WorldWideScience

Sample records for brain tissue transplantation

  1. 10B compound distribution in rat tissue of transplanted and ethylnitrosourea-induced brain tumors

    International Nuclear Information System (INIS)

    The distribution of 10B compound, sodium mercaptoundecahydrododecaborate Na210B12H11SH, which is now in practical use for boron neutron capture therapy for brain tumors, was studied qualitatively and quantitatively using neutron-induced alpha autoradiography. Transplanted intracerebral tumors and brain tumors induced by ethylnitrosourea (ENU) in SD rats were used. 10B accumulated in the brain tumors in close relation to the actual tumor cells. The concentration of 10B in transplanted brain tumors was usually less in the central viable tumor tissue. The concentration and the distribution of 10B in ENU-induced gliomas varied with the size and histological type of the tumor and correlated to the permeability of vessels to horse-radish peroxidase and Evans blue. The tumor/blood concentration ratio of 10B increased with time after injection and reached 1, 12 and 7 hours after injection in the transplanted tumor and ENU-induced tumor, respectively. The tumor concentrations calculated at that time were 18 μg 10B/cm3 and 30 μg 10B/cm3, respectively. As for other tissues, a large amount of 10B was found in the pituitary gland, trigeminal ganglion, cornea, sclera and choroidea of the eyes and skin. This study clearly shows that the distribution of this 10B compound in brain tumors is roughly proportionate to the vascularity and to the vascular permeability of tumors and suggests that irradiation of thermal neutrons into the cranium in 7 to 12 hours after 10B injection should destroy the tumor tissue but yet inflict very little damage on normal tissue, and few untoward effects on pituitary gland and ganglia of nerves in rats. (J.P.N.)

  2. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    Science.gov (United States)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  3. Intrinsic control of electroresponsive properties of transplanted mammalian brain neurons

    DEFF Research Database (Denmark)

    Hounsgaard, J; Yarom, Y

    1985-01-01

    The present study presents the first analysis of neurons in mammalian brain transplants based on intracellular recording. The results, obtained in brain slices including both donor and host tissue, showed that neuronal precursor cells in embryonic transplants retained their ability to complete th...... their normal differentiation of cell-type-specific electroresponsive properties. Distortions in cell aggregation and synaptic connectivity did not affect this aspect of neuronal differentiation.......The present study presents the first analysis of neurons in mammalian brain transplants based on intracellular recording. The results, obtained in brain slices including both donor and host tissue, showed that neuronal precursor cells in embryonic transplants retained their ability to complete...

  4. The brain-mind quiddity: ethical issues in the use of human brain tissue for therapeutic and scientific purposes.

    OpenAIRE

    Burd, L; Gregory, J.M.; Kerbeshian, J

    1998-01-01

    The use of human brain tissue in neuroscience research is increasing. Recent developments include transplanting neural tissue, growing or maintaining neural tissue in laboratories and using surgically removed tissue for experimentation. Also, it is likely that in the future there will be attempts at partial or complete brain transplants. A discussion of the ethical issues of using human brain tissue for research and brain transplantation has been organized around nine broadly defined topic ar...

  5. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  6. Ethical issues in organ and tissue transplantation.

    Science.gov (United States)

    Abouna, George M

    2003-12-01

    Clinical organ transplantation provides a way of giving the gift of life to patients with terminal failure of vital organs, which requires the participation of other fellow human beings and of society by donating organs from deceased or living individuals. The increasing incidence of vital organ failure and the inadequate supply of organs, especially from cadavers, has created a wide gap between organ supply and organ demand, which has resulted in very long waiting times to receive an organ as well as an increasing number of deaths while waiting. These events have raised many ethical, moral and societal issues regarding supply, the methods of organ allocation the use of living donors as volunteers including minors. It has also led to the practice of organ sale by entrepreneurs for financial gains in some parts the world through exploitation of the poor, for the benefit of the wealthy. The current advances in immunology and tissue engineering and the use of animal organs, xenotransplantation, while offering very promising solutions to many of these problems, also raise additional ethical and medical issues, which must be considered by the medical profession as well as society. This review deals with the ethical and moral issues generated by the current advances in organ transplantation, the problem of organ supply versus organ demand and the appropriate allocation of available organs. It deals with the risks and benefits of organ donation from living donors, the appropriate and acceptable methods to increase organ donation from the deceased through the adoption of the principle of 'presumed consent', the right methods of providing acceptable appreciation and compensation for the family of the deceased as well as volunteer and altruistic donors, and the duties and responsibilities of the medical profession and society to help fellow humans. The review also deals with the appropriate and ethically acceptable ways of utilizing the recent advances of stem cell

  7. Nocardia Brain Abscess in a Liver Transplant Recipient

    OpenAIRE

    Moon, Jung Hyeon; Cho, Won-Sang; Kang, Hyun-Seung; Kim, Jeong Eun

    2011-01-01

    Nocardia brain abscess is rare. We report on a unique case of N. farcinica brain abscess in a liver transplant recipient, following Aspergillus fumigatus pneumonia. A 43-year-old liver transplant recipient presented with altered mentality at 2 months after A. fumigates pneumonia. He was successfully treated with surgical removal and antibiotic therapy with trimethoprim-sulfamethoxazole and ceftriaxone.

  8. Long-term duration of function of ovarian tissue transplants

    DEFF Research Database (Denmark)

    Andersen, Claus Yding; Silber, Sherman J; Berghold, Stinne Holm; Jorgensen, Jan Stener; Ernst, Erik

    2012-01-01

    (repeatedly in some cases) of cryopreserved ovarian tissue has restored reproductive function to all other women in the study centres' programmes for some years. The sustained longevity of function of the transplanted tissue suggests that it may also be possible to postpone the normal time of menopause or to......, transplantation (repeatedly in some cases) of cryopreserved ovarian tissue has restored reproductive function to all other women in our programmes for some years. The sustained longevity of function of the transplanted tissue suggests that it may also be possible to postpone the normal time of menopause or to...

  9. The safety of transplanting cryopreserved ovarian tissue in cancer patients

    DEFF Research Database (Denmark)

    Rosendahl, Mikkel; Greve, Tine; Andersen, Claus Yding

    2013-01-01

    Transplantation of frozen/thawed ovarian tissue from patients with a malignant condition is associated with a risk of re-introduction of the disease as the tissue usually is removed before anti-cancer therapy and may thus contain malignant cells. We review studies investigating the presence of ma...... malignant cells in cryopreserved ovarian tissue from patients with malignant disease and based on the strength of the evidence, recommendations for transplantations are proposed....

  10. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  11. Enhancing Clinical Islet Transplantation through Tissue Engineering Strategies

    OpenAIRE

    Giraldo, Jaime A.; Weaver, Jessica D; Stabler, Cherie L

    2010-01-01

    Clinical islet transplantation (CIT), the infusion of allogeneic islets within the liver, has the potential to provide precise and sustainable control of blood glucose levels for the treatment of type 1 diabetes. The success and long-term outcomes of CIT, however, are limited by obstacles such as a nonoptimal transplantation site and severe inflammatory and immunological responses to the transplant. Tissue engineering strategies are poised to combat these challenges. In this review, emerging ...

  12. Alterações fisiológicas da morte encefálica em potenciais doadores de órgãos e tecidos para transplantes Los cambios fisiológicos de la muerte cerebral en potenciales donadores de órganos y tejidos para trasplante Physiological changes of brain death in potential donors of organs and tissues for transplantation

    Directory of Open Access Journals (Sweden)

    Sarah Gabriel Freire

    2012-12-01

    órnea (3,1%. Se cree que el conocimiento de estos cambios permite al equipo de atención de la salud dirigir sus acciones al potencial donador de acuerdo a sus necesidades y así mantener los órganos/tejidos viables para el trasplante.The objective was to describe the physiologic changes of brain death in potential donors of organs and tissues for transplantation. Exploratory descriptive study with prospective data and quantitative approach carried out in emergency and intensive care units hospital adult, in the period from April to October 2011. The population consisted of 32 potential donors of organs and tissues for transplantation. After approval of Ethics Committee, data were collected, tabulated and analyzed by descriptive statistics by SPSS 15.0 software and presented in tables. Physiological changes were: hypotension (100%, hypothermia (75%, hypernatremia (62,5%, diabetes insipidus (37,5%, hyperglycemia (32,3%, infection (25,0%, hypertension (9,4% and corneal ulcer (3,1%. It was found that knowledge of these changes allows the team of health care to direct the potential donors according to their needs and thus keep the organ/tissue viable for transplant.

  13. Public awareness in promotion of tissue transplantation in Malaysia

    International Nuclear Information System (INIS)

    Malaysia is a developing country in South East Asia with a population of 21 million. The population is multiracial, multicultural and multireligion and it is one of the few countries in the world which possess a multicomplexity way of life among its ethnic groups. The health care system in Malaysia is divided into two main system, i.e. government based or public service and private based health care practice. The idea about organ donation and transplant science has a rise in Malaysia some 30 years ago, and the first historical event of a kidney transplant from a cadaveric donor took place in 1976. 22 years down the line, the first heart transplant was performed in Malaysia. Over the last 22 years between 1976 and 1998 many programmes promoting the idea of organ and tissue transplantation has been came out throughout the country led by government based bodies and non governmental Organisation. In terms of government funding, supporting a transplant programme is not a cheap exercise and this aspect of health care financial burden must be given due consideration by government and non governmental bodies for success of the programme. Besides financial burden, there are the common dilemma of culture and religious barrier for the success of the programme, but this problem has been tackled extremely well by the government. The setting up of two tissue banks in Malaysia in 1991 has further enhanced the idea of organ and tissue transplantation in this country, and the establishment of the national transplant resource centre based at Hospital Kuala Lumpur provides a national coordination service system for both organ and tissue procurement services for the whole country. Organ and tissue donation programme-ne and finally the success of a national transplant programme will certainly depend on the health status and health priorities of the country, the standard of general education, the quality of life style while cultural and religious factors in Malaysia will play a minor

  14. Embryonic pig pancreatic tissue transplantation for the treatment of diabetes.

    Directory of Open Access Journals (Sweden)

    Smadar Eventov-Friedman

    2006-07-01

    Full Text Available BACKGROUND: Transplantation of embryonic pig pancreatic tissue as a source of insulin has been suggested for the cure of diabetes. However, previous limited clinical trials failed in their attempts to treat diabetic patients by transplantation of advanced gestational age porcine embryonic pancreas. In the present study we examined growth potential, functionality, and immunogenicity of pig embryonic pancreatic tissue harvested at different gestational ages. METHODS AND FINDINGS: Implantation of embryonic pig pancreatic tissues of different gestational ages in SCID mice reveals that embryonic day 42 (E42 pig pancreas can enable a massive growth of pig islets for prolonged periods and restore normoglycemia in diabetic mice. Furthermore, both direct and indirect T cell rejection responses to the xenogeneic tissue demonstrated that E42 tissue, in comparison to E56 or later embryonic tissues, exhibits markedly reduced immunogenicity. Finally, fully immunocompetent diabetic mice grafted with the E42 pig pancreatic tissue and treated with an immunosuppression protocol comprising CTLA4-Ig and anti-CD40 ligand (anti-CD40L attained normal blood glucose levels, eliminating the need for insulin. CONCLUSIONS: These results emphasize the importance of selecting embryonic tissue of the correct gestational age for optimal growth and function and for reduced immunogenicity, and provide a proof of principle for the therapeutic potential of E42 embryonic pig pancreatic tissue transplantation in diabetes.

  15. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome.

    Science.gov (United States)

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-03-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  16. Primary brain lymphoma in a patient after renal transplantation

    International Nuclear Information System (INIS)

    The incidence of primary central nervous system lymphoma (PCNSL) has increased during the past 40 years. This has been associated with immunodeficiency, mainly in patients infected with the human immunodeficiency virus (HIV) and in transplant patients. Tumor genesis is related with the Epstein-Barr virus (EBV). The most frequent PCNSL immuno phenotype is B-cell lymphoma. Clinical manifestations depend on tumor localization, and are usually behavior dysfunctions and intracranial hypertension syndrome. Differential diagnosis must take into consideration infectious processes, stroke, primary brain tumors, and metastases. The diagnosis of PCNSL requires brain MRI and brain biopsy. It is important to assess HIV infection when diagnosing PCNSL. This review reports a case of primary brain lymphoma in a patient who underwent renal transplantation due to polycystic kidney disease 8 years before.

  17. Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement.

    Directory of Open Access Journals (Sweden)

    Dashdemberel Narantuya

    Full Text Available BACKGROUND AND PURPOSE: Microglia are resident immunocompetent and phagocytic cells of central nervous system (CNS, which produce various cytokines and growth factors in response to injury and thereby regulate disease pathology. The purpose of this study is to investigate the effects of microglial transplantation on focal cerebral ischemia model in rat. METHODS: Transient middle cerebral artery occlusion (MCAO in rats was induced by the intraluminal filament technique. HMO6 cells, human microglial cell line, were transplanted intravenously at 48 hours after MCAO. Functional tests were performed and the infarct volume was measured at 7 and 14 days after MCAO. Migration and cell survival of transplanted microglial cells and host glial reaction in the brain were studied by immunohistochemistry. Gene expression of neurotrophic factors, cytokines and chemokines in transplanted cells and host rat glial cells was determined by laser capture microdissection (LCM and quantitative real time-PCR. RESULTS: HMO6 human microglial cells transplantation group demonstrated significant functional recovery compared with control group. At 7 and 14 days after MCAO, infarct volume was significantly reduced in the HMO group. In the HMO6 group, number of apoptotic cells was time-dependently reduced in the infarct core and penumbra. In addition, number of host rat microglia/macrophages and reactive astrocytes was significantly decreased at 7 and 14 days after MCAO in the penumbra. Gene expression of various neurotrophic factors (GDNF, BDNF, VEGF and BMP7 and anti-inflammatory cytokines (IL4 and IL5 was up-regulated in transplanted HMO6 cells of brain tissue compared with those in culture. The expression of GDNF and VEGF in astrocytes in penumbra was significantly up-regulated in the HMO6 group. CONCLUSIONS: Our results indicate that transplantation of HMO6 human microglial cells reduces ischemic deficits and apoptotic events in stroke animals. The results were mediated

  18. Evaluation of the ovarian reserve in women transplanted with frozen and thawed ovarian cortical tissue

    DEFF Research Database (Denmark)

    Greve, Tine; Schmidt, Kirsten Tryde; Kristensen, Stine Gry; Ernst, Erik; Andersen, Claus Yding

    2012-01-01

    To investigate ovarian reserve and ovarian function in women transplanted with frozen/thawed ovarian tissue.......To investigate ovarian reserve and ovarian function in women transplanted with frozen/thawed ovarian tissue....

  19. Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys

    Science.gov (United States)

    Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.

    1988-11-01

    Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.

  20. Organ transplant tissue rejection: detection and staging by fluorescence spectroscopy

    Science.gov (United States)

    MacAulay, Calum E.; Whitehead, Peter D.; McManus, Bruce; Zeng, Haishan; Wilson-McManus, Janet; MacKinnon, Nick; Morgan, David C.; Dong, Chunming; Gerla, Paul; Kenyon, Jennifer

    1998-07-01

    Patients receiving heart or other organ transplants usually require some level of anti-rejection drug therapy, most commonly cyclosporine. The rejection status of the organ must be monitored to determine the optimal anti-rejection drug therapy. The current method for monitoring post-transplant rejection status of heart transplant patients consists of taking biopsies from the right ventricle. In this work we have developed a system employing optical and signal-processing techniques that will allow a cardiologist to measure spectral changes associated with tissue rejection using an optical catheter probe. The system employs time gated illumination and detection systems to deal with the dynamic signal acquisition problems associated with in vivo measurements of a beating heart. Spectral data processing software evaluates and processes the data to produce a simple numerical score. Results of measurements made on 100 excised transplanted isograft and allograft rat hearts have demonstrated the ability of the system to detect the presence of rejection and to accurately correlate the spectroscopic results with the ISHLT (International Society for Heart and Lung Transplantation) stage of rejection determined by histopathology. In vivo measurements using a pig transplant model are now in process.

  1. Coding and traceability for cells, tissues and organs for transplantation.

    Science.gov (United States)

    Strong, D Michael; Shinozaki, Naoshi

    2010-11-01

    Modern transplantation of cells, tissues and organs has been practiced within the last century achieving both life saving and enhancing results. Associated risks have been recognized including infectious disease transmission, malignancy, immune mediated disease and graft failure. This has resulted in establishment of government regulation, professional standard setting and establishment of vigilance and surveillance systems for early detection and prevention and to improve patient safety. The increased transportation of grafts across national boundaries has made traceability difficult and sometimes impossible. Experience during the first Gulf War with mis-identification of blood units coming from multiple countries without standardized coding and labeling has led international organizations to develop standardized nomenclature and coding for blood. Following this example, cell therapy and tissue transplant practitioners have also moved to standardization of coding systems. Establishment of an international coding system has progressed rapidly and implementation for blood has demonstrated multiple advantages. WHO has held two global consultations on human cells and tissues for transplantation, which recognized the global circulation of cells and tissues and growing commercialization and the need for means of coding to identify tissues and cells used in transplantation, are essential for full traceability. There is currently a wide diversity in the identification and coding of tissue and cell products. For tissues, with a few exceptions, product terminology has not been standardized even at the national level. Progress has been made in blood and cell therapies with a slow and steady trend towards implementation of the international code ISBT 128. Across all fields, there are now 3,700 licensed facilities in 66 countries. Efforts are necessary to encourage the introduction of a standardized international coding system for donation identification numbers, such as ISBT

  2. Intra-Hospital Committee for Donation of Organs and Tissues for Transplant: ethical issues

    Directory of Open Access Journals (Sweden)

    Josiane Cappellaro

    2015-02-01

    Full Text Available The objective of this study was to demonstrate ethical aspects involved in the donation, collection and transplantation of organs and tissues through the experiences of workers in an intra-hospital committee for donation of organs and tissues for transplant. Exploratory qualitative research developed with eleven health workers. Data collection was performed at a university hospital in Pelotas, RS, Brazil, in the period of January-March 2010, through interviews. Data analysis resulted in the following categories: understanding of brain death diagnosis as an ethical issue; and, ethical issues experienced by workers in the relationship established with the family. It was concluded that such situations instigate workers to reflect on their attitudes, values, and their role as a health team member and protector of lives.

  3. Temperature Effects on Brain Tissue in Compression

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.04.005

    2013-01-01

    Extensive research has been carried out for at least 50 years to understand the mechanical properties of brain tissue in order to understand the mechanisms of traumatic brain injury (TBI). The observed large variability in experimental results may be due to the inhomogeneous nature of brain tissue and to the broad range of test conditions. However, test temperature is also considered as one of the factors influencing the properties of brain tissue. In this research, the mechanical properties of porcine brain have been investigated at 22C (room temperature) and at 37C (body temperature) while maintaining a constant preservation temperature of approximately 4-5C. Unconfined compression tests were performed at dynamic strain rates of 30 and 50/s using a custom made test apparatus. There was no significant difference (p = 0.8559 - 0.9290) between the average engineering stresses of the brain tissue at the two different temperature conditions. The results of this study should help to understand the behavior of bra...

  4. Tissue Segmentation of Brain MRI

    Czech Academy of Sciences Publication Activity Database

    Dvořák, P.; Bartušek, Karel; Mikulka, J.

    Berlin: IEEE, 2014, s. 482-485. ISBN 978-80-214-4983-1. ISSN 1805-5435. [TSP 2014. International Conference on Telecommunications and Signal Processing /37./. Berlín (DE), 01.07.2014-03.07.2014] R&D Projects: GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : Brain * Gaussian Mixture Model * GMM * Image segmentation * Magnetic Resonance Subject RIV: BH - Optics, Masers, Lasers

  5. Subcapsular transplantation of tissue in the kidney

    OpenAIRE

    Shultz, Leonard D.; Goodwin, Neal; Ishikawa, Fumihiko; Hosur, Vishnu; Lyons, Bonnie L.; Greiner, Dale L.

    2014-01-01

    There are multiple sites used for engraftment of primary human cells and tissues. Leukemias as usually best engrafted intravenously in adult mice (tail vein) or in newborn mice (superficial temporal vein or in the heart ventricle) (Pearson et al. 2008). Leukemic cells have also been engrafted directly into the bone marrow cavity of adult mice. Some solid tumors such as colon tumors grow well following subcutaneous engraftment. Matrigel™ is often used to provide artificial basement membrane. I...

  6. US of tissue banking and transplantation in North America

    International Nuclear Information System (INIS)

    Tissue banking in North America began as surgical bone banking in individual hospitals and progressed to recovery of cadaveric tissues, initially by the United States Navy Tissue Bank and more recently to regional tissue banks throughout North America. The American Association of Tissue Banks was established in 1976 to develop standards for tissue banking and the eventual inspection and accreditation of tissue banks. The gathering of statistics of tissue banking practices was first undertaken in 1992, from accredited tissue banks. The most recent statistics were compiled in 1997 and will be reported at this conference.There are currently 63 accredited tissue banks in North America, 60 in the United States and three in Canada. Overall, tissue donation has increased by 48% during this 5 year reporting time. During the same period, the number of living surgical bone donors has decreased from nearly 3,000 to less than 500. This impact is largely due to the new regulations that have been implemented by the Food and Drug Administration (FDA). There were over 340,000 bone grafts distributed in 1996, an increase of 20% over 1992, 33% were not sterilized, 21% were sterilized using irradiation, and 45% were demineralized. Only 1% were processed using ethylene oxide as a sterilant, a decrease from 15% in 1992. The primary mode of preservation and storage is freeze-drying with 90% of the tissues falling into this category and the rest being frozen. The second largest number of grafts distributed were skin grafts. Total tissue grafts distributed including cornea was 445,417. In January 1998, the FDA Final Rule regarding regulation of tissue banking became effective. The elements of that Final Rule and new tissue banking rules the FDA has proposed will be discussed along with regulations recently published by the Health and Human Services Department relative to organ and tissue donor referrals. Tissue Banking in North America continues to evolve and has become more and more

  7. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. PMID:26828681

  8. Pediatric brain tumors of neuroepithelial tissue

    International Nuclear Information System (INIS)

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.)

  9. Inhibition of Chemokine-Glycosaminoglycan Interactions in Donor Tissue Reduces Mouse Allograft Vasculopathy and Transplant Rejection

    OpenAIRE

    Dai, Erbin; Liu, Li-Ying; Wang, Hao; McIvor, Dana; Sun, Yun ming; Macaulay, Colin; King, Elaine; Munuswamy-Ramanujam, Ganesh; Bartee, Mee Yong; Williams, Jennifer; Davids, Jennifer; Charo, Israel; McFadden, Grant; Esko, Jeffrey D.; Lucas, Alexandra R.

    2010-01-01

    Background Binding of chemokines to glycosaminoglycans (GAGs) is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct local leukocyte chemotaxis into damaged or transplanted tissues. While chemokine-receptor binding has been extensively studied during allograft transplantation, effects of glycosaminoglycan (GAG) interactions with chemokines on transplant longevity are less well known. Here we examine the impact of interrupting che...

  10. Transplantation of human neural stem/progenitor cells overexpressing galectin-1 improves functional recovery from focal brain ischemia in the mongolian gerbil

    Directory of Open Access Journals (Sweden)

    Yamane Junichi

    2011-09-01

    Full Text Available Abstract Transplantation of human neural stem/progenitor cells (hNSPCs is a promising method to regenerate tissue from damage and recover function in various neurological diseases including brain ischemia. Galectin-1(Gal1 is a lectin that is expressed in damaged brain areas after ischemia. Here, we characterized the detailed Gal1 expression pattern in an animal model of brain ischemia. After brain ischemia, Gal1 was expressed in reactive astrocytes within and around the infarcted region, and its expression diminished over time. Previously, we showed that infusion of human Gal1 protein (hGal1 resulted in functional recovery after brain ischemia but failed to reduce the volume of the ischemic region. This prompted us to examine whether the combination of hNSPCs-transplantation and stable delivery of hGal1 around the ischemic region could reduce the ischemic volume and promote better functional recovery after brain ischemia. In this study, we transplanted hNSPCs that stably overexpressed hGal1 (hGal1-hNSPCs in a model of unilateral focal brain ischemia using Mongolian gerbils. Indeed, we found that transplantation of hGal1-hNSPCs both reduced the ischemic volume and improved deficits in motor function after brain ischemia to a greater extent than the transplantation of hNSPCs alone. This study provides evidence for a potential application of hGal1 with hNSPCs-transplantation in the treatment of brain ischemia.

  11. Suitability of Corneal Tissue for Transplantation Derived From Violent Death: A 10-Year Analysis.

    Science.gov (United States)

    Sampaio, T L; Rodrigues, I P; Pontes, D F S; Ribeiro, T K G; Yamagushi, C K; de Araújo, W N; Báo, S N

    2015-12-01

    Trauma is a leading cause of death and disability worldwide. Corneal tissue donors generally are those who suffered an injury to the brain or fatal trauma caused by stroke, vehicle/motorbike accidents, gunshot wounds, and drowning or cardiovascular death. In Brazil, the Distrito Federal (DF) Eye Bank, located within a trauma center hospital, and the Secretariat of Public Security have collaborated with the aim of increasing the overall number of cornea donations from fatal trauma victims. The purpose of this study was to determine the suitability of cornea tissue for transplantation derived from trauma-related death. The records of eyes donated in the DF Eye Bank were analyzed retrospectively for the period from 2004-2013. We had 3388 cornea donors, the majority of which were between 21 and 30 years old (17.4%), which were derived from violent death (84.1%; P = .00) and were predominately male (73.5%). Among the donated corneas, 54.0% were used for optic purposes. Mechanical trauma caused by gunshot, stabbing or blunt force (23.7%), and road traffic injuries (11%) were the main causes of violent death. Another common cause of death was cardiovascular disease (26.3%). Donor tissue derived from violent death had no statistical interference on tissue suitability for transplantation (P = .06). Because of the large waiting lists, and waiting times for transplants, it is advisable to increase the available tissue from corneas donors derived from violent death through the implementation of this interagency model of collaboration and by the practicing of active tissue donor screening in trauma center hospitals. PMID:26707324

  12. Histomorphological Evaluation of Fresh Ovarian Tissue Transplanted Into Back Muscles of Balb/C Mice

    Directory of Open Access Journals (Sweden)

    I Amiri

    2011-06-01

    Full Text Available & objectives: Today, different methods for maintaining reproductive capability in young women with cancer are being considered. One of the most prominent of these methods is ovarian tissue transplant. Despite the relative success of this method, the appropriate location and methods of transplantation is still a matter of discussion. The present study evaluated the histomorphology of fresh ovarian tissue transplantation by two methods, inter muscular and intra muscular, in Balb/C mice. Methods & Materials: The study was conducted at Hamedan University of Medical Sciences in 2009. Fresh ovarian tissues from 12-14 day old Balb/C mice were transplanted into back muscles of ovarectomized 6 week old Balb/C mice both intermuscularly and intramuscularly. All transplanted mice received intra-peritoneal injections of a unit of rFSH for 4 weeks, every other day. At the end of the tenth week, all transplant recipient mice were killed and the transplanted ovarian tissues were removed. All samples were assessed for the angiogenesis and viability of follicles. Data were analyzed using SPSS software, using independent t- test. Results: In intermuscular transplanted group, the transplanted tissues were rejected in two cases. In the sections prepared from the other cases, in spite of the presence of some small necrotic areas, the majority of ovarian tissues had a healthy appearance within the primordial, primary, secondary and antral follicles. Apart from a significant reduction in the number of follicles and smaller size of follicles in the transplanted tissue in comparison with control group, no other major differences in morphology, histology, and the process of maturation of ovarian follicles were observed between the transplanted and control groups. Conclusion: Fresh ovarian tissue transplantation into muscles of the back area without basic vascular pedicle has new angiogenesis capabilities, appropriate survival and development of primordial follicles and

  13. The 'more-abortions' objection to fetal tissue transplantation.

    Science.gov (United States)

    Gillam, L

    1998-06-01

    One common objection to fetal tissue transplantation (FTT) is that, if it were to become a standard form of treatment, it would encourage or entrench the practice of abortion. This claim is at least factually plausible, although it cannot be definitively established. However, even if true, it does not constitute a compelling ethical argument against FTT. The harm allegedly brought about by FTT, when assessed by widely accepted non-consequentialist criteria, has limited moral significance. Even if FTT would cause more abortions to be performed, and abortion is taken to be a serious moral wrong, this is not sufficient in itself to make FTT wrong. PMID:9831285

  14. Modelling Brain Tissue using Magnetic Resonance Imaging

    OpenAIRE

    Dyrby, Tim Bjørn; Hansen, Lars Kai

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visu...

  15. Intracerebroventricular transplantation of ex vivo expanded endothelial colony-forming cells restores blood-brain barrier integrity and promotes angiogenesis of mice with traumatic brain injury.

    Science.gov (United States)

    Huang, Xin-Tao; Zhang, Yong-Qiang; Li, Sheng-Jie; Li, Sheng-Hui; Tang, Qing; Wang, Zhi-Tao; Dong, Jing-Fei; Zhang, Jian-Ning

    2013-12-15

    Endothelial progenitor cells (EPCs) play a key role in tissue repair and regeneration. Previous studies have shown a positive correlation between the number of circulating EPCs and clinical outcomes of patients with traumatic brain injury (TBI). A recent study has further shown that intravenous infusion of human umbilical cord blood-derived endothelial colony-forming cells (ECFCs) improves outcomes of mice subjected to experimental TBI. This follow-up study was designed to determine whether intracerebroventricular (i.c.v.) infusion of ECFCs, which may reduce systemic effects of these cells, could repair the blood-brain barrier (BBB) and promote angiogenesis of mice with TBI. Adult nude mice were exposed to fluid percussion injury and transplanted i.c.v. with ECFCs on day 1 post-TBI. These ECFCs were detected at the TBI zone 3 days after transplantation by SP-DiIC18(3) and fluorescence in situ hybridization. Mice with ECFCs transplant had reduced Evans blue extravasation and brain water content, increased expression of ZO-1 and claudin-5, and showed a higher expression of angiopoietin 1. Consistent with the previous report, mice with ECFCs transplant had also increased microvascular density. Modified neurological severity score and Morris water maze test indicated significant improvements in motor ability, spatial acquisition and reference memory in mice receiving ECFCs, compared to those receiving saline. These data demonstrate the beneficial effects of ECFC transplant on BBB integrity and angiogenesis in mice with TBI. PMID:23957220

  16. Radiation sterilisation of tissue allografts for transplant surgery

    International Nuclear Information System (INIS)

    The application of ionising radiation to sterilise biological tissues is an extension of their use for the sterilisation of other medical products and pharmaceuticals. This paper describes the effects of radiation on biological tissues, both at the macro- and molecular level. Changes in mechanical and other physical properties can accompany irradiation. These are shown to be due to the glycosamino-glycan component (hyaluronic acid), rather than to the collagen fibrils. Fast reaction methods are used to identify the mechanism of the radiation degradation processes. Methods by which tissues can be protected from these undesirable effects are discussed. The application of radiation sterilisation to human tissues used in transplant surgery is described, and the practical methods of processing given. Such radiation sterilised allografts now have wide application, with more than 500,000 used each year. The IAEA programme in this field has extended the application to 13 countries of the Asia and Pacific Region. Such Tissue Banks are also established with the support of IAEA in Africa and South America. The allografts can now be produced in developing countries in a readily available form, at low cost, and reduce the need for costly imported alternatives. (author). 45 refs., 19 figs., 3 tabs

  17. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    an ongoing chemical reaction due to the fixative used. Short-term instabilities within the first 15 hours of DWI scanning were observed and found likely to be caused by the preparation of the postmortem tissue prior to MR scanning. This artefact can be avoided e.g. by simply excluding DW......Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... environment differs from that of in vivo both due to a lowered environmental temperature and due to the fixation process itself. We argue that the perfusion fixation procedure employed in this thesis ensures that the postmortem tissue is as close to that of in vivo as possible. Different fibre reconstruction...

  18. Can deceased donor with recurrent primary brain tumor donate kidneys for transplantation?

    Science.gov (United States)

    Kumar, Suresh; Modi, Pranjal R; Pal, Bipin C; Modi, Jayesh

    2016-01-01

    Kidney transplantation from deceased donors is in its infancy in India. Cadaver organ donation was accepted legally in 1994 by the "Human Organs Transplantation Act." Marginal donors are now accepted by many centers for kidney transplantation. We report a case of procurement of both kidneys from a young deceased donor having recurrent primary brain tumor, transplanted into two adult recipients with successful outcome. PMID:26941500

  19. Brain Abscess After Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Akoz A et al.

    2013-06-01

    Full Text Available The brain abscess, which is a focal intracerebral infection, is one of the serious complications of the head infections. It generally occurs in the immunocompromised patients due to the spreading from another infection focus on the body. It can be seen with the findings such as fever, headache, nausea, vomiting, diplopia, dysarthria and paralysis. Imaging methods are used in the diagnosis. In its treatment, antibiotherapy and surgical methods can be used. Sometimes, as in our case, brain abscess can appear in a case which is thought to be a simple soft tissue infection. We think that especially, at the diagnosis and treatment stage of infections in head and neck region, physicians must be more careful and diligent.

  20. Brain death and organ transplant legislation:analysis of 969 respondents by classroom questionnaire

    Institute of Scientific and Technical Information of China (English)

    Ru-Liang Song; Xiao-Hua Cui; Zhan Gao; Shao-Lin Deng; You-Ping Li

    2009-01-01

    BACKGROUND: China has the largest potential market for organ transplants in the world, but it has not yet established brain death and organ transplant laws. We aimed to investigate the attitudes and suggestions of doctors, pharmacists, and civil servants concerning brain death, organ transplantation, and their respective legislation. METHODS: A questionnaire with 10 sections and 44 questions was designed and distributed. The effective questionnaire data were then recorded and checked for descriptive analysis. RESULTS: In 1400 questionnaires distributed, 1063 were responded and 969 of them were valid and analyzed. The respondents showed an incomplete understanding of brain death and organ transplantation laws. Seventy-four percent of the respondents recognized and accepted the standard of brain death. They agreed that legislation should be involved in the removal of organs for transplantation, the future use of organs, and insurance and compensation for the donor for possible health risks induced by organ removal. Of the 969 respondents, 92%considered it necessary to have legislation in brain death and organ transplantation, and 61% thought that it is time to legislate. CONCLUSIONS: Legislation for brain death and organ transplantation is urgent and timely in China. The laws must include the respective rights and obligations of patients, close relatives, and medical institutions. Educating the public about brain death and organ transplantation should also be encouraged in a variety of ways.

  1. Aluminum accumulation in human brain tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, R.; Takeuchi, T.; Ohta, T. [Dept. of Psychiatry, Nagoya University School of Medicine, Nagoya, Aichi (Japan); Ektessabi, A.M. [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Hanaichi, T.; Ishihara, Y. [Hanaichi Ultrastructure Research Institute Co. Okazaki, Okazaki, Aichi (Japan); Fujita, Y. [Equipment Center for Research and Education, Nagoya, Aichi (Japan)

    1999-07-01

    Normal cell functions of the brain are often impaired by an excess accumulation of metal ions. There have been increasing efforts in recent years to measure and quantify excessive accumulations of biological constituent elements (such as Fe, Zn, Cu, and Ca), as well as the presence and distribution of contaminating elements (such as Al) in the brain tissues. Since Al might be associated with cases of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amiotrophic lateral screlosis (ALS), it is very important to measure and quantify Al levels using precise analytical techniques. The aim of this investigation is to measure the Al contents present in the temporal cortices for three cases. The specimens concerned were taken from unfixed autopsy brains, which have been preserved in a deep freezer at -80degC. A tandem type accelerator of 2 MeV energy was used to measure the concentrations of Al in these specimen tissues. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorber was removed. The results show that peak intensity depends on the site measured. In certain cases, however, an extremely high concentration of Al was observed in PIXE spectra, with an intensity higher than those of the other major elements present in the brain. Samples from the same subjects were also analyzed using EPMA-EDX. X-ray maps produced by EPMA-EDX showed the presence of extremely high concentrations of Al. The results yielded by PIXE analysis was in good qualitative agreement with those from EPMA-EDX. (author)

  2. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury

    OpenAIRE

    Haus, DL; Lopez-Velazquez, L; Gold, EM; Cunningham, KM; Perez, H; Anderson, AJ; Cummings, BJ

    2016-01-01

    Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically

  3. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury.

    Science.gov (United States)

    Haus, Daniel L; López-Velázquez, Luci; Gold, Eric M; Cunningham, Kelly M; Perez, Harvey; Anderson, Aileen J; Cummings, Brian J

    2016-07-01

    Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically animals at long-term (≥2months) time points post-injury. We report that immunodeficient ATN rats demonstrate hippocampal-dependent spatial memory deficits (Novel Place, Morris Water Maze), but not non-spatial (Novel Object) or emotional/anxiety-related (Elevated Plus Maze, Conditioned Taste Aversion) deficits, at 2-3months post-TBI, confirming that ATN rats recapitulate some of the cognitive deficits found in immunosufficient animal strains. Approximately 9-25% of transplanted hNSCs survived for at least 5months post-transplantation and differentiated into mature neurons (NeuN, 18-38%), astrocytes (GFAP, 13-16%), and oligodendrocytes (Olig2, 11-13%). Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal tissue volume. Instead, we have found an overall increase in host hippocampal neuron survival in hNSC transplanted animals and demonstrate that a correlation exists between hippocampal neuron survival and cognitive performance. Together, these findings support the use of immunodeficient rodents in models of TBI that involve the transplantation of human cells, and suggest that hNSC transplantation may be a viable, long-term therapy to restore cognition after brain injury. PMID:27079998

  4. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844. ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant ostatní: GA MŠk(CZ) 1M0538 Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  5. A cost-minimization analysis of tissue-engineered constructs for corneal endothelial transplantation.

    Directory of Open Access Journals (Sweden)

    Tien-En Tan

    Full Text Available Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses.

  6. [First brain dead donor heart transplantation under new legislation in Japan and future aspects of heart transplantation in Japan].

    Science.gov (United States)

    Matsuda, H; Fukushima, N

    1999-12-01

    After the brain death and organ transplantation law was settled in 1997, the first case of heart transplantation (HTx) was carried out successfully. The patient was 47 year-old male with hypertrophic cardiomyopathy of dilated phase and on Novacor Implantable LVAS for 4 months. The distance from the donor hospital was about 200 km taking 2 hours for transport, and total ischemic time was 3 hours and 24 minutes. The post-transplant course was smooth. The patient was discharged on 75 postoperative day. We described current status of HTx in Japan and worldwide and discussed current problems and future aspects of HTx in Japan. PMID:10638227

  7. Effects of brain death on donor organ viability in transplantation

    OpenAIRE

    Hoeven, Joost Alexander Boreas van der

    2005-01-01

    Organ transplantation has evolved from an experimental procedure in the 1950's and 60's to the therapy of choice for end-stage organ failure. The first solid organ to outgrow the experimental transplantation setting was the kidney. At that time the succesful transplant programs were those in which donor organs form living family members were used for transplantation in their ill relatives (living-related transplant combination). ... Zie: Summary

  8. Measurement of steroid concentrations in brain tissue: methodological considerations

    OpenAIRE

    MatthewDTaves; ColinJSaldanha; KiranKSoma

    2011-01-01

    It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, behavior, neuroplasticity, and inflammation. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection an...

  9. Doppler tissue imaging for assessing left ventricular diastolic dysfunction in heart transplant rejection

    OpenAIRE

    Stengel, S; Allemann, Y; Zimmerli, M.; Lipp, E; Kucher, N; Mohacsi, P; Seiler, C.

    2001-01-01

    OBJECTIVE—To test the hypothesis that diastolic mitral annular motion velocity, as determined by Doppler tissue imaging and left ventricular diastolic flow propagation velocity, is related to the histological degree of heart transplant rejection according to the International Society of Heart and Lung Transplantation (ISHLT).
METHODS—In 41 heart transplant recipients undergoing 151 myocardial biopsies, the following Doppler echocardiographic measurements were performed within one hour of biop...

  10. The mouse lymph node as an ectopic transplantation site for multiple tissues

    OpenAIRE

    Komori, Junji; Boone, Lindsey; DeWard, Aaron; Hoppo, Toshitaka; Lagasse, Eric

    2012-01-01

    Cell-based therapy has been viewed as a promising alternative to organ transplantation, but cell transplantation aimed at organ repair is not always possible. Here, we show that the mouse lymph node can support the engraftment and growth of healthy cells from multiple tissues. Direct injection of hepatocytes into a single mouse lymph node generated enough ectopic liver mass to rescue survival of mice with lethal metabolic disease. Furthermore, thymuses transplanted into a lymph node of athymi...

  11. Schwann Cells Transplantation Promoted and the Repair of Brain Stem Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; YI-HUA AN; MEI-ZHEN SUN; YA-ZHUO ZHANG; ZHONG-CHENG WANG

    2003-01-01

    To explore the possibility of Schwann cells transplantation to promote the repair of injured brain stem reticular structure in rats. Methods Schwann cells originated from sciatic nerves of 1 to 2-day-old rats were expanded and labelled by BrdU in vitro, transplanted into rat brain stem reticular structure that was pre-injured by electric needle stimulus. Immunohistochemistry and myelin-staining were used to investigate the expression of BrdU, GAP-43 and new myelination respectively. Results BrdU positive cells could be identified for up to 8 months and their number increased by about 23%, which mainly migrated toward injured ipsilateral cortex. The GAP-43expression reached its peak in 1 month after transplantation and was significantly higher than that in the control group. New myelination could be seen in destructed brain stem areas. Conclusion The transplantation of Schwann cells can promote the restoration of injured brain stem reticular structure.

  12. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury.

    Science.gov (United States)

    Blaya, Meghan O; Tsoulfas, Pantelis; Bramlett, Helen M; Dietrich, W Dalton

    2015-02-01

    Transplantation of neural progenitor cells (NPCs) may be a potential treatment strategy for traumatic brain injury (TBI) due to their intrinsic advantages, including the secretion of neurotrophins. Neurotrophins are critical for neuronal survival and repair, but their clinical use is limited. In this study, we hypothesized that pericontusional transplantation of NPCs genetically modified to secrete a synthetic, human multineurotrophin (MNTS1) would overcome some of the limitations of traditional neurotrophin therapy. MNTS1 is a multifunctional neurotrophin that binds all three tropomyosin-related kinase (Trk) receptors, recapitulating the prosurvival activity of 3 endogenous mature neurotrophins. NPCs obtained from rat fetuses at E15 were transduced with lentiviral vectors containing MNTS1 and GFP constructs (MNTS1-NPCs) or fluorescent constructs alone (control GFP-NPCs). Adult rats received fluid percussion-induced TBI or sham surgery. Animals were transplanted 1week later with control GFP-NPCs, MNTS1-NPCs, or injected with saline (vehicle). At five weeks, animals were evaluated for hippocampal-dependent spatial memory. Six weeks post-surgery, we observed significant survival and neuronal differentiation of MNTS1-NPCs and injury-activated tropism toward contused regions. NPCs displayed processes that extended into several remote structures, including the hippocampus and contralateral cortex. Both GFP- and MNTS1-NPCs conferred significant preservation of pericontusional host tissues and enhanced hippocampal neurogenesis. NPC transplantation improved spatial memory capacity on the Morris water maze (MWM) task. Transplant recipients exhibited escape latencies approximately half that of injured vehicle controls. While we observed greater transplant survival and neuronal differentiation of MNTS1-NPCs, our collective findings suggest that MNTS1 may be superfluous in terms of preserving the cytoarchitecture and rescuing behavioral deficits given the lack of significant

  13. Intracerebral transplants of primary muscle cells: a potential 'platform' for transgene expression in the brain

    Science.gov (United States)

    Jiao, S.; Schultz, E.; Wolff, J. A.

    1992-01-01

    After the transplantation of rat primary muscle cells into the caudate or cortex of recipient rats, the muscle cells were able to persist for at least 6 months. Muscle cells transfected with expression plasmids prior to transplantation were able to express reporter genes in the brains for at least 2 months. These results suggest that muscle cells might be a useful 'platform' for transgene expression in the brain.

  14. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  15. Nurses' knowledge, attitudes, and beliefs regarding organ and tissue donation and transplantation.

    OpenAIRE

    Matten, M R; Sliepcevich, E M; Sarvela, P D; Lacey, E P; Woehlke, P L; Richardson, C E; Wright, W R

    1991-01-01

    The acute shortage of human organs and tissues for transplantation has been attributed in part to health professionals, including nurses, for their reluctance to recognize and refer suitable candidates for donation. In 1988, nurses' knowledge, attitudes, and beliefs regarding organ and tissue donation and transplantation were assessed using a 70-item questionnaire. Respondents included 1,683 nurses employed in 62 rural and urban hospitals in the Midwest. Only 365 respondents (21.7 percent) re...

  16. Legal termination of a pregnancy resulting from transplanted cryopreserved ovarian tissue due to cancer recurrence

    DEFF Research Database (Denmark)

    Ernst, EH; Offersen, Birgitte Vrou; Andersen, Claus Yding;

    2013-01-01

    To report on a woman who conceived naturally and had a normal intrauterine pregnancy following transplantation of frozen/thawed ovarian tissue but decided to have an early abortion due to recurrence of breast cancer.......To report on a woman who conceived naturally and had a normal intrauterine pregnancy following transplantation of frozen/thawed ovarian tissue but decided to have an early abortion due to recurrence of breast cancer....

  17. Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory

    OpenAIRE

    Fiegel, Henning C; Kaufmann, Peter M; Bruns, Helge; Kluth, Dietrich; Horch, Raymund E.; Vacanti, Joseph P.; Kneser, Ulrich

    2008-01-01

    Abstract Today, liver transplantation is still the only curative treatment for liver failure due to end-stage liver diseases. Donor organ shortage, high cost and the need of immunosuppressive medications are still the major limitations in the field of liver transplantation. Thus, alternative innovative cell-based liver directed therapies, for example, liver tissue engineering, are under investigation with the aim that in future an artificial liver tissue could be created and be used for the r...

  18. Various Forms of Tissue Damage and Danger Signals Following Hematopoietic Stem-Cell Transplantation

    OpenAIRE

    Ramadan, Abdulraouf; Paczesny, Sophie

    2015-01-01

    Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the trigger...

  19. Composite Tissue Transplant of Hand or Arm: A Health Technology Assessment

    Science.gov (United States)

    2016-01-01

    Background Injuries to arms and legs following severe trauma can result in the loss of large regions of tissue, disrupting healing and function and sometimes leading to amputation of the damaged limb. People experiencing amputations of the hand or arm could potentially benefit from composite tissue transplant, which is being performed in some countries. Currently, there are no composite tissue transplant programs in Canada. Methods We conducted a systematic review of the literature, with no restriction on study design, examining the effectiveness and cost-effectiveness of hand and arm transplant. We assessed the overall quality of the clinical evidence with GRADE. We developed a Markov decision analytic model to determine the cost-effectiveness of transplant versus standard care for a healthy adult with a hand amputation. Incremental cost-effectiveness ratios (ICERs) were calculated using a 30-year time horizon. We also estimated the impact on provincial health care costs if these transplants were publicly funded in Ontario. Results Compared to pre-transplant function, patients’ post-transplant function was significantly better. For various reasons, 17% of transplanted limbs were amputated, 6.4% of patients died within the first year after the transplant, and 10.6% of patients experienced chronic rejections. GRADE quality of evidence for all outcomes was very low. In the cost-effectiveness analysis, single-hand transplant was dominated by standard care, with increased costs ($735,647 CAD vs. $61,429) and reduced quality-adjusted life-years (QALYs) (10.96 vs. 11.82). Double-hand transplant also had higher costs compared with standard care ($633,780), but it had an increased effectiveness of 0.17 QALYs, translating to an ICER of $3.8 million per QALY gained. In most sensitivity analyses, ICERs for bilateral hand transplant were greater than $1 million per QALY gained. A hand transplant program would lead to an estimated annual budget impact of $0.9 million to $1

  20. Cognitive improvement following transvenous adipose-derived mesenchymal stem cell transplantation in a rat model of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dongfei Li; Chun Yang; Rongmei Qu; Huiying Yang; Meichun Yu; Hui Tao; Jingxing Dai; Lin Yuan

    2011-01-01

    The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein.Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.

  1. Measurement of steroid concentrations in brain tissue: methodological considerations.

    Science.gov (United States)

    Taves, Matthew D; Ma, Chunqi; Heimovics, Sarah A; Saldanha, Colin J; Soma, Kiran K

    2011-01-01

    It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer's disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for "steroid profiling." Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels). We also present reference values for a variety of steroids in different brain regions of adult rats. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other steroidogenic tissues, such as thymus, breast, and prostate. PMID:22654806

  2. Multivisceral transplantation in pigs: a clinicopathological analysis of tissue rejection.

    Directory of Open Access Journals (Sweden)

    Mitsuoka,Shintaro

    1995-10-01

    Full Text Available In this study, we established the surgical procedure and postoperative care of multivisceral transplantation (MVTX in pigs, and examined the functional changes and rejection pattern of transplanted organs in MVTX. Twenty-two MVTXs were performed without immunosuppression, and nine cases (41% that survived for 5 days or more after MVTX were used for evaluation. Rejection in grafts including the liver, pancreas, and gastrointestinal tract were assessed histopathologically. On day 5 after transplantation, the duodenum and small bowel already showed signs of mild rejection. On the other hand, in the liver, pancreas and stomach, rejection occurred later and was still mild on day 16. Hepatic rejection in MVTX appeared to occur later than in simple liver transplantation (LTX. These results showed that the susceptibility to rejection of individual visceral organs varies.

  3. A new antigen retrieval technique for human brain tissue.

    Directory of Open Access Journals (Sweden)

    Raúl Alelú-Paz

    Full Text Available Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times.

  4. Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

    Science.gov (United States)

    Liu, Xiaomeng; Wang, Siping; You, Yilin; Meng, Minghui; Zheng, Zongji; Dong, Meng; Lin, Jun; Zhao, Qianwei; Zhang, Chuanhai; Yuan, Xiaoxue; Hu, Tao; Liu, Lieqin; Huang, Yuanyuan; Zhang, Lei; Wang, Dehua; Zhan, Jicheng; Jong Lee, Hyuek; Speakman, John R; Jin, Wanzhu

    2015-07-01

    Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT. PMID:25830704

  5. Alteration of Brain Oxygenation During "Piggy Back" Liver Transplantation

    Science.gov (United States)

    Panzera, Piercarmine; Greco, Luigi; Carravetta, Giuseppe; Gentile, Antonella; Catalano, Giorgio; Cicco, Giuseppe; Memeo, Vincenzo

    Relevant changes in cerebral circulation occur during "Piggy Back" liver transplantation. Particularly at the washout-reperfusion time the cerebral perfusion suddenly changes from its lowest to its highest values. Further investigation is required to evaluate whether patients with the greatest change in cerebral oxygenation at this time point will suffer neurological complications after transplantation.

  6. Measurement of steroid concentrations in brain tissue: methodological considerations

    Directory of Open Access Journals (Sweden)

    MatthewDTaves

    2011-09-01

    Full Text Available It is well recognized that steroids are synthesized de novo in the brain (neurosteroids. In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, behavior, neuroplasticity, and inflammation. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for “steroid profiling.” Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other tissues.

  7. Experience of nurses in the process of donation of organs and tissues for transplant

    Directory of Open Access Journals (Sweden)

    Edvaldo Leal de Moraes

    2014-04-01

    Full Text Available OBJECTIVE: to investigate the meaning of the action of nurses in the donation process to maintain the viability of organs and tissues for transplantation.METHOD: this qualitative study with a social phenomenological approach was conducted through individual interviews with ten nurses of three Organ and Tissue Procurement Services of the city of São Paulo.RESULTS: the experience of the nurses in the donation process was represented by the categories: obstacles experienced in the donation process, and interventions performed. The meaning of the action to maintain the viability of organs and tissues for transplantation was described by the categories: to change paradigms, to humanize the donation process, to expand the donation, and to save lives.FINAL CONSIDERATIONS: knowledge of the experience of the nurses in this process is important for healthcare professionals who work in different realities, indicating strategies to optimize the procurement of organs and tissues for transplantation.

