WorldWideScience

Sample records for brain tissue transplantation

  1. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    Science.gov (United States)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  2. Intrinsic control of electroresponsive properties of transplanted mammalian brain neurons

    DEFF Research Database (Denmark)

    Hounsgaard, J; Yarom, Y

    1985-01-01

    The present study presents the first analysis of neurons in mammalian brain transplants based on intracellular recording. The results, obtained in brain slices including both donor and host tissue, showed that neuronal precursor cells in embryonic transplants retained their ability to complete...... their normal differentiation of cell-type-specific electroresponsive properties. Distortions in cell aggregation and synaptic connectivity did not affect this aspect of neuronal differentiation....

  3. Spectromicroscopy of Brain Tissue

    Science.gov (United States)

    Frazer, Bradley; Cannara, Rachel; Gilbert, Benjamin; Destasio, Gelsomina; Ogg, Mandy; Gough, Kathy

    2001-03-01

    X-ray PhotoElectron Emission Microscopy (X-PEEM) was originally developed for studying the surface microchemistry of materials science specimens. It has then evolved into a valuable tool to investigate the magnetic properties of materials and the microchemistry of cells and tissues. We used the MEPHISTO X-PEEM instrument, installed at the UW-Synchrotron Radiation Center to detect trace concentrations of non-physiological elements in senile brain tissue specimens. These tissues contain a large number of plaques, in which all the compounds and elements that the brain does not need are disposed and stored. We hypothesized that plaques should contain elements, such as Si, B, and Al which are very abundant on the Earth crust but absent from healthy tissues. We verified this hypothesis with MEPHISTO and found evidence of Si and B, and suspect Al. We also found a higher than normal concentration of Fe.

  4. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  5. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis.

    Science.gov (United States)

    Cheng, Bo; Anea, Ciprian B; Yao, Lin; Chen, Feng; Patel, Vijay; Merloiu, Ana; Pati, Paramita; Caldwell, R William; Fulton, David J; Rudic, R Daniel

    2011-10-11

    The suprachiasmatic nucleus of the brain is the circadian center, relaying rhythmic environmental and behavioral information to peripheral tissues to control circadian physiology. As such, central clock dysfunction can alter systemic homeostasis to consequently impair peripheral physiology in a manner that is secondary to circadian malfunction. To determine the impact of circadian clock function in organ transplantation and dissect the influence of intrinsic tissue clocks versus extrinsic clocks, we implemented a blood vessel grafting approach to surgically assemble a chimeric mouse that was part wild-type (WT) and part circadian clock mutant. Arterial isografts from donor WT mice that had been anastamosed to common carotid arteries of recipient WT mice (WT:WT) exhibited no pathology in this syngeneic transplant strategy. Similarly, when WT grafts were anastamosed to mice with disrupted circadian clocks, the structural features of the WT grafts immersed in the milieu of circadian malfunction were normal and absent of lesions, comparable to WT:WT grafts. In contrast, aortic grafts from Bmal1 knockout (KO) or Period-2,3 double-KO mice transplanted into littermate control WT mice developed robust arteriosclerotic disease. These lesions observed in donor grafts of Bmal1-KO were associated with up-regulation in T-cell receptors, macrophages, and infiltrating cells in the vascular grafts, but were independent of hemodynamics and B and T cell-mediated immunity. These data demonstrate the significance of intrinsic tissue clocks as an autonomous influence in experimental models of arteriosclerotic disease, which may have implications with regard to the influence of circadian clock function in organ transplantation.

  6. Nocardia Brain Abscess in a Liver Transplant Recipient

    OpenAIRE

    Moon, Jung Hyeon; Cho, Won-Sang; Kang, Hyun-Seung; Kim, Jeong Eun

    2011-01-01

    Nocardia brain abscess is rare. We report on a unique case of N. farcinica brain abscess in a liver transplant recipient, following Aspergillus fumigatus pneumonia. A 43-year-old liver transplant recipient presented with altered mentality at 2 months after A. fumigates pneumonia. He was successfully treated with surgical removal and antibiotic therapy with trimethoprim-sulfamethoxazole and ceftriaxone.

  7. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  8. Enhancing Clinical Islet Transplantation through Tissue Engineering Strategies

    OpenAIRE

    Giraldo, Jaime A.; Weaver, Jessica D; Stabler, Cherie L

    2010-01-01

    Clinical islet transplantation (CIT), the infusion of allogeneic islets within the liver, has the potential to provide precise and sustainable control of blood glucose levels for the treatment of type 1 diabetes. The success and long-term outcomes of CIT, however, are limited by obstacles such as a nonoptimal transplantation site and severe inflammatory and immunological responses to the transplant. Tissue engineering strategies are poised to combat these challenges. In this review, emerging ...

  9. Alterações fisiológicas da morte encefálica em potenciais doadores de órgãos e tecidos para transplantes Los cambios fisiológicos de la muerte cerebral en potenciales donadores de órganos y tejidos para trasplante Physiological changes of brain death in potential donors of organs and tissues for transplantation

    Directory of Open Access Journals (Sweden)

    Sarah Gabriel Freire

    2012-12-01

    órnea (3,1%. Se cree que el conocimiento de estos cambios permite al equipo de atención de la salud dirigir sus acciones al potencial donador de acuerdo a sus necesidades y así mantener los órganos/tejidos viables para el trasplante.The objective was to describe the physiologic changes of brain death in potential donors of organs and tissues for transplantation. Exploratory descriptive study with prospective data and quantitative approach carried out in emergency and intensive care units hospital adult, in the period from April to October 2011. The population consisted of 32 potential donors of organs and tissues for transplantation. After approval of Ethics Committee, data were collected, tabulated and analyzed by descriptive statistics by SPSS 15.0 software and presented in tables. Physiological changes were: hypotension (100%, hypothermia (75%, hypernatremia (62,5%, diabetes insipidus (37,5%, hyperglycemia (32,3%, infection (25,0%, hypertension (9,4% and corneal ulcer (3,1%. It was found that knowledge of these changes allows the team of health care to direct the potential donors according to their needs and thus keep the organ/tissue viable for transplant.

  10. Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Junjian Zhao; Hui Xue; Naiyao Chen; Na Shen; Hui Zhao; Dali Wang; Jun Shi; Yang Wang; Xiufeng Cui; Zhenyu Yan

    2012-01-01

    In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.

  11. Embryonic pig pancreatic tissue transplantation for the treatment of diabetes.

    Directory of Open Access Journals (Sweden)

    Smadar Eventov-Friedman

    2006-07-01

    Full Text Available BACKGROUND: Transplantation of embryonic pig pancreatic tissue as a source of insulin has been suggested for the cure of diabetes. However, previous limited clinical trials failed in their attempts to treat diabetic patients by transplantation of advanced gestational age porcine embryonic pancreas. In the present study we examined growth potential, functionality, and immunogenicity of pig embryonic pancreatic tissue harvested at different gestational ages. METHODS AND FINDINGS: Implantation of embryonic pig pancreatic tissues of different gestational ages in SCID mice reveals that embryonic day 42 (E42 pig pancreas can enable a massive growth of pig islets for prolonged periods and restore normoglycemia in diabetic mice. Furthermore, both direct and indirect T cell rejection responses to the xenogeneic tissue demonstrated that E42 tissue, in comparison to E56 or later embryonic tissues, exhibits markedly reduced immunogenicity. Finally, fully immunocompetent diabetic mice grafted with the E42 pig pancreatic tissue and treated with an immunosuppression protocol comprising CTLA4-Ig and anti-CD40 ligand (anti-CD40L attained normal blood glucose levels, eliminating the need for insulin. CONCLUSIONS: These results emphasize the importance of selecting embryonic tissue of the correct gestational age for optimal growth and function and for reduced immunogenicity, and provide a proof of principle for the therapeutic potential of E42 embryonic pig pancreatic tissue transplantation in diabetes.

  12. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome.

    Science.gov (United States)

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-03-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  13. Brain Tissue Oxygen Monitoring in Neurocritical Care.

    Science.gov (United States)

    De Georgia, Michael A

    2015-12-01

    Brain injury results from ischemia, tissue hypoxia, and a cascade of secondary events. The cornerstone of neurocritical care management is optimization and maintenance of cerebral blood flow (CBF) and oxygen and substrate delivery to prevent or attenuate this secondary damage. New techniques for monitoring brain tissue oxygen tension (PtiO2) are now available. Brain PtiO2 reflects both oxygen delivery and consumption. Brain hypoxia (low brain PtiO2) has been associated with poor outcomes in patients with brain injury. Strategies to improve brain PtiO2 have focused mainly on increasing oxygen delivery either by increasing CBF or by increasing arterial oxygen content. The results of nonrandomized studies comparing brain PtiO2-guided therapy with intracranial pressure/cerebral perfusion pressure-guided therapy, while promising, have been mixed. More studies are needed including prospective, randomized controlled trials to assess the true value of this approach. The following is a review of the physiology of brain tissue oxygenation, the effect of brain hypoxia on outcome, strategies to increase oxygen delivery, and outcome studies of brain PtiO2-guided therapy in neurocritical care.

  14. Organ transplant tissue rejection: detection and staging by fluorescence spectroscopy

    Science.gov (United States)

    MacAulay, Calum E.; Whitehead, Peter D.; McManus, Bruce; Zeng, Haishan; Wilson-McManus, Janet; MacKinnon, Nick; Morgan, David C.; Dong, Chunming; Gerla, Paul; Kenyon, Jennifer

    1998-07-01

    Patients receiving heart or other organ transplants usually require some level of anti-rejection drug therapy, most commonly cyclosporine. The rejection status of the organ must be monitored to determine the optimal anti-rejection drug therapy. The current method for monitoring post-transplant rejection status of heart transplant patients consists of taking biopsies from the right ventricle. In this work we have developed a system employing optical and signal-processing techniques that will allow a cardiologist to measure spectral changes associated with tissue rejection using an optical catheter probe. The system employs time gated illumination and detection systems to deal with the dynamic signal acquisition problems associated with in vivo measurements of a beating heart. Spectral data processing software evaluates and processes the data to produce a simple numerical score. Results of measurements made on 100 excised transplanted isograft and allograft rat hearts have demonstrated the ability of the system to detect the presence of rejection and to accurately correlate the spectroscopic results with the ISHLT (International Society for Heart and Lung Transplantation) stage of rejection determined by histopathology. In vivo measurements using a pig transplant model are now in process.

  15. Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys

    Science.gov (United States)

    Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.

    1988-11-01

    Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.

  16. Germ cell transplantation and testis tissue xenografting in mice.

    Science.gov (United States)

    Tang, Lin; Rodriguez-Sosa, Jose Rafael; Dobrinski, Ina

    2012-01-01

    recipient somatic cell compartment with the germ cells from phylogenetically distant species(12). An alternative approach is transplantation of germ cells from large species together with their surrounding somatic compartment. We first reported in 2002, that small fragments of testis tissue from immature males transplanted under the dorsal skin of immunodeficient mice are able to survive and undergo full development with the production of fertilization competent sperm(13). Since then testis tissue xenografting has been shown to be successful in many species and emerged as a valuable alternative to study testis development and spermatogenesis of large animals in mice(14). PMID:22330955

  17. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    Science.gov (United States)

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia. PMID:22771710

  18. Coding and traceability for cells, tissues and organs for transplantation.

    Science.gov (United States)

    Strong, D Michael; Shinozaki, Naoshi

    2010-11-01

    Modern transplantation of cells, tissues and organs has been practiced within the last century achieving both life saving and enhancing results. Associated risks have been recognized including infectious disease transmission, malignancy, immune mediated disease and graft failure. This has resulted in establishment of government regulation, professional standard setting and establishment of vigilance and surveillance systems for early detection and prevention and to improve patient safety. The increased transportation of grafts across national boundaries has made traceability difficult and sometimes impossible. Experience during the first Gulf War with mis-identification of blood units coming from multiple countries without standardized coding and labeling has led international organizations to develop standardized nomenclature and coding for blood. Following this example, cell therapy and tissue transplant practitioners have also moved to standardization of coding systems. Establishment of an international coding system has progressed rapidly and implementation for blood has demonstrated multiple advantages. WHO has held two global consultations on human cells and tissues for transplantation, which recognized the global circulation of cells and tissues and growing commercialization and the need for means of coding to identify tissues and cells used in transplantation, are essential for full traceability. There is currently a wide diversity in the identification and coding of tissue and cell products. For tissues, with a few exceptions, product terminology has not been standardized even at the national level. Progress has been made in blood and cell therapies with a slow and steady trend towards implementation of the international code ISBT 128. Across all fields, there are now 3,700 licensed facilities in 66 countries. Efforts are necessary to encourage the introduction of a standardized international coding system for donation identification numbers, such as ISBT

  19. Intra-Hospital Committee for Donation of Organs and Tissues for Transplant: ethical issues

    Directory of Open Access Journals (Sweden)

    Josiane Cappellaro

    2015-02-01

    Full Text Available The objective of this study was to demonstrate ethical aspects involved in the donation, collection and transplantation of organs and tissues through the experiences of workers in an intra-hospital committee for donation of organs and tissues for transplant. Exploratory qualitative research developed with eleven health workers. Data collection was performed at a university hospital in Pelotas, RS, Brazil, in the period of January-March 2010, through interviews. Data analysis resulted in the following categories: understanding of brain death diagnosis as an ethical issue; and, ethical issues experienced by workers in the relationship established with the family. It was concluded that such situations instigate workers to reflect on their attitudes, values, and their role as a health team member and protector of lives.

  20. Subcapsular transplantation of tissue in the kidney

    OpenAIRE

    Shultz, Leonard D.; Goodwin, Neal; Ishikawa, Fumihiko; Hosur, Vishnu; Lyons, Bonnie L.; Greiner, Dale L.

    2014-01-01

    There are multiple sites used for engraftment of primary human cells and tissues. Leukemias as usually best engrafted intravenously in adult mice (tail vein) or in newborn mice (superficial temporal vein or in the heart ventricle) (Pearson et al. 2008). Leukemic cells have also been engrafted directly into the bone marrow cavity of adult mice. Some solid tumors such as colon tumors grow well following subcutaneous engraftment. Matrigel™ is often used to provide artificial basement membrane. I...

  1. Surgical Aspects of Ovarian Tissue Removal and Ovarian Tissue Transplantation for Fertility Preservation

    Science.gov (United States)

    Beckmann, M. W.; Dittrich, R.; Findeklee, S.; Lotz, L.

    2016-01-01

    Introduction: The removal of ovarian tissue prior to starting oncologic treatment and the subsequent transplantation of this tissue after completing therapy have become increasingly important surgical fertility-preserving techniques. The aim of this review was to investigate the different surgical techniques used for this method reported in the literature to date and to discuss the advantages and disadvantages of the respective techniques. Review: A search was done in MEDLINE using a defined algorithm to find studies published between January 2004 and December 2015. All study designs were included in our review if they contained statements on the surgical technique used. We found 16 publications (8 retrospective cohort studies, 6 case reports and 2 systematic reviews) with a total of 1898 female patients which reported on the surgical technique used for ovarian biopsy and 15 publications (7 retrospective cohort studies, 6 case reports and 2 systematic reviews) with a total of 455 women which mentioned the surgical technique used for ovarian transplantation. Different surgical techniques can be used both for ovarian biopsy and for the transplantation of ovarian tissue. A number of different surgical routes have been used, and the amount of tissue extracted, the instruments used, the treatment of the ovary, the transplantation site, the blood supply to the transplanted ovarian tissue and the procedure used for simultaneous surgical interventions vary. Conclusion: In future, one of the tasks will be to establish a standard surgical method for ovarian extraction and transplantation which will have a low rate of complications and a high pregnancy and birth rate while ensuring that the transplanted tissue is fully functional. PMID:27761026

  2. Temperature Effects on Brain Tissue in Compression

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.04.005

    2013-01-01

    Extensive research has been carried out for at least 50 years to understand the mechanical properties of brain tissue in order to understand the mechanisms of traumatic brain injury (TBI). The observed large variability in experimental results may be due to the inhomogeneous nature of brain tissue and to the broad range of test conditions. However, test temperature is also considered as one of the factors influencing the properties of brain tissue. In this research, the mechanical properties of porcine brain have been investigated at 22C (room temperature) and at 37C (body temperature) while maintaining a constant preservation temperature of approximately 4-5C. Unconfined compression tests were performed at dynamic strain rates of 30 and 50/s using a custom made test apparatus. There was no significant difference (p = 0.8559 - 0.9290) between the average engineering stresses of the brain tissue at the two different temperature conditions. The results of this study should help to understand the behavior of bra...

  3. US of tissue banking and transplantation in North America

    International Nuclear Information System (INIS)

    Tissue banking in North America began as surgical bone banking in individual hospitals and progressed to recovery of cadaveric tissues, initially by the United States Navy Tissue Bank and more recently to regional tissue banks throughout North America. The American Association of Tissue Banks was established in 1976 to develop standards for tissue banking and the eventual inspection and accreditation of tissue banks. The gathering of statistics of tissue banking practices was first undertaken in 1992, from accredited tissue banks. The most recent statistics were compiled in 1997 and will be reported at this conference.There are currently 63 accredited tissue banks in North America, 60 in the United States and three in Canada. Overall, tissue donation has increased by 48% during this 5 year reporting time. During the same period, the number of living surgical bone donors has decreased from nearly 3,000 to less than 500. This impact is largely due to the new regulations that have been implemented by the Food and Drug Administration (FDA). There were over 340,000 bone grafts distributed in 1996, an increase of 20% over 1992, 33% were not sterilized, 21% were sterilized using irradiation, and 45% were demineralized. Only 1% were processed using ethylene oxide as a sterilant, a decrease from 15% in 1992. The primary mode of preservation and storage is freeze-drying with 90% of the tissues falling into this category and the rest being frozen. The second largest number of grafts distributed were skin grafts. Total tissue grafts distributed including cornea was 445,417. In January 1998, the FDA Final Rule regarding regulation of tissue banking became effective. The elements of that Final Rule and new tissue banking rules the FDA has proposed will be discussed along with regulations recently published by the Health and Human Services Department relative to organ and tissue donor referrals. Tissue Banking in North America continues to evolve and has become more and more

  4. Transplantation of human neural stem/progenitor cells overexpressing galectin-1 improves functional recovery from focal brain ischemia in the mongolian gerbil

    Directory of Open Access Journals (Sweden)

    Yamane Junichi

    2011-09-01

    Full Text Available Abstract Transplantation of human neural stem/progenitor cells (hNSPCs is a promising method to regenerate tissue from damage and recover function in various neurological diseases including brain ischemia. Galectin-1(Gal1 is a lectin that is expressed in damaged brain areas after ischemia. Here, we characterized the detailed Gal1 expression pattern in an animal model of brain ischemia. After brain ischemia, Gal1 was expressed in reactive astrocytes within and around the infarcted region, and its expression diminished over time. Previously, we showed that infusion of human Gal1 protein (hGal1 resulted in functional recovery after brain ischemia but failed to reduce the volume of the ischemic region. This prompted us to examine whether the combination of hNSPCs-transplantation and stable delivery of hGal1 around the ischemic region could reduce the ischemic volume and promote better functional recovery after brain ischemia. In this study, we transplanted hNSPCs that stably overexpressed hGal1 (hGal1-hNSPCs in a model of unilateral focal brain ischemia using Mongolian gerbils. Indeed, we found that transplantation of hGal1-hNSPCs both reduced the ischemic volume and improved deficits in motor function after brain ischemia to a greater extent than the transplantation of hNSPCs alone. This study provides evidence for a potential application of hGal1 with hNSPCs-transplantation in the treatment of brain ischemia.

  5. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... be used. Within a two year period, no statistical inter- or intra-brain difference in the diffusion coefficient was found in perfusion fixated minipig brains. However, a decreasing tendency in the diffusion coefficient was found at the last time points about 24 months post mortem and might be explained...... experiment. This includes the selection of independent anatomical data to be used to derive a gold standard, the selection of a gyrated animal model in place of the human brain, objective selection of the seed region to initiate, and a waypoint region to constrain the tractography results....

  6. Histomorphological Evaluation of Fresh Ovarian Tissue Transplanted Into Back Muscles of Balb/C Mice

    Directory of Open Access Journals (Sweden)

    I Amiri

    2011-06-01

    Full Text Available & objectives: Today, different methods for maintaining reproductive capability in young women with cancer are being considered. One of the most prominent of these methods is ovarian tissue transplant. Despite the relative success of this method, the appropriate location and methods of transplantation is still a matter of discussion. The present study evaluated the histomorphology of fresh ovarian tissue transplantation by two methods, inter muscular and intra muscular, in Balb/C mice. Methods & Materials: The study was conducted at Hamedan University of Medical Sciences in 2009. Fresh ovarian tissues from 12-14 day old Balb/C mice were transplanted into back muscles of ovarectomized 6 week old Balb/C mice both intermuscularly and intramuscularly. All transplanted mice received intra-peritoneal injections of a unit of rFSH for 4 weeks, every other day. At the end of the tenth week, all transplant recipient mice were killed and the transplanted ovarian tissues were removed. All samples were assessed for the angiogenesis and viability of follicles. Data were analyzed using SPSS software, using independent t- test. Results: In intermuscular transplanted group, the transplanted tissues were rejected in two cases. In the sections prepared from the other cases, in spite of the presence of some small necrotic areas, the majority of ovarian tissues had a healthy appearance within the primordial, primary, secondary and antral follicles. Apart from a significant reduction in the number of follicles and smaller size of follicles in the transplanted tissue in comparison with control group, no other major differences in morphology, histology, and the process of maturation of ovarian follicles were observed between the transplanted and control groups. Conclusion: Fresh ovarian tissue transplantation into muscles of the back area without basic vascular pedicle has new angiogenesis capabilities, appropriate survival and development of primordial follicles and

  7. Modelling Brain Tissue using Magnetic Resonance Imaging

    OpenAIRE

    Dyrby, Tim Bjørn; Hansen, Lars Kai

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visu...

  8. Targeting complement activation in brain-dead donors improves renal function after transplantation

    NARCIS (Netherlands)

    Damman, Jeffrey; Hoeger, Simone; Boneschansker, Leo; Theruvath, Ashok; Waldherr, Ruediger; Leuvenink, Henri G.; Ploeg, Rutger J.; Yard, Benito A.; Seelen, Marc A.

    2011-01-01

    Kidneys recovered from brain-dead donors have inferior outcomes after transplantation compared to kidneys from living donors. Since complement activation plays an important role in renal transplant related injury, targeting complement activation in brain-dead donors might improve renal function afte

  9. How important is the duration of the brain death period for the outcome in kidney transplantation?

    NARCIS (Netherlands)

    Nijboer, Willemijn N.; Moers, Cyril; Leuvenink, Henri G. D.; Ploeg, Rutger J.

    2011-01-01

    P>In kidney transplantation, graft survival using grafts from donation after brain death (DBD) donors is inferior to results after living donation. However, little is known about the effect of the duration of brain death (BDdur) on outcome after transplantation. This is a retrospective Organ Procure

  10. Is Duplex-Ultrasound a useful tool in defining rejection episodes in composite tissue allograft transplants?

    Science.gov (United States)

    Loizides, Alexander; Kronberger, Irmgard-Elisabeth; Plaikner, Michaela; Gruber, Hannes

    2015-12-01

    Immunologic reactions in transplanted organs are in more or less all allograft patients detectable: clear parameters exist as e.g. in renal transplants where the clearance power reduces by rejection. On the contrary, in composite tissue allografts clear and objective indicators stating a rejection episode lack. We present the case of a hand-transplanted subject with signs of acute transplant rejection diagnosed by means of Duplex Ultrasound and confirmed by biopsy.

  11. Brain death and organ transplant legislation:analysis of 969 respondents by classroom questionnaire

    Institute of Scientific and Technical Information of China (English)

    Ru-Liang Song; Xiao-Hua Cui; Zhan Gao; Shao-Lin Deng; You-Ping Li

    2009-01-01

    BACKGROUND: China has the largest potential market for organ transplants in the world, but it has not yet established brain death and organ transplant laws. We aimed to investigate the attitudes and suggestions of doctors, pharmacists, and civil servants concerning brain death, organ transplantation, and their respective legislation. METHODS: A questionnaire with 10 sections and 44 questions was designed and distributed. The effective questionnaire data were then recorded and checked for descriptive analysis. RESULTS: In 1400 questionnaires distributed, 1063 were responded and 969 of them were valid and analyzed. The respondents showed an incomplete understanding of brain death and organ transplantation laws. Seventy-four percent of the respondents recognized and accepted the standard of brain death. They agreed that legislation should be involved in the removal of organs for transplantation, the future use of organs, and insurance and compensation for the donor for possible health risks induced by organ removal. Of the 969 respondents, 92%considered it necessary to have legislation in brain death and organ transplantation, and 61% thought that it is time to legislate. CONCLUSIONS: Legislation for brain death and organ transplantation is urgent and timely in China. The laws must include the respective rights and obligations of patients, close relatives, and medical institutions. Educating the public about brain death and organ transplantation should also be encouraged in a variety of ways.

  12. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury

    OpenAIRE

    Haus, DL; Lopez-Velazquez, L; Gold, EM; Cunningham, KM; Perez, H; Anderson, AJ; Cummings, BJ

    2016-01-01

    Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically

  13. Tissue tracking: applications for brain MRI classification

    Science.gov (United States)

    Melonakos, John; Gao, Yi; Tannenbaum, Allen

    2007-03-01

    Bayesian classification methods have been extensively used in a variety of image processing applications, including medical image analysis. The basic procedure is to combine data-driven knowledge in the likelihood terms with clinical knowledge in the prior terms to classify an image into a pre-determined number of classes. In many applications, it is difficult to construct meaningful priors and, hence, homogeneous priors are assumed. In this paper, we show how expectation-maximization weights and neighboring posterior probabilities may be combined to make intuitive use of the Bayesian priors. Drawing upon insights from computer vision tracking algorithms, we cast the problem in a tissue tracking framework. We show results of our algorithm on the classification of gray and white matter along with surrounding cerebral spinal fluid in brain MRI scans. We show results of our algorithm on 20 brain MRI datasets along with validation against expert manual segmentations.

  14. Brain Abscess After Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Akoz A et al.

    2013-06-01

    Full Text Available The brain abscess, which is a focal intracerebral infection, is one of the serious complications of the head infections. It generally occurs in the immunocompromised patients due to the spreading from another infection focus on the body. It can be seen with the findings such as fever, headache, nausea, vomiting, diplopia, dysarthria and paralysis. Imaging methods are used in the diagnosis. In its treatment, antibiotherapy and surgical methods can be used. Sometimes, as in our case, brain abscess can appear in a case which is thought to be a simple soft tissue infection. We think that especially, at the diagnosis and treatment stage of infections in head and neck region, physicians must be more careful and diligent.

  15. A cost-minimization analysis of tissue-engineered constructs for corneal endothelial transplantation.

    Directory of Open Access Journals (Sweden)

    Tien-En Tan

    Full Text Available Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses.

  16. Effects of brain death on donor organ viability in transplantation

    OpenAIRE

    Hoeven, Joost Alexander Boreas van der

    2005-01-01

    Organ transplantation has evolved from an experimental procedure in the 1950's and 60's to the therapy of choice for end-stage organ failure. The first solid organ to outgrow the experimental transplantation setting was the kidney. At that time the succesful transplant programs were those in which donor organs form living family members were used for transplantation in their ill relatives (living-related transplant combination). ... Zie: Summary

  17. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury.

    Science.gov (United States)

    Haus, Daniel L; López-Velázquez, Luci; Gold, Eric M; Cunningham, Kelly M; Perez, Harvey; Anderson, Aileen J; Cummings, Brian J

    2016-07-01

    Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically human cell engraftment and long-term survival in rodent models of TBI has been difficult to achieve due to host immunorejection of the transplanted human cells, which confounds conclusions pertaining to transplant-mediated behavioral improvement. To overcome these shortfalls, we have developed a novel TBI xenotransplantation model that utilizes immunodeficient athymic nude (ATN) rats as the host recipient for the post-TBI transplantation of human embryonic stem cell (hESC) derived NSCs and have evaluated cognition in these animals at long-term (≥2months) time points post-injury. We report that immunodeficient ATN rats demonstrate hippocampal-dependent spatial memory deficits (Novel Place, Morris Water Maze), but not non-spatial (Novel Object) or emotional/anxiety-related (Elevated Plus Maze, Conditioned Taste Aversion) deficits, at 2-3months post-TBI, confirming that ATN rats recapitulate some of the cognitive deficits found in immunosufficient animal strains. Approximately 9-25% of transplanted hNSCs survived for at least 5months post-transplantation and differentiated into mature neurons (NeuN, 18-38%), astrocytes (GFAP, 13-16%), and oligodendrocytes (Olig2, 11-13%). Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal tissue volume. Instead, we have found an overall increase in

  18. Effect of adipose tissue-derived stem cells transplantation on spatial memory of traumatic brain injury rats through different routes%不同途径移植脂肪来源干细胞对创伤性脑损伤大鼠空间记忆的影响

    Institute of Scientific and Technical Information of China (English)

    吴建国; 李宏; 徐德生; 王德胜; 王伟

    2015-01-01

    目的 观察经不同途径移植脂肪来源干细胞(ADSC)后创伤性脑损伤大鼠记忆的变化, 探讨干细胞移植的最佳途径.方法 以酶化学法自大鼠脂肪组织中分离培养大鼠ADSCs,建立侧方液压打击创伤性脑损伤大鼠模型, 将ADSCs分别经尾静脉注射(伤后1d、3d、7d,2×106/次)、海马背侧CA1区局部注射(伤后1d,2×106/次)移植入实验动物体内, 对照组造模成功后,不予处理自然转归,各组模型均于移植后22天采用Morris水迷宫检测大鼠的空间记忆功能以及伤后7d、14d、28d应用RT-PCR检测脑源性神经生长因子(BDNF) mRNA的表达.结果 经酶消化法分离得到的ADSCs经流式细胞检测以及成骨、成脂分化提示其具有间充质干细胞的生物学特性,经不同途径移植ADSCs后,定位航行测试结果表明细胞移植组逃避潜伏期均较对照组明显缩短(P0.05).结论 治疗大鼠创伤性脑损伤时,ADSCs经尾静脉(多次移植)与脑内损伤区移植在改善空间记忆障碍方面无显著差异.%Objective To study the effect of adipose tissue-derived stem cells (ADSC)transplantation into traumatic brain injury(TBI) rats through different routes on spatial memory.Methods The isolateation of ADSC from rat adipose tissue via enzymatic digestion method, Eighty adult SD rats were randomly divided into control group(n=20)、Caudal vein transplantation group(n=20)、intracerebral transplantation group (n = 20) and Sham group(n=16).Fluid percussion model of experimental brain injury in the rat was established. The experimental rats were administrated with ADSCs via the vena caudalis at day1、day3、day7(2×106 twice per day)and via hippocampal CA1 region with stereotactic at 1 day (2×106 once per day) after TBI , while TBI rats were no treatment and rats in the sham group was only drill. Morris water maze test was used to observe the animal capabilities of place navigation and space exploration at the 22th day after TBI

  19. Targeting complement activation in brain-dead donors improves renal function after transplantation.

    Science.gov (United States)

    Damman, Jeffrey; Hoeger, Simone; Boneschansker, Leo; Theruvath, Ashok; Waldherr, Ruediger; Leuvenink, Henri G; Ploeg, Rutger J; Yard, Benito A; Seelen, Marc A

    2011-05-01

    Kidneys recovered from brain-dead donors have inferior outcomes after transplantation compared to kidneys from living donors. Since complement activation plays an important role in renal transplant related injury, targeting complement activation in brain-dead donors might improve renal function after transplantation. Brain death (BD) was induced in Fisher rats by inflation of an epidurally placed balloon catheter and ventilated for 6h. BD animals were treated with soluble complement receptor 1 (sCR1) 1h before or 1h after BD. Kidney transplantation was performed and 7 days after transplantation animals were sacrificed. Plasma creatinine and urea were measured at days 0, 1, 3, 5 and 7 after transplantation. Renal function was significantly better at day 1 after transplantation in recipients receiving a sCR1 pre-treated donor kidney compared to recipients of a non-treated donor graft. Also treatment with sCR1, 1h after the diagnosis of BD, resulted in a better renal function after transplantation. Gene expression of IL-6, IL-1beta and TGF-beta were significantly lower in renal allografts recovered from treated donors. This study shows that targeting complement activation, during BD in the donor, leads to an improved renal function after transplantation in the recipient.

  20. Schwann Cells Transplantation Promoted and the Repair of Brain Stem Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; YI-HUA AN; MEI-ZHEN SUN; YA-ZHUO ZHANG; ZHONG-CHENG WANG

    2003-01-01

    To explore the possibility of Schwann cells transplantation to promote the repair of injured brain stem reticular structure in rats. Methods Schwann cells originated from sciatic nerves of 1 to 2-day-old rats were expanded and labelled by BrdU in vitro, transplanted into rat brain stem reticular structure that was pre-injured by electric needle stimulus. Immunohistochemistry and myelin-staining were used to investigate the expression of BrdU, GAP-43 and new myelination respectively. Results BrdU positive cells could be identified for up to 8 months and their number increased by about 23%, which mainly migrated toward injured ipsilateral cortex. The GAP-43expression reached its peak in 1 month after transplantation and was significantly higher than that in the control group. New myelination could be seen in destructed brain stem areas. Conclusion The transplantation of Schwann cells can promote the restoration of injured brain stem reticular structure.

  1. The future of tissue-engineered organs for transplant? It's here!

    Science.gov (United States)

    Panoskaltsis-Mortari, Angela

    2012-01-01

    The first-in-man bioengineered artificial tracheobronchial transplant consisting of a synthetic scaffold and autologous bone marrow-derived mesenchymal cells was recently reported. Extensive evaluation of the patient before and after transplant provides some insight into the potential mechanisms of stem cell mobilization and tracheal tissue regeneration.

  2. Differential expression of proteoglycans in tissue remodeling and lymphangiogenesis after experimental renal transplantation in rats.

    Directory of Open Access Journals (Sweden)

    Heleen Rienstra

    Full Text Available BACKGROUND: Chronic transplant dysfunction explains the majority of late renal allograft loss and is accompanied by extensive tissue remodeling leading to transplant vasculopathy, glomerulosclerosis and interstitial fibrosis. Matrix proteoglycans mediate cell-cell and cell-matrix interactions and play key roles in tissue remodeling. The aim of this study was to characterize differential heparan sulfate proteoglycan and chondroitin sulfate proteoglycan expression in transplant vasculopathy, glomerulosclerosis and interstitial fibrosis in renal allografts with chronic transplant dysfunction. METHODS: Renal allografts were transplanted in the Dark Agouti-to-Wistar Furth rat strain combination. Dark Agouti-to-Dark Agouti isografts and non-transplanted Dark Agouti kidneys served as controls. Allograft and isograft recipients were sacrificed 66 and 81 days (mean after transplantation, respectively. Heparan sulfate proteoglycan (collXVIII, perlecan and agrin and chondroitin sulfate proteoglycan (versican expression, as well as CD31 and LYVE-1 (vascular and lymphatic endothelium, respectively expression were (semi- quantitatively analyzed using immunofluorescence. FINDINGS: Arteries with transplant vasculopathy and sclerotic glomeruli in allografts displayed pronounced neo-expression of collXVIII and perlecan. In contrast, in interstitial fibrosis expression of the chondroitin sulfate proteoglycan versican dominated. In the cortical tubular basement membranes in both iso- and allografts, induction of collXVIII was detected. Allografts presented extensive lymphangiogenesis (p<0.01 compared to isografts and non-transplanted controls, which was associated with induced perlecan expression underneath the lymphatic endothelium (p<0.05 and p<0.01 compared to isografts and non-transplanted controls, respectively. Both the magnitude of lymphangiogenesis and perlecan expression correlated with severity of interstitial fibrosis and impaired graft function

  3. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  4. Legal termination of a pregnancy resulting from transplanted cryopreserved ovarian tissue due to cancer recurrence

    DEFF Research Database (Denmark)

    Ernst, EH; Offersen, Birgitte Vrou; Andersen, Claus Yding;

    2013-01-01

    To report on a woman who conceived naturally and had a normal intrauterine pregnancy following transplantation of frozen/thawed ovarian tissue but decided to have an early abortion due to recurrence of breast cancer.......To report on a woman who conceived naturally and had a normal intrauterine pregnancy following transplantation of frozen/thawed ovarian tissue but decided to have an early abortion due to recurrence of breast cancer....

  5. Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory

    OpenAIRE

    Fiegel, Henning C; Kaufmann, Peter M; Bruns, Helge; Kluth, Dietrich; Horch, Raymund E.; Vacanti, Joseph P.; Kneser, Ulrich

    2008-01-01

    Abstract Today, liver transplantation is still the only curative treatment for liver failure due to end-stage liver diseases. Donor organ shortage, high cost and the need of immunosuppressive medications are still the major limitations in the field of liver transplantation. Thus, alternative innovative cell-based liver directed therapies, for example, liver tissue engineering, are under investigation with the aim that in future an artificial liver tissue could be created and be used for the r...

  6. Various Forms of Tissue Damage and Danger Signals Following Hematopoietic Stem-Cell Transplantation

    OpenAIRE

    Ramadan, Abdulraouf; Paczesny, Sophie

    2015-01-01

    Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the trigger...

  7. Cognitive improvement following transvenous adipose-derived mesenchymal stem cell transplantation in a rat model of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dongfei Li; Chun Yang; Rongmei Qu; Huiying Yang; Meichun Yu; Hui Tao; Jingxing Dai; Lin Yuan

    2011-01-01

    The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein.Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.

  8. Composite Tissue Transplant of Hand or Arm: A Health Technology Assessment

    Science.gov (United States)

    2016-01-01

    Background Injuries to arms and legs following severe trauma can result in the loss of large regions of tissue, disrupting healing and function and sometimes leading to amputation of the damaged limb. People experiencing amputations of the hand or arm could potentially benefit from composite tissue transplant, which is being performed in some countries. Currently, there are no composite tissue transplant programs in Canada. Methods We conducted a systematic review of the literature, with no restriction on study design, examining the effectiveness and cost-effectiveness of hand and arm transplant. We assessed the overall quality of the clinical evidence with GRADE. We developed a Markov decision analytic model to determine the cost-effectiveness of transplant versus standard care for a healthy adult with a hand amputation. Incremental cost-effectiveness ratios (ICERs) were calculated using a 30-year time horizon. We also estimated the impact on provincial health care costs if these transplants were publicly funded in Ontario. Results Compared to pre-transplant function, patients’ post-transplant function was significantly better. For various reasons, 17% of transplanted limbs were amputated, 6.4% of patients died within the first year after the transplant, and 10.6% of patients experienced chronic rejections. GRADE quality of evidence for all outcomes was very low. In the cost-effectiveness analysis, single-hand transplant was dominated by standard care, with increased costs ($735,647 CAD vs. $61,429) and reduced quality-adjusted life-years (QALYs) (10.96 vs. 11.82). Double-hand transplant also had higher costs compared with standard care ($633,780), but it had an increased effectiveness of 0.17 QALYs, translating to an ICER of $3.8 million per QALY gained. In most sensitivity analyses, ICERs for bilateral hand transplant were greater than $1 million per QALY gained. A hand transplant program would lead to an estimated annual budget impact of $0.9 million to $1

  9. Multivisceral transplantation in pigs: a clinicopathological analysis of tissue rejection.

    Directory of Open Access Journals (Sweden)

    Mitsuoka,Shintaro

    1995-10-01

    Full Text Available In this study, we established the surgical procedure and postoperative care of multivisceral transplantation (MVTX in pigs, and examined the functional changes and rejection pattern of transplanted organs in MVTX. Twenty-two MVTXs were performed without immunosuppression, and nine cases (41% that survived for 5 days or more after MVTX were used for evaluation. Rejection in grafts including the liver, pancreas, and gastrointestinal tract were assessed histopathologically. On day 5 after transplantation, the duodenum and small bowel already showed signs of mild rejection. On the other hand, in the liver, pancreas and stomach, rejection occurred later and was still mild on day 16. Hepatic rejection in MVTX appeared to occur later than in simple liver transplantation (LTX. These results showed that the susceptibility to rejection of individual visceral organs varies.

  10. Multivisceral transplantation in pigs: a clinicopathological analysis of tissue rejection.

    OpenAIRE

    Mitsuoka,Shintaro; Tanaka,Noriaki; Orita, Kunzo

    1995-01-01

    In this study, we established the surgical procedure and postoperative care of multivisceral transplantation (MVTX) in pigs, and examined the functional changes and rejection pattern of transplanted organs in MVTX. Twenty-two MVTXs were performed without immunosuppression, and nine cases (41%) that survived for 5 days or more after MVTX were used for evaluation. Rejection in grafts including the liver, pancreas, and gastrointestinal tract were assessed histopathologically. On day 5 after tran...

  11. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury.

    Directory of Open Access Journals (Sweden)

    Long-Xia Chen

    Full Text Available Periventricular leukomalacia (PVL is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN, while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC, while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury.

  12. Alteration of Brain Oxygenation During "Piggy Back" Liver Transplantation

    Science.gov (United States)

    Panzera, Piercarmine; Greco, Luigi; Carravetta, Giuseppe; Gentile, Antonella; Catalano, Giorgio; Cicco, Giuseppe; Memeo, Vincenzo

    Relevant changes in cerebral circulation occur during "Piggy Back" liver transplantation. Particularly at the washout-reperfusion time the cerebral perfusion suddenly changes from its lowest to its highest values. Further investigation is required to evaluate whether patients with the greatest change in cerebral oxygenation at this time point will suffer neurological complications after transplantation.

  13. Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

    Science.gov (United States)

    Liu, Xiaomeng; Wang, Siping; You, Yilin; Meng, Minghui; Zheng, Zongji; Dong, Meng; Lin, Jun; Zhao, Qianwei; Zhang, Chuanhai; Yuan, Xiaoxue; Hu, Tao; Liu, Lieqin; Huang, Yuanyuan; Zhang, Lei; Wang, Dehua; Zhan, Jicheng; Jong Lee, Hyuek; Speakman, John R; Jin, Wanzhu

    2015-07-01

    Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT.

  14. A new antigen retrieval technique for human brain tissue.

    Directory of Open Access Journals (Sweden)

    Raúl Alelú-Paz

    Full Text Available Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times.

  15. Long-term effect of primary combined tissue transplantation on hand reconstruction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To analyze the long-term effect of primary combined tissue transplantation on hand reconstruction.Methods:The data of8Kinds of combined tissue transplantations employed to reconstruct the severely injured hands of 26 patients over the past2to 11years were studied retrospectively.Among them,combined tissue transplantation taking the anterior-lateral femoral flap as the main tissue unit was applied in 21cases and taking the second toe as the main tissue unit was applied in 5cases.Blood vessel anastomosis was performed in parallel in 16cases,series in6cases and both in4cases.Results:Among the60free tissue units employed on 26patients,58 survived completely and the other2survived after dressing change because of postoperative partial necrosis.The patients were followed up for2-11 years postoperatively,with an average of 3.5years.According to the standard for function of reconstructed hands by Chinese Medical Association,excellent results were obtained in10cases,good in12cases,fair in3cases and bad in1case.Conclusions:Primary combined tissue transplantation,which may preserve the tissue vitality of injured hands to the maximum and thus facilitate function restoration of the hands,is a promising method in recostructing severely-injured hands.

  16. Facial lipohypertrophy in HIV-infected subjects who underwent autologous fat tissue transplantation.

    Science.gov (United States)

    Guaraldi, Giovanni; De Fazio, Domenico; Orlando, Gabriella; Murri, Rita; Wu, Albert; Guaraldi, Pietro; Esposito, Roberto

    2005-01-15

    Of 41 HIV-infected patients with facial lipoatrophy who underwent autologous fat transplantation, disfiguring facial lipohypertrophy at the graft site occurred at the same time as recurrent fat accumulation at the tissue harvest site in 4 patients who had had fat transferred from the dorsocervical fat pad or from subcutaneous abdominal tissue.

  17. Neurons Differentiated from Transplanted Stem Cells Respond Functionally to Acoustic Stimuli in the Awake Monkey Brain.

    Science.gov (United States)

    Wei, Jing-Kuan; Wang, Wen-Chao; Zhai, Rong-Wei; Zhang, Yu-Hua; Yang, Shang-Chuan; Rizak, Joshua; Li, Ling; Xu, Li-Qi; Liu, Li; Pan, Ming-Ke; Hu, Ying-Zhou; Ghanemi, Abdelaziz; Wu, Jing; Yang, Li-Chuan; Li, Hao; Lv, Long-Bao; Li, Jia-Li; Yao, Yong-Gang; Xu, Lin; Feng, Xiao-Li; Yin, Yong; Qin, Dong-Dong; Hu, Xin-Tian; Wang, Zheng-Bo

    2016-07-26

    Here, we examine whether neurons differentiated from transplanted stem cells can integrate into the host neural network and function in awake animals, a goal of transplanted stem cell therapy in the brain. We have developed a technique in which a small "hole" is created in the inferior colliculus (IC) of rhesus monkeys, then stem cells are transplanted in situ to allow for investigation of their integration into the auditory neural network. We found that some transplanted cells differentiated into mature neurons and formed synaptic input/output connections with the host neurons. In addition, c-Fos expression increased significantly in the cells after acoustic stimulation, and multichannel recordings indicated IC specific tuning activities in response to auditory stimulation. These results suggest that the transplanted cells have the potential to functionally integrate into the host neural network.

  18. Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory.

