for brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Aida, Toshimitsu; Sugimoto, Shinji; Abe, Hiroshi; Fujieda, Kenji; Matsuura, Nobuo (Hokkaido Univ., Sapporo (Japan). School of Medicine)

    1990-12-01

    Endocrine evaluations were performed in 5 children, previously treated for brain tumors which did not directly involve the hypothalamic-pituitary axis, who had received cranial irradiation 2 to 4 years earlier. Their rate of growth was considerably reduced during the year following the completion of cranial irradiation. Impaired growth hormone (GH) responses to an insulin tolerance test (ITT) were observed in all 6 and to an arginine tolerance test (ATT) in 5 children. Three children had a prolonged response of thyroid-stimulating hormone (TSH) to thyrotrophin releasing hormone (TRH). The remaining pituitary functions were essentially normal. Four children received human GH therapy. The growth rate of each was improved by GH therapy, but 2 of the 4 were still short with a standing height standard deviation score (SDS) below 2. Close monitoring of the growth and hormonal status of children with brain tumors treated with cranial irradiation is necessary, and the timing of the initiation of GH therapy is very important for partial or complete restoration of the normal growth rate. (author).

  7. Identifying the needs of brain tumor patients and their caregivers.

    Science.gov (United States)

    Parvataneni, Rupa; Polley, Mei-Yin; Freeman, Teresa; Lamborn, Kathleen; Prados, Michael; Butowski, Nicholas; Liu, Raymond; Clarke, Jennifer; Page, Margaretta; Rabbitt, Jane; Fedoroff, Anne; Clow, Emelia; Hsieh, Emily; Kivett, Valerie; Deboer, Rebecca; Chang, Susan

    2011-09-01

    The purpose of this study is to identify the needs of brain tumor patients and their caregivers to provide improved health services to these populations. Two different questionnaires were designed for patients and caregivers. Both questionnaires contained questions pertaining to three realms: disease symptoms/treatment, health care provider, daily living/finances. The caregivers' questionnaires contained an additional domain on emotional needs. Each question was evaluated for the degree of importance and satisfaction. Exploratory analyses determined whether baseline characteristics affect responder importance or satisfaction. Also, areas of high agreement/disagreement in satisfaction between the participating patient-caregiver pairs were identified. Questions for which >50% of the patients and caregivers thought were "very important" but >30% were dissatisfied include: understanding the cause of brain tumors, dealing with patients' lower energy, identifying healthful foods and activities for patients, telephone access to health care providers, information on medical insurance coverage, and support from their employer. In the emotional realm, caregivers identified 9 out of 10 items as important but need further improvement. Areas of high disagreement in satisfaction between participating patient-caregiver pairs include: getting help with household chores (P value = 0.006) and finding time for personal needs (P value needs, emphasizing the importance of providing appropriate medical and psychosocial support for caregivers to cope with emotional difficulties they face during the patients' treatment process.

  8. Permeability of PEGylated Immunoarsonoliposomes Through In Vitro Blood Brain Barrier-Medulloblastoma Co-culture Models for Brain Tumor Therapy

    NARCIS (Netherlands)

    Al-Shehri, A.; Favretto, M.E.; Ioannou, P.V.; Romero, I.A.; Couraud, P.O.; Weksler, B.B.; Parker, T.L.; Kallinteri, P.

    2015-01-01

    PURPOSE: Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeuti

  9. Treatment-related changes in functional connectivity in brain tumor patients : a magnetoencephalography study

    NARCIS (Netherlands)

    Douw, Linda; Baayen, Hans; Bosma, Ingeborg; Klein, Martin; Vandertop, Peter; Heimans, Jan; Stam, Kees; de Munck, Jan; Reijneveld, Jaap

    2008-01-01

    Widespread disturbances in resting state functional connectivity between remote brain areas have been demonstrated in patients with brain tumors. Functional connectivity has been associated with neurocognitive deficits in these patients. Thus far, it is unknown how (surgical) treatment affects funct

  10. Thermoacoustic tomography arising in brain imaging

    CERN Document Server

    Stefanov, Plamen

    2010-01-01

    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary.

  11. A 3-D visualization method for image-guided brain surgery.

    Science.gov (United States)

    Bourbakis, N G; Awad, M

    2003-01-01

    This paper deals with a 3D methodology for brain tumor image-guided surgery. The methodology is based on development of a visualization process that mimics the human surgeon behavior and decision-making. In particular, it originally constructs a 3D representation of a tumor by using the segmented version of the 2D MRI images. Then it develops an optimal path for the tumor extraction based on minimizing the surgical effort and penetration area. A cost function, incorporated in this process, minimizes the damage surrounding healthy tissues taking into consideration the constraints of a new snake-like surgical tool proposed here. The tumor extraction method presented in this paper is compared with the ordinary method used on brain surgery, which is based on a straight-line based surgical tool. Illustrative examples based on real simulations present the advantages of the 3D methodology proposed here.