  8. Long-term effect of primary combined tissue transplantation on hand reconstruction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To analyze the long-term effect of primary combined tissue transplantation on hand reconstruction.Methods:The data of8Kinds of combined tissue transplantations employed to reconstruct the severely injured hands of 26 patients over the past2to 11years were studied retrospectively.Among them,combined tissue transplantation taking the anterior-lateral femoral flap as the main tissue unit was applied in 21cases and taking the second toe as the main tissue unit was applied in 5cases.Blood vessel anastomosis was performed in parallel in 16cases,series in6cases and both in4cases.Results:Among the60free tissue units employed on 26patients,58 survived completely and the other2survived after dressing change because of postoperative partial necrosis.The patients were followed up for2-11 years postoperatively,with an average of 3.5years.According to the standard for function of reconstructed hands by Chinese Medical Association,excellent results were obtained in10cases,good in12cases,fair in3cases and bad in1case.Conclusions:Primary combined tissue transplantation,which may preserve the tissue vitality of injured hands to the maximum and thus facilitate function restoration of the hands,is a promising method in recostructing severely-injured hands.

  9. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue

    DEFF Research Database (Denmark)

    Dolmans, Marie-Madeleine; Luyckx, Valérie; Donnez, Jacques; Andersen, Claus Yding; Greve, Tine

    2013-01-01

    Ovarian tissue cryopreservation and transplantation is a real option to preserve and restore fertility in young cancer patients. However, there is a concern regarding the possible presence of malignant cells in the ovarian tissue, which could lead to recurrence of the primary disease after...

  10. Cladophialophora bantiana Brain Abscess in a Solid-Organ Transplant Recipient: Case Report and Review of the Literature

    OpenAIRE

    Levin, Todd P.; Baty, Darric E.; Fekete, Thomas; Truant, Allan L.; Suh, Byungse

    2004-01-01

    Cerebral phaeohyphomycosis caused by Cladophialophora bantiana is a rare disease. We describe a heart and bilateral lung transplant recipient who was unsuccessfully treated for a C. bantiana brain abscess. This report compares the present case to those of other solid-organ transplant recipients with the same infection and to those of patients who did not receive transplants.

  11. Availability of transplantable organs from brain stem dead donors in intensive care units.

    OpenAIRE

    Gore, S M; Taylor, R. M.; Wallwork, J

    1991-01-01

    OBJECTIVE--By audit from January to June 1989 to quantify, separately for hearts, kidneys, liver, lungs and corneas, the possible increases in transplantable organs from brain stem dead potential donors in intensive care units and to compare them with the increases achieved in October-November 1989, during intense, national publicity about transplantation. DESIGN--Prospective audit of all deaths in intensive care units in England from 1 January to 30 June 1989 and subsequent case study of the...

  12. Intracerebroventricular transplanted bone marrow stem cells survive and migrate into the brain of rats with Parkinson’s disease

    Institute of Scientific and Technical Information of China (English)

    Ping Gu; Zhongxia Zhang; Dongsheng Cui; Yanyong Wang; Lin Ma; Yuan Geng; Mingwei Wang

    2012-01-01

    In this study, 6-hydroxydopamine was stereotaxically injected into the right substantia nigra compact and ventral tegmental area of rats to establish Parkinson’s disease models. The rats then received a transplantation of bone marrow stromal cells that were previously isolated, cultured and labeled with 5-bromo-2’-deoxyuridine in vitro. Transplantation of the bone marrow stromal cells significantly decreased apomorphine-induced rotation time and the escape latency in the Morris water maze test as compared with rats with untreated Parkinson’s disease. Immunohistochemical staining showed that, 5-bromo-2’-deoxyuridine-immunoreactive cells were present in the lateral ventricular wall and the choroid plexus 1 day after transplantation. These immunoreactive cells migrated to the surrounding areas of the lateral cerebral ventricle along the corpus callosum. The results indicated that bone marrow stromal cells could migrate to tissues surround the cerebral ventricle via the cerebrospinal fluid circulation and fuse with cells in the brain, thus altering the phenotype of cells or forming neuron-like cells or astrocytes capable of expressing neuron-specific proteins. Taken together, the present findings indicate that bone marrow stromal cells transplanted intracerebroventricularly could survive, migrate and significantly improve the rotational behavior and cognitive function of rats with experimentally induced Parkinson’s disease.

  13. Allogeneic corneoscleral limbus tissue transplantation for treatment of the necrosis in porphyria eye disease

    OpenAIRE

    2014-01-01

    Porphyria cutanea tarda (PCT) with ocular complications are rarely reported. To the best of our knowledge, no reports exist on allogeneic corneoscleral limbus tissue transplantation for treatment of these. Amniotic membrane grafting had been performed in their patient suffering from porphyria eye disease, but necrosis developed in the grafts. Nevertheless, in our patient, allogeneic corneoscleral limbus transplantation prevented necrosis from development at corneoscleral limbus. So we conside...

  14. [Transurethral prostate resection prior to kidney transplantation leading to urethral cicatricial tissue].

    Science.gov (United States)

    Schou-Jensen, Katrine; Mohammad, Wael

    2015-01-26

    In Denmark, kidney transplantations in patients above 50 years have increased during the last decade. Consequently, the number of patients with lower urinary tract symptoms due to prostate hypertrophy increases accordingly. We describe two patients, who both had a resection of the prostate while having anuria and waiting for a kidney transplantation from a deceased donor. In both cases it was impossible to place a urethral catheter during the following transplantation due to total urethral occlusion, so a suprapubic catheter was inserted until the scar tissue was dilated or resected by a later transurethral intervention. PMID:25612989

  15. Allogeneic corneoscleral limbus tissue transplantation for treatment of the necrosis in porphyria eye disease

    Institute of Scientific and Technical Information of China (English)

    Feng; Yan; Yan; Lu; Jie; Yin; Feng; Jiang; Zhen-Ping; Huang

    2014-01-01

    · Porphyria cutanea tarda(PCT) with ocular complications are rarely reported. To the best of our knowledge, no reports exist on allogeneic corneoscleral limbus tissue transplantation for treatment of these.Amniotic membrane grafting had been performed in their patient suffering from porphyria eye disease, but necrosis developed in the grafts. Nevertheless, in our patient, allogeneic corneoscleral limbus transplantation prevented necrosis from development at corneoscleral limbus. So we considered that the allogeneic corneoscleral limbus transplantation might be an option to repair the necrosis in porphyria eye disease with avoiding sunlight and using artificial tear drops.

  16. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE cell transplantation into infarct brain of mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yamauchi

    Full Text Available Bone marrow stromal cells (BMSCs are heterogeneous and their therapeutic effect is pleiotropic. Multilineage-differentiating stress enduring (Muse cells are recently identified to comprise several percentages of BMSCs, being able to differentiate into triploblastic lineages including neuronal cells and act as tissue repair cells. This study was aimed to clarify how Muse and non-Muse cells in BMSCs contribute to functional recovery after ischemic stroke.Human BMSCs were separated into stage specific embryonic antigen-3-positive Muse cells and -negative non-Muse cells. Immunodeficient mice were subjected to permanent middle cerebral artery occlusion and received transplantation of vehicle, Muse, non-Muse or BMSCs (2.5×104 cells into the ipsilateral striatum 7 days later.Motor function recovery in BMSC and non-Muse groups became apparent at 21 days after transplantation, but reached the plateau thereafter. In Muse group, functional recovery was not observed for up to 28 days post-transplantation, but became apparent at 35 days post-transplantation. On immunohistochemistry, only Muse cells were integrated into peri-infarct cortex and differentiate into Tuj-1- and NeuN-expressing cells, while negligible number of BMSCs and non-Muse cells remained in the peri-infarct area at 42 days post-transplantation.These findings strongly suggest that Muse cells and non-Muse cells may contribute differently to tissue regeneration and functional recovery. Muse cells may be more responsible for replacement of the lost neurons through their integration into the peri-infarct cortex and spontaneous differentiation into neuronal marker-positive cells. Non-Muse cells do not remain in the host brain and may exhibit trophic effects rather than cell replacement.

  17. First brain dead donor heart transplantation under new legislation in Japan.

    Science.gov (United States)

    Matsuda, H; Fukushima, N; Sawa, Y; Nishimura, M; Matsumiya, G; Shirakura, R

    1999-10-01

    The first heart transplantation was carried out in Japan successfully, after the brain death and organ transplantation law was settled in 1997. The recipient patient was a 47-year-old man with the dilated phase of hypertrophic cardiomyopathy who had been on a Novacor implantable left ventricular assist system for the previous 4 months. Since the donor hospital was about 200 km from the recipient hospital which took approximately 2 hours for transportation, the total ischemic time was 3 hours and 24 minutes. The post-transplant course was smooth, and the patient was discharged on postoperative day 75. PMID:10554420

  18. Therapeutic efficiency of tissue-engineered human corneal endothelium transplants on rabbit primary corneal endotheliopathy

    Institute of Scientific and Technical Information of China (English)

    Ting-jun FAN; Jun ZHAO; Xiu-zhong HU; Xi-ya MA; Wen-bo ZHANG; Chao-zhong YANG

    2011-01-01

    To evaluate the therapeutic efficiency of tissue-engineered human corneal endothelia (TE-HCEs) on rabbit primary corneal endotheliopathy (PCEP), TE-HCEs reconstructed with monoclonal human corneal endothelial cells (mcHCECs) and modified denuded amniotic membranes (mdAMs) were transplanted into PCEP models of New Zealand white rabbits using penetrating keratoplasty. The TE-HCEs were examined using diverse techniques including slit-lamp biomicroscopy observation and pachymeter and tonometer measurements in vivo, and fluorescent microscopy, alizarin red staining, paraffin sectioning, scanning and transmission electron microscopy observations in vitro. The corneas of transplanted eyes maintained transparency for as long as 200 d without obvious edema or immune rejection. The corneal thickness of transplanted eyes decreased gradually after transplanting, reaching almost the thickness of normal eyes after 156 d, while the TE-HCE non-transplanted eyes were turbid and showed obvious corneal edema. The polygonal corneal endothelial cells in the transplanted area originated from the TE-HCE transplant. An intact monolayer corneal endothelium had been reconstructed with the morphology, cell density and structure similar to those of normal rabbit corneal endothelium. In conclusion, the transplanted TE-HCE can reconstruct the integrality of corneal endothelium and restore corneal transparency and thickness in PCEP rabbits. The TE-HCE functions normally as an endothelial barrier and pump and promises to be an equivalent of HCE for clinical therapy of human PCEP.

  19. Transplantation of embryonic porcine neocortical tissue into newborn rats

    DEFF Research Database (Denmark)

    Castro, Anthony J; Meyer, Morten; Møller Dall, Annette;

    2003-01-01

    the grafts to course through the corpus callosum to the contralateral cortex or to course ipsilaterally within the subcortical white matter, where labeled fibers could be traced to the midbrain crus cerebri in older transplants. Bundles of axons were also observed coursing within the ipsilateral...

  20. The significance of monitoring sex hormones levels after ovarian tissue auto-transplantation

    International Nuclear Information System (INIS)

    Objective: To evaluate the significance of monitoring serum sex hormones levels after ovarian tissue auto-transplantation. Methods: Twenty-five patients with stage IV recurrent endometriosis after one or two times of conservative surgeries underwent radical surgery. Their ovarian tissue fragments were transplanted to greater omentum. Serum follicle-stimulation hormone (FSH), Luteinizing hormone (LH) and estradiol (E2) levels were measured monthly since fourth month post-operatively. After E2 was increased, based body temperature was measured and vaginal hormone cytology was examined weekly for maturation index (MI) to assess the ovulatory phase and luteal phase in those with viable ovarian tissues. Serum levels of FSH, LH and E2 in ovulatory phase and luteal phase were determined 20 women with viable ovarian tissues for three cycles as well as in 20 normal sexually mature women and 20 operative menopausal women. Results: There were 12 cases who had increasing of E2 at four months post operatively and 8 cases more at six months. The other 5 cases with low serum E2 levels and high FSH and LH levels at 12 months were designated as failures. The survival rate of transplanted ovarian tissue was 80.0%. There were no significant differences of the serum FSH, LH and E2 levels in ovulatory phase and luteal phase between women with viable grafted ovarian tissues and normal sexually mature women. Conclusion: Monitoring of sex hormones is a good means to assess the viability of the transplanted ovarian tissue fragments

  1. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  2. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  3. Analysis of Cornea Transplant Tissue Rejection Delay in Mice Subjects

    Czech Academy of Sciences Publication Activity Database

    Valenta, Zdeněk; Svozílková, P.; Filipec, M.; Zvárová, Jana; Farghali, H.

    Berlin: Springer, 2004 - (Barreiro, J.; Martin-Sanchez, F.; Maojo, V.), s. 292-298. (Lecture Notes in Computer Science. 3337). ISBN 3-540-23964-2. [ISBMDA. International Symposium /5./. Barcelona (ES), 18.11.2004-19.11.2004] R&D Projects: GA ČR GP305/03/D130; GA MZd NI7531; GA MŠk LN00B107 Keywords : cornea transplant * immunosuppressant * hazard ratio Subject RIV: BB - Applied Statistics, Operational Research

  4. The dose-response effect of acute intravenous transplantation of human umbilical cord blood cells on brain damage and spatial memory deficits in neonatal hypoxia-ischemia.

    Science.gov (United States)

    de Paula, S; Greggio, S; Marinowic, D R; Machado, D C; DaCosta, J Costa

    2012-05-17

    Despite the beneficial effects of cell-based therapies on brain repair shown in most studies, there has not been a consensus regarding the optimal dose of human umbilical cord blood cells (HUCBC) for neonatal hypoxia-ischemia (HI). In this study, we compared the long-term effects of intravenous administration of HUCBC at three different doses on spatial memory and brain morphological changes after HI in newborn Wistar rats. In addition, we tested whether the transplanted HUCBC migrate to the injured brain after transplantation. Seven-day-old animals underwent right carotid artery occlusion and were exposed to 8% O(2) inhalation for 2 h. After 24 h, randomly selected animals were assigned to four different experimental groups: HI rats administered with vehicle (HI+vehicle), HI rats treated with 1×10(6) (HI+low-dose), 1×10(7) (HI+medium-dose), and 1×10(8) (HI+high-dose) HUCBC into the jugular vein. A control group (sham-operated) was also included in this study. After 8 weeks of transplantation, spatial memory performance was assessed using the Morris water maze (MWM), and subsequently, the animals were euthanized for brain morphological analysis using stereological methods. In addition, we performed immunofluorescence and polymerase chain reaction (PCR) analyses to identify HUCBC in the rat brain 7 days after transplantation. The MWM test showed a significant spatial memory recovery at the highest HUCBC dose compared with HI+vehicle rats (Pbrain atrophy was also significantly lower in the HI+medium- and high-dose groups compared with the HI+vehicle animals (Pbrains by immunohistochemistry and PCR analyses 7 days after intravenous administration. These results revealed that HUCBC transplantation has the dose-dependent potential to promote robust tissue repair and stable cognitive improvement after HI brain injury. PMID:22441035

  5. Histogram analysis with automated extraction of brain-tissue region from whole-brain CT images

    OpenAIRE

    Kondo, Masatoshi; Yamashita, Koji; Yoshiura, Takashi; Hiwatash, Akio; Shirasaka, Takashi; Arimura, Hisao; Nakamura, Yasuhiko; Honda, Hiroshi

    2015-01-01

    To determine whether an automated extraction of the brain-tissue region from CT images is useful for the histogram analysis of the brain-tissue region was studied. We used the CT images of 11 patients. We developed an automatic brain-tissue extraction algorithm. We evaluated the similarity index of this automated extraction method relative to manual extraction, and we compared the mean CT number of all extracted pixels and the kurtosis and skewness of the distribution of CT numbers of all ext...

  6. Brain Abscess After Soft Tissue Infection

    OpenAIRE

    Akoz A et al.

    2013-01-01

    The brain abscess, which is a focal intracerebral infection, is one of the serious complications of the head infections. It generally occurs in the immunocompromised patients due to the spreading from another infection focus on the body. It can be seen with the findings such as fever, headache, nausea, vomiting, diplopia, dysarthria and paralysis. Imaging methods are used in the diagnosis. In its treatment, antibiotherapy and surgical methods can be used. S...

  7. Microascus cinereus (Anamorph Scopulariopsis) Brain Abscess in a Bone Marrow Transplant Recipient

    OpenAIRE

    Baddley, John W.; Moser, Stephen A.; Sutton, Deanna A.; Pappas, Peter G.

    2000-01-01

    We report the first documented case of brain abscess due to the dematiaceous fungus Microascus cinereus, an organism common in soil and stored grain. M. cinereus was isolated from brain abscess material from a bone marrow transplant recipient. The patient responded well to treatment by amphotericin B lipid complex, itraconazole, and a craniotomy but later died from secondary complications caused by graft-versus-host disease.

  8. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    OpenAIRE

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat...

  9. West Nile Virus RNA in Tissues from Donor Associated with Transmission to Organ Transplant Recipients

    Centers for Disease Control (CDC) Podcasts

    2013-11-19

    William Hale reads an abridged version of the Emerging Infectious Diseases’ dispatch, West Nile Virus RNA in Tissues from Donor Associated with Transmission to Organ Transplant Recipients.  Created: 11/19/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 11/21/2013.

  10. Optimizing outcomes from ovarian tissue cryopreservation and transplantation; activation versus preservation

    DEFF Research Database (Denmark)

    Meirow, Dror; Roness, Hadassa; Kristensen, Stine Gry; Andersen, Claus Yding

    2015-01-01

    Ovarian tissue cryopreservation and transplantation (OTCP) is gaining increasing traction in the field of fertility preservation as a result of accumulated successes. We now have a decade of experience with the technique, with tens of live births and greater than 90% return of ovarian function in...

  11. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age

    OpenAIRE

    Sutherland, Greg T.; Sheedy, Donna; Kril, Jillian J.

    2013-01-01

    The New South Wales Tissue Resource Centre (NSW TRC) at the University of Sydney, Australia is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency and alcoholic n...

  12. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca+2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca+2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  13. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  14. Porcine Heterotopic Composite Tissue Allograft Transplantation using A Large Animal Model for Preclinical Studies

    Directory of Open Access Journals (Sweden)

    Yur-Ren Kuo

    2006-06-01

    Full Text Available Background: Composite tissue allograft (CTA transplantation is currently limited by therisks of side effects resulting from long-term high-dose immunosuppression.Therefore, preclinical animal models are essential to help CTA transplantationadvance into clinical reality. Evidence has shown that small-animalmodel (rodents immunotherapy protocols cannot be directly applied tohumans. This study investigated whether a miniature porcine model is reproduciblefor preclinical studies.Methods: Based on the concept of vascularized skeletal tissue allograft transplantation,limb heterotopic allograft tissue from a mismatched donor miniature pig consistingof the distal femur, knee joint, tibia, fibula, and surrounding musclewith a vascularized skin paddle model supplied by the superficial femoralvessels was transplanted into recipient pigs. Swine viability and rejectionsigns of the allograft were monitored postoperatively. Histopathologicalchanges in the allograft tissues were examined using hematoxylin and eosinstaining if the allo-skin flap was rejected.Results: The recipient pigs were ambulatory immediately following surgery. Theflaps showed no visible signs of rejection over the first 4 days of observation.The skin flaps appeared bluish-purple and edematous on postoperative days5~7, and progressed to tissue necrosis and rejection on postoperative days8~13. Histological examination revealed marked mononuclear cell infiltrationand necrotic changes in the all rejected tissues, especial in the allograftskin tissues (skin > muscle > bone > cartilage.Conclusions: The results showed this the porcine CTA model is reproducible and suitablefor preclinical training for human CTA transplantation. Monitoring of theallo-skin flap is a useful strategy to evaluate composite tissue allograft rejection.

  15. GREAT PROMISE OF TISSUE-RESIDENT ADULT STEM/PROGENITOR CELLS IN TRANSPLANTATION AND CANCER THERAPIES

    OpenAIRE

    Mimeault, Murielle; Batra, Surinder K.

    2012-01-01

    Recent progress in tissue-resident adult stem/progenitor cell research has inspired great interest because these immature cells from your own body can act as potential, easily accessible cell sources for cell transplantation in regenerative medicine and cancer therapies. The use of adult stem/progenitor cells endowed with a high self-renewal ability and multilineage differentiation potential, which are able to regenerate all the mature cells in the tissues from their origin, offers great prom...

  16. Experience of nurses in the process of donation of organs and tissues for transplant

    OpenAIRE

    Edvaldo Leal de Moraes; Marcelo José dos Santos; Miriam Aparecida Barbosa Merighi; Maria Cristina Komatsu Braga Massarollo

    2014-01-01

    OBJECTIVE: to investigate the meaning of the action of nurses in the donation process to maintain the viability of organs and tissues for transplantation.METHOD: this qualitative study with a social phenomenological approach was conducted through individual interviews with ten nurses of three Organ and Tissue Procurement Services of the city of São Paulo.RESULTS: the experience of the nurses in the donation process was represented by the categories: obstacles experienced in the donation proce...

  17. Distribution of tamoxifen and metabolites into brain tissue and brain metastases in breast cancer patients.

    OpenAIRE

    Lien, E A; Wester, K.; Lønning, P. E.; Solheim, E; Ueland, P. M.

    1991-01-01

    We determined the amount of tamoxifen, N-desmethyltamoxifen (metabolite X), N-desdimethyltamoxifen (metabolite Z), and hydroxylated metabolites (Y, B, BX) in brain metastases from breast cancer and in the surrounding brain tissues. Specimens were collected from the breast cancer patients who received tamoxifen for 7-180 days and with the last dose taken within 28 h before surgical removal of the tumour. The concentrations of tamoxifen and its metabolites were up to 46-fold higher in the brain...

  18. Measuring the local electrical conductivity of human brain tissue

    Science.gov (United States)

    Akhtari, M.; Emin, D.; Ellingson, B. M.; Woodworth, D.; Frew, A.; Mathern, G. W.

    2016-02-01

    The electrical conductivities of freshly excised brain tissues from 24 patients were measured. The diffusion-MRI of the hydrogen nuclei of water molecules from regions that were subsequently excised was also measured. Analysis of these measurements indicates that differences between samples' conductivities are primarily due to differences of their densities of solvated sodium cations. Concomitantly, the sample-to-sample variations of their diffusion constants are relatively small. This finding suggests that non-invasive in-vivo measurements of brain tissues' local sodium-cation density can be utilized to estimate its local electrical conductivity.

  19. High-throughput single-cell manipulation in brain tissue.

    Directory of Open Access Journals (Sweden)

    Joseph D Steinmeyer

    Full Text Available The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell resolution.

  20. MRI of brain tissue oxygen tension under hyperbaric conditions.

    Science.gov (United States)

    Muir, Eric R; Cardenas, Damon P; Duong, Timothy Q

    2016-06-01

    The brain depends on a continuous supply of oxygen to maintain its structural and functional integrity. This study measured T1 from MRI under normobaric air, normobaric oxygen, hyperbaric air, and hyperbaric oxygen (HBO) conditions as a marker of tissue pO2 since dissolved molecular oxygen acts as an endogenous contrast agent. Brain tissue T1 decreased corresponding to increased pO2 with increasing inhaled oxygen concentrations, and tissue oxygenation was estimated from the T1 changes between different inhaled oxygen levels. Tissue pO2 difference maps between different oxygen conditions showed heterogeneous pO2 changes in the brain. MRI-derived tissue pO2 was markedly lower than the arterial pO2 but was slightly higher than venous pO2. Additionally, for comparison with published extracellular tissue pO2 data obtained using oxygen electrodes and other invasive techniques, a model was used to estimate extracellular and intracellular pO2 from the MRI-derived mean tissue pO2. This required multiple assumptions, and so the effects of the assumptions and parameters used in modeling brain pO2 were evaluated. MRI-derived pO2 values were strongly dependent on assumptions about the extra- and intracellular compartments but were relatively less sensitive to variations in the relaxivity constant of oxygen and contribution from oxygen in the cerebral blood compartment. This approach may prove useful in evaluating tissue oxygenation in disease states such as stroke. PMID:27033683

  1. Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy

    OpenAIRE

    Pohling, Christoph; Buckup, Tiago; Pagenstecher, Axel; Motzkus, Marcus

    2011-01-01

    The fast and reliable characterization of pathological tissue is a debated topic in the application of vibrational spectroscopy in medicine. In the present work we apply multiplex coherent anti-Stokes Raman scattering (MCARS) to the investigation of fresh mouse brain tissue. The combination of imaginary part extraction followed by principal component analysis led to color contrast between grey and white matter as well as layers of granule and Purkinje cells. Additional quantitative informatio...

  2. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue

    International Nuclear Information System (INIS)

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse. (author)

  3. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  4. Effect of transplantation of muscle tissue in rats from the same litter on total number of flavins and FAD

    Directory of Open Access Journals (Sweden)

    S. N. Kobylnik

    2015-01-01

    Full Text Available Riboflavin is a member of redox enzymes involved in fatty acid oxidation and energy generation. Important role of this vitamin is in reproductive function. Exchange of transformation of riboflavin in animal tissues and cells of microorganisms include reactions that lead to synthesis and subsequent collapse of FMN and FAD. It is involved in enhancing antitumor activity of many anticancer drugs, as well as activation of the immune system to kill tumor cells. Issues of transport of riboflavin and its derivatives in animals have been studied enough. Investigations of changes of the balance of riboflavin and its metabolites in muscular tissues before transplantation in rats from one litter and at operation without replanting were conducted, based on the Udenfriend method of flavin determination. Transplantation in the experiment was carried out on white non-linear male rats weighing 180–300 g. Animals were taken out of the experiment by passing electric current through the medulla. Belly muscular tissue was taken from donor rats of the same litter, and that tissue was sewn to homological muscular tissue of the recipient. The same procedure was carried out with femoral muscular tissue. In the course of operation without replanting the same manipulations have been made except for transplantation stage (for determination of the effect of surgical intervention. Tissue not subject to any surgical intervention served as a control. Parameters of the study were measured on the first, third and seventh days after transplantation. Transplantation of muscular tissue caused no changes in total flavin amount. Content of RF + FMN after transplantation of muscular tissue in rats of the same litter decreased in femoral muscular tissue of the recipient. Transplantation of muscular tissues in rats from the same litter lead to increase in FAD amount in femoral muscular tissue of the donor and recipient on the third day of the experiment. Transplantation of femoral

  5. Science Letters: Brain natriuretic peptide: A potential indicator of cardiomyogenesis after autologous mesenchymal stem cell transplantation?

    Institute of Scientific and Technical Information of China (English)

    LI Nan; WANG Jian-an

    2006-01-01

    We observed in a pilot study that there was a transient elevation of brain natriuretic peptide (BNP) level shortly after the transplantation in the patient with ischemic heart failure, which is unexplainable by the simultaneous increase of the cardiac output and six-minute walk distance. Similar findings were observed in the phase I trial. We postulated on the basis of the finding of Fukuda in vitro that this transient elevation of BNP level against the improvement of cardiac function and exercise capacity might indicate cardiomyogenesis in patients after mesenchymal stem cell transplantation. Further study is warranted to verify the hypothesis.

  6. A High Rate Tension Device for Characterizing Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1177/1754337112436900

    2013-01-01

    The mechanical characterization of brain tissue at high loading velocities is vital for understanding and modeling Traumatic Brain Injury (TBI). The most severe form of TBI is diffuse axonal injury (DAI) which involves damage to individual nerve cells (neurons). DAI in animals and humans occurs at strains > 10% and strain rates > 10/s. The mechanical properties of brain tissues at these strains and strain rates are of particular significance, as they can be used in finite element human head models to accurately predict brain injuries under different impact conditions. Existing conventional tensile testing machines can only achieve maximum loading velocities of 500 mm/min, whereas the Kolsky bar apparatus is more suitable for strain rates > 100/s. In this study, a custom-designed high rate tension device is developed and calibrated to estimate the mechanical properties of brain tissue in tension at strain rates < 90/s, while maintaining a uniform velocity. The range of strain can also be extended to 100% de...

  7. Discovery of Undescribed Brain Tissue Changes Around Implanted Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Himanshi Desai

    2012-01-01

    Full Text Available Brain-implantable microelectrode arrays are devicesdesigned to record or electrically stimulate the activity ofneurons in the brain. These devices hold the potential tohelp treat epilepsy, paralysis, blindness, and deafness, andalso provide researchers with insights into a varietyof neural processes, such as memory formation.While these devices have a very promising future,researchers are discovering that their long-termfunctionality is greatly limited by the brain’s naturalimmune response to foreign objects. To improve thefunctional lifetime of these devices, one solution lies infully characterizing and understanding this tissue response.Roles for microglia and astrocytes in this biologicalresponse have been characterized. However, changesto oligodendrocytes, cells that myelinate axons, remainpoorly understood. These cells provide insulationto the axons, which is required for proper neuralfunctioning. Here we report on the changes that occurwith oligodendrocyte processes in tissue aroundmicroelectrode implants in the brain.Six rats were surgically implanted with microelectrodearrays and allowed to recover for 1, 2, or 4 weeks.Subjects were then sacrificed and the brain tissue wasprocessed using our recently developed method, Device-Capture Histology. Immunohistochemistry and confocalmicroscopy was employed to assess the responsearound the device. Results indicated a decrease inoligodendrocyte density and a loss in typical directionalorientation of oligodendrocyte processes in tissue near thedevice. These results suggest alterations in the underlyingneuronal networks around these devices, which maygreatly impact the current functional utility of thesepromising devices.

  8. Change in tissue thromboplastin content of brain following trauma

    Directory of Open Access Journals (Sweden)

    Pathak Ashis

    2005-01-01

    Full Text Available Background: Tissue thromboplastin (TTP is an integral membrane protein contributing to coagulopathy after trauma of brain, which is a rich source of TTP. Aims: A study was undertaken to establish the TTP content of various areas of normal brain and estimate the changes in TTP activity of brain in response to varying degrees of trauma. Materials and Methods: Samples from different areas of brain of ten cadavers were used as controls and they were compared with contused brain tissue obtained after surgery in 25 head injury (HI patients of varying severity. Results: In the study group, the TTP activity of the frontal, parietal, and temporal lobes after HI was significantly raised in contrast to that of the control group. The TTP activity was also significantly higher in the severe HI patients than those having moderate HI. The mode of injury and the time lapse after HI had no significant bearing on the TTP activity. Subjects above 40 years of age demonstrated a higher mean TTP activity after HI, though it was not statistically significant. Conclusion: The study provides quantitative data on TTP activity of normal brain and highlights the role of TTP in coagulopathy following HI through its increased activity after HI, more so in the severe HI group.

  9. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    OpenAIRE

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the tr...

  10. [A brain tissue bank in a neuropathology laboratory. Basic methodology].

    Science.gov (United States)

    Rivas, E; Teijeira, S; Tardio, A; Fachal, C; Quintáns, B; Navarro, C

    2003-12-01

    The Meixoeiro Hospital Brain Bank (BB) was established at the end of 2002. A BB is a tissue collection and storage system, established under the best conditions to carry out prospective morphological, biochemical or molecular studies. The BB should ideally be supported by a donor program, although samples may also be obtained from autopsy material from patients with neurodegenerative diseases. Recruitment of control cases from brains without neurological diseases is basic. The main goal of a BB is to provide brain tissue for research. Each case requires accurate clinical data, a definite diagnosis and optimal conditions of tissue preservation. The use of protocols to standardize the handling and processing of tissues, data recruitment and neuropathological diagnosis is fundamental to assure the quality and homogeneity of samples. Close collaboration between neuropathologists, neurologists and other specialists is essential in all the process. Although important advances in the tissue banking field have been achieved, the number of donors in Spain still remains low. Stronger institutional support as well as public awareness through better diffusion of the information is necessary to increase the number of donors and improve BB development. PMID:14648346

  11. Kidney ischemic injury genes expressed after donor brain death are predictive for the outcome of kidney transplantation.

    Science.gov (United States)

    Kamińska, D; Kościelska-Kasprzak, K; Drulis-Fajdasz, D; Hałoń, A; Polak, W; Chudoba, P; Jańczak, D; Mazanowska, O; Patrzałek, D; Klinger, M

    2011-10-01

    The results of deceased donor kidney transplantation largely depend on the extent of organ injury induced by brain death and the transplantation procedure. In this study, we analyzed the preprocurement intragraft expression of 29 genes involved in apoptosis, tissue injury, immune cell migration, and activation. We also assessed their influence on allograft function. Before flushing with cold solution we obtained 50 kidney core biopsies of deceased donor kidneys immediately after organ retrieval. The control group included 18 biopsies obtained from living donors. Gene expression was analyzed with low-density arrays (Taqman). LCN2/lipocalin-2 is considered a biomarker of kidney epithelial ischemic injury with a renoprotective function. HAVCR1/KIM-1 is associated with acute tubular injury. Comparison of deceased donor kidneys to control organs revealed a significantly higher expression of LCN2 (8.0-fold P=.0006) and HAVCR1 (4.7-fold, PKidneys displaying delayed graft function and/or an acute rejection episode in the first 6 months after showed higher LCN2 expression compared to event-free ones (1.7-fold, P=.027). A significantly higher increase in expression of TLR2 (5.2-fold), Interleukin (IL) 18 (4.6-fold), HMGB1 (4.1-fold), GUSB (2.4-fold), CASP3 (2.0-fold) FAS (1.8-fold), and TP53 (1.6-fold) was observed among deceased donor kidneys compared with the control group. Their expression levels were not related to clinical outcomes: however, they showed significant correlations with one another (r>.6, Pkidneys after donor brain death were hallmarks of the organ injury process. LCN2 expression level in retrieved kidneys can predict kidney transplantation outcomes. PMID:21996181

  12. General solutions to poroviscoelastic model of hydrocephalic human brain tissue.

    Science.gov (United States)

    Mehrabian, Amin; Abousleiman, Younane

    2011-12-21

    Hydrocephalus is a well-known disorder of brain fluidic system. It is commonly associated with complexities in cerebrospinal fluid (CSF) circulation in brain. In this paper, hydrocephalus and shunting surgery which is used in its treatment are modeled. Brain tissues are considered to follow a poroviscoelastic constitutive model in order to address the effects of time dependence of mechanical properties of soft tissues and fluid flow hydraulics. Our solution draws from Biot's theory of poroelasticity, generalized to account for viscoelastic effects through the correspondence principle. Geometrically, the brain is conceived to be spherically symmetric, where the ventricles are assumed to be a hollow concentric space filled with cerebrospinal fluid. A generalized Kelvin model is considered for the rheological properties of brain tissues. The solution presented is useful in the analysis of the disorder of hydrocephalus as well as the treatment associated with it, namely, ventriclostomy surgery. The sensitivity of the solution to various factors such as aqueduct blockage level and trabeculae stiffness is thoroughly analyzed using numerical examples. Results indicate that partial aqueduct stenosis may be a cause of hydrocephalus. However, only severe occlusion of the aqueduct can cause a significant increase in the ventricle and brain's extracellular fluid pressure. Ventriculostomy shunts are commonly used as a remedy to hydrocephalus. They serve to reduce the ventricular pressure to the normal level. However, sensitivity analysis on the shunt's fluid deliverability parameter has shown that inappropriate design or selection of design shunt may cause under-drainage or over-drainage of the ventricles. Excessive drainage of CSF may increase the normal tensile stress on trabeculae. It can cause rupture of superior cerebral veins or damage to trabeculae or even brain tissues which in turn may lead to subdural hematoma, a common side-effect of the surgery. These Post

  13. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    Science.gov (United States)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  14. Integrity of the Oral Tissues in Patients with Solid-Organ Transplants

    Directory of Open Access Journals (Sweden)

    Gonzalo Rojas

    2012-01-01

    Full Text Available The relationship between the use of immunosuppressants in solid-organ transplant patients and oral tissue abnormalities has been recognized. The objective of this study was to determine the state of oral tissue integrity in renal, heart, and liver transplant patients who are on continuous medical and dental control. Forty patients of both sexes were clinically evaluated at the Clinical Hospital of the University of Chile to identify pathologies of oral mucosa, gingival enlargement (GE, decayed, missing, filled teeth (DMFT index, and salivary flow. The average age of the transplant subjects was 49.4 years, and the age range was 19 to 69 years. Most subjects maintained a good level of oral hygiene, and the rate mean of DMFT was 14.7. The degree of involvement of the oral mucosa and GE was low (10%. Unlike other studies, the frequency of oral mucosal diseases and GE was low despite the fact that these patients were immunosuppressed. Care and continuous monitoring seem to be of vital importance in maintaining the oral health of transplant patients.

  15. Transistor needle chip for recording in brain tissue

    Science.gov (United States)

    Felderer, Florian; Fromherz, Peter

    2011-07-01

    We report on a proof-of-principle experiment for the direct interfacing of transistors with intact brain tissue. A transistor needle chip (TNC) with a TiO2 surface is fabricated from a silicon-on-insulator wafer and impaled into an acute brain slice cut from hippocampus of the rat. While stimulating the Schaffer collateral, a local field potential is recorded in stratum radiatum of the CA1 region with field-effect transistors in the central part of the slice where the tissue is not damaged by the cutting process. After the impalement, the signal amplitude is small. Within an hour, it increases to a stable level around -2 mV as is recorded with a conventional micropipette electrode. The recovery indicates that the tissue is able to adapt to the impaled chip. Upon repeated impalements at the same position, the large signal is observed without delay. A profile of the transistor signal across the slice is due to the boundary conditions of a brain slice with both surfaces held near ground potential. The experiments with the TNC prototype are a basis for the development of silicon needle chips with a large multi-transistor array (MTA) for applications in brain-computer interfacing.

  16. Determination of Friction Coefficient in Unconfined Compression of Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.05.001

    2013-01-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow for homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient mu of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that mu was equal to 0.09 +/- 0.03, 0.18 +/- 0.04, 0.18 +/- 0.04 and 0.20 +/- 0.02 at strain rates of...

  17. Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach

    OpenAIRE

    Bader, Augustinus; Macchiarini, Paolo

    2010-01-01

    Abstract In June 2008, the world’s first whole tissue-engineered organ – the windpipe – was successfully transplanted into a 31-year-old lady, and about 18 months following surgery she is leading a near normal life without immunosuppression. This outcome has been achieved by employing three groundbreaking technologies of regenerative medicine: (i) a donor trachea first decellularized using a detergent (without denaturing the collagenous matrix), (ii) the two main autologous tracheal cells, na...

  18. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  19. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). PMID:24033426

  20. Automatic Segmentation of Eight Tissue Classes in Neonatal Brain MRI

    Science.gov (United States)

    Anbeek, Petronella; Išgum, Ivana; van Kooij, Britt J. M.; Mol, Christian P.; Kersbergen, Karina J.; Groenendaal, Floris; Viergever, Max A.; de Vries, Linda S.; Benders, Manon J. N. L.

    2013-01-01

    Purpose Volumetric measurements of neonatal brain tissues may be used as a biomarker for later neurodevelopmental outcome. We propose an automatic method for probabilistic brain segmentation in neonatal MRIs. Materials and Methods In an IRB-approved study axial T1- and T2-weighted MR images were acquired at term-equivalent age for a preterm cohort of 108 neonates. A method for automatic probabilistic segmentation of the images into eight cerebral tissue classes was developed: cortical and central grey matter, unmyelinated and myelinated white matter, cerebrospinal fluid in the ventricles and in the extra cerebral space, brainstem and cerebellum. Segmentation is based on supervised pixel classification using intensity values and spatial positions of the image voxels. The method was trained and evaluated using leave-one-out experiments on seven images, for which an expert had set a reference standard manually. Subsequently, the method was applied to the remaining 101 scans, and the resulting segmentations were evaluated visually by three experts. Finally, volumes of the eight segmented tissue classes were determined for each patient. Results The Dice similarity coefficients of the segmented tissue classes, except myelinated white matter, ranged from 0.75 to 0.92. Myelinated white matter was difficult to segment and the achieved Dice coefficient was 0.47. Visual analysis of the results demonstrated accurate segmentations of the eight tissue classes. The probabilistic segmentation method produced volumes that compared favorably with the reference standard. Conclusion The proposed method provides accurate segmentation of neonatal brain MR images into all given tissue classes, except myelinated white matter. This is the one of the first methods that distinguishes cerebrospinal fluid in the ventricles from cerebrospinal fluid in the extracerebral space. This method might be helpful in predicting neurodevelopmental outcome and useful for evaluating neuroprotective clinical

  1. Automatic segmentation of eight tissue classes in neonatal brain MRI.

    Directory of Open Access Journals (Sweden)

    Petronella Anbeek

    Full Text Available PURPOSE: Volumetric measurements of neonatal brain tissues may be used as a biomarker for later neurodevelopmental outcome. We propose an automatic method for probabilistic brain segmentation in neonatal MRIs. MATERIALS AND METHODS: In an IRB-approved study axial T1- and T2-weighted MR images were acquired at term-equivalent age for a preterm cohort of 108 neonates. A method for automatic probabilistic segmentation of the images into eight cerebral tissue classes was developed: cortical and central grey matter, unmyelinated and myelinated white matter, cerebrospinal fluid in the ventricles and in the extra cerebral space, brainstem and cerebellum. Segmentation is based on supervised pixel classification using intensity values and spatial positions of the image voxels. The method was trained and evaluated using leave-one-out experiments on seven images, for which an expert had set a reference standard manually. Subsequently, the method was applied to the remaining 101 scans, and the resulting segmentations were evaluated visually by three experts. Finally, volumes of the eight segmented tissue classes were determined for each patient. RESULTS: The Dice similarity coefficients of the segmented tissue classes, except myelinated white matter, ranged from 0.75 to 0.92. Myelinated white matter was difficult to segment and the achieved Dice coefficient was 0.47. Visual analysis of the results demonstrated accurate segmentations of the eight tissue classes. The probabilistic segmentation method produced volumes that compared favorably with the reference standard. CONCLUSION: The proposed method provides accurate segmentation of neonatal brain MR images into all given tissue classes, except myelinated white matter. This is the one of the first methods that distinguishes cerebrospinal fluid in the ventricles from cerebrospinal fluid in the extracerebral space. This method might be helpful in predicting neurodevelopmental outcome and useful for evaluating

  2. Inhibition of Chemokine-Glycosaminoglycan Interactions in Donor Tissue Reduces Mouse Allograft Vasculopathy and Transplant Rejection

    Science.gov (United States)

    Dai, Erbin; Liu, Li-Ying; Wang, Hao; McIvor, Dana; Sun, Yun ming; Macaulay, Colin; King, Elaine; Munuswamy-Ramanujam, Ganesh; Bartee, Mee Yong; Williams, Jennifer; Davids, Jennifer; Charo, Israel; McFadden, Grant; Esko, Jeffrey D.; Lucas, Alexandra R.

    2010-01-01

    Background Binding of chemokines to glycosaminoglycans (GAGs) is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct local leukocyte chemotaxis into damaged or transplanted tissues. While chemokine-receptor binding has been extensively studied during allograft transplantation, effects of glycosaminoglycan (GAG) interactions with chemokines on transplant longevity are less well known. Here we examine the impact of interrupting chemokine-GAG interactions and chemokine-receptor interactions, both locally and systemically, on vascular disease in allografts. Methodology/Principal Findings Analysis of GAG or CC chemokine receptor 2 (CCR2) deficiency were coupled with the infusion of viral chemokine modulating proteins (CMPs) in mouse aortic allograft transplants (n = 239 mice). Inflammatory cell invasion and neointimal hyperplasia were significantly reduced in N-deacetylase-N-sulfotransferase-1 (Ndst1f/fTekCre+) heparan sulfate (GAG)-deficient (Ndst1−/−, p<0.044) and CCR2-deficient (Ccr2−/−, p<0.04) donor transplants. Donor tissue GAG or CCR2 deficiency markedly reduced inflammation and vasculopathy, whereas recipient deficiencies did not. Treatment with three CMPs was also investigated; Poxviral M-T1 blocks CC chemokine receptor binding, M-T7 blocks C, CC, and CXC GAG binding, and herpesviral M3 binds receptor and GAG binding for all classes. M-T7 reduced intimal hyperplasia in wild type (WT) (Ccr2+/+, p≤0.003 and Ccr2−/−, p≤0.027) aortic allografts, but not in Ndst1−/− aortic allografts (p = 0.933). M-T1 and M3 inhibited WT (Ccr2+/+ and Ndst1+/+, p≤0.006) allograft vasculopathy, but did not block vasculopathy in Ccr2−/− (p = 0.61). M-T7 treatment alone, even without immunosuppressive drugs, also significantly prolonged survival of renal allograft transplants (p≤0.001). Conclusions/Significance Interruption of chemokine-GAG interactions, even in the absence of

  3. Isolation of inflammatory cells from rat brain tissue after stroke

    Directory of Open Access Journals (Sweden)

    Möller Karoline

    2012-10-01

    Full Text Available Abstract The pathophysiology of sterile inflammation following focal ischemic stroke is complex and not fully understood, but there is growing evidence that it offers several therapeutic options beyond the hitherto existing treatment strategies. The identification and quantification of infiltrating inflammatory cells in animal models of stroke is crucial both for understanding post-stroke inflammation and for drug target identification. Multicolor flow cytometry plays an important role in determining subtypes and quantity of leukocytes that infiltrate the brain tissue after stroke. Until now, most investigations have been performed in mice, most likely due to a significantly broader spectrum of disposable antibodies and available knockout models. Here, we introduce a specific and reproducible method to isolate leukocytes from rat brain specimen in the context of brain ischemia to ultimately allow multi-dimensional flow cytometric characterization and further downstream methods such as cell-subtype sorting and molecular biological approaches.

  4. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark

    DEFF Research Database (Denmark)

    Jensen, A K; Kristensen, S G; Macklon, K T;

    2015-01-01

    pregnancy-wish. WHAT IS KNOWN ALREADY: Cryopreservation of ovarian tissue is now gaining ground as a valid method for fertility preservation. More than 36 children worldwide have now been born following this procedure. STUDY DESIGN, SIZE, DURATION: This is a retrospective cohort study of 41 women who had......, REASONS FOR CAUTION: Self-report through questionnaires with only in-one hospital formalised follow-up of transplanted patients could result in unreported miscarriages. The longevity of the tissue may vary by few months compared with those reported because some patients simply could not remember the date...

  5. Inhomogeneous Deformation of Brain Tissue During Tension Tests

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael D; 10.1016/j.commatsci.2012.05.030

    2013-01-01

    Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI). In this research, we present the design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0-14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters (mu = 4395.0 Pa, alpha = -2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine Young's modulus (E= 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S < 1.0 are required to minimise the effects of inhomogeneous...

  6. Transplantation.

    Science.gov (United States)

    Faro, Albert; Weymann, Alexander

    2016-08-01

    Despite improvement in median life expectancy and overall health, some children with cystic fibrosis (CF) progress to end-stage lung or liver disease and become candidates for transplant. Transplants for children with CF hold the promise to extend and improve the quality of life, but barriers to successful long-term outcomes include shortage of suitable donor organs; potential complications from the surgical procedure and immunosuppressants; risk of rejection and infection; and the need for lifelong, strict adherence to a complex medical regimen. This article reviews the indications and complications of lung and liver transplantation in children with CF. PMID:27469184

  7. Immunological study on the transplantation of an improved deproteinized heterogeneous bone scaffold material in tissue engineering

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; PEI Fu-xing; TU Chong-qi; ZHOU Zong-ke; LI Qi-hong

    2008-01-01

    Objective: To observe the immune response after the transplantation of a deproteinized heterogeneous bone scaffold and provides the theoretic reference for clinical practice. Methods: The fresh pig bone and deproteinized bone were transplanted respectively to establish BABL/C thigh muscle pouches model of male mice and take the samples for detection at 1, 2, 4, 6 weeks after operation. Lymphocyte stimulation index, subset analysis, serum specific antibody IgG, cytokine detection and topographic histologic reaction after implantation were investigated. Results: After the transplantation of deproteinized bone, lymphocyte stimulation index, CD4+ and CD8+ T-lymphocyte subsets, serum specific antibody IgG and cytokines in deproteinized bone group were significantly lower than those in fresh pig bone group at each time point (P<0.05). The histological examination found that in fresh bone group at each time point, a large quantity of inflammatory cells infiltrated in the surrounding of bone graft, and they were mainly lymphocytes, including macrophages and monocytes. In deproteinized bone group, there were few inflammatory cells infiltration around bone graft one weekafter operation.The lymphocytes were decreased as time went by.At 6 weeks,fibroblasts and fibrous tissue grew into the graft,and osteoclasts and osteoprogenitor cells appeared on the verge.Conelusions:The established heterogeneous deproteinized bone has low immunogenicity and is a poten-fially ideal scaffold material for bone tissue engineering.

  8. Vascular communications between donor and recipient tissues after successful full face transplantation.

    Science.gov (United States)

    Kumamaru, K K; Sisk, G C; Mitsouras, D; Schultz, K; Steigner, M L; George, E; Enterline, D S; Bueno, E M; Pomahac, B; Rybicki, F J

    2014-03-01

    The vascular reorganization after facial transplantation has important implications on future surgical planning. The purpose of this study was to evaluate blood flow (BF) after full face transplantation using wide area-detector computed tomography (CT) techniques. Three subjects with severe craniofacial injury who underwent full face transplantation were included. All subjects underwent a single anastomosis bilaterally of the artery and vein, and the recipient tongue was preserved. Before and after surgery, dynamic volume CT studies were analyzed for vascular anatomy and blood perfusion. Postsurgical CT showed extensive vascular reorganization for external carotid artery (ECA) angiosome; collateral flows from vertebral, ascending pharyngeal or maxillary arteries supplied the branches from the recipient ECAs distal to the ligation. While allograft tissue was slightly less perfused when the facial artery was the only donor artery when compared to an ECA-ECA anastomosis (4.4 ± 0.4% vs. 5.7 ± 0.7%), allograft perfusion was higher than the recipient normal neck tissue. BF for the recipient tongue was maintained from contralateral/donor arteries when the lingual artery was sacrificed. Venous drainage was adequate for all subjects, even when the recipient internal jugular vein was anastomosed in end-to-end fashion on one side. In conclusion, dynamic CT identified adequate BF for facial allografts via extensive vascular reorganization. PMID:24502329

  9. Protective effects of some creatine derivatives in brain tissue anoxia.

    Science.gov (United States)

    Perasso, Luisa; Lunardi, Gian Luigi; Risso, Federica; Pohvozcheva, Anna V; Leko, Maria V; Gandolfo, Carlo; Florio, Tullio; Cupello, Aroldo; Burov, Sergey V; Balestrino, Maurizio

    2008-05-01

    Some derivatives more lipophylic than creatine, thus theoretically being capable to better cross the blood-brain barrier, were studied for their protective effect in mouse hippocampal slices. We found that N-amidino-piperidine is harmful to brain tissue, and that phosphocreatine is ineffective. Creatine, creatine-Mg-complex (acetate) and phosphocreatine-Mg-complex (acetate) increased the latency to population spike disappearance during anoxia. Creatine and creatine-Mg-complex (acetate) also increased the latency of anoxic depolarization, while the delay induced by phosphocreatine-Mg-complex (acetate) was of borderline significance (P = 0.056). Phosphocreatine-Mg-complex (acetate) significantly reduced neuronal hyperexcitability during anoxia, an effect that no other compound (including creatine itself) showed. For all parameters except reduced hyperexcitability the effects statistically correlated with tissue levels of creatine or phosphocreatine. Summing up, exogenous phosphocreatine and N-amidino piperidine are not useful for brain protection, while chelates of both creatine and phosphocreatine do replicate some of the known protective effects of creatine. In addition, phosphocreatine-Mg-complex (acetate) also reduced neuronal hyperexcitability during anoxia. PMID:17940889

  10. α-Melanocyte stimulating hormone treatment in pigs does not improve early graft function in kidney transplants from brain dead donors.

    Directory of Open Access Journals (Sweden)

    Willem G van Rijt

    Full Text Available Delayed graft function and primary non-function are serious complications following transplantation of kidneys derived from deceased brain dead (DBD donors. α-melanocyte stimulating hormone (α-MSH is a pleiotropic neuropeptide and its renoprotective effects have been demonstrated in models of acute kidney injury. We hypothesized that α-MSH treatment of the recipient improves early graft function and reduces inflammation following DBD kidney transplantation. Eight Danish landrace pigs served as DBD donors. After four hours of brain death both kidneys were removed and stored for 18 hours at 4°C in Custodiol preservation solution. Sixteen recipients were randomized in a paired design into two treatment groups, transplanted simultaneously. α-MSH or a vehicle was administered at start of surgery, during reperfusion and two hours post-reperfusion. The recipients were observed for ten hours following reperfusion. Blood, urine and kidney tissue samples were collected during and at the end of follow-up. α-MSH treatment reduced urine flow and impaired recovery of glomerular filtration rate (GFR compared to controls. After each dose of α-MSH, a trend towards reduced mean arterial blood pressure and increased heart rate was observed. α-MSH did not affect expression of inflammatory markers. Surprisingly, α-MSH impaired recovery of renal function in the first ten hours following DBD kidney transplantation possibly due to hemodynamic changes. Thus, in a porcine experimental model α-MSH did not reduce renal inflammation and did not improve short-term graft function following DBD kidney transplantation.

  11. Various Forms of Tissue Damage and Danger Signals Following Hematopoietic Stem-Cell Transplantation

    Science.gov (United States)

    Ramadan, Abdulraouf; Paczesny, Sophie

    2014-01-01

    Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches. PMID:25674088

  12. Various forms of tissue damage and danger signals following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Abdulraouf eRamadan

    2015-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD, which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T cells and recipient’s antigen-presenting cells. This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs. Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules even represent potential targets for novel therapeutic approaches.

  13. Improvement of Brain Tissue Oxygenation by Inhalation of Carbogen

    DEFF Research Database (Denmark)

    Ashkanian, M.; Borghammer, P.; Gjedde, A.; Ostergaard, L.; Vafaee, M.

    2008-01-01

    confirmed by statistical cluster analysis. Oxygen and carbogen were equally potent in increasing oxygen saturation of arterial blood (Sa(O2)). The present data demonstrate that inhalation of carbogen increases both CBF and Sa(O2) in healthy adults. In conclusion we speculate that carbogen inhalation is...... sufficient for optimal oxygenation of healthy brain tissue, whereas carbogen induces concomitant increases of CBF and Sa(O2).......Hyperoxic therapy for cerebral ischemia is suspected to reduce cerebral blood flow (CBF), due to the vasoconstrictive effect of oxygen on cerebral arterioles. We hypothesized that vasodilation predominates when 5% CO(2) is added to the inhaled oxygen (carbogen). Therefore, we used positron emission...

  14. The first woman to give birth to two children following transplantation of frozen/thawed ovarian tissue

    DEFF Research Database (Denmark)

    Ernst, Erik; Bergholdt, Stinne; Jørgensen, Jan Stener; Andersen, Claus Yding

    2010-01-01

    Worldwide eight children have been born as a result of transplanting frozen/thawed ovarian tissue. Two of these children were born in Denmark following transport of the ovarian tissue for a period of 5 h prior to cryopreservation. One of these women, who was originally transplanted with six piece...... transplanting frozen/thawed ovarian tissue. This result encourages further development of cryopreservation of ovarian tissue for fertility preservation as a clinical procedure for girls and young women facing gonadotoxic treatment....... of ovarian cortex, after having experienced a period of menopause has now conceived again following natural conception. She gave birth to a healthy girl on 23 September 2008 and is therefore the first woman in the world to have had two children, from separate pregnancies, born as a result of...

  15. Clinical Questions of Tissue Incompatibility after Allogenic Bone-Marrow Transplantation

    International Nuclear Information System (INIS)

    This paper describes the results of studies concerning tissue incompatibility in the transplantation of allogenic bone marrow into patients suffering from hypoplastic and aplastic anaemia. Factual data are presented on the extent to which the immune activity and capacity for immunological response of recipients is preserved. Attention is mainly directed to the characteristics of the spectrum showing serological activity of the anti-leucocyte antibodies, which depends on the type of sensitization. These data point to the need for differential use of haemotherapeutic agents and are also of some importance in the selection of bone-marrow donors. (author)

  16. Molecular Mechanisms of Chronic Kidney Transplant Rejection via Large-Scale Proteogenomic Analysis of Tissue Biopsies

    Science.gov (United States)

    Nakorchevsky, Aleksey; Hewel, Johannes A.; Kurian, Sunil M.; Mondala, Tony S.; Campbell, Daniel; Head, Steve R.; Marsh, Christopher L.; Yates, John R.

    2010-01-01

    The most common cause of kidney transplant failure is the poorly characterized histopathologic entity interstitial fibrosis and tubular atrophy (IFTA). There are no known unifying mechanisms, no effective therapy, and no proven preventive strategies. Possible mechanisms include chronic immune rejection, inflammation, drug toxicity, and chronic kidney injury from secondary factors. To gain further mechanistic insight, we conducted a large-scale proteogenomic study of kidney transplant biopsies with IFTA of varying severity. We acquired proteomic data using tandem mass spectrometry with subsequent quantification, analysis of differential protein expression, validation, and functional annotations to known molecular networks. We performed genome-wide expression profiling in parallel. More than 1400 proteins with unique expression profiles traced the progression from normal transplant biopsies to biopsies with mild to moderate and severe disease. Multiple sets of proteins were mapped to different functional pathways, many increasing with histologic severity, including immune responses, inflammatory cell activation, and apoptosis consistent with the chronic rejection hypothesis. Two examples include the extensive population of the alternative rather than the classical complement pathway, previously not appreciated for IFTA, and a comprehensive control network for the actin cytoskeleton and cell signaling of the acute-phase response. In summary, this proteomic effort using kidney tissue contributes mechanistic insight into several biologic processes associated with IFTA. PMID:20093355

  17. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  18. Combined Bone Mesenchymal Stem Cell and Olfactory Ensheathing Cell Transplantation Promotes Neural Repair Associated With CNTF Expression in Traumatic Brain-Injured Rats.

    Science.gov (United States)

    Fu, Xue-Mei; Liu, Su-Juan; Dan, Qi-Qin; Wang, Yan-Ping; Lin, Na; Lv, Long-Yun; Zou, Yu; Liu, Su; Zhou, Xue; Wang, Ting-Hua

    2015-01-01

    This study examined the role of bone mesenchymal stem cell (BMSC) and olfactory ensheathing cell (OEC) cografting on neural function and underlying molecular mechanisms in acute stage of traumatic brain injury (TBI) rats. Eighty Sprague-Dawley (SD) female rats were randomly divided into five groups (n = 16 per category): sham operated group (Sham), weight-drop-induced TBI group (TBI), BMSC transplantation group (BMSC), OEC transplantation group (OEC), and cotransplantation group (CO). Eight rats were randomly selected from each group for behavioral and morphological assessment. Another category (n = 8 rats) was employed in the genetic expression detection. BMSCs were isolated from GFP mice and identified by CD44 antibody. OECs were isolated from the SD rats, identified by P75 antibody and labeled by Hoechst 33342. They were then transplanted into the surrounding tissue of the epicenter of TBI rats. The result of neurological severity scores revealed that BMSC or OEC transplantation alone and BMSC and OEC cografting significantly ameliorated the neurological deficits of TBI rats. Quantitative immunohistochemical analysis showed that graft-recipient animals possessed dramatically more neurons and regenerated axons and smaller amounts of astrocytes than controls 14 days posttransplantation (p < 0.05). However, the expressional level of ciliary neurotrophic factor significantly decreased in the cografting group as determined by RT-PCR (p < 0.05), and the Janus kinase/signal transducer and activator of transcription pathway was significantly activated at 7 days after cell transplantation (p < 0.05). This study is the first to report the role of cotransplantation of BMSCs and OECs in the therapy of TBI and explore its potential molecular mechanisms, therefore providing the important morphological and molecular biological evidence for the clinical application of BMSC and/or OEC transplantation in TBI. PMID:24612678

  19. Preliminary study of coconut water for graft tissues preservation in transplantation

    Directory of Open Access Journals (Sweden)

    Jorge Miguel Schettino César

    2015-02-01

    Full Text Available OBJECTIVE: to verify the effectiveness of coconut water in preserving tissues for transplant. METHODS: Fifty male Wistar rats were randomly distributed in five groups, according to the following preservation solutions for tissue grafts: Group 1: Lactated Ringer; Group 2: Belzer solution; Group 3: mature coconut water; Group 4: green coconut water; Group 5: modified coconut water. In Group 5, the green coconut water has been modified like the Belzer solution. From each animal we harvasted the spleen, ovaries and skin of the back segment. These tissues were preserved for six hours in one of the solutions. Then, the grafts were reimplanted. The recovery of the function of the implanted tissues was assessed 90 days after surgery, by splenic scintigraphy and blood exame. The implanted tissues were collected for histopathological examination. RESULTS: The serum levels did not differ among groups, except for the animals in Group 5, which showed higher levels of IgG than Group 1, and differences in relation to FSH between groups 1 and 2 (p <0.001, 4 and 2 (p = 0.03 and 5 and 2 (p = 0.01. The splenic scintigraphy was not different between groups. The ovarian tissue was better preserved in mature coconut water (p <0.007. CONCLUSION: the coconut water-based solutions preserves spleen, ovary, and rat skin for six hours, maintaining their normal function.

  20. In vivo study on the survival of neural stem cells transplanted into the rat brain with a collagen hydrogel that incorporates laminin-derived polypeptides.

    Science.gov (United States)

    Nakaji-Hirabayashi, Tadashi; Kato, Koichi; Iwata, Hiroo

    2013-11-20

    Poor viability of cells transplanted into the brain has been the critical problem associated with stem cell-based therapy for Parkinson's disease. To overcome this problem, a collagen hydrogel incorporating an integrin-binding protein complex was prepared and used as a carrier for neural stem cells. The protein complex consisted of two polypeptides containing the G3 domain of a laminin α1 chain and the C-terminal oligopeptide of a laminin γ1 chain. These polypeptides were fused with α-helical segments which spontaneously formed a coiled-coil heterodimer and with the collagen-binding peptide that facilitated the binding of the heterodimer to collagen networks. In this study, neural stem cells stably expressing the enhanced green fluorescent protein (EGFP) were suspended in the hydrogel and transplanted into the striatum of healthy rats. The viability of transplanted cells was evaluated by histological analysis and quantitative reverse-transcriptase polymerase chain reaction for EGFP mRNA present in the tissue explants. Our results showed that the collagen hydrogel incorporating the integrin-binding protein complex serves to improve the viability of neural stem cells (NSCs) in the early stage after transplantation into the striatum. PMID:23991904

  1. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hai-xiao Zhou

    2016-01-01

    Full Text Available Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5-3.0 atm impact force. The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions.

  2. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury.

    Science.gov (United States)

    Zhou, Hai-Xiao; Liu, Zhi-Gang; Liu, Xiao-Jiao; Chen, Qian-Xue

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5-3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. PMID:26981097

  3. Quantitative 1H MR spectroscopy of the brain in patients with congestive heart failure before and after cardiac transplantation

    International Nuclear Information System (INIS)

    To evaluate the effects of cardiac transplantation on the brain in patients with congestive heart failure (CHF), using quantitative 1H MR spectroscopy (1H-MRS). Ten patients with CHF underwent MRI and quantitative 1H-MRS before and 1-2 and 4-9 months after cardiac transplantation. MR spectra were obtained from parietal white matter (PWM) and occipital gray matter (OGM) using PROBE (PROton Brain Exam). Changes in MR signal intensity were evaluated, and the cerebral metabolic concentrations in PWM and OGM were compared. For comparative purposes, 20 normal volunteers were included. No abnormal MR signal intensity was seen in the brain before or after cardiac transplantation. Changes in cerebral metabolic concentrations were observed on 1H-MRS; concentrations of creatine (Cr) in PWM, and of N-acetylacepartate (NAA), Cr and myo-Inositol(mI) in OGM were significantly lower before transplantation. After successful transplantation, Cr levels returned to their normal range in PWM and OGM, while a slightly increase choline (Cho) level was observed in PWM. Cerebral hypoperfusion in CHF can be evaluated using 1H-MRS. MRS may play a substantial role in monitoring the effect of cardiac transplantation

  4. TRANSPLANTATION

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Objective: To explore the experience ofliver transpfantation in patients with terminalliver failure. Methods: From October 1991 toJuly 1995, 17 adults and 6 children underwentorthotopic liver transplantation. Preoperativediagnosis showed biliary atresia (n=5), Alagillesyndrome (n=1), primary biliary cirrhosis(n=2), cryptogenic cirrhosis (n=2), alcoholic

  5. Subcutaneous Adipose Tissue Transplantation in Diet-Induced Obese Mice Attenuates Metabolic Dysregulation While Removal Exacerbates It.

    Science.gov (United States)

    Foster, M T; Softic, S; Caldwell, J; Kohli, R; de Kloet, A D; Seeley, R J

    2013-08-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2 mice received control surgery, subcutaneous fat removal or hetero-transplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks post-surgery. Adipose mass and portal adipokines, cytokines, lipids and insulin were measured from samples collected at 5 weeks post-surgery. Auto- and hetero- transplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration and reduced portal lipids and hepatic triglycerides compared with HFD controls. Hetero-transplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in

  6. The Additional Detrimental Effects of Cold Preservation on Transplantation-Associated Injury in Kidneys from Living and Brain-Dead Donor Rats

    NARCIS (Netherlands)

    Hoeger, Simone; Petrov, Kiril; Reisenbuechler, Anke; Fontana, Johann; Selhorst, Jochen; Hanusch, Christine; Beck, Grietje; Seelen, Marc A.; van Son, Willem J.; Waldherr, Ruediger; Schnuelle, Peter; Yard, Benito A.

    2009-01-01

    Background. Brain death and cold preservation are major alloantigen-independent risk factors for transplantation Outcome. The present study was conducted to assess the influence of these factors on transplantation-associated injury independently or in combination. Methods. Brain death was induced in

  7. Impact of gamma sterilization upon strength properties of soft-tissue transplants

    International Nuclear Information System (INIS)

    The impact of sterilization upon the strength of soft-tissue transplants stored in the tissue bank at the N. I. Pirogov Institute for Emergency Medical Aid, namely: dura mater, xenopericardium, and umbilical cord is studied. The radiation dose used was 2.5 Mrad. Findings indicated that the mean deformation limit of dura mater remained unaltered following treatment by either deep freezing and lyophilization or by lyophilization with a subsequent gamma-sterilization. The mean tension limit (destructive force per unit surface area of specimen cross section) has, however, dropped substantially for dura mater treated with lyophilization combined with gamma sterilization. While enopericardium strength was unaffected when treated with the proteolytic enzyme alprim, it declined upon subsequent gamma sterilization. Strength properties of umbilical cord were but insignificantly diminished after gamma sterilization. Based on these findings, it is recommended to avoid additional gamma sterilization of lyophilized dura mater and enzyme-treated xenopericardium in cases when allowance for medical strain upon transplants is to be made. (A.B.)

  8. Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord

    OpenAIRE

    Bjugstad, Kimberly B.; Craig Lanning; Jennifer Wagner; Aurand, Emily R.

    2012-01-01

    Tissue engineering strategies employing biomaterials have made great progress in the last few decades. However, the tissues of the brain and spinal cord pose unique challenges due to a separate immune system and their nature as soft tissue. Because of this, neural tissue engineering for the brain and spinal cord may require re-establishing biocompatibility and functionality of biomaterials that have previously been successful for tissue engineering in the body. The goal of this review is to b...

  9. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration.

    Science.gov (United States)

    Shirai, Hiroshi; Mandai, Michiko; Matsushita, Keizo; Kuwahara, Atsushi; Yonemura, Shigenobu; Nakano, Tokushige; Assawachananont, Juthaporn; Kimura, Toru; Saito, Koichi; Terasaki, Hiroko; Eiraku, Mototsugu; Sasai, Yoshiki; Takahashi, Masayo

    2016-01-01

    Retinal transplantation therapy for retinitis pigmentosa is increasingly of interest due to accumulating evidence of transplantation efficacy from animal studies and development of techniques for the differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells into retinal tissues or cells. In this study, we aimed to assess the potential clinical utility of hESC-derived retinal tissues (hESC-retina) using newly developed primate models of retinal degeneration to obtain preparatory information regarding the potential clinical utility of these hESC-retinas in transplantation therapy. hESC-retinas were first transplanted subretinally into nude rats with or without retinal degeneration to confirm their competency as a graft to mature to form highly specified outer segment structure and to integrate after transplantation. Two focal selective photoreceptor degeneration models were then developed in monkeys by subretinal injection of cobalt chloride or 577-nm optically pumped semiconductor laser photocoagulation. The utility of the developed models and a practicality of visual acuity test developed for monkeys were evaluated. Finally, feasibility of hESC-retina transplantation was assessed in the developed monkey models under practical surgical procedure and postoperational examinations. Grafted hESC-retina was observed differentiating into a range of retinal cell types, including rod and cone photoreceptors that developed structured outer nuclear layers after transplantation. Further, immunohistochemical analyses suggested the formation of host-graft synaptic connections. The findings of this study demonstrate the clinical feasibility of hESC-retina transplantation and provide the practical tools for the optimization of transplantation strategies for future clinical applications. PMID:26699487

  10. Magnetic resonance brain tissue segmentation based on sparse representations

    Science.gov (United States)

    Rueda, Andrea

    2015-12-01

    Segmentation or delineation of specific organs and structures in medical images is an important task in the clinical diagnosis and treatment, since it allows to characterize pathologies through imaging measures (biomarkers). In brain imaging, segmentation of main tissues or specific structures is challenging, due to the anatomic variability and complexity, and the presence of image artifacts (noise, intensity inhomogeneities, partial volume effect). In this paper, an automatic segmentation strategy is proposed, based on sparse representations and coupled dictionaries. Image intensity patterns are singly related to tissue labels at the level of small patches, gathering this information in coupled intensity/segmentation dictionaries. This dictionaries are used within a sparse representation framework to find the projection of a new intensity image onto the intensity dictionary, and the same projection can be used with the segmentation dictionary to estimate the corresponding segmentation. Preliminary results obtained with two publicly available datasets suggest that the proposal is capable of estimating adequate segmentations for gray matter (GM) and white matter (WM) tissues, with an average overlapping of 0:79 for GM and 0:71 for WM (with respect to original segmentations).

  11. Outcome of kidney transplantation between controlled cardiac death and brain death donors: a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Ming Yingzi; Shao Mingjie; Tian Tingting; She Xingguo; Liu Hong; Ye Shaojun; Ye Qifa

    2014-01-01

    Background Our goal was to evaluate the outcomes of kidney transplants from controlled cardiac death donors compared with brain death donors by conducting a meta-analysis of cohort studies.Methods The PubMed database and EMBASE were searched from January 1980 to July 2013 to identify studies that met pre-stated inclusion criteria.Reference lists of retrieved articles were also reviewed.Two authors independently extracted information on the designs of the studies,the characteristics of the study participants,and outcome assessments.Results Nine cohort studies involving 84 398 participants were included in this meta-analysis; 3 014 received kidneys from controlled cardiac death donors and 80 684 from brain death donors.Warm ischemia time was significantly longer for the controlled cardiac death donor group.The incidence of delayed graft function was 2.74 times (P <0.001) greater in the controlled cardiac death donor group.The results are in favor of the brain death donor group on short-term patient and graft survival while this difference became nonsignificant at mid-term and long term.Sensitivity analysis yielded similar results.No evidence of publication bias was observed.Conclusion This meta-analysis of retrospective cohort studies suggests that the outcome after controlled cardiac death donors is comparable with that obtained using kidneys from brain death donors.

  12. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    Institute of Scientific and Technical Information of China (English)

    Xianchao Li; Wensheng Hou; Xiaoying Wu; Wei Jiang; Haiyan Chen; Nong Xiao; Ping Zhou

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy-poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efifciencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra-tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green lfuorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental ifndings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypox-ic-ischemic brain damage.

  13. Real-time changes in brain tissue oxygen during endovascular treatment of cerebral vasospasm

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Bache, Søren; Stavngaard, Trine;

    2015-01-01

    pressure (PtiO₂) in target parenchyma. However, during the intervention, dangerously low levels of brain tissue oxygen, leading to cerebral infarction, may occur. Thus, no clinical improvement was seen in two of the patients and a dramatic worsening was observed in the third patient. Because the decrease...... minute-by-minute changes in brain tissue oxygen during balloon angioplasty and intraarterial administration of vasodilators in three patients.Our results confirm that endovascular intervention is capable of not only resolving angiographic vasospasm, but also of normalizing values of brain tissue oxygen...... in brain tissue oxygen was seen after administration of vasopressor agents, this may be a contributing factor....

  14. Experimental and numerical study on the mechanical behavior of rat brain tissue.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M; Yousefi, H; Haghi, A Motevalli; Sadati, Sja

    2014-02-01

    Brain tissue is a very soft tissue in which the mechanical properties depend on the loading direction. While few studies have characterized these biomechanical properties, it is worth knowing that accurate characterization of the mechanical properties of brain tissue at different loading directions is a key asset for neuronavigation and surgery simulation through haptic devices. In this study, the hyperelastic mechanical properties of rat brain tissue were measured experimentally and computationally. Prepared cylindrical samples were excised from the parietal lobes of rats' brains and experimentally tested by a tensile testing machine. The effects of loading direction on the mechanical properties of brain tissue were measured by applying load on both longitudinal and circumferential directions. The general prediction ability of the proposed hyperelastic model was verified using finite element (FE) simulations of brain tissue tension experiments. The uniaxial experimental results compared well with those predicted by the FE models. The results revealed the influence of loading direction on the mechanical properties of brain tissue. The Ogden hyperelastic material model was suitably represented by the non-linear behavior of the brain tissue, which can be used in future biomechanical simulations. The hyperelastic properties of brain tissue provided here have interest to the medical research community as there are several applications where accurate characterization of these properties are crucial for an accurate outcome, such as neurosurgery, robotic surgery, haptic device design or car manufacturing to evaluate possible trauma due to an impact. PMID:24519528

  15. Brain-derived neurotrophic factor expression is higher in brain tissue from patients with refractory epilepsy than in normal controls

    Institute of Scientific and Technical Information of China (English)

    Yudan Lv; Jiqing Qiu; Zan Wang; Li Cui; Hongmei Meng; Weihong Lin

    2011-01-01

    The role of the brain-derived neurotrophic factor in epilepsy remains controversial. The present study utilized light and electron microscopy to investigate pathological and ultrastructural changes in brain tissue obtained from the seizure foci of 24 patients with temporal epilepsy. We found that epileptic tissue showed neuronal degeneration, glial cell proliferation, nuclear vacuolization, and neural cell tropism. Immunoelectron microscopy and immunohistochemistry showed that brain-derived neurotrophic factor was expressed at significantly higher levels in patients with refractory temporal epilepsy compared with normal controls, demonstrating that the pathological changes within seizure foci in patients with refractory epilepsy are associated with brain-derived neurotrophic factor expression alterations.

  16. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas;

    2011-01-01

    tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination of...

  17. Regulation of ongoing DNA synthesis in normal and neoplastic brain tissue

    OpenAIRE

    Yakisich, Juan Sebastián

    2005-01-01

    The treatment of human brain tumour is challenging in part due to the blood brain barrier and in part due to the specific biology of brain tumours that confer resistance to chemotherapy. For instance, the 5 years survival rate for patients carrying intracranial glioblastoma multiforme has remained at 4-5 % for the last 30 years. The knowledge of the brain tumour biology as well as the biology of the normal brain tissue would help to design new therapeutic strategies and to d...

  18. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Hai-xiao Zhou; Zhi-gang Liu; Xiao-jiao Liu; Qian-xue Chen

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized lfuid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantationvia the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function signiifcantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and signiifcantly promotes recovery of neurological functions.

  19. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation

    Directory of Open Access Journals (Sweden)

    McKiernan Patrick J

    2011-05-01

    replenish a compromised Krebs cycle and that this is a marker of compromised aerobic respiration within brain tissue. Thus there is a need for improved brain protective strategies during acute metabolic decompensations. MRS provides a non-invasive tool for which could be employed to evaluate novel treatments aimed at restoring basal ganglia homeostasis. The results from the liver transplantation sub-group supports the hypothesis that liver transplantation provides systemic metabolic stability by providing a hepatic pool of functional propionyl CoA carboxylase, thus preventing further acute decompensations which are associated with the risk of brain infarction.

  20. Cytological features of live limbal tissue donor eyes for autograft or allograft limbal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Jeison de Nadai Barros

    2011-08-01

    Full Text Available PURPOSE: To evaluate by impression cytology (IC the corneal surface of live limbal tissue donor eyes for autograft or allograft limbal stem cell transplantation (LSCT. METHODS: Twenty limbal donors were enrolled (17 for autograft LSCT and 3 for allograft. Impression cytology was performed before transplantation of superior and inferior limbal grafts and after the third postoperative month. RESULTS: Impression cytology analysis showed sheets of corneal epithelial cells and goblet cell absence beyond the edge of the keratectomy sites in all patients, suggesting that conjunctival invasion towards the center did not occur in any eye. Partial conjunctivalization within 2 to 3 clock hours, confirmed by the presence of goblet cells, was limited to the keratectomy site in 10% of the cases. CONCLUSION: A clear central corneal surface was demonstrated in all eyes following surgery leading to the conclusion that limbal donation was a safe procedure in this group of patients. A small percentage of eyes can have donor sites re-epithelized with conjunctival cells at the periphery of the cornea.

  1. Laboratorial evaluation of potential donors of organs and tissues for transplantation

    Directory of Open Access Journals (Sweden)

    Quinidia Lúcia Duarte de Almeida Quithé de Vasconcelos

    2014-06-01

    Full Text Available The objective of this study was to describe the laboratorial complementary evaluation in potential donors of organs and tissues for transplantation. It is a descriptive, quantitative study made in six hospitals in Natal/ Rio Grande do Norte, Brazil, between August/2010 to February/2011. The sample consisted of 65 potential donors and a checklist type instrument was used. Information was collected and analyzed using descriptive statistics. From a total number of donors, 89.2% had blood typing, 80.0% hematological tests and verification of the electrolytes. As for the functions, 70.8% had tests for verification of pulmonary function and 80.0% for renal function. From the alterations detected, 69.2% presented hyperoxia, 66.2% leukocytosis, 47.7% hypernatremia, 43.1% increase in the creatine kinase, 10.0% with positive serology. Relevant tests were not made. It is essential to assess potential donors to detect and treat alterations, ensuring the quality of the organs and the quality of the transplantation.

  2. Small bowel transplantation complicated by cytomegalovirus tissue invasive disease without viremia.

    Science.gov (United States)

    Avsar, Yesim; Cicinnati, Vito R; Kabar, Iyad; Wolters, Heiner; Anthoni, Christoph; Schmidt, Hartmut H J; Beckebaum, Susanne

    2014-06-01

    We report on a small bowel transplant patient, donor/recipient seropositive (D+/R+) for cytomegalovirus (CMV), with a clinical course complicated by CMV disease. Anti-CMV prophylaxis was given for 100 days. Immunosuppression consisted of alemtuzumab, tacrolimus, mycophenolate mofetil and prednisolone. Five months posttransplant, CMV tissue invasive disease of the upper gastrointestinal tract was evident without the presence of viremia, tested by quantitative polymerase chain reaction (PCR). Complete viral load suppression was achieved with intravenous ganciclovir, followed by valganciclovir for secondary prophylaxis. Mycophenolate mofetil and prednisolone were discontinued. Shortly thereafter the patient presented with recurrent CMV and candida esophagitis. While on ganciclovir and caspofungin, the patient developed CMV tissue invasive disease of the ileal graft, with persistent absence of viremia. Foscarnet and CMV immunoglobulin were added. Viral load declined to undetectable levels; however, clinical improvement did not occur due to occurrence of graft rejection. Despite infliximab and high dose prednisolone, graft rejection was progressive, requiring surgical explantation of the graft. This case highlights the importance of additional diagnostic tools such as endoscopy including PCR analysis of tissue samples. Extension of primary antiviral prophylaxis interval up to 6 months and prolonged retreatment for recurrent CMV disease may be useful to avoid severe CMV-related complications. PMID:24703746

  3. Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord

    Directory of Open Access Journals (Sweden)

    Kimberly B. Bjugstad

    2012-11-01

    Full Text Available Tissue engineering strategies employing biomaterials have made great progress in the last few decades. However, the tissues of the brain and spinal cord pose unique challenges due to a separate immune system and their nature as soft tissue. Because of this, neural tissue engineering for the brain and spinal cord may require re-establishing biocompatibility and functionality of biomaterials that have previously been successful for tissue engineering in the body. The goal of this review is to briefly describe the distinctive properties of the central nervous system, specifically the neuroimmune response, and to describe the factors which contribute to building polymer hydrogels compatible with this tissue. These factors include polymer chemistry, polymerization and degradation, and the physical and mechanical properties of the hydrogel. By understanding the necessities in making hydrogels biocompatible with tissue of the brain and spinal cord, tissue engineers can then functionalize these materials for repairing and replacing tissue in the central nervous system.

  4. Fibroadenomatosis involving bilateral breasts and axillary accessory breast tissues in a renal transplant recipient given cyclosporin A.

    Science.gov (United States)

    Bulakci, Mesut; Gocmez, Ahmet; Demir, Ali Aslan; Salmaslioglu, Artur; Tukenmez, Mustafa; Yavuz, Ekrem; Acunas, Gulden

    2014-10-01

    We present the mammographic and sonographic findings in a case of fibroadenomatosis involving both breasts and axillae in a renal transplant patient after 16 years of treatment with cyclosporin A. Awareness of the fact that cyclosporin A may induce the formation of fibroadenomas, including in accessory breast tissue, is important for correct diagnosis and preventing unnecessary intervention. PMID:25131521

  5. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population. PMID:26184082

  6. Registry of Hospital das Clínicas of the University of São Paulo Medical School: first official solid organ and tissue transplantation report - 2008

    Directory of Open Access Journals (Sweden)

    Estela Azeka

    2009-02-01

    Full Text Available OBJECTIVE: The aim of this study was to report a single center experience of organ and tissue transplantation INTRODUCTION: This is the first report of organ and tissue transplantation at the Hospital das Clínicas of the University of Sao Paulo Medical School. METHODS: We collected data from each type of organ transplantation from 2002 to 2007. The data collected were patient characteristics and actuarial survival Kaplan-Meier curves at 30 days, one year, and five years RESULTS: There were a total of 3,321 transplants at our institution and the 5-year survival curve ranged from 53% to 88%. CONCLUSION: This report shows that solid organ and tissue transplants are feasible within the institution and allow us to expect that the quality of transplantation will improve in the future.

  7. Measurement of Steroid Concentrations in Brain Tissue: Methodological Considerations

    OpenAIRE

    Taves, Matthew D.; Ma, Chunqi; Heimovics, Sarah A.; Saldanha, Colin J.; Soma, Kiran K.

    2011-01-01

    It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer’s disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain ti...

  8. Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target.

    Directory of Open Access Journals (Sweden)

    Karen L Elliott

    Full Text Available The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons to neural crest-derived ganglia (visceral motor neurons or ear-derived hair cells (inner ear and lateral line efferent neurons. Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.

  9. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  10. Moessbauer Studies of Pathological Brain Tissues Affected by PSP Disease

    International Nuclear Information System (INIS)

    Progressive supranuclear palsy (PSP) is a neurological disease leading to the damage of two brain structures: globus pallidus and substantia nigra. The pathomechanism of this disease is still unknown. One of the hypotheses is oxidative stress. Oxidative stress is an overproduction of free radicals in which iron may be involved. To verify the hypothesis that iron may play a role in PSP we performed the Moessbauer comparative studies of pathological and control tissues. Ten samples of PSP globus pallidus, ten samples of PSP substantia nigra, twelve control samples of globus pallidus and nine control samples of substantia nigra were measured in a conventional Moessbauer spectrometer at 90 K. The Moessbauer spectra obtained for all samples showed well resolved doublets with an isomer shift of 0.46 ± 0.01 mm/s and a quadruple splitting of 0.70 ± 0.02 mm/s. The main difference in these preliminary studies was in the concentration of iron. The concentration in PSP samples in globus pallidus was found to be 257 ± 19 ng/mg tissue, compared to 183 ± 22 ng/mg in control samples and 301 ± 26 ng/mg in substantia nigra compared to 188 ± 22 ng/mg in control samples. Taking into consideration that we did not notice any substantial increase in iron concentration in Parkinsonian substantia nigra compared to control substantia nigra, but a substantial increase in both substantia nigra and globus pallidus in PSP, may suggest that iron plays a different role in the pathomechanisms of PSP and of Parkinson's disease. (authors)

  11. Optimization of MRI sequences in observation of SPIO-labled bone marrow stromal cells transplanted into rat brain

    International Nuclear Information System (INIS)

    Objective: To determine the optimal MRI sequence in observation of superparamagnetic iron oxide (SPIO) -labled bone marrow stromal cells (BMSCs)transplanted into rat brain. Methods: SPIO-labled BMSCs were transplanted into the brain of 32 rats. TSE-T1WI, TSE-T2WI and FFE-T2WI were obtained immediately after transplantation to measure and the area and signal intensity of hypointense areas of different sequences with 1.5 T 47 mm inner diameter micro-coil compared. Results: Round or irregular hypointense areas were observed in the brain of all the rats which were transplanted with SPIO-labled BMSCs in the images of the three sequences. Among these, FFE-T2WI showed the biggest hypointense area and the minimum signal intensity. Conclusion: FFE-T2WI sequence is the most sensitive sequence to observe SPIO-labled BMSCs with 1.5 T 47 mm inner diameter micro-coil in vivo. (authors)

  12. Frequency-Dependent Viscoelastic Parameters of Mouse Brain Tissue Estimated by MR Elastography

    OpenAIRE

    Clayton, E. H.; Garbow, J. R.; Bayly, P.V.

    2011-01-01

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include: (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar; and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600 Hz –1...

  13. Detection of acute renal allograft rejection by analysis of renal tissue proteomics in rat models of renal transplantation

    Directory of Open Access Journals (Sweden)

    Dai Yong

    2008-01-01

    Full Text Available At present, the diagnosis of renal allograft rejection requires a renal biopsy. Clinical management of renal transplant patients would be improved if rapid, noninvasive and reliable biomarkers of rejection were available. This study is designed to determine whether such protein biomarkers can be found in renal-graft tissue proteomic approach. Orthotopic kidney transplantations were performed using Fisher (F344 or Lewis rats as donors and Lewis rats as recipients. Hence, there were two groups of renal transplant models: one is allograft (from F344 to Lewis rats; another is syngrafts (from Lewis to Lewis rats serving as control. Renal tissues were collected 3, 7 and 14 days after transplantation. As many as 18 samples were analyzed by 2-D Electrophoresis and mass spectrometry (MALDI-TOF-TOF-MS. Eleven differentially expressed proteins were identified between groups. In conclusion, proteomic technology can detect renal tissue proteins associated with acute renal allograft rejection. Identification of these proteins as diagnostic markers for rejection in patients′ urine or sera may be useful and non-invasive, and these proteins might serve as novel therapeutic targets that also help to improve the understanding of mechanism of renal rejection.

  14. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells

    DEFF Research Database (Denmark)

    Rolandsson, Sara; Andersson Sjöland, Annika; Brune, Jan C;

    2014-01-01

    , fibroblast/100 cells. In situ staining of lung tissues revealed that CD90/CD105 MSCs were located perivascularly. MSC were tissue-resident and exclusively donor lung-derived even in biopsies obtained from patients as long as 16 years after transplantation. Culture-derived mesenchymal stromal cells showed......BACKGROUND: Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported. This...... and peripheral transbronchial biopsies of lung-transplanted patients and evaluated using a comprehensive panel of in vitro and in vivo assays. RESULTS: Primary MSC were enriched in the CD90/CD105 mononuclear cell fraction with mesenchymal progenitor frequencies of up to four colony-forming units...

  15. The effects of the hypothermic management of brain dead dogs on preserving graft viability in heart transplantation.

    Science.gov (United States)

    Ichikawa, H; Sakata, K; Takahashi, T; Ogiwara, H; Otaki, A; Ishikawa, S; Morishita, Y

    1998-02-01

    The effect of hypothermic management for brain dead dogs on preserving graft viability was evaluated through preservation and transplantation. After the occurrence of brain death, 43 dogs were divided into two groups; the normothermic group (37.2+/-0.3 degrees C) and the hypothermic group (31.8+/-0.3 degrees C) according to the esophageal temperature. After the 6-hour management of brain dead donors, the heart beat was arrested using a cardioplegic solution followed by coronary vascular bed washout. The donor heart was then harvested and preserved for 12 hours with simple immersion into the University of Wisconsin solution. Following preservation, orthotopic transplantation was performed in six grafts randomly selected from each group. During the 6-hour management of brain dead dogs; 1) heart rates, rate-pressure products, and the total amount of catecholamine were significantly (p<0.05) lower in the hypothermic group than in the normothermic group, and 2) lactate contents collected from the coronary sinus blood and O2-extraction rates of the heart tended to be lower in the hypothermic group than in the normothermic group. During 12 hours of preservation, intracellular pH and creatine phosphate contents were higher in the hypothermic group than in the normothermic group. Following orthotopic transplantation, the animals in the hypothermic group showed a significantly (p<0.05) higher recovery rate of left ventricular (LV) pressure and the maximum rate of the rise of LV pressure compared with normothermic group animals. We conclude that the hypothermic management of brain dead dogs may be effective in preserving graft viability and may provide a clinical application for heart transplantation with acceptable outcomes. PMID:9537536

  16. Safety considerations for transplanting cryopreserved ovarian tissue to restore fertility in female patients who have recovered from Ewing's sarcoma

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Greve, Tine; Wielenga, Vera Timmermans;

    2014-01-01

    Ewing's sarcoma (EWS) is a highly malignant cancer in children, adolescents and young adults. The chemotherapy required to treat female EWS patients may cause primary ovarian insufficiency and infertility as a side effect. Cryopreservation of ovarian tissue before the start of chemotherapy can...... potentially preserve fertility. When the patient has been cured and primary ovarian insufficiency has developed, transplantation of frozen/thawed ovarian tissue can restore ovarian function. The tissue is usually collected before chemotherapy is initiated, and malignant cells may contaminate the stored...... EWS patients and presents a new case of malignant cells in an ovarian biopsy from a girl with EWS....

  17. Dynamically monitoring tissue factor and tissue factor pathway inhibitor following secondary brain injury

    Institute of Scientific and Technical Information of China (English)

    吴雪海; 施小燕; 干建新; 卢兴国; 江观玉; 周君富

    2003-01-01

    Objective: To study the altering rule of coagulation function at molecular level in patients with secondary brain injury (SBI).Methods: Tissue factor (TF) and tissue factor pathway inhibitor (TFPI) were studied in 32 patients 1, 2, 3 and 7 days after craniocerebral injury. Repeated cranial CT scans and platelet counts were made simultaneously. Same measurements were done in 30 normal adults except CT scan.Results: No obvious difference was found in age, sex and platelet count between the injured and the normal groups. TFPI/TF decreased markedly in the first week after injury in patients with SBI, but only decreased on the 7th day in the patients without obvious SBI. For the patients who developed delayed intracranial hematoma (DIH) or hematoma enlargement, TF rose only 1 and 2 days after injury, but TFPI had a tendency to rise again after a fall on the 3rd day. For those patients who developed no DIH, TF rose all the time within the 1st week.Conclusions: Decrease of TFPI/TF for a long time, especially within 3 days after injury, may be one of the most important reasons for SBI. High expression of TF for a relative short time and increase of TFPI after a fall within 3 days may be one of the important reasons for DIH or hematoma enlargement.

  18. Temporal dynamics and determinants of whole brain tissue volume changes during recovery from alcohol dependence.

    Science.gov (United States)

    Gazdzinski, Stefan; Durazzo, Timothy C; Meyerhoff, Dieter J

    2005-06-01

    Brain shrinkage and its partial reversibility with abstinence is a common neuroimaging finding in alcohol dependent individuals. We used an automated three-dimensional whole brain magnetic resonance imaging method (boundary shift integral) in 23 alcohol dependent individuals to measure the temporal dynamics of cerebral tissue and spinal fluid volume changes over a 12-month interval and to examine the major determinants of brain tissue change rates during abstinence and non-abstinence. We found more rapid brain tissue gain during the first month of sobriety than in the following months. The most rapid volume recovery was observed in abstinent individuals with the greatest baseline brain shrinkage and drinking severity. The rapid reversal of brain volume gains in non-abstinent individuals and tissue volume changes are modulated by duration of abstinence and non-abstinence periods, as well as recency of non-abstinence. Age, family history density of alcoholism, relapse severity, and duration or age of onset of heavy drinking were not major determinants of brain shrinkage and brain volume recovery rates. Treatment providers may use this tangible information to reinforce the biomedical benefits of sobriety. Previous quantitative measurements of brain volumes in alcohol dependent individuals performed after several weeks of abstinence likely underestimated the full extent of chronic alcohol-associated brain shrinkage. PMID:15893157

  19. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs

    Science.gov (United States)

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-01-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks’ balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  20. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs.

    Science.gov (United States)

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-06-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks' balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  1. Dependence of elemental concentrations in Alzheimer brain tissue on disease duration and implications

    International Nuclear Information System (INIS)

    There has been recent interest in determining elemental concentrations of brain tissue affected by Alzheimer's disease and comparing these with concentrations in 'normal' brain tissue. Although age and sex influences on elemental concentrations are often allowed for, the duration for which a patient was suffering from Alzheimer's disease is a factor rarely considered. In the work presented the concentrations of sodium, potassium, chlorine and bromine in the frontal lobe of the Alzheimer brain are determined using the techniques of particle induced X ray emission (PIXE) and instrumental neutron activation analysis (INAA). Concentrations of Na, Cl and Br were found to be high in Alzheimer brain tissue compared with 'normal' tissue, with concentrations lowest in brain tissue of long disease duration. Potassium, on the other hand, was found to have low concentrations in Alzheimer brain tissue but exhibited the highest concentrations in brain tissue of longest disease duration. The implication of this is that for concentrations from different sources to be compared, the disease duration is an important factor. (author)

  2. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo

    Science.gov (United States)

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-06-01

    Objective. The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach. Acute force measurements were made using a load cell in n = 3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 s interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results. The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p brain tissue. Understanding the material behavior at the site of tissue contact will help to improve neural implant design.

  3. Phospholipase A2 changes and its significance on brain tissue of rat in severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yao Xuan; Chen Xi; Ji Zongzheng

    2007-01-01

    Objective To survey changes and the significance of phospholipase A2(PLA2) on brain tissue of SD rat in acute pancreatitis. Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct, rat model of severe acute pancreatitis (SAP) was made,and it included four groups: the control group, the sham-operation group, the SAP group and the PLA2 inhibitor-treated group of SAP. Serum amylases, PLA2 and PLA2 in brain tissue were measured and the brain tissue changes were observed. Results There were no significant difference in serum amylases, PLA2 and PLA2 in brain tissue between the sham-operation and the control groups; the levels of serum amylases, PLA2 and PLA2 in brain tissue in the SAP group were higher than those in the control. In the SAP group expansion and hemorrhage of meninges, intracephalic arteriolar hyperemia, in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed, significant differences were found between two groups.Compared with the SAP group, the level of serum amylase, PLA2 and PLA2 in brain tissue were reduced significantly in the treatment group of SAP. Pathological damages in the treatment group were significantly reduced when compared with the SAP group. Conclusion PLA2 might play an important role in brain tissue damages in severe acute pancreatitis.

  4. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    Science.gov (United States)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  5. Propagation of damage in brain tissue: coupling the mechanics of oedema and oxygen delivery.

    Science.gov (United States)

    Lang, Georgina E; Vella, Dominic; Waters, Sarah L; Goriely, Alain

    2015-11-01

    Brain tissue swelling, or oedema, is a dangerous consequence of traumatic brain injury and stroke. In particular, a locally swollen region can cause the injury to propagate further through the brain: swelling causes mechanical compression of the vasculature in the surrounding tissue and so can cut off that tissue's oxygen supply. We use a triphasic mathematical model to investigate this propagation, and couple tissue mechanics with oxygen delivery. Starting from a fully coupled, finite elasticity, model, we show that simplifications can be made that allow us to express the volume of the propagating region of damage analytically in terms of key parameters. Our results show that performing a craniectomy, to alleviate pressure in the brain and allow the tissue to swell outwards, reduces the propagation of damage; this finding agrees with experimental observations. PMID:25822263

  6. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  7. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    International Nuclear Information System (INIS)

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm

  8. Identifying markers of pathology in SAXS data of malignant tissues of the brain

    International Nuclear Information System (INIS)

    Conventional neuropathological analysis for brain malignancies is heavily reliant on the observation of morphological abnormalities, observed in thin, stained sections of tissue. Small Angle X-ray Scattering (SAXS) data provide an alternative means of distinguishing pathology by examining the ultra-structural (nanometer length scales) characteristics of tissue. To evaluate the diagnostic potential of SAXS for brain tumors, data was collected from normal, malignant and benign tissues of the human brain at station 2.1 of the Daresbury Laboratory Synchrotron Radiation Source and subjected to data mining and multivariate statistical analysis. The results suggest SAXS data may be an effective classifier of malignancy

  9. Effects of three different types of antifreeze proteins on mouse ovarian tissue cryopreservation and transplantation.

    Directory of Open Access Journals (Sweden)

    Jaewang Lee

    Full Text Available Ovarian tissue (OT cryopreservation is effective in preserving fertility in cancer patients who have concerns about fertility loss due to cancer treatment. However, the damage incurred at different steps during the cryopreservation procedure may cause follicular depletion; hence, preventing chilling injury would help maintain ovarian function.This study was designed to investigate the beneficial effects of different antifreeze proteins (AFPs on mouse ovarian tissue cryopreservation and transplantation.Ovaries were obtained from 5-week-old B6D2F1 mice, and each ovary was cryopreserved using two-step vitrification and four-step warming procedures. In Experiment I, ovaries were randomly allocated into fresh, vitrification control, and nine experimental groups according to the AFP type (FfIBP, LeIBP, type III and concentration (0.1, 1, 10 mg/mL used. After vitrification and warming, 5,790 ovarian follicles were evaluated using histology and TUNEL assays, and immunofluorescence for τH2AX and Rad51 was used to detect DNA double-strand breaks (DSBs and repair (DDR, respectively. In Experiment II, 20 mice were randomly divided into two groups: one where the vitrification and warming media were supplemented with 10 mg/mL LeIBP, and the other where media alone were used (control. Ovaries were then autotransplanted under both kidney capsules 7 days after vitrification together with the addition of 10 mg/mL LeIBP in the vitrification-warming media. After transplantation, the ovarian follicles, the percentage of apoptotic follicles, the extent of the CD31-positive area, and the serum FSH levels of the transplanted groups were compared.In Experiment I, the percentage of total grade 1 follicles was significantly higher in the 10 mg/mL LeIBP group than in the vitrification control, while all AFP-treated groups had significantly improved grade 1 primordial follicle numbers compared with those of the vitrification control. The number of apoptotic (TUNEL

  10. The Possible Protective Effect of Bone Marrow Transplantation on the Haematopoietic and Lymphoid Tissues in Gamma-Irradiated Rats

    International Nuclear Information System (INIS)

    The current work was done on male albino rats (Rattus norvegicus) - of about 110 to 150 g body weight - to investigate whether bone marrow (BM) transplantation has a role in reducing the dangerous effect of γ-irradiation on the haematopoietic and lymphoid tissues. Control group, BM-injected group, irradiated group and irradiated BM-injected group were used. All the treated animal groups were sacrificed after 5 weeks of the treatments. The haematological analyses included the blood components (WBCs, RBCs, HGB, HCT, PLT). The biochemical analyses included lactate dehydrogenase, malondialdehyde (MDA) and glutathione (GSH). The histopathological study included the bone marrow, spleen and intestinal lymph nodes. Exposure to γ-radiation induced a significant decrease in certain blood components (white blood cells, red blood cells, haemoglobin content, haematocrit value, blood platelets count) and GSH level, and a significant increase in lactate dehydrogenase and MDA levels. Reduction in bone marrow components, decrease in cell populations of the spleen tissue and atrophy of lymph nodes tissue were recorded. BM transplantation after 3 hours to whole body gamma-radiation restored the value of the haematocrit, partially ameliorated the other blood component (WBCs, RBCs, HGB, HCT, PLT) and demonstrated a significant preservation of the bone marrow components and scanty adipose cells’ replacement. An increase in cellularity of the periarteriolar lymphocyte sheath of the white pulps in the spleen tissue and the presence of follicular hyperplasia in the lymph nodes tissue were detected. In Conclusion, BM transplantation exerts a protective against radiation exposure on the haematopoietic and lymphoid tissues of the irradiatedon the haematopoietic and lymphoid tissues of the irradiated animals

  11. Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: a rabbit model.

    Science.gov (United States)

    Wu, Zheng; Zhou, Qiang; Duan, Haoyun; Wang, Xiaoran; Xiao, Jianhui; Duan, Hucheng; Li, Naiyang; Li, Chaoyang; Wan, Pengxia; Liu, Ying; Song, Yiyue; Zhou, Chenjing; Huang, Zheqian; Wang, Zhichong

    2014-01-01

    To construct an auto-tissue-engineered lamellar cornea (ATELC) for transplantation, based on acellular porcine corneal stroma and autologous corneal limbal explants, a dynamic culture process, which composed of a submersion culture, a perfusion culture and a dynamic air-liquid interface culture, was performed using appropriate parameters. The results showed that the ATELC-Dynamic possessed histological structure and DNA content that were similar to native lamellar cornea (NLC, p>0.05). Compared to NLC, the protein contents of zonula occludens-1, desmocollin-2 and integrin β4 in ATELC-Dynamic reached 93%, 89% and 73%, respectively. The basal cells of ATELC-Dynamic showed a better differentiation phenotype (K3-, P63+, ABCG2+) compared with that of ATELC in static air-lift culture (ATELC-Static, K3+, P63-, ABCG2-). Accordingly, the cell-cloning efficiency of ATELC-Dynamic (9.72±3.5%) was significantly higher than that of ATELC-Static (2.13±1.46%, p0.05). Rabbit lamellar keratoplasty showed that the barrier function of ATELC-Dynamic was intact, and there were no signs of epithelial shedding or neovascularization. Furthermore, the ATELC-Dynamic group had similar optical properties and wound healing processes compared with the NLC group. Thus, the sequential dynamic culture process that was designed according to corneal physiological characteristics could successfully reconstruct an auto-lamellar cornea with favorable morphological characteristics and satisfactory physiological function. PMID:24705327

  12. Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: a rabbit model.

    Directory of Open Access Journals (Sweden)

    Zheng Wu

    Full Text Available To construct an auto-tissue-engineered lamellar cornea (ATELC for transplantation, based on acellular porcine corneal stroma and autologous corneal limbal explants, a dynamic culture process, which composed of a submersion culture, a perfusion culture and a dynamic air-liquid interface culture, was performed using appropriate parameters. The results showed that the ATELC-Dynamic possessed histological structure and DNA content that were similar to native lamellar cornea (NLC, p>0.05. Compared to NLC, the protein contents of zonula occludens-1, desmocollin-2 and integrin β4 in ATELC-Dynamic reached 93%, 89% and 73%, respectively. The basal cells of ATELC-Dynamic showed a better differentiation phenotype (K3-, P63+, ABCG2+ compared with that of ATELC in static air-lift culture (ATELC-Static, K3+, P63-, ABCG2-. Accordingly, the cell-cloning efficiency of ATELC-Dynamic (9.72±3.5% was significantly higher than that of ATELC-Static (2.13±1.46%, p0.05. Rabbit lamellar keratoplasty showed that the barrier function of ATELC-Dynamic was intact, and there were no signs of epithelial shedding or neovascularization. Furthermore, the ATELC-Dynamic group had similar optical properties and wound healing processes compared with the NLC group. Thus, the sequential dynamic culture process that was designed according to corneal physiological characteristics could successfully reconstruct an auto-lamellar cornea with favorable morphological characteristics and satisfactory physiological function.

  13. In Situ Transplantation of Alginate Bioencapsulated Adipose Tissues Derived Stem Cells (ADSCs via Hepatic Injection in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Mong-Jen Chen

    Full Text Available Adipose tissue derived stem cells (ADSCs transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model.The ADSCs isolated from human alpha 1 antitrypsin (M-hAAT transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one. Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two.Our results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted

  14. PHANTOM MODEL OF HUMAN BRAIN TISSUE FOR CELLULAR PHONE FREQUENCIES IN ELECTROMAGNETIC FIELD RADIATION ABSORPTION STUDIES

    OpenAIRE

    Özen, Şükrü; Köylü, Halis

    2010-01-01

    ABSTRACTThere is a necessity of tissue equivalent (phantom) models in research of electromagnetic (EM) effects in biologic tissues. Recently, many kinds of tissue models depend on the different aim were proposed. So many studies were carried on the interaction of human-head and cellular phone. The most of them are related to numerical models. Owing to difficulty of study on human body, simulation of human tissues is required. In this study two different, for 900MHz and for 1800MHz, brain equi...

  15. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A;

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been no...... studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from...... conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean...

  16. Detection of acute renal allograft rejection by analysis of Renal TissueProteomics in rat models of renal transplantation

    International Nuclear Information System (INIS)

    At present, the diagnosis of renal allograft rejection requires a renalbiopsy. Clinical management of renal transplant patients would be improved ifrapid, noninvasive and reliable biomarkers of rejection were available. Thisstudy is designed to determine whether such protein biomarkers can be foundin renal graft tissue proteomic approach. Orthotopic kidney transplantationswere performed using Fisher (F344) or Lewis rats as donors and Lewis rats asrecipients. Hence, there were two groups of renal transplant models: one isallograft (from F344 to Lewis rats); another is syngrafts (from Lewis toLewis rats) serving as control. Renal tissues were collected 3, 7 and 14 daysafter transplantation. As many 18 samples were analyzed by 2-DElectrophoresis and mass spectrometry (MALDI-TOF-TOF-MS). Elevendifferentially expressed proteins were identified between groups. Inconclusion, proteomic technology can detect renal tissue proteins associatedwith acute renal allograft rejection. Identification of these proteins asdiagnostic markers for rejection in patient's urine or sera may be useful andnon-invasive, and these proteins might serve as novel therapeutic targetsthat also help to improve the understanding of mechanisms of renal rejection.(author)

  17. Gouty tophus simulating soft tissue tumor in a heart transplant recipient

    International Nuclear Information System (INIS)

    Gouty arthritis is the most frequent rheumatological complication among cyclosporine-treated organ transplant recipients. We report one case of pseudotumoral intramuscular tophaceous deposit of the forearm, in a heart transplant patient with a history of traumatic wound to the same area 17 years previously, and with no known arthritis. (orig.)

  18. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    OpenAIRE

    Anafi, Ron C.; Pellegrino, Renata; Shockley, Keith R.; Romer, Micah; Tufik, Sergio; Pack, Allan I.

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the...

  19. The migration and differentiation of hUC-MSCs(CXCR4/GFP) encapsulated in BDNF/chitosan scaffolds for brain tissue engineering.

    Science.gov (United States)

    Huang, Chuanjun; Zhao, Longxiang; Gu, Jun; Nie, Dekang; Chen, Yinan; Zuo, Hao; Huan, Wei; Shi, Jinlong; Chen, Jian; Shi, Wei

    2016-01-01

    We previously developed a biomaterial scaffold that could effectively provide seed cells to a lesion cavity resulting from traumatic brain injury. However, we subsequently found that few transplanted human umbilical cord mesenchymal stem cells (hUC-MSCs) are able to migrate from the scaffold to the lesion boundary. Stromal derived-cell factor-1α and its receptor chemokine (C-X-C motif) receptor (CXCR)4 are chemotactic factors that control cell migration and stem cell recruitment to target areas. Given the low expression level of CXCR4 on the hUC-MSC membrane, lentiviral vectors were used to generate hUC-MSCs stably expressing CXCR4 fused to green fluorescent protein (GFP) (hUC-MSCs(CXCR4/GFP)). We constructed a scaffold in which recombinant human brain-derived neurotrophic factor (BDNF) was linked to chitosan scaffolds with the crosslinking agent genipin (CGB scaffold). The scaffold containing hUC-MSCs(CXCR4/GFP) was transplanted into the lesion cavity of a rat brain, providing exogenous hUC-MSCs to both lesion boundary and cavity. These results demonstrate a novel strategy for inducing tissue regeneration after traumatic brain injury. PMID:27147644

  20. Mimicking brain tissues by doping scatterers into gelatin tissue phantoms and determination of chemical species responsible for NMPPAS

    Science.gov (United States)

    Dahal, Sudhir; Cullum, Brian M.

    2012-06-01

    It has been shown that non-resonant multiphoton photoacoustic spectroscopy (NMPPAS) has a great potential to be used as a high resolution surgical guidance technique during brain tumor surgery due to its ability of non-invasive or minimally invasive tumor differentiation. However, for experimental purposes associated with method validation, the use of real tissues is not always ideal because of issues such as availability, safety, storage, chemical doping, necessary control of size and shape, etc. To overcome these issues, tissue phantoms made from animal tissues and/or biochemical constituents, are often employed for such analyses. This work demonstrates the ability to develop and characterize gelatin based tissue phantoms with comparable optical and acoustic properties to real tissues by doping the phantoms with a scattering substance, 0.3 μm diameter Al2O3 particles. Using these phantoms, light scattering coefficients (μs) of 39 cm-1 have been generated, which are comparable to real brain tissue, thus making them a great alternative to real tissue for validation studies. In addition, this work also investigates the non-fluorescent species NAD+ found in the tissues, to evaluate its potential for being detected by NMPPAS. NMPPAS spectra of NAD+ shows a very promising beginning to determine other chemical species such as flavins, collagen, tryptophan, etc responsible for NMPPAS spectral signatures, associated with tumorogenesis.

  1. Impact of brain tissue filtering on neurostimulation fields: A modeling study

    OpenAIRE

    Wagner, Tim; Eden, Uri; Rushmore, Jarrett; Russo, Christopher J.; Dipietro, Laura; Fregni, Felipe; Simon, Stephen; Rotman, Stephen; Pitskel, Naomi B.; Ramos-Estebanez, Ciro; PASCUAL-LEONE, ALVARO; Grodzinsky, Alan J.; Zahn, Markus; Valero-Cabre, Antoni

    2013-01-01

    Electrical neurostimulation techniques, such as deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS), are increasingly used in the neurosciences, e.g., for studying brain function, and for neurotherapeutics, e.g., for treating depression, epilepsy, and Parkinson’s disease. The characterization of electrical properties of brain tissue has guided our fundamental understanding and application of these methods, from electrophysiologic theory to clinical dosing-metrics. Nonethe...

  2. Isolation and Functional Assessment of Mitochondria from Small Amounts of Mouse Brain Tissue

    OpenAIRE

    Chinopoulos, Christos; Zhang, Steven F.; Thomas, Bobby; Ten, Vadim; Starkov, Anatoly A.

    2011-01-01

    Recent discoveries have brought mitochondria functions in focus of the neuroscience research community and greatly stimulated the demand for approaches to study mitochondria dysfunction in neurodegenerative diseases. Many mouse disease models have been generated, but studying mitochondria isolated from individual mouse brain regions is a challenge because of small amount of the available brain tissue. Conventional techniques for isolation and purification of mitochondria from mouse brain subr...

  3. Susceptibility Contrast in High Field MRI of Human Brain as a Function of Tissue Iron Content

    OpenAIRE

    Yao, Bing; Li, Tie-Qiang; van Gelderen, Peter; Shmueli, Karin; de Zwart, Jacco A.; Duyn, Jeff H

    2008-01-01

    Magnetic susceptibility provides an important contrast mechanism for MRI. Increasingly, susceptibility-based contrast is being exploited to investigate brain tissue microstructure and to detect abnormal levels of brain iron as these have been implicated in a variety of neuro-degenerative diseases. However, it remains unclear to what extent magnetic susceptibility-related contrast at high field relates to actual brain iron concentrations. In this study, we performed susceptibility weighted ima...

  4. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    Science.gov (United States)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  5. Discovery of Undescribed Brain Tissue Changes Around Implanted Microelectrode Arrays

    OpenAIRE

    Himanshi Desai

    2012-01-01

    Brain-implantable microelectrode arrays are devicesdesigned to record or electrically stimulate the activity ofneurons in the brain. These devices hold the potential tohelp treat epilepsy, paralysis, blindness, and deafness, andalso provide researchers with insights into a varietyof neural processes, such as memory formation.While these devices have a very promising future,researchers are discovering that their long-termfunctionality is greatly limited by the brain’s naturalimmune response to...

  6. Fetal hypothalamic transplants into brain irradiated rats: Graft morphometry and host behavioral responses

    International Nuclear Information System (INIS)

    This study was designed to test the hypothesis that neural implants can ameliorate or prevent some of the long-term changes associated with CNS irradiation. Using a rat model, the initial study focused on establishing motor, regulatory, and morphological changes associated with brain radiation treatments. Secondly, fetal hypothalamic tissue grafts were placed into the third ventricle of rats which had been previously irradiated. Adult male Long Evans rats received one of three radiation doses (15, 22.5, ampersand 30 Gy) or no radiation. Three days after irradiation, 7 animals in each dose group received an embryonic day 17 hypothalamic graft into the third ventricle while the remaining 8-9 animals in each group received injections of vehicle solution (sham). Few changes were observed in the 15 and 22.5 Gy animals, however rats in the 30 Gy treatment group showed stereotypic and ambulatory behavioral hyperactivity 32 weeks after irradiation. Regulatory changes in the high dose group included decreased growth rate and decreased urine osmolalities, but these measures were extremely variable among animals. Morphological results demonstrated that 30 Gy irradiated animals showed extensive necrosis primarily in the fimbria, which extended into the internal capsule, optic nerve, hippocampus, and thalamus. Hemorrhages were found in the hippocampus, thalamus, and fimbria. Defects in the blood-brain barrier also were evident by entry of intravascularly injected horseradish peroxidase into the parenchyma of the brain. Animals in the 30 Gy grafted group showed fewer behavioral changes and less brain damage than their sham grafted counterparts. Specifically, activity measures were comparable to normal levels, and a dilute urine was not found in the 30 Gy implanted rats. Morphological changes support these behavioral results since only two 30 Gy implanted rats showed necrosis

  7. Fetal hypothalamic transplants into brain irradiated rats: Graft morphometry and host behavioral responses

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, S.H.; Rubin, P.; White, H.C.; Wiegand, S.J.; Gash, D.M. (Univ. of Rochester Medical Center, NY (USA))

    1990-08-01

    This study was designed to test the hypothesis that neural implants can ameliorate or prevent some of the long-term changes associated with CNS irradiation. Using a rat model, the initial study focused on establishing motor, regulatory, and morphological changes associated with brain radiation treatments. Secondly, fetal hypothalamic tissue grafts were placed into the third ventricle of rats which had been previously irradiated. Adult male Long Evans rats received one of three radiation doses (15, 22.5, 30 Gy) or no radiation. Three days after irradiation, 7 animals in each dose group received an embryonic day 17 hypothalamic graft into the third ventricle while the remaining 8-9 animals in each group received injections of vehicle solution (sham). Few changes were observed in the 15 and 22.5 Gy animals, however rats in the 30 Gy treatment group showed stereotypic and ambulatory behavioral hyperactivity 32 weeks after irradiation. Regulatory changes in the high dose group included decreased growth rate and decreased urine osmolalities, but these measures were extremely variable among animals. Morphological results demonstrated that 30 Gy irradiated animals showed extensive necrosis primarily in the fimbria, which extended into the internal capsule, optic nerve, hippocampus, and thalamus. Hemorrhages were found in the hippocampus, thalamus, and fimbria. Defects in the blood-brain barrier also were evident by entry of intravascularly injected horseradish peroxidase into the parenchyma of the brain. Animals in the 30 Gy grafted group showed fewer behavioral changes and less brain damage than their sham grafted counterparts. Specifically, activity measures were comparable to normal levels, and a dilute urine was not found in the 30 Gy implanted rats. Morphological changes support these behavioral results since only two 30 Gy implanted rats showed necrosis.

  8. Transplanting intact donor tissue enhances dopamine cell survival and the predictability of motor improvements in a rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Rosemary A Fricker

    Full Text Available Primary cell transplantation is currently the gold standard for cell replacement in Parkinson's disease. However, the number of donors needed to treat a single patient is high, and the functional outcome is sometimes variable. The present work explores the possibility of enhancing the viability and/or functionality of small amounts of ventral mesencephalic (VM donor tissue by reducing its perturbation during preparation and implantation. Briefly, unilaterally lesioned rats received either: (1 an intact piece of half an embryonic day 13 (E13 rat VM; (2 dissociated cells from half an E13 rat VM; or (3 no transplant. D-amphetamine- induced rotations revealed that animals receiving pieces of VM tissue or dissociated cells showed significant improvement in ipsilateral rotation 4 weeks post transplantation. By 6 weeks post transplantation, animals receiving pieces of VM tissue showed a trend for further improvement, while those receiving dissociated cells remained at their 4 week scores. Postmortem cell counts showed that the number of dopaminergic neurons in dissociated cell transplants was significantly lower than that surviving in transplants of intact tissue. When assessing the correlation between the number of dopamine cells in each transplant, and the improvement in rotation bias in experimental animals, it was shown that transplants of whole pieces of VM tissue offered greater predictability of graft function based on their dopamine cell content. Such results suggest that maintaining the integrity of VM tissue during implantation improves dopamine cell content, and that the dopamine cell content of whole tissue grafts offers a more predictable outcome of graft function in an animal model of Parkinson's disease.

  9. Stimulating brain tissue with bright light alters functional connectivity in brain at the resting state

    OpenAIRE

    Timo Takala; Markku Timonen; Juha Nikkinen; Jukka Remes; Antti Aunio; Ahmed Abou-Elseoud; Juuso Nissilä; Tuomo Starck; Osmo Tervonen; Vesa Kiviniemi

    2012-01-01

    Light is considered to modulate human brain function only via the retinal pathway, a way of thinking that we aimed to challenge in the present study. Literature provides evidence of inherent phototransduction for instance in the rat brain and there are potentially photosensitive opsin proteins like melanopsin and panopsin in the human brain too. In order to investigate a short term response, functional connectivity changes of the brain were studied in the resting state with functional magneti...

  10. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining. PMID:26830089

  11. Transplanted Bone Marrow Cells Repair Heart Tissue and Reduce Myocarditis in Chronic Chagasic Mice

    OpenAIRE

    MILENA B. P. SOARES; Lima, Ricardo S.; Rocha, Leonardo L.; Takyia, Christina M; Pontes-de-Carvalho, Lain; Campos de Carvalho, Antonio C.; Ribeiro-dos-Santos, Ricardo

    2004-01-01

    A progressive destruction of the myocardium occurs in ∼30% of Trypanosoma cruzi-infected individuals, causing chronic chagasic cardiomyopathy, a disease so far without effective treatment. Syngeneic bone marrow cell transplantation has been shown to cause repair and improvement of heart function in a number of studies in patients and animal models of ischemic cardiopathy. The effects of bone marrow transplant in a mouse model of chronic chagasic cardiomyopathy, in the presence of the disease ...

  12. Molecular Mechanisms of Chronic Kidney Transplant Rejection via Large-Scale Proteogenomic Analysis of Tissue Biopsies

    OpenAIRE

    Nakorchevsky, Aleksey; Hewel, Johannes A.; Kurian, Sunil M.; Mondala, Tony S.; Campbell, Daniel; Head, Steve R.; Marsh, Christopher L.; Yates, John R.; Salomon, Daniel R

    2010-01-01

    The most common cause of kidney transplant failure is the poorly characterized histopathologic entity interstitial fibrosis and tubular atrophy (IFTA). There are no known unifying mechanisms, no effective therapy, and no proven preventive strategies. Possible mechanisms include chronic immune rejection, inflammation, drug toxicity, and chronic kidney injury from secondary factors. To gain further mechanistic insight, we conducted a large-scale proteogenomic study of kidney transplant biopsies...

  13. Ethical and Legal Aspects of Organ and Tissue Donation and Transplantation

    OpenAIRE

    Dan Adrian Luscalov

    2014-01-01

    Transplants can be performed only with observance of the universally accepted medical criteria. The rules and criteria can be different from state to state, but the fundamental principles of this activity must be applied in every state.In this article we will discuss the internationally accepted legal and ethical principles of donation and transplantation. In our discussion we will use a legal text of the Council of Europe: “The Additional Protocol to the Convention on Human Rights and Biomed...

  14. Brain uptake, pharmacokinetics, and tissue distribution in the rat of neurotoxic N-butylbenzenesulfonamide.

    Science.gov (United States)

    Kumar, Ganesh; Smith, Quentin R; Hokari, Mitsuhiko; Parepally, Jagan; Duncan, Mark W

    2007-06-01

    The pharmacokinetics, cerebrovascular permeability, and tissue distribution of the neurotoxic plasticizer N-butylbenzenesulfonamide (NBBS) were determined in rats. A stable isotope-labeled form ([(13)C(6)]NBBS) was used to circumvent ubiquitous contamination that was evident whenever the native form was measured. Plasticizer decline in plasma, following an iv dose of 1 mg/kg, was described by a triexponential decay function. NBBS was cleared from plasma at a rate of 25 ml/min/kg, and 24 h after administration, plasma concentrations represented 0.04% of the administered dose. These data suggest rapid elimination and uptake into tissue; however, NBBS was not accumulated by any of the tissues studied (i.e., liver, kidney, muscle, adipose tissue, and brain). Given the critical interest in NBBS neurotoxicity, the brain uptake of [(13)C(6)]NBBS was further explored in experiments using the in situ brain perfusion technique. During perfusion with protein-free saline for 15-30 s, the single-pass brain extraction for free [(13)C(6)]NBBS was very high (73-100%) with a unidirectional blood-brain barrier transfer constant (K(in)) of > 0.08 ml/s/g. No significant differences were found in [(13)C(6)]NBBS content among the measured brain regions. Plasma protein binding (70%) only slightly lowered the single-pass brain extraction to 48%. In summary, the results demonstrate that NBBS distributes rapidly to tissues, including brain. Though highly lipophilic with a Log octanol/water partition coefficient of 2.17 +/- 0.09, brain:blood ratios (2:1) for NBBS were consistent throughout the experimental duration, with little indication of accumulation. PMID:17369196

  15. GLOBAL CONSULTATION ON ESTABLISHMENT A UNIFIED SURVEILLANCE SYSTEM FOR DONATION AND TRANSPLANTATION OF ORGANS, TISSUES AND CELLS OF HUMAN ORIGIN

    Directory of Open Access Journals (Sweden)

    O. V. Orlova

    2011-06-01

    Full Text Available From from February 7th to 9th 2011, the World Health Organization (WHO, the Italian National Transplant Cen- tre and the EU-funded Project «Vigilance and Surveillance of Substances of Human Origin» joined forces to organise a major global consultation that took place in Bologna, Italy. The scope of the project included organs, tissues and cells for transplantation and for assisted reproduction. The participants represented regulatory and non-regulatory government agencies, professional societies and scientific and clinical specialities from all WHO regions. The meeting explored the work already carried out on-line and agreed on priorities for the future deve- lopment of the Project «Vigilance and Surveillance of Substances of Human Origin». 

  16. Numerical analysis of the diffusive mass transport in brain tissues with applications to optical sensors

    Science.gov (United States)

    Neculae, Adrian P.; Otte, Andreas; Curticapean, Dan

    2013-03-01

    In the brain-cell microenvironment, diffusion plays an important role: apart from delivering glucose and oxygen from the vascular system to brain cells, it also moves informational substances between cells. The brain is an extremely complex structure of interwoven, intercommunicating cells, but recent theoretical and experimental works showed that the classical laws of diffusion, cast in the framework of porous media theory, can deliver an accurate quantitative description of the way molecules are transported through this tissue. The mathematical modeling and the numerical simulations are successfully applied in the investigation of diffusion processes in tissues, replacing the costly laboratory investigations. Nevertheless, modeling must rely on highly accurate information regarding the main parameters (tortuosity, volume fraction) which characterize the tissue, obtained by structural and functional imaging. The usual techniques to measure the diffusion mechanism in brain tissue are the radiotracer method, the real time iontophoretic method and integrative optical imaging using fluorescence microscopy. A promising technique for obtaining the values for characteristic parameters of the transport equation is the direct optical investigation using optical fibers. The analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. This paper presents a set of computations concerning the mass transport inside the brain tissue, for different types of cells. By measuring the time evolution of the concentration profile of an injected substance and using suitable fitting procedures, the main parameters characterizing the tissue can be determined. This type of analysis could be an important tool in understanding the functional mechanisms of effective drug delivery in complex structures such as the brain tissue. It also offers possibilities to realize optical imaging methods for in vitro and in vivo

  17. A protein homeostasis signature in healthy brains recapitulates tissue vulnerability to Alzheimer's disease.

    Science.gov (United States)

    Freer, Rosie; Sormanni, Pietro; Vecchi, Giulia; Ciryam, Prajwal; Dobson, Christopher M; Vendruscolo, Michele

    2016-08-01

    In Alzheimer's disease, aggregates of Aβ and tau in amyloid plaques and neurofibrillary tangles spread progressively across brain tissues following a characteristic pattern, implying a tissue-specific vulnerability to the disease. We report a transcriptional analysis of healthy brains and identify an expression signature that predicts-at ages well before the typical onset-the tissue-specific progression of the disease. We obtain this result by finding a quantitative correlation between the histopathological staging of the disease and the expression patterns of the proteins that coaggregate in amyloid plaques and neurofibrillary tangles, together with those of the protein homeostasis components that regulate Aβ and tau. Because this expression signature is evident in healthy brains, our analysis provides an explanatory link between a tissue-specific environmental risk of protein aggregation and a corresponding vulnerability to Alzheimer's disease. PMID:27532054

  18. Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    NARCIS (Netherlands)

    R. de Boer (Renske)

    2011-01-01

    textabstractStudies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by human obs

  19. Prostacyclin infusion may prevent secondary damage in pericontusional brain tissue

    DEFF Research Database (Denmark)

    Reinstrup, Peter; Nordström, Carl-Henrik

    2011-01-01

    Prostacyclin is a potent vasodilator, inhibitor of leukocyte adhesion, and platelet aggregation, and has been suggested as therapy for cerebral ischemia. A case of focal traumatic brain lesion that was monitored using intracerebral microdialysis, and bedside analysis and display is reported here........ When biochemical signs of cerebral ischemia progressed, i.v. infusion of prostacyclin was started....

  20. Computer modeling the boron compound factor in normal brain tissue

    International Nuclear Information System (INIS)

    The macroscopic distribution of borocaptate sodium (Na2B12H11SH or BSH) in normal tissues has been determined and can be accurately predicted from the blood concentration. The compound para-borono-phenylalanine (p-BPA) has also been studied in dogs and normal tissue distribution has been determined. The total physical dose required to reach a biological isoeffect appears to increase directly as the proportion of boron capture dose increases. This effect, together with knowledge of the macrodistribution, led to estimates of the influence of the microdistribution of the BSH compound. This paper reports a computer model that was used to predict the compound factor for BSH and p-BPA and, hence, the equivalent radiation in normal tissues. The compound factor would need to be calculated for other compounds with different distributions. This information is needed to design appropriate normal tissue tolerance studies for different organ systems and/or different boron compounds

  1. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14C-leucine, 14C-phenylalanine, and 14C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  2. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  3. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    International Nuclear Information System (INIS)

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  4. Optimal Gaussian Mixture Models of Tissue Intensities in Brain MRI of Patients with Multiple-Sclerosis

    Science.gov (United States)

    Xiao, Yiming; Shah, Mohak; Francis, Simon; Arnold, Douglas L.; Arbel, Tal; Collins, D. Louis

    Brain tissue segmentation is important in studying markers in human brain Magnetic Resonance Images (MRI) of patients with diseases such as Multiple Sclerosis (MS). Parametric segmentation approaches typically assume unimodal Gaussian distributions on MRI intensities of individual tissue classes, even in applications on multi-spectral images. However, this assumption has not been rigorously verified especially in the context of MS. In this work, we evaluate the local MRI intensities of both healthy and diseased brain tissues of 21 multi-spectral MRIs (63 volumes in total) of MS patients for adherence to this assumption. We show that the tissue intensities are not uniform across the brain and vary across (anatomical) regions of the brain. Consequently, we show that Gaussian mixtures can better model the multi-spectral intensities. We utilize an Expectation Maximization (EM) based approach to learn the models along with a symmetric Jeffreys divergence criterion to study differences in intensity distributions. The effects of these findings are also empirically verified on automatic segmentation of brains with MS.

  5. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  6. Microsensors for in vivo Measurement of Glutamate in Brain Tissue

    OpenAIRE

    Miranda van der Zeyden; Oldenziel, Weite H.; Cremers, Thomas I.F.H.; Westerink, Ben H.C.; Si Qin

    2008-01-01

    Several immobilized enzyme-based electrochemical biosensors for glutamate detection have been developed over the last decade. In this review, we compare first and second generation sensors. Structures, working mechanisms, interference prevention, in vitro detection characteristics and in vivo performance are summarized here for those sensors that have successfully detected brain glutamate in vivo. In brief, first generation sensors have a simpler structure and are faster in glutamate detectio...

  7. Static jaw collimation settings to minimize radiation dose to normal brain tissue during stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Young, E-mail: eyhan@uams.edu [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Zhang Xin; Yan Yulong; Sharma, Sunil; Penagaricano, Jose [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Moros, Eduardo [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL (United States); Corry, Peter [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (United States)

    2012-01-01

    At University of Arkansas for Medical Sciences (UAMS) intracranial stereotactic radiosurgery (SRS) is performed by using a linear accelerator with an add-on micromultileaf collimator (mMLC). In our clinical setting, static jaws are automatically adapted to the furthest edge of the mMLC-defined segments with 2-mm (X jaw) and 5-mm (Y jaw) margin and the same jaw values are applied for all beam angles in the treatment planning system. This additional field gap between the static jaws and the mMLC allows additional radiation dose to normal brain tissue. Because a radiosurgery procedure consists of a single high dose to the planning target volume (PTV), reduction of unnecessary dose to normal brain tissue near the PTV is important, particularly for pediatric patients whose brains are still developing or when a critical organ, such as the optic chiasm, is near the PTV. The purpose of this study was to minimize dose to normal brain tissue by allowing minimal static jaw margin around the mMLC-defined fields and different static jaw values for each beam angle or arc. Dose output factors were measured with various static jaw margins and the results were compared with calculated doses in the treatment planning system. Ten patient plans were randomly selected and recalculated with zero static jaw margins without changing other parameters. Changes of PTV coverage, mean dose to predefined normal brain tissue volume adjacent to PTV, and monitor units were compared. It was found that the dose output percentage difference varied from 4.9-1.3% for the maximum static jaw opening vs. static jaw with zero margins. The mean dose to normal brain tissue at risk adjacent to the PTV was reduced by an average of 1.9%, with negligible PTV coverage loss. This dose reduction strategy may be meaningful in terms of late effects of radiation, particularly in pediatric patients. This study generated clinical knowledge and tools to consistently minimize dose to normal brain tissue.

  8. Changes in Lecithin Concentration in the Human Brain Tissue in Some Neurodegenerative Conditions

    International Nuclear Information System (INIS)

    As a consequence of a possible increase in oxidative stress or deterioration of nerve cells during aging, in some states neurodegeneration was demonstrated by multiple biochemical deficiency, especially deficiency of cholesterol and lecithin in brain regions. The aim of this study was to determine the changes in the concentration of lecithin in different regions of brain tissue (MC - motor cortex, NC - nucleus caudates, GT - temporal gyrus) dissected postmortem from people with senile dementia of Alzheimer's type (SDAT), and persons with Parkinson's disease (PD) as compared to people who died without these diseases (C). Spectrophotometric determination of lecithin in 18 postmortem brain tissue regions collected from of 12 persons with SDAT, in 11 postmortem brain tissue regions of 8 persons with PD and in 18 postmortem brain tissue regions of 8 control persons, was performed by enzymatic method. The content of lecithin in MC: 14.4 mg/g fresh tissue (f.t.) and GT: 13.1 mg/g (f.t.) for SDAT was significantly reduced (p < 0.01) by about 30 %, compared to control where there was: 21.6 mg/g (f.t.) in MC and 18.3 mg/g (f.t.) in the GT estimated. In all regions of the brain of PD patients, the content of lecithin was decreased by about 12 % compared to control, but without statistical significance. These results suggest that changes in the content of lecithin in these regions of brain tissue might affect the changes in the membrane potential and cell degeneration. (author)

  9. Trace element determinations in brain tissues from normal and clinically demented individuals

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Mitiko; Genezini, Frederico A., E-mail: mitiko@ipen.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator de Pesquisas; Leite, Renata E.P.; Grinberg, Lea T.; Ferretti, Renata E.L.; Suemoto, Claudia; Pasqualucci, Carlos A.; Jacob-Filho, Wilson, E-mail: renataleite@usp.br, E-mail: lea@grinberg.com.br, E-mail: reloah@usp.br, E-mail: farfel@usp.br, E-mail: csuemoto@gmail.com, E-mail: cpasqua@usp.br, E-mail: wijac@usp.br [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Fac. de Medicina

    2013-07-01

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  10. Trace element determinations in brain tissues from normal and clinically demented individuals

    International Nuclear Information System (INIS)

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  11. Cutaneous Heterotopic Brain Tissue (Neuroglial Choristoma) with Dysplastic Features in a Kitten.

    Science.gov (United States)

    Ramírez, G A; Ressel, L; Altimira, J; Vilafranca, M

    2016-07-01

    A 3-month-old, male European shorthair kitten exhibited an ill-defined, soft mass on the skin of the frontal head, which was present since birth. The surgically resected tissue was representative of a discrete dermal and subcutaneous mass comprising islands of neurons, glial and meningothelial elements, sometimes atypical or dysplastic, separated by dense collagenous connective tissue. There was no evident connection between this tissue and the brain. Immunohistochemical examination confirmed the presence of neurons and a pleocellular glial population, supporting a diagnosis of cutaneous neuroglial choristoma believed to be secondary to sequestered (resolved) meningoencephalocoele. Ectopic brain tissue is very rare in small animals. Some atypical features displayed by this tissue may be misdiagnosed as neoplasia. Communication between surgeon and pathologist to clarify the relationship of the lesion to surrounding structures is helpful to avoid misdiagnosis. PMID:27324745

  12. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord.

    NARCIS (Netherlands)

    Tewarie, R.D.; Hurtado, A.; Ritfeld, G.J.; Rahiem, S.T.; Wendell, D.F.; Barroso, M.M.; Grotenhuis, J.A.; Oudega, M.

    2009-01-01

    Bone marrow stromal cells (BMSC) transplanted into the contused spinal cord may support repair by improving tissue sparing. We injected allogeneic BMSC into the moderately contused adult rat thoracic spinal cord at 15 min (acute) and at 3, 7, and 21 days (delayed) post-injury and quantified tissue s

  13. Establishment of NOD/SCID mouse models of human hepatocellular carcinoma via subcutaneous transplantation of histologically intact tumor tissue

    Institute of Scientific and Technical Information of China (English)

    Mingxia Yan; Hong Li; Fangyu Zhao; Lixing Zhang; Chao Ge; Ming Yao; Jinjun Li

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most deadly human cancers,but it is very difficult to establish an animal model by using surgical specimens.In the present experiment,histologically intact fresh surgical specimens of HCC were subcutaneously transplanted in non-obese diabetic/severe combined immunodeficienccy (NOD/SCID) mice.The biological characteristics of the original and the corresponding transplanted tumors and cell lines were investigated.The results showed that 5 new animal models and 2 primary cell lines were successfully established from surgical specimens.Hematoxylin-eosin staining showed that xenografts retained major histological features of the original surgical specimens.The two new cell lines had been cultivated for 3 years and successively passaged for more than 100 passages in vitro.The morphological characteristics and biologic features of the two cell lines were genetically similar to the original tumor.The subcutaneous transplant animal models with histologically intact tumor tissue and primary cell lines could be useful for in vivo and in vitro testing of anti-cancer drugs and be ideal models to study various biologic features of HCC.

  14. The NSW brain tissue resource centre: Banking for alcohol and major neuropsychiatric disorders research.

    Science.gov (United States)

    Sutherland, G T; Sheedy, D; Stevens, J; McCrossin, T; Smith, C C; van Roijen, M; Kril, J J

    2016-05-01

    The New South Wales Brain Tissue Resource Centre (NSWBTRC) at the University of Sydney (Australia) is an established human brain bank providing tissue to the neuroscience research community for investigations on alcohol-related brain damage and major psychiatric illnesses such as schizophrenia. The NSWBTRC relies on wide community engagement to encourage those with and without neuropsychiatric illness to consent to donation through its allied research programs. The subsequent provision of high-quality samples relies on standardized operational protocols, associated clinical data, quality control measures, integrated information systems, robust infrastructure, and governance. These processes are continually augmented to complement the changes in internal and external governance as well as the complexity and diversity of advanced investigation techniques. This report provides an overview of the dynamic process of brain banking and discusses the challenges of meeting the future needs of researchers, including synchronicity with other disease-focus collections. PMID:27139235

  15. Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain.

    Science.gov (United States)

    Deracinois, Barbara; Lenfant, Anne-Marie; Dehouck, Marie-Pierre; Flahaut, Christophe

    2015-01-01

    The microvessels of the brain represent around 3-4 % of the brain compartment but constitute the most important length (400 miles) and surface of exchange (20 m(2)) between the blood and the parenchyma of brain. Under influence of surrounding tissues, the brain microvessel endothelium expresses a specific phenotype that regulates and restricts the entry of compounds and cells from blood to brain, and defined the so-called blood-brain barrier (BBB). Evidences that alkaline phosphatase (AP) is a characteristic feature of the BBB phenotype that allows differentiating capillary endothelial cells from brain to those of the periphery have rapidly emerge. Thenceforth, AP has been rapidly used as a biomarker of the blood-brain barrier phenotype. In fact, brain capillary endothelial cells (BCECs) express exclusively tissue non-specific alkaline phosphatase (TNAP). There are several lines of evidence in favour of an important role for TNAP in brain function. TNAP is thought to be responsible for the control of transport of some compounds across the plasma membrane of the BCECs. Here, we report that levamisole-mediated inhibition of TNAP provokes an increase of the permeability to Lucifer Yellow of the endothelial monolayer. Moreover, we illustrate the disruption of the cytoskeleton organization. Interestingly, all observed effects were reversible 24 h after levamisole removal and correlated with the return of a full activity of the TNAP. This reversible effect remains to be studied in details to evaluate the potentiality of a levamisole treatment to enhance the entry of drugs in the brain parenchyma. PMID:26219710

  16. Effect of pineapple peel extract on total phospholipids and lipid peroxidation in brain tissues of rats

    Institute of Scientific and Technical Information of China (English)

    Erukainure OL; Ajiboye JA; Adejobi RO; Okafor OY; Kosoko SB; Owolabi FO

    2011-01-01

    Objective:To investigate the ability of the methanolic extract of pineapple peel to attenuate alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues. Methods:Oxidative stress was induced by oral administration of ethanol (20%w/v) at a dosage of 5 mL/kg bw in rats. After 28 days of treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Brain tissues were assayed for total phospholipid (TP) content and malondialdehyde (MDA). Results:Administration of alcohol significantly caused a reduction in TP content. Treatment with pineapple peel extract significantly increased the TP content. Significant high levels of MDA was observed in alcohol-fed rats, treatment with pineapple peel extract significantly reduced the MDA levels. Conclusions:Results obtained from this study indicates that pineapple peel extract protects against alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues.

  17. Features of microelement maintenance in rat's brain tissues at experimental hypoxia of different degree.

    Directory of Open Access Journals (Sweden)

    Tarasova I.V.

    2011-01-01

    Full Text Available Features of microelement maintenance (iron, zinc, copper, manganese, and cobalt, conditionally toxic chrome and toxic lead were studied in newborn rat's brain tissues at experimental hypoxia of different degree. Tissues of newborn rat’s brain are characterized by high level of saturation and considerable dynamism of microelement maintenance. Till the end of the first week of life, the maintenance of these microelements decreases in 1,5 – 10 times. The level of the toxic lead decreases more than in 2,5 times. The hypoxia of easy degree of newborn rats invokes reduction cobalt level 3 times, iron level 2 times, manganese – on 27,65 %, chrome – on 25,84%, zinc – on 16,43%. It means that considerable deficiency and disbalance of microelement maintenance rat's brain tissues. The heavy degree of hypoxia is characterized by further increase of deficiency and disbalance of microelements.

  18. Tissue structure and inflammatory processes shape viscoelastic properties of the mouse brain.

    Science.gov (United States)

    Millward, Jason M; Guo, Jing; Berndt, Dominique; Braun, Jürgen; Sack, Ingolf; Infante-Duarte, Carmen

    2015-07-01

    Magnetic resonance elastography (MRE) is an imaging method that reveals the mechanical properties of tissue, modelled as a combination of " viscosity" and " elasticity" . We recently showed reduced brain viscoelasticity in multiple sclerosis (MS) patients compared with healthy controls, and in the relapsing-remitting disease model experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which these intrinsic tissue properties become altered remain unclear. This study investigates whether distinct regions in the mouse brain differ in their native viscoelastic properties, and how these properties are affected during chronic EAE in C57Bl/6 mice and in mice lacking the cytokine interferon-gamma. IFN-γ(-/-) mice exhibit a more severe EAE phenotype, with amplified inflammation in the cerebellum and brain stem. Brain scans were performed in the sagittal plane using a 7 T animal MRI scanner, and the anterior (cerebral) and posterior (cerebellar) regions analyzed separately. MRE investigations were accompanied by contrast-enhanced MRI scans, and by histopathology and gene expression analysis ex vivo. Compared with the cerebrum, the cerebellum in healthy mice has a lower viscoelasticity, i.e. it is intrinsically " softer" . This was seen both in the wild-type mice and the IFNγ(-/-) mice. During chronic EAE, C57Bl/6 mice did not show altered brain viscoelasticity. However, as expected, the IFNγ(-/-) mice showed a more severe EAE phenotype, and these mice did show altered brain elasticity during the course of disease. The magnitude of the elasticity reduction correlated with F4/80 gene expression, a marker for macrophages/microglia in inflamed central nervous system tissue. Together these results demonstrate that MRE is sensitive enough to discriminate between viscoelastic properties in distinct anatomical structures in the mouse brain, and to confirm a further relationship between cellular inflammation and mechanical alterations of the brain. This

  19. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy

    OpenAIRE

    Dombeck, Daniel A.; Kasischke, Karl A.; Vishwasrao, Harshad D.; Ingelsson, Martin; Hyman, Bradley T.; Webb, Watt W.

    2003-01-01

    Microtubule (MT) ensemble polarity is a diagnostic determinant of the structure and function of neuronal processes. Here, polarized MT structures are selectively imaged with second-harmonic generation (SHG) microscopy in native brain tissue. This SHG is found to colocalize with axons in both brain slices and cultured neurons. Because SHG arises only from noninversion symmetric structures, the uniform polarity of axonal MTs leads to the observed signal, whereas the mixed polarity in dend...

  20. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    OpenAIRE

    Guangjun Zhao; Xuchu Wang; Yanmin Niu; Liwen Tan; Shao-Xiang Zhang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging da...

  1. Quantification of C4d deposition and hepatitis C virus RNA in tissue in cases of graft rejection and hepatitis C recurrence after liver transplantation

    OpenAIRE

    2015-01-01

    Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV) RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+), HCV recu...

  2. Transplantation of wild-type white adipose tissue normalizes metabolic, immune and inflammatory alterations in leptin-deficient ob/ob mice

    OpenAIRE

    Sennello, Joseph A.; Fayad, Raja; Pini, Maria; Gove, Melissa E.; Fantuzzi, Giamila

    2006-01-01

    Leptin-deficient ob/ob mice exhibit several metabolic and immune abnormalities, including thymus atrophy and markedly reduced inflammatory responses. We evaluated whether transplantation of wild type (WT) white adipose tissue (WAT) into ob/ob mice could mimic the effect of recombinant leptin administration in normalizing metabolic, immune and inflammatory abnormalities. Female ob/ob mice received a subcutaneous transplantation of WAT obtained from WT littermates. A separate group of ob/ob mic...

  3. Effective atomic numbers for photon energy-absorption and photon interaction of some human organs and tissues such as blood-whole, adipose tissue, brain-grey/white matter, tissue-soft (four-component), lung tissue and muscle skeletal

    International Nuclear Information System (INIS)

    The present work aims at the accurate calculation of ZPEAeff values for some human organs and tissues such as blood-whole, adipose tissue, brain-grey/white matter, tissue-soft(four-component), lung tissue and muscle-skeletal in the energy region of 1 keV-20 MeV. The ZPEAeff values are compared with ZPIeff and the effective atomic number calculated using the program XMuDat and is denoted here by ZXMUDATeff

  4. Three-dimensional structure of brain tissue at submicrometer resolution

    International Nuclear Information System (INIS)

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography

  5. Three-dimensional structure of brain tissue at submicrometer resolution

    Energy Technology Data Exchange (ETDEWEB)

    Saiga, Rino; Mizutani, Ryuta, E-mail: ryuta@tokai-u.jp [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki [Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari [Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.

  6. Protective effects of acupuncture on brain tissue following ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Mingshan Wang; Fuguo Ma; Huailong Chen

    2008-01-01

    BACKGROUND: In patients with cerebrovascular disease, by means of the neuroendocrine system, acupuncture supports the transformation of a local pathological status into a physiological status. Recently, great progress has been made in studying the protective effects of acupuncture on brain ischemia/reperfusion injury. OBJECTIVE: To summarize research advances in the protective effects of acupuncture on brain ischemia/reperfusion injury. RETRIEVAL STRATEGY: Using the terms "acupuncture, transcutaneous electrical acupoint stimulation, cerebral ischemia/reperfusion injury, and cerebral protection", we retrieved articles from the PubMed database published between January 1991 and June 1994. Meanwhile, we searched the China National Knowledge Infrastructure with the same terms. Altogether, 114 articles and their results were analyzed. Inclusive criteria: studies that were closely related to the protective effects of acupuncture on brain ischemia/reperfusion injury, or studies, whose contents were in the same study field and were published recently, or in the authorized journals. Exclusive criteria: repetitive studies. LITERATURE EVALUATION: Thirty articles that related to the protective effects of acupuncture on brain ischemia/reperfusion injury were included. Among them, 7 were clinical studies, and the remaining 23 articles were animal experimental studies. DATA SYNTHESIS: ① Animal experimental studies have demonstrated that acupuncture improves brain blood perfusion and brain electrical activity, influences pathomorphological and ultramicrostructural changes in ischemic brain tissue, is beneficial in maintaining the stability of intracellular and extracellular ions, resists free radical injury and lipid peroxidation, and influences cytokine, neurotransmitter, brain cell signal transduction, and apoptosis-regulating genes. ② Clinical studies have demonstrated that acupuncture not only promotes nutritional supply to local brain tissue in patients with cerebral

  7. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Guangjun Zhao

    2016-01-01

    Full Text Available Cryosection brain images in Chinese Visible Human (CVH dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel. Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  8. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    Science.gov (United States)

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543

  9. Prompt gamma-ray spectrometry for measurement of B-10 concentration in brain tissue and blood

    International Nuclear Information System (INIS)

    Boron-10 (B-10) concentration in the brain tissue and blood was measured continuously for 24 hours after injection of the B-10 compound in live rabbits using prompt gamma-ray spectrometry. Following injection of B-10 compound (Na2B12H11SH, 50mg/kg) dissolved in physiological saline, B-10 concentration was continuously measured in the brain tissue. Intermittently the concentration of B-10 in blood and cerebro-spinal fluid (CSF) was also measured. In 10 minutes after the injection of B-10 compound, the level of B-10 concentration reached the peak of 400-500 ppm in blood and 20-30 ppm in the normal brain tissue. In 60 minutes the level of B-10 concentration rapidly decreased and then a gradual decline was observed. The value was 15-30 ppm at 3 hours after injection, 5-10 ppm at 6 hours and 2-5 ppm at 24 hours in the blood. The concentration in the brain tissue was 3-8 ppm at 3 hours, 2-5 ppm at 6 hours and below 1.5 ppm at 24 hours. B-10 concentration in cerebro-spinal fluid was below 1 ppm. B-10 concentration was also measured in the brain tumor and blood in the human cases at boron neutron capture therapy (BNCT). These data studied by prompt gamma-ray spectrometry are very important and useful to decide the irradiation time. (author)

  10. Transplant rejection

    Science.gov (United States)

    ... is usually not perfect. No two people, except identical twins, have identical tissue antigens. Doctors use medicines to ... has no blood supply. Also, transplants from one identical twin to another are almost never rejected. There are ...

  11. Corneal transplant

    Science.gov (United States)

    ... clear outer lens on the front of the eye. A corneal transplant is surgery to replace the cornea with tissue ... years. Rejection can sometimes be controlled with steroid eye drops. Other ... are: Bleeding Cataracts Infection of the eye Glaucoma ( ...

  12. ICI 182,780 penetrates brain and hypothalamic tissue and has functional effects in the brain after systemic dosing.

    Science.gov (United States)

    Alfinito, Peter D; Chen, Xiaohong; Atherton, James; Cosmi, Scott; Deecher, Darlene C

    2008-10-01

    Previous reports suggest the antiestrogen ICI 182,780 (ICI) does not cross the blood-brain barrier (BBB). However, this hypothesis has never been directly tested. In the present study, we tested whether ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and affects known neuroendocrine functions in ovariectomized rats. Using HPLC with mass spectrometry, ICI (1.0 mg/kg.d, 3 d) was detected in plasma and brain and hypothalamic tissues for up to 24 h with maximum concentrations of 43.1 ng/ml, and 31.6 and 38.8 ng/g, respectively. To evaluate antiestrogenic effects of ICI in the brain after systemic dosing, we tested its ability to block the effect of 17 alpha-ethinyl estradiol (EE) (0.3 mg/kg, 8 d) on tail-skin temperature abatement in the morphine-dependent model of hot flush and on body weight change. In the morphine-dependent model, EE abated 64% of the naloxone-induced tail-skin temperature increase. ICI pretreatment (1.0, 3.0 mg/kg.d) dose dependently inhibited this effect. ICI (3.0 mg/kg.d) alone showed estrogenic-like actions, abating 30% the naloxone-induced flush. In body weight studies, EE-treated rats weighed 58.5 g less than vehicle-treated rats after 8 d dosing. This effect was partially blocked by ICI (3.0 mg/kg.d) pretreatment. Similar to EE treatment, rats receiving 1.0 or 3.0 mg/kg.d ICI alone showed little weight gain compared with vehicle-treated controls. Thus, ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and has both antiestrogenic and estrogenic-like actions on neuroendocrine-related functions. PMID:18599545

  13. Development of a Stereotaxic Device for Low Impact Implantation of Neural Constructs or Pieces of Neural Tissues into the Mammalian Brain

    Directory of Open Access Journals (Sweden)

    Andrzej Jozwiak

    2014-01-01

    Full Text Available Implanting pieces of tissue or scaffolding material into the mammalian central nervous system (CNS is wrought with difficulties surrounding the size of tools needed to conduct such implants and the ability to maintain the orientation and integrity of the constructs during and after their transplantation. Here, novel technology has been developed that allows for the implantation of neural constructs or intact pieces of neural tissue into the CNS with low trauma. By “laying out” (instead of forcibly expelling the implantable material from a thin walled glass capillary, this technology has the potential to enhance neural transplantation procedures by reducing trauma to the host brain during implantation and allowing for the implantation of engineered/dissected tissues or constructs in such a way that their orientation and integrity are maintained in the host. Such technology may be useful for treating various CNS disorders which require the reestablishment of point-to-point contacts (e.g., Parkinson’s disease across the adult CNS, an environment which is not normally permissive to axonal growth.

  14. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue

    DEFF Research Database (Denmark)

    Donnez, Jacques; Dolmans, Marie-Madeleine; Pellicer, Antonio;

    2013-01-01

    Aggressive chemotherapy/radiotherapy and bone marrow transplantation can cure >90% of girls and young women affected by disorders requiring such treatment. However, the ovaries are very sensitive to cytotoxic drugs, especially to alkylating agents. Several options are currently available to...

  15. Disseminated soft tissue infection and sepsis with Stenotrophomonas maltophilia in a bone marrow transplant patient

    OpenAIRE

    Lipton, Jeffrey H.; MacDonald, Kelly S.

    1996-01-01

    A 32-year-old female presented with aplastic anemia and subsequently underwent a one-antigen mismatched bone marrow transplant from her brother. She failed to engraft and a second graft was attempted. Protracted neutropenia of three months’ duration despite the use of broad spectrum antibiotics occurred. Stenotrophomonas (Xanthomonas) maltophilia metastatic cellulitis developed that did not respond to appropriate antibiotics.

  16. Modeling invasion of brain tissue by glioblastoma cells: ECM alignment and motility

    Science.gov (United States)

    Sander, L. M.

    2013-03-01

    A key stage in the development of highly malignant brain tumors (Glioblastoma Multiforme) is invasion of normal brain tissue by motile cells moving through a crowded, complex environment. Evidence from in vitro experiments suggests the cell motion is accompanied by considerable deformation and alignment of the extra-cellular matrix (ECM) of the brain. In the case of breast cancer, alignment effects of this sort have been seen in vivo. We have modeled features of this system including stress confinement in the non-linear elasticity of the ECM and contact guidance of the cell motion.

  17. The Neuroprotective Effect of Cornus mas on Brain Tissue of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Renata Francik

    2014-01-01

    Full Text Available Cornelian cherry (Cornus mas is a valuable source of phenolic antioxidants. Flavonoid derivatives as nonenzymatic antioxidants are important in the pathophysiology of many diseases including neurological disorders (e.g., Alzheimer’s disease or heart disease. In this study, we examined the effect of an addition of freeze-dried fruit of cornelian cherry on three types of diets: control diet, fructose diet, and diet enriched in fats (high-fat diet. This effect was studied by determining the following antioxidant parameters in both brain tissue and plasma in rats: catalase, ferric reducing ability of plasma, paraoxonase, protein carbonyl groups, and free thiol groups. Results indicate that both fructose diet and high-fat diet affect the antioxidant capacity of the organism. Furthermore, an addition of cornelian cherry resulted in increased activity of catalase in brain tissue, while in plasma it caused the opposite effect. In turn, with regard to paraoxonase activity in both brain tissue and plasma, it had a stimulating effect. Adding cornelian cherry to the tested diets increased the activity of PON in both tested tissues. Moreover, protective effect of fruits of this plant was observed in the process of oxidation of proteins by decreasing levels of protein carbonyl groups and thiol groups in brain tissue as well as in plasma.

  18. 65zinc uptake from blood into brain and other tissues in the rat

    International Nuclear Information System (INIS)

    Zinc is essential for normal growth, development and brain function although little is known about brain zinc homeostasis. Therefore, in this investigation we have studied 65Zn uptake from blood into brain and other tissues and have measured the blood-brain barrier permeability to 65Zn in the anaesthetized rat in vivo. Adult male Wistar rats within the weight range 500-600 g were used. 65ZnCl2 and [125I]albumin, the latter serving as a vascular marker, were injected in a bolus of normal saline I.V. Sequential arterial blood samples were taken during experiments that lasted between 5 min and 5 hr. At termination, samples from the liver, spleen, pancreas, lung, heart, muscle, kidney, bone, testis, ileum, blood cells, csf, and whole brain were taken and analysed for radio-isotope activity. Data have been analysed by Graphical Analysis which suggests 65Zn uptake from blood by all tissues sampled was unidirectional during this experimental period except brain, where at circulation times less than 30 min, 65Zn fluxes were bidirectional. In addition to the blood space, the brain appears to contain a rapidly exchanging compartment(s) for 65Zn of about 4 ml/100g which is not csf

  19. Effect of Intrathecal Transplantation of Adrenal Medullary Tissue on the Sciatic Nerve Regeneration Following Chronic Constriction Injury in the Rat

    Directory of Open Access Journals (Sweden)

    Homa Manaheji

    2005-01-01

    Full Text Available Introduction: It has been demonstrated that the adrenal medullary transplants into the spinal subarachnoid space can alleviate neuropathic pain behaviors. The aim of the present study was to test the possibility that histological changes of the sciatic nerve in a neuropathic model as well as sensory dysfunction are repaired by adrenal medullary transplantation. Material and Methods: Left sciatic nerve was ligated in three groups of rats by 4 loose ligatures (CCI. After one week of nerve constriction, rats of first group were implanted with adrenal medullary tissue (CCI + adrenal medulla and rats of the second group with striated muscle at the level of L1-L2 (CCI + muscle. The third group received only left ligature (CCI and in the fourth group the sciatic nerve was exposed and then muscle and skin sutured (sham. Behavioral assessment was evaluated before surgery and 2, 4, 7, 10, 14, 21, 28, 42, and 56 days after the onset of experiment. According to behavioral results, 4 rats in each group were anesthetized and then the distal part of sciatic nerve were isolated and prepared for histological quantitative investigation of nerve regeneration. Results: The results showed that CCI was accompanied with hyperalgesia and morphological changes in the distal part of sciatic nerve. In animals with adrenal medullary transplantation, not only hyperalgesia was markedly reduced or even eliminated, but also the number of myelinated fibers in the distal segment of nerve increased to nearly normal. Conclusions: Our findings showed that the implantation of adrenal medullary tissue might have caused regeneration of ligated nerves as well as alleviation of pain behavior.

  20. Changes in Brain Tissue and Behavior Patterns Induced by Single Short-Term Fasting in Mice

    Science.gov (United States)

    Hisatomi, Yuko; Asakura, Kyo; Kugino, Kenji; Kurokawa, Mamoru; Asakura, Tomiko; Nakata, Keiko

    2013-01-01

    In humans, emaciation from long-term dietary deficiencies, such as anorexia, reportedly increases physical activity and brain atrophy. However, the effects of single short-term fasting on brain tissue or behavioral activity patterns remain unclear. To clarify the impact of malnutrition on brain function, we conducted a single short-term fasting study as an anorexia model using male adult mice and determined if changes occurred in migratory behavior as an expression of brain function and in brain tissue structure. Sixteen-week-old C57BL/6J male mice were divided into either the fasted group or the control group. Experiments were conducted in a fixed indoor environment. We examined the effects of fasting on the number of nerve cells, structural changes in the myelin and axon density, and brain atrophy. For behavior observation, the amount of food and water consumed, ingestion time, and the pattern of movement were measured using a time-recording system. The fasted mice showed a significant increase in physical activity and their rhythm of movement was disturbed. Since the brain was in an abnormal state after fasting, mice that were normally active during the night became active regardless of day or night and performed strenuous exercise at a high frequency. The brain weight did not change by a fast, and brain atrophy was not observed. Although no textural change was apparent by fasting, the neuronal neogenesis in the subventricular zone and hippocampus was inhibited, causing disorder of the brain function. A clear association between the suppression of encephalic neuropoiesis and overactivity was not established. However, it is interesting that the results of this study suggest that single short-term fasting has an effect on encephalic neuropoiesis. PMID:24224039

  1. Changes in brain tissue and behavior patterns induced by single short-term fasting in mice.

    Directory of Open Access Journals (Sweden)

    Yuko Hisatomi

    Full Text Available In humans, emaciation from long-term dietary deficiencies, such as anorexia, reportedly increases physical activity and brain atrophy. However, the effects of single short-term fasting on brain tissue or behavioral activity patterns remain unclear. To clarify the impact of malnutrition on brain function, we conducted a single short-term fasting study as an anorexia model using male adult mice and determined if changes occurred in migratory behavior as an expression of brain function and in brain tissue structure. Sixteen-week-old C57BL/6J male mice were divided into either the fasted group or the control group. Experiments were conducted in a fixed indoor environment. We examined the effects of fasting on the number of nerve cells, structural changes in the myelin and axon density, and brain atrophy. For behavior observation, the amount of food and water consumed, ingestion time, and the pattern of movement were measured using a time-recording system. The fasted mice showed a significant increase in physical activity and their rhythm of movement was disturbed. Since the brain was in an abnormal state after fasting, mice that were normally active during the night became active regardless of day or night and performed strenuous exercise at a high frequency. The brain weight did not change by a fast, and brain atrophy was not observed. Although no textural change was apparent by fasting, the neuronal neogenesis in the subventricular zone and hippocampus was inhibited, causing disorder of the brain function. A clear association between the suppression of encephalic neuropoiesis and overactivity was not established. However, it is interesting that the results of this study suggest that single short-term fasting has an effect on encephalic neuropoiesis.

  2. Information program about organ and tissue transplant-donation process at the secondary schools in the province of Girona (Spain).

    Science.gov (United States)

    Mate, G; Morilla, T; Colon, L L; Masnou, N; Casellas, L; Valles, M; Bronsoms, J; Torguet, P; Massanet, C; Garcia, I; Mauri, J M

    2005-11-01

    We believe that it is important to spread information about the organ and tissue transplant-donation (T-D) process to obtain the participation of all society. We prepared an information program about the T-D process for secondary school students in collaboration with the Education Department. We chose these students because they wish to receive information about life and are already conscious about its possible loss, and because they take risks practicing sports or driving cars. We spoke about the frequency of the T-D process in our hospitals, the organs and tissues that can be transplanted the number of people on the waiting list, as well as the origin and circumstances of potential donors. During the last 3 years we have done more than 200 lessons at 44 secondary schools. We consider our experience to be pleasant and useful. Students have accepted us and 96.5% of them have recommended the T-D lessons to future classmates. PMID:16386490

  3. Exercise induces autophagy in peripheral tissues and in the brain

    OpenAIRE

    He, Congcong; Sumpter, Jr., Rhea; Levine, Beth

    2012-01-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We ...

  4. DNA amplification by polymerase chain reaction from brain tissues embedded in paraffin.

    OpenAIRE

    Gall, K; Pavelić, J.; Jadro-Santel, D.; Poljak, M; Pavelić, K.

    1993-01-01

    A method which enables analysis of DNA from archival paraffin embedded normal and malignant brain tissue is described. The demonstration of a 317-bp long beta-actin DNA sequence by the polymerase chain reaction (PCR) was used to identify which fixation procedure, deparaffinization time and DNA extraction procedure would give the best results. Tissue specimens 1-39 years old were included in the experiments. Specimens fixed in either 10% formalin, Carnoy's or AMeX fixative were found to be bes...

  5. Carcinoma cells misuse the host tissue damage response to invade the brain

    OpenAIRE

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carci...

  6. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    Na Zhang; Gen-Yang Cheng; Xian-Zhi Liu; Feng-Jiang Zhang

    2014-01-01

    Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue. Methods:Fourty eight rats were randomly divided into four groups(n=12): sham operation group,30 min ischemia60 min reperfusion group,60 min ischemia60 min reperfusion group, and 120 min ischemia60 min reperfusion group.The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreasedBcl-2 expression, increasedBax expression, upregulated expression ofNF-κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation.

  7. Effects of Platelet-Rich Plasma, Adipose-Derived Stem Cells, and Stromal Vascular Fraction on the Survival of Human Transplanted Adipose Tissue

    OpenAIRE

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-01-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back o...

  8. Avaliação da Barreira Hemato-Encefálica no transplante de medula óssea Blood-Brain Barrier evaluation in bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Sérgio Monteiro de Almeida

    1997-01-01

    Full Text Available A barreira hemato-encefálica (BHE contribui para o isolamento imunológico do sistema nervoso central (SNC. Sua avaliação nunca foi realizada em pacientes submetidos a transplante de medula óssea (TMO. Neste estudo a integridade da BHE foi avaliada através das proteínas do LCR, de forma quantitativa, a fim de observar a incidência e entender a fisiopatologia da doença do enxerto contra o hospedeiro crônica (DECH-C no SNC. Foram estudadas amostras pareadas de LCR e soro de 33 pacientes com leucemia mielóide crônica submetidos a TMO alogênico, de doador aparentado, HLA idêntico. As amostras foram coletadas nos períodos pré TMO, pós TMO e concomitante à DECH-C. Não foi evidenciada quebra de BHE durante a DECH-C em nenhum dos casos estudados.The blood-brain barrier (BBB contributes to the central nervous system (CNS immunological isolation. BBB has never been studied in patients who developed chronic graft-versus-host disease (GVHD after allogeneic bone marrow transplants (BMT, from HLA identical related donors. BBB disruption was investigated through the cerebrospinal fluid (CSF proteins, quantitative and graphically, in order to detect the incidence and possible pathophysiology of the CNS involvement in chronic GVHD. Thirty three CSF and matched serum samples from chronic myeloid leukemia patients were collected pre BMT, pos BMT and during chronic GVHD. There was no evidence of BBB disruption in any patient studied.

  9. Serial investigation of PTPN11 mutation in nonhematopoietic tissues in a patient with juvenile myelomonocytic leukemia who was treated with unrelated cord blood transplantation.

    Science.gov (United States)

    Hiramoto, Rika; Imamura, Toshihiko; Muramatsu, Hideki; Wang, Xinan; Kanayama, Takuyo; Zuiki, Masashi; Yoshida, Hideki; Moroto, Masaharu; Fujiki, Atsushi; Chiyonobu, Tomohiro; Osone, Shinya; Ishida, Hiroyuki; Kojima, Seiji; Hosoi, Hajime

    2015-12-01

    After allogeneic stem-cell transplantation, nonhematopoietic tissues contain donor-derived cells; however, whether cells from malignant hematological disease can also be found in nonhematopoietic tissues is unclear. This report describes a juvenile myelomonocytic leukemia (JMML) case with a typical PTPN11 mutation (p.E76K) at different allele frequencies in the bone marrow mononuclear cells, buccal smear cells, and fingernails at diagnosis, which was suggestive of PTPN11 somatic mosaicism; however, the PTPN11 mutation in the buccal smear cells and fingernails was lost after unrelated cord blood transplantation. These results suggest that JMML-derived cells may migrate into and reside in nonhematopoietic tissues and furthermore that these cells can be eradicated by cord blood transplantation. PMID:26440969

  10. The Importance of Brain Banks for Molecular Neuropathological Research: The New South Wales Tissue Resource Centre Experience

    OpenAIRE

    Antony Harding; Irina Dedova; Donna Sheedy; Nina Sundqvist; Therese Garrick; Harper, Clive G; Clare Hunt; Juliette Gillies

    2009-01-01

    New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights cha...

  11. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  12. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  13. Quantification of C4d deposition and hepatitis C virus RNA in tissue in cases of graft rejection and hepatitis C recurrence after liver transplantation

    Science.gov (United States)

    Song, Alice Tung Wan; de Mello, Evandro Sobroza; Alves, Venâncio Avancini Ferreira; Cavalheiro, Norma de Paula; Melo, Carlos Eduardo; Bonazzi, Patricia Rodrigues; Tengan, Fatima Mitiko; Freire, Maristela Pinheiro; Barone, Antonio Alci; D'Albuquerque, Luiz Augusto Carneiro; Abdala, Edson

    2015-01-01

    Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV) RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+), HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+), acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-). All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection. PMID:25742264

  14. Quantification of C4d deposition and hepatitis C virus RNA in tissue in cases of graft rejection and hepatitis C recurrence after liver transplantation

    Directory of Open Access Journals (Sweden)

    Alice Tung Wan Song

    2015-02-01

    Full Text Available Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+, HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+, acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-. All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection.

  15. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  16. Elderly depression diagnostic of diabetic patients by brain tissue pulsatility imaging

    Science.gov (United States)

    Hachemi, Mélouka Elkateb; Remeniéras, Jean-pierre; Desmidt, Thomas; Camus, Vincent; Tranquart, François

    2010-01-01

    Pulsatile motion of brain parenchyma results from cardiac and breathing cycles and consists in a rapid displacement in systole, with slow diastolic recovery. Based on the vascular depression concept and recent studies where a correlation was found between cerebral haemodynamics and depression in the elderly, we emitted the hypothesis that tissue brain motion due to perfusion is correlated to elderly depression associated with cardiovascular risk factors. Tissue Pulsatlity Imaging (TPI) is a new ultrasound technique developed firstly at the University of Washington to assess the brain tissue motion. We used TPI technique to measure the brain displacement of two groups of elderly patients with diabetes as a vascular risk factor. The first group is composed of 11 depressed diabetic patients. The second group is composed of 12 diabetic patients without depressive symptoms. Transcranial acquisitions were performed with a 1.8 MHz ultrasound phased array probe through the right temporal bone window. The acquisition of six cardiac cycles was realized on each patient with a frame rate of 23 frames/s. Displacements estimation was performed by off-line analysis. A significant decrease in brain pulsatility was observed in the group of depressed patients compared to the group of non depressed patients. Mean displacement magnitude was about 44±7 μm in the first group and 68±13 μm in the second group.

  17. Fibrin, a scaffold material for islet transplantation and pancreatic endocrine tissue engineering.

    Science.gov (United States)

    Riopel, Matthew; Trinder, Mark; Wang, Rennian

    2015-02-01

    Fibrin is derived from fibrinogen during injury to produce a blood clot and thus promote wound repair. Composed of different domains, including Arg-Gly-Asp amino acid motifs, fibrin is used extensively as a hydrogel and sealant in the clinic. By binding to cell surface receptors like integrins and acting as a supportive 3D scaffold, fibrin has been useful in promoting cell differentiation, proliferation, function, and survival. In particular, fibrin has been able to maintain islet cell architecture, promote beta cell insulin secretion, and islet angiogenesis, as well as inducing a protective effect against cell death. During islet transplantation, fibrin improved neovascularization and islet function. These improvements resulted in reduced number of transplanted islets necessary to reverse diabetes. Therefore, fibrin, as a biocompatible and biodegradable scaffold, should be considered during subcutaneous islet transplantation and beta cell expansion in vitro to ensure maintenance of islet cell function, proliferation, and survival to develop effective cell-based therapies for the treatment of diabetes. PMID:24947304

  18. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  19. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.

    Science.gov (United States)

    Anand, Sindhu; Kumar, Swathy Sampath; Muthuswamy, Jit

    2016-08-01

    Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time). PMID:27457752

  20. Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue

    NARCIS (Netherlands)

    Støverud, K.; Darcis, M.; Helmig, R.; Hassanizadeh, S.M.

    2012-01-01

    Convection-enhanced drug delivery is a technique where a therapeutic agent is infused under positive pressure directly into the brain tissue. For predicting the final concentration distribution and optimizing infusion rate and catheter placement, numerical models can be of great help. However, despi

  1. Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs.

    Science.gov (United States)

    Wan, Hong; Ahman, Madeleine; Holmén, Anders G

    2009-03-26

    In CNS drug discovery, knowledge of drug-tissue binding is essential for a better understanding of brain penetration by assessing unbound brain to plasma ratio as well as pharmacokinetics (PK) and pharmacodynamics (PD) relationship by relating free drug concentration to pharmacological effect in target tissues. In this work, we present a novel microemulsion based capillary electrophoresis (CE) method that enables coupling microemulsion electrokinetic chromatography (MEEKC) to mass spectrometry (MS) for prediction of biopartitioning of CNS drugs in brain tissue. Compared to LC retention based lipophilicity and calculated lipophilicity, a significantly improved correlation between the LogP values obtained from MEEKC retention factors and fraction unbound (fu) in brain tissue was observed for a training set of structurally diverse CNS drugs as well as for a test set of new chemical entities (NCEs). The current online CE/MS/MEEKC technique can also be a potential approach for lipophilicity screening amenable for highly predictive of other ADME-Tox properties of NCEs using the MEEKC partitioning coefficient as a relevant descriptor. PMID:19256501

  2. PIXE analysis of low concentration aluminum in brain tissues of an Alzheimer's disease patient

    International Nuclear Information System (INIS)

    An excess accumulation and presence of metal ions may significantly alter a brain cell's normal functions. There have been increasing efforts in recent years to measure and quantify the density and distribution of excessive accumulations of constituent elements (such as Fe, Zn, Cu, and Ca) in the brain, as well as the presence and distribution of contaminating elements (such as Al). This is particularly important in cases of neuropathological disorders such as Alzheimer's disease, Parkinson's disease and ALS. The aim of this paper was to measure the Al present in the temporal cortex of the brain of an Alzheimer's disease patient. The specimens were taken from an unfixed autopsy brain which has been preserved for a period of 4 years in the deep freezer at -80 degree sign C. Proton Induced X-ray Emission Spectroscopy was used for the measurement of Al concentration in this brain tissue. A tandem accelerator with 2 MeV of energy was also used. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorbers were removed. The results show that the peak height depends on the measurement site. However, in certain cases an extremely high concentration of Al was observed in the PIXE spectra, with an intensity higher than those in the other major elements of the brain's matrix element. Samples from tissues affected by the same disease were analyzed using the EDX analyzer. The results are quantitatively in very good agreement with those of the PIXE analysis

  3. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  4. Joining microelectronics and microionics: Nerve cells and brain tissue on semiconductor chips

    Science.gov (United States)

    Fromherz, Peter

    2008-09-01

    The direct electrical interfacing of semiconductor chips with individual nerve cells and with brain tissue is considered. At first, the structure of the cell-chip contact is described and then the electrical coupling is characterized between ion channels, the electrical elements of nerve cells, and transistors and capacitors of silicon chips. On that basis, the signal transmission between microelectronics and microionics is implemented in both directions. Simple hybrid systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue on silicon. The application of CMOS chips with capacitively coupled recording sites allows an imaging of neuronal activity with high spatiotemporal resolution. Goal of the work is an integration of neuronal network dynamics and digital electronics on a microscopic level for applications in brain research, medical prosthetics and information technology.

  5. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Institute of Scientific and Technical Information of China (English)

    Hyung Ho Yoon; Joongkee Min; Nari Shin; Yong Hwan Kim; Jin-Mo Kim; Yu-Shik Hwang; Jun-Kyo Francis Suh; Onyou Hwang; Sang Ryong Jeon

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18 F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  6. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.

    Science.gov (United States)

    Moran, Richard; Smith, Joshua H; García, José J

    2014-11-28

    The mechanical properties of human brain tissue are the subject of interest because of their use in understanding brain trauma and in developing therapeutic treatments and procedures. To represent the behavior of the tissue, we have developed hyperelastic mechanical models whose parameters are fitted in accordance with experimental test results. However, most studies available in the literature have fitted parameters with data of a single type of loading, such as tension, compression, or shear. Recently, Jin et al. (Journal of Biomechanics 46:2795-2801, 2013) reported data from ex vivo tests of human brain tissue under tension, compression, and shear loading using four strain rates and four different brain regions. However, they do not report parameters of energy functions that can be readily used in finite element simulations. To represent the tissue behavior for the quasi-static loading conditions, we aimed to determine the best fit of the hyperelastic parameters of the hyperfoam, Ogden, and polynomial strain energy functions available in ABAQUS for the low strain rate data, while simultaneously considering all three loading modes. We used an optimization process conducted in MATLAB, calling iteratively three finite element models developed in ABAQUS that represent the three loadings. Results showed a relatively good fit to experimental data in all loading modes using two terms in the energy functions. Values for the shear modulus obtained in this analysis (897-1653Pa) are in the range of those presented in other studies. These energy-function parameters can be used in brain tissue simulations using finite element models. PMID:25446271

  7. An analytical model for nanoparticles concentration resulting from infusion into poroelastic brain tissue.

    Science.gov (United States)

    Pizzichelli, G; Di Michele, F; Sinibaldi, E

    2016-02-01

    We consider the infusion of a diluted suspension of nanoparticles (NPs) into poroelastic brain tissue, in view of relevant biomedical applications such as intratumoral thermotherapy. Indeed, the high impact of the related pathologies motivates the development of advanced therapeutic approaches, whose design also benefits from theoretical models. This study provides an analytical expression for the time-dependent NPs concentration during the infusion into poroelastic brain tissue, which also accounts for particle binding onto cells (by recalling relevant results from the colloid filtration theory). Our model is computationally inexpensive and, compared to fully numerical approaches, permits to explicitly elucidate the role of the involved physical aspects (tissue poroelasticity, infusion parameters, NPs physico-chemical properties, NP-tissue interactions underlying binding). We also present illustrative results based on parameters taken from the literature, by considering clinically relevant ranges for the infusion parameters. Moreover, we thoroughly assess the model working assumptions besides discussing its limitations. While not laying any claims of generality, our model can be used to support the development of more ambitious numerical approaches, towards the preliminary design of novel therapies based on NPs infusion into brain tissue. PMID:26656677

  8. Measuring brain tissue oxygenation under oxidative stress by ESR/MR dual imaging system

    International Nuclear Information System (INIS)

    The in vivo measurement of oxygen in tissues is of great interest because of oxygen's fundamental role in life. Many methods have been developed for such measurement, but all have been limited, especially with regard to repeated measurement, degree of invasiveness, and sensitivity. We describe electron spin resonance (ESR) oximetry with paramagnetic oxygen-sensing probe for in vivo measurement of oxygen in brain tissues by homemade ESR/MR dual imaging spectroscopy. Lithium 5, 9, 14, 18, 23, 27, 32, 36-octan-butoxy-2, 3-naphthalocyanine (LiNc-BuO) radical was employed as the solid oxygen-sensing probe, and we confirmed its ability to report partial pressure of oxygen (pO2) in brain tissues of live animals under normal and pathological conditions for more than a month. pO2 measurements could also be made repeatedly on the same animal and at the same location. The implantation site of LiNc-BuO in examined rats was verified by 0.5T magnetic resonance (MR) imaging. Septic-shock rats were used to monitor tissue oxygenation during pathological state. A decline in pO2 levels from severe hypotension during sepsis was detected, and generation of nitric oxide (NO) in brain tissues was confirmed by NO spin trapping. ESR oximetry using oxygen-sensing probe and NO spin-trapping can be used to monitor pO2 change and NO production simultaneously and repeatedly at the same site in examined animals. (author)

  9. Distribution of soya-saponin in brain and peripheral tissue after peritoneal injection

    International Nuclear Information System (INIS)

    125I-soya-saponin was prepared to study the distribution of soya-saponin in body of rat, as well as in different areas of brain when peritoneal injection. The results showed that the peak value of radioactive soya-saponin in all tissue appeared at 30 min after peritoneal injection. There were higher radioactivities in brain and suprarene comparing with other organs. The highest radioactivity was seen in hypothalamus among the every brain areas. It is a first report that soyasaponin can pass through the blood brain barrier when peripheral injection. The result also supported the opinion that soyasaponin might act on the hypothalamus and central regulation of cardiovascular system. Another finding was that soyasaponin also showed a higher affinity with adrenal gland, which indicated that the soyasaponin might possess of peripheral effect for regulation of cardiovascular system as well

  10. Liver transplant outcomes using ideal donation after circulatory death livers are superior to using older donation after brain death donor livers.

    Science.gov (United States)

    Scalea, Joseph R; Redfield, Robert R; Foley, David P

    2016-09-01

    Multiple reports have demonstrated that liver transplantation following donation after circulatory death (DCD) is associated with poorer outcomes when compared with liver transplantation from donation after brain death (DBD) donors. We hypothesized that carefully selected, underutilized DCD livers recovered from younger donors have excellent outcomes. We performed a retrospective study of the United Network for Organ Sharing database to determine graft survivals for patients who received liver transplants from DBD donors of age ≥ 60 years, DBD donors liver transplants were performed in the United States. Of these, 41,181 (78.8%) underwent transplantation with livers from DBD donors of age livers from DCD donors livers of age livers ≥ age 60 years (P livers; of these, 111 (83.4%) were from donors livers (age livers > 60 years old. Careful donor organ and recipient selection can lead to excellent results, despite previous reports suggesting otherwise. Increased acceptance of these DCD livers would lead to shorter wait list times and increased national liver transplant rates. Liver Transplantation 22 1197-1204 2016 AASLD. PMID:27314220

  11. Concentration of organochlorines in human brain, liver, and adipose tissue autopsy samples from Greenland

    DEFF Research Database (Denmark)

    Dewailly, Éric; Mulvad, Gert; Pedersen, Henning S.;

    1999-01-01

    Organochlorines are persistent lipophilic compounds that accumulate in Inuit people living in circumpolar countries. Organochlorines accumulate as a result of the Inuits' large consumption of sea mammal fat; however, available data are limited to blood lipids, milk fat, and adipose tissue. We...... report results of organochlorine determination in liver, brain, omental fat, and subcutaneous abdominal fat samples collected from deceased Greenlanders between 1992 and 1994. Eleven chlorinated pesticides and 14 polychlorinated biphenyl congeners were measured in tissue lipid extracts by high...... than those measured using the same analytical method in samples from Canadians in Quebec City, Quebec. Brain lipids contained lower concentrations of all organochlorines than lipids extracted from other tissues. Organochlorine residue levels in lipid extracts from liver, omental fat, and subcutaneous...

  12. Brain Tissue Classification from Multispectral MRI by Wavelet based Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Sindhumol S

    2013-06-01

    Full Text Available In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA, to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.

  13. Low temperature magnetic analysis in the identification of iron compounds from human brain tumour tissue

    Energy Technology Data Exchange (ETDEWEB)

    Brem, F [Institute of Geophysics, ETH-Hoenggerberg, CH-8093 Zurich (Switzerland); Hirt, A M [Institute of Geophysics, ETH-Hoenggerberg, CH-8093 Zurich (Switzerland); Simon, C [Neurology/EEG, University Hospital Zurich, CH-8091 Zurich (Switzerland); Wieser, H-G [Neurology/EEG, University Hospital Zurich, CH-8091 Zurich (Switzerland); Dobson, J [Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB, (United Kingdom)

    2005-01-01

    In the brain, iron plays an important role, but also is potentially toxic if iron metabolism is disrupted. Excess iron accumulation in the brain has been shown to be associated with neurodegenerative diseases. However, identification of iron compounds in human tissue is difficult because concentrations are very low. Three types of magnetic methods were used to characterize iron compounds in tumour tissue from epileptic patients. Isothermal Remanent Magnetization (IRM) was measured at 77 K and 300 K and reveals a low-coercivity phase with the properties of magnetite or maghemite. Induced magnetization was measured between 2 K and 300 K after cooling in zero-field and in a 50 mT field. These curves reveal an average blocking temperature of 11 K, which is compatible with ferritin. The results of this study show that the combination of different magnetic methods provides a useful and sensitive tool for the characterisation of magnetic iron compounds in human tissue.

  14. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    Science.gov (United States)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  15. Brain MR imaging abnormalities in pediatric patients after allogeneic bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Sally Emad-Eldin

    2014-12-01

    Conclusion: CNS complications after allogenic BMT in pediatric patients could cause a significant clinical problem. MRI can provide early diagnosis and follow-up to monitor treatment changes. Knowing the onset of the presentation of the complication in relation to the chronology of the transplant is important as it provides significant guidance on which causes to consider.

  16. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva; Jendelová, Pavla

    2006-01-01

    Roč. 3, - (2006), s. 62-67. ISSN 1660-2854 R&D Projects: GA ČR(CZ) GA309/06/1594; GA MŠk LC554; GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50390512 Keywords : Cell transplantation * Nanoparticles * Photochemical lesio Subject RIV: FH - Neurology

  17. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

    Science.gov (United States)

    Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2015-10-01

    Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI. PMID:26350423

  18. Continuous measurement of boron-10 concentration in rabbit brain tissue and blood using prompt gamma-ray spectrometry

    International Nuclear Information System (INIS)

    One of the important factors which influence the efficacy of boron neutron capture therapy (BNCT) in patients with malignant brain tumor is the boron-10 concentrations in tumors. The boron-10 concentration in normal brain tissue and the tumor/blood concentration in normal brain tissue and the tumor/blood concentration ratio are also valuable factors to decide the irradiation time and protect the normal tissue from radiation injury. Therefore, it is valuable to know the boron-10 concentration in the tumor, normal brain tissue and blood just before and during neutron irradiation. In this study the authors investigated continuously the boron-10 concentrations in the normal brain tissue of living rabbits and blood for 5-24 hours after injection of boron-10 compound using prompt gamma-ray spectrometry

  19. Static jaw collimation settings to minimize radiation dose to normal brain tissue during stereotactic radiosurgery

    International Nuclear Information System (INIS)

    At University of Arkansas for Medical Sciences (UAMS) intracranial stereotactic radiosurgery (SRS) is performed by using a linear accelerator with an add-on micromultileaf collimator (mMLC). In our clinical setting, static jaws are automatically adapted to the furthest edge of the mMLC-defined segments with 2-mm (X jaw) and 5-mm (Y jaw) margin and the same jaw values are applied for all beam angles in the treatment planning system. This additional field gap between the static jaws and the mMLC allows additional radiation dose to normal brain tissue. Because a radiosurgery procedure consists of a single high dose to the planning target volume (PTV), reduction of unnecessary dose to normal brain tissue near the PTV is important, particularly for pediatric patients whose brains are still developing or when a critical organ, such as the optic chiasm, is near the PTV. The purpose of this study was to minimize dose to normal brain tissue by allowing minimal static jaw margin around the mMLC-defined fields and different static jaw values for each beam angle or arc. Dose output factors were measured with various static jaw margins and the results were compared with calculated doses in the treatment planning system. Ten patient plans were randomly selected and recalculated with zero static jaw margins without changing other parameters. Changes of PTV coverage, mean dose to predefined normal brain tissue volume adjacent to PTV, and monitor units were compared. It was found that the dose output percentage difference varied from 4.9–1.3% for the maximum static jaw opening vs. static jaw with zero margins. The mean dose to normal brain tissue at risk adjacent to the PTV was reduced by an average of 1.9%, with negligible PTV coverage loss. This dose reduction strategy may be meaningful in terms of late effects of radiation, particularly in pediatric patients. This study generated clinical knowledge and tools to consistently minimize dose to normal brain tissue.

  20. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  1. Laser method of biological activity stimulation of cryoconserved hemopoietic tissue transplant

    Science.gov (United States)

    Khyznyak, Anatoly I.; Lesnik, Svetlana A.; Kogut, Georgy I.; Glukhenkaya, Galina T.

    1994-02-01

    The biological activity of cryoconserved fetal liver cells of mice (FLM) having undergone the He-Ne laser action has been estimated by the efficiency of their transplantation to mice- recipients exposed to lethal x-ray dose. The survival rate 30 days after x-ray exposure for those mice was 75% in comparison with 70% for mice with cryoconserved nonirradiated graft. The trial animals' peripheral blood investigations have been made. The obtained results indicate that the laser method of cryoconserved cells stimulation can help to increase the therapeutic efficiency of mielotransplantation.

  2. The cerebrovascular structure and brain tissue volume: a comparative study between beagle dogs and mongrel dogs

    International Nuclear Information System (INIS)

    Objective: To compare the differences of cerebrovascular structure and brain tissue volume between beagle and mongrel dogs by using angiography and MR scanning. Methods: A total of 40 dogs, including 20 beagle dogs (beagle group) and 20 mongrel dogs (mongrel group), were enrolled in this study. Under general anesthesia, all dogs were examined with cerebral angiography and MR scanning. The cerebrovascular structure was evaluated with angiography via selective catheterization of aortic arch, bilateral external cerebral arteries (ECA), maxillary arteries, internal cerebral arteries (ICA) and vertebral arteries separately. The diameters of the ICA, middle cerebral artery (MCA), rostral cerebral artery (RCA), the anastomosis channel ICA and ECA, and basilar artery (BA) were measured at the similar point of each dog. Meanwhile the volumes of the brain tissue were calculated in coronal T2 view of MR scanning. The statistical analysis was performed among the weight of dogs, the diameter of arteries and the volume of brain tissue. The differences in the diameters and brain tissue volume were compared between the two groups. Results: No obvious variations in the cerebrovascular structure and brain tissue volume were found in these dogs. One mongrel dog was excluded from this study because of the severe stenosis of ICA. The mean weight of 20 beagle dogs and 19 mongrel dogs was (12.81±1.29) kg and (12.85±1.12) kg, respectively. The diameters of the ICA, MCA, RCA, the anastomosis channel between ICA and ECA and BA in beagle group were (1.26±0.07) mm, (0.90±0.05) mm, (0.58±0.07) mm, (0.55±0.07) mm and (0.95±0.06) mm, respectively. These parameters in mongrel group were (1.27±0.07) mm, (0.92±0.05) mm, (0.59±0.06) mm, (0.67±0.07) mm and (0.94±0.05) mm, respectively. The volume of brain in two groups was (76232.33±5018.51) mm3 and (71863.96±4626.87) mm3, respectively. There were no obvious correlation among the body weight, the cerebrovascular diameters and brain

  3. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  4. Elemental analysis of the frontal lobe of 'normal' brain tissue and that affected by Alzheimer's disease

    International Nuclear Information System (INIS)

    'Normal' brain tissue and brain tissue affected by Alzheimer's disease has been taken from the frontal lobe of both hemispheres and their elemental compositions in terms of major, minor and trace elements compared. Brain samples were obtained from the MRC Alzheimer's Disease Brain Bank, London. 25 samples were taken from 18 individuals (5 males and 13 females) of mean age 79.9 ± 7.3 years with pathologically confirmed Alzheimer's disease and 26 samples from 15 individuals (8 males and 7 females) of mean age 71.8 ± 13.0 years with no pathological sings of Alzheimer's disease ('normals'). The elemental concentration of the samples were determined by the techniques of Rutherford backscattering (RBS) analysis, particle induced X-ray emission (PIXE) analysis and instrumental neutron activation analysis (INAA). Na, Mg, Al, Cl, K, Sc, Fe, Zn, Se, Br, Rb and Cs were detected by INAA and significant differences in concentrations were found between concentrations in normal and Alzheimer tissue for the elements. Na, Cl, K, Se, Br and Rb, P, S, Cl, K, Ca, Fe, Zn and Cd were detected by PIXE analysis and significant differences found for the elements P, S, Cl, K and Ca. (author)

  5. X-ray fluorescence analysis in application for study of human brain tissue and body fluids

    International Nuclear Information System (INIS)

    Thin slices of human brain tissue and body fluids were investigated using Energy Dispersive X-Ray Fluorescence (EDXRF) spectrometry. Distribution of elements in brain tissue samples was studied using Microbeam X-Ray Fluorescence (MXRF) method. Total Reflection X-Ray fluorescence (TXRF) analysis was applied for determination of elemental contens in cerebrospinal fluid, serum and whole blood. The main goal of the study was to optimize analytical procedures for investigation of biomedical specimens using EDXRF method. MXRF method is useful for investigation of P, S, Cl, K, Ca and Fe. Moreover, it can be also applied for distinguishing between white and gray matter of the human brain. Two sample preparation methods were applied in TXRF spectrometry with respect to detection limit. In the first method the body fluids were analysed without any sample preparation. The other measurements were performed for the body fluids digested with nitric acid. For both methods gallium was used as an internal standard. Accuracy of the TXRF method was assessed using Certified Reference Material, A-13 (freeze-dried animal blood). High sensitivity of TXRF and proper sample preparation allowed to detect wide spectrum of elements between Cl and Sr. Faster and easier first sample preparation method allowed to detect elements including volatile ones like Cl or Br whereas digestion of fluids with nitric acid improved the detection limits significantly. Elemental analysis of thin brain tissue samples and body fluids will be applied for study of role of trace elements in selected neurological diseases. (author)

  6. Glioblastoma, brain metastases and soft tissue sarcoma of extremities: Candidate tumors for BNCT

    International Nuclear Information System (INIS)

    10B-concentration ratios between human glioblastoma multiforme (U87MG), sarcoma (S3) and melanoma (MV3) xenografted in nu/nu mice and selected normal tissues were investigated to test for preferential 10B-accumulation. Animals received BSH, BPA or both compounds sequentially. Mean 10B-concentration ratios between tumor and normal tissues above 2 were found indicating therapeutic ratios. In addition to glioblastoma, brain metastases and soft tissue sarcoma appear to be promising targets for future BNCT research. - Highlights: • BSH leads to high 10B concentration ratios between sarcoma, muscle and brain as well as between glioblastoma and brain. • The 10B concentration in tumors is quite low as is the 10B concentration ratio between tumors and blood. • BPA-f leads to 10B accumulation in tumors relative to blood and advantageous absolute 10B concentrations in tumors. • The 10B concentration ratios between tumors and brain and sarcoma and muscle, are modest. • The advantage of the sequential injection of both compounds is an enhanced intratumoral 10B concentration

  7. The average baboon brain: MRI templates and tissue probability maps from 89 individuals.

    Science.gov (United States)

    Love, Scott A; Marie, Damien; Roth, Muriel; Lacoste, Romain; Nazarian, Bruno; Bertello, Alice; Coulon, Olivier; Anton, Jean-Luc; Meguerditchian, Adrien

    2016-05-15

    The baboon (Papio) brain is a remarkable model for investigating the brain. The current work aimed at creating a population-average baboon (Papio anubis) brain template and its left/right hemisphere symmetric version from a large sample of T1-weighted magnetic resonance images collected from 89 individuals. Averaging the prior probability maps output during the segmentation of each individual also produced the first baboon brain tissue probability maps for gray matter, white matter and cerebrospinal fluid. The templates and the tissue probability maps were created using state-of-the-art, freely available software tools and are being made freely and publicly available: http://www.nitrc.org/projects/haiko89/ or http://lpc.univ-amu.fr/spip.php?article589. It is hoped that these images will aid neuroimaging research of the baboon by, for example, providing a modern, high quality normalization target and accompanying standardized coordinate system as well as probabilistic priors that can be used during tissue segmentation. PMID:26975558

  8. Bone Marrow Stromal Cells Express Neural Phenotypes in vitro and Migrate in Brain After Transplantation in vivo

    Institute of Scientific and Technical Information of China (English)

    LI-YE YANG; TIAN-HUA HUANG; LIAN MA

    2006-01-01

    Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results BMSC expressed NSE, NF1 and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells.Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated. rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases.

  9. Predictive Role of Intraoperative Serum Brain Natriuretic Peptide for Early Allograft Dysfunction in Living Donor Liver Transplantation.

    Science.gov (United States)

    Chae, Min Suk; Koo, Jung Min; Park, Chul Soo

    2016-01-01

    BACKGROUND Early allograft dysfunction (EAD) is considered an important complication in liver transplantation. Serum brain natriuretic peptide (BNP) is a marker of cardiac dysfunction related to end-stage liver disease. We investigated the intraoperative change in the serum BNP level and its contribution to EAD after living donor liver transplantation (LDLT). MATERIAL AND METHODS The perioperative data of 104 patients who underwent LDLT were retrospectively reviewed and compared between patients with and without EAD. Serum BNPs were obtained at each phase, and potentially significant factors (Pdeveloped EAD after LDLT. In all phases, the EAD group showed higher serum BNP levels than the non-EAD group. The serum BNP level at each phase was less accurate than the mean serum BNP level for EAD. The intraoperative mean serum BNP level showed higher predictive accuracy than the Child-Pugh-Turcotte, model for end-stage liver disease (MELD), and D-MELD (donor age × recipient MELD) scores (p<0.05 for all). After multivariate adjustment, intraoperative mean serum BNP level ≥100 pg/mL was identified as an independent risk factor for EAD, along with kidney disease and graft ischemic time. CONCLUSIONS During LDLT, the EAD group showed higher serum BNP levels than the non-EAD group. An intraoperative mean serum BNP level ≥100 pg/mL is independently associated with EAD after LDLT. PMID:27572618

  10. Development of a Multispectral Tissue Characterization System for Optimization of an Implantable Perfusion Status Monitor for Transplanted Liver

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Letzen, Brian S [ORNL; Ericson, Milton Nance [ORNL; Cote, Gerard L. [Texas A& M University; Xu, Weijian [VA Pittsburgh Healthcare System; Wilson, Mark A. [University of Pittsburgh School of Medicine, Pittsburgh PA

    2009-01-01

    Optimizing wavelength selection for monitoring perfusion during liver transplant requires an in-depth characterization of liver optical properties. With these, the impact of liver absorption and scattering properties can be investigated to select optimal wavelengths for perfusion monitoring. To accomplish this, we are developing a single integrating-sphere-based using a unique spatially resolved diffuse reflectance system for optical properties determination for thick samples. We report early results using a monochromatic source implementation to measure the optical properties of well characterized tissue phantoms made from polystyrene spheres and Trypan blue. The presented results show the promise of using this unique system to measure the optical properties of the tissue phantoms. We are currently in the process of implementing an automated Levenberg Marquardt fitting algorithm to determine the peak location of the diffuse reflectance profile to ensure robust computation of sample optical properties. Future work will focus on the incorporation of multispectral capability to the technique to facilitate development of more realistic liver tissue phantoms.

  11. Can fruits and vegetables be used as substitute phantoms for normal human brain tissues in magnetic resonance imaging?

    International Nuclear Information System (INIS)

    Various custom-made phantoms designed to optimize magnetic resonance imaging (MRI) sequences have been created and subsequently reported in Japanese Society of Radiological Technology (JSRT). However, custom-made phantoms that correctly match the T1-value and T2-values of human brain tissue (gray matter and white matter) cannot be made easily or quickly. The aim of this project was to search for alternative materials, such as fruits and vegetables, for optimizing MRI sequences. The following eight fruits and vegetables were investigated: apple, tomato, melon, apple mango (Mangifera indica), banana, avocado, peach, and eggplant. Their potential was studied for use in modeling phantoms of normal human brain tissues. MRI (T1- and T2-weighted sequences) was performed on the human brain and the fruits and vegetables using various concentrations of contrast medium (gadolinium) in the same size tubes as the custom-made phantom. The authors compared the signal intensity (SI) in human brain tissue (gray matter and white matter) with that of the fruits and the custom-made phantom. The T1 and T2 values were measured for banana tissue and compared with those for human brain tissue in the literature. Our results indicated that banana tissue is similar to human brain tissue (both gray matter and white matter). Banana tissue can thus be employed as an alternative phantom for the human brain for the purpose of MRI. (author)

  12. Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality

    International Nuclear Information System (INIS)

    A general technique is described for using slide-mounted unfixed tissue sections to characterize and visualize drug and neurotransmitter receptors in brain or other tissues. The preparation of material, from fresh frozen, unfixed brain to dried sections securely attached to slides, is described in detail. The tissue can be kept intact during incubation at varying temperatures in solutions containing radiolabeled ligand, ions, buffers, and allosteric effectors. Strategies are described for determining optimal stereospecific binding with highest signal-to-noise ratios and for determining that a meaningful receptor is being studied. Dry formaldehyde fixation by vapors from heated paraformaldehyde preserves the tissue quality and traps the ligand near its site on the receptor, permitting subsequent histological processing through alcohols, solvents, and aqueous media, including liquid nuclear track emulsion. Visualization of [3H]naloxone- or [3H]enkephalin-labeled opiate receptor distributions in rat and human brains is achieved by tritium-sensitive film or by classical wet emulsion autoradiography. The advantages of the film include its ease of use and the ability to quantify receptor density by densitometry which can be computer-assisted. The advantage of the emulsion is the greater resolution and the concomitant appearance of morphology in cell-stained sections. Examples of correlations of opiate receptor distributions which underlying cytoarchitecture illustrate the potential for receptor localization studies

  13. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: jmweaver@salud.unm.edu [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  14. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    International Nuclear Information System (INIS)

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO2in vivo remains largely uncharacterized. This study investigated striatal tissue pO2 changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO2in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO2 to 64%. More importantly, pO2 did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO2, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO2in vivo after METH administration by EPR oximetry. • pO2 was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO2 did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO2 may be associated with a decrease in CBF. • Administration of methamphetamine may lead to hypoxic insult

  15. The response of the brain tissue to DNA double strand breaks

    International Nuclear Information System (INIS)

    Double-strand breaks (DSB) are the most deleterious form of DNA damage after ionizing radiation, the response of the brain tissue to DNA damage is related to the developmental dynamics of this system. Homology recombination is particularly important for proliferating cells, while non-homologous end joining is critical for differentiating cells. Defects in the related factors to DNA damage pathway underpin many human genopathy with neuropathology. Reviewed the signal conduction system involved in the DNA DSB response and human neuropathology genopathy related to DNA DSB factors deficiencies in the brain cells. (authors)

  16. Measuring cell-type specific differential methylation in human brain tissue.

    Science.gov (United States)

    Montaño, Carolina M; Irizarry, Rafael A; Kaufmann, Walter E; Talbot, Konrad; Gur, Raquel E; Feinberg, Andrew P; Taub, Margaret A

    2013-01-01

    The behavior of epigenetic mechanisms in the brain is obscured by tissue heterogeneity and disease-related histological changes. Not accounting for these confounders leads to biased results. We develop a statistical methodology that estimates and adjusts for celltype composition by decomposing neuronal and non-neuronal differential signal. This method provides a conceptual framework for deconvolving heterogeneous epigenetic data from postmortem brain studies. We apply it to find cell-specific differentially methylated regions between prefrontal cortex and hippocampus. We demonstrate the utility of the method on both Infinium 450k and CHARM data. PMID:24000956

  17. Human Microglia Transplanted in Rat Focal Ischemia Brain Induce Neuroprotection and Behavioral Improvement

    OpenAIRE

    Narantuya, Dashdemberel; NAGAI, Atsushi; Sheikh, Abdullah Md.; Masuda, Junichi; Kobayashi, Shotai; Yamaguchi, Shuhei; Seung U Kim

    2010-01-01

    Background and Purpose Microglia are resident immunocompenent and phagocytic cells of central nervous system (CNS), which produce various cytokines and growth factors in response to injury and thereby regulate disease pathology. The purpose of this study is to investigate the effects of microglial transplantation on focal cerebral ischemia model in rat. Methods Transient middle cerebral artery occlusion (MCAO) in rats was induced by the intraluminal filament technique. HMO6 cells, human micro...

  18. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Kastrup, Jens

    2013-01-01

    Stem cell therapy for degenerative diseases, including ischemic heart disease is now a clinical reality. In the search for the optimal cell type for each patient category, many different stem cell subpopulations have been used. In addition, different cell processing procedures and delivery methods...... improvements. To better understand the underlying mechanisms of these results, a reverse translation from bedside to bench has been opened. Non-invasive cell tracking after implantation has a pivotal role in this translation. Imaging based methods can help elucidate important issues such as retention......, migration and efficacy of the transplanted cells. Great effort is being made in finding new and better imaging techniques for different imaging modalities, and much have already been learned. But there are still many unanswered questions. In this review, we give an overview of the imaging modalities used...

  19. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells

    OpenAIRE

    Volovitz, Ilan; Shapira, Netanel; Ezer, Haim; Gafni, Aviv; Lustgarten, Merav; Alter, Tal; Ben-Horin, Idan; Barzilai, Ori; Shahar, Tal; Kanner, Andrew; Fried, Itzhak; Veshchev, Igor; Grossman, Rachel; Ram, Zvi

    2016-01-01

    Background Conducting research on the molecular biology, immunology, and physiology of brain tumors (BTs) and primary brain tissues requires the use of viably dissociated single cells. Inadequate methods for tissue dissociation generate considerable loss in the quantity of single cells produced and in the produced cells’ viability. Improper dissociation may also demote the quality of data attained in functional and molecular assays due to the presence of large quantities cellular debris conta...

  20. Concentrations of Nitric Oxide in Rat Brain Tissues after Diffuse Brain Injury and Neuroprotection by the Selective Inducible Nitric Oxide Synthase Inhibitor Aminoguanidine

    Institute of Scientific and Technical Information of China (English)

    Yi-bao Wang; Shao-wu Ou; Guang-yu Li; Yun-hui Liu

    2005-01-01

    @@ To investigate the effects of nitric oxide (NO) and the selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) on trauma, we explored the concentrations of nitric oxide in rat brain tissues at different time stamps after diffuse brain injury (DBI) with or without AG treatment.

  1. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair.

    Science.gov (United States)

    Zhang, Zhen-Qiang; Song, Jun-Ying; Jia, Ya-Quan; Zhang, Yun-Ke

    2016-03-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury. PMID:27127482

  2. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury:mechanisms of brain tissue repair

    Institute of Scientific and Technical Information of China (English)

    Zhen-qiang Zhang; Jun-ying Song; Ya-quan Jia; Yun-ke Zhang

    2016-01-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically givenBuyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reper-fusion injury was established by middle cerebral artery occlusion. In rats administeredBuyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrinαvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects ofBuyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest thatBuyanghuanwu de-coction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  3. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair

    Directory of Open Access Journals (Sweden)

    Zhen-qiang Zhang

    2016-01-01

    Full Text Available Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days. These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  4. Distribution of dearomatised white spirit in brain, blood, and fat tissue after repeated exposure of rats

    DEFF Research Database (Denmark)

    Lof, A.; Lam, Henrik Rye; Gullstrand, E.;

    1999-01-01

    white spirit was 1.5 and 5.6 mg/kg in blood; 7.1 and 17.1 mg/kg in brain; 432 and 1452 mg/kg in fat tissue at the exposure levels of 400 and 800 p.p.m., respectively. The concentrations of n-nonane, n-decane, n-undecane, and total white spirit in blood and brain were not affected by the duration of......-undecane, and total white spirit increased during the 3 weeks of exposure. The time to reach steady-state concentrations is longer than 3 weeks. After the 3 weeks' exposure the fat tissue concentration of n-nonane, n-decane, n-undecane, and total white spirit decreased very slowly compared with the rate of...

  5. Identifying signature Zernike modes for efficient light delivery through brain tissue

    CERN Document Server

    Sane, Sharmila; Lee, Woei Ming; Stricker, Christian; Bachor, Hans; Daria, Vincent

    2015-01-01

    Recent progress in neuroscience to image and investigate brain function has been made possible by impressive developments in optogenetic and opto-molecular tools. Such research requires advances in optical techniques for the delivery of light through brain tissue with high spatial resolution. The tissue causes distortions of the wavefront of the incoming light which broadens the focus, thereby reducing the intensity and resolution especially in techniques requiring focal illumination. Adaptive wavefront correction has been demonstrated to compensate for these distortions. However, in many situations iterative derivation of the corrective wavefront introduces time constraints that limit its usefulness when used to probe living cells. Here we demonstrate a direct and fast technique by working with a small set of Zernike modes and demonstrate that corrections derived a priori can lead to significant improvement of the focus. We verify this idea by the electrical response of whole-cell patched neurons following t...

  6. Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study.

    Science.gov (United States)

    Aligholi, Hadi; Rezayat, Seyed Mahdi; Azari, Hassan; Ejtemaei Mehr, Shahram; Akbari, Mohammad; Modarres Mousavi, Seyed Mostafa; Attari, Fatemeh; Alipour, Fatemeh; Hassanzadeh, Gholamreza; Gorji, Ali

    2016-07-01

    Cultivation of neural stem/progenitor cells (NS/PCs) in PuraMatrix (PM) hydrogel is an option for stem cell transplantation. The efficacy of a novel method for placing adult rat NS/PCs in PM (injection method) was compared to encapsulation and surface plating approaches. In addition, the efficacy of injection method for transplantation of autologous NS/PCs was studied in a rat model of brain injury. NS/PCs were obtained from the subventricular zone (SVZ) and cultivated without (control) or with scaffold (three-dimensional cultures; 3D). The effect of different approaches on survival, proliferation, and differentiation of NS/PCs were investigated. In in vivo study, brain injury was induced 45 days after NS/PCs were harvested from the SVZ and phosphate buffered saline, PM, NS/PCs, or PM+NS/PCs were injected into the brain lesion. There was an increase in cell viability and proliferation after injection and surface plating of NS/PCs compared to encapsulation and neural differentiation markers were expressed seven days after culturing the cells. Using injection method, transplantation of NS/PCs cultured in PM resulted in significant reduction of lesion volume, improvement of neurological deficits, and enhancement of surviving cells. In addition, the transplanted cells could differentiate in to neurons, astrocytes, or oligodendrocytes. Our results indicate that the injection and surface plating methods enhanced cell survival and proliferation of NS/PCs and suggest the injection method as a promising approach for transplantation of NS/PCs in brain injury. PMID:27038753

  7. Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging

    OpenAIRE

    Aya M Fattouh; El-Shabrawi, Mortada H; Enas H Mahmoud; Wafaa O Ahmed

    2016-01-01

    Background: Cirrhotic cardiomyopathy (CCM) is described as the presence of cardiac dysfunction in cirrhotic patients. In children with chronic liver disease, CCM has been very rarely investigated. The Aim of the Study: Is to evaluate the cardiac function of cirrhotic children to identify those with CCM. Patients and Methods: Fifty-two cirrhotic patients and 53 age and sex matched controls were assessed using serum brain-type natriuretic peptide (BNP), conventional echocardiography, and tissue...

  8. Maternal Prenatal Iron Status and Tissue Organization in the Neonatal Brain

    OpenAIRE

    Monk, Catherine; Georgieff, Michael K.; Xu, Dongrong; Hao, Xuejun; Bansal, Ravi; Gustafsson, Hanna; Spicer, Julie; Peterson, Bradley S.

    2015-01-01

    Background Children prenatally exposed to inadequate iron have poorer motor and neurocognitive development. No prior study to our knowledge has assessed the influence of maternal prenatal iron intake on newborn brain tissue organization in fullterm infants. Methods 3rd trimester daily iron intake was obtained using the Automated SelfAdministered 24hour Dietary Recall with n=40 healthy pregnant adolescents (14–19 years old). Cord blood ferritin was collected in a subsample (n=16). Newborn (m=3...

  9. Cardiovascular haemodynamics in pre-eclampsia using brain naturetic peptide and tissue Doppler studies

    OpenAIRE

    Naidoo, DP; Fayers, S; Moodley, J

    2013-01-01

    Aim To determine early haemodynamic changes in pre-eclampsia (PE) using tissue Doppler echocardiography and brain natriuretic peptide (BNP), and to relate these changes to obstetric outcomes. Methods Consenting primigravidae patients in the third trimester of pregnancy were included in the study, which was carried out in a large regional hospital in Durban, South Africa; 115 primigravidae (52 pre-eclamptics and 63 normotensive pregnant patients) attending the maternity unit including the ante...

  10. Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain

    OpenAIRE

    Lewis, Nathan E.; Schramm, Gunnar; Bordbar, Aarash; Schellenberger, Jan; Andersen, Michael Paul; Cheng, Jeffrey K.; Patel, Nilam; Yee, Alex; Lewis, Randall A.; Eils, Roland; König, Rainer; Palsson, Bernhard Ø.

    2010-01-01

    A workflow is presented that integrates gene expression data, proteomic data, and literature-based manual curation to construct multicellular, tissue-specific models of human brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types. Three analyses are applied for gene identification, analysis of omics data, and analysis of physiological states. First, we identify glutamate decarboxylase as a target that may contribute to cell-type and region...

  11. Evidence for Fungal Infection in Cerebrospinal Fluid and Brain Tissue from Patients with Amyotrophic Lateral Sclerosis

    OpenAIRE

    Alonso, Ruth; Pisa, Diana; Marina, Ana Isabel; Morato, Esperanza; Rábano, Alberto; Rodal, Izaskun; Carrasco, Luis

    2015-01-01

    Among neurogenerative diseases, amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by a progressive motor neuron dysfunction in the motor cortex, brainstem and spinal cord. ALS is the most common form of motor neuron disease; yet, to date, the exact etiology of ALS remains unknown. In the present work, we have explored the possibility of fungal infection in cerebrospinal fluid (CSF) and in brain tissue from ALS patients. Fungal antigens, as well as DNA from several fungi, we...

  12. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues.

    OpenAIRE

    Dawson, T. M.; Bredt, D S; M Fotuhi; Hwang, P M; Snyder, S. H.

    1991-01-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with...

  13. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  14. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  15. Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.01.022

    2013-01-01

    Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression tests and stress relaxation tests at strain rates < 90/s. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the compressive nominal stress at 30% strain was 8.83 +/- 1.94, 12.8 +/- 3.10 and 16.0 +/- 1.41 kPa (mean +/- SD) at strain rates of 30, 60 and 90/s, respectively. Relaxation tests were also conducted at 10%-50% strain with the average rise time of 10 ms, which can be used to derive time dependent parameters. Numerical simulations were performed using one-term Ogden model with initial shear modulus mu_0 = 6.06 +/- 1.44, 9.44 +/-...

  16. PDT-induced apoptosis in brain tissue in vivo: a retrospective study

    Science.gov (United States)

    Lilge, Lothar D.; Portnoy, Michelle; Wilson, Brian C.

    1999-07-01

    The apoptotic response of normal brain and intracranial VX2 tumor following photodynamic therapy mediated by five different photodynamic drugs, Photofrin, ALA, AlClPc, SnET2 and mTHPC, was evaluated in a preliminary retrospective analysis. Rabbit brain, with or without tumor, was treated by PDT with interstitial light delivery. Histological sections at 24 h post PDT were assessed by the TUNEL assay. Confocal fluorescence microscopy was used to determine the total apoptotic cell count and the spatial distribution of apoptotic bodies within the tissue. The data were confirmed qualitatively by light microscopy on adjacent H&E-stained sections. Light-only and drug-only controls produced background levels. The highest apoptotic count was seen with Photofrin. The counts in AlClPc-treated animals were not above the background level, while the other 3 photosensitizers gave intermediate levels. With some, but not all, drugs the spatial distribution of apoptotic bodies correlated well with the light fluence distribution. Apoptosis was seen outside the zone of frank coagulative necrosis. There was not apparent drug-dose dependency at the relatively high doses used here. The retrospective nature of this study did not allow optimization of the treatment parameters. Nevertheless, the findings have potentially significant implications, both for understanding the mechanisms of apoptosis in brain tissue and for improving the clinical use of PDT for treatment of patients with malignant brain tumors.

  17. Chronic histological effects of ultrasonic hyperthermia on normal feline brain tissue.

    Science.gov (United States)

    Lyons, B E; Obana, W G; Borcich, J K; Kleinman, R; Singh, D; Britt, R H

    1986-05-01

    The histopathological changes associated with ultrasonic heating of normal cat brain have been correlated with thermal distributions. Ultrasound energy was applied for 50 min at different intensities to generate tissue temperatures from 42 to 48 degrees C. Animals were sacrificed at various intervals from 1 to 56 days. The organization and resolution of thermal damage was characterized by three stages of histopathological changes within the nervous tissue. The acute stage (Days 1-3) was defined by (1) extensive coagulation necrosis, (2) pyknosis of neuronal elements in the gray matter, (3) edema and vacuolation in the white matter, and (4) polymorphonuclear leukocytes. The subacute stage (Days 3-21) was characterized by (1) the appearance of lipid-laden macrophages, (2) liquefaction of the necrotic regions, (3) fibroblastic proliferation, and (4) vascular proliferation with some perivascular inflammatory infiltration (lymphocytes). Lastly, the chronic stage (Days 21-56) was defined by (1) fibrosis (reticulin and collagen formation) and (2) gliosis (reactive astrocytic proliferation) occurring around the fluid-filled necrotic center. Analysis of these data has also included a study of the lesion size versus the dose (temperature for 50 min) of heating. The results demonstrate a significant linear dose-response correlation. The results of this study indicate that the histological appearance and time course of repair of thermal injury in the normal brain tissue are analogous to acute brain necrosis resulting from cerebral infarction, except the thermal damage does not result in significant hemorrhage. PMID:3704114

  18. Preliminary observation of genes specifically expressed in brain tissues during stroke-like episodes in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-mei; ZHAO Bin; ZHU Shan-jun; ZHU Zhi-ming; ZHANG Qian; HUI Ru-tai

    2001-01-01

    Objective: To observe the difference of gene expressions of brain tissues during apoplectic episodes and those of normal brain in Wistar rats in order to study the pathological mechanism of apoplexy. Methods: A rat model of hypertension was established with the administration of cold stimulus and high salt intake as the environmental risk factors.Apoplexy occurred in the rats because of hypertension. Suppression subtractive hybridization(SSH) was used to identify and analyze the differential genes specifically expressed in cerebral tissues of stoke group and control rats. Results: A total of 226 genes out of the 228 were usable and analyzed. The average length of the 226 genes was (286.6±120.3) bp with a range from 50 bp to 619 bp. And 126 clones out of the 226 showed a sequence with significant identity to the known genes; 78 clones demonstrated homogenous sequences to the existing ESTs ofdbEST, but no one of the 78 showed sequence with identity to that of known genes; and remaining 22 were novel transrcipts exhibiting no similarity to any known sequences. All the clones which were highly homogenous to the known genes were categorized on the basis of their function. It was found that 26.5% of the mitochodrial genes in brain tissues underwent changes after apoplexy and the changes showed a twofold relationship of cause and effect. Conclusion: Environmental factors are able to induce changes of gene expression, which may increase the sensitivity to apoplectic stroke.

  19. Importance of good manufacturing practices in microbiological monitoring in processing human tissues for transplant.

    Science.gov (United States)

    Pianigiani, Elisa; Ierardi, Francesca; Fimiani, Michele

    2013-12-01

    Skin allografts represent an important therapeutic resource in the treatment of severe skin loss. The risk associated with application of processed tissues in humans is very low, however, human material always carries the risk of disease transmission. To minimise the risk of contamination of grafts, processing is carried out in clean rooms where air quality is monitored. Procedures and quality control tests are performed to standardise the production process and to guarantee the final product for human use. Since we only validate and distribute aseptic tissues, we conducted a study to determine what type of quality controls for skin processing are the most suitable for detecting processing errors and intercurrent contamination, and for faithfully mapping the process without unduly increasing production costs. Two different methods for quality control were statistically compared using the Fisher exact test. On the basis of the current study we selected our quality control procedure based on pre- and post-processing tissue controls, operator and environmental controls. Evaluation of the predictability of our control methods showed that tissue control was the most reliable method of revealing microbial contamination of grafts. We obtained 100 % sensitivity by doubling tissue controls, while maintaining high specificity (77 %). PMID:23271587

  20. Identification of some volatile endogenous constituents in rat brain tissue and the effects of lithium carbonate and chloral hydrate.

    Science.gov (United States)

    Politzer, I R; McDonald, L K; Laseter, J L

    1976-11-01

    Nine endogenous volatile compounds were found in rat brain tissue, and were identified by mass spectrometry as chloroform, a 5-C-aldehyde, dimethyl disulphide, 2,5-dimethyl tetrahydrofuran, a 8-C-alkane, xylene, 2-heptanone, heptaldehyde and 2-n-pentylfuran. Using gas chromatographic and gas chromatographic mass spectrometric techniques, it was established that lithium carbonate did not induce the production of detectable amounts of any new volatile compounds in brain tissue. However, after administration of chloral hydrate, trichloroethanol, a compound not normally present in rat brain tissue, was found to be present. PMID:996360

  1. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M;

    1983-01-01

    infarcted territory. The brain tissue overlying the deep infarcts appeared normal on CT-scan and was supplied by collateral circulation. rCBF was measured in all within 72 hours after the stroke. The intra-carotid Xe-133 injection method and a 254 multidetector camera were used to study rCBF. Relatively...... ischemic low flow areas were a constant finding in the collaterally perfused tissue. In 6 of the patients, the collaterally perfused part of the brain had low flow values comparable to those of an "ischemic penumbra" (viable, but functionally depressed brain tissue due to inadequate perfusion...

  2. Changes in brain-derived neurotrophic factor expression after transplanting microencapsulated sciatic nerve cells of rabbits into injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Changes of brain-derived neurotrophic factor (BDNF) expression reflect function of nerve cells; meanwhile, they play a significant role in researching interventions on plerosis of nerve injury.OBJECTIVE: To observe and compare the effects on changes of BDNF expression in rats with spinal cord injury between microencapsulated sciatic nerve cells of rabbits and only transplanting sciatic nerve cells of rabbits.DESIGN: Randomized controlled animal study.SETTING: Medical School of Jiujiang College.MATERIALS: The experiment was carried out in the Medical Science Researching Center, Jiujiang College from May 2004 to May 2006. A total of 90 healthy adult SD rats, weighing 250 - 300 g, of either gender; and 10 rabbits, weighing 2.0 - 2.5 kg, of either gender, were provided by Jiangxi Experimental Animal Center.METHODS: Sciatic nerve tissue of rabbits was separated to make cell suspension. After centrifugation,suspension was mixed with 15 g/L alginate saline solution and ejaculated to 20 mmol/L barium chloride saline solution by double-cavity ejaculator. The obtained cell microcapsules were suspended in saline. Rats were randomly divided into microencapsulated group, only suspension group, and only injured group with 30 animals in each group. After anesthesia, T10 spinous process and vertebra lamina of rats in the former two groups were exposed. Spinal cord tissue in 2-mm length was removed from rats by spinal cord right hemi-section. The gelatin sponges with the size of 2 mm × 2 mm × 2 mm were grafted as filing cage,and absorbed 10 μμ L microencapsulated sciatic nerve cells of rabbit in the microencapsulated group and 10 μ L sciatic nerve cells of rabbits in the only suspension group; respectively. No graft was placed in the only injured group.MAIN OUTCOME MEASURES: On the 1st, 3rd, 7th, 14th and 28th days after operation,immunohistochemistry (SABC technique) was used to detect distribution and amount of positive-reactive neurons in BDNF of spinal cord

  3. Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats

    Science.gov (United States)

    Sjöqvist, Sebastian; Jungebluth, Philipp; Ling Lim, Mei; Haag, Johannes C.; Gustafsson, Ylva; Lemon, Greg; Baiguera, Silvia; Angel Burguillos, Miguel; Del Gaudio, Costantino; Rodríguez, Antonio Beltrán; Sotnichenko, Alexander; Kublickiene, Karolina; Ullman, Henrik; Kielstein, Heike; Damberg, Peter; Bianco, Alessandra; Heuchel, Rainer; Zhao, Ying; Ribatti, Domenico; Ibarra, Cristián; Joseph, Bertrand; Taylor, Doris A.; Macchiarini, Paolo

    2014-01-01

    A tissue-engineered oesophageal scaffold could be very useful for the treatment of pediatric and adult patients with benign or malignant diseases such as carcinomas, trauma or congenital malformations. Here we decellularize rat oesophagi inside a perfusion bioreactor to create biocompatible biological rat scaffolds that mimic native architecture, resist mechanical stress and induce angiogenesis. Seeded allogeneic mesenchymal stromal cells spontaneously differentiate (proven by gene-, protein and functional evaluations) into epithelial- and muscle-like cells. The reseeded scaffolds are used to orthotopically replace the entire cervical oesophagus in immunocompetent rats. All animals survive the 14-day study period, with patent and functional grafts, and gain significantly more weight than sham-operated animals. Explanted grafts show regeneration of all the major cell and tissue components of the oesophagus including functional epithelium, muscle fibres, nerves and vasculature. We consider the presented tissue-engineered oesophageal scaffolds a significant step towards the clinical application of bioengineered oesophagi. PMID:24736316

  4. Effect of Short Periods of Normobaric Hyperoxia on Local Brain Tissue Oxygenation and Cerebrospinal Fluid Oxidative Stress Markers in Severe Traumatic Brain Injury

    OpenAIRE

    Puccio, Ava M.; Hoffman, Leslie A.; Bayir, Hülya; Zullo, Thomas G.; Fischer, Michael; Darby, Joseph; Alexander, Sheila; Dixon, C. Edward; Okonkwo, David O.; Kochanek, Patrick M.

    2009-01-01

    Preliminary evidence suggests local brain tissue oxygenation (PbtO2) values of ≤15 mm Hg following severe traumatic brain injury (TBI) represent brain tissue hypoxia. Accordingly, many neurotrauma units attempt to maintain PbtO2 ≥20 mm Hg to avoid hypoxia. This study tested the impact of a short (2 h) trial of normobaric hyperoxia on measures of oxidative stress. We hypothesized this treatment would positively affect cerebral oxygenation but negatively affect the cellular environment via oxid...

  5. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  6. Co-transplantation of plasmid-transfected myoblasts and myotubes into rat brains enables high levels of gene expression long-term

    Science.gov (United States)

    Jiao, S.; Williams, P.; Safda, N.; Schultz, E.; Wolff, J. A.

    1993-01-01

    We have previously proposed the use of primary muscle cells as a "platform," or "vehicle" for intracerebral transgene expression. Brain grafts of minced muscle, or cultured muscle cells persisted in rat brains for at least 6 mo without any decrease in graft size, or tumor formation. Stable, but moderate levels of intracerebral transgene expression were obtained by transplanting plasmid-transfected myotubes in culture. In the present study, high and stable levels of intracerebral transgene expression were achieved by the co-transplantation of plasmid-transfected myoblasts and myotubes in culture. Approximately 5 X 10(5) myoblasts and myotubes were transfected with 10 micrograms pRSVL plasmid DNA, and 30 micrograms Lipofectin (BRL), respectively. They were mixed together (total cell number was 1 million), and stereotactically injected into the caudate nucleus of an adult rat brain. The activity of luciferase, the product of transgene expression, was stable for at least 4 mo, and much higher than the levels in myotube grafts, or co-grafts of myoblasts and minced muscle. Presumably, the myotubes served as a framework on which the myoblasts can form myotubes. The sections of brains transplanted with co-graft of myoblasts, and myotubes transfected with pRSVLac-Z were stained immunofluorescently for beta-galactosidase activity. The muscle grafts contained beta-galactosidase positive myofibers 4 mo after transplantation. Such high and stable levels of in vivo expression after postnatal gene transfer have rarely been achieved. Primary muscle cells are useful vehicle for transgene expression in brains, and potentially valuable for gene therapy of degenerative neurological disorders.

  7. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure.

    Science.gov (United States)

    Avram, Alexandru V; Sarlls, Joelle E; Barnett, Alan S; Özarslan, Evren; Thomas, Cibu; Irfanoglu, M Okan; Hutchinson, Elizabeth; Pierpaoli, Carlo; Basser, Peter J

    2016-02-15

    Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our

  8. Assessment of bone formation capacity using in vivo transplantation assays: procedure and tissue analysis

    DEFF Research Database (Denmark)

    Abdallah, Basem; Ditzel, Nicholas; Kassem, Moustapha

    2008-01-01

    ) in immunodeficient mice is the standard method for in vivo assessment of bone formation capacity of a particular cell type. The method is easy to perform and provides reproducible results. Assessment of the donor origin of tissue formation is possible, especially in the case of human-to-mouse transplanta tion...

  9. X-ray diffraction from intact tau aggregates in human brain tissue

    Science.gov (United States)

    Landahl, Eric C.; Antipova, Olga; Bongaarts, Angela; Barrea, Raul; Berry, Robert; Binder, Lester I.; Irving, Thomas; Orgel, Joseph; Vana, Laurel; Rice, Sarah E.

    2011-09-01

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 Å) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  10. X-ray diffraction from intact tau aggregates in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Landahl, Eric C. [DePaul University, Department of Physics, 2219 N. Kenmore Ave., IL 60614, Chicago (United States); Antipova, Olga [Illinois Institute of Technology, Department of Biological Chemical and Physical Sciences, 3101 South Dearborn St., IL 60616, Chicago (United States); Bongaarts, Angela [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States); Barrea, Raul [Illinois Institute of Technology, Department of Biological Chemical and Physical Sciences, 3101 South Dearborn St., IL 60616, Chicago (United States); Berry, Robert; Binder, Lester I. [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States); Irving, Thomas; Orgel, Joseph [Illinois Institute of Technology, Department of Biological Chemical and Physical Sciences, 3101 South Dearborn St., IL 60616, Chicago (United States); Vana, Laurel [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States); Rice, Sarah E., E-mail: s-rice@northwestern.edu [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States)

    2011-09-01

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 A) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  11. X-ray diffraction from intact tau aggregates in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Landahl, Eric C.; Antipova, Olga; Bongaarts, Angela; Barrea, Raul; Berry, Robert; Binder, Lester I.; Irving, Thomas; Orgel, Joseph; Vana, Laurel; Rice, Sarah E. (DePaul); (IIT); (NWU)

    2011-09-15

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 {angstrom}) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  12. Antioxidant Role of Pomegranates on Liver and Brain Tissues of Rats Exposed to an Organophosphorus Insecticide

    International Nuclear Information System (INIS)

    Toxicities of organophosphorus insecticides cause oxidative damage on many organs such as the liver and brain due to generation of reactive oxygen species. Pomegranate is among the richest fruit in poly - phenols. The aim of this study was to compare between the antioxidant strength of pomegranate juice (PJ) and pomegranate molasses (PM) and their effects on alanine transferase (ALT), aspartate aminotransferase (AST), Alkaline phosphatase (ALP) and total protein (TP) in liver and levels of malondialdehyde (MAD), reduced glutathione (GSH) and nitric oxide (NO) in rat liver and brain tissues exposed to 1/10 LD 50 diazinon (DI). Six groups each of 6 male albino rats were used comprising control, DI, PJ, PM, PJ + DI and PM + DI for 15 days. The activities of ALT, AST, and TP concentration in liver have been increased due to treatment of rats with DI. These increases restored to normalcy when rats were supplemented with PJ or PM with DI. The results demonstrate that treatment with DI induced significant increase in MDA and NO concentrations and significant decrease in GSH levels of liver and brain tissues. The administration of PJ or PM along with DI significant decrease in MDA and NO levels and significant increase in GSH level compared to DI-group. The present study suggest that PJ or PM has a potential protective effect as it can elevate antioxidant defense system, lessens induced oxidative dam - ages and protect the brain and liver tissue against DI-induced toxicity. In addition, comaring PJ with PM it was noticed that PJ had higher antioxidant activity as evidenced by increased GSH content and decreased NO level in the liver by greater extend than PM.

  13. Induction of neuro-protective/regenerative genes in stem cells infiltrating post-ischemic brain tissue

    Directory of Open Access Journals (Sweden)

    Yilmaz Gokhan

    2010-05-01

    Full Text Available Abstract Background- Although the therapeutic potential of bone marrow-derived stromal stem cells (BMSC has been demonstrated in different experimental models of ischemic stroke, it remains unclear how stem cells (SC induce neuroprotection following stroke. In this study, we describe a novel method for isolating BMSC that infiltrate postischemic brain tissue and use this method to identify the genes that are persistently activated or depressed in BMSC that infiltrate brain tissue following ischemic stroke. Methods- Ischemic strokes were induced in C57BL/6 mice by middle cerebral artery occlusion for 1 h, followed by reperfusion. BMSC were isolated from H-2 Kb-tsA58 (immortomouse™ mice, and were administered (i.v. 24 h after reperfusion. At the peak of therapeutic improvement (14 days after the ischemic insult, infarcted brain tissue was isolated, and the BMSC were isolated by culturing at 33°C. Microarray analysis and RT-PCR were performed to compare differential gene expression between naïve and infiltrating BMSC populations. Results- Z-scoring revealed dramatic differences in the expression of extracellular genes between naïve and infiltrating BMSC. Pair-wise analysis detected 80 extracellular factor genes that were up-regulated (≥ 2 fold, P Conclusions- BMSC infiltrating the post-ischemic brain exhibit persistent epigenetic changes in gene expression for numerous extracellular genes, compared to their naïve counterparts. These genes are relevant to the neuroprotection, regeneration and angiogenesis previously described following stem cell therapy in animal models of ischemic stroke.

  14. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    International Nuclear Information System (INIS)

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface. Patients treated with small portals (2) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams

  15. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury.

    Science.gov (United States)

    Koutsoudaki, Paraskevi N; Papastefanaki, Florentia; Stamatakis, Antonios; Kouroupi, Georgia; Xingi, Evangelia; Stylianopoulou, Fotini; Matsas, Rebecca

    2016-05-01

    The central nervous system has limited capacity for regeneration after traumatic injury. Transplantation of neural stem/progenitor cells (NPCs) has been proposed as a potential therapeutic approach while insulin-like growth factor I (IGF-I) has neuroprotective properties following various experimental insults to the nervous system. We have previously shown that NPCs transduced with a lentiviral vector for IGF-I overexpression have an enhanced ability to give rise to neurons in vitro but also in vivo, upon transplantation in a mouse model of temporal lobe epilepsy. Here we studied the regenerative potential of NPCs, IGF-I-transduced or not, in a mouse model of hippocampal mechanical injury. NPC transplantation, with or without IGF-I transduction, rescued the injury-induced spatial learning deficits as revealed in the Morris Water Maze. Moreover, it had beneficial effects on the host tissue by reducing astroglial activation and microglial/macrophage accumulation while enhancing generation of endogenous oligodendrocyte precursor cells. One or two months after transplantation the grafted NPCs had migrated towards the lesion site and in the neighboring myelin-rich regions. Transplanted cells differentiated toward the oligodendroglial, but not the neuronal or astrocytic lineages, expressing the early and late oligodendrocyte markers NG2, Olig2, and CNPase. The newly generated oligodendrocytes reached maturity and formed myelin internodes. Our current and previous observations illustrate the high plasticity of transplanted NPCs which can acquire injury-dependent phenotypes within the host CNS, supporting the fact that reciprocal interactions between transplanted cells and the host tissue are an important factor to be considered when designing prospective cell-based therapies for CNS degenerative conditions. GLIA 2016;64:763-779. PMID:26712314

  16. The Molecular and Antigenic Tissue Impact of Viral Infections on Liver Transplant Patients with Neonatal Hepatitis

    OpenAIRE

    2011-01-01

    Background: Pathogenesis of neonatal hepatitis relates to various underlying causes including viral infections. Both hepatotropic and non-hepatotropic viruses may induce liver failures in infants before birth, during delivery, or shortly after birth. Objectives: The tissue impact of HCMV, HSV, HBV, HCV, and rotavirus and adenovirus infections was evaluated in studied infants with neonatal hepatitis. Methods: The history of viral infections was analyzed in paraffin-embedded biopsy and autopsy ...

  17. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Heile, Anna M B; Wallrapp, Christine; Klinge, Petra M;

    2009-01-01

    -protective substance glucagon-like peptide-1 (GLP-1). METHODS: Thirty two Sprague-Dawley rats were randomized to five groups: controls (no CCI), CCI-only, CCI+eMSC, CCI+GLP-1 eMSC, and CCI+empty capsules. On day 14, cisternal cerebro-spinal fluid (CSF) was sampled for measurement of GLP-1 concentration. Brains were...

  18. Primary insect cell culture from total embryo and embryonic brain tissue of Periplaneta americana: A preliminary study

    OpenAIRE

    Soya Seçkin; Can Hüseyin; Yıkılmaz Mehmet Salih

    2015-01-01

    The aim of this preliminary study was to establish a primary insect cell culture from total embryos and embryonic brain tissues of Periplaneta americana, collected from Izmir, Turkey. Cells were cultured at 29ºC in Grace’s insect medium for one month. In the embryonic brain tissue culture, single cells and cell clumps containing spherical and ovoid as well as dividing cells were observed. Single bipolar neurons were detected after 4 days in culture. Network...

  19. Nitric oxide levels following perfusion differ in donation after circulatory death and donation after brain death transplants

    OpenAIRE

    Johns, R.; Chaudry, A.; Khanafer, E; Ilham, A; Stephens, M; Philips, A; Asderakis, A

    2013-01-01

    Affiliated to the Association of Surgeons in Training and the British Transplantation Society, the Carrel Club is the transplant trainee surgical society. The Carrel Club held a joint meeting with the Chapter of Transplant Surgeons, a subsidiary organisation of the British Transplantation Society, at the Manchester Hilton Hotel on 31 January and 1 February 2013. As part of the meeting, ten abstracts were presented. A selection is printed below. The winner of the Best Presentation award was Mr...

  20. Brain Metastasis in Bone and Soft Tissue Cancers: A Review of Incidence, Interventions, and Outcomes

    Directory of Open Access Journals (Sweden)

    Faris Shweikeh

    2014-01-01

    Full Text Available Bone and soft tissue malignancies account for a small portion of brain metastases. In this review, we characterize their incidence, treatments, and prognosis. Most of the data in the literature is based on case reports and small case series. Less than 5% of brain metastases are from bone and soft tissue sarcomas, occurring most commonly in Ewing’s sarcoma, malignant fibrous tumors, and osteosarcoma. Mean interval from initial cancer diagnosis to brain metastasis is in the range of 20–30 months, with most being detected before 24 months (osteosarcoma, Ewing sarcoma, chordoma, angiosarcoma, and rhabdomyosarcoma, some at 24–36 months (malignant fibrous tumors, malignant peripheral nerve sheath tumors, and alveolar soft part sarcoma, and a few after 36 months (chondrosarcoma and liposarcoma. Overall mean survival ranges between 7 and 16 months, with the majority surviving < 12 months (Ewing’s sarcoma, liposarcoma, malignant fibrous tumors, malignant peripheral nerve sheath tumors, angiosarcoma and chordomas. Management is heterogeneous involving surgery, radiosurgery, radiotherapy, and chemotherapy. While a survival advantage may exist for those given aggressive treatment involving surgical resection, such patients tended to have a favorable preoperative performance status and minimal systemic disease.

  1. Elemental composition of 'normal' and Alzheimer brain tissue by INA and PIXE analyses

    International Nuclear Information System (INIS)

    Instrumental methods based on the nuclear and atomic properties of the elements have been used for many years to determine elemental concentrations in a variety of materials for biomedical, industrial and environmental applications. These methods offer high sensitivity for accurate trace element measurements, suffer few interfering or competing effects. Present no blank problems and are convenient for both research and routine analyses. The present article describes the use of two trace element techniques. Firstly the use of activation of stable nuclei irradiated by neutrons in the core of a low power research reactor as a means of detection of elements through the resulting gamma-rays emitted. Secondly, the observations of the interactions of energetic ion beams with the material in order to identify elemental species. Over recent years there has been some interest in determining the elemental composition of 'normal' and Alzheimer affected brain tissue, however literature findings are inconsistent. Possible reasons for discrepancies need to be identified for further progress to be made. Here, post-mortem tissue samples, provided by the Alzheimer's Disease Brain Bank, Institute of Psychiatry, London, were taken from the frontal, occipital, parietal and temporal lobes of both hemispheres of brains from 13 'normal' and 19 Alzheimer subjects. The elemental composition of the samples was determined using the analytical techniques of INAA (instrumental neutron activation analysis), RBS (Rutherford back-scattering) and PIXE (particle induced x-ray emission). The principal findings are summarised here. (author)

  2. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics.

    Science.gov (United States)

    Favre-Bulle, Itia A; Preece, Daryl; Nieminen, Timo A; Heap, Lucy A; Scott, Ethan K; Rubinsztein-Dunlop, Halina

    2015-01-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam's degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics. PMID:26108566

  3. The effect of X-ray on the distribution of biogenic monoamines in the brain tissue

    International Nuclear Information System (INIS)

    The role of biogenic monoamines in immuno-adaptation reaction of animal organism to radiation, in increase of organism radiostability and in studying damage effect of ionizing radiation is investigated. Rat brain was an object of observations. Rats were once X-irradiated at the dose of 0.8 and 1.2 Gr. Assay samples were taken in 10 minutes, 2, 24, 48 hours, 5 and 7 days after radiation. It was clarified that noticeable variations of serotonin, adrenalin and dofamin content were observed in first hours after radiation in hemisphere cortex, medulla oblongata, hypothalamus and cerebellum. The observed phenomena ever more aggravate with progress of radiation sickness. Character and depth of shifts in monoamine distribution are not found to depend on radiation dose only but on chemical structure of neurons of the investigated section as well. The results of studies permit to consider quantitative shifts in distribution of biogenic amines in brain tissue after radiation as one of the factors promoting increase of endogenic defence resources and increasing stability of the irradiated organism. Besides, it is supposed that these shifts result from local distortion of metabolic processes in brain tissue and general somatic shifts progressing at acute radiation sickness

  4. Apoptosis induced in vivo by photodynamic therapy in normal brain and intracranial tumour tissue.

    Science.gov (United States)

    Lilge, L; Portnoy, M; Wilson, B C

    2000-10-01

    The apoptotic response of normal brain and intracranial VX2 tumour following photodynamic therapy (PDT) mediated by 5 different photosensitizers (Photofrin, 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX), chloroaluminium phthalocyanine (AlCIPc), Tin Ethyl Etiopurpurin (SnET(2)), and meta -tetra(hydroxyphenyl)chlorin (m THPC)) was evaluated following a previous analysis which investigated the necrotic tissue response to PDT at 24 h post treatment. Free DNA ends, produced by internucleosomal DNA cleavage in apoptotic cells, were stained using a TUNEL (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling) assay. Confocal laser scanning microscopy (CLSM) was used to quantify the local incidence of apoptosis and determine its spatial distribution throughout the brain. The incidence of apoptosis was confirmed by histopathology, which demonstrated cell shrinkage, pyknosis and karyorrhexis. At 24 h post PDT, AlClPc did not cause any detectable apoptosis, while the other photosensitizers produced varying numbers of apoptotic cells near the region of coagulative necrosis. The apoptotic response did not appear to be related to photosensitizer dose. These results suggest that at this time point, a minimal and fairly localized apoptotic effect is produced in brain tissues, the extent of which depends largely on the particular photosensitizer. PMID:10993661

  5. Protective effect of DL-3-n-Butylphthalide on radiation injury of rat brain tissue

    International Nuclear Information System (INIS)

    Objective: To investigate the protective effect and its mechanism of DL-3-n-Butylphthalide on the brain damage in rats following whole brain irradiation. Methods: A total of 120 male Sprague Dawley rats were randomly divided into sham-irradiation group, irradiation group and DL-3-n-Butylphthalide group. The model of whole-brain irradiation was established by exposing rat brain to 4 MeV X-rays with a single-dose of 10 Gy. The rats were intraperitoneally injected with DL-3-n-Butylphthalide at the dosages of 0.3, 1.0, and 3.0 mg/kg once a day. The contents of malondialdehyde and super oxide dismutase activity were measured, while the expressions of apoptosis-associated genes and the ultrastructural changes in hippocampus were examined by immunohistochemistry staining and electron microscope, respectively. Results: After irradiation, the content of malondialdehyde and the expression of apoptosis gene bax in rat brain tissue increased while the activity of super oxide dismutase (SOD) and the expression of anti-apoptosis gene bcl-2 decreased. Apoptosis was also observed in the neurons of hippocampus CA1. Compared with irradiation group, the content of malondialdehyde and the expression of bax gene in the DL-3-n-Butylphthalide group wen significantly reduced (t=-3.89 - -1.96, 2.72-3.48, P<0.05), while the activity of SOD and bcl-2 gene were significantly elevated (t=2.94-3.76, -3.18 - -2.08, P<0.05), and the injury degree of neuron structure in the DL-3-n-Butylphthalide group was slighter than that in the irradiation group. Conclusions: DL-3-n-Butylphthalide executes protective effects in a dose-dependent manner against the radiation injury in rats brain by reducing the induction of malondialdehyde, raising the activity of SOD and inhibiting the generation of apoptosis. (authors)

  6. NI-643D-PRINTED MRI-BASED CUSTOM BRAIN MOLDS FOR MINIMIZING TISSUE DISTORTION AND PRECISELY SLICING TISSUE FOR CO-REGISTRATION WITH CLINICALLY ACQUIRED MRI IN GLIOMA PATIENTS

    OpenAIRE

    Pellatt, Brian; Mickevicius, Nikolai; Cochran, Elizabeth; LaViolette, Peter

    2014-01-01

    INTRODUCTION: Precise co-registration of brain tissue and medical imaging is critical for validation of novel imaging biomarkers meant to detect infiltrative brain cancer. Brain tissue distortion during fixation, and brain slicing in sub-optimal orientation can complicate co-registration. METHODS: Three high-grade glioma patients undergoing brain only autopsies were included in this analysis. A clinically acquired MRI was used to render 3D computer assisted drafting (CAD) models. To generate ...

  7. An international comparison of the effect of policy shifts to organ donation following cardiocirculatory death (DCD on donation rates after brain death (DBD and transplantation rates.

    Directory of Open Access Journals (Sweden)

    Aric Bendorf

    Full Text Available During the past decade an increasing number of countries have adopted policies that emphasize donation after cardiocirculatory death (DCD in an attempt to address the widening gap between the demand for transplantable organs and the availability of organs from donation after brain death (DBD donors. In order to examine how these policy shifts have affected overall deceased organ donor (DD and DBD rates, we analyzed deceased donation rates from 82 countries from 2000-2010. On average, overall DD, DBD and DCD rates have increased over time, with the proportion of DCD increasing 0.3% per year (p = 0.01. Countries with higher DCD rates have, on average, lower DBD rates. For every one-per million population (pmp increase in the DCD rate, the average DBD rate decreased by 1.02 pmp (95% CI: 0.73, 1.32; p<0.0001. We also found that the number of organs transplanted per donor was significantly lower in DCD when compared to DBD donors with 1.51 less transplants per DCD compared to DBD (95% CI: 1.23, 1.79; p<0.001. Whilst the results do not infer a causal relationship between increased DCD and decreased DBD rates, the significant correlation between higher DCD and lower DBD rates coupled with the reduced number of organs transplanted per DCD donor suggests that a national policy focus on DCD may lead to an overall reduction in the number of transplants performed.

  8. A simple method for measuring glucose utilization of insulin-sensitive tissues by using the brain as a reference

    International Nuclear Information System (INIS)

    A simple method, without measurement of the plasma input function, to obtain semiquantitative values of glucose utilization in tissues other than the brain with radioactive deoxyglucose is reported. The brain, in which glucose utilization is essentially insensitive to plasma glucose and insulin concentrations, was used as an internal reference. The effects of graded doses of oral glucose loading (0.5, 1 and 2 mg/g body weight) on insulin-sensitive tissues (heart, muscle and fat tissue) were studied in the rat. By using the brain-reference method, dose-dependent increases in glucose utilization were clearly shown in all the insulin-sensitive tissues examined. The method seems to be of value for measurement of glucose utilization using radioactive deoxyglucose and positron emission tomography in the heart or other insulin-sensitive tissues, especially during glucose loading. (orig.)

  9. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?★

    OpenAIRE

    Yoon, Hyung Ho; Min, Joongkee; Shin, Nari; Kim, Yong Hwan; Kim, Jin-Mo; Hwang, Yu-Shik; Suh, Jun-Kyo Francis; Hwang, Onyou; Jeon, Sang Ryong

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-der...

  10. An International Comparison of the Effect of Policy Shifts to Organ Donation following Cardiocirculatory Death (DCD) on Donation Rates after Brain Death (DBD) and Transplantation Rates

    OpenAIRE

    Bendorf, Aric; Kelly, Patrick J.; Kerridge, Ian H; McCaughan, Geoffrey W.; Myerson, Brian; Stewart, Cameron; Pussell, Bruce A

    2013-01-01

    During the past decade an increasing number of countries have adopted policies that emphasize donation after cardiocirculatory death (DCD) in an attempt to address the widening gap between the demand for transplantable organs and the availability of organs from donation after brain death (DBD) donors. In order to examine how these policy shifts have affected overall deceased organ donor (DD) and DBD rates, we analyzed deceased donation rates from 82 countries from 2000–2010. On average, overa...

  11. Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with 99mTc BN1.1

    Science.gov (United States)

    Scopinaro, F.; Paschali, E.; Di Santo, G.; Antonellis, T.; Massari, R.; Trotta, C.; Gourni, H.; Bouziotis, P.; David, V.; Soluri, A.; Varvarigou, A. D.

    2006-12-01

    The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. 99mTc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, 99mTc HMPAO and the new 99mTc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of 99mTc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of 99mTc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only 99mTc BN1.1 HR scan showed viability of transplanted TSC but also the "background brain" was the still now unknown map of BNR in mammalian brain.

  12. Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with 99mTc BN1.1

    International Nuclear Information System (INIS)

    The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. 99mTc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, 99mTc HMPAO and the new 99mTc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of 99mTc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of 99mTc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only 99mTc BN1.1 HR scan showed viability of transplanted TSC but also the 'background brain' was the still now unknown map of BNR in mammalian brain

  13. Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with {sup 99m}Tc BN1.1

    Energy Technology Data Exchange (ETDEWEB)

    Scopinaro, F. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy)]. E-mail: francesco.scopinaro@uniroma1.it; Paschali, E. [NSC Demokritos, Athens (Greece); Di Santo, G. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Antonellis, T. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Massari, R. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Trotta, C. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Gourni, H. [NSC Demokritos, Athens (Greece); Bouziotis, P. [NSC Demokritos, Athens (Greece); David, V. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Soluri, A. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Varvarigou, A.D. [NSC Demokritos, Athens (Greece)

    2006-12-20

    The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. {sup 99m}Tc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, {sup 99m}Tc HMPAO and the new {sup 99m}Tc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of {sup 99m}Tc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of {sup 99m}Tc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only {sup 99m}Tc BN1.1 HR scan showed viability of transplanted TSC but also the 'background brain' was the still now unknown map of BNR in mammalian brain.

  14. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue

    Science.gov (United States)

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types. PMID:27327609

  15. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    Science.gov (United States)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  16. A white matter lesion-filling approach to improve brain tissue volume measurements

    Directory of Open Access Journals (Sweden)

    Sergi Valverde

    2014-01-01

    Full Text Available Multiple sclerosis white matter (WM lesions can affect brain tissue volume measurements of voxel-wise segmentation methods if these lesions are included in the segmentation process. Several authors have presented different techniques to improve brain tissue volume estimations by filling WM lesions before segmentation with intensities similar to those of WM. Here, we propose a new method to refill WM lesions, where contrary to similar approaches, lesion voxel intensities are replaced by random values of a normal distribution generated from the mean WM signal intensity of each two-dimensional slice. We test the performance of our method by estimating the deviation in tissue volume between a set of 30 T1-w 1.5 T and 30 T1-w 3 T images of healthy subjects and the same images where: WM lesions have been previously registered and afterwards replaced their voxel intensities to those between gray matter (GM and WM tissue. Tissue volume is computed independently using FAST and SPM8. When compared with the state-of-the-art methods, on 1.5 T data our method yields the lowest deviation in WM between original and filled images, independently of the segmentation method used. It also performs the lowest differences in GM when FAST is used and equals to the best method when SPM8 is employed. On 3 T data, our method also outperforms the state-of-the-art methods when FAST is used while performs similar to the best method when SPM8 is used. The proposed technique is currently available to researchers as a stand-alone program and as an SPM extension.

  17. Effects of isomers of apomorphines on dopamine receptors in striatal and limbic tissue of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kula, N.S.; Baldessarini, R.J.; Bromley, S.; Neumeyer, J.L.

    1985-09-16

    The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (Da) receptors in extrapyramidal and limbic preparations of rat brain tissues. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulation adenylate cyclase (D-1 sites) and in competing for high affinity binding of /sup 3/H-spiroperidol (D-2 sites) and of /sup 3/H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity of higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.

  18. MR brain scan tissues and structures segmentation: local cooperative Markovian agents and Bayesian formulation

    International Nuclear Information System (INIS)

    Accurate magnetic resonance brain scan segmentation is critical in a number of clinical and neuroscience applications. This task is challenging due to artifacts, low contrast between tissues and inter-individual variability that inhibit the introduction of a priori knowledge. In this thesis, we propose a new MR brain scan segmentation approach. Unique features of this approach include (1) the coupling of tissue segmentation, structure segmentation and prior knowledge construction, and (2) the consideration of local image properties. Locality is modeled through a multi-agent framework: agents are distributed into the volume and perform a local Markovian segmentation. As an initial approach (LOCUS, Local Cooperative Unified Segmentation), intuitive cooperation and coupling mechanisms are proposed to ensure the consistency of local models. Structures are segmented via the introduction of spatial localization constraints based on fuzzy spatial relations between structures. In a second approach, (LOCUS-B, LOCUS in a Bayesian framework) we consider the introduction of a statistical atlas to describe structures. The problem is reformulated in a Bayesian framework, allowing a statistical formalization of coupling and cooperation. Tissue segmentation, local model regularization, structure segmentation and local affine atlas registration are then coupled in an EM framework and mutually improve. The evaluation on simulated and real images shows good results, and in particular, a robustness to non-uniformity and noise with low computational cost. Local distributed and cooperative MRF models then appear as a powerful and promising approach for medical image segmentation. (author)

  19. Solid organ donation and transplantation.

    Science.gov (United States)

    Furlow, Bryant

    2012-01-01

    Medical imaging plays a key role in solid organ donation and transplantation. In addition to confirming the clinical diagnosis of brain death, imaging examinations are used to assess potential organ donors and recipients, evaluate donated organs, and monitor transplantation outcomes. This article introduces the history, biology, ethics, and institutions of organ donation and transplantation medicine. The article also discusses current and emerging imaging applications in the transplantation field and the controversial role of neuroimaging to confirm clinically diagnosed brain death. PMID:22461345

  20. Transplantation of bone marrow as a factor modifying the recovery processes in haemopoietic tissue of irradiated mice

    International Nuclear Information System (INIS)

    In experiments on (CBAxC57B1)F1 mice exposed to 60Co-gamma-radiation in a dose of 8.5 Gy a different degree of blood system recovery was demonstrated after bone marrow transplantation in the following quantities; 2x105, 2x106 or 5x106 cells. With the smallest number of myelocaryocytes transplanted the regeneration of haemopoiesis, especially granulopoiesis, was relatively more pronounced (disproportionally to the number of the transplanted cells)

  1. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. (Cleveland Clinic Foundation, OH (USA))

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  2. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  3. Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury.

    Science.gov (United States)

    Gao, Junling; Prough, Donald S; McAdoo, David J; Grady, James J; Parsley, Margaret O; Ma, Long; Tarensenko, Yevgeniya I; Wu, Ping

    2006-10-01

    Traumatic brain injury (TBI) often produces cognitive impairments by primary or secondary neuronal loss. Stem cells are a potential tool to treat TBI. However, most previous studies using rodent stem or progenitor cells failed to correlate cell grafting and cognitive improvement. Furthermore, the efficacy of fetal human neural stem cells (hNSCs) for ameliorating TBI cognitive dysfunction is undetermined. This study therefore characterized phenotypic differentiation, neurotrophic factor expression and release and functional outcome of grafting hNSCs into TBI rat brains. Adult Sprague-Dawley rats underwent a moderate parasagittal fluid percussion TBI followed by ipsilateral hippocampal transplantation of hNSCs or vehicle 1 day post-injury. Prior to grafting, hNSCs were treated in vitro for 7 days with our previously developed priming procedure. Significant spatial learning and memory improvements were detected by the Morris water maze (MWM) test in rats 10 days after receiving hNSC grafts. Morphological analyses revealed that hNSCs survived and differentiated mainly into neurons in the injured hippocampus at 2 weeks after grafting. Furthermore, hNSCs expressed and released glial-cell-line-derived neurotrophic factor (GDNF) in vitro and when grafted in vivo, as detected by RT-PCR, immunostaining, microdialysis and ELISA. This is the first direct demonstration of the release of a neurotrophic factor in conjunction with stem cell grafting. In conclusion, human fetal neural stem cell grafts improved cognitive function of rats with acute TBI. Grafted cells survived and differentiated into neurons and expressed and released GNDF in vivo, which may help protect host cells from secondary damage and aid host regeneration. PMID:16904107

  4. Transplantation of Adipose Tissue and Adipose-Derived Stem Cells as a Tool to Study Metabolic Physiology and for Treatment of Disease

    OpenAIRE

    Tran, Thien T.; Kahn, C. Ronald

    2010-01-01

    Humans and other mammals have three main fat depots - visceral white fat, subcutaneous white fat, and brown fat - each possessing unique cell-autonomous properties. In contrast to visceral fat which can induce detrimental metabolic effects, subcutaneous white fat and brown fat have potential beneficial metabolic effects, including improved glucose homeostasis and increased energy consumption, which might be transferred by transplantation of these fat tissues. In addition, fat contains adipose...

  5. Vasculitis defects by brain SPECT in mixed connective tissue disease. A case report

    International Nuclear Information System (INIS)

    Full text: Cerebrovascular involvement including vasculitis in mixed connective tissue disease (MCTD) is reported to be uncommon. We describe the clinical findings and course of a 45 years old black women followed and diagnosed with depression and cognitive impairment including mental confusion, visual an auditive hallucination. Complete neuropsychological evaluation established the diagnosis of psychotic disorder. Laboratory tests, computed tomography of the skull were completely normal. The patient was referred to a brain SPECT which showed a focal area of decrease regional cerebral blood flow in right parietal-occipital region. Increasing the corticosteroids dose and with the use of neuroleptics, the patient improve clinically and the SPECT turned out to be normal

  6. Experimental study on the toxicity of povidone-iodine solution in brain tissues of rabbits

    OpenAIRE

    Li, Shu-Hua; Wang, Yu; Gao, Hai-Bin; Zhao, Kun; Hou, Yu-Chen; Sun, Wei

    2015-01-01

    Objective: To determine whether Povidone-iodine was toxic to brain tissues by rinsing the cerebral cortex of New Zealand rabbits with Povidone-iodine Solution of different concentrations. Methods: 12 New Zealand rabbits were randomly divided into 4 groups (Group A, B, C and D, 3 rabbits each group). In each group, the left cerebral cortex of rabbits was rinsed with physiological saline after the craniotomy; in Group A and B, the right cerebral cortex of rabbits was also locally rinsed with Po...

  7. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  8. Pediatric brain tumors of neuroepithelial tissue; Hirntumoren des neuroepithelialen Gewebes im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Politi, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany); Bergmann, M. [Klinikum Bremen-Mitte, Institut fuer Klinische Neuropathologie, Bremen (Germany); Pekrun, A. [Klinikum Bremen-Mitte, Klinik fuer Kinder- und Jugendmedizin, paed. Haematologie/Onkologie, Neonatologie, Bremen (Germany); Juergens, K.U. [Klinikum Bremen-Mitte, ZEMODI-Zentrum fuer moderne Diagnostik, MRT, Nuklearmedizin und PET-CT, Bremen (Germany)

    2014-08-15

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [German] Tumoren des neuroepithelialen Gewebes stellen die mit Abstand groesste Gruppe der paediatrischen Hirntumoren dar und werden je nach deren Ursprung in diversen Subtypen unterteilt. Das Neuropil beinhaltet diverse Subtypen von Gliazellen: Astrozyten, Oligodendrozyten, ependymale Zellen und modifizierte ependymale Zellen, die den Plexus choroideus formen. In diesem Review werden die bildgebenden Aspekte mittels CT und MRT der haeufigsten Tumoren des neuroepithelialen Gewebes diskutiert. (orig.)

  9. Single nanoparticle tracking of [Formula: see text]-methyl-d-aspartate receptors in cultured and intact brain tissue.

    Science.gov (United States)

    Varela, Juan A; Ferreira, Joana S; Dupuis, Julien P; Durand, Pauline; Bouchet, Delphine; Groc, Laurent

    2016-10-01

    Recent developments in single-molecule imaging have revealed many biological mechanisms, providing high spatial and temporal resolution maps of molecular events. In neurobiology, these techniques unveiled that plasma membrane neurotransmitter receptors and transporters laterally diffuse at the surface of cultured brain cells. The photostability of bright nanoprobes, such as quantum dots (QDs), has given access to neurotransmitter receptor tracking over long periods of time with a high spatial resolution. However, our knowledge has been restricted to cultured systems, i.e., neurons and organotypic slices, therefore lacking several aspects of the intact brain rheology and connectivity. Here, we used QDs to track single glutamatergic [Formula: see text]-methyl-d-aspartate receptors (NMDAR) in acute brain slices. By delivering functionalized nanoparticles in vivo through intraventricular injections to rats expressing genetically engineered-tagged NMDAR, we successfully tracked the receptors in native brain tissue. Comparing NMDAR tracking to different classical brain preparations (acute brain slices, cultured organotypic brain slices, and cultured neurons) revealed that the surface diffusion properties shared several features and are also influenced by the nature of the extracellular environment. Together, we describe the experimental procedures to track plasma membrane NMDAR in dissociated and native brain tissue, paving the way for investigations aiming at characterizing receptor diffusion biophysics in intact tissue and exploring the physiopathological roles of receptor surface dynamics. PMID:27429996

  10. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

    Directory of Open Access Journals (Sweden)

    Sergi Valverde

    2015-01-01

    Full Text Available Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM and white matter (WM using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

  11. Specific accumulation of {sup 18}F-deoxyglucose in three-dimensional long-term cultures of human and rodent brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Hocke, C.; Prante, O.; Kuwert, T. [Clinic of Nuclear Medicine, Univ. of Erlangen-Nuernberg (Germany); Bluemcke, I.; Jeske, I. [Dept. of Neuropathology, Univ. of Erlangen-Nuernberg (Germany); Romstoeck, J. [Dept. of Neurosurgery, Univ. of Erlangen-Nuernberg (Germany); Stefan, H. [Dept. of Neurology, Univ. of Erlangen-Nuernberg (Germany)

    2007-07-01

    Aim: Organotypic slice cultures (OSC) of human brain specimens represent an intriguing experimental model for translational studies addressing, e.g., stem cell transplantation in neurodegenerative diseases or targeting invasion by malignant glioma ex vivo. However, long-term viability and phenomena of structural reorganization of human OSC remain to be further characterized. Here, we report the use of {sup 18}F-deoxyglucose (FDG) for evaluating the viability of brain slice preparations obtained either from postnatal rats or human hippocampal specimens. Methods: Anatomically well preserved human hippocampi obtained from epilepsy surgery and rat hippocampus slice cultures obtained from six day old Wistar rats were dissected into horizontal slices. The slices were incubated with FDG in phosphate buffered saline up to 1 h, either with or without supplementation of glucose at a concentration of 2.5 mg/ml. Radioactivity within the medium or slice cultures was measured using a gamma-counter. In addition, distribution of radioactivity was autoradiographically visualized and quantified as counts per mm{sup 2}. Results: In rat hippocampal slices, FDG accumulated with 1 300 000 {+-} 68 000 counts/mm{sup 2}, whereas the incorporation of the radioactive label in human slices was in the order of 1 500 000 {+-} 370 000 counts/mm{sup 2}. The elevation of glucose concentration within the medium led to a significant three-fold decrease of FDG accumulation in rat slices and to a 2.4-fold decrease in human specimens. Conclusions: FDG accumulated in organotypic brain cultures of human or rodent origin. FDG is thus suited to investigate the viability of OSC. Furthermore, these preparations open new ways to study the factors governing cerebral FDG uptake in brain tissue ex vivo. (orig.)

  12. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stirling Emma J

    2010-10-01

    Full Text Available Abstract Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors.

  13. Irradiation to control infectivity of Toxoplasma gondii in murine brains and edible porcine tissues

    International Nuclear Information System (INIS)

    The effect of irradiation on the infectivity of Toxoplasma gondii tissue cysts was studied. The tissue cysts were produced in brains of mice and in edible tissues of pigs by artificial infection with oocysts of one or more different isolates of T. gondii. The cyst-harbouring tissues were irradiated with X rays or gamma rays at doses ranging from 0.3 to 1.0 kGy (30 to 100 krad). The source of irradiation was either a Philips X ray machine or 60Co. The results were assessed by bioassays on cats and/or mice. Some slight differences in radiosensitivity of geographically different isolates were observed. For instance, a complete inactivation of local isolate YU TG No. 3 was achieved only after irradiation with 0.7 kGy, whereas for the same effect on the infectivity of a US isolate (ME-49) and a Chinese one (NT), irradiation with 0.4 and 0.5 kGy, respectively, was sufficient. At sublethal doses, a sharp decrease of infectivity was observed. (author). 7 refs

  14. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.

    Science.gov (United States)

    Gebhart, S C; Lin, W C; Mahadevan-Jansen, A

    2006-04-21

    To complement a project towards the development of real-time optical biopsy for brain tissue discrimination and surgical resection guidance, the optical properties of various brain tissues were measured in vitro and correlated to features within clinical diffuse reflectance tissue spectra measured in vivo. Reflectance and transmission spectra of in vitro brain tissue samples were measured with a single-integrating-sphere spectrometer for wavelengths 400-1300 nm and converted to absorption and reduced scattering spectra using an inverse adding-doubling technique. Optical property spectra were classified as deriving from white matter, grey matter or glioma tissue according to histopathologic diagnosis, and mean absorption and reduced scattering spectra were calculated for the three tissue categories. Absolute reduced scattering and absorption values and their relative differences between histopathological groups agreed with previously reported results with the exception that absorption coefficients were often overestimated, most likely due to biologic variability or unaccounted light loss during reflectance/transmission measurement. Absorption spectra for the three tissue classes were dominated by haemoglobin absorption below 600 nm and water absorption above 900 nm and generally determined the shape of corresponding clinical diffuse reflectance spectra. Reduced scattering spectral shapes followed the power curve predicted by the Rayleigh limit of Mie scattering theory. While tissue absorption governed the shape of clinical diffuse reflectance spectra, reduced scattering determined their relative emission intensities between the three tissue categories. PMID:16585842

  15. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  16. Muerte encefálica: repercusión sobre órganos y tejidos Brain death: Repercussion on the organs and tissues

    Directory of Open Access Journals (Sweden)

    J.M. Domínguez-Roldán

    2009-12-01

    Full Text Available La muerte encefálica se acompaña de una serie de efectos sistémicos, hemodinámicos, hormonales e inflamatorios que tienen una repercusión relevante en los órganos y los tejidos de la economía. Cada vez hay más evidencias de que los órganos provenientes de donantes fallecidos en muerte encefálica presentan un grado de respuesta inflamatoria secundaria al daño encefálico y, en ocasiones, proporcional a la intensidad y a la velocidad de progresión de éste. Tanto estudios clínicos como estudios experimentales han mostrado que el resultado de los órganos de donantes fallecidos en parada cardíaca o donantes vivos tienen iguales o mejores resultados clínicos que los obtenidos en donantes en muerte encefálica que han presentado el proceso inflamatorio secundario a ésta. Hay pruebas de que esta respuesta inflamatoria acontece en el pulmón, el corazón, los riñones, el hígado y el intestino, e igualmente se incrementan también las pruebas de que el grado de respuesta inflamatoria observada en los órganos tiene una influencia importante en el resultado final del trasplante. En consecuencia, el desarrollo del conocimiento de las vías que interrelacionan el daño encefálico con la respuesta orgánica inflamatoria abre una importante área de conocimiento y posibilita que futuras estrategias terapéuticas encaminadas a modular la respuesta sistémica al daño encefálico permitan mejorar la calidad de los órganos obtenidos para trasplante, así como incrementar la supervivencia del injerto y de los receptores de trasplantes de órganos sólidos.Brain death is accompanied by a series of hemodynamic, hormonal and inflammatory systemic effects that have an important repercussion on the economy of the organs and tissues. There is increasing evidence that the organs from brain death donors have an inflammatory response grade secondary to brain death and sometimes proportional to the intensity and rate of its progression. Both clinical

  17. Tissue characterization of brain tumors during and after pion radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Boesiger, P.; Greiner, R.; Schoepflin, R.E.; Kann, R.; Kuenzi, U. (Univ. of Zurich (Switzerland))

    1990-01-01

    Negative Pi-mesons (pions) are applied at the Paul Scherrer Institute in the radiotherapy of highly malignant gliomas using a dose escalation program. The therapy effects of 7 randomly selected patients were followed up by 62 MRI examinations. The quantification of the effects is based on the relaxation times T1 and T2, which are acquired by a new designed multi-echo multiple saturation recovery imaging technique. As a summary of the results, roughly two reaction types are observed. For both types the relaxation times increase up to two to three months after the radiation therapy. Then in one type (two patients) the T1 and T2 values of the tumors, and of the edemas surrounding the tumors, further increase, indicating an unfavorable prognosis. In the other type (five patients) the relaxation times drop down towards, or even below, their initial values, reflecting the onset of the reparation processes in the tissue. This later behavior reflects an at least temporary control of the disease; that is, the short term prognosis for these patients is more favorable. It further can be concluded, with respect to our MR parameters, that the radiotolerance of healthy brain tissue is much higher than that of malignant glioma tissue, despite the fact that these tumors are very seldom definitively radiosensible.

  18. Tissue characterization of brain tumors during and after pion radiation therapy

    International Nuclear Information System (INIS)

    Negative Pi-mesons (pions) are applied at the Paul Scherrer Institute in the radiotherapy of highly malignant gliomas using a dose escalation program. The therapy effects of 7 randomly selected patients were followed up by 62 MRI examinations. The quantification of the effects is based on the relaxation times T1 and T2, which are acquired by a new designed multi-echo multiple saturation recovery imaging technique. As a summary of the results, roughly two reaction types are observed. For both types the relaxation times increase up to two to three months after the radiation therapy. Then in one type (two patients) the T1 and T2 values of the tumors, and of the edemas surrounding the tumors, further increase, indicating an unfavorable prognosis. In the other type (five patients) the relaxation times drop down towards, or even below, their initial values, reflecting the onset of the reparation processes in the tissue. This later behavior reflects an at least temporary control of the disease; that is, the short term prognosis for these patients is more favorable. It further can be concluded, with respect to our MR parameters, that the radiotolerance of healthy brain tissue is much higher than that of malignant glioma tissue, despite the fact that these tumors are very seldom definitively radiosensible

  19. Computational deconvolution of genome wide expression data from Parkinson's and Huntington's disease brain tissues using population-specific expression analysis

    Science.gov (United States)

    Capurro, Alberto; Bodea, Liviu-Gabriel; Schaefer, Patrick; Luthi-Carter, Ruth; Perreau, Victoria M.

    2015-01-01

    The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD. PMID:25620908

  20. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain

    DEFF Research Database (Denmark)

    Ashkanian, Mahmoud; Gjedde, Albert; Mouridsen, Kim;

    2009-01-01

    Sa(O2) are readily obtained with carbogen, while oxygen increases only Sa(O2). Thus, carbogen improves oxygen transport to brain tissue more efficiently than oxygen alone. Further studies with more subjects are, however, needed to investigate the applicability of carbogen for long-term inhalation and...

  1. Effect of MgSO4 on NMDA receptor in brain tissue and serum NSE in rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Objective: To explore the protection of magnesium sulfate (MgSO4) on radiation-induced acute brain injury. Methods Thirty six mature Sprague-Dawley rats were randomly divided into 3 groups: the blank control group, experimental control group and experimental therapy group. The whole brain of SD rats in the experimental control group and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. Magnesium sulfate was injected intraperitoneally into the rats in the experimental therapy group before and after irradiation for seven times. The blood and the brain tissue were taken on the 1st, 3rd and 14th day after irradiation. ELISA was used to measure the level of serum NSE. Western blot technique was used to detect the expression of NR1 and NR2B subunit protein in brain tissue. Results: Compared with the blank control group, the level of serum NSE in the experimental control group increased significantly (P4 used in early stage can inhibit the level of serum NSE and the expression of NR1 and NR2B after radiation-induced acute brain injury. It shows a protective effect on radiation-induced acute brain injury. (authors)

  2. Tl-201 SPECT for assessing tumor viability in recurrent malignant neoplasma of the brain and soft tissues

    International Nuclear Information System (INIS)

    This paper evaluates the usefulness of Tl-201 SPECT imaging in the detection of viable tumor vs necrosis and/or inflammation in brain and soft tissue tumors. Tl-201 SPECT, F-18-FDG PET, and CT with contrast medium were done 6 weeks prior to biopsy confirmation in 11 patients with suspected recurrent tumor (nine brain and two soft-tissue tumors). Tumor-nontumor ratios were obtained on attenuation-corrected transaxial images. The CT scans were reviewed prior to reading the SPECT and FDG PET scans. Seven of 11 patients had recurrent tumors (five brain and two soft tissue) on biopsy and all were positive on SPECT (mean ratio, 4.0 ± 0.8) and hypermetabolic on FDG PET scans. Two of seven had equivocal findings on CT

  3. Transplant Considerations

    Science.gov (United States)

    ... to 20-year friendship Supporter stories Valerie Sun - bone marrow transplant patient advocate Jeff and Kim take their life- ... transplant and other treatment options What is a bone marrow transplant How a bone marrow transplant works Transplant process ...

  4. Region-Specific In Situ Hybridization-Guided Laser-Capture Microdissection on Postmortem Human Brain Tissue Coupled with Gene Expression Quantification

    OpenAIRE

    Bernard, René; Burke, Sharon; Kerman, Ilan A.

    2011-01-01

    This chapter describes the procedure of in situ hybridization-guided laser-capture microdissection performed on postmortem human brain tissue. This procedure permits the precise collection of brain tissue within anatomically defined brain nuclei that is enriched with mRNA. The chapter emphasizes the specific handling of postmortem tissue and preservation of RNA integrity to ensure high-quality gene profiling. Downstream procedures including mRNA amplification, gene profiling using high-densit...

  5. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    OpenAIRE

    Nitzsche, Björn; Frey, Stephen; Collins, Louis D.; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H.; Fonov, Vladimir S.; Boltze, Johannes

    2015-01-01

    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization...

  6. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    OpenAIRE

    Björn Nitzsche; Stephen Frey; Johannes Seeger; Donald Lobsien; Antje Dreyer; Holger Kirsten; Stoffel, Michael H.; Johannes Boltze

    2015-01-01

    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization ...

  7. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    Science.gov (United States)

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. PMID:21916423

  8. Kidney transplant - series (image)

    Science.gov (United States)

    ... Donor kidneys are obtained from either brain-dead organ donors, or from living relatives or friends of the ... the lower right quadrant of the abdomen. The donor kidney is transplanted into the right lower pelvis of the recipient.

  9. Fast Three-Dimensional Single-Particle Tracking in Natural Brain Tissue.

    Science.gov (United States)

    Sokoll, Stefan; Prokazov, Yury; Hanses, Magnus; Biermann, Barbara; Tönnies, Klaus; Heine, Martin

    2015-10-01

    Observation of molecular dynamics is often biased by the optical very heterogeneous environment of cells and complex tissue. Here, we have designed an algorithm that facilitates molecular dynamic analyses within brain slices. We adjust fast astigmatism-based three-dimensional single-particle tracking techniques to depth-dependent optical aberrations induced by the refractive index mismatch so that they are applicable to complex samples. In contrast to existing techniques, our online calibration method determines the aberration directly from the acquired two-dimensional image stream by exploiting the inherent particle movement and the redundancy introduced by the astigmatism. The method improves the positioning by reducing the systematic errors introduced by the aberrations, and allows correct derivation of the cellular morphology and molecular diffusion parameters in three dimensions independently of the imaging depth. No additional experimental effort for the user is required. Our method will be useful for many imaging configurations, which allow imaging in deep cellular structures. PMID:26445447

  10. Influences of brain tissue poroelastic constants on intracranial pressure (ICP) during constant-rate infusion.

    Science.gov (United States)

    Li, Xiaogai; von Holst, Hans; Kleiven, Svein

    2013-01-01

    A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion. PMID:22452461

  11. Assessing Antioxidant Capacity in Brain Tissue: Methodologies and Limitations in Neuroprotective Strategies.

    Science.gov (United States)

    Slemmer, Jennifer E; Weber, John T

    2014-01-01

    The number of putative neuroprotective compounds with antioxidant activity described in the literature continues to grow. Although these compounds are validated using a variety of in vivo and in vitro techniques, they are often evaluated initially using in vitro cell culture techniques in order to establish toxicity and effective concentrations. Both in vivo and in vitro methodologies have their respective advantages and disadvantages, including, but not limited to, cost, time, use of resources and technical limitations. This review expands on the inherent benefits and drawbacks of in vitro and in vivo methods for assessing neuroprotection, especially in light of proper evaluation of compound efficacy and neural bioavailability. For example, in vivo studies can better evaluate the effects of protective compounds and/or its metabolites on various tissues, including the brain, in the whole animal, whereas in vitro studies can better discern the cellular and/or mechanistic effects of compounds. In particular, we aim to address the question of appropriate and accurate extrapolation of findings from in vitro experiment-where compounds are often directly applied to cellular extracts, potentially at higher concentrations than would ever cross the blood-brain barrier-to the more complex scenario of neuroprotection due to pharmacodynamics in vivo. PMID:26785231

  12. Assessing Antioxidant Capacity in Brain Tissue: Methodologies and Limitations in Neuroprotective Strategies

    Directory of Open Access Journals (Sweden)

    Jennifer E. Slemmer

    2014-10-01

    Full Text Available The number of putative neuroprotective compounds with antioxidant activity described in the literature continues to grow. Although these compounds are validated using a variety of in vivo and in vitro techniques, they are often evaluated initially using in vitro cell culture techniques in order to establish toxicity and effective concentrations. Both in vivo and in vitro methodologies have their respective advantages and disadvantages, including, but not limited to, cost, time, use of resources and technical limitations. This review expands on the inherent benefits and drawbacks of in vitro and in vivo methods for assessing neuroprotection, especially in light of proper evaluation of compound efficacy and neural bioavailability. For example, in vivo studies can better evaluate the effects of protective compounds and/or its metabolites on various tissues, including the brain, in the whole animal, whereas in vitro studies can better discern the cellular and/or mechanistic effects of compounds. In particular, we aim to address the question of appropriate and accurate extrapolation of findings from in vitro experiment-where compounds are often directly applied to cellular extracts, potentially at higher concentrations than would ever cross the blood-brain barrier—to the more complex scenario of neuroprotection due to pharmacodynamics in vivo.

  13. Quantitative analysis of phenibut in rat brain tissue extracts by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Grinberga, Solveiga; Zvejniece, Liga; Liepinsh, Edgars; Dambrova, Maija; Pugovics, Osvalds

    2008-12-01

    Phenibut (3-phenyl-4-aminobutyric acid) is a gamma-aminobutyric acid mimetic drug, which is used clinically as a mood elevator and tranquilizer. In the present work, a rapid, selective and sensitive liquid chromatography-tandem mass spectrometry method for quantification of phenibut in biological matrices has been developed. The method is based on protein precipitation with acidic acetonitrile followed by isocratic chromatographic separation using acetonitrile-formic acid (0.1% in water; 8:92, v/v) mobile phase on a reversed-phase column. Detection of the analyte was performed by electrospray ionization mass spectrometry in multiple reaction monitoring mode with the precursor-to-product ion transition m/z 180.3 --> m/z 117.2. The calibration curve was linear over the concentration range 50-2000 ng/mL. The lower limit of quantification for phenibut in rat brain extracts was 50 ng/mL. Acceptable precision and accuracy were obtained over the whole concentration range. The validated method was successfully applied in a pharmacological study to analyze phenibut concentration in rat brain tissue extract samples. PMID:19034959

  14. High dose Erythropoietin increases Brain Tissue Oxygen Tension in Severe Vasospasm after Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Helbok Raimund

    2012-06-01

    Full Text Available Abstract Background Vasospasm-related delayed cerebral ischemia (DCI significantly impacts on outcome after aneurysmal subarachnoid hemorrhage (SAH. Erythropoietin (EPO may reduce the severity of cerebral vasospasm and improve outcome, however, underlying mechanisms are incompletely understood. In this study, the authors aimed to investigate the effect of EPO on cerebral metabolism and brain tissue oxygen tension (PbtO2. Methods Seven consecutive poor grade SAH patients with multimodal neuromonitoring (MM received systemic EPO therapy (30.000 IU per day for 3 consecutive days for severe cerebral vasospasm. Cerebral perfusion pressure (CPP, mean arterial blood pressure (MAP, intracranial pressure (ICP, PbtO2 and brain metabolic changes were analyzed during the next 24 hours after each dose given. Statistical analysis was performed with a mixed effects model. Results A total of 22 interventions were analyzed. Median age was 47 years (32–68 and 86 % were female. Three patients (38 % developed DCI. MAP decreased 2 hours after intervention (P btO2 significantly increased over time (P  Conclusions EPO increases PbtO2 in poor grade SAH patients with severe cerebral vasospasm. The effect on outcome needs further investigation.

  15. Influence of UV and RTG radiation on levels of free amino acids in rat brain tissue

    International Nuclear Information System (INIS)

    Experiments were carried out with 204 Wistar rats divided into two experimental groups and control groups. Eighty-four rats of group 1 were UV-irradiated, and 90 rats of group 2 were irradiated with roentgen rays. Amino acids were separated by high-voltage electrophoresis and by paper chromatography. Changes in concentrations of amino acids in the brain tissue under the influence of UV radiation were analyzed after 24 hr in 5, 10, 20, 30, 50 and 90 day-old rats, and after 1, 2, 3 and in 8-day rats. The effect of irradiation with 1,200r of X rays was studied after 24 hr in rats in the same stages of development, and, in addition, the effect of 250r doses was observed in 3-day rats at 2, 7, 17, 27 and 47 days after roentgen irradiation. The following amino acids were assayed electrochromatographically: aspartic, glutamic and gamma-aminobutyric acids, alanine, glycine, serine, threonine, leucine and lysine. Brain levels of amino acids were raised under the influence of the factors applied, and ultraviolet and ionizing radiation had transient effect. (author)

  16. Magnetic resonance tracking of transplanted microglia labeled with superparamagnetic iron oxide particles in the brain of normal rat and Alzheimer's disease model rat

    International Nuclear Information System (INIS)

    Objective: To explore the methods of labeling exogenous microglia with superparamagnetic iron oxide (SPIO) particles, and to monitor the labeled cells after transplantation into the normal rat and Alzheimer's disease (AD) model rat with MR scanning. Methods: Microglia was labeled with SPIO particles by using transfection agent, hemagglutinating virus of Japan envelope (HVJ-E). Then the microglias which were labeled with SPIO were injected into the internal carotid artery of normal rat (n5) and AD model rat (n=5). Three days after transplantation, follow-up serial T2*-weighted gradient-echo MR imaging was performed at 7.0T MRI system. MR images were correlated with histological findings. Results: In the brain of normal rat, the labeled microglias were demonstrated as several dotty signal intensity decrease on T2*-weighted MR images. The dotty spots were sporadic around the brain. Histological analysis showed that most prussian blue staining-positive cells were well correlated with the area where a signal intensity decrease was observed in MRI. MR could detect the signal intensity change caused by a few labeled cells. In the brain of AD model rat, MR scan showed a well-defined hypointensity area in the region of Aβ42 injection. Signal intensity decrease was not obvious in the region of saline injection. The number of iron-positive cells (454 ± 47)/mm2 at sites of Aβ42 injection was much higher than that (83 ± 13)/mm2 of saline injection (P<0.05). Conclusion: MR can be used as a non-invasive means of detecting transplanted labeled microglia in vivo, with the potential for future clinical application in cell therapy of AD. (authors)

  17. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  18. Improving the specificity of R2' to the deoxyhaemoglobin content of brain tissue: Prospective correction of macroscopic magnetic field gradients

    OpenAIRE

    Blockley, NP; Stone, AJ

    2016-01-01

    The reversible transverse relaxation rate, R2', is sensitive to the deoxyhaemoglobin content of brain tissue, enabling information about the oxygen extraction fraction to be obtained. However, R2' is also sensitive to macroscopic magnetic field gradients, particularly at air-tissue interfaces where a large susceptibility difference is present. It is important that this latter effect is minimised in order to produce meaningful estimates of blood oxygenation. Therefore, the aim of this study wa...

  19. Quantification of anandamide, oleoylethanolamide and palmitoylethanolamide in rodent brain tissue using high performance liquid chromatography–electrospray mass spectroscopy

    OpenAIRE

    Liput, Daniel J.; Eleftheria Tsakalozou; Hammell, Dana C.; Paudel, Kalpana S.; Kimberly Nixon; Stinchcomb, Audra L.

    2014-01-01

    Reported concentrations for endocannabinoids and related lipids in biological tissues can vary greatly; therefore, methods used to quantify these compounds need to be validated. This report describes a method to quantify anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) from rodent brain tissue. Analytes were extracted using acetonitrile without further sample clean up, resolved on a C18 reverse-phase column using a gradient mobile phase and detected using electrospra...

  20. In situ monitoring of brain tissue reaction of chronically implanted electrodes with an optical coherence tomography fiber system

    Science.gov (United States)

    Xie, Yijing; Hassler, Christina; Stieglitz, Thomas; Seifert, Andreas; Hofmann, Ulrich G.

    2014-03-01

    Neural microelectrodes are well established tools for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. However, long term implanted neural probes often become functionally impaired by tissue encapsulation. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities provide no sufficient resolution for a cellular measurement in deep brain regions. Optical coherence tomography (OCT) is a well developed imaging modality, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. Further more, a fiber based spectral domain OCT was shown to be capable of minimally invasive brain intervention. In the present study, we propose to use a fiber based spectral domain OCT to monitor the the progression of the tissue's immune response and scar encapsulation of microprobes in a rat animal model. We developed an integrated OCT fiber catheter consisting of an implantable ferrule based fiber cannula and a fiber patch cable. The fiber cannula was 18.5 mm long, including a 10.5 mm ceramic ferrule and a 8.0 mm long, 125 μm single mode fiber. A mating sleeve was used to fix and connect the fiber cannula to the OCT fiber cable. Light attenuation between the OCT fiber cable and the fiber cannula through the mating sleeve was measured and minimized. The fiber cannula was implanted in rat brain together with a microelectrode in sight used as a foreign body to induce the brain tissue immune reaction. Preliminary data showed a significant enhancement of the OCT backscattering signal during the brain tissue scarring process, while the OCT signal of the flexible microelectrode was getting weaker consequentially.

  1. Analysis of RNA from Alzheimer's Disease Post-mortem Brain Tissues.

    Science.gov (United States)

    Clement, Christian; Hill, James M; Dua, Prerna; Culicchia, Frank; Lukiw, Walter J

    2016-03-01

    Alzheimer's disease (AD) is a uniquely human, age-related central nervous system (CNS) disorder for which there is no adequate experimental model. While well over 100 transgenic murine models of AD (TgAD) have been developed that recapitulate many of the neuropathological features of AD, key pathological features of AD such as progressive neuronal atrophy, neuron cell loss, and neurofibrillary tangle (NFT) formation have not been observed in any TgAD model to date. To more completely analyze and understand the neuropathology, altered neuro-inflammatory and innate-immune signaling pathways, and the complex molecular-genetics and epigenetics of AD, it is therefore necessary to rigorously examine short post-mortem interval (PMI) human brain tissues to gain a deeper and more thorough insight into the neuropathological mechanisms that characterize the AD process. This perspective-methods paper will highlight some important recent findings on the utilization of short PMI tissues in sporadic (idiopathic; of unknown origin) AD research with focus on the extraction and quantification of RNA, and in particular microRNA (miRNA) and messenger RNA (mRNA) and analytical strategies, drawing on the authors' combined 125 years of laboratory experience into this investigative research area. We sincerely hope that new investigators in the field of "gene expression analysis in neurological disease" will benefit from the observations presented here and incorporate these recent findings and observations into their future experimental planning and design. PMID:25631714

  2. Sources of Technical Variability in Quantitative LC-MS Proteomics: Human Brain Tissue Sample Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Piehowski, Paul D.; Petyuk, Vladislav A.; Orton, Daniel J.; Xie, Fang; Moore, Ronald J.; Ramirez Restrepo, Manuel; Engel, Anzhelika; Lieberman, Andrew P.; Albin, Roger L.; Camp, David G.; Smith, Richard D.; Myers, Amanda J.

    2013-05-03

    To design a robust quantitative proteomics study, an understanding of both the inherent heterogeneity of the biological samples being studied as well as the technical variability of the proteomics methods and platform is needed. Additionally, accurately identifying the technical steps associated with the largest variability would provide valuable information for the improvement and design of future processing pipelines. We present an experimental strategy that allows for a detailed examination of the variability of the quantitative LC-MS proteomics measurements. By replicating analyses at different stages of processing, various technical components can be estimated and their individual contribution to technical variability can be dissected. This design can be easily adapted to other quantitative proteomics pipelines. Herein, we applied this methodology to our label-free workflow for the processing of human brain tissue. For this application, the pipeline was divided into four critical components: Tissue dissection and homogenization (extraction), protein denaturation followed by trypsin digestion and SPE clean-up (digestion), short-term run-to-run instrumental response fluctuation (instrumental variance), and long-term drift of the quantitative response of the LC-MS/MS platform over the 2 week period of continuous analysis (instrumental stability). From this analysis, we found the following contributions to variability: extraction (72%) >> instrumental variance (16%) > instrumental stability (8.4%) > digestion (3.1%). Furthermore, the stability of the platform and its’ suitability for discovery proteomics studies is demonstrated.

  3. An atlas-based fuzzy connectedness method for automatic tissue classification in brain MRI

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yongxin; BAI Jing

    2006-01-01

    A framework incorporating a subject-registered atlas into the fuzzy connectedness (FC) method is proposed for the automatic tissue classification of 3D images of brain MRI. The pre-labeled atlas is first registered onto the subject to provide an initial approximate segmentation. The initial segmentation is used to estimate the intensity histograms of gray matter and white matter. Based on the estimated intensity histograms, multiple seed voxels are assigned to each tissue automatically. The normalized intensity histograms are utilized in the FC method as the intensity probability density function (PDF) directly. Relative fuzzy connectedness technique is adopted in the final classification of gray matter and white matter. Experimental results based on the 20 data sets from IBSR are included, as well as comparisons of the performance of our method with that of other published methods. This method is fully automatic and operator-independent. Therefore, it is expected to find wide applications, such as 3D visualization, radiation therapy planning, and medical database construction.

  4. Quantitative comparison of preparation methodologies for X-ray fluorescence microscopy of brain tissue

    International Nuclear Information System (INIS)

    X-ray fluorescence microscopy (XFM) facilitates high-sensitivity quantitative imaging of trace metals at high spatial resolution over large sample areas and can be applied to a diverse range of biological samples. Accurate determination of elemental content from recorded spectra requires proper calibration of the XFM instrument under the relevant operating conditions. Here, we describe the manufacture, characterization, and utilization of multi-element thin-film reference foils for use in calibration of XFM measurements of biological and other specimens. We have used these internal standards to assess the two-dimensional distribution of trace metals in a thin tissue section of a rat hippocampus. The data used in this study was acquired at the XFM beamline of the Australian Synchrotron using a new 384-element array detector (Maia) and at beamline 2-ID-E at the Advanced Photon Source. Post-processing of samples by different fixation techniques was investigated, with the conclusion that differences in solvent type and sample handling can significantly alter elemental content. The present study highlights the quantitative capability, high statistical power, and versatility of the XFM technique for mapping trace metals in biological samples, e.g., brain tissue samples in order to help understand neurological processes, especially when implemented in conjunction with a high-performance detector such as Maia. (orig.)

  5. The relationship between decorrelation time and sample thickness in acute rat brain tissue slices (Conference Presentation)

    Science.gov (United States)

    Brake, Joshua; Jang, Mooseok; Yang, Changhuei

    2016-03-01

    The optical opacity of biological tissue has long been a challenge in biomedical optics due to the strong scattering nature of tissue in the optical regime. While most conventional optical techniques attempt to gate out multiply scattered light and use only unscattered light, new approaches in the field of wavefront shaping exploit the time reversible symmetry of optical scattering in order to focus light inside or through scattering media. While these approaches have been demonstrated effectively on static samples, it has proven difficult to apply them to dynamic biological samples since even small changes in the relative positions of the scatterers within will cause the time symmetry that wavefront shaping relies upon to decorrelate. In this paper we investigate the decorrelation curves of acute rat brain slices for thicknesses in the range 1-3 mm (1/e decorrelation time on the order of seconds) using multi-speckle diffusing wave spectroscopy (MSDWS) and compare the results with theoretical predictions. The results of this study demonstrate that the 1/L^2 relationship between decorrelation time and thickness predicted by diffusing wave spectroscopy provides a good rule of thumb for estimating how the decorrelation of a sample will change with increasing thickness. Understanding this relationship will provide insight to guide the future development of biophotonic wavefront shaping tools by giving an estimate of how fast wavefront shaping systems need to operate to overcome the dynamic nature of biological samples.

  6. Treated of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue

    International Nuclear Information System (INIS)

    Non-obese diabetic (NOD) mice provide a model for type 1 diabetes mellitus. We previously showed that allogeneic bone marrow transplantation (ABMT) can prevent and treat insulitis and overt diabetes in NOD mice. However, ABMT alone could not be used to treat overt diabetes in NOD mice whose islets had been completely destroyed. To provide insulin-producing cells, pancreatic tissue from newborn mice was grafted under the renal capsules in combination with ABMT. The aims of concomitant ABMT are as follows. (i) It induces immunological tolerance to the donor-type major histocompatibility complex determinants and permits the host to accept subsequent pancreatic allografts from the bone marrow donor. (ii) ABMT replaces abnormal stem cells with normal stem cells. After transplantation of bone marrow plus newborn pancreas, NOD mice showed reduction of the glycosuria and a normal response in the glucose-tolerance test. Immunohistological study revealed the presence of clustered insulin-containing beta cells in the grafted pancreatic transplants. ABMT may become a viable treatment of established type 1 diabetes mellitus in humans

  7. Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients

    International Nuclear Information System (INIS)

    Acoustic radiation force impulse (ARFI) quantification estimates tissue elasticity by measuring shear-wave velocity (SWV) and has been applied to various organs. We evaluated the impact of variations in the transducer force applied to the skin on the SWV ultrasound measurements in kidney transplant cortex and ARFI's ability to detect fibrosis in kidney transplants. SWV measurements were performed in the cortex of 31 patients with kidney allografts referred for surveillance biopsies. A mechanical device held the transducer and applied forces were equal to a compression weight of 22, 275, 490, 975, 2,040 and 2,990 g. SWV group means were significantly different by repeat measures ANOVA [F(2.85,85.91) = 84.75, P < 0.0005 for 22, 275, 490, 975 and 2,040 g compression weight] and also by pairwise comparisons. Biopsy specimens were sufficient for histological evaluation in 29 of 31 patients. Twelve had grade 0, 11 grade 1, five grade 2 and one grade 3 fibrosis. One-way ANOVA showed no difference in SWV performed with any of the applied transducer forces between grafts with various degrees of fibrosis. SWV measurements in kidney transplants are dependent on the applied transducer force and do not differ in grafts with different grades of fibrosis. (orig.)

  8. Fixed negative charge and the Donnan effect: a description of the driving forces associated with brain tissue swelling and oedema.

    Science.gov (United States)

    Elkin, Benjamin S; Shaik, Mohammed A; Morrison, Barclay

    2010-02-13

    Cerebral oedema or brain tissue swelling is a significant complication following traumatic brain injury or stroke that can increase the intracranial pressure (ICP) and impair blood flow. Here, we have identified a potential driver of oedema: the negatively charged molecules fixed within cells. This fixed charge density (FCD), once exposed, could increase ICP through the Donnan effect. We have shown that metabolic processes and membrane integrity are required for concealing this FCD as slices of rat cortex swelled immediately (within 30 min) following dissection if treated with 2 deoxyglucose + cyanide (2DG+CN) or Triton X-100. Slices given ample oxygen and glucose, however, did not swell significantly. We also found that dead brain tissue swells and shrinks in response to changes in ionic strength of the bathing medium, which suggests that the Donnan effect is capable of pressurizing and swelling brain tissue. As predicted, a non-ionic osmolyte, 1,2 propanediol, elicited no volume change at 2000 x 10(-3) osmoles l(-1) (Osm). Swelling data were well described by triphasic mixture theory with the calculated reference state FCD similar to that measured with a 1,9 dimethylmethylene blue assay. Taken together, these data suggest that intracellular fixed charges may contribute to the driving forces responsible for brain swelling. PMID:20047940

  9. Intracranial Transplantation of Hypoxia-Preconditioned iPSC-Derived Neural Progenitor Cells Alleviates Neuropsychiatric Defects After Traumatic Brain Injury in Juvenile Rats.

    Science.gov (United States)

    Wei, Zheng Zachory; Lee, Jin Hwan; Zhang, Yongbo; Zhu, Yan Bing; Deveau, Todd C; Gu, Xiaohuan; Winter, Megan M; Li, Jimei; Wei, Ling; Yu, Shan Ping

    2016-01-01

    Traumatic brain injury (TBI) is a common cause of mortality and long-term morbidity in children and adolescents. Posttraumatic stress disorder (PTSD) frequently develops in these patients, leading to a variety of neuropsychiatric syndromes. Currently, few therapeutic strategies are available to treat juveniles with PTSD and other developmental neuropsychiatric disorders. In the present investigation, postnatal day 14 (P14) Wistar rats were subjected to TBI induced by a controlled cortical impact (CCI) (velocity = 3 m/s, depth = 2.0 mm, contact time = 150 ms). This TBI injury resulted in not only cortical damages, but also posttrauma social behavior deficits. Three days after TBI, rats were treated with intracranial transplantation of either mouse iPSC-derived neural progenitor cells under normal culture conditions (N-iPSC-NPCs) or mouse iPSC-derived neural progenitor cells pretreated with hypoxic preconditioning (HP-iPSC-NPCs). Compared to TBI animals that received N-iPSC-NPCs or vehicle treatment, HP-iPSC-NPC-transplanted animals showed a unique benefit of improved performance in social interaction, social novelty, and social transmission of food preference tests. Western blotting showed that HP-iPSC-NPCs expressed significantly higher levels of the social behavior-related genes oxytocin and the oxytocin receptor. Overall, HP-iPSC-NPC transplantation exhibits a great potential as a regenerative therapy to improve neuropsychiatric outcomes after juvenile TBI. PMID:26766038

  10. Increased immunofluorescent staining of rabies-infected, formalin-fixed brain tissue after pepsin and trypsin digestion.

    OpenAIRE

    Reid, F L; Hall, N H; Smith, J. S.; Baer, G M

    1983-01-01

    This study was undertaken to evaluate the sensitivity of the direct immunofluorescence test on Formalin-fixed, trypsin-digested, rabies-infected brain tissue. Our results suggest that the optimal unmasking of rabies antigenic sites is obtained by using a double enzyme digestion with pepsin and trypsin in lieu of only trypsin.

  11. On the consequences of non linear constitutive modelling of brain tissue for injury prediction with numerical head models

    NARCIS (Netherlands)

    Hrapko, M.; Dommelen, J.A.W. van; Peters, G.W.M.; Wismans, J.S.H.M.

    2009-01-01

    The objective of this work was to investigate the influences of constitutive non linearities of brain tissue in numerical head model simulations by comparing the performance of a recently developed non linear constitutive model [10, 11] with a simplified version, based on neo-Hookean elastic behavio

  12. Contents of myelin-basic protein and S-100 in serum and brain tissue of neonatal rats with intrauterine infection-caused brain injury

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Li; Hongying Li; Zhihai Lu

    2006-01-01

    BACKGROUND: The change of the content of myelin basic protein (MBP) in serum and brain tissue is the bio chemical diadynamic index of amyelination. S-100 is a specific and sensitive marker of central nervous system (CNS) injury. Whether or not the content of S-100 and MBP in blood and brain tissue can be used as the quan titative index for early diagnosing the intrauterine infection-caused brain injury still needs investigation. OBJECTIVE: To observe whether or not MBP and S-100 detection can be used as the biochemical indexes for early diagnosing the intrauterine infection-caused brain injury. DESIGN: Randomized controlled animal experiment. SETTING: Laboratory of Pediatric Neuro-rehabilitation, Medical College of Rehabilitation, Jiamusi University. MATERIALS: Sixty female and thirty male common Wistar rats, weighing from 180 to 240 g, were provided by the Experimental Animal Center of Jiamusi University. Reagent: Lipopolysaccharide(LPS, serological type 055: B5, SIGMA Company of USA); MBP enzyme linked immunosobent assay (ELISA) immunoreagent kit (Preclinicai Recombination DNA Laboratory, Chengdu Huaxi Medical Center, Sichuan Province); S-100 ELISA immunoreagent kit ( Department of Physiology, the Fourth Military Medical University of Chinese PLA) and bovine serum albumin(Haitaike Biotechnology Co.,Ltd.).METHODS: This experiment was carried out in the Laboratory of Pediatric Neuro-Rehabilitation, Experimental Animal Center, Department of Pathology and Central Laboratory of Jiamusi University from July 2005 to March 2006. ① Preparation of models and grouping: The female and male rats were placed in one cage at 2: 1 at 17:00 o'clock. Vaginal smear was checked at 8:00 on the next morning. Sperm was found and 0 day of pregnancy was recorded. Pregnant rats were bred in another cage. The pregnant 47 rats were randomly divided into 2 groups: control group (n =10) and experimental group (n =37). The experimental pregnant rats were intraperitoneally injected with LPS

  13. 2', 3'-Cyclic nucleotide 3'-phosphodiesterase cells derived from transplanted marrow stromal cells and host tissue contribute to perineurial compartment formation in injured rat spinal cord.

    Science.gov (United States)

    Cao, Qiong; Ding, Peng; Lu, Jia; Dheen, S Thameem; Moochhala, Shabbir; Ling, Eng-Ang

    2007-01-01

    Transdifferentiation of transplanted marrow stromal cells (MSCs) and reactive changes of glial cells in a completely transected rat spinal cord were examined. Marrow stromal cells exhibited 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) at the plasma membrane and this has allowed their identification after transplantation by immunoelectron microscopy. In the control rats, the lesion site showed activated microglia/neural macrophages and some elongated cells, whose cytoplasm was immunoreactive for CNP. Cells designated as CNP1 and apparently host-derived expressed CXCR4. In experimental rats receiving MSCs transplantation, CNP1 cells were increased noticeably. This was coupled with the occurrence of a different subset of CNP cells whose plasma membrane was CNP-immunoreactive and expressed CXCR4. These cells, designated as CNP2, enclosed both myelinated and unmyelinated neurites thus assuming a spatial configuration resembling that of Schwann cells. A remarkable feature was the extensive ramifications of CNP1 cells with long filopodia processes delineating the CNP2 cells and their associated neurites, forming many perineurial-like compartments. Present results have shown that CNP2 cells considered to be MSCs-derived can transform into cells resembling Schwann cells based on their spatial relation with the regenerating nerve fibers, whereas the CNP1 glial cells participate in formation of perineurial compartments, probably serving as conduits to guide the nerve fiber growth. The chemotactic migration of CNP cells either derived from host tissue or MSCs bearing CXCR4 may be attracted by stromal derived factor-1alpha (SDF-1alpha) produced locally. The coordinated cellular interaction between transplanted MSCs and local glial cells may promote the growth of nerve fibers through the lesion site. PMID:17061258

  14. Magnetic resonance imaging tracing of transplanted bone marrow mesenchymal stem cells in a rat model of cardiac arrest-induced global brain ischemia

    Institute of Scientific and Technical Information of China (English)

    Yue Fu; Xiangshao Fang; Tong Wang; Jiwen Wang; Jun Jiang; Zhigang Luo; Xiaohui Duan; Jun Shen; Zitong Huang

    2009-01-01

    BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE: To observe distribution of bone marrow mesenchymal stem cells (BMSCs) in a rat model of global brain ischemia following cardiac arrest and resuscitation, and to investigate the feasibility of tracing iron oxide-labeled BMSCs using non-invasive MRI. DESIGN, TIME AND SETTING: The randomized, controlled, molecular imaging study was performed at the Linbaixin Medical Research Center, Second Affiliated Hospital, Sun Yat-sen University, and the Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, China from October 2006 to February 2009.MATERIALS: A total of 40 clean, Sprague Dawley rats, aged 6 weeks and of either gender, were supplied by the Experimental Animal Center, Sun Yat-sen University, China, for isolation of BMSCs. Feridex (iron oxide), Gyroscan Inetra 1.5T MRI system, and cardiopulmonary resuscitation device were used in this study. METHODS: A total of 30 healthy, male Sprague Dawley rats, aged 6 months, were used to induce ventricular fibrillation using alternating current. After 8 minutes, the rats underwent 6-minute chest compression and mechanical ventilation, followed by electric defibrillation, to establish rat models of global brain ischemia due to cardiac arrest and resuscitation. A total of 24 successful models were randomly assigned to Feridex-labeled and non-labeled groups (n=12 for each group). At 2 hours after resuscitation, 5 x 10 6 Feddex-labeled BMSCs, with protamine sulfate as a carrier, and 5 × 10 6 non-labeled BMSCs were respectively transplanted into both groups of rats through the right carotid artery (cells were harvested in 1 mL phosphate buffered saline). MAIN OUTCOME MEASURES: Feridex-labeled BMSCs were observed by Prussian blue staining and electron microscopy. Signal intensity, celluar viability

  15. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  16. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain

    Directory of Open Access Journals (Sweden)

    Anna-Lena Hallmann

    2016-05-01

    Full Text Available Reprogramming technology enables the production of neural progenitor cells (NPCs from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.

  17. Experimental in-vivo study of laser-tissue interaction on the brain: influence of gaseous environment

    Science.gov (United States)

    Chavantes, Maria C.; Zamorano, Lucia J.; Vinas, Federico; Dujovny, Manuel; Dragovic, Ljubisa

    1990-06-01

    The present study attempted to assess the in vivo effects of Nd-YAG laser irradiation in different gaseous environments on liver and brain. Such an investigation is critical for determining the extent of injury under such conditions for improving further clinical applications. We intended to define the influence on laser-tissue interaction of Room Air, 30% Oxygen, Helium, and Nitrogen. The anesthetized rats were placed in a special chamber and kept breathtng via a tracheostomy tube to the outside, and craniotomy or laparotomy was performed. Nd-YAG laser fiber was directed with a fixed distance at the exposed brain/liver. The staining drug for brain study was 2,3,5 triphenyltetrazolium chloride, which was injected into the aorta before sacrificing the animals. The 44 rats studied were divided into: liver and brain groups. The resulting lesions were photographed macroscopically. In the liver group, statistical analysis showed that laser-liver tissue interaction in helium and nitrogen created a well defined and less hemorrhagic lesions. Macroscopically, in the brain group, we found that the target zones were well delineated with Nitrogen concentration. Moreover, we observed smaller lesions and more sharply defined areas with Helium concentration. In Room Air and Oxygen concentrations, more carbonized and bloodish lesions were found. Laser-tissue interaction in Helium and Nitrogen environments produces more sharply defined lesions with less involvement of the sorrounding tissue, less hemorrhagic lesions to the target, and reduce smoke production. This effect may be of benefit in clinical application of Nd YAG laser, where a more specific target-laser interaction could be achieved avoiding undesired complications due to penetration on the surrounding healthy tissue.

  18. Resected Brain Tissue, Seizure Onset Zone and Quantitative EEG Measures: Towards Prediction of Post-Surgical Seizure Control.

    Directory of Open Access Journals (Sweden)

    Christian Rummel

    Full Text Available Epilepsy surgery is a potentially curative treatment option for pharmacoresistent patients. If non-invasive methods alone do not allow to delineate the epileptogenic brain areas the surgical candidates undergo long-term monitoring with intracranial EEG. Visual EEG analysis is then used to identify the seizure onset zone for targeted resection as a standard procedure.Despite of its great potential to assess the epileptogenicty of brain tissue, quantitative EEG analysis has not yet found its way into routine clinical practice. To demonstrate that quantitative EEG may yield clinically highly relevant information we retrospectively investigated how post-operative seizure control is associated with four selected EEG measures evaluated in the resected brain tissue and the seizure onset zone. Importantly, the exact spatial location of the intracranial electrodes was determined by coregistration of pre-operative MRI and post-implantation CT and coregistration with post-resection MRI was used to delineate the extent of tissue resection. Using data-driven thresholding, quantitative EEG results were separated into normally contributing and salient channels.In patients with favorable post-surgical seizure control a significantly larger fraction of salient channels in three of the four quantitative EEG measures was resected than in patients with unfavorable outcome in terms of seizure control (median over the whole peri-ictal recordings. The same statistics revealed no association with post-operative seizure control when EEG channels contributing to the seizure onset zone were studied.We conclude that quantitative EEG measures provide clinically relevant and objective markers of target tissue, which may be used to optimize epilepsy surgery. The finding that differentiation between favorable and unfavorable outcome was better for the fraction of salient values in the resected brain tissue than in the seizure onset zone is consistent with growing evidence that

  19. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ=7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS uc= 2.664, P=0.008; Zubrod -ECOG -WHO uc=2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate positioning

  20. Pitfalls and practicalities in collecting and banking human brain tissues for research on psychiatric and neulogical disorders.

    Science.gov (United States)

    Ravid, Rivka; Ikemoto, Keiko

    2012-01-01

    It is essential to examine brain materials for the understanding the cause and pathology of mental disorders. Recent methodological progress urges us to set up well qualified brain banks. Human tissue and Bio-banking is a complex field and the daily practice of brain banks needs to abide by several golden standards in order to avoid pitfalls in basic research: 1) A donor system in which informed consent is granted for the use of the samples for scientific research, including genetic analysis and access to medical records, 2) Rapid autopsy system, 3) Compatibility of protocols for procurement, management, handling and storage, 4) A generally accepted consensus on diagnostic criteria, 5) Quality control, 6) Abiding by local/international legal and ethical guidelines for work with human material, 7) Proper safety procedures. In the present review, the authors introduced the activities of European brain banks, and discussed on their current issues, and on the problems remain to be resolved. PMID:22790897

  1. Neural network-based brain tissue segmentation in MR images using extracted features from intraframe coding in H.264

    Science.gov (United States)

    Jafari, Mehdi; Kasaei, Shohreh

    2012-01-01

    Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.

  2. Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry.

    Science.gov (United States)

    Kim, Tae-Hyun; Choi, Juhee; Kim, Hyung-Gun; Kim, Hak Rim

    2014-01-01

    A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 mm × 100 mm, i.d., 3 μm) column by adding a mixture of 10 mM ammonium formate in acetonitrile/water (75 : 25, v/v, 300 μl/min) for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3 μ C18 (3.0 mm × 150 mm, i.d., 3 μm) column was used by adding a mixture of 1% formic acid in acetonitrile/water (20 : 80, v/v, 350 μl/min). The total chromatographic run time was 5.5 min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000 ng/g for BH4 (r(2) = 0.995) , 10 and 5000 ng/g for DA (r(2) = 0.997) , 20 and 10000 ng/g for 5-HT (r(2) = 0.994) , NE (r(2) = 0.993) , and EP (r(2) = 0.993) , and 0.2 and 200 μg/g for Glu (r(2) = 0.996) and GABA (r(2) = 0.999) in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain. PMID:25258696

  3. Future Perspectives for Hand Transplant in Iran

    OpenAIRE

    M. J. Fatemi; M. Masoumi; Esfandiari, E

    2011-01-01

    Hand transplant program is a communion of physicians and researchers during the current de¬cade. 72 hands and digits were transplanted in 53 patients over the past 13 years. Unlike a solid organ transplant, hand transplantation involves various tissues, so it is called “composite tissue allotransplantation.” This article discusses the plans for performing the first hand transplant in Iran.

  4. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue.

    Science.gov (United States)

    Bischel, Lauren L; Coneski, Peter N; Lundin, Jeffrey G; Wu, Peter K; Giller, Carl B; Wynne, James; Ringeisen, Brad R; Pirlo, Russell K

    2016-04-01

    Gaining a greater understanding of the blood-brain barrier (BBB) is critical for improvement in drug delivery, understanding pathologies that compromise the BBB, and developing therapies to protect the BBB. In vitro human tissue models are valuable tools for studying these issues. The standard in vitro BBB models use commercially available cell culture inserts to generate bilayer co-cultures of astrocytes and endothelial cells (EC). Electrospinning can be used to produce customized cell culture substrates with optimized material composition and mechanical properties with advantages over off-the-shelf materials. Electrospun gelatin is an ideal cell culture substrate because it is a natural polymer that can aid cell attachment and be modified and degraded by cells. Here, we have developed a method to produce cell culture inserts with electrospun gelatin "biopaper" membranes. The electrospun fiber diameter and cross-linking method were optimized for the growth of primary human endothelial cell and primary human astrocyte bilayer co-cultures to model human BBB tissue. BBB co-cultures on biopaper were characterized via cell morphology, trans-endothelial electrical resistance (TEER), and permeability to FITC-labeled dextran and compared to BBB co-cultures on standard cell culture inserts. Over longer culture periods (up to 21 days), cultures on the optimized electrospun gelatin biopapers were found to have improved TEER, decreased permeability, and permitted a smaller separation between co-cultured cells when compared to standard PET inserts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 901-909, 2016. PMID:26650896

  5. The association between brain natriuretic peptide and tissue Doppler parameters in children with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Taliha Öner

    2016-01-01

    Full Text Available In this study, we investigated the association between brain natriuretic peptide (BNP levels and tissue Doppler imaging measurements and also screening for deadly mutations in patients with hypertrophic cardiomyopathy (HCM. We enrolled 20 patients diagnosed with HCM (age:10.7±5 years (1-17, 85% male, weight:42.25±23.10 kg, height:141.80±32.45 cm and 20 age, gender and body weight-matched control subjects. We performed electrocardiography, transthoracic echocardiography, and tissue Doppler echocardiography in each group, as well as genetic tests (for Arg403Gln, Arg453Cys, Arg719Trp and Arg719Gln mutations in MYH7 Exons 13, 14, 19 and BNP in the patients. The patients were divided into two groups according to the presence (Group 1 or absence (Group 2 of left ventricular (LV outflow tract obstruction. QTc dispersion and the LV ejection fraction and left atrial (LA volume index were increased in Group 1. The LA volume index and the mitral and septal E/Ea ratio and septum Z-score were increased while the mitral lateral annulus and septal annulus Ea wave velocities and the mitral and tricuspid E/A ratio were decreased in patients with high levels of BNP compared to those with normal BNP levels. There were no mutations that are associated with increased risk of sudden death found in patients included in this study. In the light of our data, we conclude that such parameters BNP levels above the 98 pg/mL, septal thickness Z-score ˃6, and higher mitral and septal E/Ea ratios can be used for management of patients with HCM according to life-threatening conditions.

  6. Metabolomic analysis of rat brain by high resolution nuclear magnetic resonance spectroscopy of tissue extracts.

    Science.gov (United States)

    Lutz, Norbert W; Béraud, Evelyne; Cozzone, Patrick J

    2014-01-01

    Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor

  7. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Institute of Scientific and Technical Information of China (English)

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  8. An interneuron progenitor maintains neurogenic potential in vivo and differentiates into GABAergic interneurons after transplantation in the postnatal rat brain.

    Science.gov (United States)

    Wang, Qi; Hong, Peiwei; Gao, Hui; Chen, Yuntian; Yang, Qi; Jiang, Mei; Li, Hedong

    2016-01-01

    Dysfunction of cortical GABAergic interneurons are involved in numerous neurological disorders including epilepsy, schizophrenia and autism; and replenishment of these cells by transplantation strategy has proven to be a feasible and effective method to help revert the symptoms in several animal models. To develop methodology of generating transplantable GABAergic interneurons for therapy, we previously reported the isolation of a v-myc-induced GABAergic interneuron progenitor clone GE6 from embryonic ganglionic eminence (GE). These cells can proliferate and form functional inhibitory synapses in culture. Here, we tested their differentiation behavior in vivo by transplanting them into the postnatal rat forebrain. We found that GE6 cells migrate extensively in the neonatal forebrain and differentiate into both neurons and glia, but preferentially into neurons when compared with a sister progenitor clone CTX8. The neurogenic potential of GE6 cells is also maintained after transplantation into a non-permissive environment such as adult cortex or when treated with inflammatory cytokine in culture. The GE6-derived neurons were able to mature in vivo as GABAergic interneurons expressing GABAergic, not glutamatergic, presynaptic puncta. Finally, we propose that v-myc-induced human interneuron progenitor clones could be an alternative cell source of transplantable GABAergic interneurons for treating related neurological diseases in future clinic. PMID:26750620

  9. Organ transplantation in Egypt.

    Science.gov (United States)

    Paris, Wayne; Nour, Bakr

    2010-09-01

    Concern has increasingly been expressed about the growing number of reports of medical personnel participating in the transplantation of human organs or tissues taken from the bodies of executed prisoners, handicapped patients, or poor persons who have agreed to part with their organs for commercial purposes. Such behavior has been universally considered as ethically and morally reprehensible, yet in some parts of the world the practice continues to flourish. The concept of justice demands that every person have an equal right to life, and to protect this right, society has an obligation to ensure that every person has equal access to medical care. Regrettably, the Egyptian system does not legally recognize brain death and continues to allow the buying and selling of organs. For more than 30 years in Egypt, the ability to pay has determined who receives an organ and economic need has determined who will be the donor. As transplant professionals, it is important that we advocate on behalf of all patients, potential recipients, and donors and for those who are left out and not likely to receive a donor organ in an economically based system. Current issues associated with this debate are reviewed and recommendations about how to address them in Egypt are discussed. PMID:20929113

  10. Liver Transplant

    Science.gov (United States)

    ... Home > Your Liver > Liver Disease Information > Liver Transplant Liver Transplant Explore this section to learn more about liver ... harmful substances from your blood. What is a liver transplant? A liver transplant is the process of replacing ...

  11. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    International Nuclear Information System (INIS)

    Highlights: ► We administered human CLCs in a swine model of MI via intracoronary artery. ► Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. ► Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. ► Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer’s solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of human specific alpha-cardiac actin. Human alpha cardiac actin-positive cells also expressed cardiac

  12. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Okura, Hanayuki [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Saga, Ayami; Soeda, Mayumi [Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Miyagawa, Shigeru; Sawa, Yoshiki [Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Daimon, Takashi [Division of Biostatistics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Ichinose, Akihiro [Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); Matsuyama, Akifumi, E-mail: akifumi-matsuyama@umin.ac.jp [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); RIKEN Program for Drug Discovery and Medical Technology Platforms, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer We administered human CLCs in a swine model of MI via intracoronary artery. Black-Right-Pointing-Pointer Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. Black-Right-Pointing-Pointer Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. Black-Right-Pointing-Pointer Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer's solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of

  13. Improved two-photon imaging of living neurons in brain tissue through temporal gating.

    Science.gov (United States)

    Gautam, Vini; Drury, Jack; Choy, Julian M C; Stricker, Christian; Bachor, Hans-A; Daria, Vincent R

    2015-10-01

    We optimize two-photon imaging of living neurons in brain tissue by temporally gating an incident laser to reduce the photon flux while optimizing the maximum fluorescence signal from the acquired images. Temporal gating produces a bunch of ~10 femtosecond pulses and the fluorescence signal is improved by increasing the bunch-pulse energy. Gating is achieved using an acousto-optic modulator with a variable gating frequency determined as integral multiples of the imaging sampling frequency. We hypothesize that reducing the photon flux minimizes the photo-damage to the cells. Our results, however, show that despite producing a high fluorescence signal, cell viability is compromised when the gating and sampling frequencies are equal (or effectively one bunch-pulse per pixel). We found an optimum gating frequency range that maintains the viability of the cells while preserving a pre-set fluorescence signal of the acquired two-photon images. The neurons are imaged while under whole-cell patch, and the cell viability is monitored as a change in the membrane's input resistance. PMID:26504651

  14. Effects of ELF fields on calcium-ion efflux from brain tissues in vitro

    International Nuclear Information System (INIS)

    It has been previously demonstrated that carrier waves of 50 and 147 MHz, when sinusoidally amplitude modulated at 16 Hz (ELF), can cause enhanced efflux of radiolabeled calcium ions from chick brain tissue in vitro. This phenomenon occurs only when the samples are exposed to specific intensity ranges of the carrier wave. Unmodulated carrier waves do not affect the ion efflux. Since the ELF signal must be demodulated from the carrier wave to be effective, a study of the efflux ehnancement due to the ELF signal alone may lead to an identification of the site of demodulation, as well as provide clues to the underlying mechanism. We report here that 16-Hz sinusoidal fields in the absence of a carrier wave can alter the efflux rate of calcium ions. The results show a frequency-dependent, field-induced enhancement of calcium-ion efflux within the ranges 5 to 7.5 V/m and 35 to 50 V/m (peak-to-peak incident field in air) with no enhancement within the ranges 1 to 2, 10 to 30, and 60 to 70 V/m

  15. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  16. Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors.

    Directory of Open Access Journals (Sweden)

    Leor Zach

    Full Text Available The current standard of care for newly diagnosed glioblastoma multiforme (GBM is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that

  17. The quantitative analysis of S100 in the brain tissue and serum following diffuse brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Wang Qi; Huang Ping; Xing Bo; Tuo Ya; Zhang Yongpan; Tian Weiping; Wang Zhenyuan

    2007-01-01

    Objective To investigate the dynamics of the level of S100 in cerebrum, brainstem, and serum following the diffuse brain injury in rats and provide the experimental evidences for estimating injury time. Methods ELISA was used to determine whether S100 protein is changed after diffuse brain injury in rats. Forty rats were sacrificed at 0.5 hour, 2 hours, 4 hours, 12 hours, 24 hours, 3 d and 7 d after diffuse brain injury and normal rats as control. Results The level of S100 in cerebrum, brainstem, and serum increased, followed by a decrease, and then further increased. The level of S100 could be detected to increase at 30 minutes and reached the peak at 4 hours after DBI. The level decreased gradually to the normal at 1d and till 3 d formed the second peak. The level returned to the normal at 7d following injury again. In the postmortem injury groups, there were no significant changes compared to the control group. Conclusion The present study showed that the time-dependent expression of S100 is obvious following diffuse brain injury in rats and suggested that S100 will be a suitable marker for diffuse brain injury age determination.

  18. Systemic transplantation of bone marrow stromal cells:an experimental animal study of biodistribution and tissue targeting

    OpenAIRE

    T. Mäkelä

    2014-01-01

    Abstract Bone marrow mesenchymal stromal cells (MSCs) and mononuclear cells (BM-MNCs) have shown great therapeutic potential in various clinical settings. Although intravascular transplantation of the cells constitutes the optimal delivery route, massive pulmonary entrapment, with the threat of embolization, remains a major obstacle for using this type of therapy. Because pulmonary entrapment is at least partially mediated by adhesion molecules, cell surface modification could enhance pul...

  19. Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids

    OpenAIRE

    Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine D.; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2014-01-01

    The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirementsof encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerninghow energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment intoother costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been...

  20. Neuroprotective effect of Quince leaf hydroalcoholic extract on intracerebroventricular streptozotocin-induced oxidative stress in cortical tissue of rat brain

    Directory of Open Access Journals (Sweden)

    A Hajizadeh Moghaddam

    2015-12-01

    Full Text Available Background & aim: Oxidative stress is a result of the imbalance between free radicals and the antioxidant system of the body. Increased oxidative stress in brain causes dysfunction of brain activities, destruction of neurons, and disease such as Alzheimer. Antioxidants, for example vitamins, phenolic compounds and flavonoids have been extensively investigated as potential therapeutic agents in vitro and in vivo for prevention of neurodegenerative diseases. In the present experimental study, the neuro-protective effect of quince leaf hydroalcoholic extract (QLHE on intracerebroventricular streptozotocin (icv-STZ-induced oxidative stress in cortical tissue of rat brain was examined. Methods: In the present experimental research, forty-two Wistar rats were randomly divided into control, sham, icv-STZ and icv-STZ treated with QLHE groups. The ICV-STZ group rats were injected unilaterally with ICV-STZ (3 mg/kg using a stereotactic device and QLHE (50, 100 and 150 mg/kg/day were administered for 6 weeks starting from 3 weeks before of ICV-STZ injection. The rats were killed at the end of the study and their brain cortical tissue superoxide dismutase and catalase activity were measured. The assay of catalase and superoxide dismutase was performed by following the Genet method. The amount of protein was determined according to the Bradford method.The statistical analysis was performed using one way ANOVA. Data were expressed as mean±SD and  P<0.05 was considered significant. Results: The present study indicated that in the ICV-STZ group showed significant decrease (P<0.001 in enzymatic antioxidants superoxide dismutase and catalase in the cortical tissue of the brain. Treatment of different doses of QLHE significantly increased superoxide dismutase and catalase activity compared to icv-STZ group (P<0.001 in cortical tissue of the brain. Conclusion: The study demonstrated the effectiveness of quince leaf hydroalcoholic extract as a powerful antioxidant

  1. Effect of montelukast on the expression of interleukin-18, telomerase reverse transcriptase, and Bcl-2 in the brain tissue of neonatal rats with hypoxic-ischemic brain damage.

    Science.gov (United States)

    Liu, J L; Zhao, X H; Zhang, D L; Zhang, J B; Liu, Z H

    2015-01-01

    The aim of this study was to investigate the effect of montelukast on the expression of interleukin (IL)-18, telomerase reverse transcriptase (TERT), and Bcl-2 in the brain tissue of neonatal rats with hypox-ic-ischemic brain damage (HIBD). To establish the model of HIBD, 8% oxygen was applied to rats after the unilateral carotid artery was ligated. Twenty rats were randomly assigned to the control group, while another 40 were used to establish the HIBD model and were randomly divided equally into model group and treatment group. A 0.1 mg/kg dose of montelukast or an equal volume of saline was intraperitoneally injected to the rats in the treatment group and the model group, respectively. Brain tissue from 4 rats in each group was sampled at 0, 6, 12, 24, and 72 h after brain damage, and immunohistochemistry was used to measure IL-18, TERT and Bcl-2 expressions. IL-18, TERT, and Bcl-2 levels increased after 12 h in both the model group and treatment group, peaked after 48 h, and then decreased. Although not statistically significant, IL-18, TERT, and Bcl-2 expressions after 24, 48, and 96 h were all lower in the treatment group than those in the model group. In conclusion, montelukast has a protective effect on the cerebral tissue of neonatal rats with HIBD, and may mediate an increase of TERT and Bcl-2 levels but not of IL-18. Further study is required to elucidate the mechanism of the protective effect of montelukast on HIBD. PMID:26345821

  2. Quantitative analysis of sodium fast and slow component in in vivo human brain tissue using MR Na image

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Hirokazu; Yamasaki, Katsuhito; Kidena, Hitoshi; Kono, Michio (Kobe Univ. (Japan). School of Medicine)

    1992-12-01

    In vivo sodium concentrations in the normal brain tissue and a tumorous tissue were analyzed using MR Na image. The nuclear magnetic resonance enabled us to divide the signal from sodium in the living tissue into 2 parts based on the differences of T[sub 2] value. Those are fast component having the T[sub 2] value of less than 5 msec and slow component of 15-40 msec. We investigated the effect of macromolecules on T[sub 2] value of sodium image using polyvinylalcohol (PVA) powder. MR Na image was taken with the parameters of TR/TD, 110 ms/1.9 ms (FID image) and TR/TE, 110 ms/20 ms (SE image). Saline solution showed high intensity on both FID image and SE image. Saline solution added PVA (PVA phantom) also showed high intensity on FID image, whereas the signal intensity of PVA phantom in SE image extinguished. To know the relation between the signal intensity and sodium concentration, sodium concentration-signal intensity curve was obtained using phantoms with various sodium concentrations (0.05-1.0%). This curve showed a direct proportion between sodium concentration and signal intensity on Na image. We measured further the sodium concentrations of the human brain tissue. Sodium phantoms were arranged around the heads and the MR Na images of the normal brains from 3 volunteers and a patient with a brain tumor (meningioma) were taken. The sodium concentrations of occipital lobe, basal ganglia and the tumorous tissue were calculated using the sodium concentration-signal intensity curve obtained from the phantoms arranged around the heads. Two tailed t-test shows significant differences (p<0.01) in total sodium and slow component between occipital lobe and basal ganglia. Further more high concentration of fast component in tumorous tissue was observed. As fast component reflects the intracellular condition, present experiments suggest that measurement of fast component may be useful for obtaining the functional information of the brain tissue. (author).

  3. MR tracking of CD34+ progenitor cells separated by means of immunomagnetic selection and transplanted into injured rat brain

    Czech Academy of Sciences Publication Activity Database

    Jendelová, Pavla; Herynek, V.; Glogarová, Kateřina; Urdzíková, Lucia; Rahmatová, S.; Fales, I.; Kobylka, P.; Hájek, M.; Syková, Eva

    Londýn: Elsevier, 2004. s. 210-211. ISSN 0014-4886. [Annual Conference American Society for Neural Transplantation and Repair /11./. 05.05.2004-10.05.2004, Clearwater] R&D Projects: GA MŠk LN00A065; GA ČR GA304/03/1189 Keywords : MR tracking * immunomagnetic selection Subject RIV: FH - Neurology

  4. Early dietary intervention with structured triacylglycerols containing docosahexaenoic acid. Effect on brain, liver, and adipose tissue lipids

    DEFF Research Database (Denmark)

    Christensen, Merete Myrup; Høy, Carl-Erik

    1997-01-01

    and received ordinary rat chow at weaning. In general no significant differences between the two dietary treatments wereobserved in the tissues examined except for adipose tissue. The levels of 22:6n-3 were significantly increased in brain phosphatidylcholines (PC) andphosphatidylserines (PS) of both...... the experimental groups compared with the reference group at 3 wk except for PI. In liver,PC and PE 22:6n-3 remained constant in the experimental groups but decreased significantly in the reference group, whereas in liver PS 22:6n-3increased in all groups, but reached significantly higher levels in...

  5. Study on changes of partial pressure of brain tissue oxygen and brain temperature in acute phase of severe head injury during mild hypothermia therapy

    Institute of Scientific and Technical Information of China (English)

    朱岩湘; 姚杰; 卢尚坤; 章更生; 周关仁

    2003-01-01

    Objective: To study the changes of partial pressure of brain tissue oxygen (PbtO2) and brain temperature in acute phase of severe head injury during mild hypothermia therapy and the clinical significance.Methods: One hundred and sixteen patients with severe head injury were selected and divided into a mild hypothermia group (n=58), and a control group (n=58) according to odd and even numbers of hospitalization. While mild hypothermia therapy was performed PbtO2 and brain temperature were monitored for 1-7 days (mean=86 hours), simultaneously, the intracranial pressure, rectum temperature, cerebral perfusion pressure, PaO2 and PaCO2 were also monitored. The patients were followed up for 6 months and the prognosis was evaluated with GOS (Glasgow outcome scale).Results: The mean value of PbtO2 within 24 hour monitoring in the 116 patients was 13.7 mm Hg±4.94 mm Hg, lower than the normal value (16 mm Hg±40 mm Hg) The time of PbtO2 recovering to the normal value in the mild hypothermia group was shortened by 10±4.15 hours compared with the control group (P<0.05). The survival rate of the mild hypothermia group was 60.43%, higher than that of the control group (46.55%). After the recovery of the brain temperature, PbtO2 increased with the rise of the brain temperature. Conclusions: Mild hypothermia can improve the survival rate of severe head injury. The technique of monitoring PbtO2 and the brain temperature is safe and reliable, and has important clinical significance in judging disease condition and instructing clinical therapy.

  6. Expression of EF-Tumt and EF-Tsmt in brain tissues of patients with mesial temporal lobe epilepsy

    Institute of Scientific and Technical Information of China (English)

    Jun Lu; Qi-Chang Zeng; Qin Wang; Ya-Hui Huang; Qiong Peng

    2016-01-01

    Objective:To explore the expression of EF-Tumt and EF-Tsmt in brain tissue of patients with mesial temporal lobe epilepsy (MTLE). Methods:From January 2013 to January 2015, a total of 62 patients with MTLE who were treated with anterior temporal lobe resection in the Department of neurosurgery in Hunan Brain Hospital were selected and classified as the case group, at the same time, 48 patients with brain trauma were chosen and considered to be the control group. The expression of EF-Tumt and EF-Tsmt was detected and compared between the two groups. Results:EF-Tumt positive particles and EF-Tsmt positive particles were noticed in the mitochondria and cytoplasm of brain tissues of the medial temporal lobe in the two groups by election microscopic observation, and the number of the two types of positive particles in the case group was significantly more than that in the control group (P<0.05);similarly, EF-Tumt positive cells and EF-Tsmt positive cells were also observed in the neurons and astrocytes of brain tissues of the medial temporal lobe in the two groups by election microscopic observation, and the number of the above-mentioned positive cells in the case group was also significantly larger than that in the control group (P<0.05). Conclusions:The expression intensities of EF-Tsmt and EF-Tumt in patients with MTLE are higher than these in patients without epilepsy. Therefore, EF-Tsmt and EF-Tumt play important roles in MTLE.

  7. Differences in supratentorial white matter diffusion after radiotherapy - New biomarker of normal brain tissue damage?

    Energy Technology Data Exchange (ETDEWEB)

    Ravn, Soeren; Jens Broendum Froekaer, Jens [Dept. of Radiology, Aalborg Univ. Hospital, Aalborg (Denmark)], e-mail: sorl@rn.dk; Holmberg, Mats [Dept. of Oncology, Aalborg Univ. Hospital, Aalborg (Denmark); Soerensen, Preben [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark); Carl, Jesper [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark)

    2013-10-15

    Introduction: Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. Material and methods: DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on iso curves from Eclipse. Data was analysed by t-test. Estimates are given with 95 % CI. Results: A mean ADC difference of 4.6(0.3;8.9) X 10{sup -5} mm{sup 2}/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60) X 10{sup -5} mm{sup 2}/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58) X 10{sup -5} mm{sup 2}/s, p = 0.29; 15 Gy; 5.81(1.53;10.11) X 10{sup -5} mm{sup 2}/s, p = 0.01; 25 Gy; 5.80(2.43;9.18) X 10{sup -5} mm{sup 2}/s, p = 0.002; 35 Gy; 5.93(2.89;8.97) X 10

  8. HSF1 is essential for the resistance of zebrafish eye and brain tissues to hypoxia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Nathan R Tucker

    Full Text Available Ischemia and subsequent reperfusion (IR produces injury to brain, eye and other tissues, contributing to the progression of important clinical pathologies. The response of cells to IR involves activation of several signaling pathways including those activating hypoxia and heat shock responsive transcription factors. However, specific roles of these responses in limiting cell damage and preventing cell death after IR have not been fully elucidated. Here, we have examined the role of heat shock factor 1 (HSF1 in the response of zebrafish embryos to hypoxia and subsequent return to normoxic conditions (HR as a model for IR. Heat shock preconditioning elevated heat shock protein expression and protected zebrafish embryo eye and brain tissues against HR-induced apoptosis. These effects were inhibited by translational suppression of HSF1 expression. Reduced expression of HSF1 also increased cell death in brain and eye tissues of embryos subjected to hypoxia and reperfusion without prior heat shock. Surprisingly, reduced expression of HSF1 had only a modest effect on hypoxia-induced expression of Hsp70 and no effect on hypoxia-induced expression of Hsp27. These results establish the zebrafish embryo as a model for the study of ischemic injury in the brain and eye and reveal a critical role for HSF1 in the response of these tissues to HR. Our results also uncouple the role of HSF1 expression from that of Hsp27, a well characterized heat shock protein considered essential for cell survival after hypoxia. Alternative roles for HSF1 are considered.

  9. AMP-activated protein kinase phosphorylation in brain is dependent on method of sacrifice and tissue preparation

    OpenAIRE

    Scharf, Matthew T.; Mackiewicz, Miroslaw; Naidoo, Nirinjini; O'Callaghan, James P.; Pack, Allan I.

    2007-01-01

    AMP-activated protein kinase is activated when the catalytic α subunit is phosphorylated on Thr172 and therefore, phosphorylation of the α subunit is used as a measure of activation. However, measurement of α-AMP-activated protein kinase phosphorylation in vivo can be technically challenging. To determine the most accurate method for measuring α-AMP-activated protein kinase phosphorylation in the mouse brain, we compared different methods of sacrifice and tissue preparation. We found that fre...

  10. Sacrococcygeal fetus in fetu mimicking a teratoma: A rare case with brain tissue and an immature teratoma component

    International Nuclear Information System (INIS)

    Fetus in fetu is a rare, nonviable, malformed parasitic twin, which grows within the body of its partner. It has been known as being almost always anencephalic and rarely reported to have an immature teratoma component. We report a case of a sacrococcygeal fetus in fetu with brain tissue seen on both imaging studies and pathologic specimens, containing an immature teratoma component on pathologic examinations. Imaging studies including plain radiography were very helpful for the correct diagnosis

  11. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it

    OpenAIRE

    Foster, Michelle T.; Softic, Samir; Caldwell, Jody; Kohli, Rohit; deKloet, Annette D; Seeley, Randy J.

    2013-01-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance, and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the...

  12. Development of an analytical procedure for quantifying the underivatized neurotoxin β-N-methylamino-L-alanine in brain tissues.

    Science.gov (United States)

    Combes, Audrey; El Abdellaoui, Saïda; Vial, Jérome; Lagrange, Emmeline; Pichon, Valérie

    2014-07-01

    The cyanotoxin β-methylamino-L-alanine (BMAA) has received renewed attention as an environmental risk factor for sporadic cases of amyotrophic lateral sclerosis (ALS) (Nunn et al., Brain Res 410:375-379, 1987). The aim of the present study was to develop and to validate an analytical procedure that allows the quantification of native BMAA and of its natural isomer, 2,4 diaminobutyric acid (DAB), in brain tissues. An analytical procedure was previously reported by our group for the determination of underivatized BMAA in environmental samples. It included a step of sample clean-up by solid phase extraction (SPE) with a mixed-mode sorbent and the analyses were performed by LC/MS-MS using hydrophilic interaction chromatography and multiple reactions monitoring scan mode. As brain tissues have a higher lipid content, the crucial step of sample clean-up had been optimized by evaluating the efficiency of the addition of a liquid/liquid extraction step prior to the SPE procedure or alternatively, of washing steps to the SPE extraction procedure. The efficiency was checked by visualizing the complexity of the resulting chromatograms in LC/MS and their performance by using spiked brain samples. The optimized analytical procedure, including a washing step with cyclohexane to the SPE with a recovery yield close to 100%, was validated using the total error approach and allowed the quantification of BMAA in a concentration level ranging from 20 to 1,500 ng/g in brain samples. Finally, the feasibility of implementation of this procedure was verified in human brain samples from two patients who died of ALS. PMID:24858470

  13. Changes in hemeoxygenase-1 and superoxide dismutase in the peri-hematomal brain tissues of rats following intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Jiami Wu; Qingwei Meng

    2006-01-01

    BACKGROUND: The mechanism of intracerebral hemorrhage (ICH)-induced hemorrhagic brain injury is very complicated, involving the position-occupying effect of oephalophyma, ischemio factors, the toxic effect of hematoma components, the destruction of blood-brain barrier, etc. The expression and effect of hemeoxygenase-1 (HO-1) in the cerebrovascular disease has been paid close attention.OBJECTIVE: To observe the expression of HO-1 and change of superoxide dismutase (SOD) in the peri-hematomal brain tissue of rats following ICH.DESIGN: Randomized controlled animal experiment.SETTING: Department of Neurology, Yijishan Hospital Affiliated to Wannan Medical College.MATERIALS: Forty healthy male SD rats, of clean grade, weighing from 250 to 300 g, were provided by Qinglongshan Animal Farm of Nanjing. The involved 40 rats were randomized into sham-operation group (n=5) and ICH group (n =35), and ICH group was divided into 7 subgroups with 5 rats in each: ICH 6, 12, 24, 48, 72,100 and 168 hours groups. Rabbit anti-rat HO-1 immunohistochemial kit ( Boster Co., Ltd., Wuhan) and SOD kit (Jiancheng Bioengineering Institute, Nanjing)were used in this experiment.METHODS: This experiment was carried out in the Department of Neurology, Yijishan Hospital Affiliated to Wannan Medical College Between April and July 2005. In the ICH group: Autologous blood of rats was injected into the head of caudate nucleus to create ICH animal models. In the sham-operation group, the same amount of normal saline was injected into the head of caudate nucleus of rats. The brains of rats in each group were harvested at different time points. The hematoma-side brain tissue was cut open in the coronal plane taking hematomal region as center, and the posterior part was fixed with 100 g/L neutral formaldehyde. 100 mg brain tissue was taken from anterior part. The number of positive cells in HO-1 and SOD activity in peri-hematomal brain tissue at different time after ICH were detected by immunohistochemical

  14. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  15. CCl4 induces tissue-type plasminogen activator in rat brain; protective effects of oregano, rosemary or vitamin E.

    Science.gov (United States)

    Lavrentiadou, Sophia N; Tsantarliotou, Maria P; Zervos, Ioannis A; Nikolaidis, Efstathios; Georgiadis, Marios P; Taitzoglou, Ioannis A

    2013-11-01

    The high metabolic rate and relatively low antioxidant defenses of the lipid-rich brain tissue render it highly susceptible to reactive oxygen species (ROS) and oxidative stress, whereas the implication of ROS in the pathogenesis of several diseases in the central nervous system is well-established. The plasminogen activator (PA) system is a key modulator of extracellular proteolysis, extracellular matrix remodeling and neuronal cell signaling and has been implicated in the pathogenesis of these diseases. This study evaluates the role of tissue-type PA (t-PA) in oxidative stress and the protective role of dietary antioxidants in the rat brain. We used the CCl4 experimental model of ROS-induced lipid peroxidation and evaluated the antioxidant effect of oregano, rosemary or vitamin E. CCl4-treated Wistar rats exhibited elevated brain t-PA activity, which was decreased upon long-term administration of oregano, rosemary or vitamin E. PA inhibitor-1 (PAI-1) activity was also slightly elevated by CCl4, but this increase was not affected by the antioxidants. We hypothesize that the CCl4-induced t-PA activity indicates extracellular proteolytic activity that may be linked to neuronal cell death and brain damage. Vitamin E or antioxidants present in oregano or rosemary are effective in inhibiting t-PA elevation and can be considered as a potential protection against neuronal damage. PMID:23831191

  16. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  17. Bone transplantation and tissue engineering, part I. Mythology, miracles and fantasy: from Chimera to the Miracle of the Black Leg of Saints Cosmas and Damian and the cock of John Hunter.

    Science.gov (United States)

    Hernigou, Philippe

    2014-12-01

    The replacement of diseased organs and tissues by the healthy ones of others has been a unique milestone in modern medicine. However, even though cloning, member transplantation and regenerative therapies with stem cells are available in the twentieth and twenty-first centuries, one should remember that all these techniques were in the imagination more than 2,000 years ago. For centuries, transplantation remained a theme of mythology, miracle or fantasy and was found only in literature and arts. This first paper explains the concept of tissue transplantation from the period when it was relegated to the imagination to the work of the Scottish surgeon and anatomist, John Hunter, who demonstrated the viability of bone allograft. PMID:25201179

  18. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds

    OpenAIRE

    Nakane, Yusuke; IKEGAMI, Keisuke; Ono, Hiroko; YAMAMOTO, Naoyuki; Yoshida, Shosei; Hirunagi, Kanjun; Ebihara, Shizufumi; Kubo, Yoshihiro; Yoshimura, Takashi

    2010-01-01

    It has been known for many decades that nonmammalian vertebrates detect light by deep brain photoreceptors that lie outside the retina and pineal organ to regulate seasonal cycle of reproduction. However, the identity of these photoreceptors has so far remained unclear. Here we report that Opsin 5 is a deep brain photoreceptive molecule in the quail brain. Expression analysis of members of the opsin superfamily identified as Opsin 5 (OPN5; also known as Gpr136, Neuropsin, PGR12, and TMEM13) m...

  19. Donor transplant programme

    International Nuclear Information System (INIS)

    The transplantation of organs and tissues from one human to another human has become an essential and well established form of therapy for many types of organ and tissue failure. In Malaysia, kidney, cornea and bone marrow transplantation are well established. Recently, liver, bone and heart transplanation have been performed. Unfortunately, because of the lack of cadaveric organ donation, only a limited number of solid organ transplantation have been performed. The cadaveric organ donor rate in Malaysia is low at less than one per million population. The first tissue transplanted in Malaysia was the cornea which was performed in the early 1970s. At that time and even now the majority of corneas came from Sri Lanka. The first kidney transplant was performed in 1975 from a live related donor. The majority of the 629 kidney transplants done at Hospital Kuala Lumpur to date have been from live related donors. Only 35 were from cadaver donors. Similarly, the liver transplantation programme which started in 1995 are from live related donors. A more concerted effort has been made recently to increase the awareness of the public and the health professionals on organ and tissue donation. This national effort to promote organ and tissue donation seems to have gathered momentum in 1997 with the first heart transplant successfully performed at the National Heart Institute. The rate of cadaveric donors has also increased from a previous average of I to 2 per year to 6 per year in the last one year. These developments are most encouraging and may signal the coming of age of our transplantati on programme. The Ministry of Health in conjunction with various institutions, organizations and professional groups, have taken a number of proactive measures to facilitate the development of the cadaveric organ donation programme. Efforts to increase public awareness and to overcome the negative cultural attitude towards organ donation have been intensified. Equally important are efforts

  20. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  1. Oxidative stress and acute changes in murine brain tissues after nasal instillation of copper particles with different sizes.

    Science.gov (United States)

    Liu, Yang; Gao, Yuxi; Liu, Ying; Li, Bai; Chen, Chunying; Wu, Gang

    2014-06-01

    We aim to investigate the biological effects of copper particles on the murine brain and their underlying mechanism after nasal instillation of copper particles. We choose different sizes and different concentrations of copper nanoparticles for mice intranasal use. Within one week, the mice were sacrificed. Pathological lesions of glial cells were detected by immunohistochemical assay. Immunohistochemical assay reveals that glial fibrillary acidic protein (GFAP) increased significantly in all experimental groups, especially in nanocopper groups. The ultrastructure of nerve cells was observed through TEM, whose results show that there were chromatin congregation and mitochondria shrinkage in the olfactory cells, and that there was increase of endoplasmic reticulum and disassociation of endoplasmic reticulum ribosomes in hippocampus, particularly in the nanocopper-groups. Oxidative stress indexes were determined with colorimetric methods. There was no significant increase in the antioxidative enzymes (GPX, GST, SOD) in brain tissues; however, significant increase of malondiadehyde (MDA) contents was only found in the Cu nanoparticle-exposed mice at the high dose of 40 mg per kg body weight. Based on the investigation into the biological effects of copper nanoparticles (23.5 nm) after intranasal instillation to the mice, we have found that copper particles can indeed enter into the olfactory bulb and then the deeper brain. The inhalation of high dose copper nanoparticles can induce severer lesions of brain in the experimental mice. The underlying mechanism of copper nanoparticles causing severe brain damage bears little connection with oxidative stress. PMID:24738425

  2. Lack of X-linked inhibitor of apoptosis protein leads to increased apoptosis and tissue loss following neonatal brain injury

    Directory of Open Access Journals (Sweden)

    Tim West

    2009-04-01

    Full Text Available Neurological deficits caused by H-I (hypoxia-ischaemia) to the perinatal brain are often severely debilitating and lead to motor impairment, intellectual disability and seizures. Perinatal brain injury is distinct from adult brain injury in that the developing brain is undergoing the normal process of neuronal elimination by apoptotic cell death and thus the apoptotic machinery is more easily engaged and activated in response to injury. Thus cell death in response to neonatal H-I brain injury is partially due to mitochondrial dysfunction and activation of the apoptosome and caspase 3. An important regulator of the apoptotic response following mitochondrial dysfunction is XIAP (X-linked inhibitor of apoptosis protein). XIAP inhibits apoptosis at the level of caspase 9 and caspase 3 activation, and lack of XIAP in vitro has been shown to lead to increased apoptotic cell death. In the present study we show that mice lacking the gene encoding the XIAP protein have an exacerbated response to neonatal H-I injury as measured by tissue loss at 7 days following the injury. In addition, when the XIAP-deficient mice were studied at 24 h post-H-I we found that the increase in injury correlates with an increased apoptotic response in the XIAP-deficient mice and also with brain imaging changes in T2-weighted magnetic resonance imaging and apparent diffusion coefficient that correspond to the location of apoptotic cell death. These results identify a critical role of XIAP in regulating neuronal apoptosis in vivo and demonstrate the enhanced vulnerability of neurons to injury in the absence of XIAP in the developing brain.

  3. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    Science.gov (United States)

    Matthews, Gideon D; Gur, Noa; Koopman, Werner J H; Pines, Ophry; Vardimon, Lily

    2010-02-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS gene, it is not clear how tissue-specific subcellular localization is achieved. Here we show that in chicken, which utilizes the uricotelic system, the GS transcripts of liver and brain cells are identical and, consistently, there is no difference in the amino acid sequence of the protein. The N-terminus of GS, which constitutes a 'weak' mitochondrial targeting signal (MTS), is sufficient to direct a chimeric protein to the mitochondria in hepatocytes and to the cytoplasm in astrocytes. Considering that a weak MTS is dependent on a highly negative mitochondrial membrane potential (DeltaPsi) for import, we examined the magnitude of DeltaPsi in hepatocytes and astrocytes. Our results unexpectedly revealed that DeltaPsi in hepatocytes is considerably more negative than that of astrocytes and that converting the targeting signal into 'strong' MTS abolished the capability to confer tissue-specific subcellular localization. We suggest that evolutional selection of weak MTS provided a tool for differential targeting of an identical protein by taking advantage of tissue-specific differences in DeltaPsi. PMID:20053634

  4. In vivo tracing of superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells transplanted for traumatic brain injury by susceptibility weighted imaging in a rat model

    Institute of Scientific and Technical Information of China (English)

    CHENG Jing-liang; YANG Yun-jun; LI Hua-li; WANG Juan; WANG Mei-hao; ZHANG Yong

    2010-01-01

    Objective:To label rat bone marrow mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide (SPIO) in vitro, and to monitor the survival and location of these labeled BMSCs in a rat model of traumatic brain injury (TBI) by susceptibility weighted imaging (SWI)sequence.Methods:BMSCs were cultured in vitro and then labeled with SPIO. Totally 24 male Sprague Dawley (SD) rats weighing 200-250 g were randomly divided into 4 groups: Groups A-D (n=6 for each group). Moderate TBI models of all the rats were developed in the left hemisphere following Feeney's method. Group A was the experimental group and stereotaxic transplantation of BMSCs labeled with SPIO into the region nearby the contusion was conducted in this group 24 hours after TBI modeling. The other three groups were control groups with transplantation of SPIO, unlabeled BMSCs and injection of nutrient solution respectively conducted in Groups B, C and D at the same time. Monitoring of these SPIO-labeled BMSCs by SWI was performed one day,one week and three weeks after implantation.Results: Numerous BMSCs were successfully labeled with SPIO. They were positive for Prussian blue staining and intracytoplasm positive blue stained particles were found under a microscope (×200). Scattered little iron particles were observed in the vesicles by electron microscopy (×5000). MRI of the transplantation sites of the left hemisphere demonstrated a low signal intensity on magnitude images,phase images and SWI images for all the test rats in Group A, and the lesion in the left parietal cortex demonstrated a semicircular low intensity on SWI images, which clearly showed the distribution and migration of BMSCs in the first and third weeks. For Group B, a low signal intensity by MRI was only observed on the first day but undetected during the following examination. No signals were observed in Groups C and D at any time points.Conclusion:SWI sequence in vivo can consecutively and noninvasively trace and demonstrate the

  5. Effects of realgar on stress proteins, inflammatory mediators, and complement in brain tissue and serum of rats with inflammatory brain injury

    Institute of Scientific and Technical Information of China (English)

    Yishan Tang; Ningsheng Wang; Yinqing Zhang; Shaomei Ye; Weiping Ou

    2008-01-01

    BACKGROUND: The Chinese herbal compound realgar exerts detoxification effects as an adjuvant. It is suggested that realgar exerts detoxification via the following pathways: in the pathological state, realgar corrects the oxidative stress state by increasing stress levels, activating some endogenous protective factors and antagonizing the excessive release of inflammatory factors, as well as inhibiting complement activation.OBJECTIVE: To observe the changes in stress proteins, inflammatory mediators, and complement in the brain tissue and serum of rats with inflammatory brain injury, which have been treated with thc Chinese herbal compound Angong Niuhuang, and to compare the efficacy of Angong Niuhuang with that of realgar,to verify the mechanism of action of realgar.DESIGN, TIME AND SETTING: Randomized, controlled, cytological experiment, performed in the Institute of Clinical Pharmacology, Guangzhou University of Traditional Chinese Medicine in March 2006.MATERIALS: Thirty-six healthy, male, Sprague Dawley rats received 250 U/kg Bordetella pertussis via the common carotid artery within 15 seconds to induce inflammatory brain injury. Reagents and kits were as follows: Realgar and Angong Niuhuang powder (Foshan Second Pharmaceutical Factory, China), Bordetella pertussis diagnostic antigen (National Institute for the Control of Pharmaceutical and Biological Products,China), heat shock protein 70 (HSP70) enzyme-labeled immunosorbent assay (ELISA) kit (Stressgen, USA),tumor necrosis factor-α (TNF-α) ELISA kit (Biosource, USA), nitric oxide synthase (NOS) kit,Coomassie brilliant blue protein kit (Nanjing Jiancheng Bioengineering Co.,Ltd., China), and complements C3 and C4 (Shanghai Kehua Dongling Diagnositic Products Co.,Ltd., China),METHODS: Thirty-six rats were randomly and evenly divided into the following six groups: normal control,model, high-, middle-, and low-dose realgar-treated, and Angong Niuhuang-treated groups. At one hour prior to establishing the model

  6. Gene Expression Analysis of Neurons and Astrocytes Isolated by Laser Capture Microdissection from Frozen Human Brain Tissues.

    Science.gov (United States)

    Tagliafierro, Lidia; Bonawitz, Kirsten; Glenn, Omolara C; Chiba-Falek, Ornit

    2016-01-01

    Different cell types and multiple cellular connections characterize the human brain. Gene expression analysis using a specific population of cells is more accurate than conducting analysis of the whole tissue homogenate, particularly in the context of neurodegenerative diseases, where a specific subset of cells is affected by the different pathology. Due to the difficulty of obtaining homogenous cell populations, gene expression in specific cell-types (neurons, astrocytes, etc.) has been understudied. To leverage the use of archive resources of frozen human brains in studies of neurodegenerative diseases, we developed and calibrated a method to quantify cell-type specific-neuronal, astrocytes-expression profiles of genes implicated in neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. Archive human frozen brain tissues were used to prepare slides for rapid immunostaining using cell-specific antibodies. The immunoreactive-cells were isolated by Laser Capture Microdissection (LCM). The enrichment for a particular cell-type of interest was validated in post-analysis stage by the expression of cell-specific markers. We optimized the technique to preserve the RNA integrity, so that the RNA was suitable for downstream expression analyses. Following RNA extraction, the expression levels were determined digitally using nCounter Single Cell Gene Expression assay (NanoString Technologies®). The results demonstrated that using our optimized technique we successfully isolated single neurons and astrocytes from human frozen brain tissues and obtained RNA of a good quality that was suitable for mRNA expression analysis. We present here new advancements compared to previous reported methods, which improve the method's feasibility and its applicability for a variety of downstream molecular analyses. Our new developed method can be implemented in genetic and functional genomic research of neurodegenerative diseases and has the potential to significantly

  7. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Chien-Min Lin

    2015-01-01

    Full Text Available The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP- guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg, and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg in the neurosurgical intensive care unit (NICU; demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.

  8. Revascularization Using an Extracorporeal Pump for the Treatment of Cerebral Embolism in the Acute Stage: For Protection of the Brain Tissue from Irreversible Change due to Cerebral Embolism

    OpenAIRE

    Sonobe, M.; Nakai, Y.; Matsumaru, Y.; Sugita, K.

    2001-01-01

    Object. For patients with cerebral embolism, we are using an extracorporeal pump to revascularize the more peripheral brain tissues far from the thrombus, proceeding the microcatheter beyond the thrombus, and dissolving the thrombus during a satisfactory time as required.

  9. Lung transplant

    Science.gov (United States)

    ... lung transplants are done at the same time (heart-lung transplant) if the heart is also diseased. ... people develop cancers or have problems with the heart. For most ... transplant. They have better exercise endurance and are able ...

  10. Liver transplant

    Science.gov (United States)

    ... transplant - series References Keefe EB. Hepatic failure and liver transplantation. In: Goldman L, Schafer AI, eds. Goldman's Cecil ... Elsevier; 2011:chap 157. Martin P, Rosen HR. Liver transplantation. In: Feldman M, Friedman LS, Brandt LJ, eds. ...

  11. Transplant services

    Science.gov (United States)

    ... may be done with a kidney- pancreas transplant . Liver transplant may be the only option for someone with liver disease that has led to liver failure. Lung transplant may replace one or both lungs. It may ...

  12. Identification, tissue distribution and evaluation of brain neuropeptide Y gene expression in the Brazilian flounder Paralichthys orbignyanus

    Indian Academy of Sciences (India)

    Vinicius F Campos; Tiago Collares; João C Deschamps; Fabiana K Seixas; Odir A Dellagostin; Carlos Frederico C Lanes; Juliana Sandrini; Luis Fernando Marins; Marcelo Okamoto; Luís A Sampaio; Ricardo B Robaldo

    2010-09-01

    Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in vertebrates, mammals and fish. However, the present knowledge about feeding behaviour in fish is still limited and based on studies in a few species. The Brazilian flounder Paralichthys orbignyanus is being considered for aquaculture, and it is important to understand the mechanisms regulating feeding in order to improve its performance in captivity. The objectives of this study were to clone NPY cDNA, evaluate the mRNA levels in different tissues of flounder, and also evaluate brain NPY expression to associate food intake with NPY expression levels. A 597 bp NPY cDNA was cloned from Brazilian flounder brain. NPY expression was detected in all the peripheral tissues analysed. No significant differences were observed in brain NPY gene expression over 24 h after food intake at a temperature of 15 ± 3°C. No correlation was observed among plasma glucose, total protein, cholesterol, triglycerides and NPY expression levels during this 24 h period. On the other hand, mRNA levels were increased after two weeks of fasting at elevated temperatures. Our results suggest that NPY mRNA levels in Brazilian flounder are affected by temperature.

  13. Metabolic changes in the rat brain after a photochemical lesion treated by stem cell transplantation assessed by 1H MRS

    Czech Academy of Sciences Publication Activity Database

    Herynek, V.; Růžičková, Kateřina; Jendelová, Pavla; Syková, Eva; Hájek, M.

    2009-01-01

    Roč. 22, č. 4 (2009), s. 211-220. ISSN 0968-5243 R&D Projects: GA AV ČR KAN201110651; GA MŠk(CZ) LC554; GA ČR(CZ) GA309/06/1594 Grant ostatní: GA MŠk(CZ) 1M0538; EC-FP6 project DiMI(XE) LSHB-CT-2005-512146; GA MZd(CZ) MZ01IKEM2005 Institutional research plan: CEZ:AV0Z50390703 Keywords : mesenchymal stem cell transplantation * magnetic resonance spectroscopy * rats Subject RIV: FH - Neurology Impact factor: 1.859, year: 2009

  14. Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion

    International Nuclear Information System (INIS)

    HIV infects macrophages and microglia in the central nervous system (CNS), which express lower levels of CD4 than CD4+ T cells in peripheral blood. To investigate mechanisms of HIV neurotropism, full-length env genes were cloned from autopsy brain and lymphoid tissues from 4 AIDS patients with HIV-associated dementia (HAD). Characterization of 55 functional Env clones demonstrated that Envs with reduced dependence on CD4 for fusion and viral entry are more frequent in brain compared to lymphoid tissue. Envs that mediated efficient entry into macrophages were frequent in brain but were also present in lymphoid tissue. For most Envs, entry into macrophages correlated with overall fusion activity at all levels of CD4 and CCR5. gp160 nucleotide sequences were compartmentalized in brain versus lymphoid tissue within each patient. Proline at position 308 in the V3 loop of gp120 was associated with brain compartmentalization in 3 patients, but mutagenesis studies suggested that P308 alone does not contribute to reduced CD4 dependence or macrophage-tropism. These results suggest that HIV adaptation to replicate in the CNS selects for Envs with reduced CD4 dependence and increased fusion activity. Macrophage-tropic Envs are frequent in brain but are also present in lymphoid tissues of AIDS patients with HAD, and entry into macrophages in the CNS and other tissues is dependent on the ability to use low receptor levels and overall efficiency of fusion

  15. The cross-reactivity of the enterovirus 71 to human brain tissue and identification of the cross-reactivity related fragments

    Directory of Open Access Journals (Sweden)

    Zhang Lian

    2010-02-01

    Full Text Available Abstract Background EV71 occasionally cause a series of severe neurological symptoms, including aseptic meningitis, encephalitis, and poliomyelitis-like paralysis. However, the neurological destruction mechanism was remained to be clarified. This study described the cross reaction between EV71 induced IgG and human brain tissue. Results Cross reaction of the IgG from 30 EV71 infected patients' sera to human tissues of cerebra was observed, which suggested that some EV71 antigens could induce IgG cross-reactivity to human cerebra. To identify the regions of EV71 virus that containing above antigens, the polypeptide of virus was divided into 19 peptides by expression in prokaryotes cell. Mouse anti-sera of these peptides was prepared and applied in immunohistochemical staining with human adult and fetus brain tissue, respectively. The result indicated the 19 peptides can be classified into three groups: strong cross-reactivity, weak cross-reactivity and no cross-reactivity with human brain tissue according the cross reaction activity. Then, the increased Blood Brain Barrier (BBB permeability and permits IgG entry in neonatal mice after EV71 infection was determined. Conclusion EV71 induced IgG could enter BBB and cross-reacted with brain tissue in EV71 infected neonatal mice, and then the peptides of EV71 that could induce cross-reactivity with brain tissue were identified, which should be avoided in future vaccine designing.

  16. Seizure control with thermal energy? Modeling of heat diffusivity in brain tissue and computer-based design of a prototype mini-cooler.

    Energy Technology Data Exchange (ETDEWEB)

    Osario, I.; Chang, F.-C.; Gopalsami, N.; Nuclear Engineering Division; Univ. of Kansas

    2009-10-01

    Automated seizure blockage is a top priority in epileptology. Lowering nervous tissue temperature below a certain level suppresses abnormal neuronal activity, an approach with certain advantages over electrical stimulation, the preferred investigational therapy for pharmacoresistant seizures. A computer model was developed to identify an efficient probe design and parameters that would allow cooling of brain tissue by no less than 21 C in 30 s, maximum. The Pennes equation and the computer code ABAQUS were used to investigate the spatiotemporal behavior of heat diffusivity in brain tissue. Arrays of distributed probes deliver sufficient thermal energy to decrease, inhomogeneously, brain tissue temperature from 37 to 20 C in 30 s and from 37 to 15 C in 60 s. Tissue disruption/loss caused by insertion of this probe is considerably less than that caused by ablative surgery. This model may be applied for the design and development of cooling devices for seizure control.

  17. Expression of GLUT4 mRNA of peripheral tissues and insulin resistance in rats with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-qing; ZHU Lie-lie; LI Yong-ling

    2007-01-01

    Objective: To evaluate the expression of glucose transporter-4 (GLUT4) mRNA in skeletal muscle and subcutaneous adipose tissues and investigate the mechanism of posttraumatic insulin resistance.Methods: Sixteen adult male Wistar rats were randomly divided into 2 group (n=8 in each group), i.e., severe traumatic brain injury (TBI) group due to falls from a height and normal control group. Blood glucose and serum insulin were measured at 0.5 h before trauma and 3 h, 24 h, 72 h, 7 d after trauma, respectively. And insulin sensitivity was calculated by insulin activity index (IAI) formula. Skeletal muscle and subcutaneous adipose tissue samples were collected at the same time when blood was sampled. The changes of expression of GLUT4 mRNA were observed using reverse transcription-polymerase chain reaction (RT-PCR).Results: Accompanied by the decrease of insulin sensitivity, the expression of GLUT4 mRNA was significantly decreased in adipose tissues at 24 h and 72 h after trauma (P<0.01), however, such phenomena did not appear in skeletal muscle samples.Conclusions: To some extent, the development of posttraumatic insulin resistance is related to the abnormality of transcription activity of GLUT4 gene. Adipose tissues show some difference in the transcriptional level of GLUT4 gene after trauma as compared with skeletal muscle tissues.

  18. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage.

    Directory of Open Access Journals (Sweden)

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Cell-based therapy has been reported to repair or restore damaged salivary gland (SG tissue after irradiation. This study was aimed at determining whether systemic administration of human adipose-derived mesenchymal stem cells (hAdMSCs can ameliorate radiation-induced SG damage. METHODS: hAdMSCs (1 × 10(6 were administered through a tail vein of C3H mice immediately after local irradiation, and then this infusion was repeated once a week for 3 consecutive weeks. At 12 weeks after irradiation, functional evaluations were conducted by measuring salivary flow rates (SFRs and salivation lag times, and histopathologic and immunofluorescence histochemistry studies were performed to assay microstructural changes, apoptosis, and proliferation indices. The engraftment and in vivo differentiation of infused hAdMSCs were also investigated, and the transdifferentiation of hAdMSCs into amylase-producing SG epithelial cells (SGCs was observed in vitro using a co-culture system. RESULTS: The systemic administration of hAdMSCs exhibited improved SFRs at 12 weeks after irradiation. hAdMSC-transplanted SGs showed fewer damaged and atrophied acinar cells and higher mucin and amylase production levels than untreated irradiated SGs. Immunofluorescence TUNEL assays revealed fewer apoptotic cells in the hAdMSC group than in the untreated group. Infused hAdMSCs were detected in transplanted SGs at 4 weeks after irradiation and some cells were found to have differentiated into SGCs. In vitro, a low number of co-cultured hAdMSCs (13%-18% were observed to transdifferentiate into SGCs. CONCLUSION: The findings of this study indicate that hAdMSCs have the potential to protect against irradiation-induced cell loss and to transdifferentiate into SGCs, and suggest that hAdMSC administration should be viewed as a candidate therapy for the treatment of radiation-induced SG damage.

  19. Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats

    Science.gov (United States)

    Drabek, Tomas; Janata, Andreas; Wilson, Caleb D.; Stezoski, Jason; Janesko-Feldman, Keri; Tisherman, Samuel A.; Foley, Lesley M.; Verrier, Jonathan; Kochanek, Patrick M.

    2014-01-01

    Neuro-cognitive disabilities are a well-recognized complication of hypothermic circulatory arrest. We and others have reported that prolonged cardiac arrest (CA) produces neuronal death and microglial proliferation and activation that are only partially mitigated by hypothermia. Microglia, and possibly other cells, are suggested to elaborate tumor necrosis factor alpha (TNF-α) which can trigger neuronal death cascades and exacerbate edema after CNS insults. Minocycline is neuroprotective in some brain ischemia models in part by blunting the microglial response. We tested the hypothesis that minocycline would attenuate neuroinflammation as reflected by brain tissue levels of TNF-α after hypothermic CA in rats. Rats were subjected to rapid exsanguination, followed by a 6 min normothermic CA. Hypothermia (30 °C) was then induced by an aortic saline flush. After a total of 20 min CA, resuscitation was achieved via cardiopulmonary bypass (CPB). After 5 min reperfusion, minocycline (90 mg/kg; n=6) or vehicle (PBS; n=6) were given. Hypothermia (34 °C) was maintained for 6 h. Rats were sacrificed at 6 or 24 h. TNF-α was quantified (ELISA) in four brain regions (cerebellum, CEREB; cortex, CTX; hippocampus, HIP; striatum, STRI). Naïve rats (n=6) and rats subjected to the same anesthesia and CPB but no CA served as controls (n=6). Immunocytochemistry was used to localize TNF-α. Naïve rats and CPB controls had no detectable TNF-α in any brain region. CA markedly increased brain TNF-α. Regional differences were seen, with the highest TNF-α levels in striatum in CA groups (10-fold higher, P<0.05 vs. all other brain regions). TNF-α was undetectable at 24 h. Minocycline attenuated TNF-α levels in CTX, HIP and STRI (P<0.05). TNF-α showed unique co-localization with neurons. In conclusion, we report region-dependent early increases in brain TNF-α levels after prolonged hypothermic CA, with maximal increases in striatum. Surprisingly, TNF-α co-localized in neurons and

  20. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, or ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are metastatic, ...