    Science.gov (United States)

    Fiegel, Henning C; Kaufmann, Peter M; Bruns, Helge; Kluth, Dietrich; Horch, Raymund E; Vacanti, Joseph P; Kneser, Ulrich

    2008-01-01

    Today, liver transplantation is still the only curative treatment for liver failure due to end-stages liver diseases. Donor organ shortage, high cost and the need of immunosuppressive medications are still the major limitations in the field of liver transplantation. Thus, alternative innovative cell-based liver directed therapies, e.g. liver tissue engineering, are under investigation with the aim, that in future an artificial liver tissue could be created and be used for the replacement of the liver function in patients. Using cells instead of organs in this setting should permit (i) expansion of cells in an in vitro phase, (ii) genetic or immunological manipulation of cells for transplantation, (iii) tissue typing and cryopreservation in a cell bank, and (iv) the ex vivo genetic modification of patient's own cells prior re-implantation. Function and differentiation of liver cells are influenced by the three-dimensional organ architecture. The use of polymeric matrices permits the three dimensional formation of a neo-tissue and specific stimulation by adequate modification of the matrix-surface which might be essential for appropriate differentiation of transplanted cells. Additionally, culturing hepatocytes on three dimensional matrices permits culture in a flow bioreactor system with increased function and survival of the cultured cells. Based on bioreactor technology, bioartificial liver devices (BAL) are developed for extracorporeal liver support. Although BALs improved clinical and metabolic conditions, increased patient survival rates have not been proven yet. For intra-corporeal liver replacement, a concept which combines Tissue Engineering using three-dimensional, highly porous matrices with cell transplantation could be useful. In such a concept, whole liver mass transplantation, long term engraftment and function as well as correction of a metabolic defect in animal models could be achieved with a principally reversible procedure. Future studies have to

  19. Intracerebroventricular transplanted bone marrow stem cells survive and migrate into the brain of rats with Parkinson’s disease

    Institute of Scientific and Technical Information of China (English)

    Ping Gu; Zhongxia Zhang; Dongsheng Cui; Yanyong Wang; Lin Ma; Yuan Geng; Mingwei Wang

    2012-01-01

    In this study, 6-hydroxydopamine was stereotaxically injected into the right substantia nigra compact and ventral tegmental area of rats to establish Parkinson’s disease models. The rats then received a transplantation of bone marrow stromal cells that were previously isolated, cultured and labeled with 5-bromo-2’-deoxyuridine in vitro. Transplantation of the bone marrow stromal cells significantly decreased apomorphine-induced rotation time and the escape latency in the Morris water maze test as compared with rats with untreated Parkinson’s disease. Immunohistochemical staining showed that, 5-bromo-2’-deoxyuridine-immunoreactive cells were present in the lateral ventricular wall and the choroid plexus 1 day after transplantation. These immunoreactive cells migrated to the surrounding areas of the lateral cerebral ventricle along the corpus callosum. The results indicated that bone marrow stromal cells could migrate to tissues surround the cerebral ventricle via the cerebrospinal fluid circulation and fuse with cells in the brain, thus altering the phenotype of cells or forming neuron-like cells or astrocytes capable of expressing neuron-specific proteins. Taken together, the present findings indicate that bone marrow stromal cells transplanted intracerebroventricularly could survive, migrate and significantly improve the rotational behavior and cognitive function of rats with experimentally induced Parkinson’s disease.

  20. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE cell transplantation into infarct brain of mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yamauchi

    Full Text Available Bone marrow stromal cells (BMSCs are heterogeneous and their therapeutic effect is pleiotropic. Multilineage-differentiating stress enduring (Muse cells are recently identified to comprise several percentages of BMSCs, being able to differentiate into triploblastic lineages including neuronal cells and act as tissue repair cells. This study was aimed to clarify how Muse and non-Muse cells in BMSCs contribute to functional recovery after ischemic stroke.Human BMSCs were separated into stage specific embryonic antigen-3-positive Muse cells and -negative non-Muse cells. Immunodeficient mice were subjected to permanent middle cerebral artery occlusion and received transplantation of vehicle, Muse, non-Muse or BMSCs (2.5×104 cells into the ipsilateral striatum 7 days later.Motor function recovery in BMSC and non-Muse groups became apparent at 21 days after transplantation, but reached the plateau thereafter. In Muse group, functional recovery was not observed for up to 28 days post-transplantation, but became apparent at 35 days post-transplantation. On immunohistochemistry, only Muse cells were integrated into peri-infarct cortex and differentiate into Tuj-1- and NeuN-expressing cells, while negligible number of BMSCs and non-Muse cells remained in the peri-infarct area at 42 days post-transplantation.These findings strongly suggest that Muse cells and non-Muse cells may contribute differently to tissue regeneration and functional recovery. Muse cells may be more responsible for replacement of the lost neurons through their integration into the peri-infarct cortex and spontaneous differentiation into neuronal marker-positive cells. Non-Muse cells do not remain in the host brain and may exhibit trophic effects rather than cell replacement.

  1. [Transurethral prostate resection prior to kidney transplantation leading to urethral cicatricial tissue].

    Science.gov (United States)

    Schou-Jensen, Katrine; Mohammad, Wael

    2015-01-26

    In Denmark, kidney transplantations in patients above 50 years have increased during the last decade. Consequently, the number of patients with lower urinary tract symptoms due to prostate hypertrophy increases accordingly. We describe two patients, who both had a resection of the prostate while having anuria and waiting for a kidney transplantation from a deceased donor. In both cases it was impossible to place a urethral catheter during the following transplantation due to total urethral occlusion, so a suprapubic catheter was inserted until the scar tissue was dilated or resected by a later transurethral intervention. PMID:25612989

  2. Allogeneic corneoscleral limbus tissue transplantation for treatment of the necrosis in porphyria eye disease

    Institute of Scientific and Technical Information of China (English)

    Feng; Yan; Yan; Lu; Jie; Yin; Feng; Jiang; Zhen-Ping; Huang

    2014-01-01

    · Porphyria cutanea tarda(PCT) with ocular complications are rarely reported. To the best of our knowledge, no reports exist on allogeneic corneoscleral limbus tissue transplantation for treatment of these.Amniotic membrane grafting had been performed in their patient suffering from porphyria eye disease, but necrosis developed in the grafts. Nevertheless, in our patient, allogeneic corneoscleral limbus transplantation prevented necrosis from development at corneoscleral limbus. So we considered that the allogeneic corneoscleral limbus transplantation might be an option to repair the necrosis in porphyria eye disease with avoiding sunlight and using artificial tear drops.

  3. Therapeutic efficiency of tissue-engineered human corneal endothelium transplants on rabbit primary corneal endotheliopathy

    Institute of Scientific and Technical Information of China (English)

    Ting-jun FAN; Jun ZHAO; Xiu-zhong HU; Xi-ya MA; Wen-bo ZHANG; Chao-zhong YANG

    2011-01-01

    To evaluate the therapeutic efficiency of tissue-engineered human corneal endothelia (TE-HCEs) on rabbit primary corneal endotheliopathy (PCEP), TE-HCEs reconstructed with monoclonal human corneal endothelial cells (mcHCECs) and modified denuded amniotic membranes (mdAMs) were transplanted into PCEP models of New Zealand white rabbits using penetrating keratoplasty. The TE-HCEs were examined using diverse techniques including slit-lamp biomicroscopy observation and pachymeter and tonometer measurements in vivo, and fluorescent microscopy, alizarin red staining, paraffin sectioning, scanning and transmission electron microscopy observations in vitro. The corneas of transplanted eyes maintained transparency for as long as 200 d without obvious edema or immune rejection. The corneal thickness of transplanted eyes decreased gradually after transplanting, reaching almost the thickness of normal eyes after 156 d, while the TE-HCE non-transplanted eyes were turbid and showed obvious corneal edema. The polygonal corneal endothelial cells in the transplanted area originated from the TE-HCE transplant. An intact monolayer corneal endothelium had been reconstructed with the morphology, cell density and structure similar to those of normal rabbit corneal endothelium. In conclusion, the transplanted TE-HCE can reconstruct the integrality of corneal endothelium and restore corneal transparency and thickness in PCEP rabbits. The TE-HCE functions normally as an endothelial barrier and pump and promises to be an equivalent of HCE for clinical therapy of human PCEP.

  4. Transplantation of embryonic porcine neocortical tissue into newborn rats

    DEFF Research Database (Denmark)

    Castro, Anthony J; Meyer, Morten; Møller Dall, Annette;

    2003-01-01

    to course through the corpus callosum to the contralateral cortex or to course ipsilaterally within the subcortical white matter, where labeled fibers could be traced to the midbrain crus cerebri in older transplants. Bundles of axons were also observed coursing within the ipsilateral caudate putamen where...

  5. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  6. Effects of different mitogens on intrasplenic liver tissue transplants in comparison to orthotopic liver.

    Science.gov (United States)

    Lupp, Amelie; Lucas, Norma; Tralls, Manuela; Fuchs, Udo; Danz, Manfred

    2003-06-01

    Ectopic liver cell transplants, when compared to orthotopic liver, can serve as a tool to study topic influences on liver cell differentiation, multiplication, function and responsiveness to xenobiotics. The aim of the present study was to evaluate, if characteristic effects of mitogens are exerted in both liver and intrasplenic liver cell transplants in a similar manner. Fetal liver tissue suspensions were transplanted into the spleens of adult male syngenic rats. Four months later, transplant recipients and controls were treated with fluorene (FEN), fluorenone (FON), 2-acetylaminofluorene (AAF), N-nitrosodibenzylamine (NDBA) or the solvent 48 hours before sacrifice. The following parameters were assessed within livers and spleens: mitotic activity of hepatocytes, glycogen content, cytochrome P450 (P450) isoforms expression, P450 mediated monooxygenase functions, tissue content of lipid peroxides (LPO) and of reduced and oxidized glutathione (GSH; GSSG). In both orthotopic livers and intrasplenic transplants FEN, FON or NDBA administration increased the mitotic activity of the hepatocytes. Treatment with the mitogens caused a distinct and characteristic induction of the P450 isoforms expression and of the respective monooxygenase functions in the livers and (with certain differences) also in the transplants. FEN and FON slightly increased, AAF and NDBA reduced liver glycogen content. The latter effect was also seen in the transplants. NDBA administration caused a slight increase in tissue LPO content in livers, but not in spleens. Additionally, AAF or NDBA treatment led to an elevation of liver (but not of spleen) GSH and GSSG concentrations. The results of the present investigation show that characteristic effects of mitogens on orthotopic liver occur with certain differences also in ectopic liver cell transplants.

  7. Pesticide residues in brain tissues of dairy cattle in Lembang

    Directory of Open Access Journals (Sweden)

    Indraningsih

    2006-03-01

    Full Text Available The use of pesticides to control plant diseases may cause residual formation in crops, its byproduct and environmental. Furthermore, the use of agriculture byproduct as animal feed may cause poisoning or residual formation in animal products. The purpose of this study is to investigate of pesticide residues in brain tissues of dairy cattle in relation to animal feed as a contamination source. Samples consisted of animal feeds (19 samples of fodder and 6 samples of feed, 31 samples of sera and 25 samples of brain tissues of dairy cattle collected from Lembang, West Java. Feeds and fodders were collected from dairy farms located in Lembang. Sera were directly collected from 31 heads of Frisien Holstein (FH cattle from the same location, while brain tissues of FH cattle were collected from a local animal slaughtering house. Pesticide residues were analysed using gas chromatography (GC. Both residues of organochlorines and organophosphates were detected from brain tissues with average residue concentration OP was 22.7 ppb and OC was 5.1 ppb and a total residue was 27.8 ppb. The pesticide residues in brain tissues are new information that should be taken into consideration since the Indonesian consumed this tissues as an oval. Although pesticides residue concentration was low, pathological changes were noted microscopically from the brain tissues including extracellular vacuolisation, focal necrosis, haemorrhages, dilatation of basement membrane without cellular infiltration. Both pesticide residues were also detected in sera, where OP (9.0 ppb was higher than OC (4.9 ppb. These pesticides were also detected in animal feeds consisting fodders and feeds. Residues of OP (12.0 ppb were higher than OC (1.8 ppb in feeds, but residues of OP (16.8 ppb were lower than OC (18.7 ppb in fodders. Although, pesticide residues in sera and brain tissues were below the maximum residue limits (MRL of fat, the presence of pesticides in brain tissues should be taken

  8. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  9. Evaluation of 2-year-old intrasplenic fetal liver tissue transplants in rats.

    Science.gov (United States)

    Lupp, Amelie; Danz, Manfred; Müller, Dieter

    2003-01-01

    Liver cell transplantation into host organs like the spleen may possibly provide a temporary relief after extensive liver resection or severe liver disease or may enable treatment of an enzyme deficiency. With time, however, dedifferentiation or malignant transformation of the ectopically transplanted cells may be possible. Thus, in the present study syngenic fetal liver tissue suspensions were transplanted into the spleen of adult male rats and evaluated 2 years thereafter in comparison to orthotopic livers for histopathological changes and (as markers for preneoplastic transformation) for cytochrome P450 (P450) and glutathione S-transferase (GST) isoform expression. Because inducibility of P450 and GST isoforms may be changed in preneoplastic foci, prior to sacrifice animals were additionally treated either with beta-naphthoflavone, phenobarbital, dexamethasone, or the respective solvent. In the 2-year-old grafts more than 70% of the spleen mass was occupied by the transplant. The transplanted hepatocytes were arranged in cord-like structures. Also few bile ducts were present. Morphologically, no signs of malignancy were visible. With all rats, transplant recipients as well as controls, however, discrete nodular structures were seen in the livers. Due to age, both livers and transplants displayed only a low P450 2B1 and 3A2 and GST class alpha and mu isoform expression. No immunostaining for P450 1A1 was visible. At both sites, beta-naphthoflavone, phenobarbital, or dexamethasone treatment enhanced P450 1A1, P450 2B1 and 3A2, or P450 3A2 expression, respectively. No immunostaining for GST class pi isoforms was seen in the transplants. The livers of both transplant recipients and control rats, however, displayed GST pi-positive foci, corresponding to the nodular structures seen histomorphologically. Compared to the surrounding tissue, these foci also exhibited a more pronounced staining for GST class alpha and mu isoforms and a stronger inducibility of the P450 1A

  10. Microascus cinereus (Anamorph Scopulariopsis) Brain Abscess in a Bone Marrow Transplant Recipient

    OpenAIRE

    Baddley, John W.; Moser, Stephen A.; Sutton, Deanna A.; Pappas, Peter G.

    2000-01-01

    We report the first documented case of brain abscess due to the dematiaceous fungus Microascus cinereus, an organism common in soil and stored grain. M. cinereus was isolated from brain abscess material from a bone marrow transplant recipient. The patient responded well to treatment by amphotericin B lipid complex, itraconazole, and a craniotomy but later died from secondary complications caused by graft-versus-host disease.

  11. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    OpenAIRE

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat...

  12. Similar liver transplantation survival with selected cardiac death donors and brain death donors

    NARCIS (Netherlands)

    Dubbeld, J.; Hoekstra, H.; Farid, W.; Ringers, J.; Porte, R. J.; Metselaar, H. J.; Baranski, A. G.; Kazemier, G.; van den Bere, A. P.; van Hoek, B.

    2010-01-01

    Background: The outcome of orthotopic liver transplantation (OLT) with controlled graft donation after cardiac death (DCD) is usually inferior to that with graft donation after brain death (DBD). This study compared outcomes from OLT with DBD versus controlled DCD donors with predefined restrictive

  13. Brain Abscess After Soft Tissue Infection

    OpenAIRE

    Akoz A et al.

    2013-01-01

    The brain abscess, which is a focal intracerebral infection, is one of the serious complications of the head infections. It generally occurs in the immunocompromised patients due to the spreading from another infection focus on the body. It can be seen with the findings such as fever, headache, nausea, vomiting, diplopia, dysarthria and paralysis. Imaging methods are used in the diagnosis. In its treatment, antibiotherapy and surgical methods can be used. S...

  14. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  15. The use of fibrin beads for tissue engineering and subsequential transplantation.

    Science.gov (United States)

    Perka, C; Arnold, U; Spitzer, R S; Lindenhayn, K

    2001-06-01

    New biological technologies such as tissue engineering procedures require the transplantation of functionally active cells within supportive carrier matrices. This paper describes a sequential culture procedure for different types of cells. The technique includes the initial preparation of a mixed alginate-fibrin vehicle that guaranteed an initial cell proliferation and differentiation to establish a stable matrix structure, and the subsequent removal of the alginate component prior to transplantation to circumvent the problem of missing bioresorbability. The resulting biodegradable carrier is mechanically stable and promotes further tissue maturation. Chondrocytes, periosteal-derived cells, as well as nucleus pulposus cells were entrapped in fibrin-alginate beads and in fibrin beads. The results indicate a promising technical approach to create stable transplants for reconstructive surgery of cartilage and bone.

  16. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark

    DEFF Research Database (Denmark)

    Jensen, A K; Kristensen, S G; Macklon, K T;

    2015-01-01

    with a pregnancy-wish. WHAT IS KNOWN ALREADY: Cryopreservation of ovarian tissue is now gaining ground as a valid method for fertility preservation. More than 36 children worldwide have now been born following this procedure. STUDY DESIGN, SIZE, DURATION: This is a retrospective cohort study of 41 women who had...... thawed ovarian tissue transplanted 53 times over a period of 10 years, including 1 patient who was lost to follow-up. PARTICIPANTS/MATERIALS, SETTING, METHODS: The 41 Danish women, who had in total 53 transplantations, were followed for ovarian function and fertility outcome. Safety was assessed...... when the tissue became non-functional. WIDER IMPLICATIONS OF THE FINDINGS: Cryopreservation of ovarian tissue is likely to become integrated into the treatment of young women, with cancer, who run a risk of losing their fertility. The full functional lifespan of grafts is still being evaluated, because...

  17. West Nile Virus RNA in Tissues from Donor Associated with Transmission to Organ Transplant Recipients

    Centers for Disease Control (CDC) Podcasts

    2013-11-19

    William Hale reads an abridged version of the Emerging Infectious Diseases’ dispatch, West Nile Virus RNA in Tissues from Donor Associated with Transmission to Organ Transplant Recipients.  Created: 11/19/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 11/21/2013.

  18. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  19. GREAT PROMISE OF TISSUE-RESIDENT ADULT STEM/PROGENITOR CELLS IN TRANSPLANTATION AND CANCER THERAPIES

    OpenAIRE

    Mimeault, Murielle; Batra, Surinder K.

    2012-01-01

    Recent progress in tissue-resident adult stem/progenitor cell research has inspired great interest because these immature cells from your own body can act as potential, easily accessible cell sources for cell transplantation in regenerative medicine and cancer therapies. The use of adult stem/progenitor cells endowed with a high self-renewal ability and multilineage differentiation potential, which are able to regenerate all the mature cells in the tissues from their origin, offers great prom...

  20. Measuring the local electrical conductivity of human brain tissue

    Science.gov (United States)

    Akhtari, M.; Emin, D.; Ellingson, B. M.; Woodworth, D.; Frew, A.; Mathern, G. W.

    2016-02-01

    The electrical conductivities of freshly excised brain tissues from 24 patients were measured. The diffusion-MRI of the hydrogen nuclei of water molecules from regions that were subsequently excised was also measured. Analysis of these measurements indicates that differences between samples' conductivities are primarily due to differences of their densities of solvated sodium cations. Concomitantly, the sample-to-sample variations of their diffusion constants are relatively small. This finding suggests that non-invasive in-vivo measurements of brain tissues' local sodium-cation density can be utilized to estimate its local electrical conductivity.

  1. Coronaviruses in brain tissue from patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Dessau, R B; Lisby, G; Frederiksen, J L

    2001-01-01

    Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E...... and three PCR assays with primers specific for the nucleocapsid protein of human coronavirus strain OC43 were performed. Sporadic positive PCR assays were observed in both patients and controls in some of the PCR assays. However, these results were not reproducible and there was no difference...

  2. High-throughput single-cell manipulation in brain tissue.

    Directory of Open Access Journals (Sweden)

    Joseph D Steinmeyer

    Full Text Available The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell resolution.

  3. Science Letters: Brain natriuretic peptide: A potential indicator of cardiomyogenesis after autologous mesenchymal stem cell transplantation?

    Institute of Scientific and Technical Information of China (English)

    LI Nan; WANG Jian-an

    2006-01-01

    We observed in a pilot study that there was a transient elevation of brain natriuretic peptide (BNP) level shortly after the transplantation in the patient with ischemic heart failure, which is unexplainable by the simultaneous increase of the cardiac output and six-minute walk distance. Similar findings were observed in the phase I trial. We postulated on the basis of the finding of Fukuda in vitro that this transient elevation of BNP level against the improvement of cardiac function and exercise capacity might indicate cardiomyogenesis in patients after mesenchymal stem cell transplantation. Further study is warranted to verify the hypothesis.

  4. Effect of transplantation of muscle tissue in rats from the same litter on total number of flavins and FAD

    Directory of Open Access Journals (Sweden)

    S. N. Kobylnik

    2015-01-01

    Full Text Available Riboflavin is a member of redox enzymes involved in fatty acid oxidation and energy generation. Important role of this vitamin is in reproductive function. Exchange of transformation of riboflavin in animal tissues and cells of microorganisms include reactions that lead to synthesis and subsequent collapse of FMN and FAD. It is involved in enhancing antitumor activity of many anticancer drugs, as well as activation of the immune system to kill tumor cells. Issues of transport of riboflavin and its derivatives in animals have been studied enough. Investigations of changes of the balance of riboflavin and its metabolites in muscular tissues before transplantation in rats from one litter and at operation without replanting were conducted, based on the Udenfriend method of flavin determination. Transplantation in the experiment was carried out on white non-linear male rats weighing 180–300 g. Animals were taken out of the experiment by passing electric current through the medulla. Belly muscular tissue was taken from donor rats of the same litter, and that tissue was sewn to homological muscular tissue of the recipient. The same procedure was carried out with femoral muscular tissue. In the course of operation without replanting the same manipulations have been made except for transplantation stage (for determination of the effect of surgical intervention. Tissue not subject to any surgical intervention served as a control. Parameters of the study were measured on the first, third and seventh days after transplantation. Transplantation of muscular tissue caused no changes in total flavin amount. Content of RF + FMN after transplantation of muscular tissue in rats of the same litter decreased in femoral muscular tissue of the recipient. Transplantation of muscular tissues in rats from the same litter lead to increase in FAD amount in femoral muscular tissue of the donor and recipient on the third day of the experiment. Transplantation of femoral

  5. Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy

    OpenAIRE

    Pohling, Christoph; Buckup, Tiago; Pagenstecher, Axel; Motzkus, Marcus

    2011-01-01

    The fast and reliable characterization of pathological tissue is a debated topic in the application of vibrational spectroscopy in medicine. In the present work we apply multiplex coherent anti-Stokes Raman scattering (MCARS) to the investigation of fresh mouse brain tissue. The combination of imaginary part extraction followed by principal component analysis led to color contrast between grey and white matter as well as layers of granule and Purkinje cells. Additional quantitative informatio...

  6. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    Science.gov (United States)

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  7. The necessity of strengthening the cooperation between tissue banks and organ transplant organizations at national, regional, and international levels.

    Science.gov (United States)

    Morales Pedraza, Jorge

    2013-12-01

    The donation of tissues and organs increases significantly when tissue banks and organ transplant organizations work together in the procurement of organs and tissues at donor sources (hospitals, coroners system, organ procurement agencies, and funeral homes, among others). To achieve this important goal, national competent health authorities should considered the establishment of a mechanism that promote the widest possible cooperation between tissue banks and organ transplant organizations with hospitals, research medical institutions, universities, and other medical institutions and facilities. One of the issues that can facilitate this cooperation is the establishment of a coding and traceability system that could identify all tissues and organs used in transplant activities carried out in any country. The promotion of national, regional, and international cooperation between tissue banks and organ transplant organizations would enable the sharing of relevant information that could be important for medical practice and scientific studies carried out by many countries, particularly for those countries with a weak health care system.

  8. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  9. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    OpenAIRE

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the tr...

  10. A High Rate Tension Device for Characterizing Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1177/1754337112436900

    2013-01-01

    The mechanical characterization of brain tissue at high loading velocities is vital for understanding and modeling Traumatic Brain Injury (TBI). The most severe form of TBI is diffuse axonal injury (DAI) which involves damage to individual nerve cells (neurons). DAI in animals and humans occurs at strains > 10% and strain rates > 10/s. The mechanical properties of brain tissues at these strains and strain rates are of particular significance, as they can be used in finite element human head models to accurately predict brain injuries under different impact conditions. Existing conventional tensile testing machines can only achieve maximum loading velocities of 500 mm/min, whereas the Kolsky bar apparatus is more suitable for strain rates > 100/s. In this study, a custom-designed high rate tension device is developed and calibrated to estimate the mechanical properties of brain tissue in tension at strain rates < 90/s, while maintaining a uniform velocity. The range of strain can also be extended to 100% de...

  11. Discovery of Undescribed Brain Tissue Changes Around Implanted Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Himanshi Desai

    2012-01-01

    Full Text Available Brain-implantable microelectrode arrays are devicesdesigned to record or electrically stimulate the activity ofneurons in the brain. These devices hold the potential tohelp treat epilepsy, paralysis, blindness, and deafness, andalso provide researchers with insights into a varietyof neural processes, such as memory formation.While these devices have a very promising future,researchers are discovering that their long-termfunctionality is greatly limited by the brain’s naturalimmune response to foreign objects. To improve thefunctional lifetime of these devices, one solution lies infully characterizing and understanding this tissue response.Roles for microglia and astrocytes in this biologicalresponse have been characterized. However, changesto oligodendrocytes, cells that myelinate axons, remainpoorly understood. These cells provide insulationto the axons, which is required for proper neuralfunctioning. Here we report on the changes that occurwith oligodendrocyte processes in tissue aroundmicroelectrode implants in the brain.Six rats were surgically implanted with microelectrodearrays and allowed to recover for 1, 2, or 4 weeks.Subjects were then sacrificed and the brain tissue wasprocessed using our recently developed method, Device-Capture Histology. Immunohistochemistry and confocalmicroscopy was employed to assess the responsearound the device. Results indicated a decrease inoligodendrocyte density and a loss in typical directionalorientation of oligodendrocyte processes in tissue near thedevice. These results suggest alterations in the underlyingneuronal networks around these devices, which maygreatly impact the current functional utility of thesepromising devices.

  12. Change in tissue thromboplastin content of brain following trauma

    Directory of Open Access Journals (Sweden)

    Pathak Ashis

    2005-01-01

    Full Text Available Background: Tissue thromboplastin (TTP is an integral membrane protein contributing to coagulopathy after trauma of brain, which is a rich source of TTP. Aims: A study was undertaken to establish the TTP content of various areas of normal brain and estimate the changes in TTP activity of brain in response to varying degrees of trauma. Materials and Methods: Samples from different areas of brain of ten cadavers were used as controls and they were compared with contused brain tissue obtained after surgery in 25 head injury (HI patients of varying severity. Results: In the study group, the TTP activity of the frontal, parietal, and temporal lobes after HI was significantly raised in contrast to that of the control group. The TTP activity was also significantly higher in the severe HI patients than those having moderate HI. The mode of injury and the time lapse after HI had no significant bearing on the TTP activity. Subjects above 40 years of age demonstrated a higher mean TTP activity after HI, though it was not statistically significant. Conclusion: The study provides quantitative data on TTP activity of normal brain and highlights the role of TTP in coagulopathy following HI through its increased activity after HI, more so in the severe HI group.

  13. Kidney ischemic injury genes expressed after donor brain death are predictive for the outcome of kidney transplantation.

    Science.gov (United States)

    Kamińska, D; Kościelska-Kasprzak, K; Drulis-Fajdasz, D; Hałoń, A; Polak, W; Chudoba, P; Jańczak, D; Mazanowska, O; Patrzałek, D; Klinger, M

    2011-10-01

    The results of deceased donor kidney transplantation largely depend on the extent of organ injury induced by brain death and the transplantation procedure. In this study, we analyzed the preprocurement intragraft expression of 29 genes involved in apoptosis, tissue injury, immune cell migration, and activation. We also assessed their influence on allograft function. Before flushing with cold solution we obtained 50 kidney core biopsies of deceased donor kidneys immediately after organ retrieval. The control group included 18 biopsies obtained from living donors. Gene expression was analyzed with low-density arrays (Taqman). LCN2/lipocalin-2 is considered a biomarker of kidney epithelial ischemic injury with a renoprotective function. HAVCR1/KIM-1 is associated with acute tubular injury. Comparison of deceased donor kidneys to control organs revealed a significantly higher expression of LCN2 (8.0-fold P=.0006) and HAVCR1 (4.7-fold, PKidneys displaying delayed graft function and/or an acute rejection episode in the first 6 months after showed higher LCN2 expression compared to event-free ones (1.7-fold, P=.027). A significantly higher increase in expression of TLR2 (5.2-fold), Interleukin (IL) 18 (4.6-fold), HMGB1 (4.1-fold), GUSB (2.4-fold), CASP3 (2.0-fold) FAS (1.8-fold), and TP53 (1.6-fold) was observed among deceased donor kidneys compared with the control group. Their expression levels were not related to clinical outcomes: however, they showed significant correlations with one another (r>.6, Pkidneys after donor brain death were hallmarks of the organ injury process. LCN2 expression level in retrieved kidneys can predict kidney transplantation outcomes. PMID:21996181

  14. Integrity of the Oral Tissues in Patients with Solid-Organ Transplants

    Directory of Open Access Journals (Sweden)

    Gonzalo Rojas

    2012-01-01

    Full Text Available The relationship between the use of immunosuppressants in solid-organ transplant patients and oral tissue abnormalities has been recognized. The objective of this study was to determine the state of oral tissue integrity in renal, heart, and liver transplant patients who are on continuous medical and dental control. Forty patients of both sexes were clinically evaluated at the Clinical Hospital of the University of Chile to identify pathologies of oral mucosa, gingival enlargement (GE, decayed, missing, filled teeth (DMFT index, and salivary flow. The average age of the transplant subjects was 49.4 years, and the age range was 19 to 69 years. Most subjects maintained a good level of oral hygiene, and the rate mean of DMFT was 14.7. The degree of involvement of the oral mucosa and GE was low (10%. Unlike other studies, the frequency of oral mucosal diseases and GE was low despite the fact that these patients were immunosuppressed. Care and continuous monitoring seem to be of vital importance in maintaining the oral health of transplant patients.

  15. General solutions to poroviscoelastic model of hydrocephalic human brain tissue.

    Science.gov (United States)

    Mehrabian, Amin; Abousleiman, Younane

    2011-12-21

    Hydrocephalus is a well-known disorder of brain fluidic system. It is commonly associated with complexities in cerebrospinal fluid (CSF) circulation in brain. In this paper, hydrocephalus and shunting surgery which is used in its treatment are modeled. Brain tissues are considered to follow a poroviscoelastic constitutive model in order to address the effects of time dependence of mechanical properties of soft tissues and fluid flow hydraulics. Our solution draws from Biot's theory of poroelasticity, generalized to account for viscoelastic effects through the correspondence principle. Geometrically, the brain is conceived to be spherically symmetric, where the ventricles are assumed to be a hollow concentric space filled with cerebrospinal fluid. A generalized Kelvin model is considered for the rheological properties of brain tissues. The solution presented is useful in the analysis of the disorder of hydrocephalus as well as the treatment associated with it, namely, ventriclostomy surgery. The sensitivity of the solution to various factors such as aqueduct blockage level and trabeculae stiffness is thoroughly analyzed using numerical examples. Results indicate that partial aqueduct stenosis may be a cause of hydrocephalus. However, only severe occlusion of the aqueduct can cause a significant increase in the ventricle and brain's extracellular fluid pressure. Ventriculostomy shunts are commonly used as a remedy to hydrocephalus. They serve to reduce the ventricular pressure to the normal level. However, sensitivity analysis on the shunt's fluid deliverability parameter has shown that inappropriate design or selection of design shunt may cause under-drainage or over-drainage of the ventricles. Excessive drainage of CSF may increase the normal tensile stress on trabeculae. It can cause rupture of superior cerebral veins or damage to trabeculae or even brain tissues which in turn may lead to subdural hematoma, a common side-effect of the surgery. These Post

  16. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  17. Transistor needle chip for recording in brain tissue

    Science.gov (United States)

    Felderer, Florian; Fromherz, Peter

    2011-07-01

    We report on a proof-of-principle experiment for the direct interfacing of transistors with intact brain tissue. A transistor needle chip (TNC) with a TiO2 surface is fabricated from a silicon-on-insulator wafer and impaled into an acute brain slice cut from hippocampus of the rat. While stimulating the Schaffer collateral, a local field potential is recorded in stratum radiatum of the CA1 region with field-effect transistors in the central part of the slice where the tissue is not damaged by the cutting process. After the impalement, the signal amplitude is small. Within an hour, it increases to a stable level around -2 mV as is recorded with a conventional micropipette electrode. The recovery indicates that the tissue is able to adapt to the impaled chip. Upon repeated impalements at the same position, the large signal is observed without delay. A profile of the transistor signal across the slice is due to the boundary conditions of a brain slice with both surfaces held near ground potential. The experiments with the TNC prototype are a basis for the development of silicon needle chips with a large multi-transistor array (MTA) for applications in brain-computer interfacing.

  18. Determination of Friction Coefficient in Unconfined Compression of Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.05.001

    2013-01-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow for homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient mu of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that mu was equal to 0.09 +/- 0.03, 0.18 +/- 0.04, 0.18 +/- 0.04 and 0.20 +/- 0.02 at strain rates of...

  19. Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington's disease.

    Science.gov (United States)

    Roberts, T J; Price, J; Williams, S C R; Modo, M

    2006-01-01

    Cell replacement has the potential to become a frontline therapy to remedy behavioral impairments in Huntington's disease. To determine the efficacy of stem cell transplantation, behavioral assessment and in vivo monitoring of the lesion environment are paramount. We here demonstrate that neural stem cells from the MHP36 cell line prevented the development of a deficit on the beam walk test while providing partial recovery of learning in the water maze. However, no beneficial effect on rats' impairment in the staircase test was observed. By quantification of the lesion from serial magnetic resonance images, no effect of neural stem cells on lesion volume was observed. Instead, a preservation of striatal volume over time and its correlation with performance on the beam walk test suggested that sparing of behavioral function was associated with a stagnation of ongoing tissue loss rather than a reduction in lesion size. Serial imaging therefore warrants further implementation in clinical trials of neural grafts to monitor in vivo changes in the damaged brain due to transplantation.

  20. Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds.

    Science.gov (United States)

    Carlson, Aaron L; Bennett, Neal K; Francis, Nicola L; Halikere, Apoorva; Clarke, Stephen; Moore, Jennifer C; Hart, Ronald P; Paradiso, Kenneth; Wernig, Marius; Kohn, Joachim; Pang, Zhiping P; Moghe, Prabhas V

    2016-01-01

    Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼ 3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼ 38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. PMID:26983594

  1. Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach

    OpenAIRE

    Bader, Augustinus; Macchiarini, Paolo

    2010-01-01

    Abstract In June 2008, the world’s first whole tissue-engineered organ – the windpipe – was successfully transplanted into a 31-year-old lady, and about 18 months following surgery she is leading a near normal life without immunosuppression. This outcome has been achieved by employing three groundbreaking technologies of regenerative medicine: (i) a donor trachea first decellularized using a detergent (without denaturing the collagenous matrix), (ii) the two main autologous tracheal cells, na...

  2. [Deceased organ donors, legal regulations governing diagnosis of brain death, overview of donors and liver transplants in the Czech Republic].

    Science.gov (United States)

    Pokorná, E

    2013-08-01

    The key restriction of transplantation medicine globally, as well as in the Czech Republic, concerns the lack of organs. The number of deceased donors, and thus the availability of organ transplants, has been stagnating in our country. The paper describes current legal regulations governing the dia-gnosis of brain death and primary legal and medical criteria for the contraindication of the deceased for organ explantation, gives an overview of the number of liver transplants, age structure, and diagnosis resulting in brain death of the deceased liver donors in the Czech Republic.

  3. Inhibition of chemokine-glycosaminoglycan interactions in donor tissue reduces mouse allograft vasculopathy and transplant rejection.

    Directory of Open Access Journals (Sweden)

    Erbin Dai

    Full Text Available BACKGROUND: Binding of chemokines to glycosaminoglycans (GAGs is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct local leukocyte chemotaxis into damaged or transplanted tissues. While chemokine-receptor binding has been extensively studied during allograft transplantation, effects of glycosaminoglycan (GAG interactions with chemokines on transplant longevity are less well known. Here we examine the impact of interrupting chemokine-GAG interactions and chemokine-receptor interactions, both locally and systemically, on vascular disease in allografts. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of GAG or CC chemokine receptor 2 (CCR2 deficiency were coupled with the infusion of viral chemokine modulating proteins (CMPs in mouse aortic allograft transplants (n = 239 mice. Inflammatory cell invasion and neointimal hyperplasia were significantly reduced in N-deacetylase-N-sulfotransferase-1 (Ndst1(f/fTekCre(+ heparan sulfate (GAG-deficient (Ndst1(-/-, p<0.044 and CCR2-deficient (Ccr2(-/-, p<0.04 donor transplants. Donor tissue GAG or CCR2 deficiency markedly reduced inflammation and vasculopathy, whereas recipient deficiencies did not. Treatment with three CMPs was also investigated; Poxviral M-T1 blocks CC chemokine receptor binding, M-T7 blocks C, CC, and CXC GAG binding, and herpesviral M3 binds receptor and GAG binding for all classes. M-T7 reduced intimal hyperplasia in wild type (WT (Ccr2(+/+, p< or =0.003 and Ccr2(-/-, ptransplants (p< or =0.001. CONCLUSIONS/SIGNIFICANCE: Interruption of chemokine-GAG interactions, even in the absence of chemokine

  4. Should we clone human beings? Cloning as a source of tissue for transplantation.

    Science.gov (United States)

    Savulescu, J

    1999-04-01

    The most publicly justifiable application of human cloning, if there is one at all, is to provide self-compatible cells or tissues for medical use, especially transplantation. Some have argued that this raises no new ethical issues above those raised by any form of embryo experimentation. I argue that this research is less morally problematic than other embryo research. Indeed, it is not merely morally permissible but morally required that we employ cloning to produce embryos or fetuses for the sake of providing cells, tissues or even organs for therapy, followed by abortion of the embryo or fetus.

  5. Automatic segmentation of eight tissue classes in neonatal brain MRI.

    Directory of Open Access Journals (Sweden)

    Petronella Anbeek

    Full Text Available PURPOSE: Volumetric measurements of neonatal brain tissues may be used as a biomarker for later neurodevelopmental outcome. We propose an automatic method for probabilistic brain segmentation in neonatal MRIs. MATERIALS AND METHODS: In an IRB-approved study axial T1- and T2-weighted MR images were acquired at term-equivalent age for a preterm cohort of 108 neonates. A method for automatic probabilistic segmentation of the images into eight cerebral tissue classes was developed: cortical and central grey matter, unmyelinated and myelinated white matter, cerebrospinal fluid in the ventricles and in the extra cerebral space, brainstem and cerebellum. Segmentation is based on supervised pixel classification using intensity values and spatial positions of the image voxels. The method was trained and evaluated using leave-one-out experiments on seven images, for which an expert had set a reference standard manually. Subsequently, the method was applied to the remaining 101 scans, and the resulting segmentations were evaluated visually by three experts. Finally, volumes of the eight segmented tissue classes were determined for each patient. RESULTS: The Dice similarity coefficients of the segmented tissue classes, except myelinated white matter, ranged from 0.75 to 0.92. Myelinated white matter was difficult to segment and the achieved Dice coefficient was 0.47. Visual analysis of the results demonstrated accurate segmentations of the eight tissue classes. The probabilistic segmentation method produced volumes that compared favorably with the reference standard. CONCLUSION: The proposed method provides accurate segmentation of neonatal brain MR images into all given tissue classes, except myelinated white matter. This is the one of the first methods that distinguishes cerebrospinal fluid in the ventricles from cerebrospinal fluid in the extracerebral space. This method might be helpful in predicting neurodevelopmental outcome and useful for evaluating

  6. Automatic Segmentation of Eight Tissue Classes in Neonatal Brain MRI

    Science.gov (United States)

    Anbeek, Petronella; Išgum, Ivana; van Kooij, Britt J. M.; Mol, Christian P.; Kersbergen, Karina J.; Groenendaal, Floris; Viergever, Max A.; de Vries, Linda S.; Benders, Manon J. N. L.

    2013-01-01

    Purpose Volumetric measurements of neonatal brain tissues may be used as a biomarker for later neurodevelopmental outcome. We propose an automatic method for probabilistic brain segmentation in neonatal MRIs. Materials and Methods In an IRB-approved study axial T1- and T2-weighted MR images were acquired at term-equivalent age for a preterm cohort of 108 neonates. A method for automatic probabilistic segmentation of the images into eight cerebral tissue classes was developed: cortical and central grey matter, unmyelinated and myelinated white matter, cerebrospinal fluid in the ventricles and in the extra cerebral space, brainstem and cerebellum. Segmentation is based on supervised pixel classification using intensity values and spatial positions of the image voxels. The method was trained and evaluated using leave-one-out experiments on seven images, for which an expert had set a reference standard manually. Subsequently, the method was applied to the remaining 101 scans, and the resulting segmentations were evaluated visually by three experts. Finally, volumes of the eight segmented tissue classes were determined for each patient. Results The Dice similarity coefficients of the segmented tissue classes, except myelinated white matter, ranged from 0.75 to 0.92. Myelinated white matter was difficult to segment and the achieved Dice coefficient was 0.47. Visual analysis of the results demonstrated accurate segmentations of the eight tissue classes. The probabilistic segmentation method produced volumes that compared favorably with the reference standard. Conclusion The proposed method provides accurate segmentation of neonatal brain MR images into all given tissue classes, except myelinated white matter. This is the one of the first methods that distinguishes cerebrospinal fluid in the ventricles from cerebrospinal fluid in the extracerebral space. This method might be helpful in predicting neurodevelopmental outcome and useful for evaluating neuroprotective clinical

  7. Transplantation.

    Science.gov (United States)

    Faro, Albert; Weymann, Alexander

    2016-08-01

    Despite improvement in median life expectancy and overall health, some children with cystic fibrosis (CF) progress to end-stage lung or liver disease and become candidates for transplant. Transplants for children with CF hold the promise to extend and improve the quality of life, but barriers to successful long-term outcomes include shortage of suitable donor organs; potential complications from the surgical procedure and immunosuppressants; risk of rejection and infection; and the need for lifelong, strict adherence to a complex medical regimen. This article reviews the indications and complications of lung and liver transplantation in children with CF. PMID:27469184

  8. Transplantation of neural progenitor cells differentiated from adipose tissue-derived stem cells for treatment of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Shasha Dong§; Na Liu§; Yang Hu ; Ping Zhang; Chao Pan; Youping Zhang; Yingxin Tang; Zhouping Tang 

    2016-01-01

    Objectives: Currently, the clinical repair of sciatic nerve injury remains difficult. Previous studies have confirmed that transplantation of adipose tissue-derived stem cells promotes nerve regeneration and restoration at peripheral nerve injury sites. Methods:In this study, adipose tissue-derived stem cells were induced to differentiate into neural progenitor cells, transfected with a green fluorescent protein-containing lentivirus, and then transplanted into the lesions of rats with sciatic nerve compression injury. Results: Fluorescence microscopy revealed that the transplanted cells survived, migrated, and differentiated in rats. At two weeks post-operation, a large number of transplanted cells had migrated to the injured lesions; at six weeks post-operation, transplanted cells were visible around the injured nerve and several cells were observed to express a Schwann cell marker. Sciatic function index and electrophysiological outcomes of the transplantation group were better than those of the control group. Cell transplantation promoted the recovery of motor nerve conduction velocity and com-pound muscle action potential amplitude, and reduced gastrocnemius muscle atrophy. Conclusions: Our experimental findings indicate that neural progenitor cells, differentiated from adipose tissue-derived stem cells, are potential seed stem cells that can be transplanted into lesions to treat sciatic nerve injury. This provides a theoretical basis for their use in clinical applications.

  9. Autologous subcutaneous adipose tissue transplants improve adipose tissue metabolism and reduce insulin resistance and fatty liver in diet-induced obesity rats.

    Science.gov (United States)

    Torres-Villalobos, Gonzalo; Hamdan-Pérez, Nashla; Díaz-Villaseñor, Andrea; Tovar, Armando R; Torre-Villalvazo, Ivan; Ordaz-Nava, Guillermo; Morán-Ramos, Sofía; Noriega, Lilia G; Martínez-Benítez, Braulio; López-Garibay, Alejandro; Torres-Landa, Samuel; Ceballos-Cantú, Juan C; Tovar-Palacio, Claudia; Figueroa-Juárez, Elizabeth; Hiriart, Marcia; Medina-Santillán, Roberto; Castillo-Hernández, Carmen; Torres, Nimbe

    2016-09-01

    Long-term dietary and pharmacological treatments for obesity have been questioned, particularly in individuals with severe obesity, so a new approach may involve adipose tissue transplants, particularly autologous transplants. Thus, the aim of this study was to evaluate the metabolic effects of autologous subcutaneous adipose tissue (SAT) transplants into two specific intraabdominal cavity sites (omental and retroperitoneal) after 90 days. The study was performed using two different diet-induced obesity (DIO) rat models: one using a high-fat diet (HFD) and the other using a high-carbohydrate diet (HCHD). Autologous SAT transplant reduced hypertrophic adipocytes, improved insulin sensitivity, reduced hepatic lipid content, and fasting serum-free fatty acids (FFAs) concentrations in the two DIO models. In addition, the reductions in FFAs and glycerol were accompanied by a greater reduction in lipolysis, assessed via the phosphorylation status of HSL, in the transplanted adipose tissue localized in the omentum compared with that localized in the retroperitoneal compartment. Therefore, the improvement in hepatic lipid content after autologous SAT transplant may be partially attributed to a reduction in lipolysis in the transplanted adipose tissue in the omentum due to the direct drainage of FFAs into the liver. The HCHD resulted in elevated fasting and postprandial serum insulin levels, which were dramatically reduced by the autologous SAT transplant. In conclusion, the specific intraabdominal localization of the autologous SAT transplant improved the carbohydrate and lipid metabolism of adipose tissue in obese rats and selectively corrected the metabolic parameters that are dependent on the type of diet used to generate the DIO model. PMID:27582062

  10. Arguments against promoting organ transplants from brain-dead donors, and views of contemporary Japanese on life and death.

    Science.gov (United States)

    Asai, Atsushi; Kadooka, Yasuhiro; Aizawa, Kuniko

    2012-05-01

    As of 2009, the number of donors in Japan is the lowest among developed countries. On July 13, 2009, Japan's Organ Transplant Law was revised for the first time in 12 years. The revised and old laws differ greatly on four primary points: the definition of death, age requirements for donors, requirements for brain-death determination and organ extraction, and the appropriateness of priority transplants for relatives. In the four months of deliberations in the National Diet before the new law was established, various arguments regarding brain death and organ transplantation were offered. An amazing variety of opinions continue to be offered, even after more than 40 years have elapsed since the first heart organ transplant in Japan. Some are of the opinion that with the passage of the revised law, Japan will finally become capable of performing transplants according to global standards. Contrarily, there are assertions that organ transplants from brain-dead donors are unacceptable because they result in organs being taken from living human beings. Considering the current conditions, we will organize and introduce the arguments for and against organ transplants from brain-dead donors in contemporary Japan. Subsequently, we will discuss the primary arguments against organ transplants from brain-dead donors from the perspective of contemporary Japanese views on life and death. After introducing the recent view that brain death should not be regarded as equivalent to the death of a human being, we would like to probe the deeply-rooted views on life and death upon which it is based.

  11. Inhomogeneous Deformation of Brain Tissue During Tension Tests

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael D; 10.1016/j.commatsci.2012.05.030

    2013-01-01

    Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI). In this research, we present the design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0-14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters (mu = 4395.0 Pa, alpha = -2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine Young's modulus (E= 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S < 1.0 are required to minimise the effects of inhomogeneous...

  12. Tissue-specific sparse deconvolution for brain CT perfusion.

    Science.gov (United States)

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

  13. Tissue-specific sparse deconvolution for brain CT perfusion.

    Science.gov (United States)

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. PMID:26055434

  14. Immunological study on the transplantation of an improved deproteinized heterogeneous bone scaffold material in tissue engineering

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; PEI Fu-xing; TU Chong-qi; ZHOU Zong-ke; LI Qi-hong

    2008-01-01

    Objective: To observe the immune response after the transplantation of a deproteinized heterogeneous bone scaffold and provides the theoretic reference for clinical practice. Methods: The fresh pig bone and deproteinized bone were transplanted respectively to establish BABL/C thigh muscle pouches model of male mice and take the samples for detection at 1, 2, 4, 6 weeks after operation. Lymphocyte stimulation index, subset analysis, serum specific antibody IgG, cytokine detection and topographic histologic reaction after implantation were investigated. Results: After the transplantation of deproteinized bone, lymphocyte stimulation index, CD4+ and CD8+ T-lymphocyte subsets, serum specific antibody IgG and cytokines in deproteinized bone group were significantly lower than those in fresh pig bone group at each time point (P<0.05). The histological examination found that in fresh bone group at each time point, a large quantity of inflammatory cells infiltrated in the surrounding of bone graft, and they were mainly lymphocytes, including macrophages and monocytes. In deproteinized bone group, there were few inflammatory cells infiltration around bone graft one weekafter operation.The lymphocytes were decreased as time went by.At 6 weeks,fibroblasts and fibrous tissue grew into the graft,and osteoclasts and osteoprogenitor cells appeared on the verge.Conelusions:The established heterogeneous deproteinized bone has low immunogenicity and is a poten-fially ideal scaffold material for bone tissue engineering.

  15. Vascular communications between donor and recipient tissues after successful full face transplantation.

    Science.gov (United States)

    Kumamaru, K K; Sisk, G C; Mitsouras, D; Schultz, K; Steigner, M L; George, E; Enterline, D S; Bueno, E M; Pomahac, B; Rybicki, F J

    2014-03-01

    The vascular reorganization after facial transplantation has important implications on future surgical planning. The purpose of this study was to evaluate blood flow (BF) after full face transplantation using wide area-detector computed tomography (CT) techniques. Three subjects with severe craniofacial injury who underwent full face transplantation were included. All subjects underwent a single anastomosis bilaterally of the artery and vein, and the recipient tongue was preserved. Before and after surgery, dynamic volume CT studies were analyzed for vascular anatomy and blood perfusion. Postsurgical CT showed extensive vascular reorganization for external carotid artery (ECA) angiosome; collateral flows from vertebral, ascending pharyngeal or maxillary arteries supplied the branches from the recipient ECAs distal to the ligation. While allograft tissue was slightly less perfused when the facial artery was the only donor artery when compared to an ECA-ECA anastomosis (4.4 ± 0.4% vs. 5.7 ± 0.7%), allograft perfusion was higher than the recipient normal neck tissue. BF for the recipient tongue was maintained from contralateral/donor arteries when the lingual artery was sacrificed. Venous drainage was adequate for all subjects, even when the recipient internal jugular vein was anastomosed in end-to-end fashion on one side. In conclusion, dynamic CT identified adequate BF for facial allografts via extensive vascular reorganization. PMID:24502329

  16. Immunity phenomena following olfactory ensheathing cell transplantation into experimental allergic encephalomyelitis rat brain

    Institute of Scientific and Technical Information of China (English)

    Ainong Mei; Jue Wang; Qiong Cheng; Xinqing Yang; Jin Yang; Pengli Zhu; Shougang Guo

    2010-01-01

    Olfactory ensheathing cells(OECs)can promote axonal regeneration and remyelination for the treatment of spinal cord injury.OECs can also treat experimental allergic encephalomyelitis(EAE),but it remains unclear whether OECs might be rejected by the immune system in the brain,including the destruction of the blood-brain barrier under inflammation,the release of inflammatory factors,the activation of local antigen-presenting cells(e.g.,microglia cells)and antigen drainage.We found that OECs expressed major histocompatibility complex(MHC)-Ⅰmolecules on the cell surface,barely expressed MHC-Ⅱ,but MHC-Ⅱ could be induced by interferon-y,suggesting that OECs have certain immunogenicity.When OECs were transplanted into normal animal brains,no OECs were phagocytosed by dendritic cells in the cervical lymph node,and OECs did not induce lymphocyte proliferation,which indicates that OECs share some immune privilege under normal conditions.However,OECs in the rat EAE brain were phagocytosed by dendritic cells in the cervical lymph node and enhanced lymphocyte proliferation.These findings suggest that OECs are rejected because of increased immunogenicity in EAE brain,and that brain inflammation,in particular activated dendritic cells,may be a prerequisite for rejecting OECs.

  17. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.

    Directory of Open Access Journals (Sweden)

    Ninette Amariglio

    2009-02-01

    Full Text Available BACKGROUND: Neural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells. METHODS AND FINDINGS: A boy with ataxia telangiectasia (AT was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patient's peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors. CONCLUSIONS: This is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies.

  18. The peripheral chimerism of bone marrow-derived stem cells after transplantation: regeneration of gastrointestinal tissues in lethally irradiated mice.

    Science.gov (United States)

    Filip, Stanislav; Mokrý, Jaroslav; Vávrová, Jiřina; Sinkorová, Zuzana; Mičuda, Stanislav; Sponer, Pavel; Filipová, Alžběta; Hrebíková, Hana; Dayanithi, Govindan

    2014-05-01

    Bone marrow-derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP(+)) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP(+) lin(-) Sca-1(+) cells into non-haematopoietic tissues. The transplantation of BM cells or GFP(+) lin(-) Sca-1(+) cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP(+) cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP(+) lin(-) Sca-1(+) cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.

  19. α-Melanocyte stimulating hormone treatment in pigs does not improve early graft function in kidney transplants from brain dead donors.

    Directory of Open Access Journals (Sweden)

    Willem G van Rijt

    Full Text Available Delayed graft function and primary non-function are serious complications following transplantation of kidneys derived from deceased brain dead (DBD donors. α-melanocyte stimulating hormone (α-MSH is a pleiotropic neuropeptide and its renoprotective effects have been demonstrated in models of acute kidney injury. We hypothesized that α-MSH treatment of the recipient improves early graft function and reduces inflammation following DBD kidney transplantation. Eight Danish landrace pigs served as DBD donors. After four hours of brain death both kidneys were removed and stored for 18 hours at 4°C in Custodiol preservation solution. Sixteen recipients were randomized in a paired design into two treatment groups, transplanted simultaneously. α-MSH or a vehicle was administered at start of surgery, during reperfusion and two hours post-reperfusion. The recipients were observed for ten hours following reperfusion. Blood, urine and kidney tissue samples were collected during and at the end of follow-up. α-MSH treatment reduced urine flow and impaired recovery of glomerular filtration rate (GFR compared to controls. After each dose of α-MSH, a trend towards reduced mean arterial blood pressure and increased heart rate was observed. α-MSH did not affect expression of inflammatory markers. Surprisingly, α-MSH impaired recovery of renal function in the first ten hours following DBD kidney transplantation possibly due to hemodynamic changes. Thus, in a porcine experimental model α-MSH did not reduce renal inflammation and did not improve short-term graft function following DBD kidney transplantation.

  20. Various forms of tissue damage and danger signals following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Abdulraouf eRamadan

    2015-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD, which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T cells and recipient’s antigen-presenting cells. This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs. Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules even represent potential targets for novel therapeutic approaches.

  1. Various Forms of Tissue Damage and Danger Signals Following Hematopoietic Stem-Cell Transplantation

    Science.gov (United States)

    Ramadan, Abdulraouf; Paczesny, Sophie

    2014-01-01

    Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches. PMID:25674088

  2. TRANSPLANTATION

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    In order to reserch the influence of HLAmatch to the recovering of renal function afterrenal transplantation, the dare of HLA matchand uric RBP from 25 patients were collected.The results were shown that retinol-bindingprotein (RBP) was more sensitive than serumCr to reflect renal function. One monthpostoperation, the uric RBP value was less than

  3. TRANSPLANTATION

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Objective: To explore the experience ofliver transpfantation in patients with terminalliver failure. Methods: From October 1991 toJuly 1995, 17 adults and 6 children underwentorthotopic liver transplantation. Preoperativediagnosis showed biliary atresia (n=5), Alagillesyndrome (n=1), primary biliary cirrhosis(n=2), cryptogenic cirrhosis (n=2), alcoholic

  4. Clinical Questions of Tissue Incompatibility after Allogenic Bone-Marrow Transplantation

    International Nuclear Information System (INIS)

    This paper describes the results of studies concerning tissue incompatibility in the transplantation of allogenic bone marrow into patients suffering from hypoplastic and aplastic anaemia. Factual data are presented on the extent to which the immune activity and capacity for immunological response of recipients is preserved. Attention is mainly directed to the characteristics of the spectrum showing serological activity of the anti-leucocyte antibodies, which depends on the type of sensitization. These data point to the need for differential use of haemotherapeutic agents and are also of some importance in the selection of bone-marrow donors. (author)

  5. P08.10SINGLE BRAIN METASTASIS 9 YEARS AFTER ORTHOTOPIC LIVER TRANSPLANT WITH HISTOLOGICAL NEGATIVE EXPIANTED LIVER: CASE REPORT

    Science.gov (United States)

    Fornaro, R.; Agnoletti, A.; Specchia, F.M. Calamo; Garbossa, D.; Lanotte, M.; Ducati, A.

    2014-01-01

    We describe the case of a 67 years old man, that underwent orthotopic liver transplant (OLT) in 2004 for cirrhosis. Native liver hystological examination was negative for focal hepatocarcinoma (HCC) areas. In 2008, during regular follow up, pulmonary lesions were found and diagnosed as hepatocarcinoma metastasis.In 2013, patient accused vertigo and dizziness: neuroimaging showed a cerebellar lesion. Hystological diagnosis was HCC metastases. The peculiarity is the onset of lung metastasis after transplant, with negative analysis on native liver, and brain metastasis after stable disease. This case is also relevant due to long survival related to the unavailability of many oncologic therapies in transplanted patients.

  6. Quantitative 1H MR spectroscopy of the brain in patients with congestive heart failure before and after cardiac transplantation

    International Nuclear Information System (INIS)

    To evaluate the effects of cardiac transplantation on the brain in patients with congestive heart failure (CHF), using quantitative 1H MR spectroscopy (1H-MRS). Ten patients with CHF underwent MRI and quantitative 1H-MRS before and 1-2 and 4-9 months after cardiac transplantation. MR spectra were obtained from parietal white matter (PWM) and occipital gray matter (OGM) using PROBE (PROton Brain Exam). Changes in MR signal intensity were evaluated, and the cerebral metabolic concentrations in PWM and OGM were compared. For comparative purposes, 20 normal volunteers were included. No abnormal MR signal intensity was seen in the brain before or after cardiac transplantation. Changes in cerebral metabolic concentrations were observed on 1H-MRS; concentrations of creatine (Cr) in PWM, and of N-acetylacepartate (NAA), Cr and myo-Inositol(mI) in OGM were significantly lower before transplantation. After successful transplantation, Cr levels returned to their normal range in PWM and OGM, while a slightly increase choline (Cho) level was observed in PWM. Cerebral hypoperfusion in CHF can be evaluated using 1H-MRS. MRS may play a substantial role in monitoring the effect of cardiac transplantation

  7. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hai-xiao Zhou

    2016-01-01

    Full Text Available Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5-3.0 atm impact force. The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions.

  8. Preliminary study of coconut water for graft tissues preservation in transplantation

    Directory of Open Access Journals (Sweden)

    Jorge Miguel Schettino César

    2015-02-01

    Full Text Available OBJECTIVE: to verify the effectiveness of coconut water in preserving tissues for transplant. METHODS: Fifty male Wistar rats were randomly distributed in five groups, according to the following preservation solutions for tissue grafts: Group 1: Lactated Ringer; Group 2: Belzer solution; Group 3: mature coconut water; Group 4: green coconut water; Group 5: modified coconut water. In Group 5, the green coconut water has been modified like the Belzer solution. From each animal we harvasted the spleen, ovaries and skin of the back segment. These tissues were preserved for six hours in one of the solutions. Then, the grafts were reimplanted. The recovery of the function of the implanted tissues was assessed 90 days after surgery, by splenic scintigraphy and blood exame. The implanted tissues were collected for histopathological examination. RESULTS: The serum levels did not differ among groups, except for the animals in Group 5, which showed higher levels of IgG than Group 1, and differences in relation to FSH between groups 1 and 2 (p <0.001, 4 and 2 (p = 0.03 and 5 and 2 (p = 0.01. The splenic scintigraphy was not different between groups. The ovarian tissue was better preserved in mature coconut water (p <0.007. CONCLUSION: the coconut water-based solutions preserves spleen, ovary, and rat skin for six hours, maintaining their normal function.

  9. Long-term cognitive effects of human stem cell transplantation in the irradiated brain

    Science.gov (United States)

    Acharya, Munjal M.; Martirosian, Vahan; Christie, Lori-Ann; Limoli, Charles L.

    2016-01-01

    Purpose Radiotherapy remains a primary treatment modality for the majority of central nervous system tumors, but frequently leads to debilitating cognitive dysfunction. Given the absence of satisfactory solutions to this serious problem, we have used human stem cell therapies to ameliorate radiation-induced cognitive impairment. Here, past studies have been extended to determine whether engrafted cells provide even longer-term benefits to cognition. Materials and methods Athymic nude rats were cranially irradiated (10 Gy) and subjected to intrahippocampal transplantation surgery 2 days later. Human embryonic stem cells (hESC) or human neural stem cells (hNSC) were transplanted, and animals were subjected to cognitive testing on a novel place recognition task 8 months later. Results Grafting of hNSC was found to provide long lasting cognitive benefits over an 8-month post-irradiation interval. At this protracted time, hNSC grafting improved behavioral performance on a novel place recognition task compared to irradiated animals not receiving stem cells. Engrafted hESC previously shown to be beneficial following a similar task, 1 and 4 months after irradiation, were not found to provide cognitive benefits at 8 months. Conclusions Our findings suggest that hNSC transplantation promotes the long-term recovery of the irradiated brain, where intrahippocampal stem cell grafting helps to preserve cognitive function. PMID:24882389

  10. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Anbari; Mohammad Ali Khalili; Ahmad Reza Bahrami; Arezoo Khoradmehr; Fatemeh Sadeghian; Farzaneh Fesahat; Ali Nabi

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intrave-nous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and ad-ministered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significant-ly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  11. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  12. Subcutaneous Adipose Tissue Transplantation in Diet-Induced Obese Mice Attenuates Metabolic Dysregulation While Removal Exacerbates It.

    Science.gov (United States)

    Foster, M T; Softic, S; Caldwell, J; Kohli, R; de Kloet, A D; Seeley, R J

    2013-08-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2 mice received control surgery, subcutaneous fat removal or hetero-transplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks post-surgery. Adipose mass and portal adipokines, cytokines, lipids and insulin were measured from samples collected at 5 weeks post-surgery. Auto- and hetero- transplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration and reduced portal lipids and hepatic triglycerides compared with HFD controls. Hetero-transplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in

  13. Myoglobin Expression in Chelonia mydas Brain, Heart and Liver Tissues

    Directory of Open Access Journals (Sweden)

    RINI PUSPITANINGRUM

    2010-09-01

    Full Text Available An understanding of the underpinning physiology and biochemistry of animals is essential to properly understand the impact of anthropogenic changes and natural catastrophes upon the conservation of endangered species. An observation on the tissue location of the key respiratory protein, myoglobin, now opens up new opportunities for understanding how hypoxia tolerance impacts on diving lifestyle in turtles. The respiratory protein, myoglobin has functions other than oxygen binding which are involved in hypoxia tolerance, including metabolism of reactive oxygen species and of the vascular function by metabolism of nitric oxide. Our work aims to determine whether myoglobin expression in the green turtle exists in multiple non muscle tissues and to confirm the hypothesis that reptiles also have a distributed myoglobin expression which is linked to the hypoxiatolerant trait. This initial work in turtle hatch Chelonia mydas confirms the presence of myoglobin transcriptin brain, heart and liver tissues. Furthermore, it will serve as a tool for completing the sequence and generating an in situ hybridization probe for verifying of cell location in expressing tissues.

  14. The Additional Detrimental Effects of Cold Preservation on Transplantation-Associated Injury in Kidneys from Living and Brain-Dead Donor Rats

    NARCIS (Netherlands)

    Hoeger, Simone; Petrov, Kiril; Reisenbuechler, Anke; Fontana, Johann; Selhorst, Jochen; Hanusch, Christine; Beck, Grietje; Seelen, Marc A.; van Son, Willem J.; Waldherr, Ruediger; Schnuelle, Peter; Yard, Benito A.

    2009-01-01

    Background. Brain death and cold preservation are major alloantigen-independent risk factors for transplantation Outcome. The present study was conducted to assess the influence of these factors on transplantation-associated injury independently or in combination. Methods. Brain death was induced in

  15. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    Directory of Open Access Journals (Sweden)

    Lars eRoll

    2014-08-01

    Full Text Available The limited regeneration capacity of the adult central nervous system requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation.In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo.As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM, a complex network that contains numerous signaling molecules. It appears that signals in the damaged central nervous system lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C.Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  16. Brain tissue pressure measurements in perinatal and adult rabbits.

    Science.gov (United States)

    Hornig, G W; Lorenzo, A V; Zavala, L M; Welch, K

    1987-12-01

    Brain tissue pressure (BTP) in pre- and post-natal anesthetized rabbits, held in a stereotactic head holder, was measured with a fluid filled 23 gauge open-ended cannula connected distally to a pressure transducer. By advancing the cannula step wise through a hole in the cranium it was possible to sequentially measure pressure from the cranial subarachnoid space, cortex, ventricle and basal ganglia. Separate cannulas and transducers were used to measure CSFP from the cisterna magna and arterial and/or venous pressure. Pressure recordings obtained when the tip of the BTP cannula was located in the cranial subarachnoid space or ventricle exhibited respiratory and blood pressure pulsations equivalent to and in phase with CSF pulsations recorded from the cisterna magna. When the tip was advanced into brain parenchymal sites such pulsations were suppressed or non-detectable unless communication with a CSF compartment had been established inadvertently. Although CSF pressures in the three spinal fluid compartments were equivalent, in most animals BTP was higher than CSFP. However, after momentary venting of the system BTP equilibrated at a pressure below that of CSFP. We speculate that venting of the low compliance system (1.20 x 10(-5) ml/mmHg) relieves the isometric pressure build-up due to insertion of the cannula into brain parenchyma. Under these conditions, and at all ages examined, BTP in the rabbit is consistently lower than CSFP and, as with CSFP, it increases as the animal matures.

  17. Comparative Tissue Stainability of Lawsonia inermis (Henna) and Eosin as Counterstains to Hematoxylin in Brain Tissues.

    Science.gov (United States)

    Alawa, Judith N; Gideon, Gbenga O; Adetiba, Bamidele; Alawa, Clement B

    2015-04-01

    We hyposthesized that henna staining could provide an alternative to eosin when used as a counterstain to hematoxylin for understanding basic neurohistological principles. Therefore, this study was aimed at investigating the suitability of henna as counterstain to hematoxylin for the demonstration of the layer stratification and cellular distribution in the brain tissue. Henna stained nervous tissue by reacting with the basic elements in proteins via its amino groups. It stained the neuropil and connective tissue membranes brown and effectively outlined the perikarya of neurons with no visible nuclei demonstrating that it is an acidic dye. Henna as a counterstain to hematoxylin demonstrated reliability as a new neurohistological stain. It facilitated identification of cortical layer stratification and cellular distribution in brain tissue sections from Wistar rats. This was comparable to standard hematoxylin and eosin staining as morphological and morphometrical analyses of stained cells did not show significant differences in size or number. This study presents a method for staining with henna and demonstrates that although henna and eosin belong to different dye groups (anthraquinone and xanthenes, respectively) based on their chromophores, they share similar staining techniques and thus could be used interchangeably in neurohistology.

  18. Brain metastasis of hepatocellular carcinoma detected after liver transplantation Metástase cerebral de carcinoma hepatocelular após transplante de fígado

    Directory of Open Access Journals (Sweden)

    Alex Vianey Callado França

    2004-09-01

    Full Text Available AIM: We report the case of a patient with hepatocellular carcinoma submitted to liver transplantation, who subsequently manifested tumor recurrence initially as brain metastasis. CASE DESCRIPTION: A 48-year-old male cirrhotic patient with hepatitis C infection, and two focal hepatic lesions, had a cytologic and histologic diagnosis of hepatocellular carcinoma. Before transplant, he was submitted to adjuvant treatment with a combination of arterial embolization and intratumoral ethanol injection. In the 3rd month post-liver transplantation, the patient developed headache, nausea and vomiting, without any neurological impairment. Brain computed tomography and magnetic resonance imaging identified an expansive hypervascular lesion with internal bleeding. Evaluation of the surgical explant revealed macroscopic invasion of portal vessels. CONCLUSION: Brain metastasis of a hepatocellular carcinoma after liver transplantation may occur. This metastasis may have occurred before or soon after the transplant. Patients with hepatocellular carcinoma, awaiting liver transplant, should be screened for cerebral metastasis. Vascular invasion may indicate hematogenic dissemination of the tumor.OBJETIVO: Relatar o caso de paciente com carcinoma hepatocelular submetido a transplante de fígado, que subseqüentemente manifestou recurrência tumoral em cérebro após o transplante. DESCRIÇÃO DO CASO: Homem de 48 anos de idade, com cirrose hepática secundária à infecção pelo vírus da hepatite C, com duas lesões focais hepáticas diagnosticadas como carcinoma hepatocelular pela citologia e histologia. Antes do transplante, foi submetido a tratamento coadjuvante com embolização da artéria hepática e injeção intra-tumoral de etanol. No terceiro mês pós-transplante, o paciente apresentou cefaléia, náuseas e vômitos, sem déficit neurológico focal. Tomografia computadorizada e ressonância magnética de crânio identificaram lesão expansiva

  19. Outcome of kidney transplantation between controlled cardiac death and brain death donors: a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Ming Yingzi; Shao Mingjie; Tian Tingting; She Xingguo; Liu Hong; Ye Shaojun; Ye Qifa

    2014-01-01

    Background Our goal was to evaluate the outcomes of kidney transplants from controlled cardiac death donors compared with brain death donors by conducting a meta-analysis of cohort studies.Methods The PubMed database and EMBASE were searched from January 1980 to July 2013 to identify studies that met pre-stated inclusion criteria.Reference lists of retrieved articles were also reviewed.Two authors independently extracted information on the designs of the studies,the characteristics of the study participants,and outcome assessments.Results Nine cohort studies involving 84 398 participants were included in this meta-analysis; 3 014 received kidneys from controlled cardiac death donors and 80 684 from brain death donors.Warm ischemia time was significantly longer for the controlled cardiac death donor group.The incidence of delayed graft function was 2.74 times (P <0.001) greater in the controlled cardiac death donor group.The results are in favor of the brain death donor group on short-term patient and graft survival while this difference became nonsignificant at mid-term and long term.Sensitivity analysis yielded similar results.No evidence of publication bias was observed.Conclusion This meta-analysis of retrospective cohort studies suggests that the outcome after controlled cardiac death donors is comparable with that obtained using kidneys from brain death donors.

  20. Influence of recipient gender on intrasplenic fetal liver tissue transplants in rats: cytochrome P450-mediated monooxygenase functions.

    Science.gov (United States)

    Lupp, Amelie; Hugenschmidt, Sabine; Rost, Michael; Müller, Dieter

    2004-05-01

    Rat livers display a sex-specific cytochrome P450 (P450) isoforms expression pattern with consecutive differences in P450-mediated monooxygenase activities, which have been shown to be due to a differential profile of growth hormone (GH) secretion. Parallel to previous investigations on P450 isoforms expression, the aim of the present study was to elucidate the influence of recipient gender on P450-mediated monooxygenase activities in intrasplenic liver tissue transplants in comparison to orthotopic liver. Fetal liver tissue suspensions of mixed gender were transplanted into the spleen of adult male or female syngenic recipients. Four months after grafting transplant-recipients and age-matched controls were treated with beta-naphthoflavone (BNF), phenobarbital (PB), dexamethasone (DEX) or the vehicles and sacrificed 24 or 48 h thereafter. P450-dependent monooxygenase activities were assessed by a series of model reactions for different P450 subtypes in liver and spleen 9000 g supernatants. In spleens of male and female control rats only very low monooxygenase activities were detectable, whereas with most model reactions distinct activities were observed in transplant-containing organs. Livers and transplant-containing spleens from male rats displayed higher basal ethoxycoumarin O-deethylase and testosterone 2alpha-, 2beta-, 6beta-, 14alpha-, 15alpha-, 15beta-, 16alpha-, 16beta- and 17-hydroxylase activities than those from females. On the other hand, like the respective livers, spleens from female transplant-recipients demonstrated more pronounced p-nitrophenol- and testosterone 6alpha- and 7alpha-hydroxylase activities than those from male hosts. With nearly all model reactions gender-specific differences in inducibility by BNF, PB or DEX could be demonstrated in livers as well as in transplant-containing spleens. These results further confirm that the P450 system of intrasplenic liver tissue transplants and the respective orthotopic livers is similarly influenced

  1. Developmental changes in glutathione S-transferase isoforms expression and activity in intrasplenic fetal liver tissue transplants in rats.

    Science.gov (United States)

    Lupp, Amelie; Anschütz, Tino; Lindström-Seppä, Pirjo; Müller, Dieter

    2003-09-01

    The aim of the present study was to characterise developmental changes in glutathione S-transferase (GST) isoforms expression and in glutathione conjugation capacity in intrasplenic liver tissue transplants. For this purpose, syngenic fetal liver tissue suspensions were transplanted into the spleens of adult male Fischer 344 rats. Three days, 1, 2, 4 weeks, 2, 4, 6 months and 1 year later, transplant-recipients and control animals were sacrificed and class alpha, mu and pi GST isoforms expression and GST activities using the substrates o-dinitrobenzene and 1-chloro-2,4-dinitrobenzene were assessed in livers and spleens. In the hepatocytes of the adult livers no class pi, but a distinct class alpha and mu GST expression was seen. The bile duct epithelia were class pi GST positive. Fetal livers displayed almost no class alpha and mu, but a slight class pi GST expression. The same pattern was seen in 3-day-old intrasplenic liver tissue transplants. Up to 2 weeks after surgery the class alpha and mu GST expression increased in the hepatocytes of the transplants, whereas the immunostaining for class pi GST disappeared. No remarkable changes were seen thereafter. Normal conjugation capacities were observed with the livers of both groups of rats. Control spleens displayed only low GST activities. From 2 months after transplantation on activities were significantly higher in transplant-containing spleens than in respective control organs with a further increase up to one year after grafting. These results show that intrasplenically transplanted fetal liver cells proliferate and differentiate into mature cells displaying a GST expression pattern with respective enzyme activities similar to adult liver.

  2. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    Institute of Scientific and Technical Information of China (English)

    Xianchao Li; Wensheng Hou; Xiaoying Wu; Wei Jiang; Haiyan Chen; Nong Xiao; Ping Zhou

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy-poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efifciencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra-tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green lfuorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental ifndings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypox-ic-ischemic brain damage.

  3. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment.

    Science.gov (United States)

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-02-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2), an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 10(6) bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2) for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage.

  4. Magnetic resonance brain tissue segmentation based on sparse representations

    Science.gov (United States)

    Rueda, Andrea

    2015-12-01

    Segmentation or delineation of specific organs and structures in medical images is an important task in the clinical diagnosis and treatment, since it allows to characterize pathologies through imaging measures (biomarkers). In brain imaging, segmentation of main tissues or specific structures is challenging, due to the anatomic variability and complexity, and the presence of image artifacts (noise, intensity inhomogeneities, partial volume effect). In this paper, an automatic segmentation strategy is proposed, based on sparse representations and coupled dictionaries. Image intensity patterns are singly related to tissue labels at the level of small patches, gathering this information in coupled intensity/segmentation dictionaries. This dictionaries are used within a sparse representation framework to find the projection of a new intensity image onto the intensity dictionary, and the same projection can be used with the segmentation dictionary to estimate the corresponding segmentation. Preliminary results obtained with two publicly available datasets suggest that the proposal is capable of estimating adequate segmentations for gray matter (GM) and white matter (WM) tissues, with an average overlapping of 0:79 for GM and 0:71 for WM (with respect to original segmentations).

  5. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Hai-xiao Zhou; Zhi-gang Liu; Xiao-jiao Liu; Qian-xue Chen

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized lfuid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantationvia the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function signiifcantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and signiifcantly promotes recovery of neurological functions.

  6. Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    John P. Lowry

    2005-11-01

    Full Text Available In this communication we review selected experiments involving the use ofcarbon paste electrodes (CPEs to monitor and measure brain tissue O2 levels in awakefreely-moving animals. Simultaneous measurements of rCBF were performed using the H2clearance technique. Voltammetric techniques used include both differential pulse (O2 andconstant potential amperometry (rCBF. Mild hypoxia and hyperoxia produced rapidchanges (decrease and increase respectively in the in vivo O2 signal. Neuronal activation(tail pinch and stimulated grooming produced similar increases in both O2 and rCBFindicating that CPE O2 currents provide an index of increases in rCBF when such increasesexceed O2 utilization. Saline injection produced a transient increase in the O2 signal whilechloral hydrate produced slower more long-lasting changes that accompanied the behavioralchanges associated with anaesthesia. Acetazolamide increased O2 levels through an increasein rCBF.

  7. Real-time changes in brain tissue oxygen during endovascular treatment of cerebral vasospasm

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Bache, Søren; Stavngaard, Trine;

    2015-01-01

    pressure (PtiO₂) in target parenchyma. However, during the intervention, dangerously low levels of brain tissue oxygen, leading to cerebral infarction, may occur. Thus, no clinical improvement was seen in two of the patients and a dramatic worsening was observed in the third patient. Because the decrease...... minute-by-minute changes in brain tissue oxygen during balloon angioplasty and intraarterial administration of vasodilators in three patients.Our results confirm that endovascular intervention is capable of not only resolving angiographic vasospasm, but also of normalizing values of brain tissue oxygen...... in brain tissue oxygen was seen after administration of vasopressor agents, this may be a contributing factor....

  8. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in the basal ganglia during acute decompensation and effect of liver transplantation

    Directory of Open Access Journals (Sweden)

    McKiernan Patrick J

    2011-05-01

    replenish a compromised Krebs cycle and that this is a marker of compromised aerobic respiration within brain tissue. Thus there is a need for improved brain protective strategies during acute metabolic decompensations. MRS provides a non-invasive tool for which could be employed to evaluate novel treatments aimed at restoring basal ganglia homeostasis. The results from the liver transplantation sub-group supports the hypothesis that liver transplantation provides systemic metabolic stability by providing a hepatic pool of functional propionyl CoA carboxylase, thus preventing further acute decompensations which are associated with the risk of brain infarction.

  9. Laboratorial evaluation of potential donors of organs and tissues for transplantation

    Directory of Open Access Journals (Sweden)

    Quinidia Lúcia Duarte de Almeida Quithé de Vasconcelos

    2014-06-01

    Full Text Available The objective of this study was to describe the laboratorial complementary evaluation in potential donors of organs and tissues for transplantation. It is a descriptive, quantitative study made in six hospitals in Natal/ Rio Grande do Norte, Brazil, between August/2010 to February/2011. The sample consisted of 65 potential donors and a checklist type instrument was used. Information was collected and analyzed using descriptive statistics. From a total number of donors, 89.2% had blood typing, 80.0% hematological tests and verification of the electrolytes. As for the functions, 70.8% had tests for verification of pulmonary function and 80.0% for renal function. From the alterations detected, 69.2% presented hyperoxia, 66.2% leukocytosis, 47.7% hypernatremia, 43.1% increase in the creatine kinase, 10.0% with positive serology. Relevant tests were not made. It is essential to assess potential donors to detect and treat alterations, ensuring the quality of the organs and the quality of the transplantation.

  10. Brain-derived neurotrophic factor expression is higher in brain tissue from patients with refractory epilepsy than in normal controls

    Institute of Scientific and Technical Information of China (English)

    Yudan Lv; Jiqing Qiu; Zan Wang; Li Cui; Hongmei Meng; Weihong Lin

    2011-01-01

    The role of the brain-derived neurotrophic factor in epilepsy remains controversial. The present study utilized light and electron microscopy to investigate pathological and ultrastructural changes in brain tissue obtained from the seizure foci of 24 patients with temporal epilepsy. We found that epileptic tissue showed neuronal degeneration, glial cell proliferation, nuclear vacuolization, and neural cell tropism. Immunoelectron microscopy and immunohistochemistry showed that brain-derived neurotrophic factor was expressed at significantly higher levels in patients with refractory temporal epilepsy compared with normal controls, demonstrating that the pathological changes within seizure foci in patients with refractory epilepsy are associated with brain-derived neurotrophic factor expression alterations.

  11. Regulation of ongoing DNA synthesis in normal and neoplastic brain tissue

    OpenAIRE

    Yakisich, Juan Sebastián

    2005-01-01

    The treatment of human brain tumour is challenging in part due to the blood brain barrier and in part due to the specific biology of brain tumours that confer resistance to chemotherapy. For instance, the 5 years survival rate for patients carrying intracranial glioblastoma multiforme has remained at 4-5 % for the last 30 years. The knowledge of the brain tumour biology as well as the biology of the normal brain tissue would help to design new therapeutic strategies and to d...

  12. Assessment of bone formation capacity using in vivo transplantation assays: procedure and tissue analysis

    DEFF Research Database (Denmark)

    Abdallah, Basem; Ditzel, Nicholas; Kassem, Moustapha

    2008-01-01

    In vivo assessment of bone formation (osteogenesis) potential by isolated cells is an important method for analysis of cells and factors control ling bone formation. Currently, cell implantation mixed with hydroxyapa-tite/tricalcium phosphate in an open system (subcutaneous implantation) in immun...... transplantation methods in testing bone formationpotential of human mesenchymal stem cells.......In vivo assessment of bone formation (osteogenesis) potential by isolated cells is an important method for analysis of cells and factors control ling bone formation. Currently, cell implantation mixed with hydroxyapa-tite/tricalcium phosphate in an open system (subcutaneous implantation......) in immunodeficient mice is the standard method for in vivo assessment of bone formation capacity of a particular cell type. The method is easy to perform and provides reproducible results. Assessment of the donor origin of tissue formation is possible, especially in the case of human-to-mouse transplanta tion...

  13. Small bowel transplantation complicated by cytomegalovirus tissue invasive disease without viremia.

    Science.gov (United States)

    Avsar, Yesim; Cicinnati, Vito R; Kabar, Iyad; Wolters, Heiner; Anthoni, Christoph; Schmidt, Hartmut H J; Beckebaum, Susanne

    2014-06-01

    We report on a small bowel transplant patient, donor/recipient seropositive (D+/R+) for cytomegalovirus (CMV), with a clinical course complicated by CMV disease. Anti-CMV prophylaxis was given for 100 days. Immunosuppression consisted of alemtuzumab, tacrolimus, mycophenolate mofetil and prednisolone. Five months posttransplant, CMV tissue invasive disease of the upper gastrointestinal tract was evident without the presence of viremia, tested by quantitative polymerase chain reaction (PCR). Complete viral load suppression was achieved with intravenous ganciclovir, followed by valganciclovir for secondary prophylaxis. Mycophenolate mofetil and prednisolone were discontinued. Shortly thereafter the patient presented with recurrent CMV and candida esophagitis. While on ganciclovir and caspofungin, the patient developed CMV tissue invasive disease of the ileal graft, with persistent absence of viremia. Foscarnet and CMV immunoglobulin were added. Viral load declined to undetectable levels; however, clinical improvement did not occur due to occurrence of graft rejection. Despite infliximab and high dose prednisolone, graft rejection was progressive, requiring surgical explantation of the graft. This case highlights the importance of additional diagnostic tools such as endoscopy including PCR analysis of tissue samples. Extension of primary antiviral prophylaxis interval up to 6 months and prolonged retreatment for recurrent CMV disease may be useful to avoid severe CMV-related complications. PMID:24703746

  14. Registry of Hospital das Clínicas of the University of São Paulo Medical School: first official solid organ and tissue transplantation report - 2008

    Directory of Open Access Journals (Sweden)

    Estela Azeka

    2009-02-01

    Full Text Available OBJECTIVE: The aim of this study was to report a single center experience of organ and tissue transplantation INTRODUCTION: This is the first report of organ and tissue transplantation at the Hospital das Clínicas of the University of Sao Paulo Medical School. METHODS: We collected data from each type of organ transplantation from 2002 to 2007. The data collected were patient characteristics and actuarial survival Kaplan-Meier curves at 30 days, one year, and five years RESULTS: There were a total of 3,321 transplants at our institution and the 5-year survival curve ranged from 53% to 88%. CONCLUSION: This report shows that solid organ and tissue transplants are feasible within the institution and allow us to expect that the quality of transplantation will improve in the future.

  15. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population. PMID:26184082

  16. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.

  17. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  18. Optimization of MRI sequences in observation of SPIO-labled bone marrow stromal cells transplanted into rat brain

    International Nuclear Information System (INIS)

    Objective: To determine the optimal MRI sequence in observation of superparamagnetic iron oxide (SPIO) -labled bone marrow stromal cells (BMSCs)transplanted into rat brain. Methods: SPIO-labled BMSCs were transplanted into the brain of 32 rats. TSE-T1WI, TSE-T2WI and FFE-T2WI were obtained immediately after transplantation to measure and the area and signal intensity of hypointense areas of different sequences with 1.5 T 47 mm inner diameter micro-coil compared. Results: Round or irregular hypointense areas were observed in the brain of all the rats which were transplanted with SPIO-labled BMSCs in the images of the three sequences. Among these, FFE-T2WI showed the biggest hypointense area and the minimum signal intensity. Conclusion: FFE-T2WI sequence is the most sensitive sequence to observe SPIO-labled BMSCs with 1.5 T 47 mm inner diameter micro-coil in vivo. (authors)

  19. Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target.

    Directory of Open Access Journals (Sweden)

    Karen L Elliott

    Full Text Available The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons to neural crest-derived ganglia (visceral motor neurons or ear-derived hair cells (inner ear and lateral line efferent neurons. Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.

  20. Detection of acute renal allograft rejection by analysis of renal tissue proteomics in rat models of renal transplantation

    Directory of Open Access Journals (Sweden)

    Dai Yong

    2008-01-01

    Full Text Available At present, the diagnosis of renal allograft rejection requires a renal biopsy. Clinical management of renal transplant patients would be improved if rapid, noninvasive and reliable biomarkers of rejection were available. This study is designed to determine whether such protein biomarkers can be found in renal-graft tissue proteomic approach. Orthotopic kidney transplantations were performed using Fisher (F344 or Lewis rats as donors and Lewis rats as recipients. Hence, there were two groups of renal transplant models: one is allograft (from F344 to Lewis rats; another is syngrafts (from Lewis to Lewis rats serving as control. Renal tissues were collected 3, 7 and 14 days after transplantation. As many as 18 samples were analyzed by 2-D Electrophoresis and mass spectrometry (MALDI-TOF-TOF-MS. Eleven differentially expressed proteins were identified between groups. In conclusion, proteomic technology can detect renal tissue proteins associated with acute renal allograft rejection. Identification of these proteins as diagnostic markers for rejection in patients′ urine or sera may be useful and non-invasive, and these proteins might serve as novel therapeutic targets that also help to improve the understanding of mechanism of renal rejection.

  1. Frequency-Dependent Viscoelastic Parameters of Mouse Brain Tissue Estimated by MR Elastography

    OpenAIRE

    Clayton, E. H.; Garbow, J. R.; Bayly, P.V.

    2011-01-01

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include: (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar; and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600 Hz –1...

  2. The effects of the hypothermic management of brain dead dogs on preserving graft viability in heart transplantation.

    Science.gov (United States)

    Ichikawa, H; Sakata, K; Takahashi, T; Ogiwara, H; Otaki, A; Ishikawa, S; Morishita, Y

    1998-02-01

    The effect of hypothermic management for brain dead dogs on preserving graft viability was evaluated through preservation and transplantation. After the occurrence of brain death, 43 dogs were divided into two groups; the normothermic group (37.2+/-0.3 degrees C) and the hypothermic group (31.8+/-0.3 degrees C) according to the esophageal temperature. After the 6-hour management of brain dead donors, the heart beat was arrested using a cardioplegic solution followed by coronary vascular bed washout. The donor heart was then harvested and preserved for 12 hours with simple immersion into the University of Wisconsin solution. Following preservation, orthotopic transplantation was performed in six grafts randomly selected from each group. During the 6-hour management of brain dead dogs; 1) heart rates, rate-pressure products, and the total amount of catecholamine were significantly (p<0.05) lower in the hypothermic group than in the normothermic group, and 2) lactate contents collected from the coronary sinus blood and O2-extraction rates of the heart tended to be lower in the hypothermic group than in the normothermic group. During 12 hours of preservation, intracellular pH and creatine phosphate contents were higher in the hypothermic group than in the normothermic group. Following orthotopic transplantation, the animals in the hypothermic group showed a significantly (p<0.05) higher recovery rate of left ventricular (LV) pressure and the maximum rate of the rise of LV pressure compared with normothermic group animals. We conclude that the hypothermic management of brain dead dogs may be effective in preserving graft viability and may provide a clinical application for heart transplantation with acceptable outcomes. PMID:9537536

  3. Brain Extraction and Fuzzy Tissue Segmentation in Cerebral 2D T1-Weigthed Magnetic Resonance Images

    OpenAIRE

    Bouchaib Cherradi; Omar Bouattane; Mohamed Youssfi; Abdelhadi Raihani

    2011-01-01

    In medical imaging, accurate segmentation of brain MR images is of interest for many brain manipulations. In this paper, we present a method for brain Extraction and tissues classification. An application of this method to the segmentation of simulated MRI cerebral images in three clusters will be made. The studied method is composed with different stages, first Brain Extraction from T1-weighted 2D MRI slices (TMBE) is performed as pre-processing procedure, then Histogram based centroids init...

  4. Safety considerations for transplanting cryopreserved ovarian tissue to restore fertility in female patients who have recovered from Ewing's sarcoma

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Greve, Tine; Wielenga, Vera Timmermans;

    2014-01-01

    Ewing's sarcoma (EWS) is a highly malignant cancer in children, adolescents and young adults. The chemotherapy required to treat female EWS patients may cause primary ovarian insufficiency and infertility as a side effect. Cryopreservation of ovarian tissue before the start of chemotherapy can...... potentially preserve fertility. When the patient has been cured and primary ovarian insufficiency has developed, transplantation of frozen/thawed ovarian tissue can restore ovarian function. The tissue is usually collected before chemotherapy is initiated, and malignant cells may contaminate the stored...... EWS patients and presents a new case of malignant cells in an ovarian biopsy from a girl with EWS....

  5. Curative effect of transplantation of mesenchymal stem cells transfected with recombinant lentiviral vectors carrying brain-derived neurotrophic factor gene on intracerebral hemorrhage in rats

    Institute of Scientific and Technical Information of China (English)

    任瑞芳

    2013-01-01

    Objective To observe the curative effect of transplantation of mesenchymal stem cells(MSCs) transfected with recombinant lentiviral vectors carrying brain-derived neurotrophic factor(BDNF) gene on intracerebral

  6. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs.

    Science.gov (United States)

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-06-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks' balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  7. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs

    Science.gov (United States)

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-01-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks’ balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. PMID:27482231

  8. Dynamically monitoring tissue factor and tissue factor pathway inhibitor following secondary brain injury

    Institute of Scientific and Technical Information of China (English)

    吴雪海; 施小燕; 干建新; 卢兴国; 江观玉; 周君富

    2003-01-01

    Objective: To study the altering rule of coagulation function at molecular level in patients with secondary brain injury (SBI).Methods: Tissue factor (TF) and tissue factor pathway inhibitor (TFPI) were studied in 32 patients 1, 2, 3 and 7 days after craniocerebral injury. Repeated cranial CT scans and platelet counts were made simultaneously. Same measurements were done in 30 normal adults except CT scan.Results: No obvious difference was found in age, sex and platelet count between the injured and the normal groups. TFPI/TF decreased markedly in the first week after injury in patients with SBI, but only decreased on the 7th day in the patients without obvious SBI. For the patients who developed delayed intracranial hematoma (DIH) or hematoma enlargement, TF rose only 1 and 2 days after injury, but TFPI had a tendency to rise again after a fall on the 3rd day. For those patients who developed no DIH, TF rose all the time within the 1st week.Conclusions: Decrease of TFPI/TF for a long time, especially within 3 days after injury, may be one of the most important reasons for SBI. High expression of TF for a relative short time and increase of TFPI after a fall within 3 days may be one of the important reasons for DIH or hematoma enlargement.

  9. Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry.

    Science.gov (United States)

    Canovic, Elizabeth Peruski; Qing, Bo; Mijailovic, Aleksandar S; Jagielska, Anna; Whitfield, Matthew J; Kelly, Elyza; Turner, Daria; Sahin, Mustafa; Van Vliet, Krystyn J

    2016-01-01

    To design and engineer materials inspired by the properties of the brain, whether for mechanical simulants or for tissue regeneration studies, the brain tissue itself must be well characterized at various length and time scales. Like many biological tissues, brain tissue exhibits a complex, hierarchical structure. However, in contrast to most other tissues, brain is of very low mechanical stiffness, with Young's elastic moduli E on the order of 100s of Pa. This low stiffness can present challenges to experimental characterization of key mechanical properties. Here, we demonstrate several mechanical characterization techniques that have been adapted to measure the elastic and viscoelastic properties of hydrated, compliant biological materials such as brain tissue, at different length scales and loading rates. At the microscale, we conduct creep-compliance and force relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we perform impact indentation experiments using a pendulum-based instrumented indenter. At the macroscale, we conduct parallel plate rheometry to quantify the frequency dependent shear elastic moduli. We also discuss the challenges and limitations associated with each method. Together these techniques enable an in-depth mechanical characterization of brain tissue that can be used to better understand the structure of brain and to engineer bio-inspired materials. PMID:27684097

  10. Phospholipase A2 changes and its significance on brain tissue of rat in severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yao Xuan; Chen Xi; Ji Zongzheng

    2007-01-01

    Objective To survey changes and the significance of phospholipase A2(PLA2) on brain tissue of SD rat in acute pancreatitis. Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct, rat model of severe acute pancreatitis (SAP) was made,and it included four groups: the control group, the sham-operation group, the SAP group and the PLA2 inhibitor-treated group of SAP. Serum amylases, PLA2 and PLA2 in brain tissue were measured and the brain tissue changes were observed. Results There were no significant difference in serum amylases, PLA2 and PLA2 in brain tissue between the sham-operation and the control groups; the levels of serum amylases, PLA2 and PLA2 in brain tissue in the SAP group were higher than those in the control. In the SAP group expansion and hemorrhage of meninges, intracephalic arteriolar hyperemia, in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed, significant differences were found between two groups.Compared with the SAP group, the level of serum amylase, PLA2 and PLA2 in brain tissue were reduced significantly in the treatment group of SAP. Pathological damages in the treatment group were significantly reduced when compared with the SAP group. Conclusion PLA2 might play an important role in brain tissue damages in severe acute pancreatitis.

  11. Effects of three different types of antifreeze proteins on mouse ovarian tissue cryopreservation and transplantation.

    Directory of Open Access Journals (Sweden)

    Jaewang Lee

    Full Text Available Ovarian tissue (OT cryopreservation is effective in preserving fertility in cancer patients who have concerns about fertility loss due to cancer treatment. However, the damage incurred at different steps during the cryopreservation procedure may cause follicular depletion; hence, preventing chilling injury would help maintain ovarian function.This study was designed to investigate the beneficial effects of different antifreeze proteins (AFPs on mouse ovarian tissue cryopreservation and transplantation.Ovaries were obtained from 5-week-old B6D2F1 mice, and each ovary was cryopreserved using two-step vitrification and four-step warming procedures. In Experiment I, ovaries were randomly allocated into fresh, vitrification control, and nine experimental groups according to the AFP type (FfIBP, LeIBP, type III and concentration (0.1, 1, 10 mg/mL used. After vitrification and warming, 5,790 ovarian follicles were evaluated using histology and TUNEL assays, and immunofluorescence for τH2AX and Rad51 was used to detect DNA double-strand breaks (DSBs and repair (DDR, respectively. In Experiment II, 20 mice were randomly divided into two groups: one where the vitrification and warming media were supplemented with 10 mg/mL LeIBP, and the other where media alone were used (control. Ovaries were then autotransplanted under both kidney capsules 7 days after vitrification together with the addition of 10 mg/mL LeIBP in the vitrification-warming media. After transplantation, the ovarian follicles, the percentage of apoptotic follicles, the extent of the CD31-positive area, and the serum FSH levels of the transplanted groups were compared.In Experiment I, the percentage of total grade 1 follicles was significantly higher in the 10 mg/mL LeIBP group than in the vitrification control, while all AFP-treated groups had significantly improved grade 1 primordial follicle numbers compared with those of the vitrification control. The number of apoptotic (TUNEL

  12. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    Science.gov (United States)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  13. The Possible Protective Effect of Bone Marrow Transplantation on the Haematopoietic and Lymphoid Tissues in Gamma-Irradiated Rats

    International Nuclear Information System (INIS)

    The current work was done on male albino rats (Rattus norvegicus) - of about 110 to 150 g body weight - to investigate whether bone marrow (BM) transplantation has a role in reducing the dangerous effect of γ-irradiation on the haematopoietic and lymphoid tissues. Control group, BM-injected group, irradiated group and irradiated BM-injected group were used. All the treated animal groups were sacrificed after 5 weeks of the treatments. The haematological analyses included the blood components (WBCs, RBCs, HGB, HCT, PLT). The biochemical analyses included lactate dehydrogenase, malondialdehyde (MDA) and glutathione (GSH). The histopathological study included the bone marrow, spleen and intestinal lymph nodes. Exposure to γ-radiation induced a significant decrease in certain blood components (white blood cells, red blood cells, haemoglobin content, haematocrit value, blood platelets count) and GSH level, and a significant increase in lactate dehydrogenase and MDA levels. Reduction in bone marrow components, decrease in cell populations of the spleen tissue and atrophy of lymph nodes tissue were recorded. BM transplantation after 3 hours to whole body gamma-radiation restored the value of the haematocrit, partially ameliorated the other blood component (WBCs, RBCs, HGB, HCT, PLT) and demonstrated a significant preservation of the bone marrow components and scanty adipose cells’ replacement. An increase in cellularity of the periarteriolar lymphocyte sheath of the white pulps in the spleen tissue and the presence of follicular hyperplasia in the lymph nodes tissue were detected. In Conclusion, BM transplantation exerts a protective against radiation exposure on the haematopoietic and lymphoid tissues of the irradiatedon the haematopoietic and lymphoid tissues of the irradiated animals

  14. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A;

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from...

  15. Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: a rabbit model.

    Directory of Open Access Journals (Sweden)

    Zheng Wu

    Full Text Available To construct an auto-tissue-engineered lamellar cornea (ATELC for transplantation, based on acellular porcine corneal stroma and autologous corneal limbal explants, a dynamic culture process, which composed of a submersion culture, a perfusion culture and a dynamic air-liquid interface culture, was performed using appropriate parameters. The results showed that the ATELC-Dynamic possessed histological structure and DNA content that were similar to native lamellar cornea (NLC, p>0.05. Compared to NLC, the protein contents of zonula occludens-1, desmocollin-2 and integrin β4 in ATELC-Dynamic reached 93%, 89% and 73%, respectively. The basal cells of ATELC-Dynamic showed a better differentiation phenotype (K3-, P63+, ABCG2+ compared with that of ATELC in static air-lift culture (ATELC-Static, K3+, P63-, ABCG2-. Accordingly, the cell-cloning efficiency of ATELC-Dynamic (9.72±3.5% was significantly higher than that of ATELC-Static (2.13±1.46%, p0.05. Rabbit lamellar keratoplasty showed that the barrier function of ATELC-Dynamic was intact, and there were no signs of epithelial shedding or neovascularization. Furthermore, the ATELC-Dynamic group had similar optical properties and wound healing processes compared with the NLC group. Thus, the sequential dynamic culture process that was designed according to corneal physiological characteristics could successfully reconstruct an auto-lamellar cornea with favorable morphological characteristics and satisfactory physiological function.

  16. Identifying markers of pathology in SAXS data of malignant tissues of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Siu, K.K.W. [School of Physics and Materials Engineering, PO Box 27, Monash University, Victoria 3800 (Australia)]. E-mail: Karen.Siu@spme.monash.edu.au; Butler, S.M. [School of Computer Science and Software Engineering, PO Box 75, Monash University, Victoria 3800 (Australia); Beveridge, T. [School of Physics and Materials Engineering, PO Box 27, Monash University, Victoria 3800 (Australia); Gillam, J.E. [School of Physics and Materials Engineering, PO Box 27, Monash University, Victoria 3800 (Australia); Hall, C.J. [Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); Kaye, A.H. [Department of Surgery, University of Melbourne, Parkville 3050 (Australia); Department of Neurosurgery, Royal Melbourne Hospital, Parkville 3050 (Australia); Lewis, R.A. [Monash Centre for Synchrotron Science, PO Box 27, Monash University, Victoria 3800 (Australia); Mannan, K. [Division of Neurosurgery, University of Saskatchewan, Saskatoon S7N 5E5 (Canada); McLoughlin, G. [Division of Neurosurgery, University of Saskatchewan, Saskatoon S7N 5E5 (Canada); Pearson, S. [Physics and Electronics, University of New England, Armidale, New South Wales 2351 (Australia); Round, A.R. [Department of Materials and Medical Sciences, Cranfield University, Wiltshire SN6 8LA (United Kingdom); Schueltke, E. [Division of Neurosurgery, University of Saskatchewan, Saskatoon S7N 5E5 (Canada); Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon S7N 5E5 (Canada); Department of Neurological Science, Walton Medical Centre, University of Liverpool, L97 LJ (United Kingdom); Webb, G.I. [School of Computer Science and Software Engineering, PO Box 75, Monash University, Victoria 3800 (Australia); Wilkinson, S.J. [Department of Materials and Medical Sciences, Cranfield University, Wiltshire SN6 8LA (United Kingdom)

    2005-08-11

    Conventional neuropathological analysis for brain malignancies is heavily reliant on the observation of morphological abnormalities, observed in thin, stained sections of tissue. Small Angle X-ray Scattering (SAXS) data provide an alternative means of distinguishing pathology by examining the ultra-structural (nanometer length scales) characteristics of tissue. To evaluate the diagnostic potential of SAXS for brain tumors, data was collected from normal, malignant and benign tissues of the human brain at station 2.1 of the Daresbury Laboratory Synchrotron Radiation Source and subjected to data mining and multivariate statistical analysis. The results suggest SAXS data may be an effective classifier of malignancy.

  17. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  18. In Situ Transplantation of Alginate Bioencapsulated Adipose Tissues Derived Stem Cells (ADSCs via Hepatic Injection in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Mong-Jen Chen

    Full Text Available Adipose tissue derived stem cells (ADSCs transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model.The ADSCs isolated from human alpha 1 antitrypsin (M-hAAT transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one. Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two.Our results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted

  19. Estimation of Drug Binding to Brain Tissue: Methodology and in Vivo Application of a Distribution Assay in Brain Polar Lipids.

    Science.gov (United States)

    Belli, Sara; Assmus, Frauke; Wagner, Bjoern; Honer, Michael; Fischer, Holger; Schuler, Franz; Alvarez-Sánchez, Rubén

    2015-12-01

    The unbound drug concentration-effect relationship in brain is a key aspect in CNS drug discovery and development. In this work, we describe an in vitro high-throughput distribution assay between an aqueous buffer and a microemulsion of porcine brain polar lipids (BPL). The derived distribution coefficient LogDBPL was applied to the prediction of unbound drug concentrations in brain (Cu,b) and nonspecific binding to brain tissue. The in vivo relevance of the new assay was assessed for a large set of proprietary drug candidates and CNS drugs by (1) comparing observed compound concentrations in rat CSF with Cu,b calculated using the LogDBPL assay in combination with total drug brain concentrations, (2) comparing Cu,b derived from LogDBPL and total drug brain concentrations to Cu,b estimated using in vitro P-glycoprotein efflux ratio data and unbound drug plasma levels, and (3) comparing tissue nonspecific binding data from human brain autoradiography studies for 17 PET tracer candidates to distribution in BPL. In summary, the LogDBPL assay provides a predicted drug fraction unbound in brain tissue that is nearly identical to brain homogenate equilibrium dialysis with an estimation of in vivo Cu,b that is superior to LogD in octanol. LogDBPL complements the approach for predicting Cu,b based on in vitro P-glycoprotein efflux ratio and in vivo unbound plasma concentration and stands as a fast and cost-effective tool for nonspecific brain binding optimization of PET ligand candidates.

  20. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  1. Results from a horizon scan on risks associated with transplantation of human organs, tissues and cells: from donor to patient.

    Science.gov (United States)

    Herberts, C A; Park, M V D Z; Pot, J W G A; de Vries, C G J C A

    2015-03-01

    The successful transplantation of human materials such as organs, tissues and cells into patients does not only depend on the benefits, but also on the mitigation of risks. To gain insight into recent publications on risks associated with the process of transferring human materials from donor to recipient we performed a horizon scan by reviewing scientific literature and news websites of 2011 on this subject. We found there is ample information on how extended donor criteria, such as donor age, affect the survival rates of organs or patients. Interestingly, gender mismatch does not appear to be a major risk factor in organ rejection. Data on risks of donor tumor transmission was very scarce; however, risk categories for various tumor types have been suggested. In order to avoid rejection, a lot of research is directed towards engineering tissues from a patient's own tissues and cells. Some but not all of these developments have reached the clinic. Developments in the field of stem cell therapy are rapid. However, many hurdles are yet to be overcome before these cells can be applied on a large scale in the clinic. The processes leading to genetic abnormalities in cells differentiated from stem cells need to be identified in order to avoid transplantation of aberrant cells. New insights have been obtained on storage and preservation of human materials, a critical step for success of their clinical use. Likewise, quality management systems have been shown to improve the quality and safety of human materials used for transplantation.

  2. Detection of acute renal allograft rejection by analysis of Renal TissueProteomics in rat models of renal transplantation

    International Nuclear Information System (INIS)

    At present, the diagnosis of renal allograft rejection requires a renalbiopsy. Clinical management of renal transplant patients would be improved ifrapid, noninvasive and reliable biomarkers of rejection were available. Thisstudy is designed to determine whether such protein biomarkers can be foundin renal graft tissue proteomic approach. Orthotopic kidney transplantationswere performed using Fisher (F344) or Lewis rats as donors and Lewis rats asrecipients. Hence, there were two groups of renal transplant models: one isallograft (from F344 to Lewis rats); another is syngrafts (from Lewis toLewis rats) serving as control. Renal tissues were collected 3, 7 and 14 daysafter transplantation. As many 18 samples were analyzed by 2-DElectrophoresis and mass spectrometry (MALDI-TOF-TOF-MS). Elevendifferentially expressed proteins were identified between groups. Inconclusion, proteomic technology can detect renal tissue proteins associatedwith acute renal allograft rejection. Identification of these proteins asdiagnostic markers for rejection in patient's urine or sera may be useful andnon-invasive, and these proteins might serve as novel therapeutic targetsthat also help to improve the understanding of mechanisms of renal rejection.(author)

  3. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A;

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from...... conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean...

  4. Regulating Transplants

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Legislation to determine brain death is viewed as essential in controlling the organ transplant industry Organ transplant represents a very sensitive and complicated issue. Experts say the temporary administrative regulations recently promulgated by the Central Government are an important step, but relevant laws and regulations must follow. Among these, the

  5. Ovarian tissue cryopreservation and transplantation among alternatives for fertility preservation in the Nordic countries - compilation of 20 years of multicenter experience

    DEFF Research Database (Denmark)

    Rodriguez-Wallberg, Kenny A; Tanbo, Tom; Tinkanen, Helena;

    2016-01-01

    cryopreservation to be experimental. In Iceland, embryo cryopreservation is the only option for fertility preservation. Most centers use slow-freezing methods for ovarian tissue cryopreservation. Most patients selected for ovarian tissue cryopreservation were newly diagnosed with cancer and the tissue......, ovarian tissue cryopreservation was reported to be safe. Slow freezing methods are still preferred. Promising results of recovery of fertility have been reported in Nordic countries that have initiated ovarian tissue transplantation procedures....

  6. Fetal hypothalamic transplants into brain irradiated rats: Graft morphometry and host behavioral responses

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, S.H.; Rubin, P.; White, H.C.; Wiegand, S.J.; Gash, D.M. (Univ. of Rochester Medical Center, NY (USA))

    1990-08-01

    This study was designed to test the hypothesis that neural implants can ameliorate or prevent some of the long-term changes associated with CNS irradiation. Using a rat model, the initial study focused on establishing motor, regulatory, and morphological changes associated with brain radiation treatments. Secondly, fetal hypothalamic tissue grafts were placed into the third ventricle of rats which had been previously irradiated. Adult male Long Evans rats received one of three radiation doses (15, 22.5, 30 Gy) or no radiation. Three days after irradiation, 7 animals in each dose group received an embryonic day 17 hypothalamic graft into the third ventricle while the remaining 8-9 animals in each group received injections of vehicle solution (sham). Few changes were observed in the 15 and 22.5 Gy animals, however rats in the 30 Gy treatment group showed stereotypic and ambulatory behavioral hyperactivity 32 weeks after irradiation. Regulatory changes in the high dose group included decreased growth rate and decreased urine osmolalities, but these measures were extremely variable among animals. Morphological results demonstrated that 30 Gy irradiated animals showed extensive necrosis primarily in the fimbria, which extended into the internal capsule, optic nerve, hippocampus, and thalamus. Hemorrhages were found in the hippocampus, thalamus, and fimbria. Defects in the blood-brain barrier also were evident by entry of intravascularly injected horseradish peroxidase into the parenchyma of the brain. Animals in the 30 Gy grafted group showed fewer behavioral changes and less brain damage than their sham grafted counterparts. Specifically, activity measures were comparable to normal levels, and a dilute urine was not found in the 30 Gy implanted rats. Morphological changes support these behavioral results since only two 30 Gy implanted rats showed necrosis.

  7. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    OpenAIRE

    Anafi, Ron C.; Pellegrino, Renata; Shockley, Keith R.; Romer, Micah; Tufik, Sergio; Pack, Allan I.

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the...

  8. Isolation and Functional Assessment of Mitochondria from Small Amounts of Mouse Brain Tissue

    OpenAIRE

    Chinopoulos, Christos; Zhang, Steven F.; Thomas, Bobby; Ten, Vadim; Starkov, Anatoly A.

    2011-01-01

    Recent discoveries have brought mitochondria functions in focus of the neuroscience research community and greatly stimulated the demand for approaches to study mitochondria dysfunction in neurodegenerative diseases. Many mouse disease models have been generated, but studying mitochondria isolated from individual mouse brain regions is a challenge because of small amount of the available brain tissue. Conventional techniques for isolation and purification of mitochondria from mouse brain subr...

  9. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    Science.gov (United States)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  10. Influence of recipient gender on cytochrome P450 isoforms expression in intrasplenic fetal liver tissue transplants in rats.

    Science.gov (United States)

    Lupp, Amelie; Hugenschmidt, Sabine; Danz, Manfred; Müller, Dieter

    2003-06-30

    Rat livers display a sex-specific cytochrome P450 (P450) isoforms expression pattern which is regulated by a differential profile of growth hormone (GH) secretion. The aim of the present study was to elucidate whether liver cell transplants at an ectopic site are also subject to this influence. Fetal liver tissue suspensions of mixed gender were transplanted into the spleen of adult male or female syngenic recipients. Four months after grafting transplant recipients and age-matched controls were treated with beta-naphthoflavone (BNF), phenobarbital (PB), dexamethasone (DEX) or the solvents and sacrificed 24 or 48 h thereafter. Livers and intrasplenic transplants were evaluated for the expression of the P450 subtypes 1A1, 2B1, 2E1, 3A2 and 4A1 by means of immunohistochemistry. The livers of both male and female rats displayed nearly no P450 1A1, but a distinct P450 2B1, 2E1, 3A2 and 4A1 expression. Whereas no sex differences were seen in the P450 1A1 expression, the immunostaining for P450 2B1, 3A2 and 4A1 was stronger in males and that for P450 2E1 in females. Similarly, in the intrasplenic liver cell transplants almost no P450 1A1, but a noticeable P450 2B1, 2E1, 3A2 and 4A1 expression was observed. Like in the respective livers, the immunostaining for P450 2B1, 3A2 and 4A1 was stronger in the transplants hosted by male than by female rats, whereas the opposite was the case for the P450 2E1 expression. Both in livers and transplants with some sex-specific differences P450 1A1 and 2E1 expression was induced by BNF, that of P450 2B1 by BNF and PB, and that of P450 3A2 by PB and DEX. These results indicate that the P450 system of ectopically transplanted liver cells is influenced by the gender of the recipient organism like that of the orthotopic livers.

  11. Mimicking brain tissues by doping scatterers into gelatin tissue phantoms and determination of chemical species responsible for NMPPAS

    Science.gov (United States)

    Dahal, Sudhir; Cullum, Brian M.

    2012-06-01

    It has been shown that non-resonant multiphoton photoacoustic spectroscopy (NMPPAS) has a great potential to be used as a high resolution surgical guidance technique during brain tumor surgery due to its ability of non-invasive or minimally invasive tumor differentiation. However, for experimental purposes associated with method validation, the use of real tissues is not always ideal because of issues such as availability, safety, storage, chemical doping, necessary control of size and shape, etc. To overcome these issues, tissue phantoms made from animal tissues and/or biochemical constituents, are often employed for such analyses. This work demonstrates the ability to develop and characterize gelatin based tissue phantoms with comparable optical and acoustic properties to real tissues by doping the phantoms with a scattering substance, 0.3 μm diameter Al2O3 particles. Using these phantoms, light scattering coefficients (μs) of 39 cm-1 have been generated, which are comparable to real brain tissue, thus making them a great alternative to real tissue for validation studies. In addition, this work also investigates the non-fluorescent species NAD+ found in the tissues, to evaluate its potential for being detected by NMPPAS. NMPPAS spectra of NAD+ shows a very promising beginning to determine other chemical species such as flavins, collagen, tryptophan, etc responsible for NMPPAS spectral signatures, associated with tumorogenesis.

  12. Discovery of Undescribed Brain Tissue Changes Around Implanted Microelectrode Arrays

    OpenAIRE

    Himanshi Desai

    2012-01-01

    Brain-implantable microelectrode arrays are devicesdesigned to record or electrically stimulate the activity ofneurons in the brain. These devices hold the potential tohelp treat epilepsy, paralysis, blindness, and deafness, andalso provide researchers with insights into a varietyof neural processes, such as memory formation.While these devices have a very promising future,researchers are discovering that their long-termfunctionality is greatly limited by the brain’s naturalimmune response to...

  13. Transplanting intact donor tissue enhances dopamine cell survival and the predictability of motor improvements in a rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Rosemary A Fricker

    Full Text Available Primary cell transplantation is currently the gold standard for cell replacement in Parkinson's disease. However, the number of donors needed to treat a single patient is high, and the functional outcome is sometimes variable. The present work explores the possibility of enhancing the viability and/or functionality of small amounts of ventral mesencephalic (VM donor tissue by reducing its perturbation during preparation and implantation. Briefly, unilaterally lesioned rats received either: (1 an intact piece of half an embryonic day 13 (E13 rat VM; (2 dissociated cells from half an E13 rat VM; or (3 no transplant. D-amphetamine- induced rotations revealed that animals receiving pieces of VM tissue or dissociated cells showed significant improvement in ipsilateral rotation 4 weeks post transplantation. By 6 weeks post transplantation, animals receiving pieces of VM tissue showed a trend for further improvement, while those receiving dissociated cells remained at their 4 week scores. Postmortem cell counts showed that the number of dopaminergic neurons in dissociated cell transplants was significantly lower than that surviving in transplants of intact tissue. When assessing the correlation between the number of dopamine cells in each transplant, and the improvement in rotation bias in experimental animals, it was shown that transplants of whole pieces of VM tissue offered greater predictability of graft function based on their dopamine cell content. Such results suggest that maintaining the integrity of VM tissue during implantation improves dopamine cell content, and that the dopamine cell content of whole tissue grafts offers a more predictable outcome of graft function in an animal model of Parkinson's disease.

  14. Medawar's legacy to cellular immunology and clinical transplantation: a commentary on Billingham, Brent and Medawar (1956) 'Quantitative studies on tissue transplantation immunity. III. Actively acquired tolerance'.

    Science.gov (United States)

    Simpson, Elizabeth

    2015-04-19

    'Quantitative studies on tissue transplantation immunity. III. Actively acquired tolerance', published in Philosophical Transactions B in 1956 by Peter Medawar and his colleagues, PhD graduate Leslie Brent and postdoctoral fellow Rupert Billingham, is a full description of the concept of acquired transplantation tolerance. Their 1953 Nature paper (Billingham RE et al. 1953 Nature 172, 603-606. (doi:10.1038/172603a0)) had provided initial evidence with experimental results from a small number of neonatal mice, with mention of similar findings in chicks. The Philosophical Transactions B 1956 paper is clothed with an astonishing amount of further experimental detail. It is written in Peter Medawar's landmark style: witty, perceptive and full of images that can be recalled even when details of the supporting information have faded. Those images are provided not just by a series of 20 colour plates showing skin graft recipient mice, rats, rabbits, chickens and duck, bearing fur or plumage of donor origin, but by his choice of metaphor, simile and analogy to express the questions being addressed and the interpretation of their results, along with those of relevant published data and his prescient ideas of what the results might portend. This work influenced both immunology researchers and clinicians and helped to lay the foundations for successful transplantation programmes. It led to the award of a Nobel prize in 1960 to Medawar, and subsequently to several scientists who advanced these areas. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  15. In vivo detection of epileptic brain tissue using static fluorescence and diffuse reflectance spectroscopy.

    Science.gov (United States)

    Yadav, Nitin; Bhatia, Sanjiv; Ragheb, John; Mehta, Rupal; Jayakar, Prasanna; Yong, William; Lin, Wei-Chiang

    2013-02-01

    Diffuse reflectance and fluorescence spectroscopy are used to detect histopathological abnormalities of an epileptic brain in a human subject study. Static diffuse reflectance and fluorescence spectra are acquired from normal and epileptic brain areas, defined by electrocorticography (ECoG), from pediatric patients undergoing epilepsy surgery. Biopsy specimens are taken from the investigated sites within an abnormal brain. Spectral analysis reveals significant differences in diffuse reflectance spectra and the ratio of fluorescence and diffuse reflectance spectra from normal and epileptic brain areas defined by ECoG and histology. Using these spectral differences, tissue classification models with accuracy above 80% are developed based on linear discriminant analysis. The differences between the diffuse reflectance spectra from the normal and epileptic brain areas observed in this study are attributed to alterations in the static hemodynamic characteristics of an epileptic brain, suggesting a unique association between the histopathological and the hemodynamic abnormalities in an epileptic brain.

  16. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    Science.gov (United States)

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  17. Transplanted Bone Marrow Cells Repair Heart Tissue and Reduce Myocarditis in Chronic Chagasic Mice

    OpenAIRE

    MILENA B. P. SOARES; Lima, Ricardo S.; Rocha, Leonardo L.; Takyia, Christina M; Pontes-de-Carvalho, Lain; Campos de Carvalho, Antonio C.; Ribeiro-dos-Santos, Ricardo

    2004-01-01

    A progressive destruction of the myocardium occurs in ∼30% of Trypanosoma cruzi-infected individuals, causing chronic chagasic cardiomyopathy, a disease so far without effective treatment. Syngeneic bone marrow cell transplantation has been shown to cause repair and improvement of heart function in a number of studies in patients and animal models of ischemic cardiopathy. The effects of bone marrow transplant in a mouse model of chronic chagasic cardiomyopathy, in the presence of the disease ...

  18. GLOBAL CONSULTATION ON ESTABLISHMENT A UNIFIED SURVEILLANCE SYSTEM FOR DONATION AND TRANSPLANTATION OF ORGANS, TISSUES AND CELLS OF HUMAN ORIGIN

    Directory of Open Access Journals (Sweden)

    O. V. Orlova

    2011-01-01

    Full Text Available From from February 7th to 9th 2011, the World Health Organization (WHO, the Italian National Transplant Cen- tre and the EU-funded Project «Vigilance and Surveillance of Substances of Human Origin» joined forces to organise a major global consultation that took place in Bologna, Italy. The scope of the project included organs, tissues and cells for transplantation and for assisted reproduction. The participants represented regulatory and non-regulatory government agencies, professional societies and scientific and clinical specialities from all WHO regions. The meeting explored the work already carried out on-line and agreed on priorities for the future deve- lopment of the Project «Vigilance and Surveillance of Substances of Human Origin». 

  19. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    Directory of Open Access Journals (Sweden)

    Woo Chul Jeong

    2015-08-01

    Full Text Available Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  20. Effects of different concentrations of pollen extract on brain tissues of Oncorhynchus mykiss

    Institute of Scientific and Technical Information of China (English)

    Mehmet Fuat Gulhan; Hasan Akgul; Taner Dastan; Sevgi Durna Dastan; Zeliha Selamoglu Talas

    2014-01-01

    Objective: To determine the antioxidant capacities of pollen extract applied at different concentrations on biochemical parameters in brain tissues of rainbow trouts. Methods:parameters in brain tissues of fish treated at various concentrations of the pollen extract (0.5, 2.5, 5, 10, 20 and 30 mg/L) for 96 h. The malondialdehyde levels, total antioxidant status, total oxidant status, oxidative stress index and amounts of total free sulfhydryl groups were analyzed in fish brain. Results:The effective concentration of pollen was determined with some biochemical treated compared to control group (P Conclusions: To apply the pollen to fish reduces the detrimental effects and modulates oxidative status via activating antioxidant defense systems at brain tissue. As a result, pollen can be added up to 10 mg/L to the medium of rainbow trout to improve health of fish.

  1. Brain uptake, pharmacokinetics, and tissue distribution in the rat of neurotoxic N-butylbenzenesulfonamide.

    Science.gov (United States)

    Kumar, Ganesh; Smith, Quentin R; Hokari, Mitsuhiko; Parepally, Jagan; Duncan, Mark W

    2007-06-01

    The pharmacokinetics, cerebrovascular permeability, and tissue distribution of the neurotoxic plasticizer N-butylbenzenesulfonamide (NBBS) were determined in rats. A stable isotope-labeled form ([(13)C(6)]NBBS) was used to circumvent ubiquitous contamination that was evident whenever the native form was measured. Plasticizer decline in plasma, following an iv dose of 1 mg/kg, was described by a triexponential decay function. NBBS was cleared from plasma at a rate of 25 ml/min/kg, and 24 h after administration, plasma concentrations represented 0.04% of the administered dose. These data suggest rapid elimination and uptake into tissue; however, NBBS was not accumulated by any of the tissues studied (i.e., liver, kidney, muscle, adipose tissue, and brain). Given the critical interest in NBBS neurotoxicity, the brain uptake of [(13)C(6)]NBBS was further explored in experiments using the in situ brain perfusion technique. During perfusion with protein-free saline for 15-30 s, the single-pass brain extraction for free [(13)C(6)]NBBS was very high (73-100%) with a unidirectional blood-brain barrier transfer constant (K(in)) of > 0.08 ml/s/g. No significant differences were found in [(13)C(6)]NBBS content among the measured brain regions. Plasma protein binding (70%) only slightly lowered the single-pass brain extraction to 48%. In summary, the results demonstrate that NBBS distributes rapidly to tissues, including brain. Though highly lipophilic with a Log octanol/water partition coefficient of 2.17 +/- 0.09, brain:blood ratios (2:1) for NBBS were consistent throughout the experimental duration, with little indication of accumulation. PMID:17369196

  2. Prostacyclin infusion may prevent secondary damage in pericontusional brain tissue

    DEFF Research Database (Denmark)

    Reinstrup, Peter; Nordström, Carl-Henrik

    2011-01-01

    Prostacyclin is a potent vasodilator, inhibitor of leukocyte adhesion, and platelet aggregation, and has been suggested as therapy for cerebral ischemia. A case of focal traumatic brain lesion that was monitored using intracerebral microdialysis, and bedside analysis and display is reported here........ When biochemical signs of cerebral ischemia progressed, i.v. infusion of prostacyclin was started....

  3. Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    NARCIS (Netherlands)

    R. de Boer (Renske)

    2011-01-01

    textabstractStudies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by human obs

  4. A protein homeostasis signature in healthy brains recapitulates tissue vulnerability to Alzheimer's disease.

    Science.gov (United States)

    Freer, Rosie; Sormanni, Pietro; Vecchi, Giulia; Ciryam, Prajwal; Dobson, Christopher M; Vendruscolo, Michele

    2016-08-01

    In Alzheimer's disease, aggregates of Aβ and tau in amyloid plaques and neurofibrillary tangles spread progressively across brain tissues following a characteristic pattern, implying a tissue-specific vulnerability to the disease. We report a transcriptional analysis of healthy brains and identify an expression signature that predicts-at ages well before the typical onset-the tissue-specific progression of the disease. We obtain this result by finding a quantitative correlation between the histopathological staging of the disease and the expression patterns of the proteins that coaggregate in amyloid plaques and neurofibrillary tangles, together with those of the protein homeostasis components that regulate Aβ and tau. Because this expression signature is evident in healthy brains, our analysis provides an explanatory link between a tissue-specific environmental risk of protein aggregation and a corresponding vulnerability to Alzheimer's disease. PMID:27532054

  5. Liver transplant outcomes using ideal donation after circulatory death livers are superior to using older donation after brain death donor livers.

    Science.gov (United States)

    Scalea, Joseph R; Redfield, Robert R; Foley, David P

    2016-09-01

    Multiple reports have demonstrated that liver transplantation following donation after circulatory death (DCD) is associated with poorer outcomes when compared with liver transplantation from donation after brain death (DBD) donors. We hypothesized that carefully selected, underutilized DCD livers recovered from younger donors have excellent outcomes. We performed a retrospective study of the United Network for Organ Sharing database to determine graft survivals for patients who received liver transplants from DBD donors of age ≥ 60 years, DBD donors  60 years old. Careful donor organ and recipient selection can lead to excellent results, despite previous reports suggesting otherwise. Increased acceptance of these DCD livers would lead to shorter wait list times and increased national liver transplant rates. Liver Transplantation 22 1197-1204 2016 AASLD.

  6. Dynamic effects of point source electroporation on the rat brain tissue.

    Science.gov (United States)

    Sharabi, Shirley; Last, David; Guez, David; Daniels, Dianne; Hjouj, Mohammad Ibrahim; Salomon, Sharona; Maor, Elad; Mardor, Yael

    2014-10-01

    In spite of aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme due to tumor infiltration into the surrounding brain as well as poor blood-brain barrier penetration of most therapeutic agents. In this paper we present a novel approach for a minimally invasive treatment and a non-invasive response assessment methodology consisting of applying intracranial point-source electroporation and assessing treatment effect volumes using magnetic resonance imaging. Using a unique setup of a single intracranial electrode and an external surface electrode we treated rats' brains with various electroporation protocols and applied magnetic resonance imaging to study the dependence of the physiological effects on electroporation treatment parameters. The extent of blood-brain barrier disruption and later volumes of permanent brain tissue damage were found to correlate significantly with the treatment voltages (r(2)=0.99, pelectroporation when planning a treatment for brain tumors.

  7. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  8. Optimal Gaussian Mixture Models of Tissue Intensities in Brain MRI of Patients with Multiple-Sclerosis

    Science.gov (United States)

    Xiao, Yiming; Shah, Mohak; Francis, Simon; Arnold, Douglas L.; Arbel, Tal; Collins, D. Louis

    Brain tissue segmentation is important in studying markers in human brain Magnetic Resonance Images (MRI) of patients with diseases such as Multiple Sclerosis (MS). Parametric segmentation approaches typically assume unimodal Gaussian distributions on MRI intensities of individual tissue classes, even in applications on multi-spectral images. However, this assumption has not been rigorously verified especially in the context of MS. In this work, we evaluate the local MRI intensities of both healthy and diseased brain tissues of 21 multi-spectral MRIs (63 volumes in total) of MS patients for adherence to this assumption. We show that the tissue intensities are not uniform across the brain and vary across (anatomical) regions of the brain. Consequently, we show that Gaussian mixtures can better model the multi-spectral intensities. We utilize an Expectation Maximization (EM) based approach to learn the models along with a symmetric Jeffreys divergence criterion to study differences in intensity distributions. The effects of these findings are also empirically verified on automatic segmentation of brains with MS.

  9. Haloperidol imprinted polymer: preparation, evaluation, and application for drug assay in brain tissue.

    Science.gov (United States)

    Rahmani, Aboubakr; Mohammadpour, Amir Hooshang; Sahebnasagh, Adeleh; Mohajeri, Seyed Ahmad

    2014-11-01

    Several molecularly imprinted polymers (MIPs) were prepared in the present work, and their binding properties were evaluated in comparison with a nonimprinted polymer (NIP). An optimized MIP was selected and applied for selective extraction and analysis of haloperidol in rabbit brain tissue. A molecularly imprinted solid-phase extraction (MISPE) method was developed for cleanup and preconcentration of haloperidol in brain samples before HPLC-UV analysis. Selectivity of the MISPE procedure was investigated using haloperidol and some structurally different drugs with similar polarity that could exist simultaneously in brain tissue. The extraction and analytical process was calibrated in the range of 0.05-10 ppm. The recovery of haloperidol in this MISPE process was calculated between 79.9 and 90.4%. The limit of detection (LOD) and the limit of quantification (LOQ) of the assay were 0.008 and 0.05 ppm, respectively. Intraday precision and interday precision values for haloperidol analysis were less than 5.86 and 7.63%, respectively. The MISPE method could effectively extract and concentrate haloperidol from brain tissue in the presence of clozapine and imipramine. Finally, the imprinted polymer was successfully applied for the determination of haloperidol in a real rabbit brain sample after administration of a toxic dose. Therefore, the proposed MISPE method could be applied in the extraction and preconcentration before HPLC-UV analysis of haloperidol in rabbit brain tissue.

  10. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    International Nuclear Information System (INIS)

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  11. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  12. Microsensors for in vivo Measurement of Glutamate in Brain Tissue

    OpenAIRE

    Miranda van der Zeyden; Oldenziel, Weite H.; Cremers, Thomas I.F.H.; Westerink, Ben H.C.; Si Qin

    2008-01-01

    Several immobilized enzyme-based electrochemical biosensors for glutamate detection have been developed over the last decade. In this review, we compare first and second generation sensors. Structures, working mechanisms, interference prevention, in vitro detection characteristics and in vivo performance are summarized here for those sensors that have successfully detected brain glutamate in vivo. In brief, first generation sensors have a simpler structure and are faster in glutamate detectio...

  13. Static jaw collimation settings to minimize radiation dose to normal brain tissue during stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Young, E-mail: eyhan@uams.edu [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Zhang Xin; Yan Yulong; Sharma, Sunil; Penagaricano, Jose [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Moros, Eduardo [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL (United States); Corry, Peter [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (United States)

    2012-01-01

    At University of Arkansas for Medical Sciences (UAMS) intracranial stereotactic radiosurgery (SRS) is performed by using a linear accelerator with an add-on micromultileaf collimator (mMLC). In our clinical setting, static jaws are automatically adapted to the furthest edge of the mMLC-defined segments with 2-mm (X jaw) and 5-mm (Y jaw) margin and the same jaw values are applied for all beam angles in the treatment planning system. This additional field gap between the static jaws and the mMLC allows additional radiation dose to normal brain tissue. Because a radiosurgery procedure consists of a single high dose to the planning target volume (PTV), reduction of unnecessary dose to normal brain tissue near the PTV is important, particularly for pediatric patients whose brains are still developing or when a critical organ, such as the optic chiasm, is near the PTV. The purpose of this study was to minimize dose to normal brain tissue by allowing minimal static jaw margin around the mMLC-defined fields and different static jaw values for each beam angle or arc. Dose output factors were measured with various static jaw margins and the results were compared with calculated doses in the treatment planning system. Ten patient plans were randomly selected and recalculated with zero static jaw margins without changing other parameters. Changes of PTV coverage, mean dose to predefined normal brain tissue volume adjacent to PTV, and monitor units were compared. It was found that the dose output percentage difference varied from 4.9-1.3% for the maximum static jaw opening vs. static jaw with zero margins. The mean dose to normal brain tissue at risk adjacent to the PTV was reduced by an average of 1.9%, with negligible PTV coverage loss. This dose reduction strategy may be meaningful in terms of late effects of radiation, particularly in pediatric patients. This study generated clinical knowledge and tools to consistently minimize dose to normal brain tissue.

  14. Changes in Lecithin Concentration in the Human Brain Tissue in Some Neurodegenerative Conditions

    International Nuclear Information System (INIS)

    As a consequence of a possible increase in oxidative stress or deterioration of nerve cells during aging, in some states neurodegeneration was demonstrated by multiple biochemical deficiency, especially deficiency of cholesterol and lecithin in brain regions. The aim of this study was to determine the changes in the concentration of lecithin in different regions of brain tissue (MC - motor cortex, NC - nucleus caudates, GT - temporal gyrus) dissected postmortem from people with senile dementia of Alzheimer's type (SDAT), and persons with Parkinson's disease (PD) as compared to people who died without these diseases (C). Spectrophotometric determination of lecithin in 18 postmortem brain tissue regions collected from of 12 persons with SDAT, in 11 postmortem brain tissue regions of 8 persons with PD and in 18 postmortem brain tissue regions of 8 control persons, was performed by enzymatic method. The content of lecithin in MC: 14.4 mg/g fresh tissue (f.t.) and GT: 13.1 mg/g (f.t.) for SDAT was significantly reduced (p < 0.01) by about 30 %, compared to control where there was: 21.6 mg/g (f.t.) in MC and 18.3 mg/g (f.t.) in the GT estimated. In all regions of the brain of PD patients, the content of lecithin was decreased by about 12 % compared to control, but without statistical significance. These results suggest that changes in the content of lecithin in these regions of brain tissue might affect the changes in the membrane potential and cell degeneration. (author)

  15. Trace element determinations in brain tissues from normal and clinically demented individuals

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Mitiko; Genezini, Frederico A., E-mail: mitiko@ipen.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator de Pesquisas; Leite, Renata E.P.; Grinberg, Lea T.; Ferretti, Renata E.L.; Suemoto, Claudia; Pasqualucci, Carlos A.; Jacob-Filho, Wilson, E-mail: renataleite@usp.br, E-mail: lea@grinberg.com.br, E-mail: reloah@usp.br, E-mail: farfel@usp.br, E-mail: csuemoto@gmail.com, E-mail: cpasqua@usp.br, E-mail: wijac@usp.br [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Fac. de Medicina

    2013-07-01

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  16. Trace element determinations in brain tissues from normal and clinically demented individuals

    International Nuclear Information System (INIS)

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  17. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord.

    NARCIS (Netherlands)

    Tewarie, R.D.; Hurtado, A.; Ritfeld, G.J.; Rahiem, S.T.; Wendell, D.F.; Barroso, M.M.; Grotenhuis, J.A.; Oudega, M.

    2009-01-01

    Bone marrow stromal cells (BMSC) transplanted into the contused spinal cord may support repair by improving tissue sparing. We injected allogeneic BMSC into the moderately contused adult rat thoracic spinal cord at 15 min (acute) and at 3, 7, and 21 days (delayed) post-injury and quantified tissue s

  18. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Science.gov (United States)

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  19. Establishment of NOD/SCID mouse models of human hepatocellular carcinoma via subcutaneous transplantation of histologically intact tumor tissue

    Institute of Scientific and Technical Information of China (English)

    Mingxia Yan; Hong Li; Fangyu Zhao; Lixing Zhang; Chao Ge; Ming Yao; Jinjun Li

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most deadly human cancers,but it is very difficult to establish an animal model by using surgical specimens.In the present experiment,histologically intact fresh surgical specimens of HCC were subcutaneously transplanted in non-obese diabetic/severe combined immunodeficienccy (NOD/SCID) mice.The biological characteristics of the original and the corresponding transplanted tumors and cell lines were investigated.The results showed that 5 new animal models and 2 primary cell lines were successfully established from surgical specimens.Hematoxylin-eosin staining showed that xenografts retained major histological features of the original surgical specimens.The two new cell lines had been cultivated for 3 years and successively passaged for more than 100 passages in vitro.The morphological characteristics and biologic features of the two cell lines were genetically similar to the original tumor.The subcutaneous transplant animal models with histologically intact tumor tissue and primary cell lines could be useful for in vivo and in vitro testing of anti-cancer drugs and be ideal models to study various biologic features of HCC.

  20. Cutaneous Heterotopic Brain Tissue (Neuroglial Choristoma) with Dysplastic Features in a Kitten.

    Science.gov (United States)

    Ramírez, G A; Ressel, L; Altimira, J; Vilafranca, M

    2016-07-01

    A 3-month-old, male European shorthair kitten exhibited an ill-defined, soft mass on the skin of the frontal head, which was present since birth. The surgically resected tissue was representative of a discrete dermal and subcutaneous mass comprising islands of neurons, glial and meningothelial elements, sometimes atypical or dysplastic, separated by dense collagenous connective tissue. There was no evident connection between this tissue and the brain. Immunohistochemical examination confirmed the presence of neurons and a pleocellular glial population, supporting a diagnosis of cutaneous neuroglial choristoma believed to be secondary to sequestered (resolved) meningoencephalocoele. Ectopic brain tissue is very rare in small animals. Some atypical features displayed by this tissue may be misdiagnosed as neoplasia. Communication between surgeon and pathologist to clarify the relationship of the lesion to surrounding structures is helpful to avoid misdiagnosis. PMID:27324745

  1. Developmental changes of cytochrome P450 dependent monooxygenase functions after transplantation of fetal liver tissue suspension into spleens of adult syngenic rats.

    Science.gov (United States)

    Lupp, A; Trautmann, A K; Krausse, T; Klinger, W

    1998-06-01

    Fetal liver tissue suspensions were transplanted into the spleens of adult male syngenic Fisher 344 inbred rats. Animals were sacrificed at 3 days, 1, 2, 4 weeks, and 2, 4 and 6 months after transplantation and cytochrome P450 (P450) dependent monooxygenase functions in spleen and liver 9000 g supernatants were assessed by measuring three model reactions for different P450 subtypes: ethoxyresorufin O-deethylation (EROD; mainly 1A), ethoxycoumarin O-deethylation (ECOD; predominantly 1A, 2A, 2B) and ethylmorphine N-demethylation (END; mainly 3A). Values of transplant recipients were compared to those of sham operated and age matched control rats. Spleen weights were significantly higher in transplanted rats, compared to controls or sham operated animals, but there was no influence of the transplants within the spleens on liver weights. With fetal livers at the 21st day of gestation, the day of transplantation, a weak EROD and ECOD, but no END activity was seen. Spleens of controls or sham operated animals displayed nearly no P450 mediated monooxygenase functions. In the explant containing spleens a significant and increasing EROD activity was found from 4 weeks after surgery on and an ECOD activity already 2 weeks after transplantation. END was only slightly enhanced at 6 months after surgery. The livers of all three groups of rats displayed normal EROD, ECOD and END activities. Transplantation of fetal liver tissue suspensions into the spleens did not influence the P450 dependent monooxygenase functions within the livers of the animals. From these results it can be concluded that intrasplenically transplanted liver cells originating from syngenic fetal liver tissue suspensions proliferate and differentiate within the host organs. They display P450 dependent monooxygenase functions with some developmental changes during the observed time period of 6 months.

  2. Adaptive online learning based tissue segmentation of MR brain images

    NARCIS (Netherlands)

    Damkat, C.

    2007-01-01

    The aging population in the European Union and the US has increased the importance of research in neurodegenerative diseases. Imaging plays an essential role in this endeavor by providing insight to the intricate cellular and inter-cellular processes in living tissues that will otherwise be difficul

  3. Corneal transplant

    Science.gov (United States)

    ... clear outer lens on the front of the eye. A corneal transplant is surgery to replace the cornea with tissue ... years. Rejection can sometimes be controlled with steroid eye drops. Other ... are: Bleeding Cataracts Infection of the eye Glaucoma ( ...

  4. Transplantation of wild-type white adipose tissue normalizes metabolic, immune and inflammatory alterations in leptin-deficient ob/ob mice

    OpenAIRE

    Sennello, Joseph A.; Fayad, Raja; Pini, Maria; Gove, Melissa E.; Fantuzzi, Giamila

    2006-01-01

    Leptin-deficient ob/ob mice exhibit several metabolic and immune abnormalities, including thymus atrophy and markedly reduced inflammatory responses. We evaluated whether transplantation of wild type (WT) white adipose tissue (WAT) into ob/ob mice could mimic the effect of recombinant leptin administration in normalizing metabolic, immune and inflammatory abnormalities. Female ob/ob mice received a subcutaneous transplantation of WAT obtained from WT littermates. A separate group of ob/ob mic...

  5. Brain Extraction and Fuzzy Tissue Segmentation in Cerebral 2D T1-Weigthed Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Bouchaib Cherradi

    2011-05-01

    Full Text Available In medical imaging, accurate segmentation of brain MR images is of interest for many brain manipulations. In this paper, we present a method for brain Extraction and tissues classification. An application of this method to the segmentation of simulated MRI cerebral images in three clusters will be made. The studied method is composed with different stages, first Brain Extraction from T1-weighted 2D MRI slices (TMBE is performed as pre-processing procedure, then Histogram based centroids initialization is done, and finally the fuzzy c-means clustering algorithm is applied on the results to segment the image in three clusters. The introduction of this pre-processing procedure has been made in the goal to have a targeted segmentation method. The convergence speed for tissues classification has been considerably improved by avoiding a random initialization of the cluster centres and reduction of the volume of data processing.

  6. Investigation on metal elements in the brain tissues from DNTC patients

    Energy Technology Data Exchange (ETDEWEB)

    Ide-Ektessabi, Ari E-mail: h51167@sakura.kudpc.kyoto-u.ac.jp; Kawakami, Takuo; Ishihara, Ryoko; Mizuno, Yutaka; Takeuchi, Tohru

    2004-07-01

    Trace metallic elements in human cells play important roles in various cell functions as metalloprotein, metalloenzyme or metallic ions. Diffuse neurofibrillary tangles with calcification (DNTC) is an atypical dementia and is characterized pathologically by diffuse neurofibrillary tangles without senile plaques. In this study, X-ray fluorescence (XRF) spectroscopy using synchrotron radiation (SR) was applied to determine the distribution and density of the ultra-trace elements in the brain tissues from DTNC patients. This method made it possible to determine trace metallic elements non-destructively. The trace metallic elements (such as Ca, Fe, Zn, and Pb) in the brain tissues were examined. Two-dimension imaging of the elements and relative quantification of the elements in the brains were performed. The lead concentrations were observed in the calcified blood vessel in the brains with DNTC.

  7. The NSW brain tissue resource centre: Banking for alcohol and major neuropsychiatric disorders research.

    Science.gov (United States)

    Sutherland, G T; Sheedy, D; Stevens, J; McCrossin, T; Smith, C C; van Roijen, M; Kril, J J

    2016-05-01

    The New South Wales Brain Tissue Resource Centre (NSWBTRC) at the University of Sydney (Australia) is an established human brain bank providing tissue to the neuroscience research community for investigations on alcohol-related brain damage and major psychiatric illnesses such as schizophrenia. The NSWBTRC relies on wide community engagement to encourage those with and without neuropsychiatric illness to consent to donation through its allied research programs. The subsequent provision of high-quality samples relies on standardized operational protocols, associated clinical data, quality control measures, integrated information systems, robust infrastructure, and governance. These processes are continually augmented to complement the changes in internal and external governance as well as the complexity and diversity of advanced investigation techniques. This report provides an overview of the dynamic process of brain banking and discusses the challenges of meeting the future needs of researchers, including synchronicity with other disease-focus collections.

  8. The NSW brain tissue resource centre: Banking for alcohol and major neuropsychiatric disorders research.

    Science.gov (United States)

    Sutherland, G T; Sheedy, D; Stevens, J; McCrossin, T; Smith, C C; van Roijen, M; Kril, J J

    2016-05-01

    The New South Wales Brain Tissue Resource Centre (NSWBTRC) at the University of Sydney (Australia) is an established human brain bank providing tissue to the neuroscience research community for investigations on alcohol-related brain damage and major psychiatric illnesses such as schizophrenia. The NSWBTRC relies on wide community engagement to encourage those with and without neuropsychiatric illness to consent to donation through its allied research programs. The subsequent provision of high-quality samples relies on standardized operational protocols, associated clinical data, quality control measures, integrated information systems, robust infrastructure, and governance. These processes are continually augmented to complement the changes in internal and external governance as well as the complexity and diversity of advanced investigation techniques. This report provides an overview of the dynamic process of brain banking and discusses the challenges of meeting the future needs of researchers, including synchronicity with other disease-focus collections. PMID:27139235

  9. Disseminated soft tissue infection and sepsis with Stenotrophomonas maltophilia in a bone marrow transplant patient

    OpenAIRE

    Lipton, Jeffrey H.; MacDonald, Kelly S.

    1996-01-01

    A 32-year-old female presented with aplastic anemia and subsequently underwent a one-antigen mismatched bone marrow transplant from her brother. She failed to engraft and a second graft was attempted. Protracted neutropenia of three months’ duration despite the use of broad spectrum antibiotics occurred. Stenotrophomonas (Xanthomonas) maltophilia metastatic cellulitis developed that did not respond to appropriate antibiotics.

  10. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue

    DEFF Research Database (Denmark)

    Donnez, Jacques; Dolmans, Marie-Madeleine; Pellicer, Antonio;

    2013-01-01

    Aggressive chemotherapy/radiotherapy and bone marrow transplantation can cure >90% of girls and young women affected by disorders requiring such treatment. However, the ovaries are very sensitive to cytotoxic drugs, especially to alkylating agents. Several options are currently available to prese...

  11. Features of microelement maintenance in rat's brain tissues at experimental hypoxia of different degree.

    Directory of Open Access Journals (Sweden)

    Tarasova I.V.

    2011-01-01

    Full Text Available Features of microelement maintenance (iron, zinc, copper, manganese, and cobalt, conditionally toxic chrome and toxic lead were studied in newborn rat's brain tissues at experimental hypoxia of different degree. Tissues of newborn rat’s brain are characterized by high level of saturation and considerable dynamism of microelement maintenance. Till the end of the first week of life, the maintenance of these microelements decreases in 1,5 – 10 times. The level of the toxic lead decreases more than in 2,5 times. The hypoxia of easy degree of newborn rats invokes reduction cobalt level 3 times, iron level 2 times, manganese – on 27,65 %, chrome – on 25,84%, zinc – on 16,43%. It means that considerable deficiency and disbalance of microelement maintenance rat's brain tissues. The heavy degree of hypoxia is characterized by further increase of deficiency and disbalance of microelements.

  12. Distribution of lead in the brain tissues from DNTC patients using synchrotron radiation microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Ide-Ektessabi, Ari [International Innovation Center, Kyoto University, Kyoto (Japan); Ota, Yukihide [Department of Precision Engineering, Kyoto University, Yoshida Honnmachi, Sakyo-ku, Kyoto (Japan)]. E-mail: h51167@sakura.kudpc.kyoto-u.ac.jp; Ishihara, Ryoko [Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya (Japan); Mizuno, Yutaka [Obu Dementia Care Research and Training Center, Obu (Japan); Takeuchi, Tohru [Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya (Japan)

    2005-12-15

    Diffuse neurofibrillary tangles with calcification (DNTC) is a form of dementia with certain characteristics. Its pathology is characterized by cerebrum atrophy, calcification on globus pallidus and dentate nucleus and diffuse neurofibrillary tangles without senile plaques. In the present study brain tissues were prepared from patients with patients DNTC, calcified and non-calcified Alzheimer's disease (AD) patients. The brain tissues were examined non-destructively by X-ray fluorescence (XRF) spectroscopy using synchrotron radiation (SR) microbeams for trace metallic elements Ca, Fe, Cu, Zn and Pb. The XRF analysis showed that there were Pb concentrations in the calcified areas in the brain tissues with both DNTC and AD but there was none in those with non-calcified AD.

  13. Effect of pineapple peel extract on total phospholipids and lipid peroxidation in brain tissues of rats

    Institute of Scientific and Technical Information of China (English)

    Erukainure OL; Ajiboye JA; Adejobi RO; Okafor OY; Kosoko SB; Owolabi FO

    2011-01-01

    Objective:To investigate the ability of the methanolic extract of pineapple peel to attenuate alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues. Methods:Oxidative stress was induced by oral administration of ethanol (20%w/v) at a dosage of 5 mL/kg bw in rats. After 28 days of treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Brain tissues were assayed for total phospholipid (TP) content and malondialdehyde (MDA). Results:Administration of alcohol significantly caused a reduction in TP content. Treatment with pineapple peel extract significantly increased the TP content. Significant high levels of MDA was observed in alcohol-fed rats, treatment with pineapple peel extract significantly reduced the MDA levels. Conclusions:Results obtained from this study indicates that pineapple peel extract protects against alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues.

  14. Morte encefálica, cuidados ao doador de órgãos e transplante de pulmão Brain death, multiorgan donor and lung transplantation

    Directory of Open Access Journals (Sweden)

    Fernando D'Império

    2007-03-01

    patients. This position is a result of great advances in the field of immunology, critical care medicine and pharmacology. However, organ transplantation is now suffering from its own success as the number of patients in waiting lists is dramatically increasing the same is not happening with organ availability results in increasing number of mortalities while waiting for transplantation. Transplant community responses to this situation consist of reviewing the criteria for organ acceptability and developing new strategies to get organs as the called non-heart beating organ donors. CONTENTS: However the physiopathology of brain death and its consequences are now better understood helping in such patients' management. The purpose of this review is to help to identify the most important clinical and therapeutic aspects related to its physiopathology as depletion of vasoactives substances and its importance in the management of cardio and respiratory systems. We also discuss endocrine and hidroelectrolytes disturbances. Organ specific data are also focused in order to offer a whole view of donor management. CONCLUSIONS: It is important to observe that new technologies will be available in the near future to diminish the low rate between organ availability and organ waiting patients. In conclusion, with the raising numbers in transplant waiting lists and scarce resources of organs make us believe that we have to improve the management of multi organ donors and the preservation technology in order to reduce the mortality in such waiting lists.

  15. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    OpenAIRE

    Guangjun Zhao; Xuchu Wang; Yanmin Niu; Liwen Tan; Shao-Xiang Zhang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging da...

  16. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury.

    Science.gov (United States)

    Cho, Sung-Rae; Suh, Hwal; Yu, Ji Hea; Kim, Hyongbum Henry; Seo, Jung Hwa; Seo, Cheong Hoon

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE) in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O₂ for 90 min). At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS)-control (CON), PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes. PMID:27649153

  17. Three-dimensional structure of brain tissue at submicrometer resolution

    International Nuclear Information System (INIS)

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography

  18. Three-dimensional structure of brain tissue at submicrometer resolution

    Energy Technology Data Exchange (ETDEWEB)

    Saiga, Rino; Mizutani, Ryuta, E-mail: ryuta@tokai-u.jp [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki [Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari [Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.

  19. Protective effects of acupuncture on brain tissue following ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Mingshan Wang; Fuguo Ma; Huailong Chen

    2008-01-01

    BACKGROUND: In patients with cerebrovascular disease, by means of the neuroendocrine system, acupuncture supports the transformation of a local pathological status into a physiological status. Recently, great progress has been made in studying the protective effects of acupuncture on brain ischemia/reperfusion injury. OBJECTIVE: To summarize research advances in the protective effects of acupuncture on brain ischemia/reperfusion injury. RETRIEVAL STRATEGY: Using the terms "acupuncture, transcutaneous electrical acupoint stimulation, cerebral ischemia/reperfusion injury, and cerebral protection", we retrieved articles from the PubMed database published between January 1991 and June 1994. Meanwhile, we searched the China National Knowledge Infrastructure with the same terms. Altogether, 114 articles and their results were analyzed. Inclusive criteria: studies that were closely related to the protective effects of acupuncture on brain ischemia/reperfusion injury, or studies, whose contents were in the same study field and were published recently, or in the authorized journals. Exclusive criteria: repetitive studies. LITERATURE EVALUATION: Thirty articles that related to the protective effects of acupuncture on brain ischemia/reperfusion injury were included. Among them, 7 were clinical studies, and the remaining 23 articles were animal experimental studies. DATA SYNTHESIS: ① Animal experimental studies have demonstrated that acupuncture improves brain blood perfusion and brain electrical activity, influences pathomorphological and ultramicrostructural changes in ischemic brain tissue, is beneficial in maintaining the stability of intracellular and extracellular ions, resists free radical injury and lipid peroxidation, and influences cytokine, neurotransmitter, brain cell signal transduction, and apoptosis-regulating genes. ② Clinical studies have demonstrated that acupuncture not only promotes nutritional supply to local brain tissue in patients with cerebral

  20. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J. (IIT); (Keele); (Florida); (DRDC)

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  1. Avaliação da Barreira Hemato-Encefálica no transplante de medula óssea Blood-Brain Barrier evaluation in bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Sérgio Monteiro de Almeida

    1997-01-01

    Full Text Available A barreira hemato-encefálica (BHE contribui para o isolamento imunológico do sistema nervoso central (SNC. Sua avaliação nunca foi realizada em pacientes submetidos a transplante de medula óssea (TMO. Neste estudo a integridade da BHE foi avaliada através das proteínas do LCR, de forma quantitativa, a fim de observar a incidência e entender a fisiopatologia da doença do enxerto contra o hospedeiro crônica (DECH-C no SNC. Foram estudadas amostras pareadas de LCR e soro de 33 pacientes com leucemia mielóide crônica submetidos a TMO alogênico, de doador aparentado, HLA idêntico. As amostras foram coletadas nos períodos pré TMO, pós TMO e concomitante à DECH-C. Não foi evidenciada quebra de BHE durante a DECH-C em nenhum dos casos estudados.The blood-brain barrier (BBB contributes to the central nervous system (CNS immunological isolation. BBB has never been studied in patients who developed chronic graft-versus-host disease (GVHD after allogeneic bone marrow transplants (BMT, from HLA identical related donors. BBB disruption was investigated through the cerebrospinal fluid (CSF proteins, quantitative and graphically, in order to detect the incidence and possible pathophysiology of the CNS involvement in chronic GVHD. Thirty three CSF and matched serum samples from chronic myeloid leukemia patients were collected pre BMT, pos BMT and during chronic GVHD. There was no evidence of BBB disruption in any patient studied.

  2. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Guangjun Zhao

    2016-01-01

    Full Text Available Cryosection brain images in Chinese Visible Human (CVH dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel. Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  3. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    Science.gov (United States)

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543

  4. Development of a Stereotaxic Device for Low Impact Implantation of Neural Constructs or Pieces of Neural Tissues into the Mammalian Brain

    Directory of Open Access Journals (Sweden)

    Andrzej Jozwiak

    2014-01-01

    Full Text Available Implanting pieces of tissue or scaffolding material into the mammalian central nervous system (CNS is wrought with difficulties surrounding the size of tools needed to conduct such implants and the ability to maintain the orientation and integrity of the constructs during and after their transplantation. Here, novel technology has been developed that allows for the implantation of neural constructs or intact pieces of neural tissue into the CNS with low trauma. By “laying out” (instead of forcibly expelling the implantable material from a thin walled glass capillary, this technology has the potential to enhance neural transplantation procedures by reducing trauma to the host brain during implantation and allowing for the implantation of engineered/dissected tissues or constructs in such a way that their orientation and integrity are maintained in the host. Such technology may be useful for treating various CNS disorders which require the reestablishment of point-to-point contacts (e.g., Parkinson’s disease across the adult CNS, an environment which is not normally permissive to axonal growth.

  5. The use of micro pulse oximetery as a new detector of tissue perfusion in solid organ transplantation.

    Science.gov (United States)

    Rasekhi, Alireza; Sharifian, Maryam; Kazemi, Koroush; Hosseini, Seyed Ali Malek

    2012-07-01

    Vascular complications are a frequent cause of transplant failure; angiography, duplex sonography, computerized tomography (CT) scan, CT-angiography and microdialysis are the methods that were suggested for the detection of arterial obstruction after transplantation. In this study, we suggest a new method. Eight healthy adult dogs were included in the trial. All cases were operated by the same surgeon and the liver, pancreas, spleen, kidney and bowel tissue were exposed. The probes of the device, which were designed for this study, were inserted on the organ parenchyma. The device, a neonatal pulse oximeter, has two probes that were fixed by a holder in front of each other; the distance between the probes was changeable via a spring. The pulse and the oxygen saturation of the tissue were measured initially. Following this, by inducing ischemia with vessel clamping, the pulse and the oxygen saturation were measured again. The collected data were analyzed under the supervision of a statistician. In the liver and spleen, we could not detect a clear pulse wave and oxygenation. On the other hand, in the pancreas, kidney and bowel, we detected a clear curve of oxygenation and pulse in all cases. Obstruction caused significant changes: the pulse was not detected and the oxygenation decreased significantly. Our study suggests that with early diagnosis, the surgeons can detect arterial occlusion immediately and early intervention may decrease parenchymal damage. This study is the first experience in this field, and these findings need to be validated with further studies.

  6. The use of micro pulse oximetery as a new detector of tissue perfusion in solid organ transplantation

    Directory of Open Access Journals (Sweden)

    Alireza Rasekhi

    2012-01-01

    Full Text Available Vascular complications are a frequent cause of transplant failure; angiography, duplex sonography, computerized tomography (CT scan, CT-angiography and microdialysis are the methods that were suggested for the detection of arterial obstruction after transplantation. In this study, we suggest a new method. Eight healthy adult dogs were included in the trial. All cases were operated by the same surgeon and the liver, pancreas, spleen, kidney and bowel tissue were exposed. The probes of the device, which were designed for this study, were inserted on the organ parenchyma. The device, a neonatal pulse oximeter, has two probes that were fixed by a holder in front of each other; the distance between the probes was changeable via a spring. The pulse and the oxygen saturation of the tissue were measured initially. Following this, by inducing ischemia with vessel clamping, the pulse and the oxygen saturation were measured again. The collected data were analyzed under the supervision of a statistician. In the liver and spleen, we could not detect a clear pulse wave and oxygenation. On the other hand, in the pancreas, kidney and bowel, we detected a clear curve of oxygenation and pulse in all cases. Obstruction caused significant changes: the pulse was not detected and the oxygenation decreased significantly. Our study suggests that with early diagnosis, the surgeons can detect arterial occlusion immediately and early intervention may decrease parenchymal damage. This study is the first experience in this field, and these findings need to be validated with further studies.

  7. Brain tissue segmentation in 4D CT using voxel classification

    Science.gov (United States)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  8. The Neuroprotective Effect of Cornus mas on Brain Tissue of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Renata Francik

    2014-01-01

    Full Text Available Cornelian cherry (Cornus mas is a valuable source of phenolic antioxidants. Flavonoid derivatives as nonenzymatic antioxidants are important in the pathophysiology of many diseases including neurological disorders (e.g., Alzheimer’s disease or heart disease. In this study, we examined the effect of an addition of freeze-dried fruit of cornelian cherry on three types of diets: control diet, fructose diet, and diet enriched in fats (high-fat diet. This effect was studied by determining the following antioxidant parameters in both brain tissue and plasma in rats: catalase, ferric reducing ability of plasma, paraoxonase, protein carbonyl groups, and free thiol groups. Results indicate that both fructose diet and high-fat diet affect the antioxidant capacity of the organism. Furthermore, an addition of cornelian cherry resulted in increased activity of catalase in brain tissue, while in plasma it caused the opposite effect. In turn, with regard to paraoxonase activity in both brain tissue and plasma, it had a stimulating effect. Adding cornelian cherry to the tested diets increased the activity of PON in both tested tissues. Moreover, protective effect of fruits of this plant was observed in the process of oxidation of proteins by decreasing levels of protein carbonyl groups and thiol groups in brain tissue as well as in plasma.

  9. 65zinc uptake from blood into brain and other tissues in the rat

    International Nuclear Information System (INIS)

    Zinc is essential for normal growth, development and brain function although little is known about brain zinc homeostasis. Therefore, in this investigation we have studied 65Zn uptake from blood into brain and other tissues and have measured the blood-brain barrier permeability to 65Zn in the anaesthetized rat in vivo. Adult male Wistar rats within the weight range 500-600 g were used. 65ZnCl2 and [125I]albumin, the latter serving as a vascular marker, were injected in a bolus of normal saline I.V. Sequential arterial blood samples were taken during experiments that lasted between 5 min and 5 hr. At termination, samples from the liver, spleen, pancreas, lung, heart, muscle, kidney, bone, testis, ileum, blood cells, csf, and whole brain were taken and analysed for radio-isotope activity. Data have been analysed by Graphical Analysis which suggests 65Zn uptake from blood by all tissues sampled was unidirectional during this experimental period except brain, where at circulation times less than 30 min, 65Zn fluxes were bidirectional. In addition to the blood space, the brain appears to contain a rapidly exchanging compartment(s) for 65Zn of about 4 ml/100g which is not csf

  10. Changes in brain tissue and behavior patterns induced by single short-term fasting in mice.

    Directory of Open Access Journals (Sweden)

    Yuko Hisatomi

    Full Text Available In humans, emaciation from long-term dietary deficiencies, such as anorexia, reportedly increases physical activity and brain atrophy. However, the effects of single short-term fasting on brain tissue or behavioral activity patterns remain unclear. To clarify the impact of malnutrition on brain function, we conducted a single short-term fasting study as an anorexia model using male adult mice and determined if changes occurred in migratory behavior as an expression of brain function and in brain tissue structure. Sixteen-week-old C57BL/6J male mice were divided into either the fasted group or the control group. Experiments were conducted in a fixed indoor environment. We examined the effects of fasting on the number of nerve cells, structural changes in the myelin and axon density, and brain atrophy. For behavior observation, the amount of food and water consumed, ingestion time, and the pattern of movement were measured using a time-recording system. The fasted mice showed a significant increase in physical activity and their rhythm of movement was disturbed. Since the brain was in an abnormal state after fasting, mice that were normally active during the night became active regardless of day or night and performed strenuous exercise at a high frequency. The brain weight did not change by a fast, and brain atrophy was not observed. Although no textural change was apparent by fasting, the neuronal neogenesis in the subventricular zone and hippocampus was inhibited, causing disorder of the brain function. A clear association between the suppression of encephalic neuropoiesis and overactivity was not established. However, it is interesting that the results of this study suggest that single short-term fasting has an effect on encephalic neuropoiesis.

  11. Changes in Brain Tissue and Behavior Patterns Induced by Single Short-Term Fasting in Mice

    Science.gov (United States)

    Hisatomi, Yuko; Asakura, Kyo; Kugino, Kenji; Kurokawa, Mamoru; Asakura, Tomiko; Nakata, Keiko

    2013-01-01

    In humans, emaciation from long-term dietary deficiencies, such as anorexia, reportedly increases physical activity and brain atrophy. However, the effects of single short-term fasting on brain tissue or behavioral activity patterns remain unclear. To clarify the impact of malnutrition on brain function, we conducted a single short-term fasting study as an anorexia model using male adult mice and determined if changes occurred in migratory behavior as an expression of brain function and in brain tissue structure. Sixteen-week-old C57BL/6J male mice were divided into either the fasted group or the control group. Experiments were conducted in a fixed indoor environment. We examined the effects of fasting on the number of nerve cells, structural changes in the myelin and axon density, and brain atrophy. For behavior observation, the amount of food and water consumed, ingestion time, and the pattern of movement were measured using a time-recording system. The fasted mice showed a significant increase in physical activity and their rhythm of movement was disturbed. Since the brain was in an abnormal state after fasting, mice that were normally active during the night became active regardless of day or night and performed strenuous exercise at a high frequency. The brain weight did not change by a fast, and brain atrophy was not observed. Although no textural change was apparent by fasting, the neuronal neogenesis in the subventricular zone and hippocampus was inhibited, causing disorder of the brain function. A clear association between the suppression of encephalic neuropoiesis and overactivity was not established. However, it is interesting that the results of this study suggest that single short-term fasting has an effect on encephalic neuropoiesis. PMID:24224039

  12. Serial investigation of PTPN11 mutation in nonhematopoietic tissues in a patient with juvenile myelomonocytic leukemia who was treated with unrelated cord blood transplantation.

    Science.gov (United States)

    Hiramoto, Rika; Imamura, Toshihiko; Muramatsu, Hideki; Wang, Xinan; Kanayama, Takuyo; Zuiki, Masashi; Yoshida, Hideki; Moroto, Masaharu; Fujiki, Atsushi; Chiyonobu, Tomohiro; Osone, Shinya; Ishida, Hiroyuki; Kojima, Seiji; Hosoi, Hajime

    2015-12-01

    After allogeneic stem-cell transplantation, nonhematopoietic tissues contain donor-derived cells; however, whether cells from malignant hematological disease can also be found in nonhematopoietic tissues is unclear. This report describes a juvenile myelomonocytic leukemia (JMML) case with a typical PTPN11 mutation (p.E76K) at different allele frequencies in the bone marrow mononuclear cells, buccal smear cells, and fingernails at diagnosis, which was suggestive of PTPN11 somatic mosaicism; however, the PTPN11 mutation in the buccal smear cells and fingernails was lost after unrelated cord blood transplantation. These results suggest that JMML-derived cells may migrate into and reside in nonhematopoietic tissues and furthermore that these cells can be eradicated by cord blood transplantation. PMID:26440969

  13. Exercise induces autophagy in peripheral tissues and in the brain

    OpenAIRE

    He, Congcong; Sumpter, Jr., Rhea; Levine, Beth

    2012-01-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We ...

  14. Quantification of C4d deposition and hepatitis C virus RNA in tissue in cases of graft rejection and hepatitis C recurrence after liver transplantation

    Science.gov (United States)

    Song, Alice Tung Wan; de Mello, Evandro Sobroza; Alves, Venâncio Avancini Ferreira; Cavalheiro, Norma de Paula; Melo, Carlos Eduardo; Bonazzi, Patricia Rodrigues; Tengan, Fatima Mitiko; Freire, Maristela Pinheiro; Barone, Antonio Alci; D'Albuquerque, Luiz Augusto Carneiro; Abdala, Edson

    2015-01-01

    Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV) RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+), HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+), acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-). All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection. PMID:25742264

  15. Quantification of C4d deposition and hepatitis C virus RNA in tissue in cases of graft rejection and hepatitis C recurrence after liver transplantation

    Directory of Open Access Journals (Sweden)

    Alice Tung Wan Song

    2015-02-01

    Full Text Available Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+, HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+, acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-. All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection.

  16. Carcinoma cells misuse the host tissue damage response to invade the brain

    OpenAIRE

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carci...

  17. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas;

    2011-01-01

    The development of powerful analytical techniques for specific molecular characterization of neural cell types is of central relevance in neuroscience research for elucidating cellular functions in the central nervous system (CNS). This study examines the use of differential protein expression...... tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination...

  18. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    Na Zhang; Gen-Yang Cheng; Xian-Zhi Liu; Feng-Jiang Zhang

    2014-01-01

    Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue. Methods:Fourty eight rats were randomly divided into four groups(n=12): sham operation group,30 min ischemia60 min reperfusion group,60 min ischemia60 min reperfusion group, and 120 min ischemia60 min reperfusion group.The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreasedBcl-2 expression, increasedBax expression, upregulated expression ofNF-κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation.

  19. Bone scanning in assessing viability of vascularized skeletal tissue transplants. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, R.A.; Dief, H.; Greyson, N.D.; Kawano, H.; Gross, A.E.; Langer, F.; Halloran, P.F.

    1981-01-01

    One hundred and eight bone scans using /sup 99m/Technetium methylene diphosphonate (MDP) were performed in rats undergoing vascularized and nonvascularized syngeneic and allogeneic transplants of the hind limb, and in control animals. A six-level system of grading the radionuclide uptake in the graft was used to evaluate healing or complications of the transplantation. Bone scanning was superior to other modalities in assessing viability of the graft. Bone scans were able to: (1) immediately confirm vascular patency, thus obviating angiography; (2) demonstrate differences in the rate of repair in syngeneic and allogeneic nonvascularized grafts; (3) sequentially assess vascularized allograft rejection; and (4) document long-term effects, such as bone atrophy due to disuse and early epiphyseal maturity.

  20. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  1. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  2. Fibrin, a scaffold material for islet transplantation and pancreatic endocrine tissue engineering.

    Science.gov (United States)

    Riopel, Matthew; Trinder, Mark; Wang, Rennian

    2015-02-01

    Fibrin is derived from fibrinogen during injury to produce a blood clot and thus promote wound repair. Composed of different domains, including Arg-Gly-Asp amino acid motifs, fibrin is used extensively as a hydrogel and sealant in the clinic. By binding to cell surface receptors like integrins and acting as a supportive 3D scaffold, fibrin has been useful in promoting cell differentiation, proliferation, function, and survival. In particular, fibrin has been able to maintain islet cell architecture, promote beta cell insulin secretion, and islet angiogenesis, as well as inducing a protective effect against cell death. During islet transplantation, fibrin improved neovascularization and islet function. These improvements resulted in reduced number of transplanted islets necessary to reverse diabetes. Therefore, fibrin, as a biocompatible and biodegradable scaffold, should be considered during subcutaneous islet transplantation and beta cell expansion in vitro to ensure maintenance of islet cell function, proliferation, and survival to develop effective cell-based therapies for the treatment of diabetes. PMID:24947304

  3. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Institute of Scientific and Technical Information of China (English)

    Hyung Ho Yoon; Joongkee Min; Nari Shin; Yong Hwan Kim; Jin-Mo Kim; Yu-Shik Hwang; Jun-Kyo Francis Suh; Onyou Hwang; Sang Ryong Jeon

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18 F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  4. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  5. Distribution of dearomatised white spirit in brain, blood, and fat tissue after repeated exposure of rats

    DEFF Research Database (Denmark)

    Lof, A.; Lam, Henrik Rye; Gullstrand, E.;

    1999-01-01

    Petroleum products with low content of aromatics have been increasingly used during the past years. This study investigates tissue disposition of dearomatised white spirit. In addition, brain neurotransmitter concentrations were measured. Male rats were exposed by inhalation to 0, 400 (2.29 mg...... spirit was 1.5 and 5.6 mg/kg in blood; 7.1 and 17.1 mg/kg in brain; 432 and 1452 mg/kg in fat tissue at the exposure levels of 400 and 800 p.p.m., respectively. The concentrations of n-nonane, n-decane, n-undecane, and total white spirit in blood and brain were not affected by the duration of exposure....... Two hours after the end of exposure the n-decane concentration decreased to about 25% in blood and 50% in brain. A similar pattern of elimination was also observed for n-nonane, n-undecane and total white spirit in blood and brain. In fat tissue the concentrations of n-nonane, n-decane, n...

  6. Elderly depression diagnostic of diabetic patients by brain tissue pulsatility imaging

    Science.gov (United States)

    Hachemi, Mélouka Elkateb; Remeniéras, Jean-pierre; Desmidt, Thomas; Camus, Vincent; Tranquart, François

    2010-01-01

    Pulsatile motion of brain parenchyma results from cardiac and breathing cycles and consists in a rapid displacement in systole, with slow diastolic recovery. Based on the vascular depression concept and recent studies where a correlation was found between cerebral haemodynamics and depression in the elderly, we emitted the hypothesis that tissue brain motion due to perfusion is correlated to elderly depression associated with cardiovascular risk factors. Tissue Pulsatlity Imaging (TPI) is a new ultrasound technique developed firstly at the University of Washington to assess the brain tissue motion. We used TPI technique to measure the brain displacement of two groups of elderly patients with diabetes as a vascular risk factor. The first group is composed of 11 depressed diabetic patients. The second group is composed of 12 diabetic patients without depressive symptoms. Transcranial acquisitions were performed with a 1.8 MHz ultrasound phased array probe through the right temporal bone window. The acquisition of six cardiac cycles was realized on each patient with a frame rate of 23 frames/s. Displacements estimation was performed by off-line analysis. A significant decrease in brain pulsatility was observed in the group of depressed patients compared to the group of non depressed patients. Mean displacement magnitude was about 44±7 μm in the first group and 68±13 μm in the second group.

  7. Brain MR imaging abnormalities in pediatric patients after allogeneic bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Sally Emad-Eldin

    2014-12-01

    Conclusion: CNS complications after allogenic BMT in pediatric patients could cause a significant clinical problem. MRI can provide early diagnosis and follow-up to monitor treatment changes. Knowing the onset of the presentation of the complication in relation to the chronology of the transplant is important as it provides significant guidance on which causes to consider.

  8. Liver transplant outcomes using ideal donation after circulatory death livers are superior to using older donation after brain death donor livers.

    Science.gov (United States)

    Scalea, Joseph R; Redfield, Robert R; Foley, David P

    2016-09-01

    Multiple reports have demonstrated that liver transplantation following donation after circulatory death (DCD) is associated with poorer outcomes when compared with liver transplantation from donation after brain death (DBD) donors. We hypothesized that carefully selected, underutilized DCD livers recovered from younger donors have excellent outcomes. We performed a retrospective study of the United Network for Organ Sharing database to determine graft survivals for patients who received liver transplants from DBD donors of age ≥ 60 years, DBD donors liver transplants were performed in the United States. Of these, 41,181 (78.8%) underwent transplantation with livers from DBD donors of age livers from DCD donors livers of age livers ≥ age 60 years (P livers; of these, 111 (83.4%) were from donors livers (age livers > 60 years old. Careful donor organ and recipient selection can lead to excellent results, despite previous reports suggesting otherwise. Increased acceptance of these DCD livers would lead to shorter wait list times and increased national liver transplant rates. Liver Transplantation 22 1197-1204 2016 AASLD. PMID:27314220

  9. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  10. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.

    Science.gov (United States)

    Anand, Sindhu; Kumar, Swathy Sampath; Muthuswamy, Jit

    2016-08-01

    Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time). PMID:27457752

  11. Polychlorinated biphenyls in adipose tissue, liver, and brain from nine stillborns of varying gestational ages

    NARCIS (Netherlands)

    Huisman, M; Muskiet, FAJ; Van Der Paauw, CG; Essed, CE; Boersma, ER

    1998-01-01

    We analyzed polychlorinated biphenyls (PCBs) in s.c. adipose tissue, liver, and brain of nine fetuses who died in utero. Their median (range) gestational ages and birth weights were 34 (17-40) wk and 2050 (162-3225) g. Three fetuses were small for gestational age. The levels of PCB congener nos. 118

  12. Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue

    NARCIS (Netherlands)

    Støverud, K.; Darcis, M.; Helmig, R.; Hassanizadeh, S.M.

    2012-01-01

    Convection-enhanced drug delivery is a technique where a therapeutic agent is infused under positive pressure directly into the brain tissue. For predicting the final concentration distribution and optimizing infusion rate and catheter placement, numerical models can be of great help. However, despi

  13. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Lauriane Jugé

    Full Text Available Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both, an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM and rearrangement of the cortical gray matter microstructure (P < 0.001, for both, while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both. During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001, while a decrease in space was observed for the ventral internal capsule (P < 0.001. For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001. To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions

  14. PIXE analysis of low concentration aluminum in brain tissues of an Alzheimer's disease patient

    International Nuclear Information System (INIS)

    An excess accumulation and presence of metal ions may significantly alter a brain cell's normal functions. There have been increasing efforts in recent years to measure and quantify the density and distribution of excessive accumulations of constituent elements (such as Fe, Zn, Cu, and Ca) in the brain, as well as the presence and distribution of contaminating elements (such as Al). This is particularly important in cases of neuropathological disorders such as Alzheimer's disease, Parkinson's disease and ALS. The aim of this paper was to measure the Al present in the temporal cortex of the brain of an Alzheimer's disease patient. The specimens were taken from an unfixed autopsy brain which has been preserved for a period of 4 years in the deep freezer at -80 degree sign C. Proton Induced X-ray Emission Spectroscopy was used for the measurement of Al concentration in this brain tissue. A tandem accelerator with 2 MeV of energy was also used. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorbers were removed. The results show that the peak height depends on the measurement site. However, in certain cases an extremely high concentration of Al was observed in the PIXE spectra, with an intensity higher than those in the other major elements of the brain's matrix element. Samples from tissues affected by the same disease were analyzed using the EDX analyzer. The results are quantitatively in very good agreement with those of the PIXE analysis

  15. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  16. 脐带血间充质干细胞移植对大鼠脑创伤的影响%Effect of transplantation of umbilical cord blood mesenchymal stem cells on traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    张鹏; 宋来君; 杨波

    2010-01-01

    目的 探讨脐带血间充质于细胞(CB-MSC)移植对脑创伤大鼠的治疗作用及其在体内分化为神经元样细胞的可行性.方法 健康Wistar大鼠采用随机数字表法分为3组:(1)损伤组,开颅钻孔打击脑组织不移植细胞;(2)移植对照组,开颅创伤脑组织后在创伤区注射生理盐水1.25μ;(3)CB-MSC移植组,开颅创伤脑组织后在创伤区注射含CB-MSC混悬液.每组各18只.CB-MSC从脐带血中分离、培养得到,采用BrdU标记.分别于移植后3 d及10 d进行大鼠行为学评分,2周和4周行Y迷宫试验.移植后2周和5周对植人脑内的CB-MSC进行免疫组织化学检测,镜下观察胶质纤维酸性蛋白(GFAP)和神经元特异性烯醇化酶(NSE)阳性细胞.结果移植后10d 3组大鼠行为学评分差异有统计学意义(p<0.05),移植后2周和4周大鼠学习、记忆评分差异亦有有统计学意义(P<0.05).移植后2周和5周在CB-MSC移植组细胞移植区均发现BrdU-GFAP和BrdU-NSE阳性细胞,其他2组均未发现.结论 CB-MSC移植可促进大鼠脑创伤恢复,提高学习和记忆能力,CB-MSC在体内可以向神经元样细胞分化.%Objective To investigate the feasibility of human umbilical cord blood mesenchymal stem cells (CB-MSCs) in differentiating into neural-like cells and the effect of CB-MSC transplantation on traumatic brain injury in rats. Methods Healthy Wistar rats were induced into model with experimental traumatic brain injury by drilling and hitting their brain tissue, and then, they were randomized into 3 groups (n=18): model group, control group (injured models + injecting 1.25 μL saline) and CB-MSC transplantation group (injured model + injecting CB-MSC suspension). CB-MSC were derived from separated umbilical cord blood, cultured, marked with BrdU and injected into injured area of rats in the CB-MSC transplantation group. The motor function scale was performed 3 and 10 d after the transplantation, and Y maze test was employed to observe the

  17. An analytical model for nanoparticles concentration resulting from infusion into poroelastic brain tissue.

    Science.gov (United States)

    Pizzichelli, G; Di Michele, F; Sinibaldi, E

    2016-02-01

    We consider the infusion of a diluted suspension of nanoparticles (NPs) into poroelastic brain tissue, in view of relevant biomedical applications such as intratumoral thermotherapy. Indeed, the high impact of the related pathologies motivates the development of advanced therapeutic approaches, whose design also benefits from theoretical models. This study provides an analytical expression for the time-dependent NPs concentration during the infusion into poroelastic brain tissue, which also accounts for particle binding onto cells (by recalling relevant results from the colloid filtration theory). Our model is computationally inexpensive and, compared to fully numerical approaches, permits to explicitly elucidate the role of the involved physical aspects (tissue poroelasticity, infusion parameters, NPs physico-chemical properties, NP-tissue interactions underlying binding). We also present illustrative results based on parameters taken from the literature, by considering clinically relevant ranges for the infusion parameters. Moreover, we thoroughly assess the model working assumptions besides discussing its limitations. While not laying any claims of generality, our model can be used to support the development of more ambitious numerical approaches, towards the preliminary design of novel therapies based on NPs infusion into brain tissue. PMID:26656677

  18. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    Science.gov (United States)

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  19. DNA extraction from fresh-frozen and formalin-fixed, paraffin-embedded human brain tissue.

    Science.gov (United States)

    Wang, Jian-Hua; Gouda-Vossos, Amany; Dzamko, Nicolas; Halliday, Glenda; Huang, Yue

    2013-10-01

    Both fresh-frozen and formalin-fixed, paraffin-embedded (FFPE) human brain tissues are invaluable resources for molecular genetic studies of central nervous system diseases, especially neurodegenerative disorders. To identify the optimal method for DNA extraction from human brain tissue, we compared methods on differently-processed tissues. Fragments of LRRK2 and MAPT (257 bp and 483 bp/245 bp) were amplified for evaluation. We found that for FFPE samples, the success rate of DNA extraction was greater when using a commercial kit than a laboratory-based method (successful DNA extraction from 76% versus 33% of samples). PCR amplicon size and storage period were key factors influencing the success rate of DNA extraction from FFPE samples. In the fresh-frozen samples, the DNA extraction success rate was 100% using either a commercial kit (QIAamp DNA Micro) or a laboratory-based method (sample boiling in 0.1 mol/L NaOH, followed by proteinase K digestion, and then DNA extraction using Chelex-100) regardless of PCR amplicon length or tissue storage time. Although the present results demonstrate that PCR-amplifiable genomic DNA can be extracted from both fresh-frozen and FFPE samples, fresh brain tissue is recommended for DNA extraction in future neuropathological studies.

  20. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  1. Distribution of soya-saponin in brain and peripheral tissue after peritoneal injection

    International Nuclear Information System (INIS)

    125I-soya-saponin was prepared to study the distribution of soya-saponin in body of rat, as well as in different areas of brain when peritoneal injection. The results showed that the peak value of radioactive soya-saponin in all tissue appeared at 30 min after peritoneal injection. There were higher radioactivities in brain and suprarene comparing with other organs. The highest radioactivity was seen in hypothalamus among the every brain areas. It is a first report that soyasaponin can pass through the blood brain barrier when peripheral injection. The result also supported the opinion that soyasaponin might act on the hypothalamus and central regulation of cardiovascular system. Another finding was that soyasaponin also showed a higher affinity with adrenal gland, which indicated that the soyasaponin might possess of peripheral effect for regulation of cardiovascular system as well

  2. Laser method of biological activity stimulation of cryoconserved hemopoietic tissue transplant

    Science.gov (United States)

    Khyznyak, Anatoly I.; Lesnik, Svetlana A.; Kogut, Georgy I.; Glukhenkaya, Galina T.

    1994-02-01

    The biological activity of cryoconserved fetal liver cells of mice (FLM) having undergone the He-Ne laser action has been estimated by the efficiency of their transplantation to mice- recipients exposed to lethal x-ray dose. The survival rate 30 days after x-ray exposure for those mice was 75% in comparison with 70% for mice with cryoconserved nonirradiated graft. The trial animals' peripheral blood investigations have been made. The obtained results indicate that the laser method of cryoconserved cells stimulation can help to increase the therapeutic efficiency of mielotransplantation.

  3. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    Science.gov (United States)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  4. Low temperature magnetic analysis in the identification of iron compounds from human brain tumour tissue

    Energy Technology Data Exchange (ETDEWEB)

    Brem, F [Institute of Geophysics, ETH-Hoenggerberg, CH-8093 Zurich (Switzerland); Hirt, A M [Institute of Geophysics, ETH-Hoenggerberg, CH-8093 Zurich (Switzerland); Simon, C [Neurology/EEG, University Hospital Zurich, CH-8091 Zurich (Switzerland); Wieser, H-G [Neurology/EEG, University Hospital Zurich, CH-8091 Zurich (Switzerland); Dobson, J [Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, ST4 7QB, (United Kingdom)

    2005-01-01

    In the brain, iron plays an important role, but also is potentially toxic if iron metabolism is disrupted. Excess iron accumulation in the brain has been shown to be associated with neurodegenerative diseases. However, identification of iron compounds in human tissue is difficult because concentrations are very low. Three types of magnetic methods were used to characterize iron compounds in tumour tissue from epileptic patients. Isothermal Remanent Magnetization (IRM) was measured at 77 K and 300 K and reveals a low-coercivity phase with the properties of magnetite or maghemite. Induced magnetization was measured between 2 K and 300 K after cooling in zero-field and in a 50 mT field. These curves reveal an average blocking temperature of 11 K, which is compatible with ferritin. The results of this study show that the combination of different magnetic methods provides a useful and sensitive tool for the characterisation of magnetic iron compounds in human tissue.

  5. Bone Marrow Stromal Cells Express Neural Phenotypes in vitro and Migrate in Brain After Transplantation in vivo

    Institute of Scientific and Technical Information of China (English)

    LI-YE YANG; TIAN-HUA HUANG; LIAN MA

    2006-01-01

    Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results BMSC expressed NSE, NF1 and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells.Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated. rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases.

  6. A Simplified Workflow for Protein Quantitation of Rat Brain Tissues Using Label-Free Proteomics and Spectral Counting.

    Science.gov (United States)

    Boutté, Angela M; Grant, Shonnette F; Dave, Jitendra R

    2016-01-01

    Mass spectrometry-based proteomics is an increasingly valuable tool for determining relative or quantitative protein abundance in brain tissues. A plethora of technical and analytical methods are available, but straightforward and practical approaches are often needed to facilitate reproducibility. This aspect is particularly important as an increasing number of studies focus on models of traumatic brain injury or brain trauma, for which brain tissue proteomes have not yet been fully described. This text provides suggested techniques for robust identification and quantitation of brain proteins by using molecular weight fractionation prior to mass spectrometry-based proteomics. Detailed sample preparation and generalized protocols for chromatography, mass spectrometry, spectral counting, and normalization are described. The rat cerebral cortex isolated from a model of blast-overpressure was used as an exemplary source of brain tissue. However, these techniques may be adapted for lysates generated from several types of cells or tissues and adapted by the end user.

  7. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

    Science.gov (United States)

    Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2015-10-01

    Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI. PMID:26350423

  8. Static jaw collimation settings to minimize radiation dose to normal brain tissue during stereotactic radiosurgery.

    Science.gov (United States)

    Han, Eun Young; Zhang, Xin; Yan, Yulong; Sharma, Sunil; Penagaricano, Jose; Moros, Eduardo; Corry, Peter

    2012-01-01

    At the University of Arkansas for Medical Sciences (UAMS) intracranial stereotactic radiosurgery (SRS) is performed by using a linear accelerator with an add-on micromultileaf collimator (mMLC). In our clinical setting, static jaws are automatically adapted to the furthest edge of the mMLC-defined segments with 2-mm (X jaw) and 5-mm (Y jaw) margin and the same jaw values are applied for all beam angles in the treatment planning system. This additional field gap between the static jaws and the mMLC allows additional radiation dose to normal brain tissue. Because a radiosurgery procedure consists of a single high dose to the planning target volume (PTV), reduction of unnecessary dose to normal brain tissue near the PTV is important, particularly for pediatric patients whose brains are still developing or when a critical organ, such as the optic chiasm, is near the PTV. The purpose of this study was to minimize dose to normal brain tissue by allowing minimal static jaw margin around the mMLC-defined fields and different static jaw values for each beam angle or arc. Dose output factors were measured with various static jaw margins and the results were compared with calculated doses in the treatment planning system. Ten patient plans were randomly selected and recalculated with zero static jaw margins without changing other parameters. Changes of PTV coverage, mean dose to predefined normal brain tissue volume adjacent to PTV, and monitor units were compared. It was found that the dose output percentage difference varied from 4.9-1.3% for the maximum static jaw opening vs. static jaw with zero margins. The mean dose to normal brain tissue at risk adjacent to the PTV was reduced by an average of 1.9%, with negligible PTV coverage loss. This dose reduction strategy may be meaningful in terms of late effects of radiation, particularly in pediatric patients. This study generated clinical knowledge and tools to consistently minimize dose to normal brain tissue.

  9. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  10. Predictive Role of Intraoperative Serum Brain Natriuretic Peptide for Early Allograft Dysfunction in Living Donor Liver Transplantation.

    Science.gov (United States)

    Chae, Min Suk; Koo, Jung Min; Park, Chul Soo

    2016-01-01

    BACKGROUND Early allograft dysfunction (EAD) is considered an important complication in liver transplantation. Serum brain natriuretic peptide (BNP) is a marker of cardiac dysfunction related to end-stage liver disease. We investigated the intraoperative change in the serum BNP level and its contribution to EAD after living donor liver transplantation (LDLT). MATERIAL AND METHODS The perioperative data of 104 patients who underwent LDLT were retrospectively reviewed and compared between patients with and without EAD. Serum BNPs were obtained at each phase, and potentially significant factors (Pdeveloped EAD after LDLT. In all phases, the EAD group showed higher serum BNP levels than the non-EAD group. The serum BNP level at each phase was less accurate than the mean serum BNP level for EAD. The intraoperative mean serum BNP level showed higher predictive accuracy than the Child-Pugh-Turcotte, model for end-stage liver disease (MELD), and D-MELD (donor age × recipient MELD) scores (p<0.05 for all). After multivariate adjustment, intraoperative mean serum BNP level ≥100 pg/mL was identified as an independent risk factor for EAD, along with kidney disease and graft ischemic time. CONCLUSIONS During LDLT, the EAD group showed higher serum BNP levels than the non-EAD group. An intraoperative mean serum BNP level ≥100 pg/mL is independently associated with EAD after LDLT. PMID:27572618

  11. Transplantation of fetal liver tissue suspension into the spleens of adult syngenic rats: inducibility of cytochrome P450 dependent monooxygenase functions by beta-naphthoflavone, phenobarbital and dexamethasone.

    Science.gov (United States)

    Lupp, A; Lau, K; Trautmann, A K; Krausse, T; Klinger, W

    1999-01-01

    In the present study the effects of beta-naphthoflavone (BNF), phenobarbital (PB) and dexamethasone (DEX) on cytochrome P450 (P450) dependent monooxygenase functions were investigated in intrasplenic liver cell explants in comparison to adult liver. Fetal liver tissue suspensions were transplanted into the spleens of 60-90 days old adult male syngenic Fisher 344 inbred rats. 2, 4 or 6 months after surgery, transplant recipients and age matched controls were orally treated with BNF (1x50 mg/kg body weight (b.wt.)), PB (1x50 mg/kg b.wt.), DEX (for 3 days 4 mg/kg b.wt. per day), or the respective solvents (dimethylsulfoxide or 0.9% NaCl). The animals were sacrificed 24 (BNF, DEX) or 48 (PB) hours after the last treatment. P450 mediated monooxygenase functions were measured in spleen and liver 9000 g supernatants by three model reactions for different P450 subtypes: ethoxyresorufin O-deethylation (EROD; 1A), ethoxycoumarin O-deethylation (ECOD; 1A, 2A, 2B), and ethylmorphine N-demethylation (END; 3A). Spleen weights were significantly higher in transplanted rats, compared to controls, at all three time points after surgery. Induction with PB or DEX, and in some cases also with BNF, lead to a significant increase in liver weights of transplant recipients and control rats independent of the time after transplantation. In contrast, there was no influence on spleen weights due to BNF or PB. At all time points after surgery, with DEX a marked decrease in body weights, weights of adrenal glands and of lymphatic organs like thymus glands and spleens was observed, with the weights of the transplant containing spleens being still higher in comparison to control organs. Spleens of control animals displayed nearly no P450 mediated monooxygenase functions neither without nor with induction. After transplantation, however, significant EROD and ECOD, but hardly any END activities were seen in the host organs at all three time points after surgery. In transplant containing spleens

  12. The Importance of Brain Banks for Molecular Neuropathological Research: The New South Wales Tissue Resource Centre Experience

    Directory of Open Access Journals (Sweden)

    Antony Harding

    2009-01-01

    Full Text Available New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders.

  13. Development of a Multispectral Tissue Characterization System for Optimization of an Implantable Perfusion Status Monitor for Transplanted Liver

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Letzen, Brian S [ORNL; Ericson, Milton Nance [ORNL; Cote, Gerard L. [Texas A& M University; Xu, Weijian [VA Pittsburgh Healthcare System; Wilson, Mark A. [University of Pittsburgh School of Medicine, Pittsburgh PA

    2009-01-01

    Optimizing wavelength selection for monitoring perfusion during liver transplant requires an in-depth characterization of liver optical properties. With these, the impact of liver absorption and scattering properties can be investigated to select optimal wavelengths for perfusion monitoring. To accomplish this, we are developing a single integrating-sphere-based using a unique spatially resolved diffuse reflectance system for optical properties determination for thick samples. We report early results using a monochromatic source implementation to measure the optical properties of well characterized tissue phantoms made from polystyrene spheres and Trypan blue. The presented results show the promise of using this unique system to measure the optical properties of the tissue phantoms. We are currently in the process of implementing an automated Levenberg Marquardt fitting algorithm to determine the peak location of the diffuse reflectance profile to ensure robust computation of sample optical properties. Future work will focus on the incorporation of multispectral capability to the technique to facilitate development of more realistic liver tissue phantoms.

  14. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  15. The cerebrovascular structure and brain tissue volume: a comparative study between beagle dogs and mongrel dogs

    International Nuclear Information System (INIS)

    Objective: To compare the differences of cerebrovascular structure and brain tissue volume between beagle and mongrel dogs by using angiography and MR scanning. Methods: A total of 40 dogs, including 20 beagle dogs (beagle group) and 20 mongrel dogs (mongrel group), were enrolled in this study. Under general anesthesia, all dogs were examined with cerebral angiography and MR scanning. The cerebrovascular structure was evaluated with angiography via selective catheterization of aortic arch, bilateral external cerebral arteries (ECA), maxillary arteries, internal cerebral arteries (ICA) and vertebral arteries separately. The diameters of the ICA, middle cerebral artery (MCA), rostral cerebral artery (RCA), the anastomosis channel ICA and ECA, and basilar artery (BA) were measured at the similar point of each dog. Meanwhile the volumes of the brain tissue were calculated in coronal T2 view of MR scanning. The statistical analysis was performed among the weight of dogs, the diameter of arteries and the volume of brain tissue. The differences in the diameters and brain tissue volume were compared between the two groups. Results: No obvious variations in the cerebrovascular structure and brain tissue volume were found in these dogs. One mongrel dog was excluded from this study because of the severe stenosis of ICA. The mean weight of 20 beagle dogs and 19 mongrel dogs was (12.81±1.29) kg and (12.85±1.12) kg, respectively. The diameters of the ICA, MCA, RCA, the anastomosis channel between ICA and ECA and BA in beagle group were (1.26±0.07) mm, (0.90±0.05) mm, (0.58±0.07) mm, (0.55±0.07) mm and (0.95±0.06) mm, respectively. These parameters in mongrel group were (1.27±0.07) mm, (0.92±0.05) mm, (0.59±0.06) mm, (0.67±0.07) mm and (0.94±0.05) mm, respectively. The volume of brain in two groups was (76232.33±5018.51) mm3 and (71863.96±4626.87) mm3, respectively. There were no obvious correlation among the body weight, the cerebrovascular diameters and brain

  16. The average baboon brain: MRI templates and tissue probability maps from 89 individuals.

    Science.gov (United States)

    Love, Scott A; Marie, Damien; Roth, Muriel; Lacoste, Romain; Nazarian, Bruno; Bertello, Alice; Coulon, Olivier; Anton, Jean-Luc; Meguerditchian, Adrien

    2016-05-15

    The baboon (Papio) brain is a remarkable model for investigating the brain. The current work aimed at creating a population-average baboon (Papio anubis) brain template and its left/right hemisphere symmetric version from a large sample of T1-weighted magnetic resonance images collected from 89 individuals. Averaging the prior probability maps output during the segmentation of each individual also produced the first baboon brain tissue probability maps for gray matter, white matter and cerebrospinal fluid. The templates and the tissue probability maps were created using state-of-the-art, freely available software tools and are being made freely and publicly available: http://www.nitrc.org/projects/haiko89/ or http://lpc.univ-amu.fr/spip.php?article589. It is hoped that these images will aid neuroimaging research of the baboon by, for example, providing a modern, high quality normalization target and accompanying standardized coordinate system as well as probabilistic priors that can be used during tissue segmentation. PMID:26975558

  17. Elemental analysis of the frontal lobe of 'normal' brain tissue and that affected by Alzheimer's disease

    International Nuclear Information System (INIS)

    'Normal' brain tissue and brain tissue affected by Alzheimer's disease has been taken from the frontal lobe of both hemispheres and their elemental compositions in terms of major, minor and trace elements compared. Brain samples were obtained from the MRC Alzheimer's Disease Brain Bank, London. 25 samples were taken from 18 individuals (5 males and 13 females) of mean age 79.9 ± 7.3 years with pathologically confirmed Alzheimer's disease and 26 samples from 15 individuals (8 males and 7 females) of mean age 71.8 ± 13.0 years with no pathological sings of Alzheimer's disease ('normals'). The elemental concentration of the samples were determined by the techniques of Rutherford backscattering (RBS) analysis, particle induced X-ray emission (PIXE) analysis and instrumental neutron activation analysis (INAA). Na, Mg, Al, Cl, K, Sc, Fe, Zn, Se, Br, Rb and Cs were detected by INAA and significant differences in concentrations were found between concentrations in normal and Alzheimer tissue for the elements. Na, Cl, K, Se, Br and Rb, P, S, Cl, K, Ca, Fe, Zn and Cd were detected by PIXE analysis and significant differences found for the elements P, S, Cl, K and Ca. (author)

  18. X-ray fluorescence analysis in application for study of human brain tissue and body fluids

    International Nuclear Information System (INIS)

    Thin slices of human brain tissue and body fluids were investigated using Energy Dispersive X-Ray Fluorescence (EDXRF) spectrometry. Distribution of elements in brain tissue samples was studied using Microbeam X-Ray Fluorescence (MXRF) method. Total Reflection X-Ray fluorescence (TXRF) analysis was applied for determination of elemental contens in cerebrospinal fluid, serum and whole blood. The main goal of the study was to optimize analytical procedures for investigation of biomedical specimens using EDXRF method. MXRF method is useful for investigation of P, S, Cl, K, Ca and Fe. Moreover, it can be also applied for distinguishing between white and gray matter of the human brain. Two sample preparation methods were applied in TXRF spectrometry with respect to detection limit. In the first method the body fluids were analysed without any sample preparation. The other measurements were performed for the body fluids digested with nitric acid. For both methods gallium was used as an internal standard. Accuracy of the TXRF method was assessed using Certified Reference Material, A-13 (freeze-dried animal blood). High sensitivity of TXRF and proper sample preparation allowed to detect wide spectrum of elements between Cl and Sr. Faster and easier first sample preparation method allowed to detect elements including volatile ones like Cl or Br whereas digestion of fluids with nitric acid improved the detection limits significantly. Elemental analysis of thin brain tissue samples and body fluids will be applied for study of role of trace elements in selected neurological diseases. (author)

  19. Glioblastoma, brain metastases and soft tissue sarcoma of extremities: Candidate tumors for BNCT

    International Nuclear Information System (INIS)

    10B-concentration ratios between human glioblastoma multiforme (U87MG), sarcoma (S3) and melanoma (MV3) xenografted in nu/nu mice and selected normal tissues were investigated to test for preferential 10B-accumulation. Animals received BSH, BPA or both compounds sequentially. Mean 10B-concentration ratios between tumor and normal tissues above 2 were found indicating therapeutic ratios. In addition to glioblastoma, brain metastases and soft tissue sarcoma appear to be promising targets for future BNCT research. - Highlights: • BSH leads to high 10B concentration ratios between sarcoma, muscle and brain as well as between glioblastoma and brain. • The 10B concentration in tumors is quite low as is the 10B concentration ratio between tumors and blood. • BPA-f leads to 10B accumulation in tumors relative to blood and advantageous absolute 10B concentrations in tumors. • The 10B concentration ratios between tumors and brain and sarcoma and muscle, are modest. • The advantage of the sequential injection of both compounds is an enhanced intratumoral 10B concentration

  20. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord

    Science.gov (United States)

    Ersen, Ali; Elkabes, Stella; Freedman, David S.; Sahin, Mesut

    2015-02-01

    Objective. Microelectrodes implanted in the central nervous system (CNS) often fail in long term implants due to the immunological tissue response caused by tethering forces of the connecting wires. In addition to the tethering effect, there is a mechanical stress that occurs at the device-tissue interface simply because the microelectrode is a rigid body floating in soft tissue and it cannot reshape itself to comply with changes in the surrounding tissue. In the current study we evaluated the scar tissue formation to tetherless devices with two significantly different geometries in the rat brain and spinal cord in order to investigate the effects of device geometry. Approach. One of the implant geometries resembled the wireless, floating microstimulators that we are currently developing in our laboratory and the other was a (shank only) Michigan probe for comparison. Both electrodes were implanted into either the cervical spinal cord or the motor cortices, one on each side. Main results. The most pronounced astroglial and microglial reactions occurred within 20 μm from the device and decreased sharply at larger distances. Both cell types displayed the morphology of non-activated cells past the 100 μm perimeter. Even though the aspect ratios of the implants were different, the astroglial and microglial responses to both microelectrode types were very mild in the brain, stronger and yet limited in the spinal cord. Significance. These observations confirm previous reports and further suggest that tethering may be responsible for most of the tissue response in chronic implants and that the electrode size has a smaller contribution with floating electrodes. The electrode size may be playing primarily an amplifying role to the tethering forces in the brain whereas the size itself may induce chronic response in the spinal cord where the movement of surrounding tissues is more significant.

  1. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: jmweaver@salud.unm.edu [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  2. Can fruits and vegetables be used as substitute phantoms for normal human brain tissues in magnetic resonance imaging?

    International Nuclear Information System (INIS)

    Various custom-made phantoms designed to optimize magnetic resonance imaging (MRI) sequences have been created and subsequently reported in Japanese Society of Radiological Technology (JSRT). However, custom-made phantoms that correctly match the T1-value and T2-values of human brain tissue (gray matter and white matter) cannot be made easily or quickly. The aim of this project was to search for alternative materials, such as fruits and vegetables, for optimizing MRI sequences. The following eight fruits and vegetables were investigated: apple, tomato, melon, apple mango (Mangifera indica), banana, avocado, peach, and eggplant. Their potential was studied for use in modeling phantoms of normal human brain tissues. MRI (T1- and T2-weighted sequences) was performed on the human brain and the fruits and vegetables using various concentrations of contrast medium (gadolinium) in the same size tubes as the custom-made phantom. The authors compared the signal intensity (SI) in human brain tissue (gray matter and white matter) with that of the fruits and the custom-made phantom. The T1 and T2 values were measured for banana tissue and compared with those for human brain tissue in the literature. Our results indicated that banana tissue is similar to human brain tissue (both gray matter and white matter). Banana tissue can thus be employed as an alternative phantom for the human brain for the purpose of MRI. (author)

  3. The response of the brain tissue to DNA double strand breaks

    International Nuclear Information System (INIS)

    Double-strand breaks (DSB) are the most deleterious form of DNA damage after ionizing radiation, the response of the brain tissue to DNA damage is related to the developmental dynamics of this system. Homology recombination is particularly important for proliferating cells, while non-homologous end joining is critical for differentiating cells. Defects in the related factors to DNA damage pathway underpin many human genopathy with neuropathology. Reviewed the signal conduction system involved in the DNA DSB response and human neuropathology genopathy related to DNA DSB factors deficiencies in the brain cells. (authors)

  4. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Kastrup, Jens

    2013-01-01

    Stem cell therapy for degenerative diseases, including ischemic heart disease is now a clinical reality. In the search for the optimal cell type for each patient category, many different stem cell subpopulations have been used. In addition, different cell processing procedures and delivery methods...... no improvements. To better understand the underlying mechanisms of these results, a reverse translation from bedside to bench has been opened. Non-invasive cell tracking after implantation has a pivotal role in this translation. Imaging based methods can help elucidate important issues such as retention......, migration and efficacy of the transplanted cells. Great effort is being made in finding new and better imaging techniques for different imaging modalities, and much have already been learned. But there are still many unanswered questions. In this review, we give an overview of the imaging modalities used...

  5. 21 CFR 1270.21 - Determination of donor suitability for human tissue intended for transplantation.

    Science.gov (United States)

    2010-04-01

    ... infectious disease testing; or (ii) An algorithm is utilized that evaluates the volumes administered in the... from the tissue donor is available for infectious disease testing; or (ii) An algorithm is...

  6. Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study.

    Science.gov (United States)

    Aligholi, Hadi; Rezayat, Seyed Mahdi; Azari, Hassan; Ejtemaei Mehr, Shahram; Akbari, Mohammad; Modarres Mousavi, Seyed Mostafa; Attari, Fatemeh; Alipour, Fatemeh; Hassanzadeh, Gholamreza; Gorji, Ali

    2016-07-01

    Cultivation of neural stem/progenitor cells (NS/PCs) in PuraMatrix (PM) hydrogel is an option for stem cell transplantation. The efficacy of a novel method for placing adult rat NS/PCs in PM (injection method) was compared to encapsulation and surface plating approaches. In addition, the efficacy of injection method for transplantation of autologous NS/PCs was studied in a rat model of brain injury. NS/PCs were obtained from the subventricular zone (SVZ) and cultivated without (control) or with scaffold (three-dimensional cultures; 3D). The effect of different approaches on survival, proliferation, and differentiation of NS/PCs were investigated. In in vivo study, brain injury was induced 45 days after NS/PCs were harvested from the SVZ and phosphate buffered saline, PM, NS/PCs, or PM+NS/PCs were injected into the brain lesion. There was an increase in cell viability and proliferation after injection and surface plating of NS/PCs compared to encapsulation and neural differentiation markers were expressed seven days after culturing the cells. Using injection method, transplantation of NS/PCs cultured in PM resulted in significant reduction of lesion volume, improvement of neurological deficits, and enhancement of surviving cells. In addition, the transplanted cells could differentiate in to neurons, astrocytes, or oligodendrocytes. Our results indicate that the injection and surface plating methods enhanced cell survival and proliferation of NS/PCs and suggest the injection method as a promising approach for transplantation of NS/PCs in brain injury. PMID:27038753

  7. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard.

    Science.gov (United States)

    Pirman, David A; Reich, Richard F; Kiss, András; Heeren, Ron M A; Yost, Richard A

    2013-01-15

    Mass spectrometric imaging (MSI) is an analytical technique used to determine the distribution of individual analytes within a given sample. A wide array of analytes and samples can be investigated by MSI, including drug distribution in rats, lipid analysis from brain tissue, protein differentiation in tumors, and plant metabolite distributions. Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique capable of desorbing and ionizing a large range of compounds, and it is the most common ionization source used in MSI. MALDI mass spectrometry (MS) is generally considered to be a qualitative analytical technique because of significant ion-signal variability. Consequently, MSI is also thought to be a qualitative technique because of the quantitative limitations of MALDI coupled with the homogeneity of tissue sections inherent in an MSI experiment. Thus, conclusions based on MS images are often limited by the inability to correlate ion signal increases with actual concentration increases. Here, we report a quantitative MSI method for the analysis of cocaine (COC) from brain tissue using a deuterated internal standard (COC-d(3)) combined with wide-isolation MS/MS for analysis of the tissue extracts with scan-by-scan COC-to-COC-d(3) normalization. This resulted in significant improvements in signal reproducibility and calibration curve linearity. Quantitative results from the MSI experiments were compared with quantitative results from liquid chromatography (LC)-MS/MS results from brain tissue extracts. Two different quantitative MSI techniques (standard addition and external calibration) produced quantitative results comparable to LC-MS/MS data. Tissue extracts were also analyzed by MALDI wide-isolation MS/MS, and quantitative results were nearly identical to those from LC-MS/MS. These results clearly demonstrate the necessity for an internal standard for quantitative MSI experiments. PMID:23214490

  8. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells

    OpenAIRE

    Volovitz, Ilan; Shapira, Netanel; Ezer, Haim; Gafni, Aviv; Lustgarten, Merav; Alter, Tal; Ben-Horin, Idan; Barzilai, Ori; Shahar, Tal; Kanner, Andrew; Fried, Itzhak; Veshchev, Igor; Grossman, Rachel; Ram, Zvi

    2016-01-01

    Background Conducting research on the molecular biology, immunology, and physiology of brain tumors (BTs) and primary brain tissues requires the use of viably dissociated single cells. Inadequate methods for tissue dissociation generate considerable loss in the quantity of single cells produced and in the produced cells’ viability. Improper dissociation may also demote the quality of data attained in functional and molecular assays due to the presence of large quantities cellular debris conta...

  9. Concentrations of Nitric Oxide in Rat Brain Tissues after Diffuse Brain Injury and Neuroprotection by the Selective Inducible Nitric Oxide Synthase Inhibitor Aminoguanidine

    Institute of Scientific and Technical Information of China (English)

    Yi-bao Wang; Shao-wu Ou; Guang-yu Li; Yun-hui Liu

    2005-01-01

    @@ To investigate the effects of nitric oxide (NO) and the selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) on trauma, we explored the concentrations of nitric oxide in rat brain tissues at different time stamps after diffuse brain injury (DBI) with or without AG treatment.

  10. Changes in brain-derived neurotrophic factor expression after transplanting microencapsulated sciatic nerve cells of rabbits into injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Changes of brain-derived neurotrophic factor (BDNF) expression reflect function of nerve cells; meanwhile, they play a significant role in researching interventions on plerosis of nerve injury.OBJECTIVE: To observe and compare the effects on changes of BDNF expression in rats with spinal cord injury between microencapsulated sciatic nerve cells of rabbits and only transplanting sciatic nerve cells of rabbits.DESIGN: Randomized controlled animal study.SETTING: Medical School of Jiujiang College.MATERIALS: The experiment was carried out in the Medical Science Researching Center, Jiujiang College from May 2004 to May 2006. A total of 90 healthy adult SD rats, weighing 250 - 300 g, of either gender; and 10 rabbits, weighing 2.0 - 2.5 kg, of either gender, were provided by Jiangxi Experimental Animal Center.METHODS: Sciatic nerve tissue of rabbits was separated to make cell suspension. After centrifugation,suspension was mixed with 15 g/L alginate saline solution and ejaculated to 20 mmol/L barium chloride saline solution by double-cavity ejaculator. The obtained cell microcapsules were suspended in saline. Rats were randomly divided into microencapsulated group, only suspension group, and only injured group with 30 animals in each group. After anesthesia, T10 spinous process and vertebra lamina of rats in the former two groups were exposed. Spinal cord tissue in 2-mm length was removed from rats by spinal cord right hemi-section. The gelatin sponges with the size of 2 mm × 2 mm × 2 mm were grafted as filing cage,and absorbed 10 μμ L microencapsulated sciatic nerve cells of rabbit in the microencapsulated group and 10 μ L sciatic nerve cells of rabbits in the only suspension group; respectively. No graft was placed in the only injured group.MAIN OUTCOME MEASURES: On the 1st, 3rd, 7th, 14th and 28th days after operation,immunohistochemistry (SABC technique) was used to detect distribution and amount of positive-reactive neurons in BDNF of spinal cord

  11. Microinjection of membrane-impermeable molecules into single neural stem cells in brain tissue.

    Science.gov (United States)

    Wong, Fong Kuan; Haffner, Christiane; Huttner, Wieland B; Taverna, Elena

    2014-05-01

    This microinjection protocol allows the manipulation and tracking of neural stem and progenitor cells in tissue at single-cell resolution. We demonstrate how to apply microinjection to organotypic brain slices obtained from mice and ferrets; however, our technique is not limited to mouse and ferret embryos, but provides a means of introducing a wide variety of membrane-impermeable molecules (e.g., nucleic acids, proteins, hydrophilic compounds) into neural stem and progenitor cells of any developing mammalian brain. Microinjection experiments are conducted by using a phase-contrast microscope equipped with epifluorescence, a transjector and a micromanipulator. The procedure normally takes ∼2 h for an experienced researcher, and the entire protocol, including tissue processing, can be performed within 1 week. Thus, microinjection is a unique and versatile method for changing and tracking the fate of a cell in organotypic slice culture.

  12. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair.

    Science.gov (United States)

    Zhang, Zhen-Qiang; Song, Jun-Ying; Jia, Ya-Quan; Zhang, Yun-Ke

    2016-03-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury. PMID:27127482

  13. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury:mechanisms of brain tissue repair

    Institute of Scientific and Technical Information of China (English)

    Zhen-qiang Zhang; Jun-ying Song; Ya-quan Jia; Yun-ke Zhang

    2016-01-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically givenBuyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reper-fusion injury was established by middle cerebral artery occlusion. In rats administeredBuyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrinαvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects ofBuyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest thatBuyanghuanwu de-coction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  14. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair

    Directory of Open Access Journals (Sweden)

    Zhen-qiang Zhang

    2016-01-01

    Full Text Available Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days. These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  15. Identifying signature Zernike modes for efficient light delivery through brain tissue

    CERN Document Server

    Sane, Sharmila; Lee, Woei Ming; Stricker, Christian; Bachor, Hans; Daria, Vincent

    2015-01-01

    Recent progress in neuroscience to image and investigate brain function has been made possible by impressive developments in optogenetic and opto-molecular tools. Such research requires advances in optical techniques for the delivery of light through brain tissue with high spatial resolution. The tissue causes distortions of the wavefront of the incoming light which broadens the focus, thereby reducing the intensity and resolution especially in techniques requiring focal illumination. Adaptive wavefront correction has been demonstrated to compensate for these distortions. However, in many situations iterative derivation of the corrective wavefront introduces time constraints that limit its usefulness when used to probe living cells. Here we demonstrate a direct and fast technique by working with a small set of Zernike modes and demonstrate that corrections derived a priori can lead to significant improvement of the focus. We verify this idea by the electrical response of whole-cell patched neurons following t...

  16. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Bergström, Ann-Louise; Ohm, Jakob;

    2008-01-01

    Post-mortem diagnosis of transmissible spongiform encephalopaties (prion diseases) is primarily based on the detection of a protease resistant, misfolded disease associated isoform (PrPSc) of the prion protein (PrPc) on neuronal cells. These methods depend on antibodies directed aganinst Pr......-type mice and used for western blotting and immunohistochemistry to detect several types of human prion-disease associated PrPSc, including sporadic Creutzfeldt-Jakob Disease (CJD) (subtypes MM1 and V"), familial CJD and Gerstmann-Sträussler-Scheinker (GSS) disease PrPSc as well as PrPSc of bovine...... spongiform encephalopathy (bovine brain), scrapie (ovine brain) and experimental scrapie in hamster and in mice. The antibodies were also used for PET-blotting in which PrPSc blotted from brain tissue sections onto a nitrocellulose membrane is visualized with antibodies after protease and denaturant...

  17. [Detection of mixed lymphoid chimerism after allogeneic bone marrow transplantation: demonstration by interphase cytogenetics in paraffin-embedded tissue].

    Science.gov (United States)

    Friedrich, T; Ott, G; Kalla, J; Helbig, W; Schwenke, H; Kubel, M; Pönisch, W; Feyer, P; Friedrich, A

    1994-01-01

    In bone marrow transplantation (BMT) the detection of residual host lymphoid or haematopoietic cells surviving conditioning therapy is because of its association to graft-versus-host disease, graft-versus-leukemia reaction, and relapse of leukemia a matter of great interest. We studied the occurrence of this mixed lymphoid chimerism (MC) in the formol-fixed lymphatic tissue of lymph nodes and spleen from 21 autopsies after allogeneic sex-mismatched BMT (5 females, 16 males, survival 5 to 1140 days after BMT). In situ hybridisation with biotinylated centromer-specific anti-X- and anti-Y-chromosome probes was performed on pepsin-digested paraffin sections. The number of double X-, single X-, and Y-chromosome bearing cells was analysed microscopically. Because of artefacts only 14 cases remained for valid investigation. MC was detected in 6 cases (5 out of 11 males 5 days to 840 days and 1 out of 3 females 76 days after BMT). MC occurred after whole body irradiation with 10 Gy (n = 5) and 7 Gy (n = 1). In 1 autopsy relapse of leukemia caused host cell infiltration. Cases with MC did not express histological signs of acute or chronic graft-versus-host disease, but 5 out of 8 with complete lymphoid chimerism did. The sensitivity of interphase cytogenetics on paraffin embedded tissue is low.

  18. Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging

    OpenAIRE

    Aya M Fattouh; El-Shabrawi, Mortada H; Enas H Mahmoud; Wafaa O Ahmed

    2016-01-01

    Background: Cirrhotic cardiomyopathy (CCM) is described as the presence of cardiac dysfunction in cirrhotic patients. In children with chronic liver disease, CCM has been very rarely investigated. The Aim of the Study: Is to evaluate the cardiac function of cirrhotic children to identify those with CCM. Patients and Methods: Fifty-two cirrhotic patients and 53 age and sex matched controls were assessed using serum brain-type natriuretic peptide (BNP), conventional echocardiography, and tissue...

  19. Evidence for Fungal Infection in Cerebrospinal Fluid and Brain Tissue from Patients with Amyotrophic Lateral Sclerosis

    OpenAIRE

    Alonso, Ruth; Pisa, Diana; Marina, Ana Isabel; Morato, Esperanza; Rábano, Alberto; Rodal, Izaskun; Carrasco, Luis

    2015-01-01

    Among neurogenerative diseases, amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by a progressive motor neuron dysfunction in the motor cortex, brainstem and spinal cord. ALS is the most common form of motor neuron disease; yet, to date, the exact etiology of ALS remains unknown. In the present work, we have explored the possibility of fungal infection in cerebrospinal fluid (CSF) and in brain tissue from ALS patients. Fungal antigens, as well as DNA from several fungi, we...

  20. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues.

    OpenAIRE

    Dawson, T. M.; Bredt, D S; M Fotuhi; Hwang, P M; Snyder, S. H.

    1991-01-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with...

  1. Cardiovascular haemodynamics in pre-eclampsia using brain naturetic peptide and tissue Doppler studies

    OpenAIRE

    Naidoo, DP; Fayers, S; Moodley, J

    2013-01-01

    Aim To determine early haemodynamic changes in pre-eclampsia (PE) using tissue Doppler echocardiography and brain natriuretic peptide (BNP), and to relate these changes to obstetric outcomes. Methods Consenting primigravidae patients in the third trimester of pregnancy were included in the study, which was carried out in a large regional hospital in Durban, South Africa; 115 primigravidae (52 pre-eclamptics and 63 normotensive pregnant patients) attending the maternity unit including the ante...

  2. Maternal Prenatal Iron Status and Tissue Organization in the Neonatal Brain

    OpenAIRE

    Monk, Catherine; Georgieff, Michael K.; Xu, Dongrong; Hao, Xuejun; Bansal, Ravi; Gustafsson, Hanna; Spicer, Julie; Peterson, Bradley S.

    2015-01-01

    Background Children prenatally exposed to inadequate iron have poorer motor and neurocognitive development. No prior study to our knowledge has assessed the influence of maternal prenatal iron intake on newborn brain tissue organization in fullterm infants. Methods 3rd trimester daily iron intake was obtained using the Automated SelfAdministered 24hour Dietary Recall with n=40 healthy pregnant adolescents (14–19 years old). Cord blood ferritin was collected in a subsample (n=16). Newborn (m=3...

  3. Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Yunjie Chen

    2016-01-01

    Full Text Available We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms.

  4. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  5. Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.01.022

    2013-01-01

    Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression tests and stress relaxation tests at strain rates < 90/s. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the compressive nominal stress at 30% strain was 8.83 +/- 1.94, 12.8 +/- 3.10 and 16.0 +/- 1.41 kPa (mean +/- SD) at strain rates of 30, 60 and 90/s, respectively. Relaxation tests were also conducted at 10%-50% strain with the average rise time of 10 ms, which can be used to derive time dependent parameters. Numerical simulations were performed using one-term Ogden model with initial shear modulus mu_0 = 6.06 +/- 1.44, 9.44 +/-...

  6. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  7. Co-transplantation of plasmid-transfected myoblasts and myotubes into rat brains enables high levels of gene expression long-term

    Science.gov (United States)

    Jiao, S.; Williams, P.; Safda, N.; Schultz, E.; Wolff, J. A.

    1993-01-01

    We have previously proposed the use of primary muscle cells as a "platform," or "vehicle" for intracerebral transgene expression. Brain grafts of minced muscle, or cultured muscle cells persisted in rat brains for at least 6 mo without any decrease in graft size, or tumor formation. Stable, but moderate levels of intracerebral transgene expression were obtained by transplanting plasmid-transfected myotubes in culture. In the present study, high and stable levels of intracerebral transgene expression were achieved by the co-transplantation of plasmid-transfected myoblasts and myotubes in culture. Approximately 5 X 10(5) myoblasts and myotubes were transfected with 10 micrograms pRSVL plasmid DNA, and 30 micrograms Lipofectin (BRL), respectively. They were mixed together (total cell number was 1 million), and stereotactically injected into the caudate nucleus of an adult rat brain. The activity of luciferase, the product of transgene expression, was stable for at least 4 mo, and much higher than the levels in myotube grafts, or co-grafts of myoblasts and minced muscle. Presumably, the myotubes served as a framework on which the myoblasts can form myotubes. The sections of brains transplanted with co-graft of myoblasts, and myotubes transfected with pRSVLac-Z were stained immunofluorescently for beta-galactosidase activity. The muscle grafts contained beta-galactosidase positive myofibers 4 mo after transplantation. Such high and stable levels of in vivo expression after postnatal gene transfer have rarely been achieved. Primary muscle cells are useful vehicle for transgene expression in brains, and potentially valuable for gene therapy of degenerative neurological disorders.

  8. Preliminary observation of genes specifically expressed in brain tissues during stroke-like episodes in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-mei; ZHAO Bin; ZHU Shan-jun; ZHU Zhi-ming; ZHANG Qian; HUI Ru-tai

    2001-01-01

    Objective: To observe the difference of gene expressions of brain tissues during apoplectic episodes and those of normal brain in Wistar rats in order to study the pathological mechanism of apoplexy. Methods: A rat model of hypertension was established with the administration of cold stimulus and high salt intake as the environmental risk factors.Apoplexy occurred in the rats because of hypertension. Suppression subtractive hybridization(SSH) was used to identify and analyze the differential genes specifically expressed in cerebral tissues of stoke group and control rats. Results: A total of 226 genes out of the 228 were usable and analyzed. The average length of the 226 genes was (286.6±120.3) bp with a range from 50 bp to 619 bp. And 126 clones out of the 226 showed a sequence with significant identity to the known genes; 78 clones demonstrated homogenous sequences to the existing ESTs ofdbEST, but no one of the 78 showed sequence with identity to that of known genes; and remaining 22 were novel transrcipts exhibiting no similarity to any known sequences. All the clones which were highly homogenous to the known genes were categorized on the basis of their function. It was found that 26.5% of the mitochodrial genes in brain tissues underwent changes after apoplexy and the changes showed a twofold relationship of cause and effect. Conclusion: Environmental factors are able to induce changes of gene expression, which may increase the sensitivity to apoplectic stroke.

  9. Optical vortex beam transmission with different OAM in scattering beads and brain tissue media

    Science.gov (United States)

    Wang, W. B.; Shi, Lingyan; Lindwasser, Lukas; Marque, Paulo; Lavery, M. P. J.; Alfano, R. R.

    2016-03-01

    Light transmission of Laguerre Gaussian (LG) vortex beams with different orbital angular momentum (OAM) values (L) in scattering beads and mouse brain tissue media were experimentally investigated for the first time in comparison with Gaussian (G) beams. The LG beams with different OAM were generated using a spatial light modulator (SLM) in reflection mode. The scattering beads media consist of various sizes and concentrations of latex beads in water solutions. The transmissions of LG and G beams through scattering beads and brain tissue media were measured with different ratios of sample thicknesses (z) to scattering mean free path (ls) of the turbid media, z/ls. The results indicate that within the ballistic region where z/ls is small, the LG and G beams show no significant difference, while in the diffusive region where z/ls is higher, the vortex beams show higher transmission than G beams. In the diffusive region, the LG beams with higher L values show higher transmission than the beams with lower L values due to the eigen channels in the media. The transition points from the ballistic to diffusive regions for different scattering beads and brain tissue media were studied.

  10. Identification of some volatile endogenous constituents in rat brain tissue and the effects of lithium carbonate and chloral hydrate.

    Science.gov (United States)

    Politzer, I R; McDonald, L K; Laseter, J L

    1976-11-01

    Nine endogenous volatile compounds were found in rat brain tissue, and were identified by mass spectrometry as chloroform, a 5-C-aldehyde, dimethyl disulphide, 2,5-dimethyl tetrahydrofuran, a 8-C-alkane, xylene, 2-heptanone, heptaldehyde and 2-n-pentylfuran. Using gas chromatographic and gas chromatographic mass spectrometric techniques, it was established that lithium carbonate did not induce the production of detectable amounts of any new volatile compounds in brain tissue. However, after administration of chloral hydrate, trichloroethanol, a compound not normally present in rat brain tissue, was found to be present. PMID:996360

  11. [The effect of intracerebral mesenchymal stem cells transplantation on the density of microvascular network of the pial matter of the rat brain cortex].

    Science.gov (United States)

    Dvoretskiĭ, D P; Sokolova, I B; Sergeev, I V; Bilibina, A A

    2012-04-01

    Using a TV installation for studying the microcirculation (with 30-160-fold magnification), the density of microvascular network in the pia matter of the rat brain sensomotor cortex was determined after intracerebral transplantation of mesenchymal stem cells (MSC) or (as control) of the MSC cultivation nutrition medium, or of saline. The results have shown that intracerebral transplantation does not change density of microvascular network in the pia mater of the ipsilateral hemisphere. Transplantation of the MSC led to a 1.8-fold increase of density of the pia matter of the contralateral hemisphere as compared with control animals; the number of arterioles in the same zone was 2.5-fold higher than in intact rats. PMID:22834342

  12. THE STATE OF THE WATER IN BRAIN TISSUE IN PRESENCE OF TS-100 NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    T. V.

    2015-12-01

    Full Text Available By the method of low-temperature 1Н NMR spectroscopy the structure of the hydrate layers of water associated with brain cells, the changes of these parameters during necrotic lesions (stroke and in the presence of trifluoroacetic acid, which allows differentiating intracellular water clusters according to their ability to dissolve the acid, were studied. Also the impact of silica TS-100 nanoparticles on the state of water in brain tissue, namely on the water binding parameters in the air and in the presence of a weakly polar solvent was considered. The distributions by the radii and change of Gibbs free energy for clusters of strongly bound interfacial water were obtained. It was shown that the hydration properties of the native brain tissue differ from the hydration properties of necrotic damaged tissue by the structure of weakly bound water clusters. In intact tissue all the water is associated and is a part of clusters and domains, most of which have a radii R = 2 and 20 nm. The media with chloroform stabilizes water polyassociates with the radius up to R = 100 nm and trifluoroacetic acid stabilizes water polyassociates with radii R = 7–20 nm. It was found that the partial dehydration of the investigated tissue samples is accompanied by decreasing of weakly bound water amount and some increasing of strongly bound water that indicates a change of molecular interactions between the components of cells-nanoparticles composite system. The ischemic necrosis area presence leads to a decrease of water binding due to the average size water polyassociates increasing. This effect is observed both in air and in a weakly polar organic solvent medium (deuterochloroform.

  13. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  14. Effect of Short Periods of Normobaric Hyperoxia on Local Brain Tissue Oxygenation and Cerebrospinal Fluid Oxidative Stress Markers in Severe Traumatic Brain Injury

    OpenAIRE

    Puccio, Ava M.; Hoffman, Leslie A.; Bayir, Hülya; Zullo, Thomas G.; Fischer, Michael; Darby, Joseph; Alexander, Sheila; Dixon, C. Edward; Okonkwo, David O.; Kochanek, Patrick M.

    2009-01-01

    Preliminary evidence suggests local brain tissue oxygenation (PbtO2) values of ≤15 mm Hg following severe traumatic brain injury (TBI) represent brain tissue hypoxia. Accordingly, many neurotrauma units attempt to maintain PbtO2 ≥20 mm Hg to avoid hypoxia. This study tested the impact of a short (2 h) trial of normobaric hyperoxia on measures of oxidative stress. We hypothesized this treatment would positively affect cerebral oxygenation but negatively affect the cellular environment via oxid...

  15. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development.

  16. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Heile, Anna M B; Wallrapp, Christine; Klinge, Petra M;

    2009-01-01

    PURPOSE: "Naked" human mesenchymal stem cells (MSC) are neuro-protective in experimental brain injury (TBI). In a controlled cortical impact (CCI) rat model, we investigated whether encapsulated MSC (eMSC) act similarly, and whether efficacy is augmented using cells transfected to produce the neu...

  17. Nitric oxide levels following perfusion differ in donation after circulatory death and donation after brain death transplants

    OpenAIRE

    Johns, R.; Chaudry, A.; Khanafer, E; Ilham, A; Stephens, M; Philips, A; Asderakis, A

    2013-01-01

    Affiliated to the Association of Surgeons in Training and the British Transplantation Society, the Carrel Club is the transplant trainee surgical society. The Carrel Club held a joint meeting with the Chapter of Transplant Surgeons, a subsidiary organisation of the British Transplantation Society, at the Manchester Hilton Hotel on 31 January and 1 February 2013. As part of the meeting, ten abstracts were presented. A selection is printed below. The winner of the Best Presentation award was Mr...

  18. X-ray diffraction from intact tau aggregates in human brain tissue

    Science.gov (United States)

    Landahl, Eric C.; Antipova, Olga; Bongaarts, Angela; Barrea, Raul; Berry, Robert; Binder, Lester I.; Irving, Thomas; Orgel, Joseph; Vana, Laurel; Rice, Sarah E.

    2011-09-01

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 Å) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  19. X-ray diffraction from intact tau aggregates in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Landahl, Eric C. [DePaul University, Department of Physics, 2219 N. Kenmore Ave., IL 60614, Chicago (United States); Antipova, Olga [Illinois Institute of Technology, Department of Biological Chemical and Physical Sciences, 3101 South Dearborn St., IL 60616, Chicago (United States); Bongaarts, Angela [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States); Barrea, Raul [Illinois Institute of Technology, Department of Biological Chemical and Physical Sciences, 3101 South Dearborn St., IL 60616, Chicago (United States); Berry, Robert; Binder, Lester I. [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States); Irving, Thomas; Orgel, Joseph [Illinois Institute of Technology, Department of Biological Chemical and Physical Sciences, 3101 South Dearborn St., IL 60616, Chicago (United States); Vana, Laurel [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States); Rice, Sarah E., E-mail: s-rice@northwestern.edu [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States)

    2011-09-01

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 A) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  20. X-ray diffraction from intact tau aggregates in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Landahl, Eric C.; Antipova, Olga; Bongaarts, Angela; Barrea, Raul; Berry, Robert; Binder, Lester I.; Irving, Thomas; Orgel, Joseph; Vana, Laurel; Rice, Sarah E. (DePaul); (IIT); (NWU)

    2011-09-15

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 {angstrom}) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  1. Concentration of organochlorines in human brain, liver, and adipose tissue autopsy samples from Greenland

    DEFF Research Database (Denmark)

    Dewailly, Éric; Mulvad, Gert; Pedersen, Henning S.;

    1999-01-01

    Organochlorines are persistent lipophilic compounds that accumulate in Inuit people living in circumpolar countries. Organochlorines accumulate as a result of the Inuits' large consumption of sea mammal fat; however, available data are limited to blood lipids, milk fat, and adipose tissue. We...... report results of organochlorine determination in liver, brain, omental fat, and subcutaneous abdominal fat samples collected from deceased Greenlanders between 1992 and 1994. Eleven chlorinated pesticides and 14 polychlorinated biphenyl congeners were measured in tissue lipid extracts by high......-resolution gas chromatography with electron capture detection. Mean concentrations of polychlorinated biphenyls, 2, 2'-bis(4-chlorophenyl)-1,1-dichloroethylene, ss-hexachlorocyclohexane, hexachlorobenzene, mirex, trans-nonachlor, and oxychlordane in adipose tissue samples from Greenlanders were 3-34-fold higher...

  2. Antioxidant Role of Pomegranates on Liver and Brain Tissues of Rats Exposed to an Organophosphorus Insecticide

    International Nuclear Information System (INIS)

    Toxicities of organophosphorus insecticides cause oxidative damage on many organs such as the liver and brain due to generation of reactive oxygen species. Pomegranate is among the richest fruit in poly - phenols. The aim of this study was to compare between the antioxidant strength of pomegranate juice (PJ) and pomegranate molasses (PM) and their effects on alanine transferase (ALT), aspartate aminotransferase (AST), Alkaline phosphatase (ALP) and total protein (TP) in liver and levels of malondialdehyde (MAD), reduced glutathione (GSH) and nitric oxide (NO) in rat liver and brain tissues exposed to 1/10 LD 50 diazinon (DI). Six groups each of 6 male albino rats were used comprising control, DI, PJ, PM, PJ + DI and PM + DI for 15 days. The activities of ALT, AST, and TP concentration in liver have been increased due to treatment of rats with DI. These increases restored to normalcy when rats were supplemented with PJ or PM with DI. The results demonstrate that treatment with DI induced significant increase in MDA and NO concentrations and significant decrease in GSH levels of liver and brain tissues. The administration of PJ or PM along with DI significant decrease in MDA and NO levels and significant increase in GSH level compared to DI-group. The present study suggest that PJ or PM has a potential protective effect as it can elevate antioxidant defense system, lessens induced oxidative dam - ages and protect the brain and liver tissue against DI-induced toxicity. In addition, comaring PJ with PM it was noticed that PJ had higher antioxidant activity as evidenced by increased GSH content and decreased NO level in the liver by greater extend than PM.

  3. Dual-porosity poroviscoelasticity and quantitative hydromechanical characterization of the brain tissue with experimental hydrocephalus data.

    Science.gov (United States)

    Mehrabian, Amin; Abousleiman, Younane N; Mapstone, Timothy B; El-Amm, Christian A

    2015-11-01

    Hydromechanical brain models often involve constitutive relations which must account for soft tissue deformation and creep, together with the interstitial fluid movement and exchange through capillaries. The interaction of rather unknown mechanisms which produce, absorb, and circulate the cerebrospinal fluid within the central nervous system can further add to their complexity. Once proper models for these phenomena or processes are selected, estimation of the associated parameters could be even more challenging. This paper presents the results of a consistent, coupled poroviscoelastic modeling and characterization of the brain tissue as a dual-porosity system. The model draws from Biot's theory of poroviscoelasticity, and adopts the generalized Kelvin's rheological description of the viscoelastic tissue behavior. While the interstitial space serves as the primary porosity through which the bulk flow of the interstitial fluid occurs, a secondary porosity network comprising the capillaries and venous system allows for its partial absorption into the blood. The correspondence principle is used in deriving a time-dependent analytical solution to the proposed model. It allows for identical poroelastic formulation of the original poroviscoelastic problem in the Laplace transform space. Hydrocephalus generally refers to a class of medical conditions which share the ventricles enlargement as a common feature. A set of published data from induced hydrocephalus and follow-up perfusion of cats' brains is used for quantitative characterization of the proposed model. A selected portion of these data including the ventricular volume and rate of fluid absorption from the perfused brain, together with the forward model solution, is utilized via an inverse problem technique to find proper estimations of the model parameters. Results show significant improvement in model predictions of the experimental data. The convoluted and coupled solution results are presented through the time

  4. An international comparison of the effect of policy shifts to organ donation following cardiocirculatory death (DCD on donation rates after brain death (DBD and transplantation rates.

    Directory of Open Access Journals (Sweden)

    Aric Bendorf

    Full Text Available During the past decade an increasing number of countries have adopted policies that emphasize donation after cardiocirculatory death (DCD in an attempt to address the widening gap between the demand for transplantable organs and the availability of organs from donation after brain death (DBD donors. In order to examine how these policy shifts have affected overall deceased organ donor (DD and DBD rates, we analyzed deceased donation rates from 82 countries from 2000-2010. On average, overall DD, DBD and DCD rates have increased over time, with the proportion of DCD increasing 0.3% per year (p = 0.01. Countries with higher DCD rates have, on average, lower DBD rates. For every one-per million population (pmp increase in the DCD rate, the average DBD rate decreased by 1.02 pmp (95% CI: 0.73, 1.32; p<0.0001. We also found that the number of organs transplanted per donor was significantly lower in DCD when compared to DBD donors with 1.51 less transplants per DCD compared to DBD (95% CI: 1.23, 1.79; p<0.001. Whilst the results do not infer a causal relationship between increased DCD and decreased DBD rates, the significant correlation between higher DCD and lower DBD rates coupled with the reduced number of organs transplanted per DCD donor suggests that a national policy focus on DCD may lead to an overall reduction in the number of transplants performed.

  5. Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with {sup 99m}Tc BN1.1

    Energy Technology Data Exchange (ETDEWEB)

    Scopinaro, F. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy)]. E-mail: francesco.scopinaro@uniroma1.it; Paschali, E. [NSC Demokritos, Athens (Greece); Di Santo, G. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Antonellis, T. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Massari, R. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Trotta, C. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Gourni, H. [NSC Demokritos, Athens (Greece); Bouziotis, P. [NSC Demokritos, Athens (Greece); David, V. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Soluri, A. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Varvarigou, A.D. [NSC Demokritos, Athens (Greece)

    2006-12-20

    The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. {sup 99m}Tc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, {sup 99m}Tc HMPAO and the new {sup 99m}Tc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of {sup 99m}Tc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of {sup 99m}Tc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only {sup 99m}Tc BN1.1 HR scan showed viability of transplanted TSC but also the 'background brain' was the still now unknown map of BNR in mammalian brain.

  6. Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with 99mTc BN1.1

    Science.gov (United States)

    Scopinaro, F.; Paschali, E.; Di Santo, G.; Antonellis, T.; Massari, R.; Trotta, C.; Gourni, H.; Bouziotis, P.; David, V.; Soluri, A.; Varvarigou, A. D.

    2006-12-01

    The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. 99mTc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, 99mTc HMPAO and the new 99mTc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of 99mTc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of 99mTc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only 99mTc BN1.1 HR scan showed viability of transplanted TSC but also the "background brain" was the still now unknown map of BNR in mammalian brain.

  7. Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with 99mTc BN1.1

    International Nuclear Information System (INIS)

    The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. 99mTc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, 99mTc HMPAO and the new 99mTc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of 99mTc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of 99mTc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only 99mTc BN1.1 HR scan showed viability of transplanted TSC but also the 'background brain' was the still now unknown map of BNR in mammalian brain

  8. Promotion of Survival and Engraftment of Transplanted Adipose Tissue-Derived Stromal and Vascular Cells by Overexpression of Manganese Superoxide Dismutase

    Directory of Open Access Journals (Sweden)

    Silvia Baldari

    2016-07-01

    Full Text Available Short-term persistence of transplanted cells during early post-implant period limits clinical efficacy of cell therapy. Poor cell survival is mainly due to the harsh hypoxic microenvironment transplanted cells face at the site of implantation and to anoikis, driven by cell adhesion loss. We evaluated the hypothesis that viral-mediated expression of a gene conferring hypoxia resistance to cells before transplant could enhance survival of grafted cells in early stages after implant. We used adipose tissue as cell source because it consistently provides high yields of adipose-tissue-derived stromal and vascular cells (ASCs, suitable for regenerative purposes. Luciferase positive cells were transduced with lentiviral vectors expressing either green fluorescent protein as control or human manganese superoxide dismutase (SOD2. Cells were then exposed in vitro to hypoxic conditions, mimicking cell transplantation into an ischemic site. Cells overexpressing SOD2 displayed survival rates significantly greater compared to mock transduced cells. Similar results were also obtained in vivo after implantation into syngeneic mice and assessment of cell engraftment by in vivo bioluminescent imaging. Taken together, these findings suggest that ex vivo gene transfer of SOD2 into ASCs before implantation confers a cytoprotective effect leading to improved survival and engraftment rates, therefore enhancing cell therapy regenerative potential.

  9. Promotion of Survival and Engraftment of Transplanted Adipose Tissue-Derived Stromal and Vascular Cells by Overexpression of Manganese Superoxide Dismutase.

    Science.gov (United States)

    Baldari, Silvia; Di Rocco, Giuliana; Trivisonno, Angelo; Samengo, Daniela; Pani, Giovambattista; Toietta, Gabriele

    2016-01-01

    Short-term persistence of transplanted cells during early post-implant period limits clinical efficacy of cell therapy. Poor cell survival is mainly due to the harsh hypoxic microenvironment transplanted cells face at the site of implantation and to anoikis, driven by cell adhesion loss. We evaluated the hypothesis that viral-mediated expression of a gene conferring hypoxia resistance to cells before transplant could enhance survival of grafted cells in early stages after implant. We used adipose tissue as cell source because it consistently provides high yields of adipose-tissue-derived stromal and vascular cells (ASCs), suitable for regenerative purposes. Luciferase positive cells were transduced with lentiviral vectors expressing either green fluorescent protein as control or human manganese superoxide dismutase (SOD2). Cells were then exposed in vitro to hypoxic conditions, mimicking cell transplantation into an ischemic site. Cells overexpressing SOD2 displayed survival rates significantly greater compared to mock transduced cells. Similar results were also obtained in vivo after implantation into syngeneic mice and assessment of cell engraftment by in vivo bioluminescent imaging. Taken together, these findings suggest that ex vivo gene transfer of SOD2 into ASCs before implantation confers a cytoprotective effect leading to improved survival and engraftment rates, therefore enhancing cell therapy regenerative potential. PMID:27399681

  10. Solid organ donation and transplantation.

    Science.gov (United States)

    Furlow, Bryant

    2012-01-01

    Medical imaging plays a key role in solid organ donation and transplantation. In addition to confirming the clinical diagnosis of brain death, imaging examinations are used to assess potential organ donors and recipients, evaluate donated organs, and monitor transplantation outcomes. This article introduces the history, biology, ethics, and institutions of organ donation and transplantation medicine. The article also discusses current and emerging imaging applications in the transplantation field and the controversial role of neuroimaging to confirm clinically diagnosed brain death. PMID:22461345

  11. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review.

    Science.gov (United States)

    Nangunoori, Raj; Maloney-Wilensky, Eileen; Stiefel, Michael; Park, Soojin; Andrew Kofke, W; Levine, Joshua M; Yang, Wei; Le Roux, Peter D

    2012-08-01

    Observational clinical studies demonstrate that brain hypoxia is associated with poor outcome after severe traumatic brain injury (TBI). In this study, available medical literature was reviewed to examine whether brain tissue oxygen (PbtO2)-based therapy is associated with improved patient outcome after severe TBI. Clinical studies published between 1993 and 2010 that compared PbtO2-based therapy combined with intracranial and cerebral perfusion pressure (ICP/CPP)-based therapy to ICP/CPP-based therapy alone were identified from electronic databases, Index Medicus, bibliographies of pertinent articles, and expert consultation. For analysis, each selected paper had to have adequate data to determine odds ratios (ORs) and confidence intervals (CIs) of outcome described by the Glasgow outcome score (GOS). Seven studies that compared ICP/CPP and PbtO2- to ICP/CPP-based therapy were identified. There were no randomized studies and no comparison studies in children. Four studies, published in 2003, 2009, and 2010 that included 491 evaluable patients were used in the final analysis. Among patients who received PbtO2-based therapy, 121(38.8%) had unfavorable and 191 (61.2%) had a favorable outcome. Among the patients who received ICP/CPP-based therapy 104 (58.1%) had unfavorable and 75 (41.9%) had a favorable outcome. Overall PbtO2-based therapy was associated with favorable outcome (OR 2.1; 95% CI 1.4-3.1). Summary results suggest that combined ICP/CPP- and PbtO2-based therapy is associated with better outcome after severe TBI than ICP/CPP-based therapy alone. Cross-organizational practice variances cannot be controlled for in this type of review and so we cannot answer whether PbtO2-based therapy improves outcome. However, the potentially large incremental value of PbtO2-based therapy provides justification for a randomized clinical trial.

  12. The effect of X-ray on the distribution of biogenic monoamines in the brain tissue

    International Nuclear Information System (INIS)

    The role of biogenic monoamines in immuno-adaptation reaction of animal organism to radiation, in increase of organism radiostability and in studying damage effect of ionizing radiation is investigated. Rat brain was an object of observations. Rats were once X-irradiated at the dose of 0.8 and 1.2 Gr. Assay samples were taken in 10 minutes, 2, 24, 48 hours, 5 and 7 days after radiation. It was clarified that noticeable variations of serotonin, adrenalin and dofamin content were observed in first hours after radiation in hemisphere cortex, medulla oblongata, hypothalamus and cerebellum. The observed phenomena ever more aggravate with progress of radiation sickness. Character and depth of shifts in monoamine distribution are not found to depend on radiation dose only but on chemical structure of neurons of the investigated section as well. The results of studies permit to consider quantitative shifts in distribution of biogenic amines in brain tissue after radiation as one of the factors promoting increase of endogenic defence resources and increasing stability of the irradiated organism. Besides, it is supposed that these shifts result from local distortion of metabolic processes in brain tissue and general somatic shifts progressing at acute radiation sickness

  13. Brain Metastasis in Bone and Soft Tissue Cancers: A Review of Incidence, Interventions, and Outcomes

    Directory of Open Access Journals (Sweden)

    Faris Shweikeh

    2014-01-01

    Full Text Available Bone and soft tissue malignancies account for a small portion of brain metastases. In this review, we characterize their incidence, treatments, and prognosis. Most of the data in the literature is based on case reports and small case series. Less than 5% of brain metastases are from bone and soft tissue sarcomas, occurring most commonly in Ewing’s sarcoma, malignant fibrous tumors, and osteosarcoma. Mean interval from initial cancer diagnosis to brain metastasis is in the range of 20–30 months, with most being detected before 24 months (osteosarcoma, Ewing sarcoma, chordoma, angiosarcoma, and rhabdomyosarcoma, some at 24–36 months (malignant fibrous tumors, malignant peripheral nerve sheath tumors, and alveolar soft part sarcoma, and a few after 36 months (chondrosarcoma and liposarcoma. Overall mean survival ranges between 7 and 16 months, with the majority surviving < 12 months (Ewing’s sarcoma, liposarcoma, malignant fibrous tumors, malignant peripheral nerve sheath tumors, angiosarcoma and chordomas. Management is heterogeneous involving surgery, radiosurgery, radiotherapy, and chemotherapy. While a survival advantage may exist for those given aggressive treatment involving surgical resection, such patients tended to have a favorable preoperative performance status and minimal systemic disease.

  14. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics.

    Science.gov (United States)

    Favre-Bulle, Itia A; Preece, Daryl; Nieminen, Timo A; Heap, Lucy A; Scott, Ethan K; Rubinsztein-Dunlop, Halina

    2015-01-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam's degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics. PMID:26108566

  15. Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry

    Science.gov (United States)

    Yousefnezhad, Mohsen; Fotouhi, Morteza; Vejdani, Kaveh; Kamali-Zare, Padideh

    2016-09-01

    We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ =√{D /D* } ) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D* = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes in the ECS dynamics. The evolution of the underlying dynamics is then captured by a level set method. Subsequently, using a homogenization technique, we derived a coarse-grained model with parameters that are explicitly related to the geometry of cells and their associated ECS. Our modeling results in very accurate analytical approximation of tortuosity based on time, space, osmolarity differences across cell membranes, and water permeability of cell membranes. Our model provides a unique platform for studying ECS dynamics not only in physiologic conditions such as sleep-wake cycles and aging but also in pathologic conditions such as stroke, seizure, and neoplasia, as well as in predictive pharmacokinetic modeling such as predicting medication biodistribution and efficacy and novel biomolecule development and testing.

  16. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics

    Science.gov (United States)

    Favre-Bulle, Itia A.; Preece, Daryl; Nieminen, Timo A.; Heap, Lucy A.; Scott, Ethan K.; Rubinsztein-Dunlop, Halina

    2015-06-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam’s degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics.

  17. Protective effect of DL-3-n-Butylphthalide on radiation injury of rat brain tissue

    International Nuclear Information System (INIS)

    Objective: To investigate the protective effect and its mechanism of DL-3-n-Butylphthalide on the brain damage in rats following whole brain irradiation. Methods: A total of 120 male Sprague Dawley rats were randomly divided into sham-irradiation group, irradiation group and DL-3-n-Butylphthalide group. The model of whole-brain irradiation was established by exposing rat brain to 4 MeV X-rays with a single-dose of 10 Gy. The rats were intraperitoneally injected with DL-3-n-Butylphthalide at the dosages of 0.3, 1.0, and 3.0 mg/kg once a day. The contents of malondialdehyde and super oxide dismutase activity were measured, while the expressions of apoptosis-associated genes and the ultrastructural changes in hippocampus were examined by immunohistochemistry staining and electron microscope, respectively. Results: After irradiation, the content of malondialdehyde and the expression of apoptosis gene bax in rat brain tissue increased while the activity of super oxide dismutase (SOD) and the expression of anti-apoptosis gene bcl-2 decreased. Apoptosis was also observed in the neurons of hippocampus CA1. Compared with irradiation group, the content of malondialdehyde and the expression of bax gene in the DL-3-n-Butylphthalide group wen significantly reduced (t=-3.89 - -1.96, 2.72-3.48, P<0.05), while the activity of SOD and bcl-2 gene were significantly elevated (t=2.94-3.76, -3.18 - -2.08, P<0.05), and the injury degree of neuron structure in the DL-3-n-Butylphthalide group was slighter than that in the irradiation group. Conclusions: DL-3-n-Butylphthalide executes protective effects in a dose-dependent manner against the radiation injury in rats brain by reducing the induction of malondialdehyde, raising the activity of SOD and inhibiting the generation of apoptosis. (authors)

  18. Effects of formalin fixation on tissue optical properties of in-vitro brain samples

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Martelli, Fabrizio; Giordano, Flavio; Buccoliero, Anna Maria; Guerrini, Renzo; Pavone, Francesco S.

    2015-03-01

    Application of light spectroscopy based techniques for the detection of cancers have emerged as a promising approach for tumor diagnostics. In-vivo or freshly excised samples are normally used for point spectroscopic studies. However, ethical issues related to in-vivo studies, rapid decay of surgically excised tissues and sample availability puts a limitation on in-vivo and in-vitro studies. There has been a few studies reported on the application of formalin fixed samples with good discrimination capability. Usually formalin fixation is performed to prevent degradation of tissues after surgical resection. Fixing tissues in formalin prevents cell death by forming cross-linkages with proteins. Previous investigations have revealed that washing tissues fixed in formalin using phosphate buffered saline is known to reduce the effects of formalin during spectroscopic measurements. But this could not be the case with reflectance measurements. Hemoglobin is a principal absorbing medium in biological tissues in the visible range. Formalin fixation causes hemoglobin to seep out from red blood cells. Also, there could be alterations in the refractive index of tissues when fixed in formalin. In this study, we propose to investigate the changes in tissue optical properties between freshly excised and formalin fixed brain tissues. The results indicate a complete change in the spectral profile in the visible range where hemoglobin has its maximum absorption peaks. The characteristic bands of oxy-hemoglobin at 540, 580 nm and deoxy-hemoglobin at 555 nm disappear in the case of samples fixed in formalin. In addition, an increased spectral intensity was observed for the wavelengths greater than 650 nm where scattering phenomena are presumed to dominate.

  19. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue

    Science.gov (United States)

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types. PMID:27327609

  20. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue.

    Science.gov (United States)

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.

  1. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    Science.gov (United States)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  2. A white matter lesion-filling approach to improve brain tissue volume measurements

    Directory of Open Access Journals (Sweden)

    Sergi Valverde

    2014-01-01

    Full Text Available Multiple sclerosis white matter (WM lesions can affect brain tissue volume measurements of voxel-wise segmentation methods if these lesions are included in the segmentation process. Several authors have presented different techniques to improve brain tissue volume estimations by filling WM lesions before segmentation with intensities similar to those of WM. Here, we propose a new method to refill WM lesions, where contrary to similar approaches, lesion voxel intensities are replaced by random values of a normal distribution generated from the mean WM signal intensity of each two-dimensional slice. We test the performance of our method by estimating the deviation in tissue volume between a set of 30 T1-w 1.5 T and 30 T1-w 3 T images of healthy subjects and the same images where: WM lesions have been previously registered and afterwards replaced their voxel intensities to those between gray matter (GM and WM tissue. Tissue volume is computed independently using FAST and SPM8. When compared with the state-of-the-art methods, on 1.5 T data our method yields the lowest deviation in WM between original and filled images, independently of the segmentation method used. It also performs the lowest differences in GM when FAST is used and equals to the best method when SPM8 is employed. On 3 T data, our method also outperforms the state-of-the-art methods when FAST is used while performs similar to the best method when SPM8 is used. The proposed technique is currently available to researchers as a stand-alone program and as an SPM extension.

  3. Effects of isomers of apomorphines on dopamine receptors in striatal and limbic tissue of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kula, N.S.; Baldessarini, R.J.; Bromley, S.; Neumeyer, J.L.

    1985-09-16

    The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (Da) receptors in extrapyramidal and limbic preparations of rat brain tissues. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulation adenylate cyclase (D-1 sites) and in competing for high affinity binding of /sup 3/H-spiroperidol (D-2 sites) and of /sup 3/H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity of higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.

  4. MR brain scan tissues and structures segmentation: local cooperative Markovian agents and Bayesian formulation

    International Nuclear Information System (INIS)

    Accurate magnetic resonance brain scan segmentation is critical in a number of clinical and neuroscience applications. This task is challenging due to artifacts, low contrast between tissues and inter-individual variability that inhibit the introduction of a priori knowledge. In this thesis, we propose a new MR brain scan segmentation approach. Unique features of this approach include (1) the coupling of tissue segmentation, structure segmentation and prior knowledge construction, and (2) the consideration of local image properties. Locality is modeled through a multi-agent framework: agents are distributed into the volume and perform a local Markovian segmentation. As an initial approach (LOCUS, Local Cooperative Unified Segmentation), intuitive cooperation and coupling mechanisms are proposed to ensure the consistency of local models. Structures are segmented via the introduction of spatial localization constraints based on fuzzy spatial relations between structures. In a second approach, (LOCUS-B, LOCUS in a Bayesian framework) we consider the introduction of a statistical atlas to describe structures. The problem is reformulated in a Bayesian framework, allowing a statistical formalization of coupling and cooperation. Tissue segmentation, local model regularization, structure segmentation and local affine atlas registration are then coupled in an EM framework and mutually improve. The evaluation on simulated and real images shows good results, and in particular, a robustness to non-uniformity and noise with low computational cost. Local distributed and cooperative MRF models then appear as a powerful and promising approach for medical image segmentation. (author)

  5. Detection of constitutive and inducible HSP70 proteins in formalin fixed human brain tissue.

    Science.gov (United States)

    Preusse-Prange, A; Modrow, J-H; Schwark, T; von Wurmb-Schwark, N

    2014-02-01

    The investigation of formalin fixed and paraffin embedded tissue is a routine method in forensic histology. Since these samples are usually stored for decades they provide a unique tissue bank for different scientific issues. In the past, numerous studies were conducted using different kinds of paraffin embedded tissues. However, it is well known that formalin affects macromolecules and thus might hamper reliable and reproducible molecular experiments. The aim of this study was to find out if the treatment with formalin has a negative effect on different protein detection methods and additionally to define the dimension of those possible deleterious effects. We incubated brain tissue samples in formalin for up to three months. After incubation, the samples were analyzed using immunohistochemistry (IHC) and Western blotting to specifically detect and quantify members of the HSP70 superfamily (heat shock proteins). Our study shows that the Western blot analysis of formalin fixed tissues does not allow a reliable detection of proteins at all, while a reproducible detection by IHC was still possible after one month of incubation.

  6. Effects of platelet-rich plasma, adipose-derived stem cells, and stromal vascular fraction on the survival of human transplanted adipose tissue.

    Science.gov (United States)

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-11-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.

  7. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  8. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. (Cleveland Clinic Foundation, OH (USA))

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  9. Transplantation of Adipose Tissue and Adipose-Derived Stem Cells as a Tool to Study Metabolic Physiology and for Treatment of Disease

    OpenAIRE

    Tran, Thien T.; Kahn, C. Ronald

    2010-01-01

    Humans and other mammals have three main fat depots - visceral white fat, subcutaneous white fat, and brown fat - each possessing unique cell-autonomous properties. In contrast to visceral fat which can induce detrimental metabolic effects, subcutaneous white fat and brown fat have potential beneficial metabolic effects, including improved glucose homeostasis and increased energy consumption, which might be transferred by transplantation of these fat tissues. In addition, fat contains adipose...

  10. Vasculitis defects by brain SPECT in mixed connective tissue disease. A case report

    International Nuclear Information System (INIS)

    Full text: Cerebrovascular involvement including vasculitis in mixed connective tissue disease (MCTD) is reported to be uncommon. We describe the clinical findings and course of a 45 years old black women followed and diagnosed with depression and cognitive impairment including mental confusion, visual an auditive hallucination. Complete neuropsychological evaluation established the diagnosis of psychotic disorder. Laboratory tests, computed tomography of the skull were completely normal. The patient was referred to a brain SPECT which showed a focal area of decrease regional cerebral blood flow in right parietal-occipital region. Increasing the corticosteroids dose and with the use of neuroleptics, the patient improve clinically and the SPECT turned out to be normal

  11. Experimental study on the toxicity of povidone-iodine solution in brain tissues of rabbits

    OpenAIRE

    Li, Shu-Hua; Wang, Yu; Gao, Hai-Bin; Zhao, Kun; Hou, Yu-Chen; Sun, Wei

    2015-01-01

    Objective: To determine whether Povidone-iodine was toxic to brain tissues by rinsing the cerebral cortex of New Zealand rabbits with Povidone-iodine Solution of different concentrations. Methods: 12 New Zealand rabbits were randomly divided into 4 groups (Group A, B, C and D, 3 rabbits each group). In each group, the left cerebral cortex of rabbits was rinsed with physiological saline after the craniotomy; in Group A and B, the right cerebral cortex of rabbits was also locally rinsed with Po...

  12. Mechanical characterization of brain tissue in compression at dynamic strain rates.

    Science.gov (United States)

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-06-01

    Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression tests and stress relaxation tests at strain rates ≤90/s. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the compressive nominal stress at 30% strain was 8.83 ± 1.94, 12.8 ± 3.10 and 16.0 ± 1.41 kPa (mean ± SD) at strain rates of 30, 60 and 90/s, respectively. Relaxation tests were also conducted at 10%-50% strain with the average rise time of 10 ms, which can be used to derive time dependent parameters. Numerical simulations were performed using one-term Ogden model with initial shear modulus μ(o)=6.06±1.44, 9.44 ± 2.427 and 12.64 ± 1.227 kPa (mean ± SD) at strain rates of 30, 60 and 90/s, respectively. A separate set of bonded and lubricated tests were also performed under the same test conditions to estimate the friction coefficient μ, by adopting combined experimental-computational approach. The values of μ were 0.1 ± 0.03 and 0.15 ± 0.07 (mean ± SD) at 30 and 90/s strain rates, respectively, indicating that pure slip conditions cannot be achieved in unconfined compression tests even under fully lubricated test conditions. The material parameters obtained in this study will help to develop biofidelic human brain finite element models, which can subsequently be used to predict brain injuries under impact conditions. PMID:22520416

  13. Tissue factor triggers procoagulation in transplanted mesenchymal stem cells leading to thromboembolism.

    Science.gov (United States)

    Tatsumi, Kohei; Ohashi, Kazuo; Matsubara, Yoshinori; Kohori, Ayako; Ohno, Takahiro; Kakidachi, Hiroshi; Horii, Akihiro; Kanegae, Kazuko; Utoh, Rie; Iwata, Takanori; Okano, Teruo

    2013-02-01

    Mesenchymal stem cells (MSCs) have shown extreme clinical promise as a therapeutic regenerative system in the treatment of numerous types of diseases. A recent report, however, documented lethal pulmonary thromboembolism in a patient following the administration of adipose-derived MSCs (ADSCs). In our study, we designed experiments to examine the role of tissue factor (TF), which is highly expressed at the level of mRNA and localized to the cell surface of cultured MSCs, as a triggering factor in the procoagulative cascade activated by infused MSCs. A high mortality rate of ~85% in mice was documented following intravenous infusion of mouse ADSCs within 24 h due to the observation of pulmonary embolism. Rotation thromboelastometry and plasma clotting assay demonstrated significant procoagulation by the cultured mouse ADSCs, and preconditioning of ADSCs with an anti-TF antibody or usage of factor VII deficient plasma in the assay successfully suppressed the procoagulant properties. These properties were also observed in human ADSCs, and could be suppressed by recombinant human thrombomodulin. In uncultured mouse adipose-derived cells (ADCs), the TF-triggered procoagulant activity was not observed and all mice infused with these uncultured ADCs survived after 24 h. This clearly demonstrated that the process of culturing cells plays a critical role in sensitizing these cells as a procoagulator through the induction of TF expression. Our results would recommend that clinical applications of MSCs to inhibit TF activity using anti-coagulant agents or genetic approaches to maximize clinical benefit to the patients.

  14. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  15. Pediatric brain tumors of neuroepithelial tissue; Hirntumoren des neuroepithelialen Gewebes im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Politi, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany); Bergmann, M. [Klinikum Bremen-Mitte, Institut fuer Klinische Neuropathologie, Bremen (Germany); Pekrun, A. [Klinikum Bremen-Mitte, Klinik fuer Kinder- und Jugendmedizin, paed. Haematologie/Onkologie, Neonatologie, Bremen (Germany); Juergens, K.U. [Klinikum Bremen-Mitte, ZEMODI-Zentrum fuer moderne Diagnostik, MRT, Nuklearmedizin und PET-CT, Bremen (Germany)

    2014-08-15

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [German] Tumoren des neuroepithelialen Gewebes stellen die mit Abstand groesste Gruppe der paediatrischen Hirntumoren dar und werden je nach deren Ursprung in diversen Subtypen unterteilt. Das Neuropil beinhaltet diverse Subtypen von Gliazellen: Astrozyten, Oligodendrozyten, ependymale Zellen und modifizierte ependymale Zellen, die den Plexus choroideus formen. In diesem Review werden die bildgebenden Aspekte mittels CT und MRT der haeufigsten Tumoren des neuroepithelialen Gewebes diskutiert. (orig.)

  16. Single nanoparticle tracking of [Formula: see text]-methyl-d-aspartate receptors in cultured and intact brain tissue.

    Science.gov (United States)

    Varela, Juan A; Ferreira, Joana S; Dupuis, Julien P; Durand, Pauline; Bouchet, Delphine; Groc, Laurent

    2016-10-01

    Recent developments in single-molecule imaging have revealed many biological mechanisms, providing high spatial and temporal resolution maps of molecular events. In neurobiology, these techniques unveiled that plasma membrane neurotransmitter receptors and transporters laterally diffuse at the surface of cultured brain cells. The photostability of bright nanoprobes, such as quantum dots (QDs), has given access to neurotransmitter receptor tracking over long periods of time with a high spatial resolution. However, our knowledge has been restricted to cultured systems, i.e., neurons and organotypic slices, therefore lacking several aspects of the intact brain rheology and connectivity. Here, we used QDs to track single glutamatergic [Formula: see text]-methyl-d-aspartate receptors (NMDAR) in acute brain slices. By delivering functionalized nanoparticles in vivo through intraventricular injections to rats expressing genetically engineered-tagged NMDAR, we successfully tracked the receptors in native brain tissue. Comparing NMDAR tracking to different classical brain preparations (acute brain slices, cultured organotypic brain slices, and cultured neurons) revealed that the surface diffusion properties shared several features and are also influenced by the nature of the extracellular environment. Together, we describe the experimental procedures to track plasma membrane NMDAR in dissociated and native brain tissue, paving the way for investigations aiming at characterizing receptor diffusion biophysics in intact tissue and exploring the physiopathological roles of receptor surface dynamics. PMID:27429996

  17. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

    Directory of Open Access Journals (Sweden)

    Sergi Valverde

    2015-01-01

    Full Text Available Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM and white matter (WM using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

  18. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling.

    Science.gov (United States)

    Valverde, Sergi; Oliver, Arnau; Roura, Eloy; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Sastre-Garriga, Jaume; Montalban, Xavier; Rovira, Àlex; Lladó, Xavier

    2015-01-01

    Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

  19. Specific accumulation of {sup 18}F-deoxyglucose in three-dimensional long-term cultures of human and rodent brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Hocke, C.; Prante, O.; Kuwert, T. [Clinic of Nuclear Medicine, Univ. of Erlangen-Nuernberg (Germany); Bluemcke, I.; Jeske, I. [Dept. of Neuropathology, Univ. of Erlangen-Nuernberg (Germany); Romstoeck, J. [Dept. of Neurosurgery, Univ. of Erlangen-Nuernberg (Germany); Stefan, H. [Dept. of Neurology, Univ. of Erlangen-Nuernberg (Germany)

    2007-07-01

    Aim: Organotypic slice cultures (OSC) of human brain specimens represent an intriguing experimental model for translational studies addressing, e.g., stem cell transplantation in neurodegenerative diseases or targeting invasion by malignant glioma ex vivo. However, long-term viability and phenomena of structural reorganization of human OSC remain to be further characterized. Here, we report the use of {sup 18}F-deoxyglucose (FDG) for evaluating the viability of brain slice preparations obtained either from postnatal rats or human hippocampal specimens. Methods: Anatomically well preserved human hippocampi obtained from epilepsy surgery and rat hippocampus slice cultures obtained from six day old Wistar rats were dissected into horizontal slices. The slices were incubated with FDG in phosphate buffered saline up to 1 h, either with or without supplementation of glucose at a concentration of 2.5 mg/ml. Radioactivity within the medium or slice cultures was measured using a gamma-counter. In addition, distribution of radioactivity was autoradiographically visualized and quantified as counts per mm{sup 2}. Results: In rat hippocampal slices, FDG accumulated with 1 300 000 {+-} 68 000 counts/mm{sup 2}, whereas the incorporation of the radioactive label in human slices was in the order of 1 500 000 {+-} 370 000 counts/mm{sup 2}. The elevation of glucose concentration within the medium led to a significant three-fold decrease of FDG accumulation in rat slices and to a 2.4-fold decrease in human specimens. Conclusions: FDG accumulated in organotypic brain cultures of human or rodent origin. FDG is thus suited to investigate the viability of OSC. Furthermore, these preparations open new ways to study the factors governing cerebral FDG uptake in brain tissue ex vivo. (orig.)

  20. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stirling Emma J

    2010-10-01

    Full Text Available Abstract Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors.

  1. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  2. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.

    Science.gov (United States)

    Gebhart, S C; Lin, W C; Mahadevan-Jansen, A

    2006-04-21

    To complement a project towards the development of real-time optical biopsy for brain tissue discrimination and surgical resection guidance, the optical properties of various brain tissues were measured in vitro and correlated to features within clinical diffuse reflectance tissue spectra measured in vivo. Reflectance and transmission spectra of in vitro brain tissue samples were measured with a single-integrating-sphere spectrometer for wavelengths 400-1300 nm and converted to absorption and reduced scattering spectra using an inverse adding-doubling technique. Optical property spectra were classified as deriving from white matter, grey matter or glioma tissue according to histopathologic diagnosis, and mean absorption and reduced scattering spectra were calculated for the three tissue categories. Absolute reduced scattering and absorption values and their relative differences between histopathological groups agreed with previously reported results with the exception that absorption coefficients were often overestimated, most likely due to biologic variability or unaccounted light loss during reflectance/transmission measurement. Absorption spectra for the three tissue classes were dominated by haemoglobin absorption below 600 nm and water absorption above 900 nm and generally determined the shape of corresponding clinical diffuse reflectance spectra. Reduced scattering spectral shapes followed the power curve predicted by the Rayleigh limit of Mie scattering theory. While tissue absorption governed the shape of clinical diffuse reflectance spectra, reduced scattering determined their relative emission intensities between the three tissue categories. PMID:16585842

  3. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    Directory of Open Access Journals (Sweden)

    Maria E Danoviz

    Full Text Available BACKGROUND: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDINGS: 99mTc-labeled ASCs (1x10(6 cells isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C, or culture medium (ASC/M as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively. Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT and control groups (culture medium, fibrin, or collagen alone. Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW, a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. CONCLUSIONS: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  4. Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    Science.gov (United States)

    Danoviz, Maria E.; Nakamuta, Juliana S.; Marques, Fabio L. N.; dos Santos, Leonardo; Alvarenga, Erica C.; dos Santos, Alexandra A.; Antonio, Ednei L.; Schettert, Isolmar T.; Tucci, Paulo J.; Krieger, Jose E.

    2010-01-01

    Background Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings 99mTc-labeled ASCs (1×106 cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by γ-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8±2.0 and 26.8±2.4% vs. 4.8±0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers. PMID:20711471

  5. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue.

    Directory of Open Access Journals (Sweden)

    Mohadeseh Mehrabian

    Full Text Available A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP, best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.

  6. Establishment of a Stable PrPSc Panel from Brain Tissues of Experimental Hamsters with Scrapie Strain 263K

    Institute of Scientific and Technical Information of China (English)

    BAO-YUN ZHANG; CHAN TIAN; JUN HAN; CHEN GAO; QI SHI; JIAN-MING CHEN; HUI-YING JIANG; WEI ZHOU; XIAO-Ping DONG

    2009-01-01

    Objective To establish a stable PrPSc panel from brain tissues of experimental hamsters infected with scrapie agent 263K for evaluating diagnostic techniques of human and animals' prion diseases. Methods Thirty brain tissue samples from hamsters intracerebrally infected with scrapie strain 263K and another 30 samples from normal hamsters were selected to prepare 10%, 1%, and 0.5% brain homogenates, which were aliquoted into stocks. PrPSc in each brain homogenate was determined by proteinase K digestions followed by Western blot assay and partially by immunohistochemistry. Stability and glycoforms of PrPSc were repeatedly detected by PrPSc-specific Western blots in half a year and 3 years later. Results PrPSc signals were observed in all 10% brain homogenates of infected hamsters. Twenty out of 30 stocks and 19 out of 30 stocks were PrPSc positive in 1% and 0.5% brain homogenatesof infected hamsters, respectively. Twenty-seven out of 30 stocks presented three positive bands in 10% brain homogenates, whereas none of 1% and 0.5% homogenates contained 3 bands. The detection of PrPSc-specific signals stored in half a year and 3 years later demonstrated that the ratio of PrPSc positive samples and glycoforms was almost unchanged. All normal hamsters' brain homogenates were PrPSc negative. Conclusion A PrPSc panel of prion disease can be established, which displays reliably stable PrPSc-specific signals and glycoforms.

  7. Computational deconvolution of genome wide expression data from Parkinson's and Huntington's disease brain tissues using population-specific expression analysis

    Science.gov (United States)

    Capurro, Alberto; Bodea, Liviu-Gabriel; Schaefer, Patrick; Luthi-Carter, Ruth; Perreau, Victoria M.

    2015-01-01

    The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD. PMID:25620908

  8. Kidney transplant - series (image)

    Science.gov (United States)

    ... Donor kidneys are obtained from either brain-dead organ donors, or from living relatives or friends of the ... the lower right quadrant of the abdomen. The donor kidney is transplanted into the right lower pelvis of the recipient.

  9. Nuclear microprobe analysis of the selective boron uptake obtained with BPA in brain tumour tissue

    Science.gov (United States)

    Wegdén, M.; Kristiansson, P.; Ceberg, C.; Munck af Rosenschöld, P.; Auzelyte, V.; Elfman, M.; Malmqvist, K. G.; Nilsson, C.; Pallon, J.; Shariff, A.

    2004-06-01

    The tumour selective ability of the boron compound boronophenylalanine (BPA), today used in Boron Neutron Capture Therapy in Sweden, has been investigated with the Lund Nuclear Microprobe. The tumour to tissue ratio of the boron concentration, as well as the location of boron within the cells, is critical for the efficiency of the therapy. It is desirable that the boron is accumulated as close as possible to the cell nucleus, since the alpha particles produced in the 10B(n,α) 7Li reaction only have a range of about 10 microns, i.e. a cell diameter. The nuclear reaction 11B(p,α)2α, which has an especially high cross-section (300 mb) for 660 keV protons, has been used to analyse brain tissue from BPA-injected rats. Previous studies on other boron compounds have shown significant background problems when the alpha particles are detected in the backward direction. By a specially designed set-up, alpha particles in the forward and backward direction are detected simultaneously, and only the coincidences between the two directions are considered to be true boron events. In this way we could achieve excellent background suppression. The analysis shows that BPA indeed is tumour selective. Quantifications show a boron abundance of 150 ± 20 ng/cm 2 in normal tissue and 567 ± 70 ng/cm 2 in tumour tissue. If the rat is fed with L-dopa before the injection of BPA the uptake increases 3-4 times. The boron is homogeneously distributed in the cellular structure and no specific intracellular accumulation has been shown.

  10. Nuclear microprobe analysis of the selective boron uptake obtained with BPA in brain tumour tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wegden, M. E-mail: marie.wegden@nuclear.lu.se; Kristiansson, P.; Ceberg, C.; Munck af Rosenschoeld, P.; Auzelyte, V.; Elfman, M.; Malmqvist, K.G.; Nilsson, C.; Pallon, J.; Shariff, A

    2004-06-01

    The tumour selective ability of the boron compound boronophenylalanine (BPA), today used in Boron Neutron Capture Therapy in Sweden, has been investigated with the Lund Nuclear Microprobe. The tumour to tissue ratio of the boron concentration, as well as the location of boron within the cells, is critical for the efficiency of the therapy. It is desirable that the boron is accumulated as close as possible to the cell nucleus, since the alpha particles produced in the {sup 10}B(n,{alpha}){sup 7}Li reaction only have a range of about 10 microns, i.e. a cell diameter. The nuclear reaction {sup 11}B(p,{alpha})2{alpha}, which has an especially high cross-section (300 mb) for 660 keV protons, has been used to analyse brain tissue from BPA-injected rats. Previous studies on other boron compounds have shown significant background problems when the alpha particles are detected in the backward direction. By a specially designed set-up, alpha particles in the forward and backward direction are detected simultaneously, and only the coincidences between the two directions are considered to be true boron events. In this way we could achieve excellent background suppression. The analysis shows that BPA indeed is tumour selective. Quantifications show a boron abundance of 150 {+-} 20 ng/cm{sup 2} in normal tissue and 567 {+-} 70 ng/cm{sup 2} in tumour tissue. If the rat is fed with L-dopa before the injection of BPA the uptake increases 3-4 times. The boron is homogeneously distributed in the cellular structure and no specific intracellular accumulation has been shown.

  11. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    Science.gov (United States)

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue.

  12. The large shear strain dynamic behaviour of in-vitro porcine brain tissue and a silicone gel model material.

    Science.gov (United States)

    Brands, D W; Bovendeerd, P H; Peters, G W; Wismans, J S

    2000-11-01

    The large strain dynamic behaviour of brain tissue and silicone gel, a brain substitute material used in mechanical head models, was compared. The non-linear shear strain behaviour was characterised using stress relaxation experiments. Brain tissue showed significant shear softening for strains above 1% (approximately 30% softening for shear strains up to 20%) while the time relaxation behaviour was nearly strain independent. Silicone gel behaved as a linear viscoelastic solid for all strains tested (up to 50%) and frequencies up to 461 Hz. As a result, the large strain time dependent behaviour of both materials could be derived for frequencies up to 1000 Hz from small strain oscillatory experiments and application of Time Temperature Superpositioning. It was concluded that silicone gel material parameters are in the same range as those of brain tissue. Nevertheless the brain tissue response will not be captured exactly due to increased viscous damping at high frequencies and the absence of shear softening in the silicone gel. For trend studies and benchmarking of numerical models the gel can be a good model material.

  13. Imaging MALDI MS of Dosed Brain Tissues Utilizing an Alternative Analyte Pre-extraction Approach

    Science.gov (United States)

    Quiason, Cristine M.; Shahidi-Latham, Sheerin K.

    2015-06-01

    Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry has been adopted in the pharmaceutical industry as a useful tool to detect xenobiotic distribution within tissues. A unique sample preparation approach for MALDI imaging has been described here for the extraction and detection of cobimetinib and clozapine, which were previously undetectable in mouse and rat brain using a single matrix application step. Employing a combination of a buffer wash and a cyclohexane pre-extraction step prior to standard matrix application, the xenobiotics were successfully extracted and detected with an 8 to 20-fold gain in sensitivity. This alternative approach for sample preparation could serve as an advantageous option when encountering difficult to detect analytes.

  14. Novel Discrete Compactness-Based Training for Vector Quantization Networks: Enhancing Automatic Brain Tissue Classification

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Aguila

    2013-01-01

    Full Text Available An approach for nonsupervised segmentation of Computed Tomography (CT brain slices which is based on the use of Vector Quantization Networks (VQNs is described. Images are segmented via a VQN in such way that tissue is characterized according to its geometrical and topological neighborhood. The main contribution rises from the proposal of a similarity metric which is based on the application of Discrete Compactness (DC which is a factor that provides information about the shape of an object. One of its main strengths lies in the sense of its low sensitivity to variations, due to noise or capture defects, in the shape of an object. We will present, compare, and discuss some examples of segmentation networks trained under Kohonen’s original algorithm and also under our similarity metric. Some experiments are established in order to measure the effectiveness and robustness, under our application of interest, of the proposed networks and similarity metric.

  15. Influences of brain tissue poroelastic constants on intracranial pressure (ICP) during constant-rate infusion.

    Science.gov (United States)

    Li, Xiaogai; von Holst, Hans; Kleiven, Svein

    2013-01-01

    A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion. PMID:22452461

  16. Investigating the recovery period of rat brain tissue after electrolytic and 980-nm laser induced lesions

    Science.gov (United States)

    Bozkulak, Ozguncem; Tabakoglu, H. Ozgur; Aksoy, Ayla; Canbeyli, Resit; Bilgin, Nes'e.; Kurtkaya, Ozlem; Sav, Aydin; Gulsoy, Murat

    2003-10-01

    The effects of 980-nm diode laser and electrolytic lesions in Wistar rat brain tissue were observed by immunohistochemical staining for CD68 marker and Hematoxylin-Eosin (H&E). Bilateral lesions; laser lesions (2W/2sec) in the right hemispheres, and electrolytic lesions (1.5mA/20sec) in the left hemispheres were done through in vivo stereotaxic neurosurgical procedure. Subjects were classified into three groups due to the recovery period. Subjects in Group I, II, and III were sacrificed after 0, 2 and 7 days of recovery period respectively. After saline perfusion their brains were dislocated, and paraffin embedded sections were taken. One section for H&E and one for CD68 were cut consecutively in 3μm thickness by examining the lesion in every 30-μm thickness. CD68 was found more efficient marker than H&E in observing the after-effects of both types of lesions. The total damage of laser was smaller than that of electrosurgical unit. The shape of the ablated area in laser induced lesions was more spherical than that of electrosurgical unit. The number of macrophages increased as the recovery period increased for all subjects. Group III showed the highest number of macrophages in three, and the number of macrophages around electrolytic lesion is nearly 1.5 times higher than that of laser lesion. The remarkable ablating ability, the damage zone created and the healing of nearby tissue clearly showed that the 980-nm diode laser is an effective and useful alternative to electrosurgical unit in neurosurgery.

  17. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  18. Assessing Antioxidant Capacity in Brain Tissue: Methodologies and Limitations in Neuroprotective Strategies.

    Science.gov (United States)

    Slemmer, Jennifer E; Weber, John T

    2014-01-01

    The number of putative neuroprotective compounds with antioxidant activity described in the literature continues to grow. Although these compounds are validated using a variety of in vivo and in vitro techniques, they are often evaluated initially using in vitro cell culture techniques in order to establish toxicity and effective concentrations. Both in vivo and in vitro methodologies have their respective advantages and disadvantages, including, but not limited to, cost, time, use of resources and technical limitations. This review expands on the inherent benefits and drawbacks of in vitro and in vivo methods for assessing neuroprotection, especially in light of proper evaluation of compound efficacy and neural bioavailability. For example, in vivo studies can better evaluate the effects of protective compounds and/or its metabolites on various tissues, including the brain, in the whole animal, whereas in vitro studies can better discern the cellular and/or mechanistic effects of compounds. In particular, we aim to address the question of appropriate and accurate extrapolation of findings from in vitro experiment-where compounds are often directly applied to cellular extracts, potentially at higher concentrations than would ever cross the blood-brain barrier-to the more complex scenario of neuroprotection due to pharmacodynamics in vivo. PMID:26785231

  19. Assessing Antioxidant Capacity in Brain Tissue: Methodologies and Limitations in Neuroprotective Strategies

    Directory of Open Access Journals (Sweden)

    Jennifer E. Slemmer

    2014-10-01

    Full Text Available The number of putative neuroprotective compounds with antioxidant activity described in the literature continues to grow. Although these compounds are validated using a variety of in vivo and in vitro techniques, they are often evaluated initially using in vitro cell culture techniques in order to establish toxicity and effective concentrations. Both in vivo and in vitro methodologies have their respective advantages and disadvantages, including, but not limited to, cost, time, use of resources and technical limitations. This review expands on the inherent benefits and drawbacks of in vitro and in vivo methods for assessing neuroprotection, especially in light of proper evaluation of compound efficacy and neural bioavailability. For example, in vivo studies can better evaluate the effects of protective compounds and/or its metabolites on various tissues, including the brain, in the whole animal, whereas in vitro studies can better discern the cellular and/or mechanistic effects of compounds. In particular, we aim to address the question of appropriate and accurate extrapolation of findings from in vitro experiment-where compounds are often directly applied to cellular extracts, potentially at higher concentrations than would ever cross the blood-brain barrier—to the more complex scenario of neuroprotection due to pharmacodynamics in vivo.

  20. [Influence of mastication on the amount of hemoglobin in human brain tissue].

    Science.gov (United States)

    Sasaki, A

    2001-03-01

    The purpose of this study was to investigate the influence of mastication on the amount of hemoglobin in human brain tissue. Nine healthy volunteers (6 males and 3 females) participated in this study. They underwent two tasks: 1) at rest, 2) gum-chewing. In seven of the nine (4 males and 3 females), experimental occlusal interference was applied to the first molar of the mandibule on the habitual masticatory side. They underwent the gum-chewing task. To evaluate the amount of hemoglobin, both the hemoglobin oxygenation state and blood volume during gum-chewing were measured in the frontal region, using near-infrared spectroscopy. The amount of total-hemoglobin (blood volume) and oxyhemoglobin of subjects significantly increased during gum-chewing (p < 0.01). When the subjects finished gum-chewing, both levels returned to the original levels. When experimental occlusal interference was imposed on the subject, the amount of them significantly decreased compared with subjects without experimental occlusal interference (p < 0.05). The results suggested that increases of cerebral blood flow in the frontal region were not due to the mandibular movement, and that human brain activity caused by mastication was not only in the cortical masticatory area but also in the frontal region.

  1. Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue.

    Science.gov (United States)

    Nakielski, Paweł; Kowalczyk, Tomasz; Zembrzycki, Krzysztof; Kowalewski, Tomasz A

    2015-02-01

    Drug delivery systems based on nanofibrous mats appear to be a promising healing practice for preventing brain neurodegeneration after surgery. One of the problems encountered during planning and constructing optimal delivery system based on nanofibrous mats is the estimation of parameters crucial for predicting drug release dynamics. This study describes our experimental setup allowing for spatial and temporary evaluation of drug release from nanofibrous polymers to obtain data necessary to validate appropriate numerical models. We applied laser light sheet method to illuminate released fluorescent drug analog and CCD camera for imaging selected cross-section of the investigated volume. Transparent hydrogel was used as a brain tissue phantom. The proposed setup allows for continuous observation of drug analog (fluorescent dye) diffusion for time span of several weeks. Images captured at selected time intervals were processed to determine concentration profiles and drug release kinetics. We used presented method to evaluate drug release from several polymers to validate numerical model used for optimizing nanofiber system for neuroprotective dressing.

  2. Quantitative analysis of phenibut in rat brain tissue extracts by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Grinberga, Solveiga; Zvejniece, Liga; Liepinsh, Edgars; Dambrova, Maija; Pugovics, Osvalds

    2008-12-01

    Phenibut (3-phenyl-4-aminobutyric acid) is a gamma-aminobutyric acid mimetic drug, which is used clinically as a mood elevator and tranquilizer. In the present work, a rapid, selective and sensitive liquid chromatography-tandem mass spectrometry method for quantification of phenibut in biological matrices has been developed. The method is based on protein precipitation with acidic acetonitrile followed by isocratic chromatographic separation using acetonitrile-formic acid (0.1% in water; 8:92, v/v) mobile phase on a reversed-phase column. Detection of the analyte was performed by electrospray ionization mass spectrometry in multiple reaction monitoring mode with the precursor-to-product ion transition m/z 180.3 --> m/z 117.2. The calibration curve was linear over the concentration range 50-2000 ng/mL. The lower limit of quantification for phenibut in rat brain extracts was 50 ng/mL. Acceptable precision and accuracy were obtained over the whole concentration range. The validated method was successfully applied in a pharmacological study to analyze phenibut concentration in rat brain tissue extract samples. PMID:19034959

  3. High dose Erythropoietin increases Brain Tissue Oxygen Tension in Severe Vasospasm after Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Helbok Raimund

    2012-06-01

    Full Text Available Abstract Background Vasospasm-related delayed cerebral ischemia (DCI significantly impacts on outcome after aneurysmal subarachnoid hemorrhage (SAH. Erythropoietin (EPO may reduce the severity of cerebral vasospasm and improve outcome, however, underlying mechanisms are incompletely understood. In this study, the authors aimed to investigate the effect of EPO on cerebral metabolism and brain tissue oxygen tension (PbtO2. Methods Seven consecutive poor grade SAH patients with multimodal neuromonitoring (MM received systemic EPO therapy (30.000 IU per day for 3 consecutive days for severe cerebral vasospasm. Cerebral perfusion pressure (CPP, mean arterial blood pressure (MAP, intracranial pressure (ICP, PbtO2 and brain metabolic changes were analyzed during the next 24 hours after each dose given. Statistical analysis was performed with a mixed effects model. Results A total of 22 interventions were analyzed. Median age was 47 years (32–68 and 86 % were female. Three patients (38 % developed DCI. MAP decreased 2 hours after intervention (P btO2 significantly increased over time (P  Conclusions EPO increases PbtO2 in poor grade SAH patients with severe cerebral vasospasm. The effect on outcome needs further investigation.

  4. Bone marrow transplant

    Science.gov (United States)

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  5. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord.

    Science.gov (United States)

    Cusimano, Melania; Biziato, Daniela; Brambilla, Elena; Donegà, Matteo; Alfaro-Cervello, Clara; Snider, Silvia; Salani, Giuliana; Pucci, Ferdinando; Comi, Giancarlo; Garcia-Verdugo, Jose Manuel; De Palma, Michele; Martino, Gianvito; Pluchino, Stefano

    2012-02-01

    Transplanted neural stem/precursor cells possess peculiar therapeutic plasticity and can simultaneously instruct several therapeutic mechanisms in addition to cell replacement. Here, we interrogated the therapeutic plasticity of neural stem/precursor cells after their focal implantation in the severely contused spinal cord. We injected syngeneic neural stem/precursor cells at the proximal and distal ends of the contused mouse spinal cord and analysed locomotor functions and relevant secondary pathological events in the mice, cell fate of transplanted neural stem/precursor cells, and gene expression and inflammatory cell infiltration at the injured site. We used two different doses of neural stem/precursor cells and two treatment schedules, either subacute (7 days) or early chronic (21 days) neural stem/precursor cell transplantation after the induction of experimental thoracic severe spinal cord injury. Only the subacute transplant of neural stem/precursor cells enhanced the recovery of locomotor functions of mice with spinal cord injury. Transplanted neural stem/precursor cells survived undifferentiated at the level of the peri-lesion environment and established contacts with endogenous phagocytes via cellular-junctional coupling. This was associated with significant modulation of the expression levels of important inflammatory cell transcripts in vivo. Transplanted neural stem/precursor cells skewed the inflammatory cell infiltrate at the injured site by reducing the proportion of 'classically-activated' (M1-like) macrophages, while promoting the healing of the injured cord. We here identify a precise window of opportunity for the treatment of complex spinal cord injuries with therapeutically plastic somatic stem cells, and suggest that neural stem/precursor cells have the ability to re-programme the local inflammatory cell microenvironment from a 'hostile' to an 'instructive' role, thus facilitating the healing or regeneration past the lesion.

  6. Improving the specificity of R2' to the deoxyhaemoglobin content of brain tissue: Prospective correction of macroscopic magnetic field gradients

    OpenAIRE

    Blockley, NP; Stone, AJ

    2016-01-01

    The reversible transverse relaxation rate, R2', is sensitive to the deoxyhaemoglobin content of brain tissue, enabling information about the oxygen extraction fraction to be obtained. However, R2' is also sensitive to macroscopic magnetic field gradients, particularly at air-tissue interfaces where a large susceptibility difference is present. It is important that this latter effect is minimised in order to produce meaningful estimates of blood oxygenation. Therefore, the aim of this study wa...

  7. Treated of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue

    International Nuclear Information System (INIS)

    Non-obese diabetic (NOD) mice provide a model for type 1 diabetes mellitus. We previously showed that allogeneic bone marrow transplantation (ABMT) can prevent and treat insulitis and overt diabetes in NOD mice. However, ABMT alone could not be used to treat overt diabetes in NOD mice whose islets had been completely destroyed. To provide insulin-producing cells, pancreatic tissue from newborn mice was grafted under the renal capsules in combination with ABMT. The aims of concomitant ABMT are as follows. (i) It induces immunological tolerance to the donor-type major histocompatibility complex determinants and permits the host to accept subsequent pancreatic allografts from the bone marrow donor. (ii) ABMT replaces abnormal stem cells with normal stem cells. After transplantation of bone marrow plus newborn pancreas, NOD mice showed reduction of the glycosuria and a normal response in the glucose-tolerance test. Immunohistological study revealed the presence of clustered insulin-containing beta cells in the grafted pancreatic transplants. ABMT may become a viable treatment of established type 1 diabetes mellitus in humans

  8. Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients

    Energy Technology Data Exchange (ETDEWEB)

    Syversveen, Trygve; Berstad, Audun E.; Brabrand, Knut; Abildgaard, Andreas [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Rikshospitalet, Oslo (Norway); Midtvedt, Karsten [Oslo University Hospital, Medical Department, Section of Nephrology, Rikshospitalet, Oslo (Norway); Stroem, Erik H. [Oslo University Hospital, Department of Pathology, Rikshospitalet, Oslo (Norway)

    2012-10-15

    Acoustic radiation force impulse (ARFI) quantification estimates tissue elasticity by measuring shear-wave velocity (SWV) and has been applied to various organs. We evaluated the impact of variations in the transducer force applied to the skin on the SWV ultrasound measurements in kidney transplant cortex and ARFI's ability to detect fibrosis in kidney transplants. SWV measurements were performed in the cortex of 31 patients with kidney allografts referred for surveillance biopsies. A mechanical device held the transducer and applied forces were equal to a compression weight of 22, 275, 490, 975, 2,040 and 2,990 g. SWV group means were significantly different by repeat measures ANOVA [F(2.85,85.91) = 84.75, P < 0.0005 for 22, 275, 490, 975 and 2,040 g compression weight] and also by pairwise comparisons. Biopsy specimens were sufficient for histological evaluation in 29 of 31 patients. Twelve had grade 0, 11 grade 1, five grade 2 and one grade 3 fibrosis. One-way ANOVA showed no difference in SWV performed with any of the applied transducer forces between grafts with various degrees of fibrosis. SWV measurements in kidney transplants are dependent on the applied transducer force and do not differ in grafts with different grades of fibrosis. (orig.)

  9. Analysis of RNA from Alzheimer's Disease Post-mortem Brain Tissues.

    Science.gov (United States)

    Clement, Christian; Hill, James M; Dua, Prerna; Culicchia, Frank; Lukiw, Walter J

    2016-03-01

    Alzheimer's disease (AD) is a uniquely human, age-related central nervous system (CNS) disorder for which there is no adequate experimental model. While well over 100 transgenic murine models of AD (TgAD) have been developed that recapitulate many of the neuropathological features of AD, key pathological features of AD such as progressive neuronal atrophy, neuron cell loss, and neurofibrillary tangle (NFT) formation have not been observed in any TgAD model to date. To more completely analyze and understand the neuropathology, altered neuro-inflammatory and innate-immune signaling pathways, and the complex molecular-genetics and epigenetics of AD, it is therefore necessary to rigorously examine short post-mortem interval (PMI) human brain tissues to gain a deeper and more thorough insight into the neuropathological mechanisms that characterize the AD process. This perspective-methods paper will highlight some important recent findings on the utilization of short PMI tissues in sporadic (idiopathic; of unknown origin) AD research with focus on the extraction and quantification of RNA, and in particular microRNA (miRNA) and messenger RNA (mRNA) and analytical strategies, drawing on the authors' combined 125 years of laboratory experience into this investigative research area. We sincerely hope that new investigators in the field of "gene expression analysis in neurological disease" will benefit from the observations presented here and incorporate these recent findings and observations into their future experimental planning and design. PMID:25631714

  10. An atlas-based fuzzy connectedness method for automatic tissue classification in brain MRI

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yongxin; BAI Jing

    2006-01-01

    A framework incorporating a subject-registered atlas into the fuzzy connectedness (FC) method is proposed for the automatic tissue classification of 3D images of brain MRI. The pre-labeled atlas is first registered onto the subject to provide an initial approximate segmentation. The initial segmentation is used to estimate the intensity histograms of gray matter and white matter. Based on the estimated intensity histograms, multiple seed voxels are assigned to each tissue automatically. The normalized intensity histograms are utilized in the FC method as the intensity probability density function (PDF) directly. Relative fuzzy connectedness technique is adopted in the final classification of gray matter and white matter. Experimental results based on the 20 data sets from IBSR are included, as well as comparisons of the performance of our method with that of other published methods. This method is fully automatic and operator-independent. Therefore, it is expected to find wide applications, such as 3D visualization, radiation therapy planning, and medical database construction.

  11. What lies beneath? Diffusion EAP-based study of brain tissue microstructure.

    Science.gov (United States)

    Zucchelli, Mauro; Brusini, Lorenza; Andrés Méndez, C; Daducci, Alessandro; Granziera, Cristina; Menegaz, Gloria

    2016-08-01

    Diffusion weighted magnetic resonance signals convey information about tissue microstructure and cytoarchitecture. In the last years, many models have been proposed for recovering the diffusion signal and extracting information to constitute new families of numerical indices. Two main categories of reconstruction models can be identified in diffusion magnetic resonance imaging (DMRI): ensemble average propagator (EAP) models and compartmental models. From both, descriptors can be derived for elucidating the underlying microstructural architecture. While compartmental models indices directly quantify the fraction of different cell compartments in each voxel, EAP-derived indices are only a derivative measure and the effect of the different microstructural configurations on the indices is still unclear. In this paper, we analyze three EAP indices calculated using the 3D Simple Harmonic Oscillator based Reconstruction and Estimation (3D-SHORE) model and estimate their changes with respect to the principal microstructural configurations. We take advantage of the state of the art simulations to quantify the variations of the indices with the simulation parameters. Analysis of in-vivo data correlates the EAP indices with the microstructural parameters obtained from the Neurite Orientation Dispersion and Density Imaging (NODDI) model as a pseudo ground truth for brain data. Results show that the EAP derived indices convey information on the tissue microstructure and that their combined values directly reflect the configuration of the different compartments in each voxel.

  12. Quantitative comparison of preparation methodologies for X-ray fluorescence microscopy of brain tissue

    International Nuclear Information System (INIS)

    X-ray fluorescence microscopy (XFM) facilitates high-sensitivity quantitative imaging of trace metals at high spatial resolution over large sample areas and can be applied to a diverse range of biological samples. Accurate determination of elemental content from recorded spectra requires proper calibration of the XFM instrument under the relevant operating conditions. Here, we describe the manufacture, characterization, and utilization of multi-element thin-film reference foils for use in calibration of XFM measurements of biological and other specimens. We have used these internal standards to assess the two-dimensional distribution of trace metals in a thin tissue section of a rat hippocampus. The data used in this study was acquired at the XFM beamline of the Australian Synchrotron using a new 384-element array detector (Maia) and at beamline 2-ID-E at the Advanced Photon Source. Post-processing of samples by different fixation techniques was investigated, with the conclusion that differences in solvent type and sample handling can significantly alter elemental content. The present study highlights the quantitative capability, high statistical power, and versatility of the XFM technique for mapping trace metals in biological samples, e.g., brain tissue samples in order to help understand neurological processes, especially when implemented in conjunction with a high-performance detector such as Maia. (orig.)

  13. Sources of Technical Variability in Quantitative LC-MS Proteomics: Human Brain Tissue Sample Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Piehowski, Paul D.; Petyuk, Vladislav A.; Orton, Daniel J.; Xie, Fang; Moore, Ronald J.; Ramirez Restrepo, Manuel; Engel, Anzhelika; Lieberman, Andrew P.; Albin, Roger L.; Camp, David G.; Smith, Richard D.; Myers, Amanda J.

    2013-05-03

    To design a robust quantitative proteomics study, an understanding of both the inherent heterogeneity of the biological samples being studied as well as the technical variability of the proteomics methods and platform is needed. Additionally, accurately identifying the technical steps associated with the largest variability would provide valuable information for the improvement and design of future processing pipelines. We present an experimental strategy that allows for a detailed examination of the variability of the quantitative LC-MS proteomics measurements. By replicating analyses at different stages of processing, various technical components can be estimated and their individual contribution to technical variability can be dissected. This design can be easily adapted to other quantitative proteomics pipelines. Herein, we applied this methodology to our label-free workflow for the processing of human brain tissue. For this application, the pipeline was divided into four critical components: Tissue dissection and homogenization (extraction), protein denaturation followed by trypsin digestion and SPE clean-up (digestion), short-term run-to-run instrumental response fluctuation (instrumental variance), and long-term drift of the quantitative response of the LC-MS/MS platform over the 2 week period of continuous analysis (instrumental stability). From this analysis, we found the following contributions to variability: extraction (72%) >> instrumental variance (16%) > instrumental stability (8.4%) > digestion (3.1%). Furthermore, the stability of the platform and its’ suitability for discovery proteomics studies is demonstrated.

  14. Quantitative comparison of preparation methodologies for X-ray fluorescence microscopy of brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    James, Simon A.; Sexton, Brett A.; Hoobin, Pamela; Mayo, Sheridan C. [CSIRO, Materials Science and Engineering and the Preventative Health Flagship, Clayton, VIC (Australia); Myers, Damian E. [St. Vincent s Hospital, Department of Surgery/Orthopaedics, Fitzroy, VIC (Australia); University of Melbourne, Department of Surgery, Parkville, VIC (Australia); Jonge, Martin D. de; Paterson, David; Howard, Daryl L. [Australian Synchrotron, Clayton, VIC (Australia); Vogt, Stefan [Argonne National Laboratory, X-ray Science Division, Argonne, IL (United States); Ryan, Chris G. [CSIRO, Earth Science and Resources Engineering, Clayton, VIC (Australia); University of Melbourne, School of Physics, Parkville, VIC (Australia); University of Tasmania, CODES Centre of Excellence, Hobart, TAS (Australia); Altissimo, Matteo [Melbourne Centre for Nanofabrication, Clayton, VIC (Australia); Moorhead, Gareth F. [CSIRO, Materials Science and Engineering and the Preventative Health Flagship, Clayton, VIC (Australia); University of Melbourne, School of Physics, Parkville, VIC (Australia); Wilkins, Stephen W. [CSIRO, Materials Science and Engineering and the Preventative Health Flagship, Clayton, VIC (Australia); Monash University, School of Physics, Clayton, VIC (Australia)

    2011-08-15

    X-ray fluorescence microscopy (XFM) facilitates high-sensitivity quantitative imaging of trace metals at high spatial resolution over large sample areas and can be applied to a diverse range of biological samples. Accurate determination of elemental content from recorded spectra requires proper calibration of the XFM instrument under the relevant operating conditions. Here, we describe the manufacture, characterization, and utilization of multi-element thin-film reference foils for use in calibration of XFM measurements of biological and other specimens. We have used these internal standards to assess the two-dimensional distribution of trace metals in a thin tissue section of a rat hippocampus. The data used in this study was acquired at the XFM beamline of the Australian Synchrotron using a new 384-element array detector (Maia) and at beamline 2-ID-E at the Advanced Photon Source. Post-processing of samples by different fixation techniques was investigated, with the conclusion that differences in solvent type and sample handling can significantly alter elemental content. The present study highlights the quantitative capability, high statistical power, and versatility of the XFM technique for mapping trace metals in biological samples, e.g., brain tissue samples in order to help understand neurological processes, especially when implemented in conjunction with a high-performance detector such as Maia. (orig.)

  15. The relationship between decorrelation time and sample thickness in acute rat brain tissue slices (Conference Presentation)

    Science.gov (United States)

    Brake, Joshua; Jang, Mooseok; Yang, Changhuei

    2016-03-01

    The optical opacity of biological tissue has long been a challenge in biomedical optics due to the strong scattering nature of tissue in the optical regime. While most conventional optical techniques attempt to gate out multiply scattered light and use only unscattered light, new approaches in the field of wavefront shaping exploit the time reversible symmetry of optical scattering in order to focus light inside or through scattering media. While these approaches have been demonstrated effectively on static samples, it has proven difficult to apply them to dynamic biological samples since even small changes in the relative positions of the scatterers within will cause the time symmetry that wavefront shaping relies upon to decorrelate. In this paper we investigate the decorrelation curves of acute rat brain slices for thicknesses in the range 1-3 mm (1/e decorrelation time on the order of seconds) using multi-speckle diffusing wave spectroscopy (MSDWS) and compare the results with theoretical predictions. The results of this study demonstrate that the 1/L^2 relationship between decorrelation time and thickness predicted by diffusing wave spectroscopy provides a good rule of thumb for estimating how the decorrelation of a sample will change with increasing thickness. Understanding this relationship will provide insight to guide the future development of biophotonic wavefront shaping tools by giving an estimate of how fast wavefront shaping systems need to operate to overcome the dynamic nature of biological samples.

  16. In situ monitoring of brain tissue reaction of chronically implanted electrodes with an optical coherence tomography fiber system

    Science.gov (United States)

    Xie, Yijing; Hassler, Christina; Stieglitz, Thomas; Seifert, Andreas; Hofmann, Ulrich G.

    2014-03-01

    Neural microelectrodes are well established tools for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. However, long term implanted neural probes often become functionally impaired by tissue encapsulation. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities provide no sufficient resolution for a cellular measurement in deep brain regions. Optical coherence tomography (OCT) is a well developed imaging modality, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. Further more, a fiber based spectral domain OCT was shown to be capable of minimally invasive brain intervention. In the present study, we propose to use a fiber based spectral domain OCT to monitor the the progression of the tissue's immune response and scar encapsulation of microprobes in a rat animal model. We developed an integrated OCT fiber catheter consisting of an implantable ferrule based fiber cannula and a fiber patch cable. The fiber cannula was 18.5 mm long, including a 10.5 mm ceramic ferrule and a 8.0 mm long, 125 μm single mode fiber. A mating sleeve was used to fix and connect the fiber cannula to the OCT fiber cable. Light attenuation between the OCT fiber cable and the fiber cannula through the mating sleeve was measured and minimized. The fiber cannula was implanted in rat brain together with a microelectrode in sight used as a foreign body to induce the brain tissue immune reaction. Preliminary data showed a significant enhancement of the OCT backscattering signal during the brain tissue scarring process, while the OCT signal of the flexible microelectrode was getting weaker consequentially.

  17. Sex- and Tissue-Specific Methylome Changes in Brains of Mice Perinatally Exposed to Lead

    Science.gov (United States)

    Sánchez-Martín, Francisco Javier; Lindquist, Diana M.; Landero-Figueroa, Julio; Zhang, Xiang; Chen, Jing; Cecil, Kim M.; Medvedovic, Mario; Puga, Alvaro

    2014-01-01

    Changes in DNA methylation and subsequent changes in gene expression regulation are the hallmarks of age- and tissue-dependent epigenetic drift and plasticity resulting from the combinatorial integration of genetic determinants and environmental cues. To determine whether perinatal lead exposure caused persistent DNA methylation changes in target tissues, we exposed mouse dams to 0, 3 or 30 ppm of lead acetate in drinking water for a period extending from 2 months prior to mating, through gestation, until weaning of pups at postnatal day-21, and analyzed whole-genome DNA methylation in brain cortex and hippocampus of 2-month old exposed and unexposed progeny. Lead exposure resulted in hypermethylation of three differentially methylated regions in the hippocampus of females, but not males. These regions mapped to Rn4.5s, Sfi1, and Rn45s loci in mouse chromosomes 2, 11 and 17, respectively. At a conservative fdr<0.001, 1,623 additional CpG sites were differentially methylated in female hippocampus, corresponding to 117 unique genes. Sixty of these genes were tested for mRNA expression and showed a trend towards negative correlation between mRNA expression and methylation in exposed females but not males. No statistically significant methylome changes were detected in male hippocampus or in cortex of either sex. We conclude that exposure to lead during embryonic life, a time when the organism is most sensitive to environmental cues, appears to have a sex- and tissue-specific effect on DNA methylation that may produce pathological or physiological deviations from the epigenetic plasticity operative in unexposed mice. PMID:25530354

  18. 2', 3'-Cyclic nucleotide 3'-phosphodiesterase cells derived from transplanted marrow stromal cells and host tissue contribute to perineurial compartment formation in injured rat spinal cord.

    Science.gov (United States)

    Cao, Qiong; Ding, Peng; Lu, Jia; Dheen, S Thameem; Moochhala, Shabbir; Ling, Eng-Ang

    2007-01-01

    Transdifferentiation of transplanted marrow stromal cells (MSCs) and reactive changes of glial cells in a completely transected rat spinal cord were examined. Marrow stromal cells exhibited 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) at the plasma membrane and this has allowed their identification after transplantation by immunoelectron microscopy. In the control rats, the lesion site showed activated microglia/neural macrophages and some elongated cells, whose cytoplasm was immunoreactive for CNP. Cells designated as CNP1 and apparently host-derived expressed CXCR4. In experimental rats receiving MSCs transplantation, CNP1 cells were increased noticeably. This was coupled with the occurrence of a different subset of CNP cells whose plasma membrane was CNP-immunoreactive and expressed CXCR4. These cells, designated as CNP2, enclosed both myelinated and unmyelinated neurites thus assuming a spatial configuration resembling that of Schwann cells. A remarkable feature was the extensive ramifications of CNP1 cells with long filopodia processes delineating the CNP2 cells and their associated neurites, forming many perineurial-like compartments. Present results have shown that CNP2 cells considered to be MSCs-derived can transform into cells resembling Schwann cells based on their spatial relation with the regenerating nerve fibers, whereas the CNP1 glial cells participate in formation of perineurial compartments, probably serving as conduits to guide the nerve fiber growth. The chemotactic migration of CNP cells either derived from host tissue or MSCs bearing CXCR4 may be attracted by stromal derived factor-1alpha (SDF-1alpha) produced locally. The coordinated cellular interaction between transplanted MSCs and local glial cells may promote the growth of nerve fibers through the lesion site. PMID:17061258

  19. Magnetic resonance imaging tracing of transplanted bone marrow mesenchymal stem cells in a rat model of cardiac arrest-induced global brain ischemia

    Institute of Scientific and Technical Information of China (English)

    Yue Fu; Xiangshao Fang; Tong Wang; Jiwen Wang; Jun Jiang; Zhigang Luo; Xiaohui Duan; Jun Shen; Zitong Huang

    2009-01-01

    BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE: To observe distribution of bone marrow mesenchymal stem cells (BMSCs) in a rat model of global brain ischemia following cardiac arrest and resuscitation, and to investigate the feasibility of tracing iron oxide-labeled BMSCs using non-invasive MRI. DESIGN, TIME AND SETTING: The randomized, controlled, molecular imaging study was performed at the Linbaixin Medical Research Center, Second Affiliated Hospital, Sun Yat-sen University, and the Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, China from October 2006 to February 2009.MATERIALS: A total of 40 clean, Sprague Dawley rats, aged 6 weeks and of either gender, were supplied by the Experimental Animal Center, Sun Yat-sen University, China, for isolation of BMSCs. Feridex (iron oxide), Gyroscan Inetra 1.5T MRI system, and cardiopulmonary resuscitation device were used in this study. METHODS: A total of 30 healthy, male Sprague Dawley rats, aged 6 months, were used to induce ventricular fibrillation using alternating current. After 8 minutes, the rats underwent 6-minute chest compression and mechanical ventilation, followed by electric defibrillation, to establish rat models of global brain ischemia due to cardiac arrest and resuscitation. A total of 24 successful models were randomly assigned to Feridex-labeled and non-labeled groups (n=12 for each group). At 2 hours after resuscitation, 5 x 10 6 Feddex-labeled BMSCs, with protamine sulfate as a carrier, and 5 × 10 6 non-labeled BMSCs were respectively transplanted into both groups of rats through the right carotid artery (cells were harvested in 1 mL phosphate buffered saline). MAIN OUTCOME MEASURES: Feridex-labeled BMSCs were observed by Prussian blue staining and electron microscopy. Signal intensity, celluar viability

  20. The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses.

    Directory of Open Access Journals (Sweden)

    Chang-Gyu Hahn

    Full Text Available Recent molecular genetics studies have suggested various trans-synaptic processes for pathophysiologic mechanisms of neuropsychiatric illnesses. Examination of pre- and post-synaptic scaffolds in the brains of patients would greatly aid further investigation, yet such an approach in human postmortem tissue has yet to be tested. We have examined three methods using density gradient based purification of synaptosomes followed by detergent extraction (Method 1 and the pH based differential extraction of synaptic membranes (Methods 2 and 3. All three methods separated fractions from human postmortem brains that were highly enriched in typical PSD proteins, almost to the exclusion of pre-synaptic proteins. We examined these fractions using electron microscopy (EM and verified the integrity of the synaptic membrane and PSD fractions derived from human postmortem brain tissues. We analyzed protein composition of the PSD fractions using two dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS and observed known PSD proteins by mass spectrometry. Immunoprecipitation and immunoblot studies revealed that expected protein-protein interactions and certain posttranscriptional modulations were maintained in PSD fractions. Our results demonstrate that PSD fractions can be isolated from human postmortem brain tissues with a reasonable degree of integrity. This approach may foster novel postmortem brain research paradigms in which the stoichiometry and protein composition of specific microdomains are examined.

  1. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain

    Directory of Open Access Journals (Sweden)

    Anna-Lena Hallmann

    2016-05-01

    Full Text Available Reprogramming technology enables the production of neural progenitor cells (NPCs from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.

  2. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells

    DEFF Research Database (Denmark)

    Rolandsson, Sara; Andersson Sjöland, Annika; Brune, Jan C;

    2014-01-01

    . This study therefore aimed to identify and characterise the 'bona fide' MSC in human lungs and to investigate if the MSC numbers correlate with the development of bronchiolitis obliterans syndrome in lung-transplanted patients. METHODS: Primary lung MSC were directly isolated or culture-derived from central...

  3. Contents of myelin-basic protein and S-100 in serum and brain tissue of neonatal rats with intrauterine infection-caused brain injury

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Li; Hongying Li; Zhihai Lu

    2006-01-01

    BACKGROUND: The change of the content of myelin basic protein (MBP) in serum and brain tissue is the bio chemical diadynamic index of amyelination. S-100 is a specific and sensitive marker of central nervous system (CNS) injury. Whether or not the content of S-100 and MBP in blood and brain tissue can be used as the quan titative index for early diagnosing the intrauterine infection-caused brain injury still needs investigation. OBJECTIVE: To observe whether or not MBP and S-100 detection can be used as the biochemical indexes for early diagnosing the intrauterine infection-caused brain injury. DESIGN: Randomized controlled animal experiment. SETTING: Laboratory of Pediatric Neuro-rehabilitation, Medical College of Rehabilitation, Jiamusi University. MATERIALS: Sixty female and thirty male common Wistar rats, weighing from 180 to 240 g, were provided by the Experimental Animal Center of Jiamusi University. Reagent: Lipopolysaccharide(LPS, serological type 055: B5, SIGMA Company of USA); MBP enzyme linked immunosobent assay (ELISA) immunoreagent kit (Preclinicai Recombination DNA Laboratory, Chengdu Huaxi Medical Center, Sichuan Province); S-100 ELISA immunoreagent kit ( Department of Physiology, the Fourth Military Medical University of Chinese PLA) and bovine serum albumin(Haitaike Biotechnology Co.,Ltd.).METHODS: This experiment was carried out in the Laboratory of Pediatric Neuro-Rehabilitation, Experimental Animal Center, Department of Pathology and Central Laboratory of Jiamusi University from July 2005 to March 2006. ① Preparation of models and grouping: The female and male rats were placed in one cage at 2: 1 at 17:00 o'clock. Vaginal smear was checked at 8:00 on the next morning. Sperm was found and 0 day of pregnancy was recorded. Pregnant rats were bred in another cage. The pregnant 47 rats were randomly divided into 2 groups: control group (n =10) and experimental group (n =37). The experimental pregnant rats were intraperitoneally injected with LPS

  4. On the consequences of non linear constitutive modelling of brain tissue for injury prediction with numerical head models

    NARCIS (Netherlands)

    Hrapko, M.; Dommelen, J.A.W. van; Peters, G.W.M.; Wismans, J.S.H.M.

    2009-01-01

    The objective of this work was to investigate the influences of constitutive non linearities of brain tissue in numerical head model simulations by comparing the performance of a recently developed non linear constitutive model [10, 11] with a simplified version, based on neo-Hookean elastic behavio

  5. Future of transplantation medicine.

    Science.gov (United States)

    Rowiński, Wojciech

    2007-01-01

    Organ transplantation has become very successful method of treatment of end stage organ disease. However the waiting lists of patients aiming such treatment are exponentially growing due to insufficient organ supply. Prognosis of the future for transplantation medicine is truly difficult. Prospects from past years, that "soon induction of tolerance will become possible"(1975), wide xenogenic transplant utilization (in 2000), fetal brain cell transplantation to treat some neurologic disease and transplantation of isolated cells instead of whole organs (1998) proved wrong. The research in the nearest future will be focused on tolerance induction, inhibition of alloreaction in blood-group discordant transplants (in immunized patients) and xenografts. In parallel, studies on hybrid and totally artificial, implantable devices (artificial pancreas and liver) will be carried on. 21st century will belong to regeneration medicine, with therapeutic applications of stem cells.

  6. Cuba's kidney transplantation program.

    Science.gov (United States)

    Mármol, Alexander; Pérez, Alexis; Pérez de Prado, Juan C; Fernández-Vega, Silvia; Gutiérrez, Francisco; Arce, Sergio

    2010-10-01

    The first kidney transplant in Cuba was performed on 24 February 1970, using a cadaveric donor. In 1979, living donor kidney transplantation began between first-degree relatives. A total of 2775 patients are enrolled in renal replacement therapy in 47 hospitals across the country, 1440 of whom are awaiting kidney transplantation. Organs for the kidney program are procured in 63 accredited hospitals equipped for multidisciplinary management of brain death. Accordingly, over 90% of transplanted kidneys are from cadaveric donors. Identification of potential recipients is carried out through a national, computerized program that affords all patients the same opportunity regardless of distance from a transplant center, and selection of the most suitable candidate is based primarily on HLA compatibility. KEYWORDS Chronic renal failure, kidney transplantation.

  7. Early dietary intervention with structured triacylglycerols containing docosahexaenoic acid. Effect on brain, liver, and adipose tissue lipids

    DEFF Research Database (Denmark)

    Christensen, Merete Myrup; Høy, Carl-Erik

    1997-01-01

    and received ordinary rat chow at weaning. In general no significant differences between the two dietary treatments wereobserved in the tissues examined except for adipose tissue. The levels of 22:6n-3 were significantly increased in brain phosphatidylcholines (PC) andphosphatidylserines (PS) of both...... in the experimental groups than in the reference group. In adipose tissue, 22:6n-3increased in the experimental groups during the study period, but decreased in the reference group, suggesting that a surplus of dietary 22:6n-3 wasstored....

  8. Transplanted fetal striatum in Huntington's disease: Phenotypic development and lack of pathology

    Science.gov (United States)

    Freeman, Thomas B.; Cicchetti, Francesca; Hauser, Robert A.; Deacon, Terrence W.; Li, Xiao-Jiang; Hersch, Steven M.; Nauert, G. Michael; Sanberg, Paul R.; Kordower, Jeffrey H.; Saporta, Samuel; Isacson, Ole

    2000-01-01

    Neural and stem cell transplantation is emerging as a potential treatment for neurodegenerative diseases. Transplantation of specific committed neuroblasts (fetal neurons) to the adult brain provides such scientific exploration of these new potential therapies. Huntington's disease (HD) is a fatal, incurable autosomal dominant (CAG repeat expansion of huntingtin protein) neurodegenerative disorder with primary neuronal pathology within the caudate–putamen (striatum). In a clinical trial of human fetal striatal tissue transplantation, one patient died 18 months after transplantation from cardiovascular disease, and postmortem histological analysis demonstrated surviving transplanted cells with typical morphology of the developing striatum. Selective markers of both striatal projection and interneurons such as dopamine and c-AMP-related phosphoprotein, calretinin, acetylcholinesterase, choline acetyltransferase, tyrosine hydroxylase, calbindin, enkephalin, and substance P showed positive transplant regions clearly innervated by host tyrosine hydroxylase fibers. There was no histological evidence of immune rejection including microglia and macrophages. Notably, neuronal protein aggregates of mutated huntingtin, which is typical HD neuropathology, were not found within the transplanted fetal tissue. Thus, although there is a genetically predetermined process causing neuronal death within the HD striatum, implanted fetal neural cells lacking the mutant HD gene may be able to replace damaged host neurons and reconstitute damaged neuronal connections. This study demonstrates that grafts derived from human fetal striatal tissue can survive, develop, and are unaffected by the disease process, at least for 18 months, after transplantation into a patient with HD. PMID:11106399

  9. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Institute of Scientific and Technical Information of China (English)

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  10. Liver Transplant

    Science.gov (United States)

    ... Home > Your Liver > Liver Disease Information > Liver Transplant Liver Transplant Explore this section to learn more about liver ... harmful substances from your blood. What is a liver transplant? A liver transplant is the process of replacing ...

  11. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  12. Experimental in-vivo study of laser-tissue interaction on the brain: influence of gaseous environment

    Science.gov (United States)

    Chavantes, Maria C.; Zamorano, Lucia J.; Vinas, Federico; Dujovny, Manuel; Dragovic, Ljubisa

    1990-06-01

    The present study attempted to assess the in vivo effects of Nd-YAG laser irradiation in different gaseous environments on liver and brain. Such an investigation is critical for determining the extent of injury under such conditions for improving further clinical applications. We intended to define the influence on laser-tissue interaction of Room Air, 30% Oxygen, Helium, and Nitrogen. The anesthetized rats were placed in a special chamber and kept breathtng via a tracheostomy tube to the outside, and craniotomy or laparotomy was performed. Nd-YAG laser fiber was directed with a fixed distance at the exposed brain/liver. The staining drug for brain study was 2,3,5 triphenyltetrazolium chloride, which was injected into the aorta before sacrificing the animals. The 44 rats studied were divided into: liver and brain groups. The resulting lesions were photographed macroscopically. In the liver group, statistical analysis showed that laser-liver tissue interaction in helium and nitrogen created a well defined and less hemorrhagic lesions. Macroscopically, in the brain group, we found that the target zones were well delineated with Nitrogen concentration. Moreover, we observed smaller lesions and more sharply defined areas with Helium concentration. In Room Air and Oxygen concentrations, more carbonized and bloodish lesions were found. Laser-tissue interaction in Helium and Nitrogen environments produces more sharply defined lesions with less involvement of the sorrounding tissue, less hemorrhagic lesions to the target, and reduce smoke production. This effect may be of benefit in clinical application of Nd YAG laser, where a more specific target-laser interaction could be achieved avoiding undesired complications due to penetration on the surrounding healthy tissue.

  13. Resected Brain Tissue, Seizure Onset Zone and Quantitative EEG Measures: Towards Prediction of Post-Surgical Seizure Control.

    Directory of Open Access Journals (Sweden)

    Christian Rummel

    Full Text Available Epilepsy surgery is a potentially curative treatment option for pharmacoresistent patients. If non-invasive methods alone do not allow to delineate the epileptogenic brain areas the surgical candidates undergo long-term monitoring with intracranial EEG. Visual EEG analysis is then used to identify the seizure onset zone for targeted resection as a standard procedure.Despite of its great potential to assess the epileptogenicty of brain tissue, quantitative EEG analysis has not yet found its way into routine clinical practice. To demonstrate that quantitative EEG may yield clinically highly relevant information we retrospectively investigated how post-operative seizure control is associated with four selected EEG measures evaluated in the resected brain tissue and the seizure onset zone. Importantly, the exact spatial location of the intracranial electrodes was determined by coregistration of pre-operative MRI and post-implantation CT and coregistration with post-resection MRI was used to delineate the extent of tissue resection. Using data-driven thresholding, quantitative EEG results were separated into normally contributing and salient channels.In patients with favorable post-surgical seizure control a significantly larger fraction of salient channels in three of the four quantitative EEG measures was resected than in patients with unfavorable outcome in terms of seizure control (median over the whole peri-ictal recordings. The same statistics revealed no association with post-operative seizure control when EEG channels contributing to the seizure onset zone were studied.We conclude that quantitative EEG measures provide clinically relevant and objective markers of target tissue, which may be used to optimize epilepsy surgery. The finding that differentiation between favorable and unfavorable outcome was better for the fraction of salient values in the resected brain tissue than in the seizure onset zone is consistent with growing evidence that

  14. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ=7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS uc= 2.664, P=0.008; Zubrod -ECOG -WHO uc=2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate positioning

  15. Organ transplantation in Egypt.

    Science.gov (United States)

    Paris, Wayne; Nour, Bakr

    2010-09-01

    Concern has increasingly been expressed about the growing number of reports of medical personnel participating in the transplantation of human organs or tissues taken from the bodies of executed prisoners, handicapped patients, or poor persons who have agreed to part with their organs for commercial purposes. Such behavior has been universally considered as ethically and morally reprehensible, yet in some parts of the world the practice continues to flourish. The concept of justice demands that every person have an equal right to life, and to protect this right, society has an obligation to ensure that every person has equal access to medical care. Regrettably, the Egyptian system does not legally recognize brain death and continues to allow the buying and selling of organs. For more than 30 years in Egypt, the ability to pay has determined who receives an organ and economic need has determined who will be the donor. As transplant professionals, it is important that we advocate on behalf of all patients, potential recipients, and donors and for those who are left out and not likely to receive a donor organ in an economically based system. Current issues associated with this debate are reviewed and recommendations about how to address them in Egypt are discussed. PMID:20929113

  16. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn infant

  17. Neural network-based brain tissue segmentation in MR images using extracted features from intraframe coding in H.264

    Science.gov (United States)

    Jafari, Mehdi; Kasaei, Shohreh

    2012-01-01

    Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.

  18. Quantification of Neurotransmitters in Mouse Brain Tissue by Using Liquid Chromatography Coupled Electrospray Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 mm × 100 mm, i.d., 3 μm column by adding a mixture of 10 mM ammonium formate in acetonitrile/water (75 : 25, v/v, 300 μl/min for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3 μ C18 (3.0 mm × 150 mm, i.d., 3 μm column was used by adding a mixture of 1% formic acid in acetonitrile/water (20 : 80, v/v, 350 μl/min. The total chromatographic run time was 5.5 min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000 ng/g for BH4 r2=0.995, 10 and 5000 ng/g for DA r2=0.997, 20 and 10000 ng/g for 5-HT r2=0.994, NE r2=0.993, and EP r2=0.993, and 0.2 and 200 μg/g for Glu r2=0.996 and GABA r2=0.999 in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain.

  19. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Okura, Hanayuki [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Saga, Ayami; Soeda, Mayumi [Department of Somatic Stem Cell Therapy and Health Policy, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Miyagawa, Shigeru; Sawa, Yoshiki [Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Daimon, Takashi [Division of Biostatistics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Ichinose, Akihiro [Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); Matsuyama, Akifumi, E-mail: akifumi-matsuyama@umin.ac.jp [The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0879 (Japan); Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo (Japan); RIKEN Program for Drug Discovery and Medical Technology Platforms, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer We administered human CLCs in a swine model of MI via intracoronary artery. Black-Right-Pointing-Pointer Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. Black-Right-Pointing-Pointer Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. Black-Right-Pointing-Pointer Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer's solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of

  20. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    International Nuclear Information System (INIS)

    Highlights: ► We administered human CLCs in a swine model of MI via intracoronary artery. ► Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. ► Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. ► Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer’s solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of human specific alpha-cardiac actin. Human alpha cