WorldWideScience

Sample records for brain trauma model

  1. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact.

    Science.gov (United States)

    Pareja, Jennifer C Munoz; Keeley, Kristen; Duhaime, Ann-Christine; Dodge, Carter P

    2016-01-01

    The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.

  2. Oral administration of sitagliptin activates CREB and is neuroprotective in murine model of brain trauma

    Directory of Open Access Journals (Sweden)

    Brian Dellavalle

    2016-12-01

    Full Text Available Introduction: Traumatic brain injury is a major cause of mortality and morbidity. We have previously shown that the injectable glucagon-like peptide-1 (GLP-1 analogue, liraglutide, significantly improved the outcome in mice after severe traumatic brain injury (TBI. In this study we are interested in the effects of oral treatment of a different class of GLP-1 based therapy, dipeptidyl peptidase IV (DPP-IV inhibition on mice after TBI. DPP-IV inhibitors reduce the degradation of endogenous GLP-1 and extend circulation of this protective peptide in the bloodstream. This class has yet to be investigated as a potential therapy for TBI. Methods: Mice were administrated once-daily 50 mg/kg of sitagliptin in a Nutella® ball or Nutella® alone throughout the study, beginning two days before severe trauma was induced with a stereotactic cryo-lesion. At two days post trauma, lesion size was determined. Brains were isolated for immunoblotting for assessment of selected biomarkers for pathology and protection.Results: Sitagliptin treatment reduced lesion size at day 2 post-injury by ~28% (p0.05. Conversely, apoptotic tone (alpha-spectrin fragmentation, Bcl-2 levels and the neuroinflammatory markers IL-6, and Iba-1 were not affected by treatment.Conclusions: This study shows, for the first time, that DPP-IV inhibition ameliorates both anatomical and biochemical consequences of TBI and activates CREB in the brain. Moreover, this work supports previous studies suggesting that the effect of GLP-1 analogues in models of brain damage relates to GLP-1 receptor stimulation in a dose-dependent manner.Keywords: GLP-1, Traumatic Brain Injury, TBI, sitagliptin, liraglutide, CREB, Oxidative Stress, GIP, DPP-IV, DPP-4

  3. The Controlled Cortical Impact Model of Experimental Brain Trauma: Overview, Research Applications, and Protocol.

    Science.gov (United States)

    Osier, Nicole; Dixon, C Edward

    2016-01-01

    Controlled cortical impact (CCI) is a commonly used and highly regarded model of brain trauma that uses a pneumatically or electromagnetically controlled piston to induce reproducible and well-controlled injury. The CCI model was originally used in ferrets and it has since been scaled for use in many other species. This chapter will describe the historical development of the CCI model, compare and contrast the pneumatic and electromagnetic models, and summarize key short- and long-term consequences of TBI that have been gleaned using this model. In accordance with the recent efforts to promote high-quality evidence through the reporting of common data elements (CDEs), relevant study details-that should be reported in CCI studies-will be noted.

  4. Operation Brain Trauma Therapy

    Science.gov (United States)

    2016-12-01

    Ho, C., Jenkins, L.W., and Kochanek, P.M. (2013). MRI assessment of cerebral blood flow following experimental traumatic brain injury combined with...Neuroproteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida. 8Center for Pharmaceutical Sciences, University of Pittsburgh School... Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania. 8Center for Innovative Research, Center for Neuroproteomics and

  5. Operation Brain Trauma Therapy

    Science.gov (United States)

    2014-10-01

    some samples double labeled for 3D reconstruction of the obtained confocal images. Although these studies are not fully complete, a detailed...traumatic brain injury in adult rats. Exp Neurol. 2010;224:241-251. 43. Turkoglu OF, Eroglu H, Gurcan O, et al. Local administration of chitosan

  6. A novel brain trauma model in the mouse : effects of dexamethasone treatment

    NARCIS (Netherlands)

    Hortobágyi, Tibor; Hortobagyi, S; Gorlach, C; Harkany, T; Benbyo, Z; Gorogh, T; Nagel, W; Wahl, M

    2000-01-01

    We describe a novel methodological approach for inducing cold lesion in the mouse as a model of human cortical contusion trauma. To validate its reproducibility and reliability, dexamethasone (Dxm) was repeatedly applied to demonstrate possible antioedematous drug effects. Following tho induction of

  7. Probabilistic Matching of Deidentified Data From a Trauma Registry and a Traumatic Brain Injury Model System Center: A Follow-up Validation Study.

    Science.gov (United States)

    Kumar, Raj G; Wang, Zhensheng; Kesinger, Matthew R; Newman, Mark; Huynh, Toan T; Niemeier, Janet P; Sperry, Jason L; Wagner, Amy K

    2018-04-01

    In a previous study, individuals from a single Traumatic Brain Injury Model Systems and trauma center were matched using a novel probabilistic matching algorithm. The Traumatic Brain Injury Model Systems is a multicenter prospective cohort study containing more than 14,000 participants with traumatic brain injury, following them from inpatient rehabilitation to the community over the remainder of their lifetime. The National Trauma Databank is the largest aggregation of trauma data in the United States, including more than 6 million records. Linking these two databases offers a broad range of opportunities to explore research questions not otherwise possible. Our objective was to refine and validate the previous protocol at another independent center. An algorithm generation and validation data set were created, and potential matches were blocked by age, sex, and year of injury; total probabilistic weight was calculated based on of 12 common data fields. Validity metrics were calculated using a minimum probabilistic weight of 3. The positive predictive value was 98.2% and 97.4% and sensitivity was 74.1% and 76.3%, in the algorithm generation and validation set, respectively. These metrics were similar to the previous study. Future work will apply the refined probabilistic matching algorithm to the Traumatic Brain Injury Model Systems and the National Trauma Databank to generate a merged data set for clinical traumatic brain injury research use.

  8. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  9. Fetal trauma: brain imaging in four neonates

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, Luc; Mussen, E.; Demaerel, P.; Smet, M. [Department of Radiology, University Hospitals, Herestraat 49, 3000, Leuven (Belgium); Cossey, V. [Department of Pediatrics, University Hospitals, Leuven (Belgium); Voorde, W. van de [Department of Forensic Medicine, University Hospitals, Leuven (Belgium)

    2004-09-01

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  10. Fetal trauma: brain imaging in four neonates

    International Nuclear Information System (INIS)

    Breysem, Luc; Mussen, E.; Demaerel, P.; Smet, M.; Cossey, V.; Voorde, W. van de

    2004-01-01

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  11. Serial changes in metabolism and histology in the cold-injury trauma rat brain model. Proton magnetic resonance imaging and spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kyousuke; Houkin, Kiyohiro; Hida, Kazutoshi; Iwasaki, Yoshinobu; Abe, Hiroshi [Hokkaido Univ., Sapporo (Japan). School of Medicine

    1995-01-01

    The serial changes in metabolism and histology during the first 24 hours in the cold-injury trauma rat brain model were investigated by proton magnetic resonance (MR) imaging and high-resolution proton MR spectroscopy. Edema developed extensively via the corpus callosum in the ipsi- and contralateral hemispheres during observation as shown by gradually increased signal intensity on proton MR images. Proton MR spectroscopy showed increased levels of acetate (Ace), lactate (Lac), and glutamine (Glmi) 1 hour after lesion formation. The elevated Glmi level slightly decreased, the level of alanine (Ala) increased substantially, and that of N-acetyl-aspartate (NAA) decreased markedly after 24 hours. Increased Lac, Ace, and Ala might reflect anaerobic glycolysis associated with mitochondrial dysfunction, while decreased Glmi and NAA reveal brain tissue breakdown. The relationship between brain edema and tissue viability can be analyzed in detail using this simple traumatic model and MR techniques which will be useful in the development of therapeutic agents for brain injury. (author).

  12. GLP-1 improves neuropathology after murine cold lesion brain trauma

    DEFF Research Database (Denmark)

    DellaValle, Brian; Hempel, Casper; Johansen, Flemming Fryd

    2014-01-01

    brain trauma. METHODS: Severe trauma was induced with a stereotactic cryo-lesion in mice and thereafter treated with vehicle, liraglutide, or liraglutide + GLP-1 receptor antagonist. A therapeutic window was established and lesion size post-trauma was determined. Reactive oxygen species were visualized......-neurodegenerative proteins increased with Lira-driven CREB activation. INTERPRETATION: These results show that Lira has potent effects after experimental trauma in mice and thus should be considered a candidate for critical care intervention post-injury. Moreover, activation of CREB in the brain by Lira - described......OBJECTIVES: In this study, we address a gap in knowledge regarding the therapeutic potential of acute treatment with a glucagon-like peptide-1 (GLP-1) receptor agonist after severe brain trauma. Moreover, it remains still unknown whether GLP-1 treatment activates the protective, anti...

  13. Lactate storm marks cerebral metabolism following brain trauma.

    Science.gov (United States)

    Lama, Sanju; Auer, Roland N; Tyson, Randy; Gallagher, Clare N; Tomanek, Boguslaw; Sutherland, Garnette R

    2014-07-18

    Brain metabolism is thought to be maintained by neuronal-glial metabolic coupling. Glia take up glutamate from the synaptic cleft for conversion into glutamine, triggering glial glycolysis and lactate production. This lactate is shuttled into neurons and further metabolized. The origin and role of lactate in severe traumatic brain injury (TBI) remains controversial. Using a modified weight drop model of severe TBI and magnetic resonance (MR) spectroscopy with infusion of (13)C-labeled glucose, lactate, and acetate, the present study investigated the possibility that neuronal-glial metabolism is uncoupled following severe TBI. Histopathology of the model showed severe brain injury with subarachnoid and hemorrhage together with glial cell activation and positive staining for Tau at 90 min post-trauma. High resolution MR spectroscopy of brain metabolites revealed significant labeling of lactate at C-3 and C-2 irrespective of the infused substrates. Increased (13)C-labeled lactate in all study groups in the absence of ischemia implied activated astrocytic glycolysis and production of lactate with failure of neuronal uptake (i.e. a loss of glial sensing for glutamate). The early increase in extracellular lactate in severe TBI with the injured neurons rendered unable to pick it up probably contributes to a rapid progression toward irreversible injury and pan-necrosis. Hence, a method to detect and scavenge the excess extracellular lactate on site or early following severe TBI may be a potential primary therapeutic measure. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The imaging diagnosis of diffuse brain swelling due to severe brain trauma

    International Nuclear Information System (INIS)

    Shen Jianqiang; Hu Jiawang

    2008-01-01

    Objective: To discuss the clinical and pathological characteristics and the imaging types of the diffuse brain swelling due to severe brain trauma. Methods: The clinical data and CT and MR images on 48 cases with diffuse brain swelling due to severe brain trauma were analyzed. Results: Among these 48 cases of the diffuse brain swelling due to severe brain trauma, 33 cases were complicated with brain contusions (including 12 cases brain diffuse axonal injury, 1 case infarct of the right basal ganglion), 31 cases were complicated with hematoma (epidural, subdural or intracerebral), 27 cases were complicated with skull base fracture, and 10 cases were complicated with subarachnoid hematoma. The CT and MR imaging of the diffuse brain swelling included as followed: (1) Symmetrically diffuse brain swelling in both cerebral hemispheres with cerebral ventricles decreased or disappeared, without median line shift. (2)Diffuse brain swelling in one side cerebral hemisphere with cerebral ventricles decreased or disappeared at same side, and median line shift to other side. (3) Subarachnoid hematoma or little subcortex intracerebral hematoma were complicated. (4) The CT value of the cerebral could be equal, lower or higher comparing with normal. Conclusion: The pathological reason of diffuse brain swelling was the brain vessel expanding resulting from hypothalamus and brainstem injured in severe brain trauma. There were four CT and MR imaging findings in diffuse brain swelling. The diffuse brain swelling without hematoma may be caused by ischemical reperfusion injury. (authors)

  15. The Impact of Childhood Trauma on Brain Development: A Literature Review and Supporting Handouts

    Science.gov (United States)

    Kirouac, Samantha; McBride, Dawn Lorraine

    2009-01-01

    This project provides a comprehensive overview of the research literature on the brain and how trauma impacts brain development, structures, and functioning. A basic exploration of childhood trauma is outlined in this project, as it is essential in making associations and connections to brain development. Childhood trauma is processed in the…

  16. TRAUMA

    African Journals Online (AJOL)

    trauma and on most vascular injuries. South Africa is one of the few .... scan of the brain and abdomen showed a sliver of left subdural and subarachnoid .... and especially on RT. In the event of a life-threatening condition, the rapid response ...

  17. Cranium-brain trauma in computed tomographs - diagnosis and clinical correlation

    International Nuclear Information System (INIS)

    Wrasse, K.

    1982-01-01

    For the successful treatment of intracranial complications in the case of cranium-brain trauma a quick and exact diagnosis is necessary. The goal of this work was to test and evaluate the effectivity of computed tomography for neurotraumatology. Using 565 patients, who were acutely or at one time suffering from a cranium-brain trauma, the high validity of computed tomography for these injuries was proven. The following areas in question were studied with respect to the value of computed tomography in comparison to them: angiography, X-ray diagnostic, echoencephalography, brain scintigraphy, electroencephalography and neurological-psychopathological findings from cranium-brain trauma. Statement possibilities and difficulties of computed tomography are discussed in the cases of the following neurotraumatological diseases: extracranial hematomas; acute cranium-brain traumas; traumatic arachnoidal bleeding; diffuse brain edema; transtentorial herniation and brain contusions. At the end the diagnostic and therapeutic procedures in the case of cranium-brain trauma are presented. (orig.) [de

  18. Pseudofracture: an acute peripheral tissue trauma model.

    Science.gov (United States)

    Darwiche, Sophie S; Kobbe, Philipp; Pfeifer, Roman; Kohut, Lauryn; Pape, Hans-Christoph; Billiar, Timothy

    2011-04-18

    Following trauma there is an early hyper-reactive inflammatory response that can lead to multiple organ dysfunction and high mortality in trauma patients; this response is often accompanied by a delayed immunosuppression that adds the clinical complications of infection and can also increase mortality. Many studies have begun to assess these changes in the reactivity of the immune system following trauma. Immunologic studies are greatly supported through the wide variety of transgenic and knockout mice available for in vivo modeling; these strains aid in detailed investigations to assess the molecular pathways involved in the immunologic responses. The challenge in experimental murine trauma modeling is long term investigation, as fracture fixation techniques in mice, can be complex and not easily reproducible. This pseudofracture model, an easily reproduced trauma model, overcomes these difficulties by immunologically mimicking an extremity fracture environment, while allowing freedom of movement in the animals and long term survival without the continual, prolonged use of anaesthesia. The intent is to recreate the features of long bone fracture; injured muscle and soft tissue are exposed to damaged bone and bone marrow without breaking the native bone. The pseudofracture model consists of two parts: a bilateral muscle crush injury to the hindlimbs, followed by injection of a bone solution into these injured muscles. The bone solution is prepared by harvesting the long bones from both hindlimbs of an age- and weight-matched syngeneic donor. These bones are then crushed and resuspended in phosphate buffered saline to create the bone solution. Bilateral femur fracture is a commonly used and well-established model of extremity trauma, and was the comparative model during the development of the pseudofracture model. Among the variety of available fracture models, we chose to use a closed method of fracture with soft tissue injury as our comparison to the

  19. Conceptual model of male military sexual trauma.

    Science.gov (United States)

    Elder, William B; Domino, Jessica L; Rentz, Timothy O; Mata-Galán, Emma L

    2017-08-01

    Male sexual trauma is understudied, leaving much to be known about the unique mental health needs of male survivors. This study examined veteran men's perceptions of the effects of military sexual trauma. Military sexual trauma was defined as physically forced, verbally coerced, or substance-incapacitated acts experienced during military service. Interviews were conducted with 21 male veterans who reported experiencing military sexual trauma. Data were drawn together using a grounded theory methodology. Three categories emerged from data analysis, including (a) types of military sexual trauma (being touched in a sexual way against their will [N = 18]; sexual remarks directed at them [N = 15]; being physically forced to have sex [N = 13]); (b) negative life effects (difficulty trusting others [N = 18]; fear of abandonment [N = 17]; substance use [N = 13]; fear of interpersonal violence [N = 12]; conduct and vocational problems [N = 11]; irritability/aggression [N = 8]; insecurity about sexual performance [N = 8]; difficulty managing anger [N = 8]); and (c) posttraumatic growth (N = 15). Results from this study suggest sexual trauma in the military context may affect systems of self-organization, specifically problems in affective, self-concept, and relational domains, similar to symptoms of those who have experienced prolonged traumatic stressors. This model can be used by clinicians to select treatments that specifically target these symptoms and promote posttraumatic growth. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Mind, brain and body. Healing trauma: the way forward.

    Science.gov (United States)

    Wilkinson, Margaret

    2017-09-01

    The paper explores an interdisciplinary whole person approach to healing from trauma that conserves our rich inheritance from Jung but also takes on board insights from research in the areas of attachment, trauma and the neurobiology of emotion. It is now over 20 years since insights from neurobiology began to be used to inform clinical practice. The paper reviews key insights which have emerged, along with the ways they enable therapists to help mind, brain and body to heal and the ways in which they clarify why, in clinical practice, we do what we do. Traditionally the emphasis has been on words, interpretations, and meaning-making. Currently there is greater appreciation of the affective, relational, embodied aspects of therapeutic work and the way in which these relate to traumatic early interactive experience that is held outside of human awareness. The ways in which knowledge of particular systems of connectivity inform understanding of the whole mind-brain-body relationship are examined. The way forward for clinical practice to become more focused in order to help clients to heal in mind and body is reviewed. © 2017, The Society of Analytical Psychology.

  1. An evolution of trauma care evaluation: A thesis on trauma registry and outcome prediction models

    NARCIS (Netherlands)

    Joosse, P.

    2013-01-01

    Outcome prediction models play an invaluable role in the evaluation and improvement of modern trauma care. Trauma registries underlying these outcome prediction models need to be accurate, complete and consistent. This thesis focused on the opportunities and limitations of trauma registries and

  2. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    Science.gov (United States)

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  3. 99Tcm-Neurolite brain SPECT imaging as an outcome predictor after brain trauma: initial experience

    International Nuclear Information System (INIS)

    Howarth, D.M.; Lan, L.; Booth, G.; Christie, J.; Bookalil, A.; Pollack, M.; Pacey, D.

    1999-01-01

    Full text: The aim of this study was to use semi-quantitative 99 Tc m -ethylene cysteine dimer (Neurolite) cerebral blood flow (CBF) SPET brain imaging to assess its role in predicting outcome after brain trauma. Twelve adult patients (9 males, 3 females) who sustained moderate to severe brain trauma were studied by CBF/SPET within 4 weeks of the injury (scan A) and again after 1 year (scan B). Clinical assessment was also performed at these times and included extensive neuropsychometric testing. Patients received 800-850 MBq 99 Tc m -Neurolite intravenously, and were imaged using a triple-headed gamma camera with LEUHR fan beam collimators. Processing, filtering, reconstruction and data set selection were identical for scans A and B. Semi-quantitative analysis was performed using 25 regions of interest in the cerebral cortex and deep structures in 2 coronal, 2 sagittal and 3 oblique planes. Normalized mean counts per pixel for the whole brain, and regional brain ratios were calculated. Scans A and B were compared and correlated to the clinical outcome data. Two patients with minimal CBF abnormalities made full recoveries. The remaining 10 had moderate to severe focal CBF defects, which showed no significant improvement at 12 months. Of these patients, 2 had moderate disability, 3 had severe to moderate disability and 2 had severe disability at 12 months. Patients with persisting focal abnormal CBF showed persisting neurological deficits. Neurolite brain CBF imaging is a useful method of predicting outcome after moderate to severe head injury

  4. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease

    Science.gov (United States)

    2016-09-01

    stages of repetitive brain trauma as well. Current methods of measure brain glutamate using proton spectroscopy is not specific to different cell...covering a representative range of clinical cases: a young female , young male , middle-aged male (all healthy volunteers) and a male patient with...AWARD NUMBER: W81XWH-15-1-0412 TITLE: Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease PRINCIPAL INVESTIGATOR

  5. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Bullock, M Ross

    2011-01-01

    , although prolonged events have not been observed in animal models. To determine whether detrimental penumbral-type depolarizations occur in human brain trauma, we analysed electrocorticographic recordings obtained by subdural electrode-strip monitoring during intensive care. Of 53 patients studied, 10......Cortical spreading depolarizations occur spontaneously after ischaemic, haemorrhagic and traumatic brain injury. Their effects vary spatially and temporally as graded phenomena, from infarction to complete recovery, and are reflected in the duration of depolarization measured by the negative direct...... current shift of electrocorticographic recordings. In the focal ischaemic penumbra, peri-infarct depolarizations have prolonged direct current shifts and cause progressive recruitment of the penumbra into the core infarct. In traumatic brain injury, the effects of spreading depolarizations are unknown...

  6. Cellular High-Energy Cavitation Trauma - Description of a Novel In Vitro Trauma Model in Three Different Cell Types.

    Science.gov (United States)

    Cao, Yuli; Risling, Mårten; Malm, Elisabeth; Sondén, Anders; Bolling, Magnus Frödin; Sköld, Mattias K

    2016-01-01

    The mechanisms involved in traumatic brain injury have yet to be fully characterized. One mechanism that, especially in high-energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation, and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer-plate model is an in vitro high-energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation, and shock waves inside the well and cell medium. We have found the flyer-plate model to be efficient, reproducible, and easy to control. In this study, we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose-dependent manner. Using gene expression microarray, a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 h post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies.

  7. Multidimensional Model of Trauma and Correlated Antisocial Personality Disorder

    Science.gov (United States)

    Martens, Willem H. J.

    2005-01-01

    Many studies have revealed an important relationship between psychosocial trauma and antisocial personality disorder. A multidimensional model is presented which describes the psychopathological route from trauma to antisocial development. A case report is also included that can illustrate the etiological process from trauma to severe antisocial…

  8. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  9. Psychological debriefing (PD of trauma: a proposed model for Africa

    Directory of Open Access Journals (Sweden)

    E L Van Dyk

    2010-03-01

    Full Text Available Africa is a continent with severe trauma. Traumatic events include experiences of child soldiers, people living in war and conflict zones, and people struggling with the HIV/AIDS pandemic. These events cause high levels of trauma. The trauma causes psychological disorders like post traumatic stress disorder, acute stress disorder and combat stress reaction, specific in the military environment. This article focuses on a better understanding of the implications of trauma for military people and civilians. It discusses the different theories and models of psychological debriefing. Lastly the article discusses psychological debriefing models for military forces and the civil ian population to prevent severe psychopathology after traumatic incidents in Africa.

  10. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy.

    Science.gov (United States)

    Sullan, Molly J; Asken, Breton M; Jaffee, Michael S; DeKosky, Steven T; Bauer, Russell M

    2018-01-01

    Traumatic brain injury (TBI) is an increasingly important issue among veterans, athletes and the general public. Difficulties with sleep onset and maintenance are among the most commonly reported symptoms following injury, and sleep debt is associated with increased accumulation of beta amyloid (Aβ) and phosphorylated tau (p-tau) in the interstitial space. Recent research into the glymphatic system, a lymphatic-like metabolic clearance mechanism in the central nervous system (CNS) which relies on cerebrospinal fluid (CSF), interstitial fluid (ISF), and astrocytic processes, shows that clearance is potentiated during sleep. This system is damaged in the acute phase following mTBI, in part due to re-localization of aquaporin-4 channels away from astrocytic end feet, resulting in reduced potential for waste removal. Long-term consequences of chronic dysfunction within this system in the context of repetitive brain trauma and insomnia have not been established, but potentially provide one link in the explanatory chain connecting repetitive TBI with later neurodegeneration. Current research has shown p-tau deposition in perivascular spaces and along interstitial pathways in chronic traumatic encephalopathy (CTE), pathways related to glymphatic flow; these are the main channels by which metabolic waste is cleared. This review addresses possible links between mTBI-related damage to glymphatic functioning and physiological changes found in CTE, and proposes a model for the mediating role of sleep disruption in increasing the risk for developing CTE-related pathology and subsequent clinical symptoms following repetitive brain trauma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  12. Fever in trauma patients: evaluation of risk factors, including traumatic brain injury.

    Science.gov (United States)

    Bengualid, Victoria; Talari, Goutham; Rubin, David; Albaeni, Aiham; Ciubotaru, Ronald L; Berger, Judith

    2015-03-01

    The role of fever in trauma patients remains unclear. Fever occurs as a response to release of cytokines and prostaglandins by white blood cells. Many factors, including trauma, can trigger release of these factors. To determine whether (1) fever in the first 48 hours is related to a favorable outcome in trauma patients and (2) fever is more common in patients with head trauma. Retrospective study of trauma patients admitted to the intensive care unit for at least 2 days. Data were analyzed by using multivariate analysis. Of 162 patients studied, 40% had fever during the first 48 hours. Febrile patients had higher mortality rates than did afebrile patients. When adjusted for severity of injuries, fever did not correlate with mortality. Neither the incidence of fever in the first 48 hours after admission to the intensive care unit nor the number of days febrile in the unit differed between patients with and patients without head trauma (traumatic brain injury). About 70% of febrile patients did not have a source found for their fever. Febrile patients without an identified source of infection had lower peak white blood cell counts, lower maximum body temperature, and higher minimum platelet counts than did febrile patients who had an infectious source identified. The most common infection was pneumonia. No relationship was found between the presence of fever during the first 48 hours and mortality. Patients with traumatic brain injury did not have a higher incidence of fever than did patients without traumatic brain injury. About 30% of febrile patients had an identifiable source of infection. Further studies are needed to understand the origin and role of fever in trauma patients. ©2015 American Association of Critical-Care Nurses.

  13. Rebooting the Brain: Using Early Childhood Education to Heal Trauma from Abuse and Neglect

    Science.gov (United States)

    McLintock, Ben

    2011-01-01

    Abused and neglected children live in a world that usually includes some sort of violence, chaos, and tremendous physical and mental stress. This toxic environment wreaks havoc on a child's developing brain. This article discusses how to use early childhood education to heal trauma from abuse and neglect. It shares the story of two children, Bryce…

  14. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy.

    Science.gov (United States)

    Stern, Robert A; Riley, David O; Daneshvar, Daniel H; Nowinski, Christopher J; Cantu, Robert C; McKee, Ann C

    2011-10-01

    Chronic traumatic encephalopathy (CTE) has been linked to participation in contact sports such as boxing and American football. CTE results in a progressive decline of memory and cognition, as well as depression, suicidal behavior, poor impulse control, aggressiveness, parkinsonism, and, eventually, dementia. In some individuals, it is associated with motor neuron disease, referred to as chronic traumatic encephalomyelopathy, which appears clinically similar to amyotrophic lateral sclerosis. Results of neuropathologic research has shown that CTE may be more common in former contact sports athletes than previously believed. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, is responsible for neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and TDP-43 proteins. Given the millions of youth, high school, collegiate, and professional athletes participating in contact sports that involve repetitive brain trauma, as well as military personnel exposed to repeated brain trauma from blast and other injuries in the military, CTE represents an important public health issue. Focused and intensive study of the risk factors and in vivo diagnosis of CTE will potentially allow for methods to prevent and treat these diseases. Research also will provide policy makers with the scientific knowledge to make appropriate guidelines regarding the prevention and treatment of brain trauma in all levels of athletic involvement as well as the military theater. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Presenting an evaluation model of the trauma registry software.

    Science.gov (United States)

    Asadi, Farkhondeh; Paydar, Somayeh

    2018-04-01

    Trauma is a major cause of 10% death in the worldwide and is considered as a global concern. This problem has made healthcare policy makers and managers to adopt a basic strategy in this context. Trauma registry has an important and basic role in decreasing the mortality and the disabilities due to injuries resulted from trauma. Today, different software are designed for trauma registry. Evaluation of this software improves management, increases efficiency and effectiveness of these systems. Therefore, the aim of this study is to present an evaluation model for trauma registry software. The present study is an applied research. In this study, general and specific criteria of trauma registry software were identified by reviewing literature including books, articles, scientific documents, valid websites and related software in this domain. According to general and specific criteria and related software, a model for evaluating trauma registry software was proposed. Based on the proposed model, a checklist designed and its validity and reliability evaluated. Mentioned model by using of the Delphi technique presented to 12 experts and specialists. To analyze the results, an agreed coefficient of %75 was determined in order to apply changes. Finally, when the model was approved by the experts and professionals, the final version of the evaluation model for the trauma registry software was presented. For evaluating of criteria of trauma registry software, two groups were presented: 1- General criteria, 2- Specific criteria. General criteria of trauma registry software were classified into four main categories including: 1- usability, 2- security, 3- maintainability, and 4-interoperability. Specific criteria were divided into four main categories including: 1- data submission and entry, 2- reporting, 3- quality control, 4- decision and research support. The presented model in this research has introduced important general and specific criteria of trauma registry software

  16. TRAUMA

    African Journals Online (AJOL)

    2017-11-04

    Nov 4, 2017 ... However, the physical and financial resources to manage this massive burden of disease are inadequate. This is especially the case in terms of access to critical care facilities. The development of an electronic trauma registry at our institution has allowed us to capture data in real time on all patients and.

  17. TRAUMA

    African Journals Online (AJOL)

    2017-11-04

    Nov 4, 2017 ... unit in Durban, and to correlate it with injury severity, length of hospital stay ... and via a password protected mobile application program within 6 ..... usage and costs performed in larger numbers on major trauma patients will ...

  18. Brain Single Photon Emission Computed Tomography in Anosmic Subjects Ater Closed Head Trauma

    Directory of Open Access Journals (Sweden)

    Roozbeh Banan

    2011-01-01

    Full Text Available Anosmia following head trauma is relatively common and in many cases is persistent and irreversible. The ability to objectively measure such a decline in smelling, for both clinical and medicolegal goals, is very important. The aim of this study was to find results of brain Single Photon Emission Computed Tomography (SPECT in anosmic subjects after closed head trauma. This case-control cross sectional study was conducted in a tertiary referral University Hospital. The brain perfusion state of nineteen anosmic patients and thirteen normal controls was evaluated by means of the SPECT with 99mtc- ECD infusion- before and after olfactory stimulation. The orbitofrontal lobe of the brain was assumed as the region of interest and changes in perfusion of this area before and after the stimulations were compared in two groups. The mean of brain perfusion in controls before and after the stimulation was 8.26% ± 0.19% and 9.89% ± 0.54%, respectively (P < 0.0001. Among patients group, these quantities were 7.97% ± 1.05% and 8.49% ± 1.5%, respectively (P < 0.004. The difference between all the measures in cases and controls were statistically significant (P < 0.0001. There were no differences in age and sex between two groups. The brain SPECT is an objective technique suitable for evaluating anosmia following the head trauma and it may be used with other diagnostic modalities

  19. [Intensive care treatment of traumatic brain injury in multiple trauma patients : Decision making for complex pathophysiology].

    Science.gov (United States)

    Trimmel, H; Herzer, G; Schöchl, H; Voelckel, W G

    2017-09-01

    Traumatic brain injury (TBI) and hemorrhagic shock due to uncontrolled bleeding are the major causes of death after severe trauma. Mortality rates are threefold higher in patients suffering from multiple injuries and additionally TBI. Factors known to impair outcome after TBI, namely hypotension, hypoxia, hypercapnia, acidosis, coagulopathy and hypothermia are aggravated by the extent and severity of extracerebral injuries. The mainstays of TBI intensive care may be, at least temporarily, contradictory to the trauma care concept for multiple trauma patients. In particular, achieving normotension in uncontrolled bleeding situations, maintenance of normocapnia in traumatic lung injury and thromboembolic prophylaxis are prone to discussion. Due to an ongoing uncertainty about the definition of normotensive blood pressure values, a cerebral perfusion pressure-guided cardiovascular management is of key importance. In contrast, there is no doubt that early goal directed coagulation management improves outcome in patients with TBI and multiple trauma. The timing of subsequent surgical interventions must be based on the development of TBI pathology; therefore, intensive care of multiple trauma patients with TBI requires an ongoing and close cooperation between intensivists and trauma surgeons in order to individualize patient care.

  20. Trauma center designation correlates with functional independence after severe but not moderate traumatic brain injury.

    Science.gov (United States)

    Brown, Joshua B; Stassen, Nicole A; Cheng, Julius D; Sangosanya, Ayodele T; Bankey, Paul E; Gestring, Mark L

    2010-08-01

    The mortality of traumatic brain injury (TBI) continues to decline, emphasizing functional outcomes. Trauma center designation has been linked to survival after TBI, but the impact on functional outcomes is unclear. The objective was to determine whether trauma center designation influenced functional outcomes after moderate and severe TBI. Trauma subjects presenting to an American College of Surgeons (ACS) Level I or II trauma center with a Glasgow Coma Score (GCS) independence (FI) defined as a modified functional independence measure (FIM) of 12, and independent expression (IE) defined as a FIM component of 4. These were compared between Level I and Level II centers in subjects with both moderate (GCS 9-12) and severe (GCS Trauma center designation was not associated with FI or IE after moderate TBI. ACS trauma center designation is significantly associated with FI and IE after severe, but not moderate TBI. Prospective study is warranted to verify and explore factors contributing to this discrepancy.

  1. Traumatic brain injury (TBI) outcomes in an LMIC tertiary care centre and performance of trauma scores.

    Science.gov (United States)

    Samanamalee, Samitha; Sigera, Ponsuge Chathurani; De Silva, Ambepitiyawaduge Pubudu; Thilakasiri, Kaushila; Rashan, Aasiyah; Wadanambi, Saman; Jayasinghe, Kosala Saroj Amarasiri; Dondorp, Arjen M; Haniffa, Rashan

    2018-01-08

    This study evaluates post-ICU outcomes of patients admitted with moderate and severe Traumatic Brain Injury (TBI) in a tertiary neurocritical care unit in an low middle income country and the performance of trauma scores: A Severity Characterization of Trauma, Trauma and Injury Severity Score, Injury Severity Score and Revised Trauma Score in this setting. Adult patients directly admitted to the neurosurgical intensive care units of the National Hospital of Sri Lanka between 21st July 2014 and 1st October 2014 with moderate or severe TBI were recruited. A telephone administered questionnaire based on the Glasgow Outcome Scale Extended (GOSE) was used to assess functional outcome of patients at 3 and 6 months after injury. The economic impact of the injury was assessed before injury, and at 3 and 6 months after injury. One hundred and one patients were included in the study. Survival at ICU discharge, 3 and 6 months after injury was 68.3%, 49.5% and 45.5% respectively. Of the survivors at 3 months after injury, 43 (86%) were living at home. Only 19 (38%) patients had a good recovery (as defined by GOSE 7 and 8). Three months and six months after injury, respectively 25 (50%) and 14 (30.4%) patients had become "economically dependent". Selected trauma scores had poor discriminatory ability in predicting mortality. This observational study of patients sustaining moderate or severe TBI in Sri Lanka (a LMIC) reveals only 46% of patients were alive at 6 months after ICU discharge and only 20% overall attained a good (GOSE 7 or 8) recovery. The social and economic consequences of TBI were long lasting in this setting. Injury Severity Score, Revised Trauma Score, A Severity Characterization of Trauma and Trauma and Injury Severity Score, all performed poorly in predicting mortality in this setting and illustrate the need for setting adapted tools.

  2. Long-term neuroglobin expression of human astrocytes following brain trauma.

    Science.gov (United States)

    Chen, Xiameng; Liu, Yuan; Zhang, Lin; Zhu, Peng; Zhu, Haibiao; Yang, Yu; Guan, Peng

    2015-10-08

    Neuroglobin (Ngb), a 17 kDa monomeric protein, was initially described as a vertebrate oxygen-binding heme protein in 2000 and detected in metabolically active organs or cells, like the brain, peripheral nervous system as well as certain endocrine cells. A large array of initial experimental work reported that Ngb displayed a neuron restricted expression pattern in mammalian brains. However, growing evidence indicated astrocytes may also express Ngb under pathological conditions. To address the question whether human astrocytes express Ngb under traumatic insults, we investigated Ngb immuno-reactivity in post-mortem human brain tissues that died of acute, sub-acute and chronic brain trauma, respectively. We observed astrocytic Ngb expression in sub-acute and chronic traumatic brains rather than acute traumatic brains. Strikingly, the Ngb immuno-reactive astrocytes were still strongly detectable in groups that died 12 months after brain trauma. Our findings may imply an unexplored role of Ngb in astrocytes and the involved mechanisms were suggested to be further characterized. Also, therapeutic application of Ngb or Ngb-inducible chemical compounds in neuro-genesis or astrocytic scar forming can be expected. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Survivors of early childhood trauma: evaluating a two-dimensional diagnostic model of the impact of trauma and neglect

    Directory of Open Access Journals (Sweden)

    Marleen Wildschut

    2014-04-01

    Full Text Available Background: A two-dimensional diagnostic model for (complex trauma-related and personality disorders has been proposed to assess the severity and prognosis of the impact of early childhood trauma and emotional neglect. An important question that awaits empirical examination is whether a distinction between trauma-related disorders and personality disorders reflects reality when focusing on survivors of early childhood trauma. And, is a continuum of trauma diagnoses a correct assumption and, if yes, what does it look like? Objective: We describe the design of a cross-sectional cohort study evaluating this two-dimensional model of the impact of trauma and neglect. To provide the rationale of our study objectives, we review the existing literature on the impact of early childhood trauma and neglect on trauma-related disorders and personality disorders. Aims of the study are to: (1 quantify the two-dimensional model and test the relation with trauma and neglect; and (2 compare the two study groups. Method: A total of 200 consecutive patients referred to two specific treatment programs (100 from a personality disorder program and 100 from a trauma-related disorder program in the north of Holland will be included. Data are collected at the start of treatment. The assessments include all DSM-5 trauma-related and personality disorders, and general psychiatric symptoms, trauma history, and perceived emotional neglect. Discussion: The results will provide an evaluation of the model and an improvement of the understanding of the relationship between trauma-related disorders and personality disorders and early childhood trauma and emotional neglect. This may improve both diagnostic as well as indication procedures. We will discuss possible strengths and limitations of the design.

  4. Academic model of trauma healing in post-war societies.

    Science.gov (United States)

    Delić, Amra; Hasanović, Mevludin; Avdibegović, Esmina; Dimitrijević, Aleksandar; Hancheva, Camellia; Scher, Carmen; Stefanović-Stanojević, Tatjana; Streeck-Fischer, Annette; Hamburger, Andreas

    2014-01-01

    The aim of this paper is to examine the implications for healing in a contemporary Balkan post-war context, and to provide a bridge-building model of trauma transformation, reconciliation and recovery through academic reconstruction and cross-border dialogue. Post-war societies are marked by the effects of massive, large group traumatization, and if not properly dealt with, long-term rehabilitation and social recovery cannot be expected. Unprocessed cumulative trauma that has become deeply embedded in the collective memory of the Balkan peoples over centuries, "chosen trauma", its trans-generational transmission and periodical reactivations across the Balkan have often been addressed in recent literature, in ethno-psychology, psychoanalysis, psychiatry, sociology and anthropology. In order to deepen our understanding of the roots of collective (social) trauma and the specific traumatic experiences of different groups, and to offer different perspectives and information on how trauma can be dealt with, the "Trauma Trust Memory" multinational interdisciplinary research network is being established, and a groundbreaking workshop was held in May 2013 in Tuzla, Bosnia-Herzegovina. The Tuzla Workshop showed that the active participation of affected groups in adequate coping with the past is required for post-conflict reconstruction, trauma healing and peacebuilding in the long run. Copyright © 2014 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  5. Curing "moral disability": brain trauma and self-control in Victorian science and fiction.

    Science.gov (United States)

    Schillace, Brandy L

    2013-12-01

    While, historically, the disabled body has appeared in literature as "monstrous," burgeoning psychological theories of the Victorian period predicated an unusual shift. In a culture of sexual anxiety and fears of devolution and moral decay, the physically disabled and "weak" are portrayed as strangely free from moral corruption. Unlike the cultural link between deviance and disability witnessed in the medical literature and eugenic approach to generation, authors of narrative fiction-particularly Charles Dickens, but Wilkie Collins, Charlotte Yonge, and others as well-portray disabled characters as "purified," and trauma itself as potentially sanitizing. This present paper argues that such constructions were made possible by developments in the treatment of insanity. "Curing 'Moral Disability': Brain Trauma and Self-Control in Victorian Fiction," examines the concept of trauma-as-cure. Throughout the Victorian period, case studies on brain trauma appeared in widely circulated journals like the Lancet, concurrently with burgeoning theories about psychological disturbance and "moral insanity." While not widely practiced until the early twentieth century, attempts at surgical "cures" aroused curiosity and speculation-the traumatic event that could free sufferers from deviance. This work provides a unique perspective on representations of disability as cure in the nineteenth century as a means of giving voice to the marginalized, disabled, and disempowered.

  6. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing

    Directory of Open Access Journals (Sweden)

    Jessica K. Miller

    2017-11-01

    Full Text Available The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  7. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing.

    Science.gov (United States)

    Miller, Jessica K; McDougall, Siné; Thomas, Sarah; Wiener, Jan

    2017-11-27

    The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD) continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF) gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  8. Should the IDC-9 Trauma Mortality Prediction Model become the new paradigm for benchmarking trauma outcomes?

    Science.gov (United States)

    Haider, Adil H; Villegas, Cassandra V; Saleem, Taimur; Efron, David T; Stevens, Kent A; Oyetunji, Tolulope A; Cornwell, Edward E; Bowman, Stephen; Haack, Sara; Baker, Susan P; Schneider, Eric B

    2012-06-01

    Optimum quantification of injury severity remains an imprecise science with a need for improvement. The accuracy of the criterion standard Injury Severity Score (ISS) worsens as a patient's injury severity increases, especially among patients with penetrating trauma. The objective of this study was to comprehensively compare the mortality prediction ability of three anatomic injury severity indices: the ISS, the New ISS (NISS), and the DRG International Classification of Diseases-9th Rev.-Trauma Mortality Prediction Model (TMPM-ICD-9), a recently developed contemporary injury assessment model. Retrospective analysis of patients in the National Trauma Data Bank from 2007 to 2008. The TMPM-ICD-9 values were computed and compared with the ISS and NISS for each patient using in-hospital mortality after trauma as the outcome measure. Discrimination and calibration were compared using the area under the receiver operator characteristic curve. Subgroup analysis was performed to compare each score across varying ranges of injury severity and across different types of injury. A total of 533,898 patients were identified with a crude mortality rate of 4.7%. The ISS and NISS performed equally in the groups with minor (ISS, 1-8) and moderate (ISS, 9-15) injuries, regardless of the injury type. However, in the populations with severe (ISS, 16-24) and very severe (ISS, ≥ 25) injuries for all injury types, the NISS predicted mortality better than the ISS did. The TMPM-ICD-9 outperformed both the NISS and ISS almost consistently. The NISS and TMPM-ICD-9 are both superior predictors of mortality as compared with the ISS. The immediate adoption of NISS for evaluating trauma outcomes using trauma registry data is recommended. The TMPM-ICD-9 may be an even better measure of human injury, and its use in administrative or nonregistry data is suggested. Further research on its attributes is recommended because it has the potential to become the basis for benchmarking trauma outcomes

  9. Academic model of trauma healing in post-war societies

    Directory of Open Access Journals (Sweden)

    Amra Delić

    2014-05-01

    Full Text Available Objective. The aim of this paper is to examine the implications for healing in a contemporary Balkan post-war context, and to provide a bridge-building model of trauma transformation, reconciliation and recovery through academic reconstruction and cross-border dialogue. Post-war societies are marked by the effects of massive, large group traumatization, and if not properly dealt with, long-term rehabilitation and social recovery cannot be expected. Unprocessed cumulative trauma that has become deeply embedded in the collective memory of the Balkan peoples over centuries, „chosen trauma“, its trans-generational transmission and periodical reactivations across the Balkan have often been addressed in recent literature, in ethno-psychology, psychoanalysis, psychiatry, sociology and anthropology. In order to deepen our understanding of the roots of collective (social trauma and the specific traumatic experiences of different groups, and to offer different perspectives and information on how trauma can be dealt with, the “Trauma Trust Memory” multinational interdisciplinary research network is being established, and a groundbreaking workshop was held in May 2013 in Tuzla, Bosnia-Herzegovina. Conclusion. The Tuzla Workshop showed that the active participation of affected groups in adequate coping with the past is required for post-conflict reconstruction, trauma healing and peacebuilding in the long run.

  10. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  11. Effects of HIV and childhood trauma on brain morphometry and neurocognitive function.

    Science.gov (United States)

    Spies, Georgina; Ahmed-Leitao, Fatima; Fennema-Notestine, Christine; Cherner, Mariana; Seedat, Soraya

    2016-04-01

    A wide spectrum of neurocognitive deficits characterises HIV infection in adults. HIV infection is additionally associated with morphological brain abnormalities affecting neural substrates that subserve neurocognitive function. Early life stress (ELS) also has a direct influence on brain morphology. However, the combined impact of ELS and HIV on brain structure and neurocognitive function has not been examined in an all-female sample with advanced HIV disease. The present study examined the effects of HIV and childhood trauma on brain morphometry and neurocognitive function. Structural data were acquired using a 3T Magnetom MRI scanner, and a battery of neurocognitive tests was administered to 124 women: HIV-positive with ELS (n = 32), HIV-positive without ELS (n = 30), HIV-negative with ELS (n = 31) and HIV-negative without ELS (n = 31). Results revealed significant group volumetric differences for right anterior cingulate cortex (ACC), bilateral hippocampi, corpus callosum, left and right caudate and left and right putamen. Mean regional volumes were lowest in HIV-positive women with ELS compared to all other groups. Although causality cannot be inferred, findings also suggest that alterations in the left frontal lobe, right ACC, left hippocampus, corpus callosum, left and right amygdala and left caudate may be associated with poorer neurocognitive performance in the domains of processing speed, attention/working memory, abstraction/executive functions, motor skills, learning and language/fluency with these effects more pronounced in women living with both HIV and childhood trauma. This study highlights the potential contributory role of childhood trauma to brain alterations and neurocognitive decline in HIV-infected individuals.

  12. Two Routes to Losing One’s Past Life: A Brain Trauma, an Emotional Trauma

    Directory of Open Access Journals (Sweden)

    Julie Ouellet

    2008-01-01

    Full Text Available Organic and psychogenic retrograde amnesia have long been considered as distinct entities and as such, studied separately. However, patterns of neuropsychological impairments in organic and psychogenic amnesia can bear interesting resemblances despite different aetiologies. In this paper, two cases with profound, selective and permanent retrograde amnesia are presented, one of an apparent organic origin and the other with an apparent psychogenic cause. The first case, DD, lost his memory after focal brain injury from a nail gun to the right temporal lobe. The second case, AC, lost her memory in the context of intense psychological suffering. In both cases, pre-morbid autobiographical memory for people, places and events was lost, and no feeling of familiarity was experienced during relearning. In addition, they both lost some semantic knowledge acquired prior to the onset of the amnesia. This contrasts with the preservation of complex motor skills without any awareness of having learned them. Both DD and AC showed mild deficits on memory tests but neither presented any anterograde amnesia. The paradox of these cases–opposite causes yet similar clinical profile–exemplifies the hypothesis that organic and psychogenic amnesia may be two expressions of the same faulty mechanism in the neural circuitry.

  13. Diffuse pachymeningeal enhancement on brain MRI: spontaneous intracranial hypotension and head trauma

    International Nuclear Information System (INIS)

    Ryu, Chang Woo; Lee, Byung Hee; Lee, Seung Ik; Kim, Young A; Kim, Hee Jin; Ko, Young Sik

    1998-01-01

    We evaluated the MRI finding of pachymeningeal enhancement in patients with intracranial hypotension and head trauma with particular attention to differential findings and change in follow-up study, and in order to support the knowledge about the pathophysiology of dural enhancement. The findings of enhanced brain MRI of fifteen patients who showed diffuse pachymeningeal enhancement were retrospectively examined. Seven of fifteen patients were finally diagnosed as spontaneous intracranial hypotension (SIH). Eight of fifteen patients had a recent history of head trauma. We analyzed the shape, thickness, continuity and extent of dural enhancement, and the others concerned with positive MR findings. We also analyzed findings suggested displacement of brain parenchyma-displacement of the iter and cerebellar tonsil, and flattening of the anterior aspect of the pons-. Four of seven patients with SIH and four of eight patients with head trauma, underwent follow-up MRI. In the follow-up study, the presence of resolving pachymeningeal enhancement and symptom improvement was investigated. In all cases of SIH, the dura showed diffuse, even 3(1mm thick, global and contiguous enhancement along both cerebral convexities, both tentoria, and the falx. Displacement of the iter was noted in six cases and flattening of the anterior aspect of the pons in five. Displacement of the cerebellar tonsil was noted in one case. Five of seven cases showed small amount of subdural fluid collection. In all cases of head trauma, the dura was enhanced diffusely and asymmetrically, and showed no contiguity. Its distribution was consistent with the locations of traumatic lesions. Displacement of the iter was noted in one case. In four cases of SIH, clinical symptoms had improved, and three showed complete resolution of dural enhancement, in one patient continuously showed partial dural enhancement. Four cases of head trauma showed complete resolution of dural enhancement. Reversible diffuse

  14. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimers Disease

    Science.gov (United States)

    2017-09-01

    4: Correlate the glial and glutamate metabolic rates with additional measures obtained in the parent studies including of a) serum, CSF, and genetic...resonances as a linear combination model. Note the high SNR of glutamate and its separation from other metabolites that would overlap at 3 Tesla. 3.3... separate protocol offered to participants in the study but will not be mandatory and thus will not impact this study in any way. 3.4. Results

  15. Development of a murine model of blunt hepatic trauma.

    Science.gov (United States)

    Nemzek-Hamlin, Jean A; Hwang, Haejin; Hampel, Joseph A; Yu, Bi; Raghavendran, Krishnan

    2013-10-01

    Despite the prevalence of blunt hepatic trauma in humans, there are few rodent models of blunt trauma that can be used to study the associated inflammatory responses. We present a mouse model of blunt hepatic trauma that was created by using a cortical contusion device. Male mice were anesthetized with ketamine-xylazine-buprenorphine and placed in left lateral recumbency. A position of 2 mm ventral to the posterior axillary line and 5 mm caudal to the costal margin on the right side was targeted for impact. An impact velocity of 6 m/s and a piston depth of 12 mm produced a consistent pattern of hepatic injury with low mortality. All mice that recovered from anesthesia survived without complication for the length of the study. Mice were euthanized at various time points (n = 5 per group) until 7 d after injury for gross examination and collection of blood and peritoneal lavage fluids. Some mice were reanesthetized for serial monitoring of hepatic lesions via MRI. At 2 h after trauma, mice consistently displayed laceration, hematoma, and discoloration of the right lateral and caudate liver lobes, with intraabdominal hemorrhage but no other gross injuries. Blood and peritoneal lavage fluid were collected from all mice for cytokine analysis. At 2 h after trauma, there were significant increases in plasma IL10 as well as peritoneal lavage fluid IL6 and CXCL1/KC; however, these levels decreased within 24 h. At 7 d after trauma, the mice had regained body weight, and the hepatic lesions, which initially had increased in size during the first 48 h, had returned to their original size. In summary, this technique produced a reliable, low mortality, murine model that recreates features of blunt abdominal liver injury in human subjects with similar acute inflammatory response.

  16. Use of the emotional Stroop to assess psychological trauma following traumatic brain injury.

    Science.gov (United States)

    Coates, Richard C

    2008-04-01

    A modified Stroop task was used to investigate the hypothesis that implicit memory may be a possible mechanism for the development of acute stress disorder (ASD) in patients who have suffered a closed head injury. Three groups of hospital patients were compared within 1 month post-trauma: road traffic accident (RTA) patients with a brain injury (n = 15), RTA patients without a brain injury (n = 13) and a control group of orthopaedic and plastics patients (n = 15). Participants named colours of five types of words: RTA-related words, words related to hospitalization, obsessive-compulsive disorder (OCD) words, positive words and neutral words. Participants were also administered the Acute Stress Disorder Interview and the State-Trait Anxiety Inventory. Both RTA patients with and without a brain injury demonstrated significant interference on words related to an RTA. Significant interference was unexpectedly observed for OCD words in RTA patients. Control patients did not display significant interference effects. Findings suggested that patients, both with and without explicit recall for an RTA, responded similarly on a task involving implicit memory for trauma. Possible implications for ASD and Post-traumatic Stress Disorder are discussed.

  17. [Progress on neuropsychology and event-related potentials in patients with brain trauma].

    Science.gov (United States)

    Dong, Ri-xia; Cai, Wei-xiong; Tang, Tao; Huang, Fu-yin

    2010-02-01

    With the development of information technology, as one of the research frontiers in neurophysiology, event-related potentials (ERP) is concerned increasingly by international scholars, which provides a feasible and objective method for exploring cognitive function. There are many advances in neuropsychology due to new assessment tool for the last years. The basic theories in the field of ERP and neuropsychology were reviewed in this article. The research and development in evaluating cognitive function of patients with syndrome after brain trauma were focused in this review, and the perspectives for the future research of ERP was also explored.

  18. A web ontology for brain trauma patient computer-assisted rehabilitation.

    Science.gov (United States)

    Zikos, Dimitrios; Galatas, George; Metsis, Vangelis; Makedon, Fillia

    2013-01-01

    In this paper we describe CABROnto, which is a web ontology for the semantic representation of the computer assisted brain trauma rehabilitation. This is a novel and emerging domain, since it employs the use of robotic devices, adaptation software and machine learning to facilitate interactive and adaptive rehabilitation care. We used Protégé 4.2 and Protégé-Owl schema editor. The primary goal of this ontology is to enable the reuse of the domain knowledge. CABROnto has nine main classes, more than 50 subclasses, existential and cardinality restrictions. The ontology can be found online at Bioportal.

  19. Usefulness of MRI detection of cervical spine and brain injuries in the evaluation of abusive head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Kadom, Nadja [Children' s National Medical Center, Department of Diagnostic Imaging and Radiology, Washington, DC (United States); Boston University Medical Center, Boston, MA (United States); Khademian, Zarir; Vezina, Gilbert; Shalaby-Rana, Eglal [Children' s National Medical Center, Department of Diagnostic Imaging and Radiology, Washington, DC (United States); Rice, Amy [Independent Consultant (Biostatistics), Chevy Chase, MD (United States); Hinds, Tanya [Children' s National Medical Center, Child and Adolescent Protection Center, Washington, DC (United States)

    2014-07-15

    In the evaluation of children younger than 3 years with intracranial hemorrhage it can be difficult to determine whether the cause of hemorrhage was traumatic, and if so, whether abusive head trauma (AHT) is a possibility. Cervical spine MRI is not a routine part of the nationally recommended imaging workup for children with suspected abusive head trauma. There is increasing evidence that spinal injuries are found at autopsy or MRI in abused children. However the prevalence of cervical spine injuries in children evaluated for abusive head trauma is unknown. We sought to determine both the incidence and the spectrum of cervical spine and brain injuries in children being evaluated for possible abusive head trauma. We also examined the relationship between cervical and brain MRI findings and selected study outcome categories. This study is a 3-year retrospective review of children evaluated for abusive head trauma. Inclusion criteria were: children with head trauma seen at our institution between 2008 and 2010, age younger than 36 months, availability of diagnostic-quality brain and cervical spine MRI, and child abuse team involvement because abusive head trauma was a possibility. A child abuse pediatrician and pediatric radiologists, all with board certification, were involved in data collection, image interpretation and data analysis. Statistical analysis was performed using Stata v12.1. The study included 74 children (43 boys, 31 girls) with a mean age of 164 days (range, 20-679 days). Study outcomes were categorized as: n = 26 children with accidental head trauma, n = 38 with abusive head trauma (n = 18 presumptive AHT, n = 20 suspicious for AHT), and n = 10 with undefined head trauma. We found cervical spine injuries in 27/74 (36%) children. Most cervical spine injuries were ligamentous injuries. One child had intrathecal spinal blood and two had spinal cord edema; all three of these children had ligamentous injury. MRI signs of cervical injury did not show a

  20. Usefulness of MRI detection of cervical spine and brain injuries in the evaluation of abusive head trauma

    International Nuclear Information System (INIS)

    Kadom, Nadja; Khademian, Zarir; Vezina, Gilbert; Shalaby-Rana, Eglal; Rice, Amy; Hinds, Tanya

    2014-01-01

    In the evaluation of children younger than 3 years with intracranial hemorrhage it can be difficult to determine whether the cause of hemorrhage was traumatic, and if so, whether abusive head trauma (AHT) is a possibility. Cervical spine MRI is not a routine part of the nationally recommended imaging workup for children with suspected abusive head trauma. There is increasing evidence that spinal injuries are found at autopsy or MRI in abused children. However the prevalence of cervical spine injuries in children evaluated for abusive head trauma is unknown. We sought to determine both the incidence and the spectrum of cervical spine and brain injuries in children being evaluated for possible abusive head trauma. We also examined the relationship between cervical and brain MRI findings and selected study outcome categories. This study is a 3-year retrospective review of children evaluated for abusive head trauma. Inclusion criteria were: children with head trauma seen at our institution between 2008 and 2010, age younger than 36 months, availability of diagnostic-quality brain and cervical spine MRI, and child abuse team involvement because abusive head trauma was a possibility. A child abuse pediatrician and pediatric radiologists, all with board certification, were involved in data collection, image interpretation and data analysis. Statistical analysis was performed using Stata v12.1. The study included 74 children (43 boys, 31 girls) with a mean age of 164 days (range, 20-679 days). Study outcomes were categorized as: n = 26 children with accidental head trauma, n = 38 with abusive head trauma (n = 18 presumptive AHT, n = 20 suspicious for AHT), and n = 10 with undefined head trauma. We found cervical spine injuries in 27/74 (36%) children. Most cervical spine injuries were ligamentous injuries. One child had intrathecal spinal blood and two had spinal cord edema; all three of these children had ligamentous injury. MRI signs of cervical injury did not show a

  1. The effect of the introduction of the Amsterdam Trauma Workflow Concept on mortality and functional outcome of patients with severe traumatic brain injury

    NARCIS (Netherlands)

    Jin, P. H. Ping Fung Kon; Penning, Niels; Joosse, Pieter; Hijdra, Albert H. J.; Bouma, Gert Joan; Ponsen, Kees Jan; Goslings, J. Carel

    2008-01-01

    The purpose of this study was to analyze the effect of the introduction of an all-in workflow concept that included direct computed tomography (CT) scanning in the trauma room on mortality and functional outcome of trauma patients with severe traumatic brain injury (TBI) admitted to a level-1 trauma

  2. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  3. BDNF val66met modulates the association between childhood trauma, cognitive and brain abnormalities in psychoses.

    Science.gov (United States)

    Aas, Monica; Haukvik, Unn K; Djurovic, Srdjan; Bergmann, Ørjan; Athanasiu, Lavinia; Tesli, Martin S; Hellvin, Tone; Steen, Nils Eiel; Agartz, Ingrid; Lorentzen, Steinar; Sundet, Kjetil; Andreassen, Ole A; Melle, Ingrid

    2013-10-01

    Brain derived neurotrophic factor (BDNF) is important for brain development and plasticity, and here we tested if the functional BDNF val66met variant modulates the association between high levels of childhood abuse, cognitive function, and brain abnormalities in psychoses. 249 patients with a broad DSM-IV schizophrenia spectrum disorder or bipolar disorder were consecutively recruited to the TOP research study (mean±age: 30.7±10.9; gender: 49% males). History of childhood trauma was obtained using the Childhood Trauma Questionnaire. Cognitive function was assessed through a standardized neuropsychological test battery. BDNF val66met was genotyped using standardized procedures. A sub-sample of n=106 Caucasians with a broad DSM-IV schizophrenia spectrum disorder or bipolar disorder (mean±age: 32.67±10.85; 49% males) had data on sMRI. Carriers of the Methionine (met) allele exposed to high level of childhood abuse demonstrated significantly poorer cognitive functioning compared to homozygotic Valine (val/val) carriers. Taking in consideration multiple testing, using a more conservative p value, this was still shown for physical abuse and emotional abuse, as well as a trend level for sexual abuse. Further, met carriers exposed to high level of childhood sexual abuse showed reduced right hippocampal volume (r(2)=0.43; p=0.008), and larger right and left lateral ventricles (r(2)=0.37; p=0.002, and r(2)=0.27; p=0.009, respectively). Our findings were independent of age, gender, diagnosis and intracranial volume. Our data demonstrate that in patients with psychoses, met carriers of the BDNF val66met with high level of childhood abuse have more cognitive and brain abnormalities than all other groups. © 2013.

  4. A novel trauma leadership model reflective of changing times.

    Science.gov (United States)

    DʼHuyvetter, Cecile; Cogbill, Thomas H

    2014-01-01

    As a result of generational changes in the health care workforce, we sought to evaluate our current Trauma Medical Director Leadership model. We assessed the responsibilities, accountability, time requirements, cost, and provider satisfaction with the current leadership model. Three new providers who had recently completed fellowship training were hired, each with unique professional desires, skill sets, and experience. Our goal was to establish a comprehensive, cost-effective, accountable leadership model that enabled provider satisfaction and equalized leadership responsibilities. A 3-pronged team model was established with a Medical Director title and responsibilities rotating per the American College of Surgeons verification cycle to develop leadership skills and lessen hierarchical differences.

  5. A Right Brain/Left Brain Model of Acting.

    Science.gov (United States)

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  6. Designing a Model for Trauma System Management Using Public Health Approach: The Case of Iran

    Directory of Open Access Journals (Sweden)

    Farzad Panahi

    2012-01-01

    Full Text Available Trauma is a leading cause of death and disability around the world. Injuries are responsible for about six million deaths annually, of which ninety percent occur in developing countries. In Iran, injuries are the most common cause of death among age groups below fifty. Trauma system development is a systematic and comprehensive approach to injury prevention and treatment whose effectiveness has been proved. The present study aims at designing a trauma system management model as the first step toward trauma system establishment in Iran. In this qualitative research, a conceptual framework was developed based on the public health approach and three well-known trauma system models. We used Benchmarks, Indicators and Scoring (BIS to analyze the current situation of Iran trauma care system. Then the trauma system management was designed using the policy development phase of public health approach The trauma system management model, validated by a panel of experts, describes lead agency, trauma system plan, policy-making councils, and data-based control according to the four main functions of management: leading, planning, organizing and controlling. This model may be implemented in two phases: the exclusive phase, focusing on resource integration and the inclusive phase, which concentrates on system development. The model could facilitate the development of trauma system in Iran through pilot studies as the assurance phase of public health approach. Furthermore, the model can provide a practical framework for trauma system management at the international level.

  7. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Heng-Li Tian

    2016-01-01

    Progressive hemorrhagic injury (PHI) can be divided into coagulopathy-related PHI and normal coagulation PHI.Coagulation disorders after traumatic brain injuries can be included in trauma-induced coagulopathy (TIC).Some studies showed that TIC is associated with PHI and increases the rates of disability and mortality.In this review,we discussed some mechanisms in TIC,which is of great importance in the development of PHI,including tissue factor (TF) hypothesis,protein C pathway and thrombocytopenia.The main mechanism in the relation of TIC to PHI is hypocoagulability.We also reviewed some coagulopathy parameters and proposed some possible risk factors,predictors and therapies.

  8. Quantifying the funding gap for management of traumatic brain injury at a major trauma centre in South Africa.

    Science.gov (United States)

    Kong, V Y; Odendaal, J J; Bruce, J L; Laing, G L; Jerome, E; Sartorius, B; Brysiewicz, P; Clarke, D L

    2017-11-01

    Trauma is an eminently preventable disease. However, prevention programs divert resources away from other priorities. Costing trauma related diseases helps policy makers to make decisions on re-source allocation. We used data from a prospective digital trauma registry to cost Traumatic Brain Injury (TBI) at our institution over a two-year period and to estimate the funding gap that exists in the care of TBI. All patients who were admitted to the Pietermaritzburg Metropolitan Trauma Service (PMTS) with TBI were identified from the Hybrid Electronic Medical Registry (HMER). A micro-costing model was utilised to generate costs for TBI. Costs were generated for two scenarios in which all moderate and severe TBI were admitted to ICU. The actual cost was then sub-tracted from the scenario costs to establish the funding gap. During the period January 2012 to December 2014, a total of 3 301 patients were treated for TBI in PMB. The mean age was 30 years (SD 50). There were 2 632 (80%) males and 564 (20%) females. The racial breakdown was overwhelmingly African (96%), followed by Asian (2%), Caucasian (1%) and mixed race (1%). There were 2 540 mild (GCS 13-15), 326 moderate (9-12), and 329 severe (GCS ≤8) TBI admissions during the period under review. A total of 139 patients died (4.2%). A total of 242 (7.3%) patients were admitted to ICU. Of these 137 (57%) had a GCS of 9 or less. A total of 2 383 CT scans were performed. The total cost of TBI over the two-year period was ZAR 62 million. If all 326 patients with moderate TBI had been admitted to ICU there would have been a further 281 ICU admissions. This was labelled Scenario 1. If all patients with severe as well as moderate TBI had been admitted there would have been a further 500 ICU admissions. This was labelled Scenario 2. Based on Scenario 1 and Scenario 2 the total cost would have been ZAR 73 272 250 and ZAR 82 032 250 respectively. The funding gaps for Scenario 1 and Scenario 2 were ZAR 11 240 000 and ZAR 20 000

  9. Guideline validation in multiple trauma care through business process modeling.

    Science.gov (United States)

    Stausberg, Jürgen; Bilir, Hüseyin; Waydhas, Christian; Ruchholtz, Steffen

    2003-07-01

    Clinical guidelines can improve the quality of care in multiple trauma. In our Department of Trauma Surgery a specific guideline is available paper-based as a set of flowcharts. This format is appropriate for the use by experienced physicians but insufficient for electronic support of learning, workflow and process optimization. A formal and logically consistent version represented with a standardized meta-model is necessary for automatic processing. In our project we transferred the paper-based into an electronic format and analyzed the structure with respect to formal errors. Several errors were detected in seven error categories. The errors were corrected to reach a formally and logically consistent process model. In a second step the clinical content of the guideline was revised interactively using a process-modeling tool. Our study reveals that guideline development should be assisted by process modeling tools, which check the content in comparison to a meta-model. The meta-model itself could support the domain experts in formulating their knowledge systematically. To assure sustainability of guideline development a representation independent of specific applications or specific provider is necessary. Then, clinical guidelines could be used for eLearning, process optimization and workflow management additionally.

  10. Brain-derived neurotrophic factor/FK506-binding protein 5 genotype by childhood trauma interactions do not impact on hippocampal volume and cognitive performance.

    Directory of Open Access Journals (Sweden)

    Dennis Hernaus

    Full Text Available In the development of psychotic symptoms, environmental and genetic factors may both play a role. The reported association between childhood trauma and psychotic symptoms could therefore be moderated by single nucleotide polymorphisms (SNPs associated with the stress response, such as FK506-binding protein 5 (FKBP5 and brain-derived neurotrophic factor (BDNF. Recent studies investigating childhood trauma by SNP interactions have inconsistently found the hippocampus to be a potential target underlying these interactions. Therefore, more detailed modelling of these effects, using appropriate covariates, is required. We examined whether BDNF/FKBP5 and childhood trauma interactions affected two proxies of hippocampal integrity: (i hippocampal volume and (ii cognitive performance on a block design (BD and delayed auditory verbal task (AVLT. We also investigated whether the putative interaction was different for patients with a psychotic disorder (n = 89 compared to their non-psychotic siblings (n = 95, in order to elicit possible group-specific protective/vulnerability effects. SNPs were rs9296158, rs4713916, rs992105, rs3800373 (FKBP5 and rs6265 (BDNF. In the combined sample, no BDNF/FKBP5 by childhood trauma interactions were apparent for either outcome, and BDNF/FKBP5 by childhood trauma interactions were not different for patients and siblings. The omission of drug use and alcohol consumption sometimes yielded false positives, greatly affected explained error and influenced p-values. The consistent absence of any significant BDNF/FKBP5 by childhood trauma interactions on assessments of hippocampal integrity suggests that the effect of these interactions on psychotic symptoms is not mediated by hippocampal integrity. The importance of appropriate statistical designs and inclusion of relevant covariates should be carefully considered.

  11. Model based rib-cage unfolding for trauma CT

    Science.gov (United States)

    von Berg, Jens; Klinder, Tobias; Lorenz, Cristian

    2018-03-01

    A CT rib-cage unfolding method is proposed that does not require to determine rib centerlines but determines the visceral cavity surface by model base segmentation. Image intensities are sampled across this surface that is flattened using a model based 3D thin-plate-spline registration. An average rib centerline model projected onto this surface serves as a reference system for registration. The flattening registration is designed so that ribs similar to the centerline model are mapped onto parallel lines preserving their relative length. Ribs deviating from this model appear deviating from straight parallel ribs in the unfolded view, accordingly. As the mapping is continuous also the details in intercostal space and those adjacent to the ribs are rendered well. The most beneficial application area is Trauma CT where a fast detection of rib fractures is a crucial task. Specifically in trauma, automatic rib centerline detection may not be guaranteed due to fractures and dislocations. The application by visual assessment on the large public LIDC data base of lung CT proved general feasibility of this early work.

  12. Quality of life of victims of traumatic brain injury six months after the trauma

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Almeida Vieira

    2013-07-01

    Full Text Available OBJECTIVE: to describe the quality of life of victims of traumatic brain injury six months after the event and to show the relationship between the results observed and the clinical, sociodemographic and return to productivity data. METHOD: data were analyzed from 47 victims assisted in a trauma reference hospital in the municipality of Aracaju and monitored in an outpatient neurosurgery clinic. The data were obtained through analysis of the patient records and structured interviews, with the application of the World Health Organization Quality of Life, brief version, questionnaire. RESULTS: the victims presented positive perceptions of their quality of life, and the physical domain presented the highest mean value (68.4±22.9. Among the sociodemographic characteristics, a statistically significant correlation was found between marital status and the psychological domain. However, the return to productivity was related to all the domains. CONCLUSION: the return to productivity was an important factor for the quality of life of the victims of traumatic brain injury and should direct the public policies in promoting the health of these victims.

  13. Quality of life of victims of traumatic brain injury six months after the trauma.

    Science.gov (United States)

    Vieira, Rita de Cássia Almeida; Hora, Edilene Curvelo; de Oliveira, Daniel Vieira de; Ribeiro, Maria do Carmo de Oliveira; de Sousa, Regina Márcia Cardoso

    2013-01-01

    to describe the quality of life of victims of traumatic brain injury six months after the event and to show the relationship between the results observed and the clinical, sociodemographic and return to productivity data. data were analyzed from 47 victims assisted in a trauma reference hospital in the municipality of Aracaju and monitored in an outpatient neurosurgery clinic. The data were obtained through analysis of the patient records and structured interviews, with the application of the World Health Organization Quality of Life, brief version, questionnaire. the victims presented positive perceptions of their quality of life, and the physical domain presented the highest mean value (68.4±22.9). Among the sociodemographic characteristics, a statistically significant correlation was found between marital status and the psychological domain. However, the return to productivity was related to all the domains. the return to productivity was an important factor for the quality of life of the victims of traumatic brain injury and should direct the public policies in promoting the health of these victims.

  14. Prehospital Intubation and Outcome in Traumatic Brain Injury—Assessing Intervention Efficacy in a Modern Trauma Cohort

    Directory of Open Access Journals (Sweden)

    Rebecka Rubenson Wahlin

    2018-04-01

    Full Text Available BackgroundPrehospital intubation in traumatic brain injury (TBI focuses on limiting the effects of secondary insults such as hypoxia, but no indisputable evidence has been presented that it is beneficial for outcome. The aim of this study was to explore the characteristics of patients who undergo prehospital intubation and, in turn, if these parameters affect outcome.Material and methodsPatients ≥15 years admitted to the Department of Neurosurgery, Stockholm, Sweden with TBI from 2008 through 2014 were included. Data were extracted from prehospital and hospital charts, including prospectively collected Glasgow Outcome Score (GOS after 12 months. Univariate and multivariable logistic regression models were employed to examine parameters independently correlated to prehospital intubation and outcome.ResultsA total of 458 patients were included (n = 178 unconscious, among them, n = 61 intubated. Multivariable analyses indicated that high energy trauma, prehospital hypotension, pupil unresponsiveness, mode of transportation, and distance to the hospital were independently correlated with intubation, and among them, only pupil responsiveness was independently associated with outcome. Prehospital intubation did not add independent information in a step-up model versus GOS (p = 0.154. Prehospital reports revealed that hypoxia was not the primary cause of prehospital intubation, and that the procedure did not improve oxygen saturation during transport, while an increasing distance from the hospital increased the intubation frequency.ConclusionIn this modern trauma cohort, prehospital intubation was not independently associated with outcome; however, hypoxia was not a common reason for prehospital intubation. Prospective trials to assess efficacy of prehospital airway intubation will be difficult due to logistical and ethical considerations.

  15. Bayesian averaging over Decision Tree models for trauma severity scoring.

    Science.gov (United States)

    Schetinin, V; Jakaite, L; Krzanowski, W

    2018-01-01

    Health care practitioners analyse possible risks of misleading decisions and need to estimate and quantify uncertainty in predictions. We have examined the "gold" standard of screening a patient's conditions for predicting survival probability, based on logistic regression modelling, which is used in trauma care for clinical purposes and quality audit. This methodology is based on theoretical assumptions about data and uncertainties. Models induced within such an approach have exposed a number of problems, providing unexplained fluctuation of predicted survival and low accuracy of estimating uncertainty intervals within which predictions are made. Bayesian method, which in theory is capable of providing accurate predictions and uncertainty estimates, has been adopted in our study using Decision Tree models. Our approach has been tested on a large set of patients registered in the US National Trauma Data Bank and has outperformed the standard method in terms of prediction accuracy, thereby providing practitioners with accurate estimates of the predictive posterior densities of interest that are required for making risk-aware decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Adult sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Winkler, Ethan A; Yue, John K; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories-fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic brain injury during aquatic sports was similarly associated with prolonged ICU and hospital LOSs, medical complications, and failure to be discharged to

  17. Effects of In utero environment and maternal behavior on neuroendocrine and behavioral alterations in a mouse model of prenatal trauma.

    Science.gov (United States)

    Golub, Y; Canneva, F; Funke, R; Frey, S; Distler, J; von Hörsten, S; Freitag, C M; Kratz, O; Moll, G H; Solati, J

    2016-11-01

    Maternal posttraumatic stress disorder (PTSD) following trauma exposure during pregnancy is associated with an increased risk of affective disorders in children. To investigate the mechanisms by which prenatal trauma and/or maternal PTSD affect brain development and behavior we established a mouse model of prenatal traumatic (PT) experience based on the application of an electric foot shock to C57Bl/6N female mice on the gestational day 12 during their pregnancy. The model is based on a previously validated animal model of PTSD. We found high anxiety levels and poor maternal care along with reduced serum prolactin and increased corticosterone levels in dams following maternal trauma (MT). PT-pups were born smaller and stayed smaller throughout their life. We show increased time and frequency of ultrasonic calls in PT-pups when separated from the mothers on the postnatal day (PND) 9. Cross-fostering experiments reveal lower anxiety levels in PT pups raised by healthy mothers as compared to trauma-naive pups raised by MT-dams. Importantly, the combination of prenatal trauma and being raised by a traumatized mother leads to: (1) the highest corticosterone levels in pups, (2) longest USV-call time and (3) highest anxiety levels in comparison to other experimental groups. Our data indicates a distinct change in maternal care following MT which is possibly associated with trauma-induced decrease in prolactin levels. Furthermore, we show that maternal behavior is crucial for the development of the offspring anxiety and specific aspects in maternal care overwrite to a significant extend the effects of in utero and postnatal environment. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1254-1265, 2016. © 2016 Wiley Periodicals, Inc.

  18. Severity scores in trauma patients admitted to ICU. Physiological and anatomic models.

    Science.gov (United States)

    Serviá, L; Badia, M; Montserrat, N; Trujillano, J

    2018-02-02

    The goals of this project were to compare both the anatomic and physiologic severity scores in trauma patients admitted to intensive care unit (ICU), and to elaborate mixed statistical models to improve the precision of the scores. A prospective study of cohorts. The combined medical/surgical ICU in a secondary university hospital. Seven hundred and eighty trauma patients admitted to ICU older than 16 years of age. Anatomic models (ISS and NISS) were compared and combined with physiological models (T-RTS, APACHE II [APII], and MPM II). The probability of death was calculated following the TRISS method. The discrimination was assessed using ROC curves (ABC [CI 95%]), and the calibration using the Hosmer-Lemeshoẃs H test. The mixed models were elaborated with the tree classification method type Chi Square Automatic Interaction Detection. A 14% global mortality was recorded. The physiological models presented the best discrimination values (APII of 0.87 [0.84-0.90]). All models were affected by bad calibration (P<.01). The best mixed model resulted from the combination of APII and ISS (0.88 [0.83-0.90]). This model was able to differentiate between a 7.5% mortality for elderly patients with pathological antecedents and a 25% mortality in patients presenting traumatic brain injury, from a pool of patients with APII values ranging from 10 to 17 and an ISS threshold of 22. The physiological models perform better than the anatomical models in traumatic patients admitted to the ICU. Patients with low scores in the physiological models require an anatomic analysis of the injuries to determine their severity. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  19. Organ retrieval and banking in brain dead trauma patients: Our experience at level-1 trauma centre and current views

    Science.gov (United States)

    Sawhney, Chhavi; Kaur, Manpreet; Lalwani, Sanjeev; Gupta, Babita; Balakrishnan, Ira; Vij, Aarti

    2013-01-01

    Background: Organ retrieval from brain dead patients is getting an increased attention as the waiting list for organ recipients far exceeds the organ donor pool. In our country, despite a large population the number of brain dead donors undergoing organ donation is very less (2% in our study). Aims: The present study was undertaken to address issues related to organ donation and share our experience for the same. Methods: A retrospective case record analysis of over 5 years from September 2007 to August 2012 was performed and the patients fulfilling brain death criterion as per Transplantation of Human Organs and Tissue (Amendment) Act were included. Patient demographics (age, sex), mode of injury, time from injury to the diagnosis of brain death, time from diagnosis of brain death to organ retrieval and complications were analysed. Statistics Analysis: Student's t test was used for parametric data and Chi square was used for categorical data. Results: Out of 205 patients who were identified as brain dead, only 10 patients became potential organ donors. Conclusion: Aggressive donor management, increasing public awareness about the concept of organ donation, good communication between clinician and the family members and a well-trained team of transplant coordinators can help in improving the number of organ donations. PMID:23983281

  20. The efficacy of diagnostic radiation uses in pediatrics using the example of skull survey radiographs after skull brain traumas

    International Nuclear Information System (INIS)

    Mueller, H.

    1987-01-01

    This work is a retrospective efficacy study, where efficiency is left out of consideration. The goal of this work is to examine the efficacy of the radiodiagnostic of skull brain traumas in children and under consideration of the literature already present on this theme to find eventually possibilities for the limitation of the routine radiology or respectively to increase the predictive value by means of the making of a list containing highly effective criteria. (orig./MG) [de

  1. Teaching Trauma: A Model for Introducing Traumatic Materials in the Classroom

    Directory of Open Access Journals (Sweden)

    Jessica D. Cless

    2017-09-01

    Full Text Available niversity courses in disciplines such as social work, family studies, humanities, and other areas often use classroom materials that contain traumatic material (Barlow & Becker-Blease, 2012. While many recommendations based on trauma theory exist for instructors at the university level, these are often made in the context of clinical training programs, rather than at the undergraduate level across disciplines. Furthermore, no organized model exists to aid instructors in developing a trauma-informed pedagogy for teaching courses on traumatic stress, violence, and other topics that may pose a risk for secondary traumatic stress in the classroom (Kostouros, 2008. This paper seeks to bridge the gap between trauma theory and implementation of sensitive content in classrooms of higher education, and presents a model of trauma-informed teaching that was developed in the context of an undergraduate trauma studies program. Implications and future directions for research in the area of trauma-informed university classrooms are discussed.

  2. Designing a Model for Trauma System Management Using Public Health Approach: The Case of Iran

    OpenAIRE

    Farzad Panahi; Bahram Elgoshaei; Mohammad Reza Maleki; Shahram Tofighi; Seyed Abbas Motevalian; Seyed Jamaledin Tabibi; Payam Tarighi; Gholam Reza Masoomi

    2012-01-01

    Trauma is a leading cause of death and disability around the world. Injuries are responsible for about six million deaths annually, of which ninety percent occur in developing countries. In Iran, injuries are the most common cause of death among age groups below fifty. Trauma system development is a systematic and comprehensive approach to injury prevention and treatment whose effectiveness has been proved. The present study aims at designing a trauma system management model as the first step...

  3. Pediatric sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Yue, John K; Winkler, Ethan A; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Traumatic brain injury (TBI) in children is a significant public health concern estimated to result in over 500,000 emergency department (ED) visits and more than 60,000 hospitalizations in the United States annually. Sports activities are one important mechanism leading to pediatric TBI. In this study, the authors characterize the demographics of sports-related TBI in the pediatric population and identify predictors of prolonged hospitalization and of increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from children (age 0-17 years) across 5 sports categories: fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged length of stay (LOS) in the hospital or intensive care unit (ICU), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α sports-related TBIs were recorded in the NTDB, and these injuries represented 11,614 incidents nationally after sample weighting. Fall or interpersonal contact events were the greatest contributors to sports-related TBI (47.4%). Mild TBI represented 87.1% of the injuries overall. Mean (± SEM) LOSs in the hospital and ICU were 2.68 ± 0.07 days and 2.73 ± 0.12 days, respectively. The overall mortality rate was 0.8%, and the prevalence of medical complications was 2.1% across all patients. Severities of head and extracranial injuries were significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Hypotension on admission to the ED was a significant predictor of failure to discharge to home (OR 0.05, 95% CI 0.03-0.07, p sports was independently associated with prolonged hospital LOS compared with FIC events (mean increase

  4. A survey of the quality of nursing services for brain trauma patients in the emergency wards of hospitals in Guilan Province, Iran (2012).

    Science.gov (United States)

    Majidi, Seyed Ali; Ayoubian, Ali; Mardani, Sheida; Hashemidehaghi, Zahra

    2014-01-01

    Head trauma is the main cause of disabilities and death among young people, and the side effects of head trauma pose some of the greatest medical challenges. Rapid diagnosis and the use of proper treatments can prevent more severe brain damage. The purpose of this research was to determine the quality of nursing services provided to brain trauma patients in hospitals in Guilan Province, Iran. The study was conducted as a descriptive, cross-sectional study in the emergency wards of selected hospitals in Guilan in 2012. The research population was comprised of all the brain trauma patients in these hospitals. We developed a two-section questionnaire, ascertained its validity, and determined that it had a reliability of 88% (Cronbach's alpha). Subsequently, we used the questionnaire for gathering data. The data were analyzed using SPSS statistical software, and descriptive analysis tests (frequency rate and average) and deductive analyses tests (chi-squared) also were used. The results showed that the quality of health services provided to brain-trauma patients in the emergency ward was at the moderate level of 58.8% of the cases and at a low level in 41.2% of the cases. Based on the results that showed that the services were of moderate quality, the staff members in the emergency ward were required to update their knowledge and use the required measures to minimize or prevent side effects in brain-trauma patients; clearly, mastery of such measures was a real need among the emergency ward's staff.

  5. Hierarchical models in the brain.

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2008-11-01

    Full Text Available This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain.

  6. [Changes in 2,3-diphosphoglycerate Levels in Blood and Brain Tissue after Craniocerebral Trauma and Cardiac Surgery].

    Science.gov (United States)

    Hausdörfer, J; Heller, W; Junger, H; Oldenkott, P; Stunkat, R

    1976-10-01

    The response of the 2,3-diphosphoglycerate (DPG) levels in the blood and brain tissue to a craniocerebral trauma of varying severity was studied in anaesthetized rats. A trauma producing cerebral contusion was followed within two hours by a highly significant rise in DPG concentration in the blood as compared with the control animals or only mildly traumatized rats. The DPG levels in the brain tissue showed no significant differences. Similar changes in DPG concentration were observed in the blood of patients with craniocerebral injuries. The DPG-mediated increased release of oxygen to the tissues represents a compensatory mechanism and is pathognomic for craniocerebral trauma. Patients undergoing surgery with extracorporeal circulation lack this mechanism for counteracting hypoxaemia; already during thoracotomy the DPG concentration in the blood fell significantly and did not reach its original level until 72 hours after the operation. In stored, ACD stabilized, blood the DPG concentration gradually decreases. Estimations carried out over 28 days showed a continuous statistically significant loss of DPG. After 24 hours the DPG levels in stored blood had already dropped to the lower limits of normal - a fact that has to be taken into account in massive blood transfusions.

  7. Measurement of serum melatonin in intensive care unit patients: changes in traumatic brain injury, trauma and medical conditions

    Directory of Open Access Journals (Sweden)

    Marc A Seifman

    2014-11-01

    Full Text Available Melatonin is an endogenous hormone mainly produced by the pineal gland whose dysfunction leads to abnormal sleeping patterns. Changes in melatonin have been reported in acute traumatic brain injury (TBI, however the impact of environmental conditions typical of the intensive care unit (ICU has not been assessed. The aim of this study was to compare daily melatonin production in three patient populations treated at the ICU to differentiate the role of TBI versus ICU conditions. Forty-five patients were recruited and divided into severe TBI, trauma without TBI, medical conditions without trauma and compared to healthy volunteers. Serum melatonin levels were measured at four daily intervals at 0400h, 1000h, 1600h and 2200h for 7 days post-ICU admission by commercial ELISA. The geometric mean concentrations (95% confidence intervals of melatonin in these groups showed no difference being 8.3 (6.3-11.0, 9.3 (7.0-12.3 and 8.9 (6.6-11.9 pg/mL, respectively in TBI, trauma and intensive care cohorts. All of these patient groups demonstrated decreased melatonin concentrations when compared to control patients.This study suggests that TBI as well as ICU conditions, may have a role in the dysfunction of melatonin. Monitoring and possibly substituting melatonin acutely in these settings may assist in ameliorating longterm sleep dysfunction in all of these groups, and possibly contribute to reducing secondary brain injury in severe TBI.

  8. The neurobiological role of the dorsolateral prefrontal cortex in recovery from trauma. Longitudinal brain imaging study among survivors of the South Korean subway disaster.

    Science.gov (United States)

    Lyoo, In Kyoon; Kim, Jieun E; Yoon, Sujung J; Hwang, Jaeuk; Bae, Sujin; Kim, Dajung J

    2011-07-01

    A multiwave longitudinal neuroimaging study in a cohort of direct survivors of a South Korean subway disaster, most of whom recovered from posttraumatic stress disorder 5 years after trauma, provided a unique opportunity to investigate the brain correlates of recovery from a severe psychological trauma. To investigate region-specific brain mobilization during successful recovery from posttraumatic stress disorder by assessing cortical thickness multiple times from early after trauma to recovery, and to examine whether a brain-derived neurotrophic factor gene polymorphism was associated with this brain mobilization. Five-year follow-up case-control study conducted from 2003-2007. Seoul National University and Hospital. Thirty psychologically traumatized disaster survivors and 36 age- and sex-matched control group members recruited from the disaster registry and local community, respectively, who contributed 156 high-resolution brain magnetic resonance images during 3 waves of assessments. Cerebral cortical thickness measured in high-resolution anatomic magnetic resonance images using a validated cortical thickness analysis tool and its prospective changes from early after trauma to recovery in trauma-exposed individuals and controls. Trauma-exposed individuals had greater dorsolateral prefrontal cortical (DLPFC) thickness 1.42 years after trauma (right DLPFC, 5.4%; left superior frontal cortex, 5.8%; and left inferior frontal cortex, 5.3% [all clusters, P ≤ .01]) relative to controls. Thicknesses gradually normalized over time during recovery. We found a positive linear trend, with trauma-exposed individuals with a valine/valine genotype having the greatest DLPFC cortical thickness, followed by those with a methionine genotype and controls (P < .001 for trend). Greater DLPFC thickness was associated with greater posttraumatic stress disorder symptom reductions and better recovery. The DLPFC region might play an important role in psychological recovery from a

  9. Is the dissociative adult suggestible? A test of the trauma and fantasy models of dissociation.

    Science.gov (United States)

    Kluemper, Nicole S; Dalenberg, Constance

    2014-01-01

    Psychologists have long assumed a connection between traumatic experience and psychological dissociation. This hypothesis is referred to as the trauma model of dissociation. In the past decade, a series of papers have been published that question this traditional causal link, proposing an alternative fantasy model of dissociation. In the present research, the relationship among dissociation, suggestibility, and fantasy proneness was examined. Suggestibility was measured through the Gudjonsson Scale of Interrogative Suggestibility (GSS) as well as an autobiographically based version of this measure based on the events of September 11, 2001. Consistent with prior research and with the trauma model, dissociation correlated positively with trauma severity (r = .32, p suggestibility measure. Although some participants did become quite emotional during the procedure, the risk/benefit ratio was perceived by almost all participants to be positive, with more reactive individuals evaluating the procedure more positively. The results consistently support the trauma model of dissociation and fail to support the fantasy model of dissociation.

  10. Advanced Practice Nursing Committee on Process Improvement in Trauma: An Innovative Application of the Strong Model.

    Science.gov (United States)

    West, Sarah Katherine

    2016-01-01

    This article aims to summarize the successes and future implications for a nurse practitioner-driven committee on process improvement in trauma. The trauma nurse practitioner is uniquely positioned to recognize the need for clinical process improvement and enact change within the clinical setting. Application of the Strong Model of Advanced Practice proves to actively engage the trauma nurse practitioner in process improvement initiatives. Through enhancing nurse practitioner professional engagement, the committee aims to improve health care delivery to the traumatically injured patient. A retrospective review of the committee's first year reveals trauma nurse practitioner success in the domains of direct comprehensive care, support of systems, education, and leadership. The need for increased trauma nurse practitioner involvement has been identified for the domains of research and publication.

  11. Neurocomputational models of brain disorders

    NARCIS (Netherlands)

    Cutsuridis, Vassilis; Heida, Tjitske; Duch, Wlodek; Doya, Kenji

    2011-01-01

    Recent decades have witnessed dramatic accumulation of knowledge about the genetic, molecular, pharmacological, neurophysiological, anatomical, imaging and psychological characteristics of brain disorders. Despite these advances, however, experimental brain science has offered very little insight

  12. The use of brain CT Scan in craniocerebral trauma with Glasgow coma scale scores of 13 – 15 in Dr. Cipto Mangunkusumo Hospital 1999-2001

    Directory of Open Access Journals (Sweden)

    Jofizal Jannis

    2004-09-01

    Full Text Available There is still a controversy among the neurologists whether brain CT scan must be performed on the mild head trauma patients. This study was executed to find out the correlation between the brain CT scan image findings and its clinical impairment among the mild head trauma patients with Glasgow coma scale (GCS score of 13 to 15. The study was a retrospective study by analyzing the uniform medical records of the head trauma patients hospitalized at the Neurology ward of Dr. Cipto Mangunkusumo Hospital within the period of 1999 to 2001. During that period 1,663 patients were hospitalized due to head trauma, and 1,166 of them (70.1 % were suffered from mild head trauma patients with GCS score of 13-15. Among those with brain CT scan examinations (N: 271, the neurological abnormalities were found on 144 (53.1% of patients, consisted of cerebral edema (11,4%, intracerebral hemorrhage (5.5%, epidural hemorrhage (16.2%, subdural hemorrhage (18.1%, subarachnoid hemorrhage (5.5%, and combination (13.8%. The further analysis showed that cranial nerves disturbance, amnesia, loss of conciousness for more than 10 minutes, and vomiting are significantly correlated to the brain CT scan abnormality. Combination of the above four clinical signs and symptoms have sensitivity of 90 % in predicting brain insults. This findings may be used as a simple set of clinical criteria for identifying mild head trauma patients who need undergo CT scan examination. (Med J Indones 2004; 13: 156-60 Keywords: mild head injury, brain CT scan

  13. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI)

    DEFF Research Database (Denmark)

    Maas, Andrew I R; Menon, David K; Steyerberg, Ewout W

    2015-01-01

    in process and clinical care. Results will be integrated with living systematic reviews in a process of knowledge transfer. The study initiation was from October to December 2014, and the recruitment period was for 18 to 24 months. EXPECTED OUTCOMES: Collaborative European NeuroTrauma Effectiveness Research...

  14. Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders.

    Science.gov (United States)

    Tyagi, Ethika; Agrawal, Rahul; Zhuang, Yumei; Abad, Catalina; Waschek, James A; Gomez-Pinilla, Fernando

    2013-01-01

    Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.

  15. Expression profiling associates blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes.

    Science.gov (United States)

    Daskalakis, Nikolaos P; Cohen, Hagit; Cai, Guiqing; Buxbaum, Joseph D; Yehuda, Rachel

    2014-09-16

    Delineating the molecular basis of individual differences in the stress response is critical to understanding the pathophysiology and treatment of posttraumatic stress disorder (PTSD). In this study, 7 d after predator-scent-stress (PSS) exposure, male and female rats were classified into vulnerable (i.e., "PTSD-like") and resilient (i.e., minimally affected) phenotypes on the basis of their performance on a variety of behavioral measures. Genome-wide expression profiling in blood and two limbic brain regions (amygdala and hippocampus), followed by quantitative PCR validation, was performed in these two groups of animals, as well as in an unexposed control group. Differentially expressed genes were identified in blood and brain associated with PSS-exposure and with distinct behavioral profiles postexposure. There was a small but significant between-tissue overlap (4-21%) for the genes associated with exposure-related individual differences, indicating convergent gene expression in both sexes. To uncover convergent signaling pathways across tissue and sex, upstream activated/deactivated transcription factors were first predicted for each tissue and then the respective pathways were identified. Glucocorticoid receptor (GR) signaling was the only convergent pathway associated with individual differences when using the most stringent statistical threshold. Corticosterone treatment 1 h after PSS-exposure prevented anxiety and hyperarousal 7 d later in both sexes, confirming the GR involvement in the PSS behavioral response. In conclusion, genes and pathways associated with extreme differences in the traumatic stress behavioral response can be distinguished from those associated with trauma exposure. Blood-based biomarkers can predict aspects of brain signaling. GR signaling is a convergent signaling pathway, associated with trauma-related individual differences in both sexes.

  16. An Index of Trauma Severity Based on Multiattribute Utility: An Illustration of Complex Utility Modeling.

    Science.gov (United States)

    1981-10-01

    measure for Central Nervus System is the Glasgow Cons Score (GCS), a scale of brain and spinal cord injury (Langfitt [1978]), and is itself an additive...concerns directly relating to the injury itself were identified. These were: 1. Ventilation Severity 2 Circulation Severity 3. Central Nervous System ...interacting system within which these concerns represent interacting parts. Most trauma involves only one of these systems , but more than one may be

  17. Modeling High-Dimensional Multichannel Brain Signals

    KAUST Repository

    Hu, Lechuan; Fortin, Norbert J.; Ombao, Hernando

    2017-01-01

    aspects: first, there are major statistical and computational challenges for modeling and analyzing high-dimensional multichannel brain signals; second, there is no set of universally agreed measures for characterizing connectivity. To model multichannel

  18. A mathematical model of brain glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Kimura Hidenori

    2009-11-01

    Full Text Available Abstract Background The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. Methods In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. Results It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. Conclusion Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.

  19. A cross-cultural test of the trauma model of dissociation.

    Science.gov (United States)

    Ross, Colin A; Keyes, Benjamin B; Yan, Heqin; Wang, Zhen; Zou, Zheng; Xu, Yong; Chen, Jue; Zhang, Haiyin; Xiao, Zeping

    2008-01-01

    In order to test the trauma model of dissociation, the authors compared two samples with similar rates of reported childhood physical and sexual abuse: 502 members of the general population in Winnipeg, Canada, and 304 psychiatric outpatients at Shanghai Mental Health Center in Shanghai, China. There is virtually no popular or professional knowledge of dissociative identity disorder in China, and therefore professional and popular contamination cannot be operating. According to the trauma model, samples from different cultures with similar levels of trauma should report similar levels of dissociation. According to the sociocognitive model, in contrast, pathological dissociation is not related to trauma and should be absent in samples free of cultural and professional contamination. Of the 304 Chinese respondents, 14.5% reported childhood physical and/or sexual abuse compared to 12.5% of the Canadian sample. Both samples reported similar levels of dissociation on the Dissociative Experiences Scale and the Dissociative Disorders Interview Schedule. The findings support a specific prediction of the trauma model of dissociation not tested in previous research, and are not consistent with the sociocognitive, contamination or iatrogenic models of dissociative identity disorder.

  20. Evaluation of SOCOM Wireless Monitor in Trauma Patients

    Science.gov (United States)

    2016-02-01

    justified in polytrauma patients? Presented at 2014 American College of Surgeons Florida Committee on Trauma Paper Competition Jacksonville, FL Oct...Model of Polytrauma , Hemorrhage and Traumatic Brain Injury” J Trauma Acute Care Surg 2013 Dec 75(6):974-975 4) Thorson CM, Dubose JJ, Rhee P, Knuth TE...injury increase the risk for venous thromboembolism in polytrauma patients? J Trauma Acute Care Surg 2014 Aug;77(2):243-50. 26) Ryan ML, Van Haren RM

  1. Does the cause of the mild traumatic brain injury affect the expectation of persistent postconcussion symptoms and psychological trauma?

    Science.gov (United States)

    Sullivan, Karen A; Wade, Christina

    2017-05-01

    A controlled experiment of the effect of injury cause on expectations of outcome from mild traumatic brain injury (TBI) was conducted. Ninety-three participants were randomly assigned to one of four conditions. The participants read a vignette that described a mild TBI (with fixed injury parameters) from a different cause (sport, domestic assault, fall, or motor vehicle accident). The effect of the manipulation on expectations of persistent postconcussion symptoms and psychological trauma was assessed with standard measures and a novel "threat-to-life" measure. The Kruskal-Wallis H test for group differences revealed a significant but selective effect of group on symptom and trauma outcomes (ŋ 2 s ≥ .10; large effects). Post hoc pairwise tests showed that, in most cases, there was an expectation of a worse outcome following mild TBI from a domestic assault than from the other causes (small-to-medium effects). Expectations were selectively altered by an experimental manipulation of injury cause. Given that expectations of outcome are known to affect mild TBI prognosis, the findings suggest the need for greater attention to injury cause.

  2. Aberrant brain response after auditory deviance in PTSD compared to trauma controls: An EEG study

    NARCIS (Netherlands)

    Bangel, Katrin A.; van Buschbach, Susanne; Smit, Dirk J. A.; Mazaheri, Ali; Olff, Miranda

    2017-01-01

    Part of the symptomatology of post-traumatic stress disorder (PTSD) are alterations in arousal and reactivity which could be related to a maladaptive increase in the automated sensory change detection system of the brain. In the current EEG study we investigated whether the brain's response to a

  3. Association of a Guardian's Report of a Child Acting Abnormally With Traumatic Brain Injury After Minor Blunt Head Trauma.

    Science.gov (United States)

    Nishijima, Daniel K; Holmes, James F; Dayan, Peter S; Kuppermann, Nathan

    2015-12-01

    Increased use of computed tomography (CT) in children is concerning owing to the cancer risk from ionizing radiation, particularly in children younger than 2 years. A guardian report that a child is acting abnormally is a risk factor for clinically important traumatic brain injury (ciTBI) and may be a driving factor for CT use in the emergency department. To determine the prevalence of ciTBIs and TBIs in children younger than 2 years with minor blunt head trauma and a guardian report of acting abnormally with (1) no other findings or (2) other concerning findings for TBI. Secondary analysis of a large, prospective, multicenter cohort study that included 43 399 children younger than 18 years with minor blunt head trauma evaluated in 25 emergency departments. The study was conducted on data obtained between June 2004 and September 2006. Data analysis was performed between August 21, 2014, and March 9, 2015. A guardian report that the child was acting abnormally after minor blunt head trauma. The prevalence of ciTBI (defined as death, neurosurgery, intubation for >24 hours, or hospitalization for ≥2 nights in association with TBI on CT imaging) and TBI on CT imaging in children with a guardian report of acting abnormally with (1) no other findings and (2) other concerning findings for TBI. Of 43 399 children in the cohort study, a total of 1297 children had reports of acting abnormally, of whom 411 (31.7%) had this report as their only finding. Reported as percentage (95% CI), 1 of 411 (0.2% [0-1.3%]) had a ciTBI, and 4 TBIs were noted on the CT scans in 185 children who underwent imaging (2.2% [0.6%-5.4%]). In children with reports of acting abnormally and other concerning findings for TBI, 29 of 886 (3.3% [2.2%-4.7%]) had ciTBIs and 66 of 674 (9.8% [7.7%-12.3%]) had TBIs on CT. Clinically important TBIs are very uncommon, and TBIs noted on CT are uncommon in children younger than 2 years with minor blunt head trauma and guardian reports of the child acting

  4. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  5. Mortality and Epidemiology in 256 Cases of Pediatric Traumatic Brain Injury: Korean Neuro-Trauma Data Bank System (KNTDBS) 2010-2014.

    Science.gov (United States)

    Jeong, Hee-Won; Choi, Seung-Won; Youm, Jin-Young; Lim, Jeong-Wook; Kwon, Hyon-Jo; Song, Shi-Hun

    2017-11-01

    Among pediatric injury, brain injury is a leading cause of death and disability. To improve outcomes, many developed countries built neurotrauma databank (NTDB) system but there was not established nationwide coverage NTDB until 2009 and there have been few studies on pediatric traumatic head injury (THI) patients in Korea. Therefore, we analyzed epidemiology and outcome from the big data of pediatric THI. We collected data on pediatric patients from 23 university hospitals including 9 regional trauma centers from 2010 to 2014 and analyzed their clinical factors (sex, age, initial Glasgow coma scale, cause and mechanism of head injury, presence of surgery). Among all the 2617 THI patients, total number of pediatric patients was 256. The average age of the subjects was 9.07 (standard deviation±6.3) years old. The male-to female ratio was 1.87 to 1 and male dominance increases with age. The most common cause for trauma were falls and traffic accidents. Age ( p =0.007), surgery ( p <0.001), mechanism of trauma ( p =0.016), subdural hemorrhage (SDH) ( p <0.001), diffuse axonal injury (DAI) ( p <0.001) were statistically significant associated with severe brain injury. Falls were the most common cause of trauma, and age, surgery, mechanism of trauma, SDH, DAI increased with injury severity. There is a critical need for effective fall and traffic accidents prevention strategies for children, and we should give attention to these predicting factors for more effective care.

  6. Cognitive activity limitations one year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid

    2013-01-01

    Objective: To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. Subjects: The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute re......Objective: To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. Subjects: The study included 119 patients with severe traumatic brain injury admitted to centralized sub......-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Methods: Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive...... subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. Results: The majority of patients progressed to a post-confusional level...

  7. A new model for diffuse brain injury by rotational acceleration: I model, gross appearance, and astrocytosis.

    Science.gov (United States)

    Gutierrez, E; Huang, Y; Haglid, K; Bao, F; Hansson, H A; Hamberger, A; Viano, D

    2001-03-01

    Rapid head rotation is a major cause of brain damage in automobile crashes and falls. This report details a new model for rotational acceleration about the center of mass of the rabbit head. This allows the study of brain injury without translational acceleration of the head. Impact from a pneumatic cylinder was transferred to the skull surface to cause a half-sine peak acceleration of 2.1 x 10(5) rad/s2 and 0.96-ms pulse duration. Extensive subarachnoid hemorrhages and small focal bleedings were observed in the brain tissue. A pronounced reactive astrogliosis was found 8-14 days after trauma, both as networks around the focal hemorrhages and more diffusely in several brain regions. Astrocytosis was prominent in the gray matter of the cerebral cortex, layers II-V, and in the granule cell layer and around the axons of the pyramidal neurons in the hippocampus. The nuclei of cranial nerves, such as the hypoglossal and facial nerves, also showed intense astrocytosis. The new model allows study of brain injuries from head rotation in the absence of translational influences.

  8. Mechanisms Involved in Secondary Cardiac Dysfunction in Animal Models of Trauma and Hemorrhagic Shock.

    Science.gov (United States)

    Wilson, Nick M; Wall, Johanna; Naganathar, Veena; Brohi, Karim; De'Ath, Henry D

    2017-10-01

    Clinical evidence reveals the existence of a trauma-induced secondary cardiac injury (TISCI) that is associated with poor patient outcomes. The mechanisms leading to TISCI in injured patients are uncertain. Conversely, animal models of trauma hemorrhage have repeatedly demonstrated significant cardiac dysfunction following injury, and highlighted mechanisms through which this might occur. The aim of this review was to provide an overview of the animal studies describing TISCI and its pathophysiology.Basic science models of trauma show evidence of innate immune system activation via Toll-like receptors, the exact protagonists of which remain unclear. Shortly following trauma and hemorrhage, cardiomyocytes upregulate gene regulatory protein and inflammatory molecule expression including nuclear factor kappa beta, tumor necrosis factor alpha, and interleukin-6. This is associated with expression of membrane bound adhesion molecules and chemokines leading to marked myocardial leukocyte infiltration. This cell activation and infiltration is linked to a rise in enzymes that cause oxidative and nitrative stress and subsequent protein misfolding within cardiomyocytes. Such protein damage may lead to reduced contractility and myocyte apoptosis. Other molecules have been identified as cardioprotective following injury. These include p38 mitogen-activated protein kinases and heat shock proteins.The balance between increasing damaging mediators and a reduction in cardio-protective molecules appears to define myocardial function following trauma. Exogenous therapeutics have been trialled in rodents with promising abilities to favorably alter this balance, and subsequently lead to improved cardiac function.

  9. Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation.

    Directory of Open Access Journals (Sweden)

    Clara Luh

    Full Text Available It is unclear whether a single, brief, 15-minute episode of background anesthesia already modulates delayed secondary processes after experimental brain injury. Therefore, this study was designed to characterize three anesthesia protocols for their effect on molecular and histological study endpoints. Mice were randomly separated into groups that received sevoflurane (sevo, isoflurane (iso or an intraperitoneal anesthetic combination (midazolam, fentanyl and medetomidine; comb prior to traumatic brain injury (controlled cortical impact, CCI; 8 m/s, 1 mm impact depth, 3 mm diameter. Twenty-four hours after insult, histological brain damage, neurological function (via neurological severity score, cerebral inflammation (via real-time RT-PCR for IL6, COX-2, iNOS and microglia (via immunohistochemical staining for Iba1 were determined. Fifteen minutes after CCI, the brain contusion volume did not differ between the anesthetic regimens (sevo = 17.9±5.5 mm(3; iso = 20.5±3.7 mm(3; comb = 19.5±4.6 mm(3. Within 24 hours after injury, lesion size increased in all groups (sevo = 45.3±9.0 mm(3; iso = 31.5±4.0 mm(3; comb = 44.2±6.2 mm(3. Sevo and comb anesthesia resulted in a significantly larger contusion compared to iso, which was in line with the significantly better neurological function with iso (sevo = 4.6±1.3 pts.; iso = 3.9±0.8 pts.; comb = 5.1±1.6 pts.. The expression of inflammatory marker genes was not significantly different at 15 minutes and 24 hours after CCI. In contrast, significantly more Iba1-positive cells were present in the pericontusional region after sevo compared to comb anesthesia (sevo = 181±48/mm(3; iso = 150±36/mm(3; comb = 113±40/mm(3. A brief episode of anesthesia, which is sufficient for surgical preparations of mice for procedures such as delivering traumatic brain injury, already has a significant impact on the extent of secondary brain damage.

  10. Donabedian's structure-process-outcome quality of care model: Validation in an integrated trauma system.

    Science.gov (United States)

    Moore, Lynne; Lavoie, André; Bourgeois, Gilles; Lapointe, Jean

    2015-06-01

    According to Donabedian's health care quality model, improvements in the structure of care should lead to improvements in clinical processes that should in turn improve patient outcome. This model has been widely adopted by the trauma community but has not yet been validated in a trauma system. The objective of this study was to assess the performance of an integrated trauma system in terms of structure, process, and outcome and evaluate the correlation between quality domains. Quality of care was evaluated for patients treated in a Canadian provincial trauma system (2005-2010; 57 centers, n = 63,971) using quality indicators (QIs) developed and validated previously. Structural performance was measured by transposing on-site accreditation visit reports onto an evaluation grid according to American College of Surgeons criteria. The composite process QI was calculated as the average sum of proportions of conformity to 15 process QIs derived from literature review and expert opinion. Outcome performance was measured using risk-adjusted rates of mortality, complications, and readmission as well as hospital length of stay (LOS). Correlation was assessed with Pearson's correlation coefficients. Statistically significant correlations were observed between structure and process QIs (r = 0.33), and process and outcome QIs (r = -0.33 for readmission, r = -0.27 for LOS). Significant positive correlations were also observed between outcome QIs (r = 0.37 for mortality-readmission; r = 0.39 for mortality-LOS and readmission-LOS; r = 0.45 for mortality-complications; r = 0.34 for readmission-complications; 0.63 for complications-LOS). Significant correlations between quality domains observed in this study suggest that Donabedian's structure-process-outcome model is a valid model for evaluating trauma care. Trauma centers that perform well in terms of structure also tend to perform well in terms of clinical processes, which in turn has a favorable influence on patient outcomes

  11. When Physics Meets Biology: Low and High Velocity Penetration, Blunt Trauma and Blast Injuries to the Brain

    Directory of Open Access Journals (Sweden)

    Leanne eYoung

    2015-05-01

    Full Text Available The incidence of TBI in the US has reached epidemic proportions with well over 2 million new cases reported each year. TBI can occur in both civilians and warfighters, with head injuries occurring in both combat and non-combat situations from a variety of threats, including ballistic penetration, acceleration, blunt impact, and blast. Most generally, TBI is a condition in which physical loads exceed the capacity of brain tissues to absorb without injury. More specifically, TBI results when sufficient external force is applied to the head and is subsequently converted into stresses that must be absorbed or redirected by protective equipment. If the stresses are not sufficiently absorbed or redirected, they will lead to damage of extracranial soft tissue and the skull. Complex interactions and kinematics of the head, neck and jaw cause strains within the brain tissue, resulting in structural, anatomical damage that is characteristic of the inciting insult. This mechanical trauma then initiates a neuro-chemical cascade that leads to the functional consequences of TBI, such as cognitive impairment. To fully understand the mechanisms by which TBI occurs, it is critically important to understand the effects of the loading environments created by these threats. In the following, a review is made of the pertinent complex loading conditions and how these loads cause injury. Also discussed are injury thresholds and gaps in knowledge, both of which are needed to design improved protective systems.

  12. Bayesian Modelling of Functional Whole Brain Connectivity

    DEFF Research Database (Denmark)

    Røge, Rasmus

    the prevalent strategy of standardizing of fMRI time series and model data using directional statistics or we model the variability in the signal across the brain and across multiple subjects. In either case, we use Bayesian nonparametric modeling to automatically learn from the fMRI data the number......This thesis deals with parcellation of whole-brain functional magnetic resonance imaging (fMRI) using Bayesian inference with mixture models tailored to the fMRI data. In the three included papers and manuscripts, we analyze two different approaches to modeling fMRI signal; either we accept...... of funcional units, i.e. parcels. We benchmark the proposed mixture models against state of the art methods of brain parcellation, both probabilistic and non-probabilistic. The time series of each voxel are most often standardized using z-scoring which projects the time series data onto a hypersphere...

  13. Geriatric trauma.

    Science.gov (United States)

    Adams, Sasha D; Holcomb, John B

    2015-12-01

    The landscape of trauma is changing due to an aging population. Geriatric patients represent an increasing number and proportion of trauma admissions and deaths. This review explores recent literature on geriatric trauma, including triage criteria, assessment of frailty, fall-related injury, treatment of head injury complicated by coagulopathy, goals of care, and the need for ongoing education of all surgeons in the care of the elderly. Early identification of high-risk geriatric patients is imperative to initiate early resuscitative efforts. Geriatric patients are typically undertriaged because of their baseline frailty being underappreciated; however, centers that see more geriatric patients do better. Rapid reversal of anticoagulation is important in preventing progression of brain injury. Anticipation of difficult disposition necessitates early involvement of physical therapy for rehabilitation and case management for appropriate placement. Optimal care of geriatric trauma patients will be based on the well established tenets of trauma resuscitation and injury repair, but with distinct elements that address the physiological and anatomical challenges presented by geriatric patients.

  14. Understanding the Impact of Trauma Exposure on Posttraumatic Stress Symptomatology: A Structural Equation Modeling Approach

    Science.gov (United States)

    Chen, Wei; Wang, Long; Zhang, Xing-Li; Shi, Jian-Nong

    2012-01-01

    The objective of this study was to investigate the impact of trauma exposure on the posttraumatic stress symptomatology (PTSS) of children who resided near the epicenter of the 2008 Wenchuan earthquake. The mechanisms of this impact were explored via structural equation models with self-esteem and coping strategies included as mediators. The…

  15. A joint latent class model for classifying severely hemorrhaging trauma patients.

    Science.gov (United States)

    Rahbar, Mohammad H; Ning, Jing; Choi, Sangbum; Piao, Jin; Hong, Chuan; Huang, Hanwen; Del Junco, Deborah J; Fox, Erin E; Rahbar, Elaheh; Holcomb, John B

    2015-10-24

    In trauma research, "massive transfusion" (MT), historically defined as receiving ≥10 units of red blood cells (RBCs) within 24 h of admission, has been routinely used as a "gold standard" for quantifying bleeding severity. Due to early in-hospital mortality, however, MT is subject to survivor bias and thus a poorly defined criterion to classify bleeding trauma patients. Using the data from a retrospective trauma transfusion study, we applied a latent-class (LC) mixture model to identify severely hemorrhaging (SH) patients. Based on the joint distribution of cumulative units of RBCs and binary survival outcome at 24 h of admission, we applied an expectation-maximization (EM) algorithm to obtain model parameters. Estimated posterior probabilities were used for patients' classification and compared with the MT rule. To evaluate predictive performance of the LC-based classification, we examined the role of six clinical variables as predictors using two separate logistic regression models. Out of 471 trauma patients, 211 (45 %) were MT, while our latent SH classifier identified only 127 (27 %) of patients as SH. The agreement between the two classification methods was 73 %. A non-ignorable portion of patients (17 out of 68, 25 %) who died within 24 h were not classified as MT but the SH group included 62 patients (91 %) who died during the same period. Our comparison of the predictive models based on MT and SH revealed significant differences between the coefficients of potential predictors of patients who may be in need of activation of the massive transfusion protocol. The traditional MT classification does not adequately reflect transfusion practices and outcomes during the trauma reception and initial resuscitation phase. Although we have demonstrated that joint latent class modeling could be used to correct for potential bias caused by misclassification of severely bleeding patients, improvement in this approach could be made in the presence of time to event

  16. Local Inflammation in Fracture Hematoma: Results from a Combined Trauma Model in Pigs

    Directory of Open Access Journals (Sweden)

    K. Horst

    2015-01-01

    Full Text Available Background. Previous studies showed significant interaction between the local and systemic inflammatory response after severe trauma in small animal models. The purpose of this study was to establish a new combined trauma model in pigs to investigate fracture-associated local inflammation and gain information about the early inflammatory stages after polytrauma. Material and Methods. Combined trauma consisted of tibial fracture, lung contusion, liver laceration, and controlled hemorrhage. Animals were mechanically ventilated and under ICU-monitoring for 48 h. Blood and fracture hematoma samples were collected during the time course of the study. Local and systemic levels of serum cytokines and diverse alarmins were measured by ELISA kit. Results. A statistical significant difference in the systemic serum values of IL-6 and HMGB1 was observed when compared to the sham. Moreover, there was a statistical significant difference in the serum values of the fracture hematoma of IL-6, IL-8, IL-10, and HMGB1 when compared to the systemic inflammatory response. However a decrease of local proinflammatory concentrations was observed while anti-inflammatory mediators increased. Conclusion. Our data showed a time-dependent activation of the local and systemic inflammatory response. Indeed it is the first study focusing on the local and systemic inflammatory response to multiple-trauma in a large animal model.

  17. Unique neurobiology during the sensitive period for attachment produces distinctive infant trauma processing

    Science.gov (United States)

    Opendak, Maya; Sullivan, Regina M.

    2016-01-01

    Background Trauma has neurobehavioral effects when experienced at any stage of development, but trauma experienced in early life has unique neurobehavioral outcomes related to later life psychiatric sequelae. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences. Trauma experienced from an attachment figure, such as occurs in cases of caregiver child maltreatment, is particularly detrimental. Methods Using data primarily from rodent models, we review the literature on the interaction between trauma and attachment in early life, which highlights the role of the caregiver’s presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. We then consider how trauma with and without the caregiver produces long-term changes in emotionality and behavior, and suggest that these experiences initiate distinct pathways to pathology. Results Together these data suggest that infant trauma processing and its enduring effects are impacted by both the immaturity of brain areas for processing trauma and the unique functioning of the early-life brain, which is biased toward processing information within the attachment circuitry. Conclusion An understanding of developmental differences in trauma processing as well as the critical role of the caregiver in further altering early life brain processing of trauma is important for developing age-relevant treatment and interventions. Highlights of this article Trauma experienced in early life has been linked with life-long outcomes for mental health through a mechanism that remains unclear. Trauma experienced in the presence of a caregiver has unique consequences. The infant brain is predisposed toward processing information using attachment circuitry rather than threat circuitry. Data from rodent models suggest that repeated trauma in the presence of a caregiver prematurely engages brain areas important

  18. Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Natasha eKhatri

    2013-12-01

    Full Text Available Powered by glucose metabolism, the brain is the most energy-demanding organ in our body, accounting for a quarter of total oxygen consumption. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport and mitochondria translocation. Energy insufficiency will be sensed by the AMP-activated dependent protein kinase (AMPK, a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries.

  19. Fatal outcome after brain stem infarction related to bilateral vertebral artery occlusion - case report of a detrimental complication of cervical spine trauma

    Directory of Open Access Journals (Sweden)

    Beauchamp Kathryn M

    2011-07-01

    Full Text Available Abstract Background Vertebral artery injury (VAI after blunt cervical trauma occurs more frequently than historically believed. The symptoms due to vertebral artery (VA occlusion usually manifest within the first 24 hours after trauma. Misdiagnosed VAI or delay in diagnosis has been reported to cause acute deterioration of previously conscious and neurologically intact patients. Case presentation A 67 year-old male was involved in a motor vehicle crash (MVC sustaining multiple injuries. Initial evaluation by the emergency medical response team revealed that he was alert, oriented, and neurologically intact. He was transferred to the local hospital where cervical spine computed tomography (CT revealed several abnormalities. Distraction and subluxation was present at C5-C6 and a comminuted fracture of the left lateral mass of C6 with violation of the transverse foramen was noted. Unavailability of a spine specialist prompted the patient's transfer to an area medical center equipped with spine care capabilities. After arrival, the patient became unresponsive and neurological deficits were noted. His continued deterioration prompted yet another transfer to our Level 1 regional trauma center. A repeat cervical spine CT at our institution revealed significantly worsened subluxation at C5-C6. CT angiogram also revealed complete occlusion of bilateral VA. The following day, a repeat CT of the head revealed brain stem infarction due to bilateral VA occlusion. Shortly following, the patient was diagnosed with brain death and care was withdrawn. Conclusion Brain stem infarction secondary to bilateral VA occlusion following cervical spine trauma resulted in fatal outcome. Prompt imaging evaluation is necessary to assess for VAI in cervical trauma cases with facet joint subluxation/dislocation or transverse foramen fracture so that treatment is not delayed. Additionally, multiple transportation events are risk factors for worsening when unstable cervical

  20. D-galactose-induced brain ageing model

    DEFF Research Database (Denmark)

    Sadigh-Eteghad, Saeed; Majdi, Alireza; McCann, Sarah K.

    2017-01-01

    Animal models are commonly used in brain ageing research. Amongst these, models where rodents are exposed to d-galactose are held to recapitulate a number of features of ageing including neurobehavioral and neurochemical changes. However, results from animal studies are often inconsistent...

  1. Targeting Epigenetic Mechanisms in Pain due to Trauma and Traumatic Brain Injury(TBI)

    Science.gov (United States)

    2016-10-01

    after incision and TBI, and the relationship of those changes to CXCR2 expression ST4.1 Establish spinal cord sites and cell types displaying...we plan to use oral preparations of these drugs and establish dose-response relationships as these will be pharmacologically useful and make the...Anesthesiology Annual Awards Dinner . Palo Alto, CA, June, 2016. 4. Epigenetic Regulation of Chronic Pain after Traumatic Brain Injury. De-Yong

  2. Multivariate Heteroscedasticity Models for Functional Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Christof Seiler

    2017-12-01

    Full Text Available Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI. We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  3. Pathways from Trauma to Psychotic Experiences: A Theoretically Informed Model of Posttraumatic Stress in Psychosis

    Directory of Open Access Journals (Sweden)

    Amy Hardy

    2017-05-01

    Full Text Available In recent years, empirical data and theoretical accounts relating to the relationship between childhood victimization and psychotic experiences have accumulated. Much of this work has focused on co-occurring Posttraumatic Stress Disorder or putative causal mechanisms in isolation from each other. The complexity of posttraumatic stress reactions experienced in psychosis remains poorly understood. This paper therefore attempts to synthesize the current evidence base into a theoretically informed, multifactorial model of posttraumatic stress in psychosis. Three trauma-related vulnerability factors are proposed to give rise to intrusions and to affect how people appraise and cope with them. First, understandable attempts to survive trauma become habitual ways of regulating emotion, manifesting in cognitive-affective, behavioral and interpersonal responses. Second, event memories, consisting of perceptual and episodic representations, are impacted by emotion experienced during trauma. Third, personal semantic memory, specifically appraisals of the self and others, are shaped by event memories. It is proposed these vulnerability factors have the potential to lead to two types of intrusions. The first type is anomalous experiences arising from emotion regulation and/or the generation of novel images derived from trauma memory. The second type is trauma memory intrusions reflecting, to varying degrees, the retrieval of perceptual, episodic and personal semantic representations. It is speculated trauma memory intrusions may be experienced on a continuum from contextualized to fragmented, depending on memory encoding and retrieval. Personal semantic memory will then impact on how intrusions are appraised, with habitual emotion regulation strategies influencing people’s coping responses to these. Three vignettes are outlined to illustrate how the model accounts for different pathways between victimization and psychosis, and implications for therapy are

  4. Comparative analysis of the influence of Corvitin and Lipoflavon on parameters of energy metabolism in the brain of rats with experimental severe craniocerebral trauma

    OpenAIRE

    S. A. Zhilyaev; S. Yu. Shtrigol

    2013-01-01

    Hyperglycemia in rats develops in acute period of severe craniocerebral trauma: glucose consumption in rats’ brain increases, lactic acidosis develops, and the content of ATP decreases. Piracetam (200 mg/kg) does not eliminate hyperglycaemia but normalizes the level of intermediates of energy metabolism. Corvitin (100–150 mg/kg) eliminates hyperglycemia, normalizes the pyruvic and lactic acids, significantly increases the level of ATP. Lipoflavon (370 mg/kg) normalizes the blood level of gluc...

  5. Astrogliosis in the neonatal and adult murine brain post-trauma

    DEFF Research Database (Denmark)

    Rostworowski, M; Balasingam, V; Chabot, S

    1997-01-01

    inflammatory cytokines in injury systems in which the presence or absence of astrogliosis could be produced selectively. A stab injury to the adult mouse brain using a piece of nitrocellulose (NC) membrane elicited a prompt and marked increase in levels of transcripts for interleukin (IL)-1alpha, IL-1beta......, and because its exogenous administration to rodents enhanced astrogliosis after adult or neonatal insults. A lack of requirement for endogenous IFN-gamma was demonstrated by three lines of evidence. First, no increase in IFN-gamma transcripts could be found at injury. Second, the administration...

  6. Modeling high dimensional multichannel brain signals

    KAUST Repository

    Hu, Lechuan

    2017-03-27

    In this paper, our goal is to model functional and effective (directional) connectivity in network of multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The primary challenges here are twofold: first, there are major statistical and computational difficulties for modeling and analyzing high dimensional multichannel brain signals; second, there is no set of universally-agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with sufficiently high order so that complex lead-lag temporal dynamics between the channels can be accurately characterized. However, such a model contains a large number of parameters. Thus, we will estimate the high dimensional VAR parameter space by our proposed hybrid LASSLE method (LASSO+LSE) which is imposes regularization on the first step (to control for sparsity) and constrained least squares estimation on the second step (to improve bias and mean-squared error of the estimator). Then to characterize connectivity between channels in a brain network, we will use various measures but put an emphasis on partial directed coherence (PDC) in order to capture directional connectivity between channels. PDC is a directed frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative all possible receivers in the network. Using the proposed modeling approach, we have achieved some insights on learning in a rat engaged in a non-spatial memory task.

  7. Modeling high dimensional multichannel brain signals

    KAUST Repository

    Hu, Lechuan; Fortin, Norbert; Ombao, Hernando

    2017-01-01

    In this paper, our goal is to model functional and effective (directional) connectivity in network of multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The primary challenges here are twofold: first, there are major statistical and computational difficulties for modeling and analyzing high dimensional multichannel brain signals; second, there is no set of universally-agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with sufficiently high order so that complex lead-lag temporal dynamics between the channels can be accurately characterized. However, such a model contains a large number of parameters. Thus, we will estimate the high dimensional VAR parameter space by our proposed hybrid LASSLE method (LASSO+LSE) which is imposes regularization on the first step (to control for sparsity) and constrained least squares estimation on the second step (to improve bias and mean-squared error of the estimator). Then to characterize connectivity between channels in a brain network, we will use various measures but put an emphasis on partial directed coherence (PDC) in order to capture directional connectivity between channels. PDC is a directed frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative all possible receivers in the network. Using the proposed modeling approach, we have achieved some insights on learning in a rat engaged in a non-spatial memory task.

  8. Prediction modelling for trauma using comorbidity and 'true' 30-day outcome.

    Science.gov (United States)

    Bouamra, Omar; Jacques, Richard; Edwards, Antoinette; Yates, David W; Lawrence, Thomas; Jenks, Tom; Woodford, Maralyn; Lecky, Fiona

    2015-12-01

    Prediction models for trauma outcome routinely control for age but there is uncertainty about the need to control for comorbidity and whether the two interact. This paper describes recent revisions to the Trauma Audit and Research Network (TARN) risk adjustment model designed to take account of age and comorbidities. In addition linkage between TARN and the Office of National Statistics (ONS) database allows patient's outcome to be accurately identified up to 30 days after injury. Outcome at discharge within 30 days was previously used. Prospectively collected data between 2010 and 2013 from the TARN database were analysed. The data for modelling consisted of 129 786 hospital trauma admissions. Three models were compared using the area under the receiver operating curve (AuROC) for assessing the ability of the models to predict outcome, the Akaike information criteria to measure the quality between models and test for goodness-of-fit and calibration. Model 1 is the current TARN model, Model 2 is Model 1 augmented by a modified Charlson comorbidity index and Model 3 is Model 2 with ONS data on 30 day outcome. The values of the AuROC curve for Model 1 were 0.896 (95% CI 0.893 to 0.899), for Model 2 were 0.904 (0.900 to 0.907) and for Model 3 0.897 (0.896 to 0.902). No significant interaction was found between age and comorbidity in Model 2 or in Model 3. The new model includes comorbidity and this has improved outcome prediction. There was no interaction between age and comorbidity, suggesting that both independently increase vulnerability to mortality after injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Fresh frozen plasma resuscitation attenuates platelet dysfunction compared with normal saline in a large animal model of multisystem trauma

    DEFF Research Database (Denmark)

    Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S

    2014-01-01

    to multisystem trauma (traumatic brain injury, liver injury, rib fracture, and soft tissue injury) with hemorrhagic shock (40% of estimated blood volume). Animals were left in shock (mean arterial pressure, 30-35 mm Hg) for 2 hours followed by resuscitation with three times shed volume NS (n = 6) or one times...

  10. Outcome in Women with Traumatic Brain Injury Admitted to a Level 1 Trauma Center

    Science.gov (United States)

    de Guise, Elaine; Tinawi, Simon; Marcoux, Judith; Maleki, Mohammed

    2014-01-01

    Background. The aim of this study was to compare acute outcome between men and women after sustaining a traumatic brain injury (TBI). Methods. A total of 5,642 patients admitted to the Traumatic Brain Injury Program of the McGill University Health Centre-Montreal General Hospital between 2000 and 2011 and diagnosed with a TBI were included in the study. The overall percentage of women with TBI was 30.6% (n = 1728). Outcome measures included the length of stay (LOS), the Extended Glasgow Outcome Scale (GOSE), the functional independence measure instrument (FIM), discharge destination, and mortality rate. Results. LOS, GOSE, the FIM ratings, and discharge destination did not show significant differences between genders once controlling for several confounding variables and running the appropriate diagnostic tests (P < 0.05). However, women had less chance of dying during their acute care hospitalization than men of the same age, with the same TBI severity and following the same mechanism of injury. Although gender was a statistically significant predictor, its contribution in explaining variation in mortality was small. Conclusion. More research is needed to better understand gender differences in mortality; as to date, the research findings remain inconclusive. PMID:27355011

  11. Polypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy?

    Science.gov (United States)

    Washington, Patricia M; Villapol, Sonia; Burns, Mark P

    2016-01-01

    Neuropathological studies of human traumatic brain injury (TBI) cases have described amyloid plaques acutely after a single severe TBI, and tau pathology after repeat mild TBI (mTBI). This has helped drive the hypothesis that a single moderate to severe TBI increases the risk of developing late-onset Alzheimer's disease (AD), while repeat mTBI increases the risk of developing chronic traumatic encephalopathy (CTE). In this review we critically assess this position-examining epidemiological and case control human studies, neuropathological evidence, and preclinical data. Epidemiological studies emphasize that TBI is associated with the increased risk of developing multiple types of dementia, not just AD-type dementia, and that TBI can also trigger other neurodegenerative conditions such as Parkinson's disease. Further, human post-mortem studies on both single TBI and repeat mTBI can show combinations of amyloid, tau, TDP-43, and Lewy body pathology indicating that the neuropathology of TBI is best described as a 'polypathology'. Preclinical studies confirm that multiple proteins associated with the development of neurodegenerative disease accumulate in the brain after TBI. The chronic sequelae of both single TBI and repeat mTBI share common neuropathological features and clinical symptoms of classically defined neurodegenerative disorders. However, while the spectrum of chronic cognitive and neurobehavioral disorders that occur following repeat mTBI is viewed as the symptoms of CTE, the spectrum of chronic cognitive and neurobehavioral symptoms that occur after a single TBI is considered to represent distinct neurodegenerative diseases such as AD. These data support the suggestion that the multiple manifestations of TBI-induced neurodegenerative disorders be classified together as traumatic encephalopathy or trauma-induced neurodegeneration, regardless of the nature or frequency of the precipitating TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Systematic review of prognostic models in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Roberts Ian

    2006-11-01

    Full Text Available Abstract Background Traumatic brain injury (TBI is a leading cause of death and disability world-wide. The ability to accurately predict patient outcome after TBI has an important role in clinical practice and research. Prognostic models are statistical models that combine two or more items of patient data to predict clinical outcome. They may improve predictions in TBI patients. Multiple prognostic models for TBI have accumulated for decades but none of them is widely used in clinical practice. The objective of this systematic review is to critically assess existing prognostic models for TBI Methods Studies that combine at least two variables to predict any outcome in patients with TBI were searched in PUBMED and EMBASE. Two reviewers independently examined titles, abstracts and assessed whether each met the pre-defined inclusion criteria. Results A total of 53 reports including 102 models were identified. Almost half (47% were derived from adult patients. Three quarters of the models included less than 500 patients. Most of the models (93% were from high income countries populations. Logistic regression was the most common analytical strategy to derived models (47%. In relation to the quality of the derivation models (n:66, only 15% reported less than 10% pf loss to follow-up, 68% did not justify the rationale to include the predictors, 11% conducted an external validation and only 19% of the logistic models presented the results in a clinically user-friendly way Conclusion Prognostic models are frequently published but they are developed from small samples of patients, their methodological quality is poor and they are rarely validated on external populations. Furthermore, they are not clinically practical as they are not presented to physicians in a user-friendly way. Finally because only a few are developed using populations from low and middle income countries, where most of trauma occurs, the generalizability to these setting is limited.

  13. Murine Models of Sepsis and Trauma: Can We Bridge the Gap?

    Science.gov (United States)

    Stortz, Julie A; Raymond, Steven L; Mira, Juan C; Moldawer, Lyle L; Mohr, Alicia M; Efron, Philip A

    2017-07-01

    Sepsis and trauma are both leading causes of death in the United States and represent major public health challenges. Murine models have largely been used in sepsis and trauma research to better understand the pathophysiological changes that occur after an insult and to develop potential life-saving therapeutic agents. Mice are favorable subjects for this type of research given the variety of readily available strains including inbred, outbred, and transgenic strains. In addition, they are relatively easy to maintain and have a high fecundity. However, pharmacological therapies demonstrating promise in preclinical mouse models of sepsis and trauma often fail to demonstrate similar efficacy in human clinical trials, prompting considerable criticism surrounding the capacity of murine models to recapitulate complex human diseases like sepsis and traumatic injury. Fundamental differences between the two species include, but are not limited to, the divergence of the transcriptomic response, the mismatch of temporal response patterns, differences in both innate and adaptive immunity, and heterogeneity within the human population in comparison to the homogeneity of highly inbred mouse strains. Given the ongoing controversy, this narrative review aims to not only highlight the historical importance of the mouse as an animal research model but also highlight the current benefits and limitations of the model as it pertains to sepsis and trauma. Lastly, this review will propose future directions that may promote further use of the model. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A; Zbijewski, W; Stayman, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Yorkston, J [Carestream Health (United States); Aygun, N [Department of Radiology, Johns Hopkins University (United States); Koliatsos, V [Department of Neurology, Johns Hopkins University (United States); Siewerdsen, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Department of Radiology, Johns Hopkins University (United States)

    2014-06-15

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain

  15. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    International Nuclear Information System (INIS)

    Sisniega, A; Zbijewski, W; Stayman, J; Yorkston, J; Aygun, N; Koliatsos, V; Siewerdsen, J

    2014-01-01

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain

  16. Poisson regression for modeling count and frequency outcomes in trauma research.

    Science.gov (United States)

    Gagnon, David R; Doron-LaMarca, Susan; Bell, Margret; O'Farrell, Timothy J; Taft, Casey T

    2008-10-01

    The authors describe how the Poisson regression method for analyzing count or frequency outcome variables can be applied in trauma studies. The outcome of interest in trauma research may represent a count of the number of incidents of behavior occurring in a given time interval, such as acts of physical aggression or substance abuse. Traditional linear regression approaches assume a normally distributed outcome variable with equal variances over the range of predictor variables, and may not be optimal for modeling count outcomes. An application of Poisson regression is presented using data from a study of intimate partner aggression among male patients in an alcohol treatment program and their female partners. Results of Poisson regression and linear regression models are compared.

  17. Modeling High-Dimensional Multichannel Brain Signals

    KAUST Repository

    Hu, Lechuan

    2017-12-12

    Our goal is to model and measure functional and effective (directional) connectivity in multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The difficulties from analyzing these data mainly come from two aspects: first, there are major statistical and computational challenges for modeling and analyzing high-dimensional multichannel brain signals; second, there is no set of universally agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with potentially high lag order so that complex lead-lag temporal dynamics between the channels can be captured. Estimates of the VAR model will be obtained by our proposed hybrid LASSLE (LASSO + LSE) method which combines regularization (to control for sparsity) and least squares estimation (to improve bias and mean-squared error). Then we employ some measures of connectivity but put an emphasis on partial directed coherence (PDC) which can capture the directional connectivity between channels. PDC is a frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative to all possible receivers in the network. The proposed modeling approach provided key insights into potential functional relationships among simultaneously recorded sites during performance of a complex memory task. Specifically, this novel method was successful in quantifying patterns of effective connectivity across electrode locations, and in capturing how these patterns varied across trial epochs and trial types.

  18. Teamwork skills, shared mental models, and performance in simulated trauma teams: an independent group design

    Directory of Open Access Journals (Sweden)

    Westli Heidi

    2010-08-01

    Full Text Available Abstract Background Non-technical skills are seen as an important contributor to reducing adverse events and improving medical management in healthcare teams. Previous research on the effectiveness of teams has suggested that shared mental models facilitate coordination and team performance. The purpose of the study was to investigate whether demonstrated teamwork skills and behaviour indicating shared mental models would be associated with observed improved medical management in trauma team simulations. Methods Revised versions of the 'Anesthetists' Non-Technical Skills Behavioural marker system' and 'Anti-Air Teamwork Observation Measure' were field tested in moment-to-moment observation of 27 trauma team simulations in Norwegian hospitals. Independent subject matter experts rated medical management in the teams. An independent group design was used to explore differences in teamwork skills between higher-performing and lower-performing teams. Results Specific teamwork skills and behavioural markers were associated with indicators of good team performance. Higher and lower-performing teams differed in information exchange, supporting behaviour and communication, with higher performing teams showing more effective information exchange and communication, and less supporting behaviours. Behavioural markers of shared mental models predicted effective medical management better than teamwork skills. Conclusions The present study replicates and extends previous research by providing new empirical evidence of the significance of specific teamwork skills and a shared mental model for the effective medical management of trauma teams. In addition, the study underlines the generic nature of teamwork skills by demonstrating their transferability from different clinical simulations like the anaesthesia environment to trauma care, as well as the potential usefulness of behavioural frequency analysis in future research on non-technical skills.

  19. Evaluation of bone loss due to primary occlusal trauma in two experimental models of occlusal overload

    OpenAIRE

    LOPES, Ana Cristina Távora de Albuquerque; TÉO, Mirela Anne Quartaroli; CORRÊA, Mônica Grazieli; ISHIKIRIAMA, Bella Luna Colombini; CAMPOS, Mirella Lindoso Gomes

    2016-01-01

    Abstract Introduction Primary occlusal trauma (OT) is an injury of the periodontium with normal height as a result of occlusal forces which exceed their adaptive capacity. Objective To evaluate, histometrically, the alveolar bone loss in the furcation region of rats experimentally submitted to 2 models of occlusal overload. Material and method 45 animals randomly divided into 3 groups: Occlusal Interference (OI, n = 15) - fixing an orthodontic wire segment on the occlusal surface of the fi...

  20. Intracranial electrical impedance tomography: a method of continuous monitoring in an animal model of head trauma.

    Science.gov (United States)

    Manwaring, Preston K; Moodie, Karen L; Hartov, Alexander; Manwaring, Kim H; Halter, Ryan J

    2013-10-01

    Electrical impedance tomography (EIT) is a method that can render continuous graphical cross-sectional images of the brain's electrical properties. Because these properties can be altered by variations in water content, shifts in sodium concentration, bleeding, and mass deformation, EIT has promise as a sensitive instrument for head injury monitoring to improve early recognition of deterioration and to observe the benefits of therapeutic intervention. This study presents a swine model of head injury used to determine the detection capabilities of an inexpensive bedside EIT monitoring system with a novel intracranial pressure (ICP)/EIT electrode combination sensor on induced intraparenchymal mass effect, intraparenchymal hemorrhage, and cessation of brain blood flow. Conductivity difference images are shown in conjunction with ICP data, confirming the effects. Eight domestic piglets (3-4 weeks of age, mean 10 kg), under general anesthesia, were subjected to 4 injuries: induced intraparenchymal mass effect using an inflated, and later, deflated 0.15-mL Fogarty catheter; hemorrhage by intraparenchymal injection of 1-mL arterial blood; and ischemia/infarction by euthanasia. EIT and ICP data were recorded 10 minutes before inducing the injury until 10 minutes after injury. Continuous EIT and ICP monitoring were facilitated by a ring of circumferentially disposed cranial Ag/AgCl electrodes and 1 intraparenchymal ICP/EIT sensor electrode combination. Data were recorded at 100 Hz. Two-dimensional tomographic conductivity difference (Δσ) images, rendered using data before and after an injury, were displayed in real time on an axial circular mesh. Regions of interest (ROI) within the images were automatically selected as the upper or lower 5% of conductivity data depending on the nature of the injury. Mean Δσ within the ROIs and background were statistically analyzed. ROI Δσ was compared with the background Δσ after an injury event using an unpaired, unequal variance

  1. Determining early markers of disease using Raman spectroscopy in a rat combat-trauma model of heterotopic ossification

    Science.gov (United States)

    Cilwa, Katherine E.; Qureshi, Ammar T.; Forsberg, Jonathan A.; Davis, Thomas A.; Crane, Nicole J.

    2016-02-01

    Traumatic heterotopic ossification (HO) is the pathological formation of bone in soft tissue and is a debilitating sequela following acute trauma involving blast-related extremity musculoskeletal injuries, severe burns, spinal cord injury, and traumatic brain injury. Over 60% of combat related injuries and severe burns develop HO; often resulting in reduced mobility, chronic pain, ulceration, tissue entrapment, and reduced ambulation. Detection and prognosis is limited by current clinical imaging modalities (computed tomography, radiography, and ultrasound). This study identifies Raman spectral signatures corresponding to histological changes in a combat-trauma induced rat HO model at early time points prior to radiographic evidence of HO. HO was induced in Sprague-Dawley rats via blast over pressure injury, mid-femoral fracture, soft tissue crush injury, and limb amputation through the zone of injury. Rats were euthanized, and amputated limbs were formalin fixed and embedded in paraffin; 10 μm sections were placed on gold slides, and paraffin was chemically removed. Tissues from sham-treated animals served as controls. Tissue maps consisting of Raman spectra were generated using a Raman microprobe system with an 80-90 μm spot size and 785 nm excitation in regions exhibiting histological evidence of early HO development according to adjacent HE sections. Factors were extracted from mapping data using Band-Target Entropy Minimization algorithms. Areas of early HO were highlighted by a Raman factor indicative of the presence of collagen. Identification of collagen as an early marker of HO prior to radiographic detection in a clinically relevant animal model serves to inform future clinical work.

  2. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  3. [A neuropsychoanalytic freudian model of psychic trauma and memory. Theoretical and clinical applications].

    Science.gov (United States)

    Cohen, Diego; Basili, Rubén; Sharpin de Basili, Isabel

    2009-01-01

    The traumatic memory is conceptualized by means of an amplified Freudian neuropsychoanalytic model using a contemporary memory system based on its contents, conscious and unconscious recollection (explicit and implicit memories) highlighting the validity of the Freudian discoveries. This is then related to the psychoanalytical theories of consciousness, affects and thinking. Particular importance is given to Freud's seduction theory, its relation to memory and the clinical application of these concepts to the basic organization of the personality, together with the relation to Bowlby's concept of emotional deprivation. The development and working trough of trauma is postulated as a vector to make "real" or phantasized trauma unconscious through repression in neurosis, splitting in borderline personality organization, and primitive mechanisms of projection in psychosis.

  4. Temporal Profile of Microtubule-Associated Protein 2: A Novel Indicator of Diffuse Brain Injury Severity and Early Mortality after Brain Trauma.

    Science.gov (United States)

    Papa, Linda; Robicsek, Steven A; Brophy, Gretchen M; Wang, Kevin K W; Hannay, H Julia; Heaton, Shelley; Schmalfuss, Ilona; Gabrielli, Andrea; Hayes, Ronald L; Robertson, Claudia S

    2018-01-01

    This study compared cerebrospinal fluid (CSF) levels of microtubule-associated protein 2 (MAP-2) from adult patients with severe traumatic brain injury (TBI) with uninjured controls over 10 days, and examined the relationship between MAP-2 concentrations and acute clinical and radiologic measures of injury severity along with mortality at 2 weeks and over 6 months. This prospective study, conducted at two Level 1 trauma centers, enrolled adults with severe TBI (Glasgow Coma Scale [GCS] score ≤8) requiring a ventriculostomy, as well as controls. Ventricular CSF was sampled from each patient at 6, 12, 24, 48, 72, 96, 120, 144, 168, 192, 216, and 240 h following TBI and analyzed via enzyme-linked immunosorbent assay for MAP-2 (ng/mL). Injury severity was assessed by the GCS score, Marshall Classification on computed tomography (CT), Rotterdam CT score, and mortality. There were 151 patients enrolled-130 TBI and 21 control patients. MAP-2 was detectable within 6 h of injury and was significantly elevated compared with controls (p < 0.001) at each time-point. MAP-2 was highest within 72 h of injury and decreased gradually over 10 days. The area under the receiver operating characteristic curve for deciphering TBI versus controls at the earliest time-point CSF was obtained was 0.96 (95% CI 0.93-0.99) and for the maximal 24-h level was 0.98 (95% CI 0.97-1.00). The area under the curve for initial MAP-2 levels predicting 2-week mortality was 0.80 at 6 h, 0.81 at 12 h, 0.75 at 18 h, 0.75 at 24 h, and 0.80 at 48 h. Those with Diffuse Injury III-IV had much higher initial (p = 0.033) and maximal (p = 0.003) MAP-2 levels than those with Diffuse Injury I-II. There was a graded increase in the overall levels and peaks of MAP-2 as the degree of diffuse injury increased within the first 120 h post-injury. These data suggest that early levels of MAP-2 reflect severity of diffuse brain injury and predict 2-week mortality in TBI patients. These

  5. Utility of the Military Acute Concussion Evaluation as a screening tool for mild traumatic brain injury in a civilian trauma population.

    Science.gov (United States)

    Stone, Melvin E; Safadjou, Saman; Farber, Benjamin; Velazco, Nerissa; Man, Jianliang; Reddy, Srinivas H; Todor, Roxanne; Teperman, Sheldon

    2015-07-01

    Mild traumatic brain injury (mTBI) constitutes 75% of more than 1.5 million traumatic brain injuries annually. There exists no consensus on point-of-care screening for mTBI. The Military Acute Concussion Evaluation (MACE) is a quick and easy test used by the US Army to screen for mTBI; however, its utility in civilian trauma is unclear. It has two parts: a history section and the Standardized Assessment of Concussion (SAC) score (0-30) previously validated in sports injury. As a performance improvement project, our institution sought to evaluate the MACE as a concussion screening tool that could be used by housestaff in a general civilian trauma population. From June 2013 to May 2014, patients 18 years to 65 years old with suspected concussion were given the MACE within 72 hours of admission to our urban Level I trauma center. Patients with a positive head computed tomography were excluded. Demographic data and MACE scores were recorded in prospect. Concussion was defined as loss of consciousness and/or posttraumatic amnesia; concussed patients were compared with those nonconcussed. Sensitivity and specificity for each respective MACE score were used to plot a receiver operating characteristic (ROC) curve. An ROC curve area of 0.8 was set as the benchmark for a good screening test to distinguish concussion from nonconcussion. There were 84 concussions and 30 nonconcussed patients. Both groups were similar; however, the concussion group had a lower mean MACE score than the nonconcussed patients. Data analysis demonstrated the sensitivity and specificity of a range of MACE scores used to generate an ROC curve area of only 0.65. The MACE showed a lower mean score for individuals with concussion, defined by loss of consciousness and/or posttraumatic amnesia. However, the ROC curve area of 0.65 highly suggests that MACE alone would be a poor screening test for mTBI in a general civilian trauma population. Diagnostic study, level II.

  6. Major trauma: the unseen financial burden to trauma centres, a descriptive multicentre analysis.

    Science.gov (United States)

    Curtis, Kate; Lam, Mary; Mitchell, Rebecca; Dickson, Cara; McDonnell, Karon

    2014-02-01

    This research examines the existing funding model for in-hospital trauma patient episodes in New South Wales (NSW), Australia and identifies factors that cause above-average treatment costs. Accurate information on the treatment costs of injury is needed to guide health-funding strategy and prevent inadvertent underfunding of specialist trauma centres, which treat a high trauma casemix. Admitted trauma patient data provided by 12 trauma centres were linked with financial data for 2008-09. Actual costs incurred by each hospital were compared with state-wide Australian Refined Diagnostic Related Groups (AR-DRG) average costs. Patient episodes where actual cost was higher than AR-DRG cost allocation were examined. There were 16693 patients at a total cost of AU$178.7million. The total costs incurred by trauma centres were $14.7million above the NSW peer-group average cost estimates. There were 10 AR-DRG where the total cost variance was greater than $500000. The AR-DRG with the largest proportion of patients were the upper limb injury categories, many of whom had multiple body regions injured and/or a traumatic brain injury (P<0.001). AR-DRG classifications do not adequately describe the trauma patient episode and are not commensurate with the expense of trauma treatment. A revision of AR-DRG used for trauma is needed. WHAT IS KNOWN ABOUT THIS TOPIC? Severely injured trauma patients often have multiple injuries, in more than one body region and the determination of appropriate AR-DRG can be difficult. Pilot research suggests that the AR-DRG do not accurately represent the care that is required for these patients. WHAT DOES THIS PAPER ADD? This is the first multicentre analysis of treatment costs and coding variance for major trauma in Australia. This research identifies the limitations of the current AR-DRGS and those that are particularly problematic. The value of linking trauma registry and financial data within each trauma centre is demonstrated. WHAT ARE THE

  7. Platelet activation and dysfunction in a large-animal model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S

    2013-01-01

    Traumatic brain injury (TBI) and hemorrhage are the leading causes of trauma-related mortality. Both TBI and hemorrhage are associated with coagulation disturbances, including platelet dysfunction. We hypothesized that platelet dysfunction could be detected early after injury...

  8. Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling

    Directory of Open Access Journals (Sweden)

    Natalia Malinovskaya

    2016-12-01

    Full Text Available Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons. Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

  9. Prevalence and Risk Factors for Early Seizure in Patients with Traumatic Brain Injury: Analysis from National Trauma Data Bank.

    Science.gov (United States)

    Majidi, Shahram; Makke, Yamane; Ewida, Amr; Sianati, Bahareh; Qureshi, Adnan I; Koubeissi, Mohamad Z

    2017-08-01

    Traumatic brain injury (TBI) is a well-known risk factor for seizures. We aimed to identify the frequency and risk factors for seizure occurrence during hospitalization for TBI. We used ICD-9-CM codes to identify patients 18 years of age or older from the National Trauma Data Bank who were admitted with TBI. We also used ICD-9-CM codes to identify the subset who had seizures during hospitalization. Patient demographics, comorbidities, Glasgow Coma Scale (GCS) score, Injury Severity Score Abbreviated Injury Scale (ISSAIS), in-hospital complications, and discharge disposition were compared in the seizure group (SG) and no-seizure group (NSG). A total of 1559 patients had in-hospital seizures, comprising 0.4% of all patients admitted with TBI. The mean age of SG was 3 years older than NSG [51 vs. 48; p < 0.0001]. African-American ethnicity (20 vs. 12%, p < 0.0001) and moderate TBI (8 vs. 4%, p < 0.0001) were more common in SG. History of alcohol dependence was more common in the SG (25 vs. 11%, p < 0.0001). Fall was the most common mechanism of injury in SG (56 vs. 36% in NSG; p < 0.0001). Subdural hematoma was more common in SG (31 vs. 21%, p < 0.0001). SG had higher rates of pneumonia, ARDS, acute kidney injury, and increased ICP. The average length of hospital stay was significantly higher in SG (10 vs. 6 days, p < 0.0001), and these patients had higher rate of discharge to nursing facility (32 vs. 25%, p < 0.0001). In-hospital seizures occur in 0.4% of all TBI patients. Although infrequent, seizure occurrence is associated with higher rates of hospital complications such as pneumonia and ARDS and is an independent predictor of longer hospital stay and worse hospital outcome.

  10. Operation Brain Trauma Therapy

    Science.gov (United States)

    2012-10-01

    mouth, following the roof of the mouth, and advanced into the esophagus and toward the stomach. After the tube is passed to the correct length...cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear-factor-kappaB

  11. Modeling the Relationship between Trauma and Psychological Distress among HIV-Positive and HIV-Negative Women.

    Science.gov (United States)

    Brumsey, Ayesha Delany; Joseph, Nataria T; Myers, Hector F; Ullman, Jodie B; Wyatt, Gail E

    2013-01-01

    This study investigated the association between cumulative exposure to multiple traumatic events and psychological distress, as mediated by problematic substance use and impaired psychosocial resources. A sample of HIV-positive and HIV-negative women were assessed for a history of childhood and adult sexual abuse and non-sexual trauma as predictors of psychological distress (i.e., depression, non-specific anxiety, and posttraumatic stress), as mediated by problematic alcohol and drug use and psychosocial resources (i.e., social support, self-esteem and optimism). Structural equation modeling confirmed that cumulative trauma exposure is positively associated with greater psychological distress, and that this association is partially mediated through impaired psychosocial resources. However, although cumulative trauma was associated with greater problematic substance use, substance use did not mediate the relationship between trauma and psychological distress.

  12. [First aid system for trauma: development and status].

    Science.gov (United States)

    Chen, D K; Lin, W C; Zhang, P; Kuang, S J; Huang, W; Wang, T B

    2017-04-18

    With the great progress of the economy, the level of industrialization has been increasing year by year, which leads to an increase in accidental trauma accidents. Chinese annual death of trauma is already more than 400 000, which makes trauma the fifth most common cause of death, following malignant tumor, heart, brain and respiratory diseases. Trauma is the leading cause of the death of young adults. At the same time, trauma has become a serious social problem in peace time. Trauma throws great treats on human health and life. As an important part in the medical and social security system, the emergency of trauma system occupies a very important position in the emergency medical service system. In European countries as well as the United States and also many other developed countries, trauma service system had a long history, and progressed to an advanced stage. However, Chinese trauma service system started late and is still developing. It has not turned into a complete and standardized system yet. This review summarizes the histories and current situations of the development of traumatic first aid system separately in European countries, the United States and our country. Special attentions are paid to the effects of the pre- and in-hospital emergency care. We also further try to explore the Chinese trauma emergency model that adapts to the situations of China and characteristics of different regions of China. Our review also introduces the trauma service system that suits the situations of China proposed by Professor Jiang Baoguo's team in details, taking Chinese conditions into account, they conducted a thematic study and made an expert consensus on pre-hospital emergency treatment of severe trauma, providing a basic routine and guidance of severe trauma treatment for those pre-hospital emergency physicians. They also advised to establish independent trauma disciplines and trauma specialist training systems, and to build the regional trauma care system as

  13. Trauma Induced Coagulopathy

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Johansson, Per; Meyer, Martin Abild Stengaard

    2013-01-01

    It remains debated whether traumatic brain injury (TBI) induces a different coagulopathy compared to non-TBI. This study investigated traditional coagulation tests, biomarkers of coagulopathy and endothelial damage in trauma patients with and without TBI. Blood from 80 adult trauma patients were...... sampled (median of 68 min (IQR 48-88) post-injury) upon admission to our trauma centre. Plasma/serum were retrospectively analysed for biomarkers reflecting sympathoadrenal activation (adrenaline, noradrenaline), coagulation activation/inhibition and fibrinolysis (protein C, activated protein C, tissue...

  14. A mathematical model of capacious and efficient memory that survives trauma

    Science.gov (United States)

    Srivastava, Vipin; Edwards, S. F.

    2004-02-01

    The brain's memory system can store without any apparent constraint, it recalls stored information efficiently and it is robust against lesion. Existing models of memory do not fully account for all these features. The model due to Hopfield (Proc. Natl. Acad. Sci. USA 79 (1982) 2554) based on Hebbian learning (The Organization of Behaviour, Wiley, New York, 1949) shows an early saturation of memory with the retrieval from memory becoming slow and unreliable before collapsing at this limit. Our hypothesis (Physica A 276 (2000) 352) that the brain might store orthogonalized information improved the situation in many ways but was still constrained in that the information to be stored had to be linearly independent, i.e., signals that could be expressed as linear combinations of others had to be excluded. Here we present a model that attempts to address the problem quite comprehensively in the background of the above attributes of the brain. We demonstrate that if the brain devolves incoming signals in analogy with Fourier analysis, the noise created by interference of stored signals diminishes systematically (which yields prompt retrieval) and most importantly it can withstand partial damages to the brain.

  15. Structure, Process, and Culture of Intensive Care Units Treating Patients with Severe Traumatic Brain Injury: Survey of Centers Participating in the American College of Surgeons Trauma Quality Improvement Program.

    Science.gov (United States)

    Alali, Aziz S; McCredie, Victoria A; Mainprize, Todd G; Gomez, David; Nathens, Avery B

    2017-10-01

    Outcome after severe traumatic brain injury (TBI) differs substantially between hospitals. Explaining this variation begins with understanding the differences in structures and processes of care, particularly at intensive care units (ICUs) where acute TBI care takes place. We invited trauma medical directors (TMDs) from 187 centers participating in the American College of Surgeons Trauma Quality Improvement Program (ACS TQIP) to complete a survey. The survey domains included ICU model, type, availability of specialized units, staff, training programs, standard protocols and order sets, approach to withdrawal of life support, and perceived level of neurosurgeons' engagement in the ICU management of TBI. One hundred forty-two TMDs (76%) completed the survey. Severe TBI patients are admitted to dedicated neurocritical care units in 52 hospitals (37%), trauma ICUs in 44 hospitals (31%), general ICUs in 34 hospitals (24%), and surgical ICUs in 11 hospitals (8%). Fifty-seven percent are closed units. Board-certified intensivists directed 89% of ICUs, whereas 17% were led by neurointensivists. Sixty percent of ICU directors were general surgeons. Thirty-nine percent of hospitals had critical care fellowships and 11% had neurocritical care fellowships. Fifty-nine percent of ICUs had standard order sets and 61% had standard protocols specific for TBI, with the most common protocol relating to intracranial pressure management (53%). Only 43% of TMDs were satisfied with the current level of neurosurgeons' engagement in the ICU management of TBI; 46% believed that neurosurgeons should be more engaged; 11% believed they should be less engaged. In the largest survey of North American ICUs caring for TBI patients, there is substantial variation in the current approaches to ICU care for TBI, highlighting multiple opportunities for comparative effectiveness research.

  16. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visualizations of three-dimensional fibre bundles. One class of these algorithms is probabilistic...... the possibility of using high-field experimental MR scanners and long scanning times, thereby significantly improving the signal-to-noise ratio (SNR) and anatomical resolution. Moreover, many of the degrading effects observed in vivo, such as physiological noise, are no longer present. However, the post mortem...

  18. Depression, anxiety and loss of resilience after multiple traumas: an illustration of a mediated moderation model of sensitization in a group of children who survived the Nazi Holocaust.

    Science.gov (United States)

    Fossion, Pierre; Leys, Christophe; Kempenaers, Chantal; Braun, Stephanie; Verbanck, Paul; Linkowski, Paul

    2013-12-01

    Depressive and anxiety disorders (DAD) have become a major public health problem. Multiple trauma is known to increase the risk of DAD through a sensitization mechanism. We investigate the hypothesis that resilience is a mediator of this mechanism. Former Hidden Children (FHC), the Jewish youths who spent World War II in various hideaway shelters across Nazi-occupied Europe, were compared with a control group. In each group, we measured the presence of multiple traumas, the resilience with the Resilience Scale for Adults, which has a six factors solution, and the DAD with the Hopkins Symptoms Checklist. We test a mediated moderation model with childhood trauma as the predictor; Later trauma as the moderator; Resilience as the mediator; and DAD as the outcome variable. Results are consistent with a sensitization model of DAD mediated by resilience: confrontation with a primary trauma during childhood followed by secondary trauma(s) after childhood damages resilience, which, in turn, results in higher level of DAD. We are unable to differentiate if the sensitization process is a consequence of the nature of the trauma endured by FHC (long-standing exposure to extreme external events) or a consequence of the fact that this first trauma occurred during childhood. Resilience construct is multi-factorial and a limited damaging of some of the factors is sufficient to lead to DAD even if other factors remain unaltered. Resilience can be altered by multiple traumas and, therefore, needs to be bolstered in therapy sessions. Copyright © 2013. Published by Elsevier B.V.

  19. Synergistic effects of fresh frozen plasma and valproic acid treatment in a combined model of traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Imam, Ayesha M; Jin, Guang; Duggan, Michael

    2013-01-01

    Traumatic brain injury (TBI) and hemorrhagic shock (HS) are major causes of trauma-related deaths and are especially lethal as a combined insult. Previously, we showed that early administration of fresh frozen plasma (FFP) decreased the size of the brain lesion and associated swelling in a swine...... model of combined TBI+HS. We have also shown separately that addition of valproic acid (VPA) to the resuscitation protocol attenuates inflammatory markers in the brain as well as the degree of TBI. The current study was performed to determine whether a combined FFP+VPA treatment strategy would exert...

  20. Fatores de risco para dependência após trauma crânio-encefálico Factores de riesgo para la dependencia despues del trauma crâneo-encefálico Risk factors for dependency after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Regina Márcia Cardoso de Sousa

    2005-12-01

    dependientes que los demás. CONCLUSIÓN: los mayores factores de riesgo para la dependencia según la Abbreviated Injury Scale fueron los de la región de la cabeza y el tiempo de internamiento.OBJECTIVE: to predict which characteristics of traumatic brain injury patients (age, sex, education, patient history, days of hospitalization, post-traumatic complications and indicators of the severity of trauma and cranial lesion were risk factors for unfavorable prognosis. METHODS: Data were collected from 63 blunt trauma patients, aged 12 to 65 years old who were six months to three years post-trauma, and were receiving follow-up treatment at a trauma center. Multiple logistic regression was used to analyze the data and develop a model for functional status. RESULTS: Individuals who had a maximum score, five points on the Abbreviated Injury Scale (AIS for head trauma, were 4.89 times more likely to be dependent than those who had lower scores. Trauma victims who remained hospitalized for 12 days or more were 5.76 times more likely to become dependent than those who had a shorter length of hospitalization. CONCLUSION: Highest score on the AIS, and longer length of hospitalization were the major risk factors for dependency.

  1. Developing a Family-Centered Care Model for Critical Care After Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Moore, Megan; Robinson, Gabrielle; Mink, Richard; Hudson, Kimberly; Dotolo, Danae; Gooding, Tracy; Ramirez, Alma; Zatzick, Douglas; Giordano, Jessica; Crawley, Deborah; Vavilala, Monica S

    2015-10-01

    This study examined the family experience of critical care after pediatric traumatic brain injury in order to develop a model of specific factors associated with family-centered care. Qualitative methods with semi-structured interviews were used. Two level 1 trauma centers. Fifteen mothers of children who had an acute hospital stay after traumatic brain injury within the last 5 years were interviewed about their experience of critical care and discharge planning. Participants who were primarily English, Spanish, or Cantonese speaking were included. None. Content analysis was used to code the transcribed interviews and develop the family-centered care model. Three major themes emerged: 1) thorough, timely, compassionate communication, 2) capacity building for families, providers, and facilities, and 3) coordination of care transitions. Participants reported valuing detailed, frequent communication that set realistic expectations and prepared them for decision making and outcomes. Areas for capacity building included strategies to increase provider cultural humility, parent participation in care, and institutional flexibility. Coordinated care transitions, including continuity of information and maintenance of partnerships with families and care teams, were highlighted. Participants who were not primarily English speaking reported particular difficulty with communication, cultural understanding, and coordinated transitions. This study presents a family-centered traumatic brain injury care model based on family perspectives. In addition to communication and coordination strategies, the model offers methods to address cultural and structural barriers to meeting the needs of non-English-speaking families. Given the stress experienced by families of children with traumatic brain injury, careful consideration of the model themes identified here may assist in improving overall quality of care to families of hospitalized children with traumatic brain injury.

  2. A multi-level modeling approach examining PTSD symptom reduction during prolonged exposure therapy: moderating effects of number of trauma types experienced, having an HIV-related index trauma, and years since HIV diagnosis among HIV-positive adults.

    Science.gov (United States)

    Junglen, Angela G; Smith, Brian C; Coleman, Jennifer A; Pacella, Maria L; Boarts, Jessica M; Jones, Tracy; Feeny, Norah C; Ciesla, Jeffrey A; Delahanty, Douglas L

    2017-11-01

    People living with HIV (PLWH) have extensive interpersonal trauma histories and higher rates of posttraumatic stress disorder (PTSD) than the general population. Prolonged exposure (PE) therapy is efficacious in reducing PTSD across a variety of trauma samples; however, research has not examined factors that influence how PTSD symptoms change during PE for PLWH. Using multi-level modeling, we examined the potential moderating effect of number of previous trauma types experienced, whether the index trauma was HIV-related or not, and years since HIV diagnosis on PTSD symptom reduction during a 10-session PE protocol in a sample of 51 PLWH. In general, PTSD symptoms decreased linearly throughout the PE sessions. Experiencing more previous types of traumatic events was associated with a slower rate of PTSD symptom change. In addition, LOCF analyses found that participants with a non-HIV-related versus HIV-related index trauma had a slower rate of change for PTSD symptoms over the course of PE. However, analyses of raw data decreased this finding to marginal. Years since HIV diagnosis did not impact PTSD symptom change. These results provide a better understanding of how to tailor PE to individual clients and aid clinicians in approximating the rate of symptom alleviation. Specifically, these findings underscore the importance of accounting for trauma history and index trauma type when implementing a treatment plan for PTSD in PLWH.

  3. Comparative analysis of the influence of Corvitin and Lipoflavon on parameters of energy metabolism in the brain of rats with experimental severe craniocerebral trauma

    Directory of Open Access Journals (Sweden)

    S. A. Zhilyaev

    2013-04-01

    Full Text Available Hyperglycemia in rats develops in acute period of severe craniocerebral trauma: glucose consumption in rats’ brain increases, lactic acidosis develops, and the content of ATP decreases. Piracetam (200 mg/kg does not eliminate hyperglycaemia but normalizes the level of intermediates of energy metabolism. Corvitin (100–150 mg/kg eliminates hyperglycemia, normalizes the pyruvic and lactic acids, significantly increases the level of ATP. Lipoflavon (370 mg/kg normalizes the blood level of glucose, increases the concentration of pyruvic and lactic acids, but it is worse than corvitin in its influence on ATP. Antihyperglycemic effect of lipoflavon is weaker at a dose of 555 mg/kg. The results illustrate craniocerebral effect of quercetin preparations.

  4. Comparing Structural Brain Connectivity by the Infinite Relational Model

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø; Herlau, Tue; Dyrby, Tim

    2013-01-01

    The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from...

  5. On a Mathematical Model of Brain Activities

    International Nuclear Information System (INIS)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2007-01-01

    The procedure of recognition can be described as follows: There is a set of complex signals stored in the memory. Choosing one of these signals may be interpreted as generating a hypothesis concerning an 'expexted view of the world'. Then the brain compares a signal arising from our senses with the signal chosen from the memory leading to a change of the state of both signals. Furthermore, measurements of that procedure like EEG or MEG are based on the fact that recognition of signals causes a certain loss of excited neurons, i.e. the neurons change their state from 'excited' to 'nonexcited'. For that reason a statistical model of the recognition process should reflect both--the change of the signals and the loss of excited neurons. A first attempt to explain the process of recognition in terms of quantum statistics was given. In the present note it is not possible to present this approach in detail. In lieu we will sketch roughly a few of the basic ideas and structures of the proposed model of the recognition process (Section). Further, we introduce the basic spaces and justify the choice of spaces used in this approach. A more elaborate presentation including all proofs will be given in a series of some forthcoming papers. In this series also the procedures of creation of signals from the memory, amplification, accumulation and transformation of input signals, and measurements like EEG and MEG will be treated in detail

  6. Serial lactate and admission SOFA scores in trauma: an analysis of predictive value in 724 patients with and without traumatic brain injury.

    Science.gov (United States)

    Dübendorfer, C; Billeter, A T; Seifert, B; Keel, M; Turina, M

    2013-02-01

    Arterial lactate, base excess (BE), lactate clearance, and Sequential Organ Failure Assessment (SOFA) score have been shown to correlate with outcome in severely injured patients. The goal of the present study was to separately assess their predictive value in patients suffering from traumatic brain injury (TBI) as opposed to patients suffering from injuries not related to the brain. A total of 724 adult trauma patients with an Injury Severity Score (ISS) ≥ 16 were grouped into patients without TBI (non-TBI), patients with isolated TBI (isolated TBI), and patients with a combination of TBI and non-TBI injuries (combined injuries). The predictive value of the above parameters was then analyzed using both uni- and multivariate analyses. The mean age of the patients was 39 years (77 % males), with a mean ISS of 32 (range 16-75). Mortality ranged from 14 % (non-TBI) to 24 % (combined injuries). Admission and serial lactate/BE values were higher in non-survivors of all groups (all p analysis revealed lactate to be the best overall predictor for increased mortality and further septic complications, irrespective of the leading injury. Lactate showed the best performance in predicting sepsis or death in all trauma patients except those with isolated TBI, and the differences were greatest in patients with substantial bleeding. Following isolated TBI, SOFA score was the only parameter which could differentiate survivors from non-survivors on admission, although the SOFA score, too, was not an independent predictor of death following multivariate analysis.

  7. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  8. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  9. Trauma surgery in the era of nonoperative management: the Dutch model

    NARCIS (Netherlands)

    Goslings, J. Carel; Ponsen, Kees Jan; Luitse, Jan S. K.; Jurkovich, Gregory J.

    2006-01-01

    BACKGROUND: Falling operative experience and diminished job satisfaction of trauma surgeons appears to be in part the result of nonoperative management of many blunt injuries. In The Netherlands, the responsibility of trauma surgeons includes the operative treatment of most pelvic and extremity

  10. Acute Pancreatitis as a Model to Predict Transition of Systemic Inflammation to Organ Failure in Trauma and Critical Illness

    Science.gov (United States)

    2017-10-01

    models ); • clinical interventions; • new business creation; and • other. Nothing to report. Nothing to report. Nothing to report. 17...AWARD NUMBER: W81XWH-14-1-0376 TITLE: Acute Pancreatitis as a Model to Predict Transition of Systemic Inflammation to Organ Failgure in Trauma...COVERED 22 Sep 2016 - 21 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Acute Pancreatitis as a Model to Predict Transition of Systemic

  11. TRAUMA SURGERY

    African Journals Online (AJOL)

    interest in developing an appropriate and sustainable trauma system in South ... trauma evolved with the social instability which accompanied political change in the ... increased use of military style assault weapons resulted in severe injuries ...

  12. A revised dosimetric model of the adult head and brain

    International Nuclear Information System (INIS)

    Bouchet, L.G.; Bolch, W.E.; Weber, D.A.

    1996-01-01

    During the last decade, new radiopharmaceutical have been introduced for brain imaging. The marked differences of these tracers in tissue specificity within the brain and their increasing use for diagnostic studies support the need for a more anthropomorphic model of the human brain and head. Brain and head models developed in the past have been only simplistic representations of this anatomic region. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue With no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a more detailed brain model to include the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus, the cerebral spinal fluid, the lateral ventricles, and the third ventricle. This brain model has been included within a slightly modified version of the head model developed by Poston et al. in 1984. This model has been incorporated into the radiation transport code EGS4 so as to calculate photon and electron absorbed fractions in the energy range 10 keV to 4 MeV for each of thirteen sources in the brain. Furthermore, explicit positron transport have been considered, separating the contribution by the positron itself and its associated annihilations photons. No differences are found between the electron and positron absorbed fractions; however, for initial energies of positrons greater than ∼0.5 MeV, significant differences are found between absorbed fractions from explicit transport of annihilation photons and those from an assumed uniform distribution of 0.511-MeV photons. Subsequently, S values were calculated for a variety of beta-particle and positron emitters brain imaging agents. Moreover, pediatric head and brain dosimetric models are currently being developed based on this adult head model

  13. Bilateral cerebellar and brain stem infarction resulting from vertebral artery injury following cervical trauma without radiographic damage of the spinal column: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Mimata, Yoshikuni; Sato, Kotaro; Suzuki, Yoshiaki [Iwate Prefectural Chubu Hospital, Department of Orthopaedic Surgery, Kitakami (Japan); Murakami, Hideki [Iwate Medical University, Department of Orthopaedic Surgery, School of Medicine, Morioka (Japan)

    2014-01-15

    Vertebral artery injury can be a complication of cervical spine injury. Although most cases are asymptomatic, the rare case progresses to severe neurological impairment and fatal outcomes. We experienced a case of bilateral cerebellar and brain stem infarction with fatal outcome resulting from vertebral artery injury associated with cervical spine trauma. A 69-year-old male was admitted to our hospital because of tetraplegia after falling down the stairs and hitting his head on the floor. Marked bony damage of the cervical spine was not apparent on radiographs and CT scans, so the injury was initially considered to be a cervical cord injury without bony damage. However, an intensity change in the intervertebral disc at C5/C6, and a ventral epidural hematoma were observed on MRI. A CT angiogram of the neck showed the right vertebral artery was completely occluded at the C4 level of the spine. Forty-eight hours after injury, the patient lapsed into drowsy consciousness. The cranial CT scan showed a massive low-density area in the bilateral cerebellar hemispheres and brain stem. Anticoagulation was initiated after a diagnosis of the right vertebral artery injury, but the patient developed bilateral cerebellar and brain stem infarction. The patient's brain herniation progressed and the patient died 52 h after injury. We considered that not only anticoagulation but also treatment for thrombosis would have been needed to prevent cranial embolism. We fully realize that early and appropriate treatment are essential to improve the treatment results, and constructing a medical system with a team of orthopedists, radiologists, and neurosurgeons is also very important. (orig.)

  14. When Trauma Hinders Learning

    Science.gov (United States)

    Barr, Donald A.

    2018-01-01

    Many kindergarten teachers have encountered children who enter school lacking the ability to control their behavior, but they may not understand the social and biological processes behind these children's disruptive behavior. The author reviews research into early childhood brain development to explain how trauma and chronic stress can make it…

  15. An outcome prediction model for exsanguinating patients with blunt abdominal trauma after damage control laparotomy: a retrospective study.

    Science.gov (United States)

    Wang, Shang-Yu; Liao, Chien-Hung; Fu, Chih-Yuan; Kang, Shih-Ching; Ouyang, Chun-Hsiang; Kuo, I-Ming; Lin, Jr-Rung; Hsu, Yu-Pao; Yeh, Chun-Nan; Chen, Shao-Wei

    2014-04-28

    We present a series of patients with blunt abdominal trauma who underwent damage control laparotomy (DCL) and introduce a nomogram that we created to predict survival among these patients. This was a retrospective study. From January 2002 to June 2012, 91 patients underwent DCL for hemorrhagic shock. We excluded patients with the following characteristics: a penetrating abdominal injury, age younger than 18 or older than 65 years, a severe or life-threatening brain injury (Abbreviated Injury Scale [AIS] ≥ 4), emergency department (ED) arrival more than 6 hours after injury, pregnancy, end-stage renal disease, or cirrhosis. In addition, we excluded patients who underwent DCL after ICU admission or later in the course of hospitalization. The overall mortality rate was 61.5%: 35 patients survived and 56 died. We identified independent survival predictors, which included a preoperative Glasgow Coma Scale (GCS) score blunt abdominal trauma with exsanguination. The nomogram presented here may provide ED physicians and trauma surgeons with a tool for early stratification and risk evaluation in critical, exsanguinating patients.

  16. A mathematical model of endovascular heat transfer for human brain cooling

    Science.gov (United States)

    Salsac, Anne-Virginie; Lasheras, Juan Carlos; Yon, Steven; Magers, Mike; Dobak, John

    2000-11-01

    Selective cooling of the brain has been shown to exhibit protective effects in cerebral ischemia, trauma, and spinal injury/ischemia. A multi-compartment, unsteady thermal model of the response of the human brain to endovascular cooling is discussed and its results compared to recent experimental data conducted with sheep and other mammals. The model formulation is based on the extension of the bioheat equation, originally proposed by Pennes(1) and later modified by Wissler(2), Stolwijk(3) and Werner and Webb(4). The temporal response of the brain temperature and that of the various body compartments to the cooling of the blood flowing through the common carotid artery is calculated under various scenarios. The effect of the boundary conditions as well as the closure assumptions used in the model, i.e. perfusion rate, metabolism heat production, etc. on the cooling rate of the brain are systematically investigated. (1) Pennes H. H., “Analysis of tissue and arterial blood temperature in the resting forearm.” J. Appl. Physiol. 1: 93-122, 1948. (2) Wissler E. H., “Steady-state temperature distribution in man”, J. Appl. Physiol., 16: 764-740, 1961. (3) Stolwick J. A. J., “Mathematical model of thermoregulation” in “Physiological and behavioral temperature regulation”, edited by J. D. Hardy, A. P. Gagge and A. J. Stolwijk, Charles C. Thomas Publisher, Springfiels, Ill., 703-721, 1971. (4) Werner J., Webb P., “A six-cylinder model of human thermoregulation for general use on personal computers”, Ann. Physiol. Anthrop., 12(3): 123-134, 1993.

  17. Statistical Challenges in Modeling Big Brain Signals

    KAUST Repository

    Yu, Zhaoxia

    2017-11-01

    Brain signal data are inherently big: massive in amount, complex in structure, and high in dimensions. These characteristics impose great challenges for statistical inference and learning. Here we review several key challenges, discuss possible solutions, and highlight future research directions.

  18. Statistical Challenges in Modeling Big Brain Signals

    KAUST Repository

    Yu, Zhaoxia; Pluta, Dustin; Shen, Tong; Chen, Chuansheng; Xue, Gui; Ombao, Hernando

    2017-01-01

    Brain signal data are inherently big: massive in amount, complex in structure, and high in dimensions. These characteristics impose great challenges for statistical inference and learning. Here we review several key challenges, discuss possible

  19. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-01-01

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using

  20. CSF transthyretin neuroprotection in a mouse model of brain ischemia

    DEFF Research Database (Denmark)

    Santos, Sofia Duque; Lambertsen, Kate Lykke; Clausen, Bettina Hjelm

    2010-01-01

    Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke. ...

  1. Reptiles: a new model for brain evo-devo research.

    Science.gov (United States)

    Nomura, Tadashi; Kawaguchi, Masahumi; Ono, Katsuhiko; Murakami, Yasunori

    2013-03-01

    Vertebrate brains exhibit vast amounts of anatomical diversity. In particular, the elaborate and complex nervous system of amniotes is correlated with the size of their behavioral repertoire. However, the evolutionary mechanisms underlying species-specific brain morphogenesis remain elusive. In this review we introduce reptiles as a new model organism for understanding brain evolution. These animal groups inherited ancestral traits of brain architectures. We will describe several unique aspects of the reptilian nervous system with a special focus on the telencephalon, and discuss the genetic mechanisms underlying reptile-specific brain morphology. The establishment of experimental evo-devo approaches to studying reptiles will help to shed light on the origin of the amniote brains. Copyright © 2013 Wiley Periodicals, Inc.

  2. The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging

    Science.gov (United States)

    Schirner, Michael; McIntosh, Anthony R.; Jirsa, Viktor K.

    2013-01-01

    Abstract Brain function is thought to emerge from the interactions among neuronal populations. Apart from traditional efforts to reproduce brain dynamics from the micro- to macroscopic scales, complementary approaches develop phenomenological models of lower complexity. Such macroscopic models typically generate only a few selected—ideally functionally relevant—aspects of the brain dynamics. Importantly, they often allow an understanding of the underlying mechanisms beyond computational reproduction. Adding detail to these models will widen their ability to reproduce a broader range of dynamic features of the brain. For instance, such models allow for the exploration of consequences of focal and distributed pathological changes in the system, enabling us to identify and develop approaches to counteract those unfavorable processes. Toward this end, The Virtual Brain (TVB) (www.thevirtualbrain.org), a neuroinformatics platform with a brain simulator that incorporates a range of neuronal models and dynamics at its core, has been developed. This integrated framework allows the model-based simulation, analysis, and inference of neurophysiological mechanisms over several brain scales that underlie the generation of macroscopic neuroimaging signals. In this article, we describe how TVB works, and we present the first proof of concept. PMID:23442172

  3. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  4. Modeling the brain morphology distribution in the general aging population

    Science.gov (United States)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.

  5. Gas tonometry for evaluation of gastrointestinal mucosal perfusion: experimental models of trauma, shock and complex surgical maneuvers - Part 1

    Directory of Open Access Journals (Sweden)

    Figueiredo Luiz Francisco Poli de

    2002-01-01

    Full Text Available Substantial clinical and animal evidences indicate that the mesenteric circulatory bed, particularly the gut mucosa, is highly vulnerable to reductions in oxygen supply and prone to early injury in the course of hemodynamic changes induced by trauma, shock, sepsis and several complex surgical maneuvers. Gut hypoxia or ischemia is one possible contributing factor to gastrointestinal tract barrier dysfunction that may be associated with the development of systemic inflammatory response and multiple organ dysfunction syndrome, a common cause of death after trauma, sepsis or major surgeries. Monitoring gut perfusion during experiments may provide valuable insights over new interventions and therapies highly needed to reduce trauma and sepsis-related morbidity and mortality. We present our experience with gas tonometry as a monitor of the adequacy of gastrointestinal mucosal perfusion in clinical and experimental models of trauma, shock and surgical maneuvers associated with abrupt hemodynamic changes, such as aortic occlusion and hepatic vascular exclusion. Next issue we will be presenting our experience with gas tonometry in experimental and clinical sepsis.

  6. Bicuculline methiodide in the blood-brain barrier-epileptogen model of epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Remler, M.P.; Marcussen, W.H.

    Focal epilepsy can be produced by a blood-brain barrier (BBB)-excluded systemic convulsant (penicillin, folic acid, etc.) in the presence of a focal BBB lesion. Bicuculline methiodide, a gamma-aminobutyric acid blocking epileptogen, crosses the normal BBB of rats poorly and produces no consistent abnormality behaviorally or on EEG at 36 mg/kg. When the BBB is opened in 0.25 ml of cortex by 6,000 rad of alpha particles, by a pin trauma lesion, or by a heat lesion, the rats are normal clinically and on EEG. When these lesioned rats are challenged with bicuculline methiodide, 36 mg/kg, an intense, highly localized epileptiform discharge results that begins approximately 20 min after injection and lasts 30-90 min. The plausibility and experimental utility of the BBB-epileptogen model of epilepsy are enhanced by these observations.

  7. Epidemiology of Mild Traumatic Brain Injury with Intracranial Hemorrhage: Focusing Predictive Models for Neurosurgical Intervention.

    Science.gov (United States)

    Orlando, Alessandro; Levy, A Stewart; Carrick, Matthew M; Tanner, Allen; Mains, Charles W; Bar-Or, David

    2017-11-01

    To outline differences in neurosurgical intervention (NI) rates between intracranial hemorrhage (ICH) types in mild traumatic brain injuries and help identify which ICH types are most likely to benefit from creation of predictive models for NI. A multicenter retrospective study of adult patients spanning 3 years at 4 U.S. trauma centers was performed. Patients were included if they presented with mild traumatic brain injury (Glasgow Coma Scale score 13-15) with head CT scan positive for ICH. Patients were excluded for skull fractures, "unspecified hemorrhage," or coagulopathy. Primary outcome was NI. Stepwise multivariable logistic regression models were built to analyze the independent association between ICH variables and outcome measures. The study comprised 1876 patients. NI rate was 6.7%. There was a significant difference in rate of NI by ICH type. Subdural hematomas had the highest rate of NI (15.5%) and accounted for 78% of all NIs. Isolated subarachnoid hemorrhages had the lowest, nonzero, NI rate (0.19%). Logistic regression models identified ICH type as the most influential independent variable when examining NI. A model predicting NI for isolated subarachnoid hemorrhages would require 26,928 patients, but a model predicting NI for isolated subdural hematomas would require only 328 patients. This study highlighted disparate NI rates among ICH types in patients with mild traumatic brain injury and identified mild, isolated subdural hematomas as most appropriate for construction of predictive NI models. Increased health care efficiency will be driven by accurate understanding of risk, which can come only from accurate predictive models. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Optical modeling toward optimizing monitoring of intestinal perfusion in trauma patients

    Science.gov (United States)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. N.; Coté, Gerard L.

    2013-02-01

    Trauma is the number one cause of death for people between the ages 1 and 44 years in the United States. In addition, according to the Centers of Disease Control and Prevention, injury results in over 31 million emergency department visits annually. Minimizing the resuscitation period in major abdominal injuries increases survival rates by correcting impaired tissue oxygen delivery. Optimization of resuscitation requires a monitoring method to determine sufficient tissue oxygenation. Oxygenation can be assessed by determining the adequacy of tissue perfusion. In this work, we present the design of a wireless perfusion and oxygenation sensor based on photoplethysmography. Through optical modeling, the benefit of using the visible wavelengths 470, 525 and 590nm (around the 525nm hemoglobin isobestic point) for intestinal perfusion monitoring is compared to the typical near infrared (NIR) wavelengths (805nm isobestic point) used in such sensors. Specifically, NIR wavelengths penetrate through the thin intestinal wall ( 4mm) leading to high background signals. However, these visible wavelengths have two times shorter penetration depth that the NIR wavelengths. Monte-Carlo simulations show that the transmittance of the three selected wavelengths is lower by 5 orders of magnitude depending on the perfusion state. Due to the high absorbance of hemoglobin in the visible range, the perfusion signal carried by diffusely reflected light is also enhanced by an order of magnitude while oxygenation signal levels are maintained. In addition, short source-detector separations proved to be beneficial for limiting the probing depth to the thickness of the intestinal wall.

  9. Evaluation of bone loss due to primary occlusal trauma in two experimental models of occlusal overload

    Directory of Open Access Journals (Sweden)

    Ana Cristina Távora de Albuquerque LOPES

    Full Text Available Abstract Introduction Primary occlusal trauma (OT is an injury of the periodontium with normal height as a result of occlusal forces which exceed their adaptive capacity. Objective To evaluate, histometrically, the alveolar bone loss in the furcation region of rats experimentally submitted to 2 models of occlusal overload. Material and method 45 animals randomly divided into 3 groups: Occlusal Interference (OI, n = 15 - fixing an orthodontic wire segment on the occlusal surface of the first lower molar; Occlusal Overload (OO, n = 15 - wearing of the cusps of the lower contralateral molars, the second and third molars next to the first molar that had its dimensions maintained; Negative Control (NC, n = 15 - evaluation of the initial dimensions of the periodontal ligament (PL. Five animals / group were sacrificed after 14, 21 and 28 days. Result Intergroup evaluation showed significant bone loss in OI (p0.05. The thickness of the PL remained stable in NC (p>0.05. Conclusion OI and OO were effective in the experimental reproduction of OT, and OI promoted greater alveolar bone loss compared to OO, showing that the impact of occlusal overload in OI increased the extent of the OT injury.

  10. A trauma-like model of political extremism: psycho-political fault lines in Israel.

    Science.gov (United States)

    Laor, Nathaniel; Yanay-Shani, Alma; Wolmer, Leo; Khoury, Oula

    2010-10-01

    This study examines a trauma-like model of potentially violent political extremism among Jewish Israelis. We study the psychosocial characteristics of political extremists that may lie at the root of sociopolitical instability and assess personal (gender, stressful life events, Holocaust family background, and political activism) and psychological parameters (self- and political transcendence, perceived political threats, in/out-group identification ratio) that may predict readiness to engage in destructive political behavior. We examine the ideological zeal of various political groups, the relationship between the latter and perceived political threats, and the predictors of extreme political activism. Results showed that the extreme political poles displayed high level of ideological and morbid transcendence. Right extremists displayed higher perceived threats to physical existence and national identity. Left extremists scored highest on perceived moral integrity threat. Higher perceived threats to national identity and moral integrity, risk, and self-transcendence statistically explain morbid transcendence. When fear conjures up extremely skewed sociopolitical identifications across political boundaries, morbid transcendence may manifest itself in destructive political activity. © 2010 Association for Research in Nervous and Mental Disease.

  11. Development of a model for whole brain learning of physiology.

    Science.gov (United States)

    Eagleton, Saramarie; Muller, Anton

    2011-12-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed elaborates on these layers by relating the personality traits central to learning to the different quadrants of brain preference, as described by Neethling's brain profile, as the inner layer of the onion. This layer is encircled by the learning styles that describe different information-processing preferences for each brain quadrant. For the middle layer, the different stages of Kolb's learning cycle are classified into the four brain quadrants associated with the different brain processing strategies within the information processing circle. Each of the stages of Kolb's learning cycle is also associated with a specific cognitive learning strategy. These two inner circles are enclosed by the circle representing the role of the environment and instruction on learning. It relates environmental factors that affect learning and distinguishes between face-to-face and technology-assisted learning. This model informs on the design of instructional interventions for physiology to encourage whole brain learning.

  12. Head trauma and CT with special reference to diagnosis of complications of head trauma

    International Nuclear Information System (INIS)

    Samejima, Kanji; Yoshii, Nobuo; Tobari, Chitose

    1979-01-01

    Cases in which CT was useful for the diagnosis of complications of head trauma were reported. First, complications of head trauma were given an outline, and then, cases of protrusion of the brain, traumatic pneumocephalus, and cerebro-vascular disorders caused by head trauma were mentioned. (Tsunoda, M.)

  13. A Dirichlet process mixture model for brain MRI tissue classification.

    Science.gov (United States)

    Ferreira da Silva, Adelino R

    2007-04-01

    Accurate classification of magnetic resonance images according to tissue type or region of interest has become a critical requirement in diagnosis, treatment planning, and cognitive neuroscience. Several authors have shown that finite mixture models give excellent results in the automated segmentation of MR images of the human normal brain. However, performance and robustness of finite mixture models deteriorate when the models have to deal with a variety of anatomical structures. In this paper, we propose a nonparametric Bayesian model for tissue classification of MR images of the brain. The model, known as Dirichlet process mixture model, uses Dirichlet process priors to overcome the limitations of current parametric finite mixture models. To validate the accuracy and robustness of our method we present the results of experiments carried out on simulated MR brain scans, as well as on real MR image data. The results are compared with similar results from other well-known MRI segmentation methods.

  14. How does multiple trauma, traumatic brain injury (TBI) or spinal cord injury (SCI) affect male sexual functioning?

    OpenAIRE

    Treacy, C.

    2015-01-01

    Sex is an important part of life for many people, therefore dealing with erectile problems, living with the effects of physical injury, changes in your appearance or side-effects of treatment can have an enormous impact on your sex life and relationships. Normal sexual behaviour and erectile function depends on a complex interaction between various body-systems, including the brain, nerves, blood-supply and hormones. All of these systems (alone or in combination) may be affected following mul...

  15. Facial trauma

    Science.gov (United States)

    Maxillofacial injury; Midface trauma; Facial injury; LeFort injuries ... Hockberger RS, Walls RM, eds. Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ed. Philadelphia, PA: Elsevier ...

  16. A Bayesian Model of Category-Specific Emotional Brain Responses

    Science.gov (United States)

    Wager, Tor D.; Kang, Jian; Johnson, Timothy D.; Nichols, Thomas E.; Satpute, Ajay B.; Barrett, Lisa Feldman

    2015-01-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories—fear, anger, disgust, sadness, or happiness—is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  17. Fuzzy object models for newborn brain MR image segmentation

    Science.gov (United States)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  18. Less is more? Assessing the validity of the ICD-11 model of PTSD across multiple trauma samples

    Science.gov (United States)

    Hansen, Maj; Hyland, Philip; Armour, Cherie; Shevlin, Mark; Elklit, Ask

    2015-01-01

    Background In the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), the symptom profile of posttraumatic stress disorder (PTSD) was expanded to include 20 symptoms. An alternative model of PTSD is outlined in the proposed 11th edition of the International Classification of Diseases (ICD-11) that includes just six symptoms. Objectives and method The objectives of the current study are: 1) to independently investigate the fit of the ICD-11 model of PTSD, and three DSM-5-based models of PTSD, across seven different trauma samples (N=3,746) using confirmatory factor analysis; 2) to assess the concurrent validity of the ICD-11 model of PTSD; and 3) to determine if there are significant differences in diagnostic rates between the ICD-11 guidelines and the DSM-5 criteria. Results The ICD-11 model of PTSD was found to provide excellent model fit in six of the seven trauma samples, and tests of factorial invariance showed that the model performs equally well for males and females. DSM-5 models provided poor fit of the data. Concurrent validity was established as the ICD-11 PTSD factors were all moderately to strongly correlated with scores of depression, anxiety, dissociation, and aggression. Levels of association were similar for ICD-11 and DSM-5 suggesting that explanatory power is not affected due to the limited number of items included in the ICD-11 model. Diagnostic rates were significantly lower according to ICD-11 guidelines compared to the DSM-5 criteria. Conclusions The proposed factor structure of the ICD-11 model of PTSD appears valid across multiple trauma types, possesses good concurrent validity, and is more stringent in terms of diagnosis compared to the DSM-5 criteria. PMID:26450830

  19. Less is more? Assessing the validity of the ICD-11 model of PTSD across multiple trauma samples

    Directory of Open Access Journals (Sweden)

    Maj Hansen

    2015-10-01

    Full Text Available Background: In the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5, the symptom profile of posttraumatic stress disorder (PTSD was expanded to include 20 symptoms. An alternative model of PTSD is outlined in the proposed 11th edition of the International Classification of Diseases (ICD-11 that includes just six symptoms. Objectives and method: The objectives of the current study are: 1 to independently investigate the fit of the ICD-11 model of PTSD, and three DSM-5-based models of PTSD, across seven different trauma samples (N=3,746 using confirmatory factor analysis; 2 to assess the concurrent validity of the ICD-11 model of PTSD; and 3 to determine if there are significant differences in diagnostic rates between the ICD-11 guidelines and the DSM-5 criteria. Results: The ICD-11 model of PTSD was found to provide excellent model fit in six of the seven trauma samples, and tests of factorial invariance showed that the model performs equally well for males and females. DSM-5 models provided poor fit of the data. Concurrent validity was established as the ICD-11 PTSD factors were all moderately to strongly correlated with scores of depression, anxiety, dissociation, and aggression. Levels of association were similar for ICD-11 and DSM-5 suggesting that explanatory power is not affected due to the limited number of items included in the ICD-11 model. Diagnostic rates were significantly lower according to ICD-11 guidelines compared to the DSM-5 criteria. Conclusions: The proposed factor structure of the ICD-11 model of PTSD appears valid across multiple trauma types, possesses good concurrent validity, and is more stringent in terms of diagnosis compared to the DSM-5 criteria.

  20. Less is more? Assessing the validity of the ICD-11 model of PTSD across multiple trauma samples.

    Science.gov (United States)

    Hansen, Maj; Hyland, Philip; Armour, Cherie; Shevlin, Mark; Elklit, Ask

    2015-01-01

    In the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), the symptom profile of posttraumatic stress disorder (PTSD) was expanded to include 20 symptoms. An alternative model of PTSD is outlined in the proposed 11th edition of the International Classification of Diseases (ICD-11) that includes just six symptoms. The objectives of the current study are: 1) to independently investigate the fit of the ICD-11 model of PTSD, and three DSM-5-based models of PTSD, across seven different trauma samples (N=3,746) using confirmatory factor analysis; 2) to assess the concurrent validity of the ICD-11 model of PTSD; and 3) to determine if there are significant differences in diagnostic rates between the ICD-11 guidelines and the DSM-5 criteria. The ICD-11 model of PTSD was found to provide excellent model fit in six of the seven trauma samples, and tests of factorial invariance showed that the model performs equally well for males and females. DSM-5 models provided poor fit of the data. Concurrent validity was established as the ICD-11 PTSD factors were all moderately to strongly correlated with scores of depression, anxiety, dissociation, and aggression. Levels of association were similar for ICD-11 and DSM-5 suggesting that explanatory power is not affected due to the limited number of items included in the ICD-11 model. Diagnostic rates were significantly lower according to ICD-11 guidelines compared to the DSM-5 criteria. The proposed factor structure of the ICD-11 model of PTSD appears valid across multiple trauma types, possesses good concurrent validity, and is more stringent in terms of diagnosis compared to the DSM-5 criteria.

  1. Development of a Model for Whole Brain Learning of Physiology

    Science.gov (United States)

    Eagleton, Saramarie; Muller, Anton

    2011-01-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed…

  2. In vitro models of the blood–brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use

    OpenAIRE

    Helms, Hans C; Abbott, N Joan; Burek, Malgorzata; Cecchelli, Romeo; Couraud, Pierre-Olivier; Deli, Maria A; Förster, Carola; Galla, Hans J; Romero, Ignacio A; Shusta, Eric V; Stebbins, Matthew J; Vandenhaute, Elodie; Weksler, Babette; Brodin, Birger

    2016-01-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized br...

  3. Osthole attenuates hepatic injury in a rodent model of trauma-hemorrhage.

    Science.gov (United States)

    Yu, Huang-Ping; Liu, Fu-Chao; Tsai, Yung-Fong; Hwang, Tsong-Long

    2013-01-01

    Recent evidences show that osthole possesses anti-inflammatory properties and protective effects following shock-like states, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase (p38 MAPK) pathway exerts anti-inflammatory effects in injury. The aim of this study was to investigate whether p38 MAPK plays any role in the osthole-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of osthole (3 mg/kg, intravenously) with and without a p38 MAPK inhibitor SB-203580 (2 mg/kg, intravenously), SB-203580 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n = 8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the osthole-treated rats subjected to trauma-hemorrhage. Osthole treatment also increased hepatic phospho-p38 MAPK expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 with osthole abolished the osthole-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of osthole administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through p38 MAPK-dependent pathway.

  4. The impact of specialist trauma service on major trauma mortality.

    Science.gov (United States)

    Wong, Ting Hway; Lumsdaine, William; Hardy, Benjamin M; Lee, Keegan; Balogh, Zsolt J

    2013-03-01

    Trauma services throughout the world have had positive effects on trauma-related mortality. Australian trauma services are generally more consultative in nature rather than the North American model of full trauma admission service. We hypothesized that the introduction of a consultative specialist trauma service in a Level I Australian trauma center would reduce mortality of the severely injured. A 10-year retrospective study (January 1, 2002-December 31, 2011) was performed on all trauma patients admitted with an Injury Severity Score (ISS) > 15. Patients were identified from the trauma registry, and data for age, sex, mechanism of injury, ISS, survival to discharge, and length of stay were collected. Mortality was examined for patients with severe injury (ISS > 15) and patients with critical injury (ISS > 24) and compared for the three periods: 2002-2004 (without trauma specialist), 2005-2007 (with trauma specialist), and 2008-2011 (with specialist trauma service). A total of 3,869 severely injured (ISS > 15) trauma patients were identified during the 10-year period. Of these, 2,826 (73%) were male, 1,513 (39%) were critically injured (ISS > 24), and more than 97% (3,754) were the victim of blunt trauma. Overall mortality decreased from 12.4% to 9.3% (relative risk, 0.75) from period one to period three and from 25.4% to 20.3% (relative risk, 0.80) for patients with critical injury. A 0.46% per year decrease (p = 0.018) in mortality was detected (odds ratio, 0.63; p 24), the trend was (0.61% per year; odds ratio, 0.68; p = 0.039). The introduction of a specialist trauma service decreased the mortality of patients with severe injury, the model of care should be considered to implement state- and nationwide in Australia. Epidemiologic study, level III.

  5. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  6. A porcine model of haematogenous brain infectionwith staphylococcus aureus

    DEFF Research Database (Denmark)

    Astrup, Lærke Boye; Agerholm, Jørgen Steen; Nielsen, Ole Lerberg

    2012-01-01

    A PORCINE MODEL OF HAEMATOGENOUS BRAIN INFECTION WITH STAPHYLOCOCCUS AUREUS Astrup Lærke1, Agerholm Jørgen1, Nielsen Ole1, Jensen Henrik1, Leifsson Páll1, Iburg Tine2. 1: Faculty of Health and Medical Sciences, University of Copenhagen, Denmark boye@life.ku.dk 2: National Veterinary Institute......, Uppsala, Sweden Introduction Staphylococcus aureus (S.aureus) is a common cause of sepsis and brain abscesses in man and a frequent cause of porcine pyaemia. Here we present a porcine model of haematogenous S. aureus-induced brain infection. Materials and Methods Four pigs had two intravenous catheters...... thromboemboli (two pigs). The venous catheter was used for blood sampling before, during and after inoculation. The pigs were euthanized either 24 or 48 hours after inoculation. The brains were collected and examined histologically. Results We describe unifocal suppurative encephalitis 48 hours after...

  7. Effects of exogenous ubiquitin in a polytrauma model with blunt chest trauma

    Science.gov (United States)

    Baker, Todd A.; Romero, Jacqueline; Bach, Harold H.; Strom, Joel A.; Gamelli, Richard L.; Majetschak, Matthias

    2013-01-01

    Objective To determine whether treatment with the CXC chemokine receptor (CXCR) 4 agonist ubiquitin results in beneficial effects in a polytrauma model consisting of bilateral femur fractures plus blunt chest trauma (Injury Severity Score 18-25). Design Treatment study. Setting Research Laboratory. Subjects Seventeen Yorkshire pigs. Interventions Intravenous (i.v.) injection of 1.5 mg/kg ubiquitin or albumin (=control) at 60 min after polytrauma. Measurements and Main Results Anesthetized, mechanically ventilated pigs underwent polytrauma, followed by a simulated 60 min shock phase. At the end of the shock phase ubiquitin or albumin were administered and animals were resuscitated to a mean arterial blood pressure of 70 mmHg until t = 420 min. After i.v. ubiquitin, ubiquitin plasma concentrations increased sixteen-fold to 2870 ± 1015 ng/mL at t = 90 min and decreased with t1/2 = 60 min. Endogenous plasma ubiquitin increased two-fold in the albumin group with peak levels of 359 ± 210 ng/mL. Plasma levels of the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α were unchanged in both groups. Ubiquitin treatment reduced arterial lactate levels and prevented a continuous decrease in arterial oxygenation, which occurred in the albumin group during resuscitation. Wet weight to dry weight ratios of the lung contralateral from the injury, heart, spleen and jejunum were lower with ubiquitin. With ubiquitin treatment, tissue levels of IL-8, IL-10, TNFα and SDF-1α were reduced in the injured lung and of IL-8 in the contralateral lung, respectively. Conclusions Administration of exogenous ubiquitin modulates the local inflammatory response, improves resuscitation, reduces fluid shifts into tissues and preserves arterial oxygenation after blunt polytrauma with lung injury. This study further supports the notion that ubiquitin is a promising protein therapeutic and implies CXCR4 as a drug target after polytrauma. PMID:22622399

  8. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2015-09-01

    craniotomy was cut with a trephine by hand over the right motor cortex . An injury cannula was fashioned from the hub of a female leur-lock 20g needle...ABSTRACT This project evaluated the effect of a moderate-level brain injury on risk for opioid abuse using preclinical models in rats . We assessed the...effect of brain injury on the rewarding effects of oxycodone in three rat self-administration procedures and found significant differences in the

  9. Model brain based learning (BBL and whole brain teaching (WBT in learning

    Directory of Open Access Journals (Sweden)

    Baiq Sri Handayani

    2017-08-01

    Full Text Available The learning process is a process of change in behavior as a form of the result of learning. The learning model is a crucial component of the success of the learning process. The learning model is growing fastly, and each model has different characteristics. Teachers are required to be able to understand each model to teach the students optimally by matching the materials and the learning model. The best of the learning model is the model that based on the brain system in learning that are the model of Brain Based Learning (BBL and the model of Whole Brain Teaching (WBT. The purposes of this article are to obtain information related to (1 the brain’s natural learning system, (2 analyze the characteristics of the model BBL and WBT based on theory, brain sections that play a role associated with syntax, similarities, and differences, (3 explain the distinctive characteristics of both models in comparison to other models. The results of this study are: (1 the brain’s natural learning system are: (a the nerves in each hemisphere do not work independently, (b doing more activities can connect more brain nerves, (c the right hemisphere controls the left side motoric sensor of the body, and vice versa; (2 the characteristics of BBL and WBT are: (a BBL is based on the brain’s structure and function, while the model WBT is based on the instructional approach, neurolinguistic, and body language, (b the parts of the brain that work in BBL are: cerebellum, cerebral cortex, frontal lobe, limbic system, and prefrontal cortex; whereas the parts that work WBT are: prefrontal cortex, visual cortex, motor cortex, limbic system, and amygdala, (c the similarities between them are that they both rely on the brain’s system and they both promote gesture in learning, whereas the differences are on the view of the purposes of gestures and the learning theory that they rely on. BBL relies on cognitive theory while WBT relies on social theory; (3 the typical

  10. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, M.; Thomsen, Pernille Sjølin

    2001-01-01

    , and this response was significantly blunted by zinc deficiency. The MT-III isoform was moderately increased by both TBI and zinc deficiency. TBI strongly increased oxidative stress levels, as demonstrated by malondialdehyde (MDA), protein tyrosine nitration (NITT), and nuclear factor kappaB (NF-kappaB) levels irs......, all of which were potentiated by zinc deficiency. Further analysis revealed unbalanced expression of prooxidant and antioxidant proteins besides MT, since the levels of inducible nitric oxide synthase (iNOS) and Cu,Zn-SOD were increased and decreased, respectively, by zinc deficiency. All......The role of zinc- and copper-deficient diets on the inflammatory response to traumatic brain injury (TBI) has been evaluated in adult rats. As expected, zinc deficiency decreased food intake and body weight gain, and the latter effect was higher than that observed in pair-fed rats. In noninjured...

  11. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor

    Directory of Open Access Journals (Sweden)

    d'Avila Joana C

    2012-02-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces activation of microglia. Activated microglia can in turn increase secondary injury and impair recovery. This innate immune response requires hours to days to become fully manifest, thus providing a clinically relevant window of opportunity for therapeutic intervention. Microglial activation is regulated in part by poly(ADP-ribose polymerase-1 (PARP-1. Inhibition of PARP-1 activity suppresses NF-kB-dependent gene transcription and thereby blocks several aspects of microglial activation. Here we evaluated the efficacy of a PARP inhibitor, INO-1001, in suppressing microglial activation after cortical impact in the rat. Methods Rats were subjected to controlled cortical impact and subsequently treated with 10 mg/kg of INO-1001 (or vehicle alone beginning 20 - 24 hours after the TBI. Brains were harvested at several time points for histological evaluation of inflammation and neuronal survival, using markers for microglial activation (morphology and CD11b expression, astrocyte activation (GFAP, and neuronal survival (NeuN. Rats were also evaluated at 8 weeks after TBI using measures of forelimb dexterity: the sticky tape test, cylinder test, and vermicelli test. Results Peak microglial and astrocyte activation was observed 5 to 7 days after this injury. INO-1001 significantly reduced microglial activation in the peri-lesion cortex and ipsilateral hippocampus. No rebound inflammation was observed in rats that were treated with INO-1001 or vehicle for 12 days followed by 4 days without drug. The reduced inflammation was associated with increased neuronal survival in the peri-lesion cortex and improved performance on tests of forelimb dexterity conducted 8 weeks after TBI. Conclusions Treatment with a PARP inhibitor for 12 days after TBI, with the first dose given as long as 20 hours after injury, can reduce inflammation and improve histological and functional outcomes.

  12. Evaluation of the Evidence for the Trauma and Fantasy Models of Dissociation

    Science.gov (United States)

    Dalenberg, Constance J.; Brand, Bethany L.; Gleaves, David H.; Dorahy, Martin J.; Loewenstein, Richard J.; Cardena, Etzel; Frewen, Paul A.; Carlson, Eve B.; Spiegel, David

    2012-01-01

    The relationship between a reported history of trauma and dissociative symptoms has been explained in 2 conflicting ways. Pathological dissociation has been conceptualized as a response to antecedent traumatic stress and/or severe psychological adversity. Others have proposed that dissociation makes individuals prone to fantasy, thereby…

  13. Cognitive Models as Bridge between Brain and Behavior.

    Science.gov (United States)

    Love, Bradley C

    2016-04-01

    How can disparate neural and behavioral measures be integrated? Turner and colleagues propose joint modeling as a solution. Joint modeling mutually constrains the interpretation of brain and behavioral measures by exploiting their covariation structure. Simultaneous estimation allows for more accurate prediction than would be possible by considering these measures in isolation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Creating physical 3D stereolithograph models of brain and skull.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2007-10-01

    Full Text Available The human brain and skull are three dimensional (3D anatomical structures with complex surfaces. However, medical images are often two dimensional (2D and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50 used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine.

  15. Assessing Posttraumatic Stress Disorder's Latent Structure in Elderly Bereaved European Trauma Victims: Evidence for a Five Factor Dysphoric and Anxious Arousal Model

    DEFF Research Database (Denmark)

    Armour, Cherie; O'Connor, Maja; Elklit, Ask

    2013-01-01

    to provide superior fit over the existing four-factor models. The present study investigated the fit of the five-factor model against the existing four-factor models and assessed the resultant factors association with depression in a bereaved European trauma sample (N=325). Participants were assessed...... for PTSD via the Harvard Trauma Questionnaire and depression via the Beck Depression Inventory. The five-factor model provided superior fit to the data compared to the existing four-factor models. In the Dysphoric Arousal model depression was equally related to both Dysphoric Arousal and Emotional Numbing...

  16. Acute Kidney Injury in Trauma Patients Admitted to Critical Care: Development and Validation of a Diagnostic Prediction Model.

    Science.gov (United States)

    Haines, Ryan W; Lin, Shih-Pin; Hewson, Russell; Kirwan, Christopher J; Torrance, Hew D; O'Dwyer, Michael J; West, Anita; Brohi, Karim; Pearse, Rupert M; Zolfaghari, Parjam; Prowle, John R

    2018-02-26

    Acute Kidney Injury (AKI) complicating major trauma is associated with increased mortality and morbidity. Traumatic AKI has specific risk factors and predictable time-course facilitating diagnostic modelling. In a single centre, retrospective observational study we developed risk prediction models for AKI after trauma based on data around intensive care admission. Models predicting AKI were developed using data from 830 patients, using data reduction followed by logistic regression, and were independently validated in a further 564 patients. AKI occurred in 163/830 (19.6%) with 42 (5.1%) receiving renal replacement therapy (RRT). First serum creatinine and phosphate, units of blood transfused in first 24 h, age and Charlson score discriminated need for RRT and AKI early after trauma. For RRT c-statistics were good to excellent: development: 0.92 (0.88-0.96), validation: 0.91 (0.86-0.97). Modelling AKI stage 2-3, c-statistics were also good, development: 0.81 (0.75-0.88) and validation: 0.83 (0.74-0.92). The model predicting AKI stage 1-3 performed moderately, development: c-statistic 0.77 (0.72-0.81), validation: 0.70 (0.64-0.77). Despite good discrimination of need for RRT, positive predictive values (PPV) at the optimal cut-off were only 23.0% (13.7-42.7) in development. However, PPV for the alternative endpoint of RRT and/or death improved to 41.2% (34.8-48.1) highlighting death as a clinically relevant endpoint to RRT.

  17. Fused cerebral organoids model interactions between brain regions.

    Science.gov (United States)

    Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A

    2017-07-01

    Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.

  18. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Lee, D. S.; Kim, J. H.; Hwang, D. W.; Jung, J. G.; Lee, M. C [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Lim, S. M [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advance of microPET scanner, it is possible to image small animals. However, the image quality was not so much satisfactory as human image. As cats have relatively large sized brain, cat brain imaging was superior to mice or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ul was injected using 30G needle for 5 minutes to establish the infarction model. F-18 FDG microPET (Concorde Microsystems Inc., Knoxville. TN) scans were performed 1. 11 and 32 days after the infarction. In addition. 18F-FDG PET scans were performed using Gemini PET scanner (Philips medical systems. CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infraction lesion improved with time. An infarction lesion was also distinguishable in the Gemini PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using F-18 FDG microPET scanner.

  19. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Jin; Lee, Dong Soo; Kim, Yun Hui; Hwang, Do Won; Kim, Jin Su; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of); Lim, Sang Moo [Korea Institite of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-12-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 {mu}l was injected using 30 G needle for 5 minutes to establish the infarction model. {sup 18}F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, {sup 18}F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using {sup 18}F-FDG microPET scanner.

  20. Evaluation of cat brain infarction model using microPET

    International Nuclear Information System (INIS)

    Lee, Jong Jin; Lee, Dong Soo; Kim, Yun Hui; Hwang, Do Won; Kim, Jin Su; Chung, June Key; Lee, Myung Chul; Lim, Sang Moo

    2004-01-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 μl was injected using 30 G needle for 5 minutes to establish the infarction model. 18 F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, 18 F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using 18 F-FDG microPET scanner

  1. Evaluation of cat brain infarction model using microPET

    International Nuclear Information System (INIS)

    Lee, J. J.; Lee, D. S.; Kim, J. H.; Hwang, D. W.; Jung, J. G.; Lee, M. C; Lim, S. M

    2004-01-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advance of microPET scanner, it is possible to image small animals. However, the image quality was not so much satisfactory as human image. As cats have relatively large sized brain, cat brain imaging was superior to mice or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ul was injected using 30G needle for 5 minutes to establish the infarction model. F-18 FDG microPET (Concorde Microsystems Inc., Knoxville. TN) scans were performed 1. 11 and 32 days after the infarction. In addition. 18F-FDG PET scans were performed using Gemini PET scanner (Philips medical systems. CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infraction lesion improved with time. An infarction lesion was also distinguishable in the Gemini PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using F-18 FDG microPET scanner

  2. Predictive modeling of neuroanatomic structures for brain atrophy detection

    Science.gov (United States)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  3. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain......-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models....... Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging...

  4. Large Scale Computing for the Modelling of Whole Brain Connectivity

    DEFF Research Database (Denmark)

    Albers, Kristoffer Jon

    organization of the brain in continuously increasing resolution. From these images, networks of structural and functional connectivity can be constructed. Bayesian stochastic block modelling provides a prominent data-driven approach for uncovering the latent organization, by clustering the networks into groups...... of neurons. Relying on Markov Chain Monte Carlo (MCMC) simulations as the workhorse in Bayesian inference however poses significant computational challenges, especially when modelling networks at the scale and complexity supported by high-resolution whole-brain MRI. In this thesis, we present how to overcome...... these computational limitations and apply Bayesian stochastic block models for un-supervised data-driven clustering of whole-brain connectivity in full image resolution. We implement high-performance software that allows us to efficiently apply stochastic blockmodelling with MCMC sampling on large complex networks...

  5. Resolving structural variability in network models and the brain.

    Directory of Open Access Journals (Sweden)

    Florian Klimm

    2014-03-01

    Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful

  6. APOEε4 increases trauma induced early apoptosis via reducing delayed rectifier K(+) currents in neuronal/glial co-cultures model.

    Science.gov (United States)

    Chen, Ligang; Sun, Xiaochuan; Jiang, Yong; Kuai, Li

    2015-06-10

    Traumatic brain injury (TBI) is a commonly encountered emergency and severe neurosurgical injury. Previous studies have shown that the presence of the apolipoprotein E (APOE) ε4 allele has adverse outcomes across the spectrum of TBI severity. Our objective was to evaluate the effects of APOE alleles on trauma induced early apoptosis via modification of delayed rectifier K(+) current (Ik(DR)) in neuronal/glial co-cultures model. An ex vivo neuronal/glial co-cultures model carrying individual APOE alleles (ε2, ε3, ε4) of mechanical injury was developed. Flow cytometry and patch clamp recording were performed to analyze the correlations among APOE genotypes, early apoptosis and Ik(DR). We found that APOEε4 increased early apoptosis at 24h (p<0.05) compared to the ones transfected with APOEε3 and APOEε2. Noticeably, APOEε4 significantly reduced the amplitude of the Ik(DR) at 24h compared to the APOEε3 and APOEε2 (p<0.05) which exacerbate Ca(2+) influx. This indicates a possible effect of APOEε4 on early apoptosis via inhibiting Ik(DR) following injury which may adversely affect the outcome of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A model comparison approach to trauma-related guilt as a mediator of the relationship between PTSD symptoms and suicidal ideation among veterans.

    Science.gov (United States)

    Cunningham, Katherine C; Farmer, Chloe; LoSavio, Stefanie T; Dennis, Paul A; Clancy, Carolina P; Hertzberg, Michael A; Collie, Claire F; Calhoun, Patrick S; Beckham, Jean C

    2017-10-15

    Suicidal ideation (SI) is a serious issue affecting U.S. veterans, and those with posttraumatic stress disorder (PTSD) are at an especially high risk of SI. Guilt has been associated with both PTSD and SI and may therefore be an important link between these constructs. The present study compared models of trauma-related guilt and used path analysis to examine the direct and indirect effects of PTSD and trauma-related guilt on SI among a sample of 988 veterans receiving outpatient PTSD treatment at a Veterans Affairs (VA) specialty clinic. Results showed that a model of trauma-related guilt including guilt-cognitions and global guilt (but not distress) provided the best model fit for the data. PTSD and trauma-related guilt had direct effects on SI, and PTSD exhibited indirect effects on SI via trauma-related guilt. The use of cross-sectional data limits the ability to make causal inferences. A treatment-seeking sample composed primarily of Vietnam veterans limits generalizability to other populations. Trauma-related guilt, particularly guilt cognitions, may be an effective point of intervention to help reduce SI among veterans with PTSD. This is an important area of inquiry, and suggestions for future research are discussed. Published by Elsevier B.V.

  8. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel

    Science.gov (United States)

    2014-01-01

    Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that occurs in association with repetitive traumatic brain injury experienced in sport and military service. In most instances, the clinical symptoms of the disease begin after a long period of latency ranging from several years to several decades. The initial symptoms are typically insidious, consisting of irritability, impulsivity, aggression, depression, short-term memory loss and heightened suicidality. The symptoms progress slowly over decades to include cognitive deficits and dementia. The pathology of CTE is characterized by the accumulation of phosphorylated tau protein in neurons and astrocytes in a pattern that is unique from other tauopathies, including Alzheimer’s disease. The hyperphosphorylated tau abnormalities begin focally, as perivascular neurofibrillary tangles and neurites at the depths of the cerebral sulci, and then spread to involve superficial layers of adjacent cortex before becoming a widespread degeneration affecting medial temporal lobe structures, diencephalon and brainstem. Most instances of CTE (>85% of cases) show abnormal accumulations of phosphorylated 43 kDa TAR DNA binding protein that are partially colocalized with phosphorylated tau protein. As CTE is characterized pathologically by frontal and temporal lobe atrophy, by abnormal deposits of phosphorylated tau and by 43 kDa TAR DNA binding protein and is associated clinically with behavioral and personality changes, as well as cognitive impairments, CTE is increasingly categorized as an acquired frontotemporal lobar degeneration. Currently, some of the greatest challenges are that CTE cannot be diagnosed during life and the incidence and prevalence of the disorder remain uncertain. Furthermore, the contribution of age, gender, genetics, stress, alcohol and substance abuse to the development of CTE remains to be determined. PMID:24423082

  9. Trauma Africa

    Directory of Open Access Journals (Sweden)

    Victor Y. Kong

    2013-11-01

    Full Text Available “Major Trauma. Dr. Kong, please come to the Trauma Unit immediately. Dr. Kong, please come to the Trauma Unit immediately.” Even though I have been working at Edendale Hospital as a trauma registrar for over a year, whenever I hear this announcement over the hospital intercom system, my heart beats just a little faster than normal. When I first arrived at Edendale my colleagues told me that the adrenaline rush I would experience after being called out to attend a new emergency would decrease over time, and indeed they were right. However, it is also true to say that on some occasions more than others, it is still felt more strongly than ever.

  10. Tailbone trauma

    Science.gov (United States)

    For tailbone trauma when no spinal cord injury is suspected: Relieve pressure on the tailbone by sitting on an inflatable rubber ring or cushions. Take acetaminophen for pain. Take a stool softener to avoid constipation. If you suspect injury ...

  11. Paediatric trauma

    African Journals Online (AJOL)

    Trauma Unit, Red Cross War Memorial Children's Hospital, Cape Town ... projects, educational initiatives and advocacy roles on child safety initiatives regarding child injuries as well as child abuse. ... The development of the total body digital.

  12. Moderate Traumatic Brain Injury: Clinical Characteristics and a Prognostic Model of 12-Month Outcome.

    Science.gov (United States)

    Einarsen, Cathrine Elisabeth; van der Naalt, Joukje; Jacobs, Bram; Follestad, Turid; Moen, Kent Gøran; Vik, Anne; Håberg, Asta Kristine; Skandsen, Toril

    2018-03-31

    Patients with moderate traumatic brain injury (TBI) often are studied together with patients with severe TBI, even though the expected outcome of the former is better. Therefore, we aimed to describe patient characteristics and 12-month outcomes, and to develop a prognostic model based on admission data, specifically for patients with moderate TBI. Patients with Glasgow Coma Scale scores of 9-13 and age ≥16 years were prospectively enrolled in 2 level I trauma centers in Europe. Glasgow Outcome Scale Extended (GOSE) score was assessed at 12 months. A prognostic model predicting moderate disability or worse (GOSE score ≤6), as opposed to a good recovery, was fitted by penalized regression. Model performance was evaluated by area under the curve of the receiver operating characteristics curves. Of the 395 enrolled patients, 81% had intracranial lesions on head computed tomography, and 71% were admitted to an intensive care unit. At 12 months, 44% were moderately disabled or worse (GOSE score ≤6), whereas 8% were severely disabled and 6% died (GOSE score ≤4). Older age, lower Glasgow Coma Scale score, no day-of-injury alcohol intoxication, presence of a subdural hematoma, occurrence of hypoxia and/or hypotension, and preinjury disability were significant predictors of GOSE score ≤6 (area under the curve = 0.80). Patients with moderate TBI exhibit characteristics of significant brain injury. Although few patients died or experienced severe disability, 44% did not experience good recovery, indicating that follow-up is needed. The model is a first step in development of prognostic models for moderate TBI that are valid across centers. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Facial trauma.

    Science.gov (United States)

    Peeters, N; Lemkens, P; Leach, R; Gemels B; Schepers, S; Lemmens, W

    Facial trauma. Patients with facial trauma must be assessed in a systematic way so as to avoid missing any injury. Severe and disfiguring facial injuries can be distracting. However, clinicians must first focus on the basics of trauma care, following the Advanced Trauma Life Support (ATLS) system of care. Maxillofacial trauma occurs in a significant number of severely injured patients. Life- and sight-threatening injuries must be excluded during the primary and secondary surveys. Special attention must be paid to sight-threatening injuries in stabilized patients through early referral to an appropriate specialist or the early initiation of emergency care treatment. The gold standard for the radiographic evaluation of facial injuries is computed tomography (CT) imaging. Nasal fractures are the most frequent isolated facial fractures. Isolated nasal fractures are principally diagnosed through history and clinical examination. Closed reduction is the most frequently performed treatment for isolated nasal fractures, with a fractured nasal septum as a predictor of failure. Ear, nose and throat surgeons, maxillofacial surgeons and ophthalmologists must all develop an adequate treatment plan for patients with complex maxillofacial trauma.

  14. An Evolutionary Game Theory Model of Spontaneous Brain Functioning.

    Science.gov (United States)

    Madeo, Dario; Talarico, Agostino; Pascual-Leone, Alvaro; Mocenni, Chiara; Santarnecchi, Emiliano

    2017-11-22

    Our brain is a complex system of interconnected regions spontaneously organized into distinct networks. The integration of information between and within these networks is a continuous process that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, such spontaneous dynamics show predictive value over individual cognitive profile and constitute a potential marker in neurological and psychiatric conditions, making its understanding of fundamental importance in modern neuroscience. Here we present a theoretical and mathematical model based on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in the net behavior of nodes composing resting-state networks identified using functional magnetic resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, approximate fMRI time series on the basis of initial subset of available data, as well as simulate the impact of network lesions and provide evidence of compensation mechanisms across networks. Results suggest evolutionary game theory on networks as a new potential framework for the understanding of human brain network dynamics.

  15. Multilayer modeling and analysis of human brain networks

    Science.gov (United States)

    2017-01-01

    Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916

  16. Nano-Modeling and Computation in Bio and Brain Dynamics

    Directory of Open Access Journals (Sweden)

    Paolo Di Sia

    2016-04-01

    Full Text Available The study of brain dynamics currently utilizes the new features of nanobiotechnology and bioengineering. New geometric and analytical approaches appear very promising in all scientific areas, particularly in the study of brain processes. Efforts to engage in deep comprehension lead to a change in the inner brain parameters, in order to mimic the external transformation by the proper use of sensors and effectors. This paper highlights some crossing research areas of natural computing, nanotechnology, and brain modeling and considers two interesting theoretical approaches related to brain dynamics: (a the memory in neural network, not as a passive element for storing information, but integrated in the neural parameters as synaptic conductances; and (b a new transport model based on analytical expressions of the most important transport parameters, which works from sub-pico-level to macro-level, able both to understand existing data and to give new predictions. Complex biological systems are highly dependent on the context, which suggests a “more nature-oriented” computational philosophy.

  17. Oral Administration of Sitagliptin Activates CREB and Is Neuroprotective in Murine Model of Brain Trauma

    DEFF Research Database (Denmark)

    DellaValle, Brian; Brix, Gitte S; Brock, Birgitte

    2016-01-01

    in the effects of oral treatment of a different class of GLP-1 based therapy, dipeptidyl peptidase IV (DPP-IV) inhibition on mice after TBI. DPP-IV inhibitors reduce the degradation of endogenous GLP-1 and extend circulation of this protective peptide in the bloodstream. This class has yet to be investigated...... for immunoblotting for assessment of selected biomarkers for pathology and protection. Results: Sitagliptin treatment reduced lesion size at day 2 post-injury by ~28% (p

  18. Fast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models

    DEFF Research Database (Denmark)

    Puonti, Oula; Iglesias, Juan Eugenio; Van Leemput, Koen

    2013-01-01

    In this paper we propose a method for whole brain parcellation using the type of generative parametric models typically used in tissue classification. Compared to the non-parametric, multi-atlas segmentation techniques that have become popular in recent years, our method obtains state-of-the-art ...

  19. Mechanical properties of brain tissue: characterisation and constitutive modelling

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Hrapko, M.; Peters, G.W.M.; Kamkin, A.; Kiseleva, I.

    2009-01-01

    The head is often considered as the most critical region of the human body for life-threatening injuries sustained in accidents. In order to develop effective protective measures, a better understanding of the process of injury development in the brain is required. Finite Element (FE) models are

  20. [Chest trauma].

    Science.gov (United States)

    Freixinet Gilart, Jorge; Ramírez Gil, María Elena; Gallardo Valera, Gregorio; Moreno Casado, Paula

    2011-01-01

    Chest trauma is a frequent problem arising from lesions caused by domestic and occupational activities and especially road traffic accidents. These injuries can be analyzed from distinct points of view, ranging from consideration of the most severe injuries, especially in the context of multiple trauma, to the specific characteristics of blunt and open trauma. In the present article, these injuries are discussed according to the involvement of the various thoracic structures. Rib fractures are the most frequent chest injuries and their diagnosis and treatment is straightforward, although these injuries can be severe if more than three ribs are affected and when there is major associated morbidity. Lung contusion is the most common visceral lesion. These injuries are usually found in severe chest trauma and are often associated with other thoracic and intrathoracic lesions. Treatment is based on general support measures. Pleural complications, such as hemothorax and pneumothorax, are also frequent. Their diagnosis is also straightforward and treatment is based on pleural drainage. This article also analyzes other complex situations, notably airway trauma, which is usually very severe in blunt chest trauma and less severe and even suitable for conservative treatment in iatrogenic injury due to tracheal intubation. Rupture of the diaphragm usually causes a diaphragmatic hernia. Treatment is always surgical. Myocardial contusions should be suspected in anterior chest trauma and in sternal fractures. Treatment is conservative. Other chest injuries, such as those of the great thoracic and esophageal vessels, are less frequent but are especially severe. Copyright © 2011 Sociedad Española de Neumología y Cirugía Torácica. Published by Elsevier Espana. All rights reserved.

  1. Childhood trauma and hippocampal and amygdalar volumes in first-episode psychosis.

    Science.gov (United States)

    Hoy, Katrina; Barrett, Suzanne; Shannon, Ciaran; Campbell, Clodagh; Watson, David; Rushe, Teresa; Shevlin, Mark; Bai, Feng; Cooper, Stephen; Mulholland, Ciaran

    2012-11-01

    A history of childhood trauma is common in individuals who later develop psychosis. Similar neuroanatomical abnormalities are observed in people who have been exposed to childhood trauma and people with psychosis. However, the relationship between childhood trauma and such abnormalities in psychosis has not been investigated. This study aimed to explore the association between the experience of childhood trauma and hippocampal and amygdalar volumes in a first-episode psychosis (FEP) population. The study employed an observational retrospective design. Twenty-one individuals, who had previously undergone magnetic resonance imaging procedures as part of the longitudinal Northern Ireland First-Episode Psychosis Study, completed measures assessing traumatic experiences and were included in the analysis. Data were subject to correlation analyses (r and r (pb)). Potential confounding variables (age at FEP and delay to scan from recruitment) were selected a priori for inclusion in multiple regression analyses. There was a high prevalence of lifetime (95%) and childhood (76%) trauma in the sample. The experience of childhood trauma was a significant predictor of left hippocampal volume, although age at FEP also significantly contributed to this model. There was no significant association between predictor variables and right hippocampal volume. The experience of childhood trauma was a significant predictor of right and total amygdalar volumes and the hippocampal/amygdalar complex volume as a whole. The findings indicate that childhood trauma is associated with neuroanatomical measures in FEP. Future research controlling for childhood traumatic experiences may contribute to explaining brain morphology in people with psychosis.

  2. Model for Team Training Using the Advanced Trauma Operative Management Course: Pilot Study Analysis.

    Science.gov (United States)

    Perkins, R Serene; Lehner, Kathryn A; Armstrong, Randy; Gardiner, Stuart K; Karmy-Jones, Riyad C; Izenberg, Seth D; Long, William B; Wackym, P Ashley

    2015-01-01

    Education and training of surgeons has traditionally focused on the development of individual knowledge, technical skills, and decision making. Team training with the surgeon's operating room staff has not been prioritized in existing educational paradigms, particularly in trauma surgery. We aimed to determine whether a pilot curriculum for surgical technicians and nurses, based on the American College of Surgeons' Advanced Trauma Operative Management (ATOM) course, would improve staff knowledge if conducted in a team-training environment. Between December 2012 and December 2014, 22 surgical technicians and nurses participated in a curriculum complementary to the ATOM course, consisting of 8 individual 8-hour training sessions designed by and conducted at our institution. Didactic and practical sessions included educational content, hands-on instruction, and alternating role play during 5 system-specific injury scenarios in a simulated operating room environment. A pre- and postcourse examination was administered to participants to assess for improvements in team members' didactic knowledge. Course participants displayed a significant improvement in didactic knowledge after working in a team setting with trauma surgeons during the ATOM course, with a 9-point improvement on the postcourse examination (83%-92%, p = 0.0008). Most participants (90.5%) completing postcourse surveys reported being "highly satisfied" with course content and quality after working in our simulated team-training setting. Team training is critical to improving the knowledge base of surgical technicians and nurses in the trauma operative setting. Improved communication, efficiency, appropriate equipment use, and staff awareness are the desired outcomes when shifting the paradigm from individual to surgical team training so that improved patient outcomes, decreased risk, and cost savings can be achieved. Determine whether a pilot curriculum for surgical technicians and nurses, based on the

  3. Riemannian multi-manifold modeling and clustering in brain networks

    Science.gov (United States)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  4. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue.

    Science.gov (United States)

    Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L

    2016-01-01

    The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.

  5. A CRPS-IgG-transfer-trauma model reproducing inflammatory and positive sensory signs associated with complex regional pain syndrome.

    Science.gov (United States)

    Tékus, Valéria; Hajna, Zsófia; Borbély, Éva; Markovics, Adrienn; Bagoly, Teréz; Szolcsányi, János; Thompson, Victoria; Kemény, Ágnes; Helyes, Zsuzsanna; Goebel, Andreas

    2014-02-01

    The aetiology of complex regional pain syndrome (CRPS), a highly painful, usually post-traumatic condition affecting the limbs, is unknown, but recent results have suggested an autoimmune contribution. To confirm a role for pathogenic autoantibodies, we established a passive-transfer trauma model. Prior to undergoing incision of hind limb plantar skin and muscle, mice were injected either with serum IgG obtained from chronic CRPS patients or matched healthy volunteers, or with saline. Unilateral hind limb plantar skin and muscle incision was performed to induce typical, mild tissue injury. Mechanical hyperalgesia, paw swelling, heat and cold sensitivity, weight-bearing ability, locomotor activity, motor coordination, paw temperature, and body weight were investigated for 8days. After sacrifice, proinflammatory sensory neuropeptides and cytokines were measured in paw tissues. CRPS patient IgG treatment significantly increased hind limb mechanical hyperalgesia and oedema in the incised paw compared with IgG from healthy subjects or saline. Plantar incision induced a remarkable elevation of substance P immunoreactivity on day 8, which was significantly increased by CRPS-IgG. In this IgG-transfer-trauma model for CRPS, serum IgG from chronic CRPS patients induced clinical and laboratory features resembling the human disease. These results support the hypothesis that autoantibodies may contribute to the pathophysiology of CRPS, and that autoantibody-removing therapies may be effective treatments for long-standing CRPS. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  6. Abdominal trauma

    International Nuclear Information System (INIS)

    Giordany, B.R.

    1985-01-01

    Abdominal injury is an important cause of morbidity and mortality in childhood. Ten percent of trauma-related deaths are due to abdominal injury. Thousands of children are involved in auto accidents annually; many suffer severe internal injury. Child abuse is a second less frequent but equally serious cause of internal abdominal injury. The descriptions of McCort and Eisenstein and their associates in the 1960s first brought to attention the frequency and severity of visceral injury as important manifestations of the child abuse syndrome. Blunt abdominal trauma often causes multiple injuries; in the past, many children have been subjected to exploratory surgery to evaluate the extent of possible hidden injury. Since the advent of noninvasive radiologic imaging techniques including radionuclide scans and ultrasound and, especially, computed tomography (CT), the radiologist has been better able to assess (accurately) the extent of abdominal injury and thus allow conservative therapy in many cases. Penetrating abdominal trauma occurs following gunshot wounds, stabbing, and other similar injury. This is fortunately, a relatively uncommon occurrence in most pediatric centers and will not be discussed specifically here, although many principles of blunt trauma diagnosis are valid for evaluation of penetrating abdominal trauma. If there is any question that a wound has extended intraperitonelly, a sinogram with water-soluble contrast material allows quick, accurate diagnosis. The presence of large amounts of free intraperitoneal gas suggests penetrating injury to the colon or other gas-containing viscus and is generally considered an indication for surgery

  7. Dosha brain-types: A neural model of individual differences.

    Science.gov (United States)

    Travis, Frederick T; Wallace, Robert Keith

    2015-01-01

    This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations.

  8. Dosha brain-types: A neural model of individual differences

    Directory of Open Access Journals (Sweden)

    Frederick T Travis

    2015-01-01

    Full Text Available This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations.

  9. Corticonic models of brain mechanisms underlying cognition and intelligence

    Science.gov (United States)

    Farhat, Nabil H.

    The concern of this review is brain theory or more specifically, in its first part, a model of the cerebral cortex and the way it: (a) interacts with subcortical regions like the thalamus and the hippocampus to provide higher-level-brain functions that underlie cognition and intelligence, (b) handles and represents dynamical sensory patterns imposed by a constantly changing environment, (c) copes with the enormous number of such patterns encountered in a lifetime by means of dynamic memory that offers an immense number of stimulus-specific attractors for input patterns (stimuli) to select from, (d) selects an attractor through a process of “conjugation” of the input pattern with the dynamics of the thalamo-cortical loop, (e) distinguishes between redundant (structured) and non-redundant (random) inputs that are void of information, (f) can do categorical perception when there is access to vast associative memory laid out in the association cortex with the help of the hippocampus, and (g) makes use of “computation” at the edge of chaos and information driven annealing to achieve all this. Other features and implications of the concepts presented for the design of computational algorithms and machines with brain-like intelligence are also discussed. The material and results presented suggest, that a Parametrically Coupled Logistic Map network (PCLMN) is a minimal model of the thalamo-cortical complex and that marrying such a network to a suitable associative memory with re-entry or feedback forms a useful, albeit, abstract model of a cortical module of the brain that could facilitate building a simple artificial brain. In the second part of the review, the results of numerical simulations and drawn conclusions in the first part are linked to the most directly relevant works and views of other workers. What emerges is a picture of brain dynamics on the mesoscopic and macroscopic scales that gives a glimpse of the nature of the long sought after brain code

  10. Retorno à produtividade após reabilitação de pacientes deambuladores vítimas de trauma craniencefálico Return to productivity after rehabilitation by walking patients, traumatic brain injury survivors

    Directory of Open Access Journals (Sweden)

    Cleuza Braga da Silva

    2008-01-01

    Full Text Available Vítimas de trauma craniencefálico (TCE freqüentemente alcançam independência nas atividades de vida diária, mas encontram limitações quanto à participação na comunidade ou no trabalho produtivo. Este estudo visou verificar o índice de retorno, após programa de reabilitação, à produtividade (estudo e/ou trabalho de sujeitos que haviam tido TCE. Participaram 60 sujeitos deambuladores comunitários (média de idade 30,4 anos, mínima 18, máxima 53, selecionados dentre os prontuários de pacientes com diagnóstico de TCE que freqüentaram o programa de reabilitação entre 2002 a 2004 no Setor de Fisioterapia Adulto da Associação de Assistência à Criança Deficiente (AACD em São Paulo, SP. Em entrevista, foi aplicado um questionário elaborado pela equipe da AACD. Os participantes - 51 homens e 9 mulheres - tinham sofrido em sua maioria (95% trauma grave. Os resultados mostram que 71,7% dos participantes retomaram atividades ocupacionais ou escolares, mas apenas 38,3% estavam trabalhando por ocasião da entrevista. Embora sem significância estatística, o tempo decorrido entre o trauma e o início da reabilitação parece estar associado ao retorno à produtividade. O nível de escolaridade prévio ao trauma mostrou ter influência (pTraumatic brain injury (TBI survivors are frequently independent regarding daily life activities, but often face limitations concerning community participation or productive work. This study aimed at determining the rate of return to productivity (studying or working of subjects having suffered TBI. Sixty walking TBI patients (mean age 30.4, range 18 to 53 years old were selected by chart review of TBI patients who attended a rehabilitation program between 2002 and 2004 in AACD, São Paulo, and were interviewed to answer a questionnaire. Participants - 51 men, 9 women - had mostly (95% undergone severe trauma. Results show that 71.7% of the patients returned to productivity (but only 38.3% were

  11. Trauma Imaging: A Literature Review.

    Science.gov (United States)

    Vela, Jason Heath; Wertz, Christopher Ira; Onstott, Kimberly L; Wertz, Joss R

    2017-01-01

    To inform radiologic technologists about which imaging modalities and examinations are best suited for evaluating specific anatomical structures in patients who have sustained a traumatic injury. Two scholarly research databases were searched to identify articles focused on trauma imaging of the head, cervical spine, thorax, abdomen, and pelvis. Articles focused on trauma diagnosis were excluded. Thirty-two articles were selected for analysis. Physical examination and plain-film radiographs typically are used to assess nasal bone fracures. Computed tomography (CT) can be used to assess zygomaticomaxillary complex, mandibular, and temporal bone fractures. Traumatic brain injuries are difficult to assess, and broad classifications are used. Depending on the severity of cervical spine trauma, plain-film radiographs or CT imaging is adequate, with magnetic resonance imaging used as a means for further evaluation. Trauma to the thorax typically is assessed with radiography and CT, and CT is recommended for assesment of abdominal and pelvic trauma. The literature was consistent regarding which examinations to perform to best evaluate suspected injuries to the chest, abdomen, and pelvis. The need for, and correct use of, imaging in evaluating trauma to the head and cervical spine is more controversial. Despite the need for additional research, emergency department care providers should be familiar with the structures most commonly injured during trauma and the role of medical imaging for diagnosis.

  12. Mild traumatic brain injury and immediate hypopituitarism in children = Trauma cranioencefálico leve e hipopituitarismo imediato em crianças

    Directory of Open Access Journals (Sweden)

    Nordon, David Gonçalves

    2012-01-01

    Conclusões: Os resultados deste estudo apontam para disfunções endócrinas provavelmente pouco importantes, já que algumas das alterações encontradas podem estar relacionadas à resposta ao trauma agudo. Considerando a literatura e os resultados, é possível especular que a relação do trauma cranioencefálico com hipopituitarismo em crianças é diferente dos adultos

  13. Pancreatic trauma.

    Science.gov (United States)

    Lahiri, R; Bhattacharya, S

    2013-05-01

    Pancreatic trauma occurs in approximately 4% of all patients sustaining abdominal injuries. The pancreas has an intimate relationship with the major upper abdominal vessels, and there is significant morbidity and mortality associated with severe pancreatic injury. Immediate resuscitation and investigations are essential to delineate the nature of the injury, and to plan further management. If main pancreatic duct injuries are identified, specialised input from a tertiary hepatopancreaticobiliary (HPB) team is advised. A comprehensive online literature search was performed using PubMed. Relevant articles from international journals were selected. The search terms used were: 'pancreatic trauma', 'pancreatic duct injury', 'radiology AND pancreas injury', 'diagnosis of pancreatic trauma', and 'management AND surgery'. Articles that were not published in English were excluded. All articles used were selected on relevance to this review and read by both authors. Pancreatic trauma is rare and associated with injury to other upper abdominal viscera. Patients present with non-specific abdominal findings and serum amylase is of little use in diagnosis. Computed tomography is effective in diagnosing pancreatic injury but not duct disruption, which is most easily seen on endoscopic retrograde cholangiopancreaticography or operative pancreatography. If pancreatic injury is suspected, inspection of the entire pancreas and duodenum is required to ensure full evaluation at laparotomy. The operative management of pancreatic injury depends on the grade of injury found at laparotomy. The most important prognostic factor is main duct disruption and, if found, reconstructive options should be determined by an experienced HPB surgeon. The diagnosis of pancreatic trauma requires a high index of suspicion and detailed imaging studies. Grading pancreatic injury is important to guide operative management. The most important prognostic factor is pancreatic duct disruption and in these cases

  14. Closed Loop Brain Model of Neocortical Information Based Exchange

    Directory of Open Access Journals (Sweden)

    James eKozloski

    2016-01-01

    Full Text Available Here we describe an information based exchange' model of brain function that ascribes to neocortex, basal ganglia, and thalamus distinct network functions. The model allows us to analyze whole brain system set point measures, such as the rate and heterogeneity of transitions in striatum and neocortex, in the context of neuromodulation and other perturbations. Our closed-loop model is grounded in neuroanatomical observations, proposing a novel Grand Loop through neocortex, and invokes different forms of plasticity at specific tissue interfaces and their principle cell synapses to achieve these transitions. By implementing a system for maximum information based exchange of action potentials between modeled neocortical areas, we observe changes to these measures in simulation. We hypothesize that similar dynamic set points and modulations exist in the brain's resting state activity, and that different modifications to information based exchange may shift the risk profile of different component tissues, resulting in different neurodegenerative diseases. This model is targeted for further development using IBM's Neural Tissue Simulator, which allows scalable elaboration of networks, tissues, and their neural and synaptic components towards ever greater complexity and biological realism.

  15. Computational brain models: Advances from system biology and future challenges

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-02-01

    Full Text Available Computational brain models focused on the interactions between neurons and astrocytes, modeled via metabolic reconstructions, are reviewed. The large source of experimental data provided by the -omics techniques and the advance/application of computational and data-management tools are being fundamental. For instance, in the understanding of the crosstalk between these cells, the key neuroprotective mechanisms mediated by astrocytes in specific metabolic scenarios (1 and the identification of biomarkers for neurodegenerative diseases (2,3. However, the modeling of these interactions demands a clear view of the metabolic and signaling pathways implicated, but most of them are controversial and are still under evaluation (4. Hence, to gain insight into the complexity of these interactions a current view of the main pathways implicated in the neuron-astrocyte communication processes have been made from recent experimental reports and reviews. Furthermore, target problems, limitations and main conclusions have been identified from metabolic models of the brain reported from 2010. Finally, key aspects to take into account into the development of a computational model of the brain and topics that could be approached from a systems biology perspective in future research are highlighted.

  16. Splenic Trauma

    International Nuclear Information System (INIS)

    Cortes Diaz, Fabio F; Buitrago Mejia, Francisco; Ulloa Guerrero, Luis Heber

    2001-01-01

    The spleen is the organ that is injured during the closed trauma with more frequency and it is the cause more common of foregone death in the patients with wounded abdominal. At the present time the complications of the splenic trauma are related with their severity, associate wounds, diagnostic fail or inadequate treatments. The lesions that are diagnosed in early form are managed quick and satisfactorily, but the forgotten wounds or the diagnoses and late treatments take for themselves high rates of morbid-mortality. The paper includes their phyto pathology, diagnoses, classification and treatment

  17. Ballistic trauma

    Directory of Open Access Journals (Sweden)

    Parvathi Devi Munishwar

    2016-01-01

    Full Text Available Gunshot injuries are rather serious but uncommon type of trauma in India. Radiologists can contribute substantially in the evaluation and treatment of patients with gunshot wounds. Foreign bodies that enter a patient as a result of trauma are contaminated and produce a range of symptoms. Oral and maxillofacial gunshot injuries are usually fatal due to close proximity with vital structures. Here, we report a case in which radiographic evidence of foreign bodies in the right orofacial region exposed a history of a gunshot injury. The patient did not have any major complaints except for reduced mouth opening. These foreign bodies were clinically silent for approximately 12 years.

  18. Thoracic Trauma.

    Science.gov (United States)

    Dennis, Bradley M; Bellister, Seth A; Guillamondegui, Oscar D

    2017-10-01

    Management of chest trauma is integral to patient outcomes owing to the vital structures held within the thoracic cavity. Understanding traumatic chest injuries and appropriate management plays a pivotal role in the overall well-being of both blunt and penetrating trauma patients. Whether the injury includes rib fractures, associated pulmonary injuries, or tracheobronchial tree injuries, every facet of management may impact the short- and long-term outcomes, including mortality. This article elucidates the workup and management of the thoracic cage, pulmonary and tracheobronchial injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Acute costs and predictors of higher treatment costs of trauma in New South Wales, Australia.

    Science.gov (United States)

    Curtis, Kate; Lam, Mary; Mitchell, Rebecca; Black, Deborah; Taylor, Colman; Dickson, Cara; Jan, Stephen; Palmer, Cameron S; Langcake, Mary; Myburgh, John

    2014-01-01

    Accurate economic data are fundamental for improving current funding models and ultimately in promoting the efficient delivery of services. The financial burden of a high trauma casemix to designated trauma centres in Australia has not been previously determined, and there is some evidence that the episode funding model used in Australia results in the underfunding of trauma. To describe the costs of acute trauma admissions in trauma centres, identify predictors of higher treatment costs and cost variance in New South Wales (NSW), Australia. Data linkage of admitted trauma patient and financial data provided by 12 Level 1 NSW trauma centres for the 08/09 financial year was performed. Demographic, injury details and injury scores were obtained from trauma registries. Individual patient general ledger costs (actual trauma patient costs), Australian Refined Diagnostic Related Groups (AR-DRG) and state-wide average costs (which form the basis of funding) were obtained. The actual costs incurred by the hospital were then compared with the state-wide AR-DRG average costs. Multivariable multiple linear regression was used for identifying predictors of costs. There were 17,522 patients, the average per patient cost was $10,603 and the median was $4628 (interquartile range: $2179-10,148). The actual costs incurred by trauma centres were on average $134 per bed day above AR-DRG costs-determined costs. Falls, road trauma and violence were the highest causes of total cost. Motor cyclists and pedestrians had higher median costs than motor vehicle occupants. As a result of greater numbers, patients with minor injury had comparable total costs with those generated by patients with severe injury. However the median cost of severely injured patients was nearly four times greater. The count of body regions injured, sex, length of stay, serious traumatic brain injury and admission to the Intensive Care Unit were significantly associated with increased costs (p<0.001). This

  20. Pathways to age of onset of heroin use: a structural model approach exploring the relationship of the COMT gene, impulsivity and childhood trauma.

    Science.gov (United States)

    Li, Ting; Du, Jiang; Yu, Shunying; Jiang, Haifeng; Fu, Yingmei; Wang, Dongxiang; Sun, Haiming; Chen, Hanhui; Zhao, Min

    2012-01-01

    The interaction of the association of dopamine genes, impulsivity and childhood trauma with substance abuse remains unclear. To clarify the impacts and the interactions of the Catechol -O-methyltransferase (COMT) gene, impulsivity and childhood trauma on the age of onset of heroin use among heroin dependent patients in China. 202 male and 248 female inpatients who meet DSM-IV criteria of heroin dependence were enrolled. Impulsivity and childhood trauma were measured using BIS-11 (Barratt Impulsiveness Scale-11) and ETISR-SF (Early Trauma Inventory Self Report-Short Form). The single nucleotide polymorphism (SNP) rs737866 on the COMT gene-which has previously been associated with heroin abuse, was genotyped using a DNA sequence detection system. Structural equations model was used to assess the interaction paths between these factors and the age of onset of heroin use. Chi-square test indicated the individuals with TT allele have earlier age of onset of heroin use than those with CT or CC allele. In the correlation analysis, the severity of childhood trauma was positively correlated to impulsive score, but both of them were negatively related to the age of onset of heroin use. In structure equation model, both the COMT gene and childhood trauma had impacts on the age of onset of heroin use directly or via impulsive personality. Our findings indicated that the COMT gene, impulsive personality traits and childhood trauma experience were interacted to impact the age of onset of heroin use, which play a critical role in the development of heroin dependence. The impact of environmental factor was greater than the COMT gene in the development of heroin dependence.

  1. Imaging in spinal trauma

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Maes, Menno; Oezsarlak, Oezkan; Hauwe, Luc van den; Parizel, Paul M.

    2005-01-01

    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given

  2. Imaging in spinal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Goethem, J.W.M. van [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium); Algemeen Ziekenhuis Maria Middelares, Department of Radiology, Sint-Niklaas (Belgium); Maes, Menno; Oezsarlak, Oezkan; Hauwe, Luc van den; Parizel, Paul M. [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium)

    2005-03-01

    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given

  3. South African music learners and psychological trauma: educational solutions to a societal dilemma

    OpenAIRE

    Swart, I

    2013-01-01

    Emotional trauma affects a large proportion of the South African population. This article addresses its influence on music learners, including its effects on brain development, relational development, learning and music-making. The power of the educator to reshape a child’s brain by providing a nurturing and consistent environment is stressed. The effect of the environment in modulating epigenetic expression is discussed in conjunction with object relations theory as a model for human relatio...

  4. Length of stay and medical stability for spinal cord-injured patients on admission to an inpatient rehabilitation hospital: a comparison between a model SCI trauma center and non-SCI trauma center.

    Science.gov (United States)

    Ploumis, A; Kolli, S; Patrick, M; Owens, M; Beris, A; Marino, R J

    2011-03-01

    Retrospective database review. To compare lengths of stay (LOS), pressure ulcers and readmissions to the acute care hospital of patients admitted to the inpatient rehabilitation facility (IRF) from a model spinal cord injury (SCI) trauma center or from a non-SCI acute hospital. Only sparse data exist comparing the status of patients admitted to IRF from a model SCI trauma center or from a non-SCI acute hospital. Acute care, IRF and total LOS were compared between patients transferred to IRF from the SCI center (n=78) and from non-SCI centers (n=131). The percentages of pressure ulcers on admission to IRF and transfer back to acute care were also compared. Patients admitted to IRF from the SCI trauma center (SCI TC) had significantly shorter (P=0.01) acute care LOS and total LOS compared with patients admitted from non-SCI TCs. By neurological category, acute-care LOS was less for all groups admitted from the SCI center, but statistically significant only for tetraplegia. There was no significant difference in the incidence of readmissions to acute care from IRF. More patients from non-SCI centers (34%) than SCI centers (12%) had pressure ulcers (PSCI TCs before transfer to IRF can significantly lower acute-care LOS or total LOS and incidence of pressure ulcers compared with non-SCI TCs. Patients admitted to IRF from SCI TCs are no more likely to be sent back to an acute hospital than those from non-SCI TCs.

  5. Alcohol acute intoxication before sepsis impairs the wound healing of intestinal anastomosis: rat model of the abdominal trauma patient

    Directory of Open Access Journals (Sweden)

    Morais Pedro

    2012-08-01

    Full Text Available Abstract Introduction Most trauma patients are drunk at the time of injury. Up to 2% of traumatized patients develop sepsis, which considerably increases their mortality. Inadequate wound healing of the colonic repair can lead to postoperative complications such as leakage and sepsis. Objective To assess the effects of acute alcohol intoxication on colonic anastomosis wound healing in septic rats. Methods Thirty six Wistar rats were allocated into two groups: S (induction of sepsis and AS (alcohol intake before sepsis induction. A colonic anastomosis was performed in all groups. After 1, 3 or 7 days the animals were killed. Weight variations, mortality rate, histopathology and tensile breaking strength of the colonic anastomosis were evaluated. Results There was an overall mortality of 4 animals (11.1%, three in the group AS (16.6% and one in the S group (5.5%. Weight loss occurred in all groups. The colon anastomosis of the AS group didn’t gain strength from the first to the seventh postoperative day. On the histopathological analysis there were no differences in the deposition of collagen or fibroblasts between the groups AS and S. Conclusion Alcohol intake increased the mortality rate three times in septic animals. Acute alcohol intoxication delays the acquisition of tensile strength of colonic anastomosis in septic rats. Therefore, acute alcohol intoxication before sepsis leads to worse prognosis in animal models of the abdominal trauma patients.

  6. Blunt Head Trauma and Headache

    Directory of Open Access Journals (Sweden)

    Ana B Chelse

    2015-04-01

    Full Text Available Investigators from New York Presbyterian Morgan Stanley Children’s Hospital examined whether having an isolated headache following minor blunt head trauma was suggestive of traumatic brain injury (TBI among a large cohort of children 2-18 years of age.

  7. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  8. Recombinant human brain natriuretic peptide attenuates trauma-/haemorrhagic shock-induced acute lung injury through inhibiting oxidative stress and the NF-κB-dependent inflammatory/MMP-9 pathway.

    Science.gov (United States)

    Song, Zhi; Zhao, Xiu; Liu, Martin; Jin, Hongxu; Wang, Ling; Hou, Mingxiao; Gao, Yan

    2015-12-01

    Acute lung injury (ALI) is one of the most serious complications in traumatic patients and is an important part of multiple organ dysfunction syndrome (MODS). Recombinant human brain natriuretic peptide (rhBNP) is a peptide with a wide range of biological activity. In this study, we investigated local changes in oxidative stress and the NF-κB-dependent matrix metalloproteinase-9 (MMP-9) pathway in rats with trauma/haemorrhagic shock (TH/S)-induced ALI and evaluated the effects of pretreatment with rhBNP. Forty-eight rats were randomly divided into four groups: sham operation group, model group, low-dosage rhBNP group and high-dosage rhBNP group (n = 12 for each group). Oxidative stress and MPO activity were measured by ELISA kits. MMP-9 activity was detected by zymography analysis. NF-κB activity was determined using Western blot assay. With rhBNP pretreatment, TH/S-induced protein leakage, increased MPO activity, lipid peroxidation and metalloproteinase (MMP)-9 activity were inhibited. Activation of antioxidative enzymes was reversed. The phosphorylation of NF-κB and the degradation of its inhibitor IκB were suppressed. The results suggested that the protection mechanism of rhBNP is possibly mediated through upregulation of anti-oxidative enzymes and inhibition of NF-κB activation. More studies are needed to further evaluate whether rhBNP is a suitable candidate as an effective inhaling drug to reduce the incidence of TH/S-induced ALI. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  9. Sexuality following trauma injury: A literature review

    OpenAIRE

    Kylie Marie Connell; Rosemary Coates; Fiona Melanie Wood

    2014-01-01

    Restoration of the quality of life (QoL) of trauma injury survivors is the aim of trauma rehabilitation. It is generally acknowledged that sexuality is an important component of QoL; however, rehabilitation services frequently fall short of including sexuality as a matter of routine. The literature was reviewed to examine the experiences of trauma survivors from three groups: spinal cord injury (SCI), traumatic brain injury (TBI) and burns. The focus was on the impact of trauma on the QoL to ...

  10. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model.

    Science.gov (United States)

    Kieser, Jules A; Weller, Sarah; Swain, Michael V; Neil Waddell, J; Das, Raj

    2013-07-01

    Despite numerous studies on high impact fractures of ribs, little is known about compressive rib injuries. We studied rib fractures from a biomechanical and morphological perspective using 15, 5th ribs of domestic pigs Sus scrofa, divided into two groups, desiccated (representing post-mortem trauma) and fresh ribs with intact periosteum (representing peri-mortem trauma). Ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and scanning electron microscopy (SEM). During axial compression, fresh ribs had slightly higher strength because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by relatively short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening, visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. In contrast, fresh bone showed buckling-like damage features on the compressive surface and cracking parallel to the axis of the bone. Morphologically, all dry ribs fractured precipitously, whereas all but one of the fresh ribs showed incomplete fracture. The mode of fracture, however, was remarkably similar for both groups, with butterfly fractures predominating (7/15, 46.6% dry and wet). Our study highlights the fact that under controlled loading, despite seemingly similar butterfly fracture morphology, fresh ribs (representing perimortem trauma) show a non-catastrophic response. While extensive strain softening observed for the fresh bone does show some additional micro-cracking damage, it appears that the periosteum may play a key role in imparting the observed pseudo-ductility to the ribs

  11. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Trauma Theory

    DEFF Research Database (Denmark)

    Pedersen, Bodil Maria

    There are two main trends in psychological approaches to human suffering related to what we term trauma. Although they have their respective limitations both approaches may help us explore and alleviate human suffering. One trend, primarily using concepts like traumatic events and traumatisation ...

  13. Trauma Center Staffing, Infrastructure, and Patient Characteristics that Influence Trauma Center Need

    Directory of Open Access Journals (Sweden)

    Faul, Mark

    2014-11-01

    Full Text Available Introduction: The most effective use of trauma center resources helps reduce morbidity and mortality, while saving costs. Identifying critical infrastructure characteristics, patient characteristics and staffing components of a trauma center associated with the proportion of patients needing major trauma care will help planners create better systems for patient care.   Methods: We used the 2009 National Trauma Data Bank-Research Dataset to determine the proportion of critically injured patients requiring the resources of a trauma center within each Level I-IV trauma center (n=443. The outcome variable was defined as the portion of treated patients who were critically injured. We defined the need for critical trauma resources and interventions (“trauma center need” as death prior to hospital discharge, admission to the intensive care unit, or admission to the operating room from the emergency department as a result of acute traumatic injury. Generalized Linear Modeling (GLM was used to determine how hospital infrastructure, staffing Levels, and patient characteristics contributed to trauma center need.     Results: Nonprofit Level I and II trauma centers were significantly associated with higher levels of trauma center need. Trauma centers that had a higher percentage of transferred patients or a lower percentage of insured patients were associated with a higher proportion of trauma center need.  Hospital infrastructure characteristics, such as bed capacity and intensive care unit capacity, were not associated with trauma center need. A GLM for Level III and IV trauma centers showed that the number of trauma surgeons on staff was associated with trauma center need. Conclusion: Because the proportion of trauma center need is predominantly influenced by hospital type, transfer frequency, and insurance status, it is important for administrators to consider patient population characteristics of the catchment area when planning the

  14. Using computational models to relate structural and functional brain connectivity

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Coombes, S.

    2012-01-01

    Roč. 36, č. 2 (2012), s. 2137-2145 ISSN 0953-816X R&D Projects: GA MŠk 7E08027 EU Projects: European Commission(XE) 200728 - BRAINSYNC Institutional research plan: CEZ:AV0Z10300504 Keywords : brain disease * computational modelling * functional connectivity * graph theory * structural connectivity Subject RIV: FH - Neurology Impact factor: 3.753, year: 2012

  15. Globalization and migration: A "unified brain drain" model

    OpenAIRE

    Brezis, Elise S.; Soueri, Ariel

    2012-01-01

    Globalization has led to a vast flow of migration of workers but also of students. The purpose of this paper is to analyze the migration of individuals encompassing decisions already at the level of education. We develop a unified brain drain model that incorporates the decisions of an individual vis - à - vis both education and migration. In the empirical part, this paper addresses international flows of migration within the EU and presents strong evidence of concentration of students in cou...

  16. The Best Prediction Model for Trauma Outcomes of the Current Korean Population: a Comparative Study of Three Injury Severity Scoring Systems

    Directory of Open Access Journals (Sweden)

    Kyoungwon Jung

    2016-08-01

    Full Text Available Background: Injury severity scoring systems that quantify and predict trauma outcomes have not been established in Korea. This study was designed to determine the best system for use in the Korean trauma population. Methods: We collected and analyzed the data from trauma patients admitted to our institution from January 2010 to December 2014. Injury Severity Score (ISS, Revised Trauma Score (RTS, and Trauma and Injury Severity Score (TRISS were calculated based on the data from the enrolled patients. Area under the receiver operating characteristic (ROC curve (AUC for the prediction ability of each scoring system was obtained, and a pairwise comparison of ROC curves was performed. Additionally, the cut-off values were estimated to predict mortality, and the corresponding accuracy, positive predictive value, and negative predictive value were obtained. Results: A total of 7,120 trauma patients (6,668 blunt and 452 penetrating injuries were enrolled in this study. The AUCs of ISS, RTS, and TRISS were 0.866, 0.894, and 0.942, respectively, and the prediction ability of the TRISS was significantly better than the others (p < 0.001, respectively. The cut-off value of the TRISS was 0.9082, with a sensitivity of 81.9% and specificity of 92.0%; mortality was predicted with an accuracy of 91.2%; its positive predictive value was the highest at 46.8%. Conclusions: The results of our study were based on the data from one institution and suggest that the TRISS is the best prediction model of trauma outcomes in the current Korean population. Further study is needed with more data from multiple centers in Korea.

  17. A model to predict progression in brain-injured patients.

    Science.gov (United States)

    Tommasino, N; Forteza, D; Godino, M; Mizraji, R; Alvarez, I

    2014-11-01

    The study of brain death (BD) epidemiology and the acute brain injury (ABI) progression profile is important to improve public health programs, organ procurement strategies, and intensive care unit (ICU) protocols. The purpose of this study was to analyze the ABI progression profile among patients admitted to ICUs with a Glasgow Coma Score (GCS) ≤8, as well as establishing a prediction model of probability of death and BD. This was a retrospective analysis of prospective data that included all brain-injured patients with GCS ≤8 admitted to a total of four public and private ICUs in Uruguay (N = 1447). The independent predictor factors of death and BD were studied using logistic regression analysis. A hierarchical model consisting of 2 nested logit regression models was then created. With these models, the probabilities of death, BD, and death by cardiorespiratory arrest were analyzed. In the first regression, we observed that as the GCS decreased and age increased, the probability of death rose. Each additional year of age increased the probability of death by 0.014. In the second model, however, BD risk decreased with each year of age. The presence of swelling, mass effect, and/or space-occupying lesion increased BD risk for the same given GCS. In the presence of injuries compatible with intracranial hypertension, age behaved as a protective factor that reduced the probability of BD. Based on the analysis of the local epidemiology, a model to predict the probability of death and BD can be developed. The organ potential donation of a country, region, or hospital can be predicted on the basis of this model, customizing it to each specific situation.

  18. In vitro models of the blood–brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use

    Science.gov (United States)

    Helms, Hans C; Abbott, N Joan; Burek, Malgorzata; Cecchelli, Romeo; Couraud, Pierre-Olivier; Deli, Maria A; Förster, Carola; Galla, Hans J; Romero, Ignacio A; Shusta, Eric V; Stebbins, Matthew J; Vandenhaute, Elodie; Weksler, Babette

    2016-01-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described. PMID:26868179

  19. In vitro models of the blood-brain barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Abbott, N Joan; Burek, Malgorzata

    2016-01-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic...... components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug...... transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture...

  20. Developing guinea pig brain as a model for cortical folding.

    Science.gov (United States)

    Hatakeyama, Jun; Sato, Haruka; Shimamura, Kenji

    2017-05-01

    The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding. © 2017 Japanese Society of Developmental Biologists.

  1. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    Science.gov (United States)

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  2. [Pancreatic trauma].

    Science.gov (United States)

    Arvieux, C; Guillon, F; Létoublon, Ch; Oughriss, M

    2003-10-01

    Early diagnosis of pancreatic trauma has always been challenging because of the lack of correlation between the initial clinical symptomatology, radiologic and laboratory findings, and the severity of the injury. Thanks to the improved performance of spiral CT scanning and magnetic resonance pancreatography, it is now often possible to make an early diagnosis of pancreatic contusion, to localize the site of the injury, and (most importantly) to identify injury to the main pancreatic duct which has major implications for the management of the case. When the trauma victim is unstable, radiologic work-up may be impossible and urgent laparotomy is required. Control of hemorrhage is the primary concern here and a damage control approach with packing may be appropriate; if the pancreatic head has been destroyed, a pancreaticoduodenectomy with delayed reconstruction may be required. If the trauma victim is stable, the treatment strategy will be governed by a variety of parameters--age, clinical condition, associated local anatomic findings (pancreatitis, injury to the duodenum or biliary tract), involvement of the pancreatic duct, and localization of the injury within the gland (to right or left of the mesenteric vessels).

  3. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  4. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Os efeitos das alterações comportamentais das vítimas de trauma crânio-encefálico para o cuidador familiar Los efectos de las alteraciones comportamentales de las victimas de trauma cráneo encefálico para el cuidador familiar Effect of the behavioral alterations of victims of traumatic brain injury for the family caregiver

    Directory of Open Access Journals (Sweden)

    Edilene Curvelo Hora

    2005-02-01

    variación de humor. Los seis primeros comportamientos mencionados fueron los que más incidieron negativamente sobre el cuidador. No se encontró relación entre el tiempo transcurrido y los efectos de las alteraciones comportamentales.This study aimed to identify alterations in the intensity at which the negative behaviors of the victims of traumatic brain injury (TBI affect the main family caregiver comparing the periods before and after the trauma and to verify the relation between the intensity of these alterations and time passed after the traumatic event. Participants were 50 caregivers of victims with different levels of dependence after TBI. The effect of the victim’s behaviors on the caregiver was measured by means of a Likert scale, in view of eleven negative behaviors cited in literature. According to the caregiver, the victim was more aggressive, anxious, dependent, depressed, irritated, and forgetful after the trauma, with a more explosive temperament, more self-centered, impulsive, with greater social inadequacy and mood oscillation. The first six cited behaviors were the ones that affected the caregiver more negatively. No relation was found between the passed time and the effect of the behavioral alterations

  6. Multiscale modeling and simulation of brain blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-02-15

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  7. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  8. Development of three-dimensional brain arteriovenous malformation model for patient communication and young neurosurgeon education.

    Science.gov (United States)

    Dong, Mengqi; Chen, Guangzhong; Qin, Kun; Ding, Xiaowen; Zhou, Dong; Peng, Chao; Zeng, Shaojian; Deng, Xianming

    2018-01-15

    Rapid prototyping technology is used to fabricate three-dimensional (3D) brain arteriovenous malformation (AVM) models and facilitate presurgical patient communication and medical education for young surgeons. Two intracranial AVM cases were selected for this study. Using 3D CT angiography or 3D rotational angiography images, the brain AVM models were reconstructed on personal computer and the rapid prototyping process was completed using a 3D printer. The size and morphology of the models were compared to brain digital subtraction arteriography of the same patients. 3D brain AVM models were used for preoperative patient communication and young neurosurgeon education. Two brain AVM models were successfully produced. By neurosurgeons' evaluation, the printed models have high fidelity with the actual brain AVM structures of the patients. The patient responded positively toward the brain AVM model specific to himself. Twenty surgical residents from residency programs tested the brain AVM models and provided positive feedback on their usefulness as educational tool and resemblance to real brain AVM structures. Patient-specific 3D printed models of brain AVM can be constructed with high fidelity. 3D printed brain AVM models are proved to be helpful in preoperative patient consultation, surgical planning and resident training.

  9. Bear maul craniocerebral trauma in Kashmir Valley.

    Science.gov (United States)

    Bashir, Sheikh Adil; Rasool, Altaf; Zaroo, Mohamad Inam; Wani, Adil Hafeez; Zargar, Haroon Rashid; Darzi, Mohammad Ashraf; Khursheed, Nayil

    2013-01-01

    Craniocerebral injuries constitute the bulk of the trauma patients in all the tertiary-care hospitals. Bear attacks as a cause of trauma to the brain and its protective covering are rare. This was a hospital-based retrospective (January 1990 to July 2005) and prospective study (August 2005 to December 2010). Craniocerebral trauma was seen in 49 patients of bear maul injuries. Loss of scalp tissue was seen in 17 patients, 13 of whom had exposed pericranium and needed split-thickness skin grafting, while 4 patients with exposed skull bones required scalp transposition flaps as an initial procedure. Skull bone fractures without associated brain injury were observed in 24 cases. Frontal bone was the site of fracture in the majority of cases (95%). Surgical intervention was needed in 18 patients for significantly depressed fractures. Three of these patients had depressed frontal bone fractures with underlying contusions and needed brain debridement and duraplasty. Injury to the brain was observed in 8 patients. Trauma to the brain and its protective coverings as a result of bear attacks is rarely known. Brain injury occurs less commonly as compared to soft tissue and bony injury. Craniocerebral trauma as a result of bear assaults has been a hitherto neglected area of trauma as the past reported incidence has been very low. Of late, the incidence and severity of such attacks has assumed grave proportions in areas adjacent to known bear habitats. An innocuous-looking surface wound might be the only presentation of an underlying severe brain trauma. Public awareness has to be generated to protect the people living in hilly areas.

  10. A fractional motion diffusion model for grading pediatric brain tumors.

    Science.gov (United States)

    Karaman, M Muge; Wang, He; Sui, Yi; Engelhard, Herbert H; Li, Yuhua; Zhou, Xiaohong Joe

    2016-01-01

    To demonstrate the feasibility of a novel fractional motion (FM) diffusion model for distinguishing low- versus high-grade pediatric brain tumors; and to investigate its possible advantage over apparent diffusion coefficient (ADC) and/or a previously reported continuous-time random-walk (CTRW) diffusion model. With approval from the institutional review board and written informed consents from the legal guardians of all participating patients, this study involved 70 children with histopathologically-proven brain tumors (30 low-grade and 40 high-grade). Multi- b -value diffusion images were acquired and analyzed using the FM, CTRW, and mono-exponential diffusion models. The FM parameters, D fm , φ , ψ (non-Gaussian diffusion statistical measures), and the CTRW parameters, D m , α , β (non-Gaussian temporal and spatial diffusion heterogeneity measures) were compared between the low- and high-grade tumor groups by using a Mann-Whitney-Wilcoxon U test. The performance of the FM model for differentiating between low- and high-grade tumors was evaluated and compared with that of the CTRW and the mono-exponential models using a receiver operating characteristic (ROC) analysis. The FM parameters were significantly lower ( p  < 0.0001) in the high-grade ( D fm : 0.81 ± 0.26, φ : 1.40 ± 0.10, ψ : 0.42 ± 0.11) than in the low-grade ( D fm : 1.52 ± 0.52, φ : 1.64 ± 0.13, ψ : 0.67 ± 0.13) tumor groups. The ROC analysis showed that the FM parameters offered better specificity (88% versus 73%), sensitivity (90% versus 82%), accuracy (88% versus 78%), and area under the curve (AUC, 93% versus 80%) in discriminating tumor malignancy compared to the conventional ADC. The performance of the FM model was similar to that of the CTRW model. Similar to the CTRW model, the FM model can improve differentiation between low- and high-grade pediatric brain tumors over ADC.

  11. Operation CeaseFire-New Orleans: an infectious disease model for addressing community recidivism from penetrating trauma.

    Science.gov (United States)

    McVey, Erin; Duchesne, Juan C; Sarlati, Siavash; O'Neal, Michael; Johnson, Kelly; Avegno, Jennifer

    2014-07-01

    CeaseFire, using an infectious disease approach, addresses violence by partnering hospital resources with the community by providing violence interruption and community-based services for an area roughly composed of a single city zip code (70113). Community-based violence interrupters start in the trauma center from the moment penetrating trauma occurs, through hospital stay, and in the community after release. This study interprets statistics from this pilot program, begun May 2012. We hypothesize a decrease in penetrating trauma rates in the target area compared with others after program implementation. This was a 3-year prospective data collection of trauma registry from May 2010 to May 2013. All intentional, target area, penetrating trauma treated at our Level I trauma center received immediate activation of CeaseFire personnel. Incidences of violent trauma and rates of change, by zip code, were compared with the same period for 2 years before implementation. During this period, the yearly incidence of penetrating trauma in Orleans Parish increased. Four of the highest rates were found in adjacent zip codes: 70112, 70113, 70119, and 70125. Average rates per 100,000 were 722.7, 523.6, 286.4, and 248, respectively. These areas represent four of the six zip codes citywide that saw year-to-year increases in violent trauma during this period. Zip 70113 saw a lower rate of rise in trauma compared with 70112 and a higher but comparable rise compared with that of 70119 and 70125. Hospital-based intervention programs that partner with culturally appropriate personnel and resources outside the institution walls have potential to have meaningful impact over the long term. While few conclusions of the effect of such a program can be drawn in a 12-month period, we anticipate long-term changes in the numbers of penetrating injuries in the target area and in the rest of the city as this program expands. Therapeutic study, level IV.

  12. Natural memory beyond the storage model: Repression, trauma, and the construction of a personal past

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2010-11-01

    Full Text Available Naturally occurring memory processes show features which are difficult to investigate by conventional cognitive neuroscience paradigms. Distortions of memory for problematic contents are described both by psychoanalysis (internal conflicts and research on post-traumatic stress disorder (external traumata. Typically, declarative memory for these contents is impaired – possibly due to repression in the case of internal conflicts or due to dissociation in the case of external traumata – but they continue to exert an unconscious pathological influence: neurotic symptoms or psychosomatic disorders after repression or flashbacks and intrusions in post-traumatic stress disorder after dissociation. Several experimental paradigms aim at investigating repression in healthy control subjects. We argue that these paradigms do not adequately operationalize the clinical process of repression, because they rely on an intentional inhibition of random stimuli (suppression. Furthermore, these paradigms ignore that memory distortions due to repression or dissociation are most accurately characterized by a lack of self-referential processing, resulting in an impaired integration of these contents into the self. This aspect of repression and dissociation cannot be captured by the concept of memory as a storage device which is usually employed in the cognitive neurosciences. It can only be assessed within the framework of a constructivist memory concept, according to which successful memory involves a reconstruction of experiences such that they fit into a representation of the self. We suggest several experimental paradigms that allow for the investigation of the neural correlates of repressed memories and trauma-induced memory distortions based on a constructivist memory concept.

  13. Dyadic Brain - A Biological Model for Deliberative Inference

    Directory of Open Access Journals (Sweden)

    Iliyan Ivanov

    2017-10-01

    Full Text Available The human brain is arguably the most complex information processing system. It operates by acquiring data from the environment, recognizing patterns of events’ occurrence, anticipating their re-occurrence and in turn generating appropriate behavioral responses. Through the lenses of the free-energy principle any self-organizing system that is at equilibrium with its environment must minimize its free energy either by manipulating the environmental sensory input or by manipulating its internal states thus altering the recognition density of the outside stimuli. However, several sets of challenges interfere with the human brain's ability to learn and adapt in such a theoretically optimal fashion. These may include, and are not limited to, functional inconsistencies related to attention and memory processes, the functions of “fast” and “slow” thinking and responding, and the ability of emotional states to generate unintended behavioral outcomes that are less adaptive or inappropriate. This paper will review literature on the subject of how ideal learning viewed from the free-energy principle perspective may be affected by the above mentioned limitations and will suggest a model of information processing that may have developed as a way of overcoming these challenges. This neurobiological model stipulates that a neuronal network is formed in response to environmental input and is paralleled by at least one and possibly multiple networks that activate intrinsically and represent “virtual responses” to a situation that demands a behavioral response. This model accounts for how the brain generates a multiplicity of potential behavioral responses and may “choose” the one that seems most appropriate and also explains the uncanny ability of humans to socialize and collaborate. Implications for understanding humans’ ability to learn from others, deliberate on opposing constructs and access and utilize information outside of individual

  14. A simulation model for analysing brain structure deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Sergio Di [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy); Lutzemberger, Ludovico [Department of Neuroscience, Institute of Neurosurgery, University of Pisa, Via Roma, 67-56100 Pisa (Italy); Salvetti, Ovidio [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy)

    2003-12-21

    Recent developments of medical software applications from the simulation to the planning of surgical operations have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  15. Reprodaetion of an animal model of multiple intestinal injuries mimicking "lethal triad" caused by severe penetrating abdominal trauma

    Directory of Open Access Journals (Sweden)

    Peng-fei WANG

    2011-03-01

    Full Text Available Objective To reproduce an animal model of multi-intestinal injuries with "lethal triad" characterized by low body temperature,acidosis and coagulopathy.Methods Six female domestic outbred pigs were anesthetized,and the carotid artery and jugular vein were cannulated for monitoring the blood pressure and heart rate and for infusion of fluid.The animals were shot with a gun to create a severe penetrating abdominal trauma.Immediately after the shooting,50% of total blood volume(35ml/kg hemorrhage was drawn from the carotid artery in 20min.After a 40min shock period,4h of pre-hospital phase was mimicked by normal saline(NS resuscitation to maintain systolic blood pressure(SBP > 80mmHg or mean arterial pressure(MAP > 60mmHg.When SBP > 80mmHg or MAP > 60mmHg,no fluid infusion or additional bleeding was given.Hemodynamic parameters were recorded,and pathology of myocardium,lung,small intestine and liver was observed.Results There were multiple intestinal perforations(8-10 site injuries/pig leading to intra-abdominal contamination,mesenteric injury(1-2 site injuries/pig resulted in partial intestinal ischemia and intra-abdominal hemorrhage,and no large colon and mesenteric vascular injury.One pig died before the completion of the model establishment(at the end of pre-hospital resuscitation.The typical symptoms of trauma-induced hemorrhagic shock were observed in survival animals.Low temperature(33.3±0.5℃,acidosis(pH=7.242±0.064,and coagulopathy(protrombin time and activated partial thromboplasting time prolonged were observed after pre-hospital resuscitation.Pathology showed that myocardium,lung,small intestine and liver were severely injured.Conclusions A new model,simulating three stages of "traumatic hemorrhagic shock,pre-hospital recovery and hospital treatment" and inducing the "lethal triad" accompanied with abdominal pollution,has been successfully established.This model has good stability and high reproducibility.The survival animals can be

  16. Brain Dynamics An Introduction to Models and Simualtions

    CERN Document Server

    Haken, Hermann

    2008-01-01

    Brain Dynamics serves to introduce graduate students and nonspecialists from various backgrounds to the field of mathematical and computational neurosciences. Some of the advanced chapters will also be of interest to the specialists. The book approaches the subject through pulse-coupled neural networks, with at their core the lighthouse and integrate-and-fire models, which allow for the highly flexible modelling of realistic synaptic activity, synchronization and spatio-temporal pattern formation. Topics also include pulse-averaged equations and their application to movement coordination. The book closes with a short analysis of models versus the real neurophysiological system. The second edition has been thoroughly updated and augmented by two extensive chapters that discuss the interplay between pattern recognition and synchronization. Further, to enhance the usefulness as textbook and for self-study, the detailed solutions for all 34 exercises throughout the text have been added.

  17. Urethral trauma

    International Nuclear Information System (INIS)

    Carrington, B.M.; Hricak, H.; Dixon, C.; McAninch, J.W.

    1990-01-01

    This paper evaluates the role of MR imaging in posterior urethral trauma. Fifteen patients with posttraumatic membranous urethral strictures underwent prospective MR imaging with a 1.5-T unit before open urethroplasty. All patients had transaxial T1-weighted (500/20) and T2-weighted (2,500/70) spin-echo images and T2-weighted sagittal and coronal images (matrix, 192 x 256; section thickness, 4 mm with 20% gap). Conventional retrograde and cystourethrography were performed preoperatively. Compared with conventional studies, MR imaging defined the length and location of the urethral injury and provided additional information regarding the direction and degree of prostatic and urethral dislocation

  18. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    Institute of Scientific and Technical Information of China (English)

    MU Xiao-lan; SONG Zhi-jian

    2004-01-01

    @@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.

  19. Images in kidney trauma

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Rodriguez, Sonia Pilar; Manzano, Ana Cristina

    2007-01-01

    A case of a 3 years old female patient, who suffered blunt lumbar trauma (horse kick) with secondary kidney trauma, is reported. Imaging findings are described. Renal trauma classification and imaging findings are reviewed

  20. Model sparsity and brain pattern interpretation of classification models in neuroimaging

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Churchill, Nathan W

    2012-01-01

    Interest is increasing in applying discriminative multivariate analysis techniques to the analysis of functional neuroimaging data. Model interpretation is of great importance in the neuroimaging context, and is conventionally based on a ‘brain map’ derived from the classification model. In this ...

  1. Sexuality following trauma injury: A literature review

    Directory of Open Access Journals (Sweden)

    Kylie Marie Connell

    2014-04-01

    Full Text Available Restoration of the quality of life (QoL of trauma injury survivors is the aim of trauma rehabilitation. It is generally acknowledged that sexuality is an important component of QoL; however, rehabilitation services frequently fall short of including sexuality as a matter of routine. The literature was reviewed to examine the experiences of trauma survivors from three groups: spinal cord injury (SCI, traumatic brain injury (TBI and burns. The focus was on the impact of trauma on the QoL to identify future research directions and to advocate for the inclusion of sexuality as an integral part of rehabilitation. Databases searched were Proquest, Ovid, Cinahl, Medline, PsycInfo and Cochrane Central Register of controlled trials. A total of 36 eligible studies were included: SCI (n = 25, TBI (n = 6, burns (n = 5. Four themes were identified across the three trauma groups that were labeled as physiological impact of trauma on sexuality, cognitive-genital dissociation (CGD, sexual disenfranchisement (SD and sexual rediscovery (SR. Trauma injury has a significant impact on sexuality, which is not routinely addressed within rehabilitation services. Further sexuality research is required among all trauma groups to improve rehabilitation services and in turn QoL outcomes for all trauma survivors.

  2. Neurobehavioral, neuropathological and biochemical profiles in a novel mouse model of co-morbid post-traumatic stress disorder and mild traumatic brain injury

    Science.gov (United States)

    Ojo, Joseph O.; Greenberg, M. Banks; Leary, Paige; Mouzon, Benoit; Bachmeier, Corbin; Mullan, Michael; Diamond, David M.; Crawford, Fiona

    2014-01-01

    Co-morbid mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) has become the signature disorder for returning combat veterans. The clinical heterogeneity and overlapping symptomatology of mTBI and PTSD underscore the need to develop a preclinical model that will enable the characterization of unique and overlapping features and allow discrimination between both disorders. This study details the development and implementation of a novel experimental paradigm for PTSD and combined PTSD-mTBI. The PTSD paradigm involved exposure to a danger-related predator odor under repeated restraint over a 21 day period and a physical trauma (inescapable footshock). We administered this paradigm alone, or in combination with a previously established mTBI model. We report outcomes of behavioral, pathological and biochemical profiles at an acute timepoint. PTSD animals demonstrated recall of traumatic memories, anxiety and an impaired social behavior. In both mTBI and combination groups there was a pattern of disinhibitory like behavior. mTBI abrogated both contextual fear and impairments in social behavior seen in PTSD animals. No major impairment in spatial memory was observed in any group. Examination of neuroendocrine and neuroimmune responses in plasma revealed a trend toward increase in corticosterone in PTSD and combination groups, and an apparent increase in Th1 and Th17 proinflammatory cytokine(s) in the PTSD only and mTBI only groups respectively. In the brain there were no gross neuropathological changes in any groups. We observed that mTBI on a background of repeated trauma exposure resulted in an augmentation of axonal injury and inflammatory markers, neurofilament L and ICAM-1 respectively. Our observations thus far suggest that this novel stress-trauma-related paradigm may be a useful model for investigating further the overlapping and distinct spatio-temporal and behavioral/biochemical relationship between mTBI and PTSD experienced by combat

  3. Systemic Inflammatory Effects of Traumatic Brain Injury, Femur Fracture, and Shock: An Experimental Murine Polytrauma Model

    Directory of Open Access Journals (Sweden)

    C. Probst

    2012-01-01

    Full Text Available Objective. Despite broad research in neurotrauma and shock, little is known on systemic inflammatory effects of the clinically most relevant combined polytrauma. Experimental investigation in an animal model may provide relevant insight for therapeutic strategies. We describe the effects of a combined injury with respect to lymphocyte population and cytokine activation. Methods. 45 male C57BL/6J mice (mean weight 27 g were anesthetized with ketamine/xylazine. Animals were subjected to a weight drop closed traumatic brain injury (WD-TBI, a femoral fracture and hemorrhagic shock (FX-SH. Animals were subdivided into WD-TBI, FX-SH and combined trauma (CO-TX groups. Subjects were sacrificed at 96 h. Blood was analysed for cytokines and by flow cytometry for lymphocyte populations. Results. Mortality was 8%, 13% and 47% for FX-SH, WD-TBI and CO-TX groups (P<0.05. TNFα (11/13/139 for FX-SH/WD-TBI/CO-TX; P<0.05, CCL2 (78/96/227; P<0.05 and IL-6 (16/48/281; P=0.05 showed significant increases in the CO-TX group. Lymphocyte populations results for FX-SH, WD-TBI and CO-TX were: CD-4 (31/21/22; P= n.s., CD-8 (7/28/34, P<0.05, CD-4-CD-8 (11/12/18; P= n.s., CD-56 (36/7/8; P<0.05. Conclusion. This study shows that a combination of closed TBI and femur-fracture/ shock results in an increase of the humoral inflammation. More attention to combined injury models in inflammation research is indicated.

  4. Modeling Brain Responses in an Arithmetic Working Memory Task

    Science.gov (United States)

    Hamid, Aini Ismafairus Abd; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina; Manan, Hanani Abdul; Hamid, Khairiah Abdul

    2010-07-01

    Functional magnetic resonance imaging (fMRI) was used to investigate brain responses due to arithmetic working memory. Nine healthy young male subjects were given simple addition and subtraction instructions in noise and in quiet. The general linear model (GLM) and random field theory (RFT) were implemented in modelling the activation. The results showed that addition and subtraction evoked bilateral activation in Heschl's gyrus (HG), superior temporal gyrus (STG), inferior frontal gyrus (IFG), supramarginal gyrus (SG) and precentral gyrus (PCG). The HG, STG, SG and PCG activate higher number of voxels in noise as compared to in quiet for addition and subtraction except for IFG that showed otherwise. The percentage of signal change (PSC) in all areas is higher in quiet as compared to in noise. Surprisingly addition (not subtraction) exhibits stronger activation.

  5. Cluster imaging of multi-brain networks (CIMBN: a general framework for hyperscanning and modeling a group of interacting brains

    Directory of Open Access Journals (Sweden)

    Lian eDuan

    2015-07-01

    Full Text Available Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called Cluster Imaging of Multi-brain Networks (CIMBN. CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network’s properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.

  6. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    Science.gov (United States)

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  7. Combined trauma in peaceful time

    Directory of Open Access Journals (Sweden)

    Chaika V.A.

    2014-06-01

    Full Text Available In the article epidemiological features of combined trauma (CT, characteristic for the industrial region were summarized. 486 cases of CT were analyzed for the period from 2010 to 2012. Male patients dominated. 267 (54.9% patients were the age from 25 to 44 years. Most often the damage occurred in 2 anatomic regions (AR - 224 (46.1%, 3 AR - 177 (36.4% and 4 or more - 85 (17.5%. Trau¬matic brain injury - 94.2%, skeletal trauma - 70.6%, the trauma of the chest and abdomen - 68.4% and 35.7%, respectively prevailed. Injury of the abdominal cavity as a dominant one - 148 (30.5% occupied the first place. In 17 (3.5% cases it was impossible to establish the dominant damage. Mortality rate was directly dependent on the type of the trauma and patient's age. Maximum values were found in the combined brain injury and that of abdominal organs - 28.6%, as well as in the group of patients older than 60 years - 35.1%. From 2010 to 2012 the overall mortality decreased by 3.5%.

  8. Development of a human head FE model for the impact analysis using VOXEL approach and simulation for the assessment on the focal brain injury

    International Nuclear Information System (INIS)

    Watanabe, Dai; Yuge, Kohei; Nishimoto, Tetsuya; Murakami, Shigeyuki; Takao, Hiroyuki

    2008-01-01

    In this paper, a three-dimensional digital human-head model was developed and several dynamic analyses on the head trauma were conducted. This model was built up by the VOXEL approach using 433 slice CT images (512 x 512 pixels) and made of 1.22 million parallelepiped finite elements with 10 anatomical tissue properties such as scalp, cerebrospinal fluid (CSF), skull, brain, dura mater and so on. The numerical analyses were conducted using a finite element code the authors have developed. The main features of the code are it is based on the explicit time integration method and it uses the one point integration method to evaluate the equivalent nodal forces with the hourglass control proposed by Flanagan and Belythcko and it utilizes the parallel computation with the Massage Passing Interface (MPI). In order to verify the developed model, the head impact experiment for a cadaver by Nahum et al. was simulated. The calculated results showed good agreement with experimental ones. A front and rear impact analyses were also performed investigate the relation between the impact direction and the positions of the high measurement of pressure and stresses in brain. The obtained results represent that brain injury has a closer relation with the Mises equivalent stress rather than the pressure. At this time, the large deformation of a frontal cranial base was observed in both frontal and occipital impact analyses. We expect that it induces the brain injury in a frontal lobe regardless of the impact positions. (author)

  9. The effect of childhood trauma and Five-Factor Model personality traits on exposure to adult life events in patients with psychotic disorders.

    Science.gov (United States)

    Pos, Karin; Boyette, Lindy Lou; Meijer, Carin J; Koeter, Maarten; Krabbendam, Lydia; de Haan, Lieuwe; For Group

    2016-11-01

    Recent life events are associated with transition to and outcome in psychosis. Childhood trauma and personality characteristics play a role in proneness to adult life events. However, little is known about the relative contribution and interrelatedness of these characteristics in psychotic disorders. Therefore, we investigated whether Five-Factor Model (FFM) personality traits and childhood trauma (abuse and neglect) predict adult life events, and whether the effect of childhood trauma on life events is mediated by personality traits. One hundred and sixty-three patients with psychotic disorders were assessed at baseline on history of childhood maltreatment and FFM personality traits, and on recent life events at 3-year follow-up. Childhood abuse is associated with negative life events, and part of the effect of childhood abuse on negative life events is mediated by openness to experience. Openness to experience and extraversion are associated with more positive and negative life events. Childhood neglect and lower extraversion are related to experiencing less positive events. The association between childhood trauma and recent life events is partly mediated by personality. Future research could focus on mechanisms leading to positive life events, as positive life events may buffer against development of mental health problems.

  10. Una aplicación de topic modeling para el estudio del trauma: el caso de chevron-texaco en Ecuador

    Directory of Open Access Journals (Sweden)

    Eliana Sanandrés

    2015-09-01

    Full Text Available Las perspectivas tradicionales en el estudio del trauma sugieren la existencia de eventos inherentemente traumáticos que desencadenan dicha emoción negativa en las comunidades afectadas. No obstante, desde la década de 1990 los sociólogos culturales han venido desarrollando una nueva perspectiva conocida como la teoría del trauma cultural. Esta sugiere que no existen eventos traumáticos y que el trauma, en cambio, es el resultado de un proceso de construcción sociocultural que depende de las representaciones simbólicas que los actores construyen sobre aquellos eventos que perciben como amenazas a la identidad colectiva. Ahora bien, la aplicación de técnicas de análisis que permitan identificar tales representaciones implica el reto metodológico de trabajar cualitativamente con un gran número de datos. En tal sentido, en este artículo se presenta una aplicación de Topic Modeling al estudio del proceso de trauma derivado del caso de Chevron-Texaco en Ecuador para mostrar que esta técnica facilita dicha labor.

  11. Specific trauma subtypes improve the predictive validity of the Harvard Trauma Questionnaire in Iraqi refugees.

    Science.gov (United States)

    Arnetz, Bengt B; Broadbridge, Carissa L; Jamil, Hikmet; Lumley, Mark A; Pole, Nnamdi; Barkho, Evone; Fakhouri, Monty; Talia, Yousif Rofa; Arnetz, Judith E

    2014-12-01

    Trauma exposure contributes to poor mental health among refugees, and exposure often is measured using a cumulative index of items from the Harvard Trauma Questionnaire (HTQ). Few studies, however, have asked whether trauma subtypes derived from the HTQ could be superior to this cumulative index in predicting mental health outcomes. A community sample of recently arrived Iraqi refugees (N = 298) completed the HTQ and measures of posttraumatic stress disorder (PTSD) and depression symptoms. Principal components analysis of HTQ items revealed a 5-component subtype model of trauma that accounted for more item variance than a 1-component solution. These trauma subtypes also accounted for more variance in PTSD and depression symptoms (12 and 10%, respectively) than did the cumulative trauma index (7 and 3%, respectively). Trauma subtypes provided more information than cumulative trauma in the prediction of negative mental health outcomes. Therefore, use of these subtypes may enhance the utility of the HTQ when assessing at-risk populations.

  12. Multistability in Large Scale Models of Brain Activity.

    Directory of Open Access Journals (Sweden)

    Mathieu Golos

    2015-12-01

    Full Text Available Noise driven exploration of a brain network's dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network's capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain's dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system's attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i a uniform activation threshold or (ii a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the "resting state" condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors.

  13. A preliminary model for posttraumatic brain injury depression.

    Science.gov (United States)

    Malec, James F; Brown, Allen W; Moessner, Anne M; Stump, Timothy E; Monahan, Patrick

    2010-07-01

    To develop, based on previous research, and evaluate a model for depression after traumatic brain injury (TBI). Cross-sectional structural equation modeling (SEM) of data from consecutively recruited patients. Acute hospital and inpatient rehabilitation units. Adult patients (N=158) after hospital admission for moderate to severe TBI. Not applicable. External appraisal of ability in participants was measured by the Mayo-Portland Adaptability Inventory (MPAI-4) Ability Index completed by a TBI clinical nurse specialist. Patient self-appraisal of post-TBI ability and depression were measured by the Awareness Questionnaire and Beck Depression Inventory-II. Functional outcome 1 year after injury was assessed with the MPAI-4 Participation Index. Successive SEM resulted in a parsimonious model with excellent fit. Consistent with prior research, a moderately strong association between self-appraisal of post-TBI ability and depression was found. Injury severity, as measured by the duration of posttraumatic amnesia (PTA), was not significantly associated with post-TBI depression. The 1-year functional outcome was associated with depression and TBI severity. The strong association between self-appraisal of post-TBI ability and depression is consistent with the cognitive-behavioral model of depression and recommends consideration and further study of cognitive-behavioral therapy for post-TBI depression. The lack of association between TBI severity and depression may represent the indirect and proxy nature of current measures of TBI severity such as PTA. Emerging neuroimaging techniques (eg, diffusion tensor imaging, magnetic resonance imaging spectroscopy) may provide the more direct measures of disruption of brain function after TBI that are needed to advance this line of research. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. A reproducible brain tumour model established from human glioblastoma biopsies

    International Nuclear Information System (INIS)

    Wang, Jian; Chekenya, Martha; Bjerkvig, Rolf; Enger, Per Ø; Miletic, Hrvoje; Sakariassen, Per Ø; Huszthy, Peter C; Jacobsen, Hege; Brekkå, Narve; Li, Xingang; Zhao, Peng; Mørk, Sverre

    2009-01-01

    Establishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression

  15. Closed head injury in rats: histopathological aspects in an experimental weight drop model Trauma craniano fechado em ratos: aspectos histopatológicos em um modelo experimental de queda de peso

    Directory of Open Access Journals (Sweden)

    Danilo dos Santos Silva

    2012-04-01

    Full Text Available PURPOSE: To study histopathological findings due to a model of closed head injury by weight loss in rats. METHODS: A platform was used to induce closed cranial lesion controlled by weight loss with a known and predefined energy. 25 male Wistar rats (Rattus novergicus albinus were divided in five equal groups which received different cranial impact energy levels: G1, G2, G3 and G4 with 0.234J, 0.5J, 0.762J and 1J respectively and G5 (Sham. Under the effect of analgesia, the brain of each group was collected and prepared for histopathological analysis by conventional optic microscopy. RESULTS: It was observed greater number of injured neurons in animals of group 4, however neuronal death also could be noticed in animals of group 5. Intraparenchymal hemorrhages were more frequent in animals of group 4 and the cytotoxic brain swelling and vascular congestion were more intense in this group CONCLUSION: The histopathological analysis of these findings allowed to observe typical cranial trauma alterations and these keep close relation with impact energy.OBJETIVO: Investigar as alterações histopatológicas produzidas por um modelo de trauma craniano fechado por queda de peso em ratos. MÉTODOS: Utilizando uma plataforma para produção de lesão craniana fechada controlada por queda de peso com energia pré-definida e conhecida, 25 ratos Wistar machos (Rattus norvegicus albinus foram divididos em cinco grupos iguais que receberam níveis diferentes de energia de impacto craniano: G1, G2, G3 e G4 com 0,234J, 0,5J, 0,762J e 1J respectivamente e G5 (Sham. Sob analgesia, cada grupo teve seus encéfalos coletados e processados para análise histopatológica por microscopia óptica convencional. RESULTADOS: Houve maior número de neurônios lesados em animais do grupo 4, mas morte neuronal também pôde ser constatada nos animais do grupo 5. Hemorragias parenquimatosas foram mais frequentes nos animais do grupo 4 e o inchaço cerebral citotóxico e congest

  16. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model.

    Directory of Open Access Journals (Sweden)

    Habib Baghirov

    Full Text Available The treatment of brain diseases is hindered by the blood-brain barrier (BBB preventing most drugs from entering the brain. Focused ultrasound (FUS with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma.

  17. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model

    Science.gov (United States)

    Baghirov, Habib; Snipstad, Sofie; Sulheim, Einar; Berg, Sigrid; Hansen, Rune; Thorsen, Frits; Mørch, Yrr; Åslund, Andreas K. O.

    2018-01-01

    The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma. PMID:29338016

  18. Computational modeling of pedunculopontine nucleus deep brain stimulation

    Science.gov (United States)

    Zitella, Laura M.; Mohsenian, Kevin; Pahwa, Mrinal; Gloeckner, Cory; Johnson, Matthew D.

    2013-08-01

    Objective. Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. Approach. Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. Main Results. The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V) (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. Significance. We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.

  19. Dendrimer Brain Uptake and Targeted Therapy for Brain Injury in a Large Animal Model of Hypothermic Circulatory Arrest

    Science.gov (United States)

    2015-01-01

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer–drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems. PMID:24499315

  20. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest.

    Science.gov (United States)

    Mishra, Manoj K; Beaty, Claude A; Lesniak, Wojciech G; Kambhampati, Siva P; Zhang, Fan; Wilson, Mary A; Blue, Mary E; Troncoso, Juan C; Kannan, Sujatha; Johnston, Michael V; Baumgartner, William A; Kannan, Rangaramanujam M

    2014-03-25

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer-drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems.

  1. Modeling Brain Circuitry over a Wide Range of Scales

    Directory of Open Access Journals (Sweden)

    Pascal eFua

    2015-04-01

    Full Text Available If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important.In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation.

  2. Modeling brain circuitry over a wide range of scales.

    Science.gov (United States)

    Fua, Pascal; Knott, Graham W

    2015-01-01

    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation.

  3. Brain glucose metabolism in an animal model of depression.

    Science.gov (United States)

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-04

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  4. Neuroprotective Effects of Oleocanthal, A Compound in Virgin Olive Oil, in A Rat Model of Traumatic Brain Injury.

    Science.gov (United States)

    Mete, Mesut; Aydemir, Isıl; Unsal, Ulkun Unlu; Collu, Fatih; Vatandas, Gokhan; Gurcu, Beyhan; Duransoy, Yusuf Kurtulus; Taneli, Fatma; Tugrul, Mehmet Ibrahim; Selcuki, Mehmet

    2017-11-01

    TBI has two distinct phases: primary and secondary injury. Many agents have been used to prevent secondary injury. Oleocanthal (OC) has anti-inflammatory and antioxidant properties similar nonsteroidal anti-inflammatory drug. We evaluated the neuroprotective effects of OC in a rat model of TBI. Twenty-six adult male, Wistar albino rats were used. The rats were divided into 4 groups. group 1, sham (n = 5). group 2, trauma (n = 5): Rats were treated with 10 mg/kg saline intraperitoneally (IP) twice a day. Groups 3 and 4, rats were treated with 10 (group 3, n = 8) or 30 (group 4, n = 8) mg/kg OC IP twice a day. For each group brain samples were collected 72 h after injury. Brain samples and blood were evaluated with histopathological and biochemical methods. Histopathological evaluation revealed a significant difference between group 2 and group 4. Biochemical findings demonstrated that, oxidative stress index was the highest in group 2 and was the lowest in the group 4. Results indicated that OC has a protective effect on neural cells after TBI. This effect is achieved by reducing oxidative stress and apoptosis.

  5. Knowledge Modeling for the Outcome of Brain Stereotactic Radiosurgery

    Science.gov (United States)

    Hauck, Jillian E.

    Purpose: To build a model that will predict the survival time for patients that were treated with stereotactic radiosurgery for brain metastases using support vector machine (SVM) regression. Methods and Materials: This study utilized data from 481 patients, which were equally divided into training and validation datasets randomly. The SVM model used a Gaussian RBF function, along with various parameters, such as the size of the epsilon insensitive region and the cost parameter (C) that are used to control the amount of error tolerated by the model. The predictor variables for the SVM model consisted of the actual survival time of the patient, the number of brain metastases, the graded prognostic assessment (GPA) and Karnofsky Performance Scale (KPS) scores, prescription dose, and the largest planning target volume (PTV). The response of the model is the survival time of the patient. The resulting survival time predictions were analyzed against the actual survival times by single parameter classification and two-parameter classification. The predicted mean survival times within each classification were compared with the actual values to obtain the confidence interval associated with the model's predictions. In addition to visualizing the data on plots using the means and error bars, the correlation coefficients between the actual and predicted means of the survival times were calculated during each step of the classification. Results: The number of metastases and KPS scores, were consistently shown to be the strongest predictors in the single parameter classification, and were subsequently used as first classifiers in the two-parameter classification. When the survival times were analyzed with the number of metastases as the first classifier, the best correlation was obtained for patients with 3 metastases, while patients with 4 or 5 metastases had significantly worse results. When the KPS score was used as the first classifier, patients with a KPS score of 60 and

  6. Neuroimaging differential diagnoses to abusive head trauma

    International Nuclear Information System (INIS)

    Girard, Nadine; Brunel, Herve; Dory-Lautrec, Philippe; Chabrol, Brigitte

    2016-01-01

    Trauma is the most common cause of death in childhood, and abusive head trauma is the most common cause of traumatic death and morbidity in infants younger than 1 year. The main differential diagnosis of abusive head trauma is accidental traumatic brain injury, which is usually witnessed. This paper also discusses more uncommon diagnoses such as congenital and acquired disorders of hemostasis, cerebral arteriovenous malformations and metabolic diseases, all of which are extremely rare. Diagnostic imaging including CT and MRI is very important for the distinction of non-accidental from accidental traumatic injury. (orig.)

  7. Neuroimaging differential diagnoses to abusive head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Nadine [AP-HM Timone 2, Department of Neuroradiology, Marseille cedex 05 (France); Aix Marseille University, UMR CNRS 7339, Marseille (France); Brunel, Herve; Dory-Lautrec, Philippe [AP-HM Timone 2, Department of Neuroradiology, Marseille cedex 05 (France); Chabrol, Brigitte [AP-HM Timone, Department of Pediatric Neurology, Marseille (France)

    2016-05-15

    Trauma is the most common cause of death in childhood, and abusive head trauma is the most common cause of traumatic death and morbidity in infants younger than 1 year. The main differential diagnosis of abusive head trauma is accidental traumatic brain injury, which is usually witnessed. This paper also discusses more uncommon diagnoses such as congenital and acquired disorders of hemostasis, cerebral arteriovenous malformations and metabolic diseases, all of which are extremely rare. Diagnostic imaging including CT and MRI is very important for the distinction of non-accidental from accidental traumatic injury. (orig.)

  8. Modeling the dynamics of human brain activity with recurrent neural networks

    NARCIS (Netherlands)

    Güçlü, U.; Gerven, M.A.J. van

    2017-01-01

    Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution

  9. Managing Obstetric Emergencies and Trauma (MOET structured skills training in Armenia, utilising models and reality based scenarios

    Directory of Open Access Journals (Sweden)

    Israelyan Musheg

    2002-05-01

    Full Text Available Abstract Background Mortality rates in Western Europe have fallen significantly over the last 50 years. Maternal mortality now averages 10 maternal deaths per 100,000 live births but in some of the Newly Independent States of the former Soviet Union, the ratio is nearly 4 times higher. The availability of skilled attendants to prevent, detect and manage major obstetric complications may be the single most important factor in preventing maternal deaths. A modern, multidisciplinary, scenario and model based training programme has been established in the UK (Managing Obstetric Emergencies and Trauma (MOET and allows specialist obstetricians to learn or revise the undertaking of procedures using models, and to have their skills tested in scenarios. Methods Given the success of the MOET course in the UK, the organisers were keen to evaluate it in another setting (Armenia. Pre-course knowledge and practice questionnaires were administered. In an exploratory analysis, post-course results were compared to pre-course answers obtained by the same interviewer. Results All candidates showed an improvement in post-course scores. The range was far narrower afterwards (167–188 than before (85–129.5. In the individual score analysis only two scenarios showed a non-significant change (cord prolapse and breech delivery. Conclusion This paper demonstrates the reliability of the model based scenarios, with a highly significant improvement in obstetric emergency management. However, clinical audit will be required to measure the full impact of training by longer term follow up. Audit of delays, specific obstetric complications, referrals and near misses may all be amenable to review.

  10. Informing pedagogy through the brain-targeted teaching model.

    Science.gov (United States)

    Hardiman, Mariale

    2012-01-01

    Improving teaching to foster creative thinking and problem-solving for students of all ages will require two essential changes in current educational practice. First, to allow more time for deeper engagement with material, it is critical to reduce the vast number of topics often required in many courses. Second, and perhaps more challenging, is the alignment of pedagogy with recent research on cognition and learning. With a growing focus on the use of research to inform teaching practices, educators need a pedagogical framework that helps them interpret and apply research findings. This article describes the Brain-Targeted Teaching Model, a scheme that relates six distinct aspects of instruction to research from the neuro- and cognitive sciences.

  11. Brain Functors: A Mathematical Model of Intentional Perception and Action

    Directory of Open Access Journals (Sweden)

    David Ellerman

    2016-03-01

    Full Text Available Category theory has foundational importance because it provides conceptual lenses to characterize what is important and universal in mathematics - with adjunctions being the primary lens. If adjunctions are so important in mathematics, then perhaps they will isolate concepts of some importance in the empirical sciences. But the applications of adjunctions have been hampered by an overly restrictive formulation that avoids heteromorphisms or hets. By reformulating an adjunction using hets, it is split into two parts, a left and a right semiadjunction. Semiadjunctions (essentially a formulation of universal mapping properties using hets can then be combined in a new way to define the notion of a brain functor that provides an abstract model of the intentionality of perception and action (as opposed to the passive reception of sense-data or the reflex generation of behavior.

  12. TRAUMA SURGERY

    African Journals Online (AJOL)

    meet the criteria for damage control surgery, and ligation of the AVC is a .... There were two vertebral body fractures, one penetrating brain injury from a gunshot wound to the head, one ... two hand fractures, three haemothoraces, one pelvic fracture, .... One patient with an intimal flap injury to his left common iliac artery ...

  13. Preclinical models to study the impact of the blood-brain barrier in brain tumor chemotherapy

    NARCIS (Netherlands)

    Vries, N.A. de

    2009-01-01

    High-grade gliomas, in particular Glioblastoma Multiforme (GBM), are the most common primary brain tumors in adults and among the deadliest of human cancers. Their location and the extensively infiltrative character of tumor cells into surrounding normal brain structures is an impediment for all

  14. An automatic rat brain extraction method based on a deformable surface model.

    Science.gov (United States)

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Nepali concepts of psychological trauma: the role of idioms of distress, ethnopsychology and ethnophysiology in alleviating suffering and preventing stigma.

    Science.gov (United States)

    Kohrt, Brandon A; Hruschka, Daniel J

    2010-06-01

    In the aftermath of a decade-long Maoist civil war in Nepal and the recent relocation of thousands of Bhutanese refugees from Nepal to Western countries, there has been rapid growth of mental health and psychosocial support programs, including posttraumatic stress disorder treatment, for Nepalis and ethnic Nepali Bhutanese. This medical anthropology study describes the process of identifying Nepali idioms of distress and local ethnopsychology and ethnophysiology models that promote effective communication about psychological trauma in a manner that minimizes stigma for service users. Psychological trauma is shown to be a multifaceted concept that has no single linguistic corollary in the Nepali study population. Respondents articulated different categories of psychological trauma idioms in relation to impact on the heart-mind, brain-mind, body, spirit, and social status, with differences in perceived types of traumatic events, symptom sets, emotion clusters and vulnerability. Trauma survivors felt blamed for experiencing negative events, which were seen as karma transmitting past life sins or family member sins into personal loss. Some families were reluctant to seek care for psychological trauma because of the stigma of revealing this bad karma. In addition, idioms related to brain-mind dysfunction contributed to stigma, while heart-mind distress was a socially acceptable reason for seeking treatment. Different categories of trauma idioms support the need for multidisciplinary treatment with multiple points of service entry.

  16. Head Trauma: First Aid

    Science.gov (United States)

    First aid Head trauma: First aid Head trauma: First aid By Mayo Clinic Staff Most head trauma involves injuries that are minor and don't require ... 21, 2015 Original article: http://www.mayoclinic.org/first-aid/first-aid-head-trauma/basics/ART-20056626 . Mayo ...

  17. A reproducible brain tumour model established from human glioblastoma biopsies

    Directory of Open Access Journals (Sweden)

    Li Xingang

    2009-12-01

    Full Text Available Abstract Background Establishing clinically relevant animal models of glioblastoma multiforme (GBM remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. Methods In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. Results The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. Conclusions In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression.

  18. Traumatic brain injury–Modeling neuropsychiatric symptoms in rodents

    Directory of Open Access Journals (Sweden)

    Oz eMalkesman

    2013-10-01

    Full Text Available Each year in the United States, approximately 1.5 million people sustain a traumatic brain injury (TBI. Victims of TBI can suffer from chronic post-TBI symptoms, such as sensory and motor deficits, cognitive impairments including problems with memory, learning, and attention, and neuropsychiatric symptoms such as depression, anxiety, irritability, aggression, and suicidal rumination. Although partially associated with the site and severity of injury, the biological mechanisms associated with many of these symptoms—and why some patients experience differing assortments of persistent maladies—are largely unknown. The use of animal models is a promising strategy for elucidation of the mechanisms of impairment and treatment, and learning, memory, sensory and motor tests have widespread utility in rodent models of TBI and psychopharmacology. Comparatively, behavioral tests for the evaluation of neuropsychiatric symptomatology are rarely employed in animal models of TBI and, as determined in this review, the results have been inconsistent. Animal behavioral studies contribute to the understanding of the biological mechanisms by which TBI is associated with neurobehavioral symptoms and offer a powerful means for pre-clinical treatment validation. Therefore, further exploration of the utility of animal behavioral tests for the study of injury mechanisms and therapeutic strategies for the alleviation of emotional symptoms are relevant and essential.

  19. Psychoneuroimmunology of Early-Life Stress: The Hidden Wounds of Childhood Trauma?

    Science.gov (United States)

    Danese, Andrea; J Lewis, Stephanie

    2017-01-01

    The brain and the immune system are not fully formed at birth, but rather continue to mature in response to the postnatal environment. The two-way interaction between the brain and the immune system makes it possible for childhood psychosocial stressors to affect immune system development, which in turn can affect brain development and its long-term functioning. Drawing from experimental animal models and observational human studies, we propose that the psychoneuroimmunology of early-life stress can offer an innovative framework to understand and treat psychopathology linked to childhood trauma. Early-life stress predicts later inflammation, and there are striking analogies between the neurobiological correlates of early-life stress and of inflammation. Furthermore, there are overlapping trans-diagnostic patterns of association of childhood trauma and inflammation with clinical outcomes. These findings suggest new strategies to remediate the effect of childhood trauma before the onset of clinical symptoms, such as anti-inflammatory interventions and potentiation of adaptive immunity. Similar strategies might be used to ameliorate the unfavorable treatment response described in psychiatric patients with a history of childhood trauma. PMID:27629365

  20. Characterization of a novel brain barrier ex vivo insect-based P-glycoprotein screening model

    DEFF Research Database (Denmark)

    Andersson, O.; Badisco, L.; Hansen, A. H.

    2014-01-01

    In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain b...... has the potential to act as a robust and convenient model for assessing BBB permeability in early drug discovery.......In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain...

  1. Anatomical manifestations of primary blast ocular trauma observed in a postmortem porcine model.

    Science.gov (United States)

    Sherwood, Daniel; Sponsel, William E; Lund, Brian J; Gray, Walt; Watson, Richard; Groth, Sylvia L; Thoe, Kimberly; Glickman, Randolph D; Reilly, Matthew A

    2014-02-24

    We qualitatively describe the anatomic features of primary blast ocular injury observed using a postmortem porcine eye model. Porcine eyes were exposed to various levels of blast energy to determine the optimal conditions for future testing. We studied 53 enucleated porcine eyes: 13 controls and 40 exposed to a range of primary blast energy levels. Eyes were preassessed with B-scan and ultrasound biomicroscopy (UBM) ultrasonography, photographed, mounted in gelatin within acrylic orbits, and monitored with high-speed videography during blast-tube impulse exposure. Postimpact photography, ultrasonography, and histopathology were performed, and ocular damage was assessed. Evidence for primary blast injury was obtained. While some of the same damage was observed in the control eyes, the incidence and severity of this damage in exposed eyes increased with impulse and peak pressure, suggesting that primary blast exacerbated these injuries. Common findings included angle recession, internal scleral delamination, cyclodialysis, peripheral chorioretinal detachments, and radial peripapillary retinal detachments. No full-thickness openings of the eyewall were observed in any of the eyes tested. Scleral damage demonstrated the strongest associative tendency for increasing likelihood of injury with increased overpressure. These data provide evidence that primary blast alone (in the absence of particle impact) can produce clinically relevant ocular damage in a postmortem model. The blast parameters derived from this study are being used currently in an in vivo model. We also propose a new Cumulative Injury Score indicating the clinical relevance of observed injuries.

  2. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    Science.gov (United States)

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  3. Comparison of Two Predictive Models for Short-Term Mortality in Patients after Severe Traumatic Brain Injury.

    Science.gov (United States)

    Kesmarky, Klara; Delhumeau, Cecile; Zenobi, Marie; Walder, Bernhard

    2017-07-15

    The Glasgow Coma Scale (GCS) and the Abbreviated Injury Score of the head region (HAIS) are validated prognostic factors in traumatic brain injury (TBI). The aim of this study was to compare the prognostic performance of an alternative predictive model including motor GCS, pupillary reactivity, age, HAIS, and presence of multi-trauma for short-term mortality with a reference predictive model including motor GCS, pupil reaction, and age (IMPACT core model). A secondary analysis of a prospective epidemiological cohort study in Switzerland including patients after severe TBI (HAIS >3) with the outcome death at 14 days was performed. Performance of prediction, accuracy of discrimination (area under the receiver operating characteristic curve [AUROC]), calibration, and validity of the two predictive models were investigated. The cohort included 808 patients (median age, 56; interquartile range, 33-71), median GCS at hospital admission 3 (3-14), abnormal pupil reaction 29%, with a death rate of 29.7% at 14 days. The alternative predictive model had a higher accuracy of discrimination to predict death at 14 days than the reference predictive model (AUROC 0.852, 95% confidence interval [CI] 0.824-0.880 vs. AUROC 0.826, 95% CI 0.795-0.857; p predictive model had an equivalent calibration, compared with the reference predictive model Hosmer-Lemeshow p values (Chi2 8.52, Hosmer-Lemeshow p = 0.345 vs. Chi2 8.66, Hosmer-Lemeshow p = 0.372). The optimism-corrected value of AUROC for the alternative predictive model was 0.845. After severe TBI, a higher performance of prediction for short-term mortality was observed with the alternative predictive model, compared with the reference predictive model.

  4. [Fabrication of 3-dimensional skull model with rapid prototyping technique and its primary application in repairing one case of cranio-maxillo-facial trauma].

    Science.gov (United States)

    Xia, Delin; Gui, Lai; Zhang, Zhiyong; Lu, Changsheng; Niu, Feng; Jin, Ji; Liu, Xiaoqing

    2005-10-01

    To investigate the methods of establishing 3-dimensional skull model using electron beam CT (EBCT) data rapid prototyping technique, and to discuss its application in repairing cranio-maxillo-facial trauma. The data were obtained by EBCT continuous volumetric scanning with 1.0 mm slice at thickness. The data were transferred to work-station for 3-dimensional surface reconstruction by computer-aided design software and the images were saved as STL file. The data can be used to control a laser rapid-prototyping device (AFS-320QZ) to construct geometric model. The material for the model construction is a kind of laser-sensitive resin power, which will become a mass when scanned by laser beam. The design and simulation of operation can be done on the model. The image data were transferred to the device slice by slice. Thus a geometric model is constructed according to the image data by repeating this process. Preoperative analysis, surgery simulation and implant of bone defect could be done on this computer-aided manufactured 3D model. One case of cranio-maxillo-facial bone defect resulting from trauma was reconstructed with this method. The EBCT scanning showed that the defect area was 4 cm x 6 cm. The nose was flat and deviated to left. The 3-dimensional skull was reconstructed with EBCT data and rapid prototyping technique. The model can display the structure of 3-dimensional anatomy and their relationship. The prefabricated implant by 3-dimensional model was well-matched with defect. The deformities of flat and deviated nose were corrected. The clinical result was satisfactory after a follow-up of 17 months. The 3-dimensional model of skull can replicate the prototype of disease and play an important role in the diagnosis and simulation of operation for repairing cranio-maxillo-facial trauma.

  5. Helicopter overtriage in pediatric trauma.

    Science.gov (United States)

    Michailidou, Maria; Goldstein, Seth D; Salazar, Jose; Aboagye, Jonathan; Stewart, Dylan; Efron, David; Abdullah, Fizan; Haut, Elliot R

    2014-11-01

    Helicopter Emergency Medical Services (HEMS) have been designed to provide faster access to trauma center care in cases of life-threatening injury. However, the ideal recipient population is not fully characterized, and indications for helicopter transport in pediatric trauma vary dramatically by county, state, and region. Overtriage, or unnecessary utilization, can lead to additional patient risk and expense. In this study we perform a nationwide descriptive analysis of HEMS for pediatric trauma and assess the incidence of overtriage in this group. We reviewed records from the American College of Surgeons National Trauma Data Bank (2008-11) and included patients less than 16 years of age who were transferred from the scene of injury to a trauma center via HEMS. Overtriage was defined as patients meeting all of the following criteria: Glasgow Coma Scale (GCS) equal to 15, absence of hypotension, an Injury Severity Score (ISS) less than 9, no need for procedure or critical care, and a hospital length of stay of less than 24 hours. A total of 19,725 patients were identified with a mean age of 10.5 years. The majority of injuries were blunt (95.6%) and resulted from motor vehicle crashes (48%) and falls (15%). HEMS transported patients were predominately normotensive (96%), had a GCS of 15 (67%), and presented with minor injuries (ISS<9, 41%). Overall, 28 % of patients stayed in the hospital for less than 24 hours, and the incidence of overtriage was 17%. Helicopter overtriage is prevalent among pediatric trauma patients nationwide. The ideal model to predict need for HEMS must consider clinical outcomes in the context of judicious resource utilization. The development of guidelines for HEMS use in pediatric trauma could potentially limit unnecessary transfers while still identifying children who require trauma center care in a timely fashion. Copyright © 2014. Published by Elsevier Inc.

  6. Mortality in severe trauma patients attended by emergency services in Navarre, Spain: validation of a new prediction model and comparison with the Revised Injury Severity Classification Score II.

    Science.gov (United States)

    Ali Ali, Bismil; Lefering, Rolf; Fortún Moral, Mariano; Belzunegui Otano, Tomás

    2018-01-01

    To validate the Mortality Prediction Model of Navarre (MPMN) to predict death after severe trauma and compare it to the Revised Injury Severity Classification Score II (RISCII). Retrospective analysis of a cohort of severe trauma patients (New Injury Severity Score >15) who were attended by emergency services in the Spanish autonomous community of Navarre between 2013 and 2015. The outcome variable was 30-day all-cause mortality. Risk was calculated with the MPMN and the RISCII. The performance of each model was assessed with the area under the receiver operating characteristic (ROC) curve and precision with respect to observed mortality. Calibration was assessed with the Hosmer-Lemeshow test. We included 516 patients. The mean (SD) age was 56 (23) years, and 363 (70%) were males. Ninety patients (17.4%) died within 30 days. The 30-day mortality rates predicted by the MPMN and RISCII were 16.4% and 15.4%, respectively. The areas under the ROC curves were 0.925 (95% CI, 0.902-0.952) for the MPMN and 0.941 (95% CI, 0.921-0.962) for the RISCII (P=0.269, DeLong test). Calibration statistics were 13.6 (P=.09) for the MPMN and 8.9 (P=.35) for the RISCII. Both the MPMN and the RISCII show good ability to discriminate risk and predict 30-day all-cause mortality in severe trauma patients.

  7. Opioid Abuse After Traumatic Brain Injury: Evaluation Using Rodet Models

    Science.gov (United States)

    2014-07-01

    pressing behavior was less likely to occur in brain-injured subjects following both exposure to oxycodone-associated cues as well as priming with a...pain medications. There is significant overlap in anatomical brain regions involved in reward pathways associated with addiction and the brain regions...commonly damaged in TBI which suggests that TBI could alter the reward circuitry, thereby increasing the likelihood of opioid abuse and addiction

  8. Novel radioiodinated sibutramine and fluoxetine as models for brain imaging

    International Nuclear Information System (INIS)

    Motaleb, M.A.; El-Kolaly, M.T.; Rashed, H.M.; Abd El-Bary, A.

    2011-01-01

    Brain imaging is a process which allows scientists and physicians to view and monitor the areas of the brain which allow diagnosis and following up different abnormalities in the brain. The aim of this study was to develop potential radiopharmaceuticals for the non-invasive brain imaging. Sibutramine and fluoxetine (two drugs that have the ability to cross blood-brain barrier) were successfully labeled with 125 I via direct electrophilic substitution reaction at ambient temperature. The reaction parameters studied were substrate concentration, oxidizing agent concentration, pH of the reaction mixture, reaction temperature, reaction time and in vitro stability of the iodocompounds. The iodocompounds gave maximum labeling yield of 92 ± 2.77 and 93 ± 2.1%, respectively, and maintained stability throughout working period (24 h). Biodistribution studies showed that maximum in vivo uptake of the iodocompounds in the brain was 5.7 ± 0.19 and 6.14 ± 0.26% injected activity/g tissue organ, respectively, at 15 and 5 min post-injection, whereas the clearance from the mice appeared to proceed via the hepatobiliary pathway. Brain uptake of 125 I-sibutramine and 125 I-fluoxetine is higher than that of 99m Tc-ECD and 99m Tc-HMPAO (currently used radiopharmaceuticals for brain imaging) and so radioiodinated sibutramine and fluoxetine could be used instead of 99m Tc-ECD and 99m Tc-HMPAO for brain SPECT. (author)

  9. Median nerve trauma in a rat model of work-related musculoskeletal disorder.

    Science.gov (United States)

    Clark, Brian D; Barr, Ann E; Safadi, Fayez F; Beitman, Lisa; Al-Shatti, Talal; Amin, Mamta; Gaughan, John P; Barbe, Mary F

    2003-07-01

    Anatomical and physiological changes were evaluated in the median nerves of rats trained to perform repetitive reaching. Motor degradation was evident after 4 weeks. ED1-immunoreactive macrophages were seen in the transcarpal region of the median nerve of both forelimbs by 5-6 weeks. Fibrosis, characterized by increased immunoexpression of collagen type I by 8 weeks and connective tissue growth factor by 12 weeks, was evident. The conduction velocity (NCV) within the carpal tunnel showed a modest but significant decline after 9-12 weeks. The lowest NCV values were found in animals that refused to participate in the task for the full time available. Thus, both anatomical and physiological signs of progressive tissue damage were present in this model. These results, together with other recent findings indicate that work-related carpal tunnel syndrome develops through mechanisms that include injury, inflammation, fibrosis and subsequent nerve compression.

  10. Modelo experimental de trauma medular agudo produzido por aparelho estereotáxico modificado Experimental model of acute spinal cord injury produced by modified steriotaxic equipment

    Directory of Open Access Journals (Sweden)

    B.B.J. Torres

    2010-02-01

    Full Text Available Foram utilizados 55 ratos machos da espécie Rattus novergicus, variedade Wistar, com o objetivo de propor um modelo experimental de trauma medular produzido por aparelho estereotáxico modificado, capaz de reproduzir clinicamente lesões medulares padronizadas. Após realização de laminectomia dorsal de T13, utilizou-se peso compressivo de 50,5g (25 animais - grupo I ou 70,5g (30 animais - grupo II, durante cinco minutos, comprimindo a medula espinhal. Os animais foram assistidos durante oito dias, por meio de testes comportamentais para avaliar a sensibilidade dolorosa, a capacidade motora, o posicionamento tátil e proprioceptivo e a capacidade de manter-se em plano inclinado. No grupo I, observaram-se déficits neurológicos moderados e transitórios, que variaram entre os animais. No grupo II, foi possível obter um trauma padronizado, caracterizado por paraplegia bilateral e simétrica dos membros posteriores, perda de propriocepção e da sensibilidade dolorosa de todos os animais. A utilização do aparelho estereotáxico desenvolvido permite reproduzir clinicamente trauma medular padronizado em ratos, de maneira simples, econômica e satisfatória, o que poderá proporcionar avanços nas investigações terapêuticas, abrangendo doenças neurodegenerativas, como é o caso do trauma medular agudo.Fifty-five male rats (Rattus novergicus, Wistar variety, were used with the purpose of suggesting an experimental model of spinal cord trauma performed by using a modified stereotaxic equipment capable to reproduce clinically (standardized pattern spinal cord injury. After dorsal laminectomy of T13, a compression was performed with 50.5g (25 animals - group I or 70.5g (30 animals - group II during five minutes on spinal cord. The animals were assisted during eight days by behavioral tests to evaluate painful sensibility, motor capacity, proprioceptive and tactil placing, and stability on inclined plan. In the group I, moderate and transitory

  11. Cigarette smoke inhalation increases the alveolar bone loss caused by primary occlusal trauma in a rat model.

    Science.gov (United States)

    Campos, M L G; Corrêa, M G; Júnior, F H N; Casati, M Z; Sallum, E A; Sallum, A W

    2014-04-01

    Occlusal trauma (OT) and smoking are both factors that alter alveolar bone metabolism and therefore could synergistically act on alveolar bone loss. The aim of this experimental study was to evaluate the influence of short-term cigarette smoke inhalation (CSI) on inter-radicular alveolar bone loss promoted by primary OT in a rat model. Forty-eight animals were randomly assigned to one of three groups based on treatment type: OT + CSI (n = 16), animals were exposed to CSI three times per day, for 8 min per exposure, and they concomitantly received unilateral vertical augmentation creating an occlusal interference inducing experimental OT; OT (n = 16), animals received only unilateral vertical augmentation; negative control (NC; n = 16), animals maintained for equal periods to achieve periodontal baseline values of periodontal ligament dimension. Each group was divided into two subgroups (n = 8) based on treatment length: 7 or 14 d. After 7 d, the OT + CSI group exhibited significantly higher bone loss compared to the NC group (p = 0.0022). After 14 d, the OT (p < 0.0001) and OT + CSI (p < 0.0001) groups presented significantly higher bone loss compared to the NC group, and OT + CSI resulted in significantly higher bone loss than OT alone (p = 0.0241). The number of tartrate-resistant acid phosphatase-positive cells on the linear surface of the bone crest after 7 d was significantly higher in the OT + CSI group as compared to the NC and OT groups (p < 0.0001 and p = 0.0045, respectively) and remained significantly higher in the OT + CSI group after 14 d, compared to the OT group (p < 0.0001). Short-term CSI increases early bone loss in association with OT after 7 d, and this worsens in severity after 14 d of exposure. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Developing and Organizing a Trauma System and Mass Casualty ...

    African Journals Online (AJOL)

    An effective trauma system may potentially manage mass casualty incidence ... Israel has a unique trauma system of organizing and managing an emergency event, ... Wisdom, motivation and pragmatism of the Israeli model may be useful to ...

  13. Assessing posttraumatic stress disorder's latent structure in elderly bereaved European trauma survivors: evidence for a five-factor dysphoric and anxious arousal model.

    Science.gov (United States)

    Armour, Cherie; O'Connor, Maja; Elklit, Ask; Elhai, Jon D

    2013-10-01

    The three-factor structure of posttraumatic stress disorder (PTSD) specified by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, is not supported in the empirical literature. Two alternative four-factor models have received a wealth of empirical support. However, a consensus regarding which is superior has not been reached. A recent five-factor model has been shown to provide superior fit over the existing four-factor models. The present study investigated the fit of the five-factor model against the existing four-factor models and assessed the resultant factors' association with depression in a bereaved European trauma sample (N = 325). The participants were assessed for PTSD via the Harvard Trauma Questionnaire and depression via the Beck Depression Inventory. The five-factor model provided superior fit to the data compared with the existing four-factor models. In the dysphoric arousal model, depression was equally related to both dysphoric arousal and emotional numbing, whereas depression was more related to dysphoric arousal than to anxious arousal.

  14. [The "war neurosis"-- an early model of a pluridimensional outlined trauma-theory in psychiatry].

    Science.gov (United States)

    Tölle, Rainer

    2005-10-01

    The war neurosis, mainly observed during the first World War, caused a lively debate on its origin and etiology. In psychiatric history this debate is often portrayed in a somewhat simplifying manner. Namely Oppenheim was considered as the leading exponent of the organic etiology of traumatic neurosis, while others, with growing interest in psychodynamic theories, were thought to favor exclusively psychogenesis of this condition. However, only discussing matters in this way would be too simple. Rather, the controversy was much more differentiated and led to important insights: First, it turned out to be impossible to explain any psychopathological syndrome exclusively in terms of neuropathological, i. e. structural alterations, in particular, a syndrome presenting with a sudden onset of dissociative and conversion symptoms. Secondly, the psychiatric theory of hysteria of Charcot and Freud was developed and extended further. And, last, the etiology of war neurosis was recognized to be multifactorial. Thus, the discourse on this issue was not one-dimensional and favoring a single explanation for a complex disorder, but revealed "pluridimensional" features. Subsequently psychotherapy, for the first time, was widely introduced into clinical practice with a clear indication and well-defined methodological approach. In summary, war neuroses can be addressed as an early model of traumatic stress disorder, such as acute stress disorder or post-traumatic stress disorder.

  15. South African music learners and psychological trauma: educational solutions to a societal dilemma

    Directory of Open Access Journals (Sweden)

    Inette Swart

    2013-07-01

    Full Text Available Emotional trauma affects a large proportion of the South African population. This article addresses its influence on music learners, including its effects on brain development, relational development, learning and music-making. The power of the educator to reshape a child’s brain by providing a nurturing and consistent environment is stressed. The effect of the environment in modulating epigenetic expression is discussed in conjunction with object relations theory as a model for human relations. Brain-damaging consequences of early attachment trauma can be reversed by healing these patterns through the educational system. Music teachers’ observations of how trauma influenced their students’ music-making, emotional expression, memory and relational patterns, students’ observed recoveries from trauma, and the influence of teachers’ own experiences on their appraisal of students’ experiences are discussed. The article also examines the advice of healthcare professionals to teachers and the latter’s legal responsibilities in terms of the reporting of abuse. This is done with reference to responsibilities regarding witnessing and referring, and the possibility of empowering learners through unlearning helplessness and fear. Treatment strategies discussed include pharmacological intervention, psychotherapeutic intervention such as Cognitive- Behavioural Therapy, hypnosis, Eye Movement Integration Therapy and Somatic Experiencing. Music can serve as an object relationship representing human experience, expressing the movement of feelings, bypassing the cortical function and expressing what words cannot. It can aid in repairing damaged communication processes and restore the sense of bodily connectedness. Suggested future directions include the incorporation of teaching modules on educational psychology in music teachers’ training curricula, providing support for students, reducing the risk of secondary traumatisation to professionals

  16. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain......Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding...

  17. Analysis of the Revised Trauma Score (RTS) in 200 victims of different trauma mechanisms.

    Science.gov (United States)

    Alvarez, Bruno Durante; Razente, Danilo Mardegam; Lacerda, Daniel Augusto Mauad; Lother, Nicole Silveira; VON-Bahten, Luiz Carlos; Stahlschmidt, Carla Martinez Menini

    2016-01-01

    to analyze the epidemiological profile and mortality associated with the Revised Trauma Score (RTS) in trauma victims treated at a university hospital. we conducted a descriptive, cross-sectional study of trauma protocols (prospectively collected) from December 2013 to February 2014, including trauma victims admitted in the emergency room of the Cajuru University Hospital. We set up three groups: (G1) penetrating trauma to the abdomen and chest, (G2) blunt trauma to the abdomen and chest, and (G3) traumatic brain injury. The variables we analyzed were: gender, age, day of week, mechanism of injury, type of transportation, RTS, hospitalization time and mortality. we analyzed 200 patients, with a mean age of 36.42 ± 17.63 years, and 73.5% were male. The mean age was significantly lower in G1 than in the other groups (p grupos foram criados: (G1) trauma penetrante em abdome e tórax, (G2) trauma contuso em abdome e tórax, e (G3) trauma cranioencefálico. As variáveis analisadas foram: sexo, idade, dia da semana, mecanismo de trauma, tipo de transporte, RTS, tempo de internamento e mortalidade. analisou-se 200 pacientes, com média de idade de 36,42 ± 17,63 anos, sendo 73,5% do sexo masculino. A média de idade no G1 foi significativamente menor do que nos demais grupos (p grupos (p grupos G1, G2 e G3, respectivamente. A mediana do RTS entre os óbitos foi 5,49, 7,84 e 1,16, respectivamente, para os três grupos. a maioria dos pacientes eram homens jovens. O RTS mostrou-se efetivo na predição de mortalidade no trauma cranioencefálico, entretanto falhou ao analisar pacientes vítimas de trauma contuso e penetrante.

  18. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  19. Selective estrogen receptor modulators as brain therapeutic agents

    OpenAIRE

    Arévalo, María Ángeles; Santos-Galindo, María; Lagunas, Natalia; Azcoitia, I.; García-Segura, Luis M.

    2011-01-01

    Selective estrogen receptor modulators (SERMs), used for the treatment of breast cancer, osteoporosis, and menopausal symptoms, affect the nervous system. Some SERMs trigger neuroprotective mechanisms and reduce neural damage in different experimental models of neural trauma, brain inflammation, neurodegenerative diseases, cognitive impairment, and affective disorders. New SERMs with specific actions on neurons and glial cells may represent promising therapeutic tools for the brain. © 2011 So...

  20. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    Science.gov (United States)

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  1. Monitoring the injured brain: registered, patient specific atlas models to improve accuracy of recovered brain saturation values

    Science.gov (United States)

    Clancy, Michael; Belli, Antonio; Davies, David; Lucas, Samuel J. E.; Su, Zhangjie; Dehghani, Hamid

    2015-07-01

    The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.

  2. Incremental cost-effectiveness of trauma service improvements for road trauma casualties: experience of an Australian major trauma centre.

    Science.gov (United States)

    Dinh, Michael M; Bein, Kendall J; Hendrie, Delia; Gabbe, Belinda; Byrne, Christopher M; Ivers, Rebecca

    2016-09-01

    Objective The aim of the present study was to estimate the cost-effectiveness of trauma service funding enhancements at an inner city major trauma centre. Methods The present study was a cost-effectiveness analysis using retrospective trauma registry data of all major trauma patients (injury severity score >15) presenting after road trauma between 2001 and 2012. The primary outcome was cost per life year gained associated with the intervention period (2007-12) compared with the pre-intervention period (2001-06). Incremental costs were represented by all trauma-related funding enhancements undertaken between 2007 and 2010. Risk adjustment for years of life lost was conducted using zero-inflated negative binomial regression modelling. All costs were expressed in 2012 Australian dollar values. Results In all, 876 patients were identified during the study period. The incremental cost of trauma enhancements between 2007 and 2012 totalled $7.91million, of which $2.86million (36%) was attributable to road trauma patients. After adjustment for important covariates, the odds of in-hospital mortality reduced by around half (adjusted odds ratio (OR) 0.48; 95% confidence interval (CI) 0.27, 0.82; P=0.01). The incremental cost-effectiveness ratio was A$7600 per life year gained (95% CI A$5524, $19333). Conclusion Trauma service funding enhancements that enabled a quality improvement program at a single major trauma centre were found to be cost-effective based on current international and Australian standards. What is known about this topic? Trauma quality improvement programs have been implemented across most designated trauma hospitals in an effort to improve hospital care processes and outcomes for injured patients. These involve a combination of education and training, the use of audit and key performance indicators. What does this paper add? A trauma quality improvement program initiated at an Australian Major Trauma Centre was found to be cost-effective over 12 years with

  3. A Predictive Model on North Korean Refugees' Adaptation to South Korean Society: Resilience in Response to Psychological Trauma

    Directory of Open Access Journals (Sweden)

    So-Hee Lim, PhD

    2016-06-01

    Conclusions: The results suggest that resilience can be improved through self-efficacy. It was the most significant factor decreasing psychological trauma and increasing resilience. Therefore, we need to develop programs for self-efficacy. The results also provide basic data for policy making for North Korean refugees.

  4. A physical multifield model predicts the development of volume and structure in the human brain

    Science.gov (United States)

    Rooij, Rijk de; Kuhl, Ellen

    2018-03-01

    The prenatal development of the human brain is characterized by a rapid increase in brain volume and a development of a highly folded cortex. At the cellular level, these events are enabled by symmetric and asymmetric cell division in the ventricular regions of the brain followed by an outwards cell migration towards the peripheral regions. The role of mechanics during brain development has been suggested and acknowledged in past decades, but remains insufficiently understood. Here we propose a mechanistic model that couples cell division, cell migration, and brain volume growth to accurately model the developing brain between weeks 10 and 29 of gestation. Our model accurately predicts a 160-fold volume increase from 1.5 cm3 at week 10 to 235 cm3 at week 29 of gestation. In agreement with human brain development, the cortex begins to form around week 22 and accounts for about 30% of the total brain volume at week 29. Our results show that cell division and coupling between cell density and volume growth are essential to accurately model brain volume development, whereas cell migration and diffusion contribute mainly to the development of the cortex. We demonstrate that complex folding patterns, including sinusoidal folds and creases, emerge naturally as the cortex develops, even for low stiffness contrasts between the cortex and subcortex.

  5. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage

    DEFF Research Database (Denmark)

    Dekker, Simone E; Bambakidis, Ted; Sillesen, Martin

    2014-01-01

    BACKGROUND: We have previously shown that addition of valproic acid (VPA; a histone deacetylase inhibitor) to hetastarch (Hextend [HEX]) resuscitation significantly decreases lesion size in a swine model of traumatic brain injury (TBI) and hemorrhagic shock (HS). However, the precise mechanisms...... have not been well defined. As VPA is a transcriptional modulator, the aim of this study was to investigate its effect on brain gene expression profiles. METHODS: Swine were subjected to controlled TBI and HS (40% blood volume), kept in shock for 2 hours, and resuscitated with HEX or HEX + VPA (n = 5...... per group). Following 6 hours of observation, brain RNA was isolated, and gene expression profiles were measured using a Porcine Gene ST 1.1 microarray (Affymetrix, Santa Clara, CA). Pathway analysis was done using network analysis tools Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene...

  6. Prehospital Trauma Triage Decision-making: A Model of What Happens between the 9-1-1 Call and the Hospital.

    Science.gov (United States)

    Jones, Courtney Marie Cora; Cushman, Jeremy T; Lerner, E Brooke; Fisher, Susan G; Seplaki, Christopher L; Veazie, Peter J; Wasserman, Erin B; Dozier, Ann; Shah, Manish N

    2016-01-01

    We describe the decision-making process used by emergency medical services (EMS) providers in order to understand how 1) injured patients are evaluated in the prehospital setting; 2) field triage criteria are applied in-practice; and 3) selection of a destination hospital is determined. We conducted separate focus groups with advanced and basic life support providers from rural and urban/suburban regions. Four exploratory focus groups were conducted to identify overarching themes and five additional confirmatory focus groups were conducted to verify initial focus group findings and provide additional detail regarding trauma triage decision-making and application of field triage criteria. All focus groups were conducted by a public health researcher with formal training in qualitative research. A standardized question guide was used to facilitate discussion at all focus groups. All focus groups were audio-recorded and transcribed. Responses were coded and categorized into larger domains to describe how EMS providers approach trauma triage and apply the Field Triage Decision Scheme. We conducted 9 focus groups with 50 EMS providers. Participants highlighted that trauma triage is complex and there is often limited time to make destination decisions. Four overarching domains were identified within the context of trauma triage decision-making: 1) initial assessment; 2) importance of speed versus accuracy; 3) usability of current field triage criteria; and 4) consideration of patient and emergency care system-level factors. Field triage is a complex decision-making process which involves consideration of many patient and system-level factors. The decision model presented in this study suggests that EMS providers place significant emphasis on speed of decisions, relying on initial impressions and immediately observable information, rather than precise measurement of vital signs or systematic application of field triage criteria.

  7. Permeability of PEGylated immunoarsonoliposomes through in vitro blood brain barrier-medulloblastoma co-culture models for brain tumor therapy.

    Science.gov (United States)

    Al-Shehri, Abdulghani; Favretto, Marco E; Ioannou, Panayiotis V; Romero, Ignacio A; Couraud, Pierre-Olivier; Weksler, Babette Barbash; Parker, Terry L; Kallinteri, Paraskevi

    2015-03-01

    Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeutic evaluation. 2. to address the lack of new alternative methods to animal testing according to replacement-reduction-refinement principles. In this work, in vitro BBB-medulloblastoma 3-D-co-culture models were established using immortalized human primary brain endothelial cells (hCMEC/D3). hCMEC/D3 cells were cultured in presence and in absence of two human medulloblastoma cell lines on Transwell membranes. In vitro models were characterized for BBB formation, zonula occludens-1 expression and permeability to dextran. Transferrin receptors (Tfr) expressed on hCMEC/D3 were exploited to facilitate arsonoliposome (ARL) permeability through the BBB to the tumor by covalently attaching an antibody specific to human Tfr. The effect of anticancer ARLs on hCMEC/D3 was assessed. In vitro BBB and BBB-tumor co-culture models were established successfully. BBB permeability was affected by the presence of tumor aggregates as suggested by increased permeability of ARLs. There was a 6-fold and 8-fold increase in anti-Tfr-ARL uptake into VC312R and BBB-DAOY co-culture models, respectively, compared to plain ARLs. The three-dimensional models might be appropriate models to study the transport of various drugs and nanocarriers (liposomes and immunoarsonoliposomes) through the healthy and diseased BBB. The immunoarsonoliposomes can be potentially used as anticancer agents due to good tolerance of the in vitro BBB model to their toxic effect.

  8. Effect of LF 16-0687MS, a new nonpeptide bradykinin B2 receptor antagonist, in a rat model of closed head trauma.

    Science.gov (United States)

    Pruneau, D; Chorny, I; Benkovitz, V; Artru, A; Roitblat, L; Shapira, Y

    1999-11-01

    Bradykinin is an endogenous nonapeptide which potently dilates the cerebral vasculature and markedly increases vascular permeability. These effects are mediated by B2 receptors located on the vascular endothelium. Previous experimental studies have shown that blockade of the kallikreinkinin system, which mediates the formation of bradykinin, afforded a reduction of the brain edema that developed following a cryogenic cortical lesion. In the present study, we investigated the effect of LF 16-0687MS, a novel nonpeptide B2 receptor antagonist, on cerebral edema and neurological severity score (NSS) after closed head injury to rats. LF 16-0687MS or its vehicle (NaCl 0.9%) was continuously infused at 10, 30, and 100 microg/kg/min over 23 h starting 1 h after a focal trauma to the left hemisphere was induced using a weight-drop device. The extent of edema formation was evaluated 24 h after trauma from left and right hemispheres samples by measurement of specific gravity and water content. In a separate study, a neurological severity score based on scoring of behavioural and motor functions was evaluated 1 h and over 1 week after trauma. LF 16-0687MS at 100 microg/kg/min markedly reduced the development of brain edema as indicated by a 68% increase in specific gravity (p<0.05) and a 64% decrease of water content (p<0.05) in the left hemisphere. In addition the recovery of neurological function was significantly improved by 100 microg/kg/min LF 16-0687MS from day 3 to day 7 after CHT. In a separate experiment, we also showed that LF 16-0687MS at 100 microg/kg/min given either 1 h before or 30 min after CHT did not affect mean arterial blood pressure. These results show that blockade of bradykinin B2 receptors is an effective approach to reduce cerebral edema and to improve neurological outcome after a focal contusion to the cranium.

  9. Models of neural dynamics in brain information processing - the developments of 'the decade'

    International Nuclear Information System (INIS)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R

    2002-01-01

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  10. Organizational network in trauma management in Italy

    Directory of Open Access Journals (Sweden)

    Osvaldo Chiara

    2005-10-01

    Full Text Available In Italy, as in other western countries, trauma is a leading cause of death during the first four decades of life, with almost 18.000 of deaths per year. Since 80s organized systems for trauma care, including a pre-hospital emergency medical system and a network of hospitals designated as Trauma Centres, have been developed in north American countries. Effectiveness of trauma systems has been investigated comparing the post-system to the pre-system trauma care with the method of panel evaluation of preventable death rates and comparison of observed survival with expected probability of survival. In Italy, a pre-hospital emergency medical system has been implemented on a national scale, while a trauma network has not been developed. Nowadays, trauma patients are often admitted to the closest hospital, independently from local resources. The Superior Council of Ministry of Health has presented in 2004 a new trauma system model (SIAT based on the recognition in the field of patients with more serious injuries and the transportation to general hospitals with resources and multidisciplinary teams specialized in trauma care (trauma team. The designation of few trauma team hospitals, one highly specialized Centre (CTS and two area Centres (CTZ every two millions of inhabitants allows each Centre to treat at least 250 severe trauma patients per year to increase experience. Less severe injured patients may be treated in non-trauma team acute care facilities, according to the inclusive system model. The development of trauma team services in some Italian hospitals has demonstrated an increase in survival and a decrease in preventable death rate from 42% to 7,6%. Economic studies of Ministry of Health have established that the implementation of a trauma system model on a national scale with a 25% decrease of preventable trauma deaths and disabilities would save 7500 million of euros of public money. Therefore, in our country the concentration of severely

  11. Trauma from a global perspective.

    Science.gov (United States)

    Ray, Susan L

    2008-01-01

    Trauma from widespread collective violence such as genocide and ethnic cleansing has not been discussed from a global perspective. It will be argued that the Western medical model of diagnostic labeling is inadequate for understanding victims of collective violence from around the world. Phenomenology and liberation philosophy will be discussed as alternatives to understanding trauma from collective violence that move beyond the Western medical model of diagnostic labeling. The insights gained from these alternative approaches will contribute to the development of nursing education, research, and practice relevant to the health of victims of collective violence around the globe.

  12. Predicting significant torso trauma.

    Science.gov (United States)

    Nirula, Ram; Talmor, Daniel; Brasel, Karen

    2005-07-01

    Identification of motor vehicle crash (MVC) characteristics associated with thoracoabdominal injury would advance the development of automatic crash notification systems (ACNS) by improving triage and response times. Our objective was to determine the relationships between MVC characteristics and thoracoabdominal trauma to develop a torso injury probability model. Drivers involved in crashes from 1993 to 2001 within the National Automotive Sampling System were reviewed. Relationships between torso injury and MVC characteristics were assessed using multivariate logistic regression. Receiver operating characteristic curves were used to compare the model to current ACNS models. There were a total of 56,466 drivers. Age, ejection, braking, avoidance, velocity, restraints, passenger-side impact, rollover, and vehicle weight and type were associated with injury (p < 0.05). The area under the receiver operating characteristic curve (83.9) was significantly greater than current ACNS models. We have developed a thoracoabdominal injury probability model that may improve patient triage when used with ACNS.

  13. Cost prediction following traumatic brain injury: model development and validation.

    Science.gov (United States)

    Spitz, Gershon; McKenzie, Dean; Attwood, David; Ponsford, Jennie L

    2016-02-01

    The ability to predict costs following a traumatic brain injury (TBI) would assist in planning treatment and support services by healthcare providers, insurers and other agencies. The objective of the current study was to develop predictive models of hospital, medical, paramedical, and long-term care (LTC) costs for the first 10 years following a TBI. The sample comprised 798 participants with TBI, the majority of whom were male and aged between 15 and 34 at time of injury. Costing information was obtained for hospital, medical, paramedical, and LTC costs up to 10 years postinjury. Demographic and injury-severity variables were collected at the time of admission to the rehabilitation hospital. Duration of PTA was the most important single predictor for each cost type. The final models predicted 44% of hospital costs, 26% of medical costs, 23% of paramedical costs, and 34% of LTC costs. Greater costs were incurred, depending on cost type, for individuals with longer PTA duration, obtaining a limb or chest injury, a lower GCS score, older age at injury, not being married or defacto prior to injury, living in metropolitan areas, and those reporting premorbid excessive or problem alcohol use. This study has provided a comprehensive analysis of factors predicting various types of costs following TBI, with the combination of injury-related and demographic variables predicting 23-44% of costs. PTA duration was the strongest predictor across all cost categories. These factors may be used for the planning and case management of individuals following TBI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. High Intensity Focused Ultrasound: A Novel Model of Mild Traumatic Brain Injury

    Science.gov (United States)

    2013-11-07

    and depression-related phenomena. Rationale. Changes in neurological functioning are measurable in humans using neuropsychological assessment... hunger , fear and rage. 20. Cernak I. 2005. Animal models of head trauma. NeuroRx 2:410-22 21. Chandran R, Sharma A, Barry ES, Balakathiresan NS...the Wechsler Test of Adult Reading (WTAR). Journal of Clinical and Experimental Neuropsychology 30:163-72 43. Grunberg NE. 1982. The effects of

  15. Bilateral cortical atrophy after severe brain trauma and extradural homatoma Atrofia cortical bilateral após traumatismo cranioencefálico grave e hematoma extradural

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Louzada

    2007-12-01

    Full Text Available We report the case of a severe head injured 43-year old male patient with a large extradural hematoma, Glasgow Coma Scale 3 and dilated fixed pupils. Patient was promptly submitted to surgical evacuation of the lesion, but remained in persistent vegetative state in the post-operative time. Head computed tomography scans performed before surgery, and at early and late post-operative periods comparatively revealed extreme bilateral cortical atrophy. Late consequences of severe head trauma drastically affect the prognosis of patients, being its prevention, and neuroprotection against secondary injury still a therapeutical challenge for neurosurgeons.Relatamos o caso de um paciente de 43 anos, com traumatismo cranioencefálico grave, com grande hematoma extradural, Escala de Coma de Glasgow 3 e pupilas fixas e dilatadas. O paciente foi prontamente submetido à evacuação cirúrgica da lesão mas permaneceu em estado vegetativo persistente no período pós-operatório. As TC de crânio realizadas antes da cirurgia e nos períodos pós-operatórios precoce e tardio revelaram comparativamente extrema atrofia cerebral bilateral. As conseqüências tardias do traumatismo craniano grave afetam drasticamente o prognóstico dos pacientes, sendo sua prevenção, e a neuroproteção contra a injúria secundária ainda um desafio terapêutico para os neurocirurgiões.

  16. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    International Nuclear Information System (INIS)

    Nhan, Tam; Burgess, Alison; Hynynen, Kullervo; Lilge, Lothar

    2014-01-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant K trans range of 0.01–0.03 min −1 . Finally, the model suggests that infusion over a short duration (20–60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration. (paper)

  17. Functional brain networks and prediction models in childhood epilepsy

    NARCIS (Netherlands)

    Diessen, E.G.A.L. van

    2015-01-01

    Modern network science revolutionized the field of neuroscience and revealed significant insights into the organization of the brain. Throughout this thesis we applied a network analytical approach to improve our understanding of the pathological mechanisms underlying focal epilepsy. The presented

  18. The brain's router: a cortical network model of serial processing in the primate brain

    NARCIS (Netherlands)

    Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R.; Dehaene, Stanislas; Sigman, Mariano

    2010-01-01

    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different

  19. Trauma facilities in Denmark

    DEFF Research Database (Denmark)

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C

    2018-01-01

    Background: Trauma is a leading cause of death among adults aged challenge. Evidence supports the centralization of trauma facilities and the use multidisciplinary trauma teams. Because knowledge is sparse on the existing distribution of trauma facilities...... and the organisation of trauma care in Denmark, the aim of this study was to identify all Danish facilities that care for traumatized patients and to investigate the diversity in organization of trauma management. Methods: We conducted a systematic observational cross-sectional study. First, all hospitals in Denmark...... were identified via online services and clarifying phone calls to each facility. Second, all trauma care manuals on all facilities that receive traumatized patients were gathered. Third, anesthesiologists and orthopedic surgeons on call at all trauma facilities were contacted via telephone...

  20. The research agenda for trauma critical care

    NARCIS (Netherlands)

    Asehnoune, Karim; Balogh, Zsolt; Citerio, Giuseppe; Cap, Andre; Billiar, Timothy; Stocchetti, Nino; Cohen, Mitchell J.; Pelosi, Paolo; Curry, Nicola; Gaarder, Christine; Gruen, Russell; Holcomb, John; Hunt, Beverley J.; Juffermans, Nicole P.; Maegele, Mark; Midwinter, Mark; Moore, Frederick A.; O'Dwyer, Michael; Pittet, Jean-François; Schöchl, Herbert; Schreiber, Martin; Spinella, Philip C.; Stanworth, Simon; Winfield, Robert; Brohi, Karim

    2017-01-01

    In this research agenda on the acute and critical care management of trauma patients, we concentrate on the major factors leading to death, namely haemorrhage and traumatic brain injury (TBI). In haemostasis biology, the results of randomised controlled trials have led to the therapeutic focus

  1. Re-authoring life narratives of trauma survivors: Spiritual perspective

    Directory of Open Access Journals (Sweden)

    Charles Manda

    2015-05-01

    Full Text Available Traditionally, the exploration of the impact of trauma on trauma survivors in South Africa has been focused mainly on the bio-psychosocial aspects. The bio-psychosocial approach recognises that trauma affects people biologically, socially and psychologically. In this article, the author explores a holistic understanding of the effects of trauma on people from communities historically affected by political violence in KwaZulu-Natal, South Africa. Using a participatory action research design (PAR as a way of working through trauma, a longitudinal study was conducted in Pietermaritzburg from 2009–2013. At the end of the study, life narratives were documented and published. The textual analysis of these life narratives reveals that, besides the bio-psychosocial effects that research participants experienced during and after the trauma, they also sustained moral and spiritual injuries. Trauma took its toll in their lives emotionally, psychologically, spiritually, morally and in their relationships with themselves, others and God. From these findings, the author argues that the bio-psychosocial approach is incomplete for understanding the holistic effects of trauma on the whole person. Therefore, he recommends the integration of the moral and spiritual aspects of trauma to come up with a holistic model of understanding the effects of trauma on traumatised individuals. The holistic model will enhance the treatment, healing and recovery of trauma survivors. This, in turn, will alleviate the severe disruption of many aspects of psychological functioning and well-being of trauma survivors caused by the effects of trauma.

  2. Comparison of the dynamic behaviour of brain tissue and two model materials

    NARCIS (Netherlands)

    Brands, D.W.A.; Bovendeerd, P.H.M.; Peters, G.W.M.; Wismans, J.S.H.M.; Paas, M.H.J.W.; Bree, van J.L.M.J.; Brands, D.W.A.

    1999-01-01

    Linear viscoelastic material parameters of porcine brain tissue and two brain substitute/ materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained

  3. Human brain as the model of a new computer system. II

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, K; Langheld, E

    1981-12-09

    For Pt. I see IBID., Vol. 29, No. 22, P. 13 (1981). The authors describe the self-generating system of connections of a self-teaching no-program associative computer. The self-generating systems of connections are regarded as simulation models of the human brain and compared with the brain structure. The system hardware comprises microprocessor, PROM, memory, VDU, keyboard unit.

  4. Modeling the Relationship Between Trauma and Psychological Distress Among HIV-Positive and HIV-Negative Women

    OpenAIRE

    Delany-Brumsey, A; Joseph, NT; Myers, HF; Ullman, JB; Wyatt, GE

    2013-01-01

    This study investigated the association between cumulative exposure to multiple traumatic events and psychological distress, as mediated by problematic substance use and impaired psychosocial resources. A sample of HIV-positive and HIV-negative women were assessed for a history of childhood and adult sexual abuse and non-sexual trauma as predictors of psychological distress (i.e., depression, non-specific anxiety, and posttraumatic stress), as mediated by problematic alcohol and drug use and ...

  5. Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory

    Directory of Open Access Journals (Sweden)

    T. K. Das

    2014-01-01

    Full Text Available With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model or global dynamics (e.g., the Ising model have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions.

  6. Hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound in the treatment of a rabbit liver trauma model

    Science.gov (United States)

    Zhao, Da-wei; Tian, Meng; Yang, Jian-zheng; Du, Peng; Bi, Jie; Zhu, Xinjian

    2016-01-01

    The aim of our study was to investigate the hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound treatment of liver trauma. Thirty rabbits with liver trauma were randomly divided into three groups—the microbubble-enhanced ultrasound (MEUS; further subdivided based on exposure intensity into MEUS1 [0.11 W/cm2], MEUS2 [0.55 W/cm2], and MEUS3 [1.1 W/cm2]), ultrasound without microbubbles (US), and microbubbles without ultrasound (MB) groups. The pre- and post-treatment bleeding weight and visual bleeding scores were evaluated. The serum liver enzyme concentrations as well as the blood perfusion level represented by mean peak contrast intensity (PI) ratio in the treatment area were analyzed. The hemostatic mechanism was evaluated by histological and transmission electron microscopic examination of liver tissue samples. The MEUS subgroups 1–3 (grade 0–1, grade 0–2, and grade 1–2, respectively) exhibited significantly lower post-treatment visual bleeding scores than the US and MB groups (both, grade 3–4; all, P hepatic cells became edematous and compressed the hepatic sinus and associated blood vessels. However, the serum liver enzyme levels were not significantly altered. Microbubble-enhanced non-focused ultrasound does not significantly affect blood perfusion and liver function and can be used to induce rapid hemostasis in case of liver trauma. PMID:27633577

  7. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    Science.gov (United States)

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  8. Posterior urethral injuries associated with motorcycle accidents and pelvic trauma in adolescents: analysis of urethral lesions occurring prior to a bony fracture using a computerized finite-element model.

    Science.gov (United States)

    Bréaud, J; Montoro, J; Lecompte, J F; Valla, J S; Loeffler, J; Baqué, P; Brunet, C; Thollon, L

    2013-02-01

    Adolescent males involved in motorcycle accidents are particularly at risk for pelvic injury, which may provoke a posterior urethral injury. The aim of this study was to develop a model to analyze the association between injuries and fractures of the pelvic ring and the risk of posterior urethral injury. Based on experience with traffic accident modeling, a computerized finite-element model was extrapolated from a computerized tomography scan of a 15-year-old boy. The anatomic structures concerned in urethral and pelvic ring trauma were isolated, rendered in 3D and given biomechanical properties. The model was verified according to available experiments on pelvic ring trauma. To apply the model, we recreated three impact mechanisms on the pelvic ring: lateral impact, antero-posterior impact and a real car‒motorcycle accident situation (postero-lateral impact). In all three situations, stretching of the posterior urethra was identified prior to bony fracture visualization. Application of this model allowed us to analyze precisely the link between trauma of the pelvic ring and lesions of the posterior urethra. The results should help to establish guidelines for urethral catheterization in male adolescents in cases of pelvic trauma, even when no bony fracture is present, in order to prevent iatrogenic worsening of a misdiagnosed posterior urethral trauma. Copyright © 2011 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  9. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes.

    Science.gov (United States)

    Abbott, N Joan; Dolman, Diana E M; Drndarski, Svetlana; Fredriksson, Sarah M

    2012-01-01

    In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2

  10. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  11. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Jin, Guang; Johansson, Pär I

    2014-01-01

    as lesion size (3285.44¿±¿130.81 mm3 vs. 2509.41¿±¿297.44 mm3, p¿=¿0.04). This was also associated with decreased cardiac output (NS: 4.37¿±¿0.12 l/min vs. 6.35¿±¿0.10 l/min, p¿brain compared......BackgroundOptimal fluid resuscitation strategy following combined traumatic brain injury (TBI) and hemorrhagic shock (HS) remain controversial and the effect of resuscitation infusion speed on outcome is not well known. We have previously reported that bolus infusion of fresh frozen plasma (FFP......) protects the brain compared with bolus infusion of 0.9% normal saline (NS). We now hypothesize reducing resuscitation infusion speed through a stepwise infusion speed increment protocol using either FFP or NS would provide neuroprotection compared with a high speed resuscitation protocol.Methods23...

  12. The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns.

    Science.gov (United States)

    de Curtis, Marco; Librizzi, Laura; Uva, Laura

    2016-02-15

    Research on ictogenesis is based on the study of activity between seizures and during seizures in animal models of epilepsy (chronic condition) or in in vitro slices obtained from naïve non-epileptic brains after treatment with pro-convulsive drugs, manipulations of the extracellular medium and specific stimulation protocols. The in vitro isolated guinea pig brain retains the functional connectivity between brain structures and maintains interactions between neuronal, glial and vascular compartments. It is a close-to-in vivo preparation that offers experimental advantages not achieved with the use of other experimental models. Neurophysiological and imaging techniques can be utilized in this preparation to study brain activity during and between seizures induced by pharmacological or functional manipulations. Cellular and network determinants of interictal and ictal discharges that reproduce abnormal patterns observed in human focal epilepsies and the associated changes in extracellular ion and blood-brain permeability can be identified and analyzed in the isolated guinea pig brain. Ictal and interictal patterns recorded in in vitro slices may show substantial differences from seizure activity recorded in vivo due to slicing procedure itself. The isolated guinea pig brain maintained in vitro by arterial perfusion combines the typical facilitated access of in vitro preparations, that are difficult to approach during in vivo experiments, with the preservation of larger neuronal networks. The in vitro whole isolated guinea pig brain preparation offers an unique experimental model to study systemic and neurovascular changes during ictogenesis. Published by Elsevier B.V.

  13. Computed tomography in trauma

    International Nuclear Information System (INIS)

    Toombs, B.D.; Sandler, C.M.

    1987-01-01

    This book begins with a chapter dealing with the epidemiology and mechanisms of trauma. Trauma accounts for more lives lost in the United States than cancer and heart disease. The fact that 30%-40% of trauma-related deaths are caused by improper or delayed diagnoses or treatment emphasizes the importance of rapid and accurate methods to establish a diagnosis. Acute thoracic, abdominal, and pelvic trauma and their complications are discussed. A chapter on high-resolution CT of spinal and facial trauma and the role of three-dimensional reconstruction images is presented

  14. Computed tomography in trauma

    Energy Technology Data Exchange (ETDEWEB)

    Toombs, B.D.; Sandler, C.M.

    1987-01-01

    This book begins with a chapter dealing with the epidemiology and mechanisms of trauma. Trauma accounts for more lives lost in the United States than cancer and heart disease. The fact that 30%-40% of trauma-related deaths are caused by improper or delayed diagnoses or treatment emphasizes the importance of rapid and accurate methods to establish a diagnosis. Acute thoracic, abdominal, and pelvic trauma and their complications are discussed. A chapter on high-resolution CT of spinal and facial trauma and the role of three-dimensional reconstruction images is presented.

  15. A novel inhibitor of p75-neurotrophin receptor improves functional outcomes in two models of traumatic brain injury.

    Science.gov (United States)

    Delbary-Gossart, Sandrine; Lee, Sangmi; Baroni, Marco; Lamarche, Isabelle; Arnone, Michele; Canolle, Benoit; Lin, Amity; Sacramento, Jeffrey; Salegio, Ernesto A; Castel, Marie-Noelle; Delesque-Touchard, Nathalie; Alam, Antoine; Laboudie, Patricia; Ferzaz, Badia; Savi, Pierre; Herbert, Jean-Marc; Manley, Geoffrey T; Ferguson, Adam R; Bresnahan, Jacqueline C; Bono, Françoise; Beattie, Michael S

    2016-06-01

    The p75 neurotrophin receptor is important in multiple physiological actions including neuronal survival and neurite outgrowth during development, and after central nervous system injury. We have discovered a novel piperazine-derived compound, EVT901, which interferes with p75 neurotrophin receptor oligomerization through direct interaction with the first cysteine-rich domain of the extracellular region. Using ligand binding assays with cysteine-rich domains-fused p75 neurotrophin receptor, we confirmed that EVT901 interferes with oligomerization of full-length p75 neurotrophin receptor in a dose-dependent manner. Here we report that EVT901 reduces binding of pro-nerve growth factor to p75 neurotrophin receptor, blocks pro-nerve growth factor induced apoptosis in cells expressing p75 neurotrophin receptor, and enhances neurite outgrowth in vitro Furthermore, we demonstrate that EVT901 abrogates p75 neurotrophin receptor signalling by other ligands, such as prion peptide and amyloid-β. To test the efficacy of EVT901 in vivo, we evaluated the outcome in two models of traumatic brain injury. We generated controlled cortical impacts in adult rats. Using unbiased stereological analysis, we found that EVT901 delivered intravenously daily for 1 week after injury, reduced lesion size, protected cortical neurons and oligodendrocytes, and had a positive effect on neurological function. After lateral fluid percussion injury in adult rats, oral treatment with EVT901 reduced neuronal death in the hippocampus and thalamus, reduced long-term cognitive deficits, and reduced the occurrence of post-traumatic seizure activity. Together, these studies provide a new reagent for altering p75 neurotrophin receptor actions after injury and suggest that EVT901 may be useful in treatment of central nervous system trauma and other neurological disorders where p75 neurotrophin receptor signalling is affected. © The Author (2016). Published by Oxford University Press on behalf of the

  16. Decreased integration and information capacity in stroke measured by whole brain models of resting state activity.

    Science.gov (United States)

    Adhikari, Mohit H; Hacker, Carl D; Siegel, Josh S; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo; Corbetta, Maurizio

    2017-04-01

    While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and that these changes may correlate with behavioural deficits, their impact on brain's information processing capacity is currently unknown. Here we test the hypothesis that focal lesions decrease the brain's information processing capacity, of which changes in functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize correlation between model and empirical functional connectivity, so that the model's effective connectivity was a veridical representation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: 'integration', a graph theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and 'information capacity', an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured. This study shows that focal lesions affect the brain's ability to

  17. Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Choi

    Full Text Available Endoglin (ENG is a causative gene of type 1 hereditary hemorrhagic telangiectasia (HHT1. HHT1 patients have a higher prevalence of brain arteriovenous malformation (AVM than the general population and patients with other HHT subtypes. The pathogenesis of brain AVM in HHT1 patients is currently unknown and no specific medical therapy is available to treat patients. Proper animal models are crucial for identifying the underlying mechanisms for brain AVM development and for testing new therapies. However, creating HHT1 brain AVM models has been quite challenging because of difficulties related to deleting Eng-floxed sequence in Eng(2fl/2fl mice. To create an HHT1 brain AVM mouse model, we used several Cre transgenic mouse lines to delete Eng in different cell-types in Eng(2fl/2fl mice: R26CreER (all cell types after tamoxifen treatment, SM22α-Cre (smooth muscle and endothelial cell and LysM-Cre (lysozyme M-positive macrophage. An adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF was injected into the brain to induce focal angiogenesis. We found that SM22α-Cre-mediated Eng deletion in the embryo caused AVMs in the postnatal brain, spinal cord, and intestines. Induction of Eng deletion in adult mice using R26CreER plus local VEGF stimulation induced the brain AVM phenotype. In both models, Eng-null endothelial cells were detected in the brain AVM lesions, and formed mosaicism with wildtype endothelial cells. However, LysM-Cre-mediated Eng deletion in the embryo did not cause AVM in the postnatal brain even after VEGF stimulation. In this study, we report two novel HHT1 brain AVM models that mimic many phenotypes of human brain AVM and can thus be used for studying brain AVM pathogenesis and testing new therapies. Further, our data indicate that macrophage Eng deletion is insufficient and that endothelial Eng homozygous deletion is required for HHT1 brain AVM development.

  18. Adolescent emotional maturation through divergent models of brain organization

    Directory of Open Access Journals (Sweden)

    Jose Víctor Orón Semper

    2016-08-01

    Full Text Available In this article we introduce the hypothesis that neuropsychological adolescent maturation, and in particular emotional management, may have opposing explanations depending on the interpretation of the assumed brain architecture, that is, whether a componential computational account (CCA or a dynamic systems perspective (DSP is used. According to CCA, cognitive functions are associated with the action of restricted brain regions, and this association is temporally stable; by contrast, DSP argues that cognitive functions are better explained by interactions between several brain areas, whose engagement in specific functions is temporal and context-dependent and based on neural reuse. We outline the main neurobiological facts about adolescent maturation, focusing on the neuroanatomical and neurofunctional processes associated with adolescence. We then explain the importance of emotional management in adolescent maturation. We explain the interplay between emotion and cognition under the scope of CCA and DSP, both at neural and behavioral levels. Finally, we justify why, according to CCA, emotional management is understood as regulation, specifically because the cognitive aspects of the brain are in charge of regulating emotion-related modules. However, the key word in DSP is integration, since neural information from different brain areas is integrated from the beginning of the process. Consequently, although the terms should not be conceptually confused, there is no cognition without emotion, and vice versa. Thus, emotional integration is not an independent process that just happens to the subject, but a crucial part of personal growth. Considering the importance of neuropsychological research in the development of educational and legal policies concerning adolescents, we intend to expose that the holistic view of adolescents is dependent on whether one holds the implicit or explicit interpretation of brain functioning.

  19. [Significance of model studies for explanation of the pathogenesis of the mechanically induced birth trauma (author's transl)].

    Science.gov (United States)

    Issel, E P; Neumärker, K J; Neumärker, M; Loetzke, H H; Kunz, G; Wilcke, G

    1977-01-01

    We have studied the propotions of displacements from fetal cerebral parts during simulated intrauterine pressure. Stillborn children from the death to the experiments last only some hours, were put in cephalic position in our birth model. The cavum uteri was simulated by a metal cylinder, in which we gave compressed air for simulating the labor. The pressure was held about 100 mm Hg. A rubber cuff was fixed on the metal cylinder and let an opening of 8 cm, simulating the cervix uteri. The model with the death infant in it was frozen and than the fetal head sectioned in slides of 1,5 cm in the right of the birth pressure axis. We found, that the gyri occipital were widened, opposite the gyri frontal were compressed. Parieto-occipital we found a venous blood congestion. The brain stem was kinked and displaced dorsal. In one case we carried out in the meantime an aniogram. The cerebral vessels became under the pressure elongated. This was reversible by decrease of the pressure. The limitation of such model studies are give in some facts. We do not know, how much the loosening of the skull, following the fetal death, leads to a more than normal shifting. We further do not know, which proportions of the displacements of the cerebral substance during labor from the fetus could be compensated. Our findings suggest, that it is possible, that cerebral blood flow will be altered by displacements of the cerebral masses during intrauterine pressure. But we have not exact informations about it.

  20. A model of chronic local irradiation in the brain

    International Nuclear Information System (INIS)

    Sataev, M.M.

    1981-01-01

    Radionecrosis of tissues was detected after implantation of 90 S- 90 Y sources (0.5-0.2 Gy/h) to the rabbit brain. A repair inflammatory reaction developed around the point of affection which resulted, at a dose of 0.5 Gy/h, in the formation of the connective tissue capsules or gliomesencymal cicatrices, or in the diffuse, hyperplasia of cell elements of neuroglia, membranes and vessels of the brain at doses of 1.4 to 2.0 Gy/h. This is the reason for the appearance of focal epitheliocellular granulomas [ru

  1. Standing and travelling waves in a spherical brain model: The Nunez model revisited

    Science.gov (United States)

    Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S.

    2017-06-01

    The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.

  2. The associations of earlier trauma exposures and history of mental disorders with PTSD after subsequent traumas.

    Science.gov (United States)

    Kessler, R C; Aguilar-Gaxiola, S; Alonso, J; Bromet, E J; Gureje, O; Karam, E G; Koenen, K C; Lee, S; Liu, H; Pennell, B-E; Petukhova, M V; Sampson, N A; Shahly, V; Stein, D J; Atwoli, L; Borges, G; Bunting, B; de Girolamo, G; Gluzman, S F; Haro, J M; Hinkov, H; Kawakami, N; Kovess-Masfety, V; Navarro-Mateu, F; Posada-Villa, J; Scott, K M; Shalev, A Y; Ten Have, M; Torres, Y; Viana, M C; Zaslavsky, A M

    2017-09-19

    Although earlier trauma exposure is known to predict posttraumatic stress disorder (PTSD) after subsequent traumas, it is unclear whether this association is limited to cases where the earlier trauma led to PTSD. Resolution of this uncertainty has important implications for research on pretrauma vulnerability to PTSD. We examined this issue in the World Health Organization (WHO) World Mental Health (WMH) Surveys with 34 676 respondents who reported lifetime trauma exposure. One lifetime trauma was selected randomly for each respondent. DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) PTSD due to that trauma was assessed. We reported in a previous paper that four earlier traumas involving interpersonal violence significantly predicted PTSD after subsequent random traumas (odds ratio (OR)=1.3-2.5). We also assessed 14 lifetime DSM-IV mood, anxiety, disruptive behavior and substance disorders before random traumas. We show in the current report that only prior anxiety disorders significantly predicted PTSD in a multivariate model (OR=1.5-4.3) and that these disorders interacted significantly with three of the earlier traumas (witnessing atrocities, physical violence victimization and rape). History of witnessing atrocities significantly predicted PTSD after subsequent random traumas only among respondents with prior PTSD (OR=5.6). Histories of physical violence victimization (OR=1.5) and rape after age 17 years (OR=17.6) significantly predicted only among respondents with no history of prior anxiety disorders. Although only preliminary due to reliance on retrospective reports, these results suggest that history of anxiety disorders and history of a limited number of earlier traumas might usefully be targeted in future prospective studies as distinct foci of research on individual differences in vulnerability to PTSD after subsequent traumas.Molecular Psychiatry advance online publication, 19 September 2017; doi:10.1038/mp.2017.194.

  3. Technical pitfalls in a porcine brain retraction model. The impact of brain spatula on the retracted brain tissue in a porcine model: a feasibility study and its technical pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Thiex, R.; Hans, F.J.; Gilsbach, J.M. [Aachen University, Department of Neurosurgery, Aachen (Germany); Krings, T. [Aachen University, Department of Neuroradiology, Aachen (Germany); Sellhaus, B. [Aachen University, Department of Neuropathology, Aachen (Germany)

    2005-10-01

    We describe technical pitfalls of a porcine brain injury model for identifying primary and secondary pathological sequelae following brain retraction by brain spatula. In 16 anaesthetised male pigs, the right frontal brain was retracted in the interhemispheric fissure by a brain spatulum with varying pressures applied by the gravitational force of weights from 10 to 70 g for a duration of 30 min. The retracted brain tissue was monitored for changes in intracranial pressure and perfusion of the cortex using a Laser Doppler Perfusion Imager (MoorLDI). To evaluate the extent of oedema and cortical contusions, MRI was performed 30 min and 72 h after brain retraction. Following the MR scan, the retracted brain areas were histopathologically assessed using H and E and Fluoro-Jade B staining for neuronal damage. Sinus occlusion occurred in four animals, resulting in bilateral cortical contusions and extensive brain oedema. Retracting the brain with weights of 70 g (n=4) caused extensive oedema on FLAIR images that correlated clinically with a hemiparesis in three animals. Morphologically, an increased number of Fluoro-Jade B-positive neurons were found. A sequential decrease in weights prevented functional deficits in animals. A retraction pressure applied by 10-g weights (n=7) caused a mean rise in intracranial pressure to 4.0{+-}3.1 mm Hg, and a decrement in mean cortical perfusion from 740.8{+-}41.5 to 693.8{+-}72.4 PU/cm2, (P<0.24). A meticulous dissection of the interhemispheric fissure and a reduction of weights to 10 g were found to be mandatory to study the cortical impact caused by brain spatula reproducibly. (orig.)

  4. Technical pitfalls in a porcine brain retraction model. The impact of brain spatula on the retracted brain tissue in a porcine model: a feasibility study and its technical pitfalls

    International Nuclear Information System (INIS)

    Thiex, R.; Hans, F.J.; Gilsbach, J.M.; Krings, T.; Sellhaus, B.

    2005-01-01

    We describe technical pitfalls of a porcine brain injury model for identifying primary and secondary pathological sequelae following brain retraction by brain spatula. In 16 anaesthetised male pigs, the right frontal brain was retracted in the interhemispheric fissure by a brain spatulum with varying pressures applied by the gravitational force of weights from 10 to 70 g for a duration of 30 min. The retracted brain tissue was monitored for changes in intracranial pressure and perfusion of the cortex using a Laser Doppler Perfusion Imager (MoorLDI). To evaluate the extent of oedema and cortical contusions, MRI was performed 30 min and 72 h after brain retraction. Following the MR scan, the retracted brain areas were histopathologically assessed using H and E and Fluoro-Jade B staining for neuronal damage. Sinus occlusion occurred in four animals, resulting in bilateral cortical contusions and extensive brain oedema. Retracting the brain with weights of 70 g (n=4) caused extensive oedema on FLAIR images that correlated clinically with a hemiparesis in three animals. Morphologically, an increased number of Fluoro-Jade B-positive neurons were found. A sequential decrease in weights prevented functional deficits in animals. A retraction pressure applied by 10-g weights (n=7) caused a mean rise in intracranial pressure to 4.0±3.1 mm Hg, and a decrement in mean cortical perfusion from 740.8±41.5 to 693.8±72.4 PU/cm2, (P<0.24). A meticulous dissection of the interhemispheric fissure and a reduction of weights to 10 g were found to be mandatory to study the cortical impact caused by brain spatula reproducibly. (orig.)

  5. Ultrasonography in trauma

    DEFF Research Database (Denmark)

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C

    2017-01-01

    BACKGROUND: The Focused Assessment with Sonography in Trauma (FAST) protocol is considered beneficial in emergent evaluation of trauma patients with blunt or penetrating injury and has become integrated into the Advanced Trauma Life Support (ATLS) protocol. No guidelines exist as to the use...... of ultrasonography in trauma in Denmark. We aimed to determine the current use of ultrasonography for assessing trauma patients in Denmark. METHODS: We conducted a nation-wide cross-sectional investigation of ultrasonography usage in trauma care. The first phase consisted of an Internet-based investigation....... Twenty-one (95.5%) of the guidelines included and recommended FAST as part of trauma assessment. The recommended person to perform the examination was the radiologist in n = 11 (50.0%), the surgeon in n = 6 (27.3%), the anesthesiologist in n = 1 (4.5%), and unspecified in n = 3 (13.6%) facilities. FAST...

  6. A model based system for the interpretation of MR human brain scans

    International Nuclear Information System (INIS)

    Kapouleas, I.; Kulikowski, C.A.

    1988-01-01

    This paper describes a prototype system for identifying and characterizing Multiple Scleroris (MS) lesions in the brain from magnetic resonance (MR) images. The system is designed to obtain an initial segmentation of each cross-sectional image with low level vision methods, and then derive successive refinements of image subregions through a model-driven approach that correlates relevant information from T1 and T2 images and 3-D information from complementary cross-sections when necessary. The system uses a b-spline surface model of the brain that matches the characteristics of the individual's brain. The normal internal structures of the brain are then scaled proportionately before carrying out the successive refinement operations for the detection of the MS lesions. The low level vision and the solid modeling components of the system have been successfully tested on several hundred images from a number of MR patient studies. The first steps of model fitting have been implemented and show promising results

  7. Development of a cerebral circulation model for the automatic control of brain physiology.

    Science.gov (United States)

    Utsuki, T

    2015-01-01

    In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.

  8. Brain temperature profiles during epidural cooling with the ChillerPad in a monkey model of traumatic brain injury.

    Science.gov (United States)

    King, Christopher; Robinson, Timothy; Dixon, C Edward; Rao, Gutti R; Larnard, Donald; Nemoto, C Edwin M

    2010-10-01

    Therapeutic hypothermia remains a promising treatment for patients with severe traumatic brain injury (TBI). Multiple animal studies have suggested that hypothermia is neuroprotective after TBI, but clinical trials have been inconclusive. Systemic hypothermia, the method used in almost all major clinical trials, is limited by the time to target temperature, the depth of hypothermia, and complications, problems that may be solved by selective brain cooling. We evaluated the effects on brain temperature of a cooling device called the ChillerPad,™ which is applied to the dura in a non-human primate TBI model using controlled cortical impact (CCI). The cortical surface was rapidly cooled to approximately 15°C and maintained at that level for 24 h, followed by rewarming over about 10 h. Brain temperatures fell to 34-35°C at a depth of 15 mm at the cortical gray/white matter interface, and to 28-32°C at 10 mm deep. Intracranial pressure was mildly elevated (8-12 mm Hg) after cooling and rewarming, likely due to TBI. Other physiological variables were unchanged. Cooling was rapidly diminished at points distant from the cooling pad. The ChillerPad may be useful for highly localized cooling of the brain in circumstances in which a craniotomy is clinically indicated. However, because of the delay required by the craniotomy, other methods that are more readily available for inducing hypothermia may be used as a bridge between the time of injury to placement of the ChillerPad.

  9. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    Science.gov (United States)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  10. Mathematical model in post-mortem estimation of brain edema using morphometric parameters.

    Science.gov (United States)

    Radojevic, Nemanja; Radnic, Bojana; Vucinic, Jelena; Cukic, Dragana; Lazovic, Ranko; Asanin, Bogdan; Savic, Slobodan

    2017-01-01

    Current autopsy principles for evaluating the existence of brain edema are based on a macroscopic subjective assessment performed by pathologists. The gold standard is a time-consuming histological verification of the presence of the edema. By measuring the diameters of the cranial cavity, as individually determined morphometric parameters, a mathematical model for rapid evaluation of brain edema was created, based on the brain weight measured during the autopsy. A cohort study was performed on 110 subjects, divided into two groups according to the histological presence or absence of (the - deleted from the text) brain edema. In all subjects, the following measures were determined: the volume and the diameters of the cranial cavity (longitudinal and transverse distance and height), the brain volume, and the brain weight. The complex mathematical algorithm revealed a formula for the coefficient ε, which is useful to conclude whether a brain edema is present or not. The average density of non-edematous brain is 0.967 g/ml, while the average density of edematous brain is 1.148 g/ml. The resulting formula for the coefficient ε is (5.79 x longitudinal distance x transverse distance)/brain weight. Coefficient ε can be calculated using measurements of the diameters of the cranial cavity and the brain weight, performed during the autopsy. If the resulting ε is less than 0.9484, it could be stated that there is cerebral edema with a reliability of 98.5%. The method discussed in this paper aims to eliminate the burden of relying on subjective assessments when determining the presence of a brain edema. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  11. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive Level

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Bergmann, Til Ole; Herz, Damian Marc

    2015-01-01

    these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable...... predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can...

  12. Modeling and simulation of deep brain stimulation in Parkinson's disease

    NARCIS (Netherlands)

    Heida, Tjitske; Moroney, R.; Marani, Enrico; Usunoff, K.G.; Pereira, M.; Freire, M.

    2009-01-01

    Deep Brain Stimulation (DBS) is effective in the Parkinsonian state, while it seems to produce rather non-selective stimulation over an unknown volume of tissue. Despite a huge amount of anatomical and physiological data regarding the structure of the basal ganglia (BG) and their connections, the

  13. Embodied modeling of the organization of the brain

    NARCIS (Netherlands)

    Janssen, J.H.; Goosen, A.E.A.; Sprinkhuizen-Kuyper, I.G.; Haselager, W.F.G.

    2007-01-01

    In this study embodied embedded agents are evolved in order to gain a better understanding of aspects of the distribution of cognitive functions in the brain. We found that a symmetrical body plan facilitates the evolution of two hemispheres. Furthermore, individuals with an asymmetrical body plan,

  14. Optical coherence tomography imaging of cranial meninges post brain injury in vivo

    Institute of Scientific and Technical Information of China (English)

    Woo June Choi; Ruikang K.Wang

    2017-01-01

    We report a new application of optical coherence tomography (OCT) to investigate the cranial meninges in an animal model of brain injury in vivo.The injury is induced in a mouse due to skull thinning,in which the repeated and excessive drilling exerts mechanical stress on the mouse brain through the skull,resulting in acute and mild brain injury.Transcranial OCT imaging reveals an interesting virtual space between the cranial meningeal layers post skull thinning,which is gradually closed within hours.The finding suggests a promise of OCT as an effective tool to monitor the mechanical trauma in the small animal model of brain injury.

  15. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    Science.gov (United States)

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  16. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping.

    Science.gov (United States)

    Chen, Zikuan; Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.

  17. The 7-factor hybrid model of DSM-5 PTSD symptoms and alcohol consumption and consequences in a national sample of trauma-exposed veterans.

    Science.gov (United States)

    Claycomb Erwin, Meredith; Charak, Ruby; Durham, Tory A; Armour, Cherie; Lv, Xin; Southwick, Steven M; Elhai, Jon D; Pietrzak, Robert H

    2017-10-01

    The purpose of the present study was to investigate associations between the 7-factor hybrid model of DSM-5 posttraumatic stress disorder (PTSD) symptoms, which includes intrusions, avoidance, negative affect, anhedonia, externalizing behaviors, anxious arousal, and dysphoric arousal symptoms, and alcohol consumption and consequences. A nationally representative sample of 916 trauma-exposed U.S. military veterans were administered the Trauma History Screen, PTSD Checklist-5, and Alcohol Use Disorders Identification Test. Confirmatory factor analyses were conducted to determine associations between the 7-factor hybrid model of PTSD symptoms, and alcohol consumption and consequences. Results revealed that lifetime dysphoric arousal (r=0.31), negative affect (r=0.30), and anhedonia (r=0.29) symptom clusters were most strongly associated with past-year alcohol consequences. No significant associations were observed for alcohol consumption. While the cross-sectional study design does not allow one to ascertain causative associations between PTSD factors and alcohol consumption and consequences, results generally align with the self-medication hypothesis, as PTSD factors reflecting internalizing were most strongly related to alcohol-related consequences. These results underscore the importance of assessing for alcohol use problems in veterans who score highly on PTSD symptoms reflecting internalizing symptomatology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Head trauma in female professional wrestlers

    International Nuclear Information System (INIS)

    Nomoto, Jun; Seiki, Yoshikatsu; Nemoto, Masaaki

    2007-01-01

    The clinical characteristics of head trauma were evaluated in 18 wrestlers belonging to a female professional wrestling organization, 13 regular members and five trainees aged 15-34 years. Medical examinations for head trauma were performed in all wrestlers, and wrestlers treated at our emergency outpatient department were clinically evaluated. In addition, the relationships of head trauma with duration of the wrestling career of 1-16 years (mean 8 years) in the regular members, and less than 1 year in the five trainees, and body mass index (BMI) of 21.0-32.0 in the 16 subjects, excluding two trainees, was evaluated. Chronic symptoms were noted in four of the 18 wrestlers with long wrestling careers (16 years in 1, 13 years in 1, and 5 years in 2). Three wrestlers with symptoms immediately after head trauma showed recurrent retrograde amnesia and had low BMI (21.6, 21.6, and 23.1). Five wrestlers were treated at our emergency outpatient clinic, three required hospitalization and two showed intracranial traumatic changes on computed tomography (acute subdural hematoma in 1 and diffuse brain swelling in 1). Head trauma in female professional wrestlers is associated with longer wrestling career and low BMI. Periodic medical examinations are recommended to monitor for signs of head trauma. (author)

  19. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben

    2015-01-01

    In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).

  20. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Directory of Open Access Journals (Sweden)

    Louiza Bohn Thomsen

    Full Text Available In vitro blood-brain barrier (BBB models based on primary brain endothelial cells (BECs cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP and breast cancer related protein (BCRP, and the transferrin receptor.

  1. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  2. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Owczarek, Sylwia

    2012-01-01

    and downregulating the neuroprotective protein metallothionein I+II. We identify two neurotrophic motifs in S100A4 and show that these motifs are neuroprotective in animal models of brain trauma. Finally, we find that S100A4 rescues neurons via the Janus kinase/STAT pathway and, partially, the interleukin-10......Identification of novel pro-survival factors in the brain is paramount for developing neuroprotective therapies. The multifunctional S100 family proteins have important roles in many human diseases and are also upregulated by brain injury. However, S100 functions in the nervous system remain...... unclear. Here we show that the S100A4 protein, mostly studied in cancer, is overexpressed in the damaged human and rodent brain and released from stressed astrocytes. Genetic deletion of S100A4 exacerbates neuronal loss after brain trauma or excitotoxicity, increasing oxidative cell damage...

  3. Atomistic modeling of the structural components of the blood-brain barrier

    Science.gov (United States)

    Glukhova, O. E.; Grishina, O. A.; Slepchenkov, M. M.

    2015-03-01

    Blood-brain barrier, which is a barrage system between the brain and blood vessels, plays a key role in the "isolation" of the brain of unnecessary information, and reduce the "noise" in the interneuron communication. It is known that the barrier function of the BBB strictly depends on the initial state of the organism and changes significantly with age and, especially in developing the "vascular accidents". Disclosure mechanisms of regulation of the barrier function will develop new ways to deliver neurotrophic drugs to the brain in the newborn. The aim of this work is the construction of atomistic models of structural components of the blood-brain barrier to reveal the mechanisms of regulation of the barrier function.

  4. Adaptive Capacity: An Evolutionary Neuroscience Model Linking Exercise, Cognition, and Brain Health.

    Science.gov (United States)

    Raichlen, David A; Alexander, Gene E

    2017-07-01

    The field of cognitive neuroscience was transformed by the discovery that exercise induces neurogenesis in the adult brain, with the potential to improve brain health and stave off the effects of neurodegenerative disease. However, the basic mechanisms underlying exercise-brain connections are not well understood. We use an evolutionary neuroscience approach to develop the adaptive capacity model (ACM), detailing how and why physical activity improves brain function based on an energy-minimizing strategy. Building on studies showing a combined benefit of exercise and cognitive challenge to enhance neuroplasticity, our ACM addresses two fundamental questions: (i) what are the proximate and ultimate mechanisms underlying age-related brain atrophy, and (ii) how do lifestyle changes influence the trajectory of healthy and pathological aging? Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture

    Directory of Open Access Journals (Sweden)

    Maria Angeles Marques-Torrejon

    2018-02-01

    Full Text Available Glioblastoma multiforme (GBM is an aggressive incurable brain cancer. The cells that fuel the growth of tumours resemble neural stem cells found in the developing and adult mammalian forebrain. These are referred to as glioma stem cells (GSCs. Similar to neural stem cells, GSCs exhibit a variety of phenotypic states: dormant, quiescent, proliferative and differentiating. How environmental cues within the brain influence these distinct states is not well understood. Laboratory models of GBM can be generated using either genetically engineered mouse models, or via intracranial transplantation of cultured tumour initiating cells (mouse or human. Unfortunately, these approaches are expensive, time-consuming, low-throughput and ill-suited for monitoring live cell behaviours. Here, we explored whole adult brain coronal organotypic slices as an alternative model. Mouse adult brain slices remain viable in a serum-free basal medium for several weeks. GSCs can be easily microinjected into specific anatomical sites ex vivo, and we demonstrate distinct responses of engrafted GSCs to diverse microenvironments in the brain tissue. Within the subependymal zone – one of the adult neural stem cell niches – injected tumour cells could effectively engraft and respond to endothelial niche signals. Tumour-transplanted slices were treated with the antimitotic drug temozolomide as proof of principle of the utility in modelling responses to existing treatments. Engraftment of mouse or human GSCs onto whole brain coronal organotypic brain slices therefore provides a simplified, yet flexible, experimental model. This will help to increase the precision and throughput of modelling GSC-host brain interactions and complements ongoing in vivo studies. This article has an associated First Person interview with the first author of the paper.

  6. SU-E-T-549: Modeling Relative Biological Effectiveness of Protons for Radiation Induced Brain Necrosis

    International Nuclear Information System (INIS)

    Mirkovic, D; Peeler, C; Grosshans, D; Titt, U; Taleei, R; Mohan, R

    2015-01-01

    Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used to determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions

  7. Understanding the Relationships between Gender Inequitable Behaviours, Childhood Trauma and Socio-Economic Status in Single and Multiple Perpetrator Rape in Rural South Africa: Structural Equation Modelling.

    Science.gov (United States)

    Jewkes, Rachel; Nduna, Mzikazi; Jama-Shai, Nwabisa; Chirwa, Esnat; Dunkle, Kristin

    2016-01-01

    Interventions to prevent rape perpetration must be designed to address its drivers. This paper seeks to extend understanding of drivers of single and multiple perpetrator rape (referred to here as SPR and MPR respectively) and the relationships between socio-economic status, childhood trauma, peer pressure, other masculine behaviours and rape. 1370 young men aged 15 to 26 were interviewed as part of the randomised controlled trial evaluation of Stepping Stones in the rural Eastern Cape. We used multinomial to compare the characteristics of men who reported rape perpetration at baseline. We used structural equation modelling (SEM) to examine pathways to rape perpetration. 76.1% of young men had never raped, 10.0% had perpetrated SPR and 13.9% MPR. The factors associated with both MPR and SPR (compared to never having raped) were indicators of socio-economic status (SES), childhood trauma, sexual coercion by a woman, drug and alcohol use, peer pressure susceptibility, having had transactional sex, multiple sexual partners and being physically violent towards a partner. The SEM showed the relationship between SES and rape perpetration to be mediated by gender inequitable masculinity. It was complex as there was a direct path indicating that SES correlated with the masculinity variable directly such that men of higher SES had more gender inequitable masculinities, and indirect path mediated by peer pressure resistance indicated that the former pertained so long as men lacked peer pressure resistance. Having a higher SES conveyed greater resistance for some men. There was also a path mediated through childhood trauma, such that men of lower SES were more likely to have a higher childhood trauma exposure and this correlated with a higher likelihood of having the gender inequitable masculinity (with or without the mediating effect of peer pressure resistance). Both higher and lower socio-economic status were associated with raping. Prevention of rape perpetration must

  8. Investigating the effect of external trauma through a dynamic system modeling approach for clustering causality in diabetic foot ulcer development.

    Science.gov (United States)

    Salimi, Parisa; Hamedi, Mohsen; Jamshidi, Nima; Vismeh, Milad

    2017-04-01

    Diabetes and its associated complications are realized as one of the most challenging medical conditions threatening more than 29 million people only in the USA. The forecasts suggest a suffering of more than half a billion worldwide by 2030. Amid all diabetic complications, diabetic foot ulcer (DFU) has attracted much scientific investigations to lead to a better management of this disease. In this paper, a system thinking methodology is adopted to investigate the dynamic nature of the ulceration. The causal loop diagram as a tool is utilized to illustrate the well-researched relations and interrelations between causes of the DFU. The result of clustering causality evaluation suggests a vicious loop that relates external trauma to callus. Consequently a hypothesis is presented which localizes development of foot ulceration considering distribution of normal and shear stress. It specifies that normal and tangential forces, as the main representatives of external trauma, play the most important role in foot ulceration. The evaluation of this hypothesis suggests the significance of the information related to both normal and shear stress for managing DFU. The results also discusses how these two react on different locations on foot such as metatarsal head, heel and hallux. The findings of this study can facilitate tackling the complexity of DFU problem and looking for constructive mitigation measures. Moreover they lead to developing a more promising methodology for managing DFU including better prognosis, designing prosthesis and insoles for DFU and patient caring recommendations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Should a reliable information processor be chaotic (brain models)

    Energy Technology Data Exchange (ETDEWEB)

    Nicolis, J S

    1982-01-01

    Brain-like structures have evolved by performing signal processing initially by minimizing tracking errors on a competitive basis. Such systems are highly complex and at the same time notoriously disordered. The functional trace of the cerebral cortex of the human brain is a good example. The electroencephalogram (EEG) appears particularly fragmented during the execution of mental tasks, as well as during the recurrent episodes of rem sleep. A stochastically regular or a highly synchronized EEG on the other hand, characterises a drowsy (relaxing) or epileptic subject respectively and indicates-in both cases-a very incompetent information processor. The author suggests that such behavioral changeovers are produced via bifurcations which trigger the thalamocortical nonlinear pacemaking oscillator to switch from an unstable limit cycle to a strange attractor regime (i.e. to chaos), or vice versa. This analysis aims to show that the EEGs characteristics are not accidental but inevitable and even necessary and, therefore, functionally significant. 25 references.

  10. Structure, Process, and Culture Differences of Pediatric Trauma Centers Participating in an International Comparative Effectiveness Study of Children with Severe Traumatic Brain Injury.

    Science.gov (United States)

    Larsen, Gitte Y; Schober, Michelle; Fabio, Anthony; Wisniewski, Stephen R; Grant, Mary Jo C; Shafi, Nadeem; Bennett, Tellen D; Hirtz, Deborah; Bell, Michael J

    2016-06-01

    Traumatic brain injury (TBI) is an important worldwide cause of death and disability for children. The Approaches and Decisions for Acute Pediatric TBI (ADAPT) Trial is an observational, cohort study to compare the effectiveness of six aspects of TBI care. Understanding the differences between clinical sites-including their structure, clinical processes, and culture differences-will be necessary to assess differences in outcome from the study and can inform the overall community regarding differences across academic centers. We developed a survey and queried ADAPT site principal investigators with a focus on six domains: (i) hospital, (ii) pediatric intensive care unit (PICU), (iii) medical staff characteristics, (iv) quality of care, (v) medication safety, and (vi) safety culture. Summary statistics were used to describe differences between centers. ADAPT clinical sites that enrolled a subject within the first year (32 US-based, 11 international) were studied. A wide variation in site characteristics was observed in hospital and ICU characteristics, including an almost sevenfold range in ICU size (8-55 beds) and more than fivefold range of overall ICU admissions (537-2623). Nursing staffing (predominantly 1:1 or 1:2) and the presence of pharmacists within the ICU (79 %) were less variable, and most sites "strongly agreed" or "agreed" that Neurosurgery and Critical Care teams worked well together (81.4 %). However, a minority of sites (46 %) used an explicit protocol for treatment of children with severe TBI care. We found a variety of inter-center structure, process, and culture differences. These intrinsic differences between sites may begin to explain why interventional studies have failed to prove efficacy of experimental therapies. Understanding these differences may be an important factor in analyzing future ADAPT trial results and in determining best practices for pediatric severe TBI.

  11. A five year prospective investigation of anterior pituitary function after traumatic brain injury: is hypopituitarism long-term after head trauma associated with autoimmunity?

    Science.gov (United States)

    Tanriverdi, Fatih; De Bellis, Annamaria; Ulutabanca, Halil; Bizzarro, Antonio; Sinisi, Antonio A; Bellastella, Giuseppe; Amoresano Paglionico, Vanda; Dalla Mora, Liliana; Selcuklu, Ahmed; Unluhizarci, Kursad; Casanueva, Felipe F; Kelestimur, Fahrettin

    2013-08-15

    Traumatic brain injury (TBI) has been recently recognized as a common cause of pituitary dysfunction. However, there are not sufficient numbers of prospective studies to understand the natural history of TBI induced hypopituitarism. The aim was to report the results of five years' prospective follow-up of anterior pituitary function in patients with mild, moderate and severe TBI. Moreover, we have prospectively investigated the associations between TBI induced hypopituitarism and presence of anti-hypothalamus antibodies (AHA) and anti-pituitary antibodies (APA). Twenty five patients (20 men, five women) were included who were prospectively evaluated 12 months and five years after TBI, and 17 of them also had a third-year evaluation. Growth hormone (GH) deficiency is the most common pituitary hormone deficit at one, three, and five years after TBI. Although most of the pituitary hormone deficiencies improve over time, there were substantial percentages of pituitary hormone deficiencies at the fifth year (28% GH, 4% adrenocorticotropic hormone [ACTH], and 4% gonadotropin deficiencies). Pituitary dysfunction was significantly higher in strongly AHA- and APA-positive (titers ≥1/16) patients at the fifth year. In patients with mild and moderate TBI, ACTH and GH deficiencies may improve over time in a considerable number of patients but, although rarely, may also worsen over the five-year period. However in severe TBI, ACTH and GH status of the patients at the first year evaluation persisted at the fifth year. Therefore, screening pituitary function after TBI for five years is important, especially in patients with mild TBI. Moreover, close strong associations between the presence of high titers of APA and/or AHA and hypopituitarism at the fifth year were shown for the first time.

  12. Management of duodenal trauma

    Directory of Open Access Journals (Sweden)

    CHEN Guo-qing

    2011-02-01

    Full Text Available 【Abstract】Duodenal trauma is uncommon but nowadays seen more and more frequently due to the increased automobile accidents and violent events. The management of duodenal trauma can be complicated, especially when massive injury to the pancreatic-duodenal-biliary complex occurs simultaneously. Even the patients receive surgeries in time, multiple postoperative complications and high mortality are common. To know and manage duodenal trauma better, we searched the recent related literature in PubMed by the keywords of duodenal trauma, therapy, diagnosis and abdomen. It shows that because the diagnosis and management are complicated and the mortality is high, duodenal trauma should be treated in time and tactfully. And application of new technology can help improve the management. In this review, we discussed the incidence, diagnosis, management, and complications as well as mortality of duodenal trauma. Key words: Duodenum; Wounds and injuries; Diagnosis; Therapeutics

  13. Analysis of the Revised Trauma Score (RTS in 200 victims of different trauma mechanisms

    Directory of Open Access Journals (Sweden)

    BRUNO DURANTE ALVAREZ

    Full Text Available ABSTRACT Objective: to analyze the epidemiological profile and mortality associated with the Revised Trauma Score (RTS in trauma victims treated at a university hospital. Methods: we conducted a descriptive, cross-sectional study of trauma protocols (prospectively collected from December 2013 to February 2014, including trauma victims admitted in the emergency room of the Cajuru University Hospital. We set up three groups: (G1 penetrating trauma to the abdomen and chest, (G2 blunt trauma to the abdomen and chest, and (G3 traumatic brain injury. The variables we analyzed were: gender, age, day of week, mechanism of injury, type of transportation, RTS, hospitalization time and mortality. Results: we analyzed 200 patients, with a mean age of 36.42 ± 17.63 years, and 73.5% were male. The mean age was significantly lower in G1 than in the other groups (p <0.001. Most (40% of the visits occurred on weekends and the most common pre-hospital transport service (58% was the SIATE (Emergency Trauma Care Integrated Service. The hospital stay was significantly higher in G1 compared with the other groups (p <0.01. Regarding mortality, there were 12%, 1.35% and 3.95% of deaths in G1, G2 and G3, respectively. The median RTS among the deaths was 5.49, 7.84 and 1.16, respectively, for the three groups. Conclusion: the majority of patients were young men. RTS was effective in predicting mortality in traumatic brain injury, however failing to predict it in patients suffering from blunt and penetrating trauma.

  14. Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction.

    Science.gov (United States)

    Batalle, Dafnis; Muñoz-Moreno, Emma; Arbat-Plana, Ariadna; Illa, Miriam; Figueras, Francesc; Eixarch, Elisenda; Gratacos, Eduard

    2014-10-15

    Characterization of brain changes produced by intrauterine growth restriction (IUGR) is among the main challenges of modern fetal medicine and pediatrics. This condition affects 5-10% of all pregnancies and is associated with a wide range of neurodevelopmental disorders. Better understanding of the brain reorganization produced by IUGR opens a window of opportunity to find potential imaging biomarkers in order to identify the infants with a high risk of having neurodevelopmental problems and apply therapies to improve their outcomes. Structural brain networks obtained from diffusion magnetic resonance imaging (MRI) is a promising tool to study brain reorganization and to be used as a biomarker of neurodevelopmental alterations. In the present study this technique is applied to a rabbit animal model of IUGR, which presents some advantages including a controlled environment and the possibility to obtain high quality MRI with long acquisition times. Using a Q-Ball diffusion model, and a previously published rabbit brain MRI atlas, structural brain networks of 15 IUGR and 14 control rabbits at 70 days of age (equivalent to pre-adolescence human age) were obtained. The analysis of graph theory features showed a decreased network infrastructure (degree and binary global efficiency) associated with IUGR condition and a set of generalized fractional anisotropy (GFA) weighted measures associated with abnormal neurobehavior. Interestingly, when assessing the brain network organization independently of network infrastructure by means of normalized networks, IUGR showed increased global and local efficiencies. We hypothesize that this effect could reflect a compensatory response to reduced infrastructure in IUGR. These results present new evidence on the long-term persistence of the brain reorganization produced by IUGR that could underlie behavioral and developmental alterations previously described. The described changes in network organization have the potential to be used

  15. Relative effects of plasma, fibrinogen concentrate, and factor XIII on ROTEM coagulation profiles in an in vitro model of massive transfusion in trauma.

    Science.gov (United States)

    Schmidt, David E; Halmin, Märit; Wikman, Agneta; Östlund, Anders; Ågren, Anna

    2017-10-01

    Massive traumatic haemorrhage is aggravated through the development of trauma-induced coagulopathy, which is managed by plasma transfusion and/or fibrinogen concentrate administration. It is yet unclear whether these treatments are equally potent in ensuring adequate haemostasis, and whether additional factor XIII (FXIII) administration provides further benefits. In this study, we compared ROTEM whole blood coagulation profiles after experimental massive transfusion with different transfusion regimens in an in vitro model of dilution- and transfusion-related coagulopathy. Healthy donor blood was mixed 1 + 1 with six different transfusion regimens. Each regimen contained RBC, platelet concentrate, and either fresh frozen plasma (FFP) or Ringer's acetate (RA). The regimens were further augmented through addition of a low- or medium-dose fibrinogen concentrate and FXIII. Transfusion with FFP alone was insufficient to maintain tissue-factor activated clot strength, coincidental with a deficiency in fibrin-based clot strength. Fibrinogen concentrate conserved, but did not improve coagulation kinetics and overall clot strength. Only combination therapy with FFP and low-dose fibrinogen concentrate improved both coagulation kinetics and fibrin-based clot strength. Administration of FXIII did not result in an improvement of clot strength. In conclusion, combination therapy with both FFP and low-dose fibrinogen concentrate improved clotting time and produced firm clots, representing a possible preferred first-line regimen to manage trauma-induced coagulopathy when RBC and platelets are also transfused. Further research is required to identify optimal first-line transfusion fluids for massive traumatic haemorrhage.

  16. Moving beyond "sticks and stones": chronic psychological trauma predicts posttraumatic stress symptoms.

    Science.gov (United States)

    Jeter, Whitney K; Brannon, Laura A

    2014-01-01

    To date, trauma research has focused on the impact of physical trauma on posttraumatic stress (PTS) symptoms. Sometimes psychological trauma is measured with instances of physical trauma; however, less is known about solely psychological trauma. The current study addresses this by examining psychological trauma and PTS symptoms using the chronic relational trauma (CRT) model. The CRT model examines physical and possible concurrent psychological childhood, peer, and intimate partner trauma; however, psychological trauma alone has yet to be tested. A total of 232 female undergraduates (M age = 18.32, SD = 1.60) completed a series of questionnaires. Structural equation modeling indicated that childhood, peer, and intimate partner psychological trauma predict current PTS symptoms. Contributions of these findings are discussed.

  17. Mental Imagery and Posttraumatic Stress Disorder: a neuroimaging and experimental psychopathology approach to intrusive memories of trauma

    Directory of Open Access Journals (Sweden)

    Ian A Clark

    2015-07-01

    Full Text Available This hypothesis and theory paper presents a pragmatic framework to help bridge the clinical presentation and neuroscience of intrusive memories following psychological trauma. Intrusive memories are a hallmark symptom of Posttraumatic Stress Disorder. However, key questions, including those involving aetiology remain. In particular, we know little about the brain mechanisms involved in why only some moments of the trauma return as intrusive memories while others do not. We first present an overview of the patient experience of intrusive memories and the neuroimaging studies that have investigated intrusive memories in PTSD patients. Next, one mechanism of how to model intrusive memories in the laboratory, the trauma film paradigm, is examined. In particular, we focus on studies combining the trauma film paradigm with neuroimaging. Stemming from the clinical presentation and our current understanding of the processes involved in intrusive memories, we propose a framework in which an intrusive memory comprises five component parts; autobiographical (trauma memory, involuntary recall, negative emotions, attention hijacking and mental imagery. Each component part is considered in turn, both behaviourally and from a brain imaging perspective. A mapping of these five components onto our understanding of the brain is described. Unanswered questions that exist in our understanding of intrusive memories are considered using the proposed framework. Overall, we suggest that mental imagery is key to bridging the experience, memory and intrusive recollection of the traumatic event. Further, we suggest that by considering the brain mechanisms involved in the component parts of an intrusive memory, in particular mental imagery, we may be able to aid the development of a firmer bridge between patients’ experiences of intrusive memories and the clinical neuroscience behind them.

  18. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  19. Modeling epileptic brain states using EEG spectral analysis and topographic mapping.

    Science.gov (United States)

    Direito, Bruno; Teixeira, César; Ribeiro, Bernardete; Castelo-Branco, Miguel; Sales, Francisco; Dourado, António

    2012-09-30

    Changes in the spatio-temporal behavior of the brain electrical activity are believed to be associated to epileptic brain states. We propose a novel methodology to identify the different states of the epileptic brain, based on the topographic mapping of the time varying relative power of delta, theta, alpha, beta and gamma frequency sub-bands, estimated from EEG. Using normalized-cuts segmentation algorithm, points of interest are identified in the topographic mappings and their trajectories over time are used for finding out relations with epileptogenic propagations in the brain. These trajectories are used to train a Hidden Markov Model (HMM), which models the different epileptic brain states and the transition among them. Applied to 10 patients suffering from focal seizures, with a total of 30 seizures over 497.3h of data, the methodology shows good results (an average point-by-point accuracy of 89.31%) for the identification of the four brain states--interictal, preictal, ictal and postictal. The results suggest that the spatio-temporal dynamics captured by the proposed methodology are related to the epileptic brain states and transitions involved in focal seizures. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    International Nuclear Information System (INIS)

    Aristovich, K Y; Khan, S H

    2010-01-01

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  1. Reduced cortical thickness in veterans exposed to early life trauma.

    Science.gov (United States)

    Corbo, Vincent; Salat, David H; Amick, Melissa M; Leritz, Elizabeth C; Milberg, William P; McGlinchey, Regina E

    2014-08-30

    Studies have shown that early life trauma may influence neural development and increase the risk of developing psychological disorders in adulthood. We used magnetic resonance imaging to examine the impact of early life trauma on the relationship between current posttraumatic stress disorder (PTSD) symptoms and cortical thickness/subcortical volumes in a sample of deployed personnel from Operation Enduring Freedom/Operation Iraqi Freedom. A group of 108 service members enrolled in the Translational Research Center for Traumatic Brain Injury and Stress Disorders (TRACTS) were divided into those with interpersonal early life trauma (EL-Trauma+) and Control (without interpersonal early life trauma) groups based on the Traumatic Life Events Questionnaire. PTSD symptoms were assessed using the Clinician-Administered PTSD Scale. Cortical thickness and subcortical volumes were analyzed using the FreeSurfer image analysis package. Thickness of the paracentral and posterior cingulate regions was positively associated with PTSD severity in the EL-Trauma+ group and negatively in the Control group. In the EL-Trauma+ group, both the right amygdala and the left hippocampus were positively associated with PTSD severity. This study illustrates a possible influence of early life trauma on the vulnerability of specific brain regions to stress. Changes in neural morphometry may provide information about the emergence and maintenance of symptoms in individuals with PTSD. Published by Elsevier Ireland Ltd.

  2. Management of duodenal trauma

    OpenAIRE

    CHEN Guo-qing; YANG Hua

    2011-01-01

    【Abstract】Duodenal trauma is uncommon but nowadays seen more and more frequently due to the increased automobile accidents and violent events. The management of duodenal trauma can be complicated, especially when massive injury to the pancreatic-duodenal-biliary complex occurs simultaneously. Even the patients receive surgeries in time, multiple postoperative complications and high mortality are common. To know and manage duodenal trauma better, we searched the recent related literature...

  3. Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.

    Science.gov (United States)

    Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy

    2016-01-01

    This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.

  4. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 20K Loading... ...

  5. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... out why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 19K ...

  6. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... out why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 20K ...

  7. [Trauma registry and injury].

    Science.gov (United States)

    Shapira, S C

    2001-10-01

    The trauma registry network constitutes an essential database in every injury prevention system. In order to rationally estimate the extent of injury in general, and injuries from traffic accidents in particular, the trauma registry systems should contain the most comprehensive and broad database possible, in line with the operational definitions. Ideally, the base of the injury pyramid should also include mild injuries and even "near-misses". The Israeli National Trauma Registry has come a long way in the last few years. The eventual inclusion of all trauma centers in Israel will enable the establishment of a firm base for the allocation of resources by decision-makers.

  8. About Military Sexual Trauma

    Medline Plus

    Full Text Available ... why Close About Military Sexual Trauma Veterans Health Administration Loading... Unsubscribe from Veterans Health Administration? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 19K Loading... ...

  9. PET studies of brain energy metabolism in a model of subcortical dementia: progressive supranuclear Palsy

    International Nuclear Information System (INIS)

    Blin, J.; Baron, J.C.; Cambon, H.

    1988-01-01

    In 41 patients with clinically determined Progressive Supranuclear Palsy, a model of degenerative subcortical dementia, alterations in regional brain energy metabolism with respect to control subjects have been investigated using positron computed tomography and correlated to clinical and neuropsychological scores. A generalized significant reduction in brain metabolism was found, which predominated in the prefrontal cortex in accordance with, and statistically correlated to, the frontal neuropsychological score

  10. Bayesian exponential random graph modeling of whole-brain structural networks across lifespan

    OpenAIRE

    Sinke, Michel R T; Dijkhuizen, Rick M; Caimo, Alberto; Stam, Cornelis J; Otte, Wim

    2016-01-01

    Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as in studies on neurodevelopment or brain diseases. Furthermore, descriptive neural network analyses lack an appropriate generic null model and a unifying framework. These issues may be solved with an...

  11. A Heuristic Approach to Intra-Brain Communications Using Chaos in a Recurrent Neural Network Model

    Science.gov (United States)

    Soma, Ken-ichiro; Mori, Ryota; Sato, Ryuichi; Nara, Shigetoshi

    2011-09-01

    To approach functional roles of chaos in brain, a heuristic model to consider mechanisms of intra-brain communications is proposed. The key idea is to use chaos in firing pattern dynamics of a recurrent neural network consisting of birary state neurons, as propagation medium of pulse signals. Computer experiments and numerical methods are introduced to evaluate signal transport characteristics by calculating correlation functions between sending neurons and receiving neurons of pulse signals.

  12. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  13. Childhood trauma, combat trauma, and substance use in National Guard and reserve soldiers.

    Science.gov (United States)

    Vest, Bonnie M; Hoopsick, Rachel A; Homish, D Lynn; Daws, Rachel C; Homish, Gregory G

    2018-02-27

    The goal of this work was to examine associations among childhood trauma, combat trauma, and substance use (alcohol problems, frequent heavy drinking [FHD], current cigarette smoking, and current/lifetime drug use) and the interaction effects of childhood trauma and combat exposure on those associations among National Guard/reserve soldiers. Participants (N = 248) completed an electronic survey asking questions about their military experiences, physical and mental health, and substance use. Childhood trauma and combat exposure were examined jointly in regression models, controlling for age, marital satisfaction, and number of deployments. Childhood trauma was associated with current drug use (trend level, odds ratio [OR] = 1.44, 95% confidence interval [CI]: 0.97, 2.14; P = .072) in the main effect model; however, there was not a significant interaction with combat. Combat exposure had a significant interaction with childhood trauma on alcohol problems (b = -0.56, 95% CI: -1.12, -0.01; P = .048), FHD (b = -0.27, 95% CI: -0.47, -0.08; P = .007), and lifetime drug use (OR = 1.78, 95% CI: 1.04, 3.04; P = .035). There were no associations with either of the trauma measures and current cigarette smoking. These results demonstrate that childhood and combat trauma have differential effects on alcohol use, such that combat trauma may not add to the effect on alcohol use in those with greater child maltreatment but may contribute to greater alcohol use among those with low child maltreatment. As expected, childhood and combat trauma had synergistic effects on lifetime drug use. Screening for multiple types of trauma prior to enlistment and/or deployment may help to identify at-risk individuals and allow time for early intervention to prevent future adverse outcomes.

  14. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    Science.gov (United States)

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  15. Mathematical modeling of human glioma growth based on brain topological structures: study of two clinical cases.

    Directory of Open Access Journals (Sweden)

    Cecilia Suarez

    Full Text Available Gliomas are the most common primary brain tumors and yet almost incurable due mainly to their great invasion capability. This represents a challenge to present clinical oncology. Here, we introduce a mathematical model aiming to improve tumor spreading capability definition. The model consists in a time dependent reaction-diffusion equation in a three-dimensional spatial domain that distinguishes between different brain topological structures. The model uses a series of digitized images from brain slices covering the whole human brain. The Talairach atlas included in the model describes brain structures at different levels. Also, the inclusion of the Brodmann areas allows prediction of the brain functions affected during tumor evolution and the estimation of correlated symptoms. The model is solved numerically using patient-specific parametrization and finite differences. Simulations consider an initial state with cellular proliferation alone (benign tumor, and an advanced state when infiltration starts (malign tumor. Survival time is estimated on the basis of tumor size and location. The model is used to predict tumor evolution in two clinical cases. In the first case, predictions show that real infiltrative areas are underestimated by current diagnostic imaging. In the second case, tumor spreading predictions were shown to be more accurate than those derived from previous models in the literature. Our results suggest that the inclusion of differential migration in glioma growth models constitutes another step towards a better prediction of tumor infiltration at the moment of surgical or radiosurgical target definition. Also, the addition of physiological/psychological considerations to classical anatomical models will provide a better and integral understanding of the patient disease at the moment of deciding therapeutic options, taking into account not only survival but also life quality.

  16. Reverse brain drain in South Korea: state-led model.

    Science.gov (United States)

    Yoon, B L

    1992-01-01

    Korea's reverse brain drain (RBD) has been an organized government effort, rather than a spontaneous social phenomenon, in that various policies and the political support of President Park, Chung-Hee were instrumental in laying the groundwork for its success. Particular features of Korea's RBD policies are the creation of a conducive domestic environment (i.e., government-sponsored strategic R & D institution-building, legal, and administrative reforms), and importantly, the empowerment of returnees (via, i.e., exceptionally good maternal benefits, guarantees of research autonomy). President Park played the cardinal role in empowering repatriates at the expense of his own civil bureaucracy, and his capacity for such patronage derived from Korea's bureaucratic-authoritarian political system. Returning scientists and engineers directly benefitted from this political system as well as Park's personal guardianship. For Park, empowerment of returning "brains" was necessary to accomplish his national industrialization plan, thereby enhancing his political legitimacy in domestic politics. An alliance with the R & D cadre was functionally necessary to successfully consolidate strong presidential power, and politically nonthreatening due to the particular form of "pact of domination" in Korea's power structure. RBD in Korea will continue in the near future given Korea's drive for high technology, and the remarkable expansion of local industrial and educational sectors. Korea's future RBD, however, needs to pay closer attention to the following 4 problems: research autonomy; equality issues; skill-based repatriation of technicians and engineers rather than Ph.Ds; and subsidies to small and medium industry for RBD.

  17. Functional recovery after injury of motor cortex in rats: effects of rehabilitation and stem cell transplantation in a traumatic brain injury model of cortical resection.

    Science.gov (United States)

    Lee, Do-Hun; Lee, Ji Yeoun; Oh, Byung-Mo; Phi, Ji Hoon; Kim, Seung-Ki; Bang, Moon Suk; Kim, Seung U; Wang, Kyu-Chang

    2013-03-01

    Experimental studies and clinical trials designed to help patients recover from various brain injuries, such as stroke or trauma, have been attempted. Rehabilitation has shown reliable, positive clinical outcome in patients with various brain injuries. Transplantation of exogenous neural stem cells (NSCs) to repair the injured brain is a potential tool to help patient recovery. This study aimed to evaluate the therapeutic efficacy of a combination therapy consisting of rehabilitation and NSC transplantation compared to using only one modality. A model of motor cortex resection in rats was used to create brain injury in order to obtain consistent and prolonged functional deficits. The therapeutic results were evaluated using three methods during an 8-week period with a behavioral test, motor-evoked potential (MEP) measurement, and measurement of the degree of endogenous NSC production. All three treatment groups showed the effects of treatment in the behavioral test, although the NSC transplantation alone group (CN) exhibited slightly worse results than the rehabilitation alone group (CR) or the combination therapy group (CNR). The latency on MEP was shortened to a similar extent in all three groups compared to the untreated group (CO). However, the enhancement of endogenous NSC proliferation was dramatically reduced in the CN group compared not only to the CR and CNR groups but also to the CO group. The CR and CNR groups seemed to prolong the duration of endogenous NSC proliferation compared to the untreated group. A combination of rehabilitation and NSC transplantation appears to induce treatment outcomes that are similar to rehabilitation alone. Further studies are needed to evaluate the electrophysiological outcome of recovery and the possible effect of prolonging endogenous NSC proliferation in response to NSC transplantation and rehabilitation.

  18. Ontogenetic ritualization of primate gesture as a case study in dyadic brain modeling.

    Science.gov (United States)

    Gasser, Brad; Cartmill, Erica A; Arbib, Michael A

    2014-01-01

    This paper introduces dyadic brain modeling - the simultaneous, computational modeling of the brains of two interacting agents - to explore ways in which our understanding of macaque brain circuitry can ground new models of brain mechanisms involved in ape interaction. Specifically, we assess a range of data on gestural communication of great apes as the basis for developing an account of the interactions of two primates engaged in ontogenetic ritualization, a proposed learning mechanism through which a functional action may become a communicative gesture over repeated interactions between two individuals (the 'dyad'). The integration of behavioral, neural, and computational data in dyadic (or, more generally, social) brain modeling has broad application to comparative and evolutionary questions, particularly for the evolutionary origins of cognition and language in the human lineage. We relate this work to the neuroinformatics challenges of integrating and sharing data to support collaboration between primatologists, neuroscientists and modelers that will help speed the emergence of what may be called comparative neuro-primatology.

  19. A porcine astrocyte/endothelial cell co-culture model of the blood-brain barrier.

    Science.gov (United States)

    Jeliazkova-Mecheva, Valentina V; Bobilya, Dennis J

    2003-10-01

    A method for the isolation of porcine atrocytes as a simple extension of a previously described procedure for isolation of brain capillary endothelial cells from adolescent pigs [Methods Cell Sci. 17 (1995) 2] is described. The obtained astroglial culture purified through two passages and by the method of the selective detachment was validated by a phase contrast microscopy and through an immunofluorescent assay for the glial fibrillary acidic protein (GFAP). Porcine astrocytes were co-cultivated with porcine brain capillary endothelial cells (PBCEC) for the development of an in vitro blood-brain barrier (BBB) model. The model was visualized by an electron microscopy and showed elevated transendothellial electrical resistance and reduced inulin permeability. To our knowledge, this is the first report for the establishment of a porcine astrocyte/endothelial cell co-culture BBB model, which avoids interspecies and age differences between the two cell types, usually encountered in the other reported co-culture BBB models. Considering the availability of the porcine brain tissue and the close physiological and anatomical relation between the human and pig brain, the porcine astrocyte/endothelial cell co-culture system can serve as a reliable and easily reproducible model for different in vitro BBB studies.

  20. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression.

    Science.gov (United States)

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M; Pradhan, Kith; Henn, Fritz A; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP - a marker of neuronal activation - in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing "helpless" behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing "resilient" behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  1. Whole-brain mapping of neuronal activity in the learned helplessness model of depression

    Directory of Open Access Journals (Sweden)

    Yongsoo eKim

    2016-02-01

    Full Text Available Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing helpless behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing resilient behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  2. Prospects after Major Trauma

    NARCIS (Netherlands)

    Holtslag, H.R.

    2007-01-01

    Introduction. After patients survived major trauma, their prospects, in terms of the consequences for functioning, are uncertain, which may impact severely on patient, family and society. The studies in this thesis describes the long-term outcomes of severe injured patients after major trauma. In

  3. Trauma and the truth

    NARCIS (Netherlands)

    Meeter, Martijn

    2016-01-01

    Witnessing horrible things may leave a person scarred for life — an effect usually referred to as psychological trauma. We do not know exactly what it does or how it worms its way into our psyche, but psychological trauma has been linked to a wide range of fear- and depression-related symptoms

  4. Next generation of non-mammalian blood-brain barrier models to study parasitic infections of the central nervous system

    OpenAIRE

    Siddiqui, Ruqaiyyah; Edwards-Smallbone, James; Flynn, Robin; Khan, Naveed Ahmed

    2012-01-01

    Transmigration of neuropathogens across the blood-brain barrier is a key step in the development of central nervous system infections, making it a prime target for drug development. The ability of neuropathogens to traverse the blood-brain barrier continues to inspire researchers to understand the specific strategies and molecular mechanisms that allow them to enter the brain. The availability of models of the blood-brain barrier that closely mimic the situation in vivo offers unprecedented o...

  5. [Regulatory effect of Erbao granules on brain-gut peptide in juvenile animal model of anorexia].

    Science.gov (United States)

    Zhang, Y; Du, Y; Wang, S

    2000-10-01

    To study the regulatory effect of Erbao granules (EBG) on central and peripheral brain-gut peptide in juvenile animal model of anorexia. Juvenile rat model of anorexia was established by imitating the major cause of infantile anorexia and treated with EBG. The cholocystokinin-octapeptide (CCK-8) and beta-endorphin (beta-EP) concentration in hypothalamus, antrum pyloricum and peripheral blood were examined by radioimmunoassay. CCK-8 concentration in hypothalamus and plasma in the model rats increased (P anorexia model.

  6. Perspective on Pediatric Traumatic Brain Injury | Igun | African ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is an important aspect of paediatric trauma because of its contribution to mortality ant post trauma seqeulae. Management of traumatic brain injury remains a challenge to surgeons, especially in developing countries. This study aims to determine the pattern of traumatic brain injury among ...

  7. The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity.

    Science.gov (United States)

    Başar, Erol; Düzgün, Aysel

    2016-05-01

    Since the beginning of the last century, the localization of brain function has been represented by Brodmann areas, maps of the anatomic organization of the brain. They are used to broadly represent cortical structures with their given sensory-cognitive functions. In recent decades, the analysis of brain oscillations has become important in the correlation of brain functions. Moreover, spectral connectivity can provide further information on the dynamic connectivity between various structures. In addition, brain responses are dynamic in nature and structural localization is almost impossible, according to Luria (1966). Therefore, brain functions are very difficult to localize; hence, a combined analysis of oscillation and event-related coherences is required. In this study, a model termed as "CLAIR" is described to enrich and possibly replace the concept of the Brodmann areas. A CLAIR model with optimum function may take several years to develop, but this study sets out to lay its foundation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Whitening of Background Brain Activity via Parametric Modeling

    Directory of Open Access Journals (Sweden)

    Nidal Kamel

    2007-01-01

    Full Text Available Several signal subspace techniques have been recently suggested for the extraction of the visual evoked potential signals from brain background colored noise. The majority of these techniques assume the background noise as white, and for colored noise, it is suggested to be whitened, without further elaboration on how this might be done. In this paper, we investigate the whitening capabilities of two parametric techniques: a direct one based on Levinson solution of Yule-Walker equations, called AR Yule-Walker, and an indirect one based on the least-squares solution of forward-backward linear prediction (FBLP equations, called AR-FBLP. The whitening effect of the two algorithms is investigated with real background electroencephalogram (EEG colored noise and compared in time and frequency domains.

  9. European trauma guideline compliance assessment: the ETRAUSS study.

    Science.gov (United States)

    Hamada, Sophie Rym; Gauss, Tobias; Pann, Jakob; Dünser, Martin; Leone, Marc; Duranteau, Jacques

    2015-12-08

    Haemorrhagic shock is the leading cause of preventable death in trauma patients. The 2013 European trauma guidelines emphasise a comprehensive, multidisciplinary, protocol-based approach to trauma care. The aim of the present Europe-wide survey was to compare 2015 practice with the 2013 guidelines. A group of members of the Trauma and Emergency Medicine section of the European Society of Intensive Care Medicine developed a 50-item questionnaire based upon the core recommendations of the 2013 guidelines, employing a multistep approach. The questionnaire covered five fields: care structure and organisation, haemodynamic resuscitation targets, fluid management, transfusion and coagulopathy, and haemorrhage control. The sampling used a two-step approach comprising initial purposive sampling of eminent trauma care providers in each European country, followed by snowball sampling of a maximum number of trauma care providers. A total of 296 responses were collected, 243 (81 %) from European countries. Those from outside the European Union were excluded from the analysis. Approximately three-fourths (74 %) of responders were working in a designated trauma centre. Blunt trauma predominated, accounting for more than 90 % of trauma cases. Considerable heterogeneity was observed in all five core aspects of trauma care, along with frequent deviations from the 2013 guidelines. Only 92 (38 %) of responders claimed to comply with the recommended systolic blood pressure target, and only 81 (33 %) responded that they complied with the target pressure in patients with traumatic brain injury. Crystalloid use was predominant (n = 209; 86 %), and vasopressor use was frequent (n = 171, 76 %) but remained controversial. Only 160 respondents (66 %) declared that they used tranexamic acid always or often. This is the first European trauma survey, to our knowledge. Heterogeneity is significant across centres with regard to the clinical protocols for trauma patients and as to locally

  10. Differential effects of fresh frozen plasma and normal saline on secondary brain damage in a large animal model of polytrauma, hemorrhage and traumatic brain injury

    DEFF Research Database (Denmark)

    Hwabejire, John O; Imam, Ayesha M; Jin, Guang

    2013-01-01

    We have previously shown that the extent of traumatic brain injury (TBI) in large animal models can be reduced with early infusion of fresh frozen plasma (FFP), but the precise mechanisms remain unclear. In this study, we investigated whether resuscitation with FFP or normal saline differed in th...... in their effects on cerebral metabolism and excitotoxic secondary brain injury in a model of polytrauma, TBI, and hemorrhagic shock....

  11. Radiology in chest trauma

    International Nuclear Information System (INIS)

    Wenz, W.; Kloehn, I.; Wolfart, W.; Freiburg Univ.

    1979-01-01

    In chest trauma, a routine chest film, preferably in the lateral as well as the frontal projection, is the basic part of the work-up. Occasionally valuable additional methods are fluoroscopy, tomography, bronchography, contrast studies of the GI Tract and angiography and angiocardiography. In 679 chest trauma patients, traffic accidents and falls were the main reason for the trauma. There were 248 fractures; then - in order of frequency - hemopneumothorax (76), lung contusion (58), subcutaneous emphysema (33) cardiac (16) and vascular trauma (12) and damage to other organs. While 20-30% mistakes are made in diagnosing rib fractures in acute trauma, there is high accuracy in the diagnosis of the other injuries. Many cases are shown to demonstrate the value of diagnostic radiology. (orig.) [de

  12. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head

    Directory of Open Access Journals (Sweden)

    Kai Li

    2016-01-01

    Full Text Available BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM or finite element model (FEM created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa. BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages.

  13. Intelligence and the brain: a model-based approach

    NARCIS (Netherlands)

    Kievit, R.A.; van Rooijen, H.; Wicherts, J.M.; Waldorp, L.J.; Kan, K.-J.; Scholte, H.S.; Borsboom, D.

    2012-01-01

    Various biological correlates of general intelligence (g) have been reported. Despite this, however, the relationship between neurological measurements and g is not fully clear. We use structural equation modeling to model the relationship between behavioral Wechsler Adult Intelligence Scale (WAIS)

  14. Simultaneous Whole-Brain Segmentation and White Matter Lesion Detection Using Contrast-Adaptive Probabilistic Models

    DEFF Research Database (Denmark)

    Puonti, Oula; Van Leemput, Koen

    2016-01-01

    In this paper we propose a new generative model for simultaneous brain parcellation and white matter lesion segmentation from multi-contrast magnetic resonance images. The method combines an existing whole-brain segmentation technique with a novel spatial lesion model based on a convolutional...... restricted Boltzmann machine. Unlike current state-of-the-art lesion detection techniques based on discriminative modeling, the proposed method is not tuned to one specific scanner or imaging protocol, and simultaneously segments dozens of neuroanatomical structures. Experiments on a public benchmark dataset...... in multiple sclerosis indicate that the method’s lesion segmentation accuracy compares well to that of the current state-of-the-art in the field, while additionally providing robust whole-brain segmentations....

  15. Frequency dependence of complex moduli of brain tissue using a fractional Zener model

    International Nuclear Information System (INIS)

    Kohandel, M; Sivaloganathan, S; Tenti, G; Darvish, K

    2005-01-01

    Brain tissue exhibits viscoelastic behaviour. If loading times are substantially short, static tests are not sufficient to determine the complete viscoelastic behaviour of the material, and dynamic test methods are more appropriate. The concept of complex modulus of elasticity is a powerful tool for characterizing the frequency domain behaviour of viscoelastic materials. On the other hand, it is well known that classical viscoelastic models can be generalized by means of fractional calculus to describe more complex viscoelastic behaviour of materials. In this paper, the fractional Zener model is investigated in order to describe the dynamic behaviour of brain tissue. The model is fitted to experimental data of oscillatory shear tests of bovine brain tissue to verify its behaviour and to obtain the material parameters

  16. Implantation of glioblastoma spheroids into organotypic brain slice cultures as a model for investigating effects of irradiation

    DEFF Research Database (Denmark)

    Petterson, Stine Asferg; Jakobsen, Ida Pind; Jensen, Stine Skov

    2016-01-01

    , models for studying the effects of radiotherapy in combination with novel strategies are lacking but important since radiotherapy is the most successful non-surgical treatment of brain tumors. The aim of this study was to establish a glioblastoma spheroid-organotypic rat brain slice culture model...... comprising both tumors, tumor-brain interface and brain tissue to provide a proof of concept that this model is useful for studying effects of radiotherapy. Organotypic brain slice cultures cultured for 1-2 days or 11-16 days corresponding to immature brain and mature brain respectively were irradiated...... with doses between 10 and 50 Gy. There was a high uptake of the cell death marker propidium iodide in the immature cultures. In addition, MAP2 expression decreased whereas GFAP expression increased in these cultures suggesting neuronal death and astrogliosis. We therefore proceeded with the mature cultures...

  17. Effect of oleuropein on cognitive deficits and changes in hippocampal brain-derived neurotrophic factor and cytokine expression in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Lee, Bombi; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2018-01-01

    Post-traumatic stress disorder (PTSD) is a condition that develops after an individual has experienced a major trauma. This psychopathological response to traumatic stressors induces learning and memory deficits in rats. Oleuropein (OLE), a major compound in olive leaves, has been reported to possess several pharmacological properties, including anti-cancer, anti-diabetic, anti-atherosclerotic and neuroprotective activities. However, the cognitive effects of OLE and its mechanism of action have remained unclear in PTSD. In this study, we examined whether OLE improved spatial cognitive impairment induced in rats following single prolonged stress (SPS), an animal model of PTSD. Male rats were treated intraperitoneally (i.p.) with vehicle or various doses of OLE for 14 consecutive days after the SPS procedure. The SPS procedure resulted in cognitive impairment in the object recognition task and the Morris water maze test, which was reversed by OLE (100 mg/kg, i.p). Additionally, as assessed by immunohistochemistry and reverse transcription-polymerase chain reaction analysis, the administration of OLE significantly alleviated memory-associated decreases in the levels of brain-derived neurotrophic factor and cAMP response element-binding protein and mRNA in the hippocampus. Together, these findings suggest that OLE attenuated SPS-induced cognitive impairment significantly by inhibiting the expression of pro-inflammatory mediators in the rat brain. Thus, OLE reversed several behavioral impairments triggered by the traumatic stress of SPS and might be a potential useful therapeutic intervention for PTSD.

  18. Quantum-like mod