  12. Time-dependent change of dymanic MRI in brain and spinal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Yasuhiro; Matsumoto, Masato; Sato, Masanori; Fujita, Takashi; Suzuki, Kyoichi; Kodama, Namio (Fukushima Medical Coll. (Japan))

    1991-12-01

    Time-dependent changes of MR imaging were studied in 42 brain and 3 spinal tumors. Fourteen pituitary adenomas, 12 meningiomas, 7 neurinomas, 3 glioblastomas, 5 astrocytomas, 2 ependymomas, one chordoma, and one orbital pseudotumor were studied using the spin-echo technique (SE 600/20) after the injection of 0.1 mmol/kg of gadolinium-DTPA. The value of the signal intensities of the tumor tissue and the necrotic tissue were measured at pre- and postcontrast using a region-of-interest (ROI) technique. The signal intensity (S.I.) ratio of the contrast-enhanced area was calculated as follows: (postcontrast S.I.-precontrast S.I.) /precontrast S.I. x 100 (%). The time dependent curves of the S.I. ratio and the images were also evaluated. The time-S.I. ratio curves of the meningiomas, pituitary adenomas, neurinomas, ependymomas and pseudotumor showed a rapid increase, followed by a gradual decrease. The neurinomas were more enhanced than the other tumors. The pituitary adenomas showed a heterogeneous enhancement in delayed scans, but the meningiomas were sequentially homogeneous. The S.I. ratios of the astrocytomas (grade III), glioblastomas, and chordoma slowly increased until they reached a peak at from 5 to 20 min., and then decreased gradually. The initial enhanced areas in astrocytoma (grade III) and glioblastoma extended around sequentially, but the necrotic areas of the astrocytoma (grade III) and glioblastoma were gradually enhanced. The astrocytomas (grade II) showed no enhancement. Our study, using dynamic MR imaging, is useful because it gives more precise information for the differential diagnosis of brain tumors. (author).

  13. Fetal trauma: brain imaging in four neonates

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, Luc; Mussen, E.; Demaerel, P.; Smet, M. [Department of Radiology, University Hospitals, Herestraat 49, 3000, Leuven (Belgium); Cossey, V. [Department of Pediatrics, University Hospitals, Leuven (Belgium); Voorde, W. van de [Department of Forensic Medicine, University Hospitals, Leuven (Belgium)

    2004-09-01

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  14. [Factors significant for cerebral circulacion in patients with supratentorial brain tumors].

    Science.gov (United States)

    Sboev, A Yu; Dolgih, V T; Larkin, V I

    2013-01-01

    Using the Doppler ultrasonography method the condition of brain blood circulation of 90 patients with supratentorial brain tumors (gliomas--43, meningiomas--34, metastasis--9) during pre-surgical period was studied. The factors changing brain blood circulation at patients with with supratentorial brain tumors were brain displacement, increase of intracranial pressure, histologic structure and the first symptoms duration of illness. Localization (for an exception of an occipital lobe) and the size of a tumor directly didn't render influence on blood circulation parameters.

  15. Tumor histology and location predict deep nuclei toxicity: Implications for late effects from focal brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, Alexis; Shields, Lisa B.E. [Norton Neuroscience Institute, Louisville, KY (United States); Sun, David A.; Vitaz, Todd W. [Norton Neuroscience Institute, Louisville, KY (United States); Brain Tumor Center, Norton Healthcare, Louisville, KY (United States); Spalding, Aaron C., E-mail: acspalding1@gmail.com [Brain Tumor Center, Norton Healthcare, Louisville, KY (United States); Norton Cancer Institute, Radiation Center, Kosair Children' s Hospital, Louisville, KY (United States)

    2012-10-01

    Normal tissue toxicity resulting from both disease and treatment is an adverse side effect in the management of patients with central nervous system malignancies. We tested the hypothesis that despite these improvements, certain tumors place patients at risk for neurocognitive, neuroendocrine, and neurosensory late effects. Defining patient groups at risk for these effects could allow for development of preventive strategies. Fifty patients with primary brain tumors underwent radiation planning with magnetic resonance imaging scan and computed tomography datasets. Organs at risk (OAR) responsible for neurocognitive, neuroendocrine, and neurosensory function were defined. Inverse-planned intensity-modulated radiation therapy was optimized with priority given to target coverage while penalties were assigned to exceeding normal tissue tolerances. Tumor laterality, location, and histology were compared with OAR doses, and analysis of variance was performed to determine the significance of any observed correlation. The ipsilateral hippocampus exceeded dose limits in frontal (74%), temporal (94%), and parietal (100%) lobe tumor locations. The contralateral hippocampus was at risk in the following tumor locations: frontal (53%), temporal (83%), or parietal (50%) lobe. Patients with high-grade glioma were at risk for ipsilateral (88%) and contralateral (73%) hippocampal damage (P <0.05 compared with other histologies). The pituitary gland and hypothalamus exceeded dose tolerances in patients with pituitary tumors (both 100%) and high-grade gliomas (50% and 75%, P <0.05 compared with other histologies), respectively. Despite application of modern radiation therapy, certain tumor locations and histologies continue to place patients at risk for morbidity. Patients with high-grade gliomas or tumors located in the frontal, temporal, or parietal lobes are at risk for neurocognitive decline, likely because of larger target volumes and higher radiation doses. Data from this study

  16. Physiological Imaging-Defined, Response-Driven Subvolumes of a Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Farjam, Reza [Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Tsien, Christina I.; Feng, Felix Y. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Gomez-Hassan, Diana [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Hayman, James A.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue, E-mail: yuecao@umich.edu [Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-04-01

    Purpose: To develop an image analysis framework to delineate the physiological imaging-defined subvolumes of a tumor in relating to treatment response and outcome. Methods and Materials: Our proposed approach delineates the subvolumes of a tumor based on its heterogeneous distributions of physiological imaging parameters. The method assigns each voxel a probabilistic membership function belonging to the physiological parameter classes defined in a sample of tumors, and then calculates the related subvolumes in each tumor. We applied our approach to regional cerebral blood volume (rCBV) and Gd-DTPA transfer constant (K{sup trans}) images of patients who had brain metastases and were treated by whole-brain radiation therapy (WBRT). A total of 45 lesions were included in the analysis. Changes in the rCBV (or K{sup trans})–defined subvolumes of the tumors from pre-RT to 2 weeks after the start of WBRT (2W) were evaluated for differentiation of responsive, stable, and progressive tumors using the Mann-Whitney U test. Performance of the newly developed metrics for predicting tumor response to WBRT was evaluated by receiver operating characteristic (ROC) curve analysis. Results: The percentage decrease in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was significantly greater in the group of responsive tumors than in the group of stable and progressive tumors (P<.007). The change in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was a predictor for post-RT response significantly better than change in the gross tumor volume observed during the same time interval (P=.012), suggesting that the physiological change occurs before the volumetric change. Also, K{sup trans} did not add significant discriminatory information for assessing response with respect to rCBV. Conclusion: The physiological imaging-defined subvolumes of the tumors delineated by our method could be candidates for boost target, for which further development and evaluation

  17. Pitfalls and Limitations of PET/CT in Brain Imaging.

    Science.gov (United States)

    Salmon, Eric; Bernard Ir, Claire; Hustinx, Roland

    2015-11-01

    Neurologic applications were at the forefront of PET imaging when the technique was developed in the mid-1970s. Although oncologic indications have become prominent in terms of number of studies performed worldwide, neurology remains a major field in which functional imaging provides unique information, both for clinical and research purposes. The evaluation of glucose metabolism using FDG remains the most frequent exploration, but in recent years, alternative radiotracers have been developed, including fluorinated amino acid analogues for primary brain tumor imaging and fluorinated compounds for assessing the amyloid deposits in patients with suspected Alzheimer disease. As the brain is enclosed in the skull, which presents fixed landmarks, it is relatively easy to coregister images obtained with various cross-sectional imaging methods, either functional or anatomical, with a relatively high accuracy and robustness. Nevertheless, PET in neurology has fully benefited from the advent of hybrid imaging. Attenuation and scatter correction is now much faster and equally accurate, using CT as compared with the traditional transmission scan using an external radioactive source. The perfect coregistration with the CT data, which is now systematically performed, also provides its own set of valuable information, for instance regarding cerebral atrophy. However, hybrid imaging in neurology comes with pitfalls and limitations, in addition to those that are well known, for example, blood glucose levels or psychotropic drugs that greatly affect the physiological FDG uptake. Movements of the patient's head, either during the PET acquisition or between the PET and the CT acquisitions will generate artifacts that may be very subtle yet lead to erroneous interpretation of the study. Similarly, quantitative analysis, such as voxel-based analyses, may prove very helpful in improving the diagnostic accuracy and the reproducibility of the reading, but a wide variety of artifacts may

  18. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    Science.gov (United States)

    2016-07-08

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  19. Noninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole {sup 18}F-EF5

    Energy Technology Data Exchange (ETDEWEB)

    Ziemer, L.S. [University of Pennsylvania School of Veterinary Medicine, Section of Radiology, 3850 Spruce Street, Philadelphia, PA 19104 (United States); Evans, S.M.; Kachur, A.V.; Shuman, A.L.; Cardi, C.A.; Jenkins, W.T.; Karp, J.S.; Alavi, A.; Koch, C.J. [School of Medicine, University of Pennsylvania, Philadelphia (United States); Dolbier Jr., W.R. [Department of Chemistry, University of Florida, Gainesville, Florida (United States)

    2003-02-01

    Tumor hypoxia is an important prognostic indicator for cancer therapy outcome. EF5 2-(2-nitro-1[H]-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide has been employed to measure tumor hypoxia in animals and humans using immunohistochemical methods. EF5 is a lipophilic molecule designed to have a very uniform biodistribution, a feature of obvious benefit for use in PET imaging. The present study represents the first demonstration of noninvasive PET imaging of rat tumors using fluorine-18 labeled EF5. Because of the small tumor size, partial volume effects may result in underestimation of concentration of the compound. Therefore, validation of the PET data was performed by gamma counting of the imaged tissue. The tumor models studied were the Morris 7777 (Q7) hepatoma (n=5) and the 9L glioma (n=2) grown subcutaneously in rats. Our previous studies have demonstrated that early passage 9L tumors are not severely hypoxic and that Q7 tumors are characterized by heterogeneous regions of tumor hypoxia (i.e., Q7 tumors are usually more hypoxic than early passage 9L tumors). The seven rats were imaged in the HEAD Penn-PET scanner at various time points after administration of 50-100 {mu}Ci {sup 18}F-EF5 in 30 mg/kg carrier nonradioactive EF5. The carrier was used to ensure drug biodistribution comparable to prior studies using immunohistochemical methods. {sup 18}F-EF5 was excreted primarily via the urinary system. Images obtained 10 min following drug administration demonstrated that the EF5 distributed evenly to all organ systems, including brain. Later images showed increased uptake in most Q7 tumors compared with muscle. Liver uptake remained relatively constant over the same time periods. Tumor to muscle ratios ranged from 0.82 to 1.73 (based on PET images at 120 min post injection) and 1.47 to 2.95 (based on gamma counts at 180 min post injection). Tumors were easily visible by 60 min post injection when the final tumor to muscle ratios (based on gamma counts

  20. Structural imaging measures of brain aging.

    Science.gov (United States)

    Lockhart, Samuel N; DeCarli, Charles

    2014-09-01

    During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily "normal" or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer's disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer's disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between "Normal" and "Healthy" brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society.

  1. Narrow band imaging of tumors using gold nanoshells

    Science.gov (United States)

    Puvanakrishnan, Priyaveena; Park, Jaesook; Diagaradjane, Parameshwaran; Schwartz, Jon A.; Coleman, Chris L.; Gill-Sharp, Kelly L.; Sang, Kristina L.; Payne, J. Donald; Krishnan, Sunil; Tunnell, James W.

    2009-02-01

    Gold nanoshells (GNS) are a new class of nanoparticles that can be optically tuned to scatter or absorb light from the near-ultraviolet to near-infrared (NIR) region by varying the core (dielectric silica) /shell (gold) ratio. In addition to spectral tunability, GNS are inert and bioconjugatable making them potential labels for in vivo imaging and therapy of tumors. We report the use of GNS as exogenous contrast agents for enhanced visualization of tumors using narrow band imaging (NBI). NBI takes advantage of the strong NIR absorption of GNS to distinguish between blood and nanoshells in the tumor by imaging in narrow wavelength bands in the visible and NIR, respectively. Using tissue-simulating phantoms, we determined the optimum wavelengths to enhance contrast between blood and GNS. We then used the optimum wavelengths for ex-vivo imaging of tumors extracted from human colon cancer xenograft bearing mice injected with GNS. Systemically delivered GNS accumulated passively in tumor xenografts by the enhanced permeability and retention (EPR) effect. Ex-vivo NBI of tumor xenografts demonstrated tumor specific heterogeneous distribution of GNS with a clear distinction from the tumor vasculature. The results of this study demonstrate the feasibility of using GNS as contrast agents to visualize tumors using NBI.

  2. BRAIN TUMOR CLASSIFICATION BASED ON CLUSTERED DISCRETE COSINE TRANSFORM IN COMPRESSED DOMAIN

    Directory of Open Access Journals (Sweden)

    V. Anitha

    2014-01-01

    Full Text Available This study presents a novel method to classify the brain tumors by means of efficient and integrated methods so as to increase the classification accuracy. In conventional systems, the problem being the same to extract the feature sets from the database and classify tumors based on the features sets. The main idea in plethora of earlier researches related to any classification method is to increase the classification accuracy.The actual need is to achieve a better accuracy in classification, by extracting more relevant feature sets after dimensionality reduction. There exists a trade-off between accuracy and the number of feature sets. Hence the focus in this study is to implement Discrete Cosine Transform (DCT on the brain tumor images for various classes. Using DCT, by itself, it offers a fair dimension reduction in feature sets.Later on, sequentially K-means algorithm is applied on DCT coefficients to cluster the feature sets. These cluster information are considered as refined feature sets and classified using Support Vector Machine (SVM is proposed in this study. This method of using DCT helps to adjust and vary the performance of classification based on the count of the DCT coefficients taken into account. There exists a good demand for an automatic classification of brain tumors which grealtly helps in the process of diagnosis. In this novel work, an average of 97% and a maximum of 100% classification accuracy has been achieved. This research is basically aiming and opening a new way of classification under compressed domain. Hence this study may be highly suitable for diagnosing under mobile computing and internet based medical diagnosis.

  3. Spatial normalization of brain images and beyond.

    Science.gov (United States)

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images.

  4. Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells.

    Science.gov (United States)

    Park, See-Hyoung; Yoon, Young Ii; Moon, Hyoungwon; Lee, Ga-Hyun; Lee, Byung-Heon; Yoon, Tae-Jong; Lee, Hak Jong

    2016-07-01

    Gas (SF6)-filled microbubbles (MBs) were prepared by emulsion and solvent-evaporation method. The prepared MBs were further conjugated with doxorubicin (Dox)-loaded nano-sized liposome and peptide ligands to interleukin-4 receptor (IL4R) for targeting brain tumor cells. The final MB-liposome (Dox)-IL4R targeting peptide ligand [MB-Lipo (Dox)-IL4RTP] had a spherical structure with the mean size of 1,500 nm. The MB-Lipo (Dox)‑IL4RTP exhibited cellular uptake in U87MG brain tumor cells (a brain tumor cell line expressing strongly IL4R) with frequency ultrasound energy suggesting that MB-Lipo (Dox)‑IL4RTP provided effective targeting ability for brain tumor cells. In addition, WST-1 assay results showed that MB-Lipo (Dox)‑IL4RTP inhibited the proliferation of U87MG cells IL4R‑dependently. This was confirmed by western blotting of γH2AX, phospho (Ser15)-p53, p53 and p21 which are signal transduction proteins involved in DNA damage response and cell cycle arrest. Taken together, these results indicate that MB-Lipo (Dox)-IL4RTP represents a promising ultrasonic contrast agent for tumor-targeting ultrasonic imaging.

  5. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  6. MR imaging of gestational trophoblastic tumor: role of gadolinium enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Si Young; Byun, Jae Young; Kim, Bum Su; Yun, Young Hyun; Mun, Kyung Mi; Park, Kyung Sin; Kim, Byung Kee; Bae, Seog Nyeon; Shinn, Kyung Sub

    1997-12-01

    The purpose of this study is to investigate the role of gadolinium enhanced MR imaging in the evaluation of gestational trophoblastic tumors (invasive mole and choriocarcinoma). Pre-enhanced T1-and T2-weighted images and gadolinium enhanced T1-weighted images of 34 gestational trophoblastic tumors (15 choriocarcinomas, 19 invasive moles) were retrospectively evaluated and enhancement patterns were analyzed. Morphologica differences and structural characteristics were analyzed by the evaluation of tumor margin, patterns of hemorrhagic necroses, the development of intratumoral vascularity, and molar villi. Graded scores of MR findings between pre- and gadolinium enhanced images were based on the following criteria : 1) visualization of tumor margin 2) distinction between tumor necrosis and zone of trophoblastic proliferation ; and 3) molar villi. Statistical differences between graded scores of pre- and post-enhanced images were analyzed. Gadolinium enhanced MR imaging was helpful for the visualization of tumor characteristics in gestational trophoblastic tumors and in differential diagnosis between invasive mole and choriocarcinoma. (author). 16 refs., 4 tabs., 4 figs.

  7. Image reconstruction techniques for high resolution human brain PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Comtat, C.; Bataille, F.; Sureau, F. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    High resolution PET imaging is now a well established technique not only for small animal, but also for human brain studies. The ECAT HRRT brain PET scanner(Siemens Molecular Imaging) is characterized by an effective isotropic spatial resolution of 2.5 mm, about a factor of 2 better than for state-of-the-art whole-body clinical PET scanners. Although the absolute sensitivity of the HRRT (6.5 %) for point source in the center of the field-of-view is increased relative to whole-body scanner (typically 4.5 %) thanks to a larger co-polar aperture, the sensitivity in terms of volumetric resolution (75 (m{sup 3} at best for whole-body scanners and 16 (m{sup 3} for t he HRRT) is much lower. This constraint has an impact on the performance of image reconstruction techniques, in particular for dynamic studies. Standard reconstruction methods used with clinical whole-body PET scanners are not optimal for this application. Specific methods had to be developed, based on fully 3D iterative techniques. Different refinements can be added in the reconstruction process to improve image quality: more accurate modeling of the acquisition system, more accurate modeling of the statistical properties of the acquired data, anatomical side information to guide the reconstruction . We will present the performances these added developments for neuronal imaging in humans. (author)

  8. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic resonance spectroscopic imaging

    OpenAIRE

    Day, Sam E.; Kettunen, Mikko I.; Cherkuri, Murali Krishna; James B Mitchell; Lizak, Martin J.; Morris, H. Douglas; Koretsky, Alan P.; Brindle, Kevin M.

    2010-01-01

    13C chemical shift images acquired following intravenous injection of hyperpolarized [1-13C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but not in surrounding brain tissue. Signal from pyruvate was observed in blood vessels above the brain and from other major vessels elsewhere in the rat head. Pyruvate was largely undetectable within the tumor or surrounding normal brain tissue. The ratio of hyperpolarized 13C label in the injected py...

  9. Brain Tumor Epidemiology - A Hub within Multidisciplinary Neuro-oncology. Report on the 15th Brain Tumor Epidemiology Consortium (BTEC) Annual Meeting, Vienna, 2014.

    Science.gov (United States)

    Woehrer, Adelheid; Lau, Ching C; Prayer, Daniela; Bauchet, Luc; Rosenfeld, Myrna; Capper, David; Fisher, Paul G; Kool, Marcel; Müller, Martin; Kros, Johan M; Kruchko, Carol; Wiemels, Joseph; Wrensch, Margaret; Danysh, Heather E; Zouaoui, Sonia; Heck, Julia E; Johnson, Kimberly J; Qi, Xiaoyang; O'Neill, Brian P; Afzal, Samina; Scheurer, Michael E; Bainbridge, Matthew N; Nousome, Darryl; Bahassi, El Mustapha; Hainfellner, Johannes A; Barnholtz-Sloan, Jill S

    2015-01-01

    The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 - 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year's meeting, which will be held at the Mayo Clinic at Rochester, MN, USA.

  10. Brain Tumor Epidemiology – A Hub within Multidisciplinary Neuro-oncology. Report on the 15th Brain Tumor Epidemiology Consortium (BTEC) Annual Meeting, Vienna, 2014

    Science.gov (United States)

    Woehrer, Adelheid; Lau, Ching C.; Prayer, Daniela; Bauchet, Luc; Rosenfeld, Myrna; Capper, David; Fisher, Paul G.; Kool, Marcel; Müller, Martin; Kros, Johan M.; Kruchko, Carol; Wiemels, Joseph; Wrensch, Margaret; Danysh, Heather E.; Zouaoui, Sonia; Heck, Julia E.; Johnson, Kimberly J.; Qi, Xiaoyang; O’Neill, Brian P.; Afzal, Samina; Scheurer, Michael E.; Bainbridge, Matthew N.; Nousome, Darryl; El Bahassi, Mustapha; Hainfellner, Johannes A.; Barnholtz-Sloan, Jill S.

    2015-01-01

    The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 – 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year’s meeting, which will be held at the Mayo Clinic at Rochester, MN, USA. PMID:25518914

  11. Cognitive dysfunction in children with brain tumors at diagnosis

    Science.gov (United States)

    Studer, Martina; Ritter, Barbara Catherine; Steinlin, Maja; Leibundgut, Kurt; Heinks, Theda

    2015-01-01

    Background Survivors of brain tumors have a high risk for a wide range of cognitive problems. These dysfunctions are caused by the lesion itself and its surgical removal, as well as subsequent treatments (chemo‐ and/or radiation therapy). Multiple recent studies have indicated that children with brain tumors (BT) might already exhibit cognitive problems at diagnosis, i.e., before the start of any medical treatment. The aim of the present study was to investigate the baseline neuropsychological profile in children with BT compared to children with an oncological diagnosis not involving the central nervous system (CNS). Methods Twenty children with BT and 27 children with an oncological disease without involvement of the CNS (age range: 6.1–16.9 years) were evaluated with an extensive battery of neuropsychological tests tailored to the patient's age. Furthermore, the child and his/her parent(s) completed self‐report questionnaires about emotional functioning and quality of life. In both groups, tests were administered before any therapeutic intervention such as surgery, chemotherapy, or irradiation. Groups were comparable with regard to age, gender, and socioeconomic status. Results Compared to the control group, patients with BTs performed significantly worse in tests of working memory, verbal memory, and attention (effect sizes between 0.28 and 0.47). In contrast, the areas of perceptual reasoning, processing speed, and verbal comprehension were preserved at the time of measurement. Conclusion Our results highlight the need for cognitive interventions early in the treatment process in order to minimize or prevent academic difficulties as patients return to school. Pediatr Blood Cancer 2015;62:1805–1812. © 2015 The Authors. Pediatric Blood & Cancer, published by Wiley Periodicals, Inc. PMID:26053691

  12. Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations.

    Science.gov (United States)

    Konukoglu, Ender; Clatz, Olivier; Menze, Bjoern H; Stieltjes, Bram; Weber, Marc-André; Mandonnet, Emmanuel; Delingette, Hervé; Ayache, Nicholas

    2010-01-01

    Reaction-diffusion based tumor growth models have been widely used in the literature for modeling the growth of brain gliomas. Lately, recent models have started integrating medical images in their formulation. Including different tissue types, geometry of the brain and the directions of white matter fiber tracts improved the spatial accuracy of reaction-diffusion models. The adaptation of the general model to the specific patient cases on the other hand has not been studied thoroughly yet. In this paper, we address this adaptation. We propose a parameter estimation method for reaction-diffusion tumor growth models using time series of medical images. This method estimates the patient specific parameters of the model using the images of the patient taken at successive time instances. The proposed method formulates the evolution of the tumor delineation visible in the images based on the reaction-diffusion dynamics; therefore, it remains consistent with the information available. We perform thorough analysis of the method using synthetic tumors and show important couplings between parameters of the reaction-diffusion model. We show that several parameters can be uniquely identified in the case of fixing one parameter, namely the proliferation rate of tumor cells. Moreover, regardless of the value the proliferation rate is fixed to, the speed of growth of the tumor can be estimated in terms of the model parameters with accuracy. We also show that using the model-based speed, we can simulate the evolution of the tumor for the specific patient case. Finally, we apply our method to two real cases and show promising preliminary results.

  13. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    Science.gov (United States)

    Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI.

  14. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected...... by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury....

  15. Spectrum of pediatric brain tumors in India: A multi-institutional study

    Directory of Open Access Journals (Sweden)

    Ayushi Jain

    2011-01-01

    Full Text Available Background : Till date there is no published multi-institutional data regarding the epidemiological profile of pediatric brain tumors in India. Aim : The present retrospective study analyses the histological spectrum of pediatric age group brain tumors in seven tertiary care hospitals in India. Material and Methods : Data regarding frequencies of various primary brain tumors (diagnosed according to the World Health Organization (WHO classification, in 3936 pediatric patients (<18 yrs of age, was collected from seven tertiary care hospitals in India.Results : The most common primary pediatric brain tumors were astrocytic tumors (34.7%, followed by medulloblastoma and supratentorial primitive neuro-ectodermal tumors (22.4%, craniopharyngiomas (10.2% and ependymal tumors (9.8%. The most common astrocytic tumor was pilocytic astrocytoma. In comparison to adults, oligodendrogliomas and lymphomas were rare in children. Conclusions : Our study is the first such report on the histological spectrum of brain tumors in children in India. Except for a slightly higher frequency of craniopharyngiomas, the histological profile of pediatric brain tumors in India is similar to that reported in the Western literature.

  16. Tumor-stem cells interactions by fluorescence imaging

    Science.gov (United States)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  17. PET tracers for somatostatin receptor imaging of neuroendocrine tumors

    DEFF Research Database (Denmark)

    Johnbeck, Camilla Bardram; Knigge, Ulrich; Kjær, Andreas

    2014-01-01

    Neuroendocrine tumors have shown rising incidence mainly due to higher clinical awareness and better diagnostic tools over the last 30 years. Functional imaging of neuroendocrine tumors with PET tracers is an evolving field that is continuously refining the affinity of new tracers in the search...... these PET tracers further....

  18. Imaging of Pelvic Bone Metastasis from Malignant Phyllodes Breast Tumor

    OpenAIRE

    Nguyen, Ba D.

    2015-01-01

    The author reports a patient with a malignant phyllodes breast tumor, who then had a ten-year disease free interval before she developed a left pelvic bone metastasis and soft tissue invasion. Cross-sectional and radionuclide imaging of its musculoskeletal metastasis is presented. Literature concerning bone metastasis from phyllodes tumor is also briefly reviewed and discussed, along with its epidemiology.

  19. Navigation-guided endoscopic biopsy for intraparenchymal brain tumor.

    Science.gov (United States)

    Tsuda, Kyoji; Ishikawa, Eiichi; Zaboronok, Alexander; Nakai, Kei; Yamamoto, Tetsuya; Sakamoto, Noriaki; Uemae, Yoji; Tsurubuchi, Takao; Akutsu, Hiroyoshi; Ihara, Satoshi; Ayuzawa, Satoshi; Takano, Shingo; Matsumura, Akira

    2011-01-01

    To evaluate the efficacy of intraparenchymal brain tumor biopsy using endoscopy and a navigation system (navigation-guided endoscopic biopsy) as a diagnostic tool, a case series of intraparenchymal tumor biopsies was reviewed. Navigation-guided endoscopic biopsy was applied in 9 cases, stereotactic needle biopsy in 16 cases, and open biopsy with or without navigation system in 34 cases. In all biopsy cases, 84.7% of biopsy points were sampled accurately, and 93.2% of diagnoses by biopsy were correct. Comparison of each type of biopsy showed that the resected volumes in navigation-guided endoscopic biopsy and open biopsy tended to be larger than those in stereotactic biopsy, and the mean operation time for the open biopsy procedure was the longest. To define the most applicable device or examination method to increase sampling accuracy, various factors were analyzed in 59 procedures. Navigation-guided endoscopic biopsy was the most accurate of the three types of biopsy, although the statistical difference was not significant. Older patients, histological diagnosis of high-grade glioma or malignant lymphoma, positive photodynamic diagnosis, and positive intraoperative pathology were significant factors in improving the sampling accuracy. Navigation-guided endoscopic biopsy could provide a larger sample volume within a relatively short operation time. The biopsy can be easily combined with both photodynamic diagnosis and intraoperative pathology, significantly improving the histological diagnostic yield.

  20. High-resolution multiphoton imaging of tumors in vivo.

    Science.gov (United States)

    Wyckoff, Jeffrey; Gligorijevic, Bojana; Entenberg, David; Segall, Jeffrey; Condeelis, John

    2011-10-01

    Analysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases. Methods capable of the direct visualization and analysis of tumor-cell behavior at single-cell resolution in vivo have become crucial in advancing the understanding of mechanisms of metastasis, the definition of microenvironment, and the markers related to both. This article discusses the use of high-resolution multiphoton imaging of tumors (specifically breast tumors in mice) in vivo.

  1. Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery.

    Science.gov (United States)

    Fan, Ching-Hsiang; Ting, Chien-Yu; Chang, Yuan-Chih; Wei, Kuo-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

    2015-03-01

    Focused ultrasound (FUS) with microbubbles has been used to achieve local blood-brain barrier opening (BBB opening) and increase the penetration of therapeutic drugs into brain tumors. However, inertial cavitation of microbubbles during FUS-induced BBB opening causes intracerebral hemorrhaging (ICH), leading to acute and chronic brain injury and limiting the efficiency of drug delivery. Here we investigated whether induction of drug (1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU)-loaded bubbles (BCNU bubbles) to oscillate at their resonant frequency would reduce inertial cavitation during BBB opening, thereby eliminating ICH and enhancing drug delivery in a rat brain model. FUS was tested at 1 and 10 MHz, over a wide range of pressure (mechanical index ranging from 0.16 to 1.42) in the presence of BCNU bubbles. Excitation of BCNU bubbles by resonance frequency-matched FUS (10 MHz) resulted in predominantly stable cavitation and significantly reduced the occurrence of potential hazards of exposure to biological tissues during the BBB opening process. In addition, the drug release process could be monitored by acoustic emission obtained from ultrasound imaging. In tumor-bearing animals, BCNU bubbles with FUS showed significant control of tumor progression and improved maximum survival from 26 to 35 days. This study provides useful advancements toward the goal of successfully translating FUS theranostic bubble-enhanced brain drug delivery into clinical use.

  2. Susceptibility weighted imaging of the neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Meoded, A.; Poretti, A. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Northington, F.J. [Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tekes, A.; Intrapiromkul, J. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Huisman, T.A.G.M., E-mail: thuisma1@jhmi.edu [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2012-08-15

    Susceptibility weighted imaging (SWI) is a well-established magnetic resonance technique, which is highly sensitive for blood, iron, and calcium depositions in the brain and has been implemented in the routine clinical use in both children and neonates. SWI in neonates might provide valuable additional diagnostic and prognostic information for a wide spectrum of neonatal neurological disorders. To date, there are few articles available on the application of SWI in neonatal neurological disorders. The purpose of this article is to illustrate and describe the characteristic SWI findings in various typical neonatal neurological disorders.

  3. EXPRESSION OF IL-13Ra2 GENE IN HUMAN BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    WU An-hua; TIE Xin-xin; WANG Yun-jie; YANG Guo-rui

    2005-01-01

    Objective: To investigate the expression of IL-13Ra2 gene in brain tumors. Methods: Seventy-nine human brain tumors were obtained from the department of Neurosurgery of China Medical University. Human IL-13Ra2 expression was evaluated by reverse transcriptase polymerase chain reaction and immunohistochemical analysis. Results: IL-13Ra2 gene was highly expressed in glioblastoma, medulloblastoma, malignant meningioma and benign meningioma. Conclusion:Human IL-13Ra2 gene is expressed in brain tumors in addition to gliomas, and our result indicates that the IL-13Ra2 gene promoter based gene therapy method can be used to treat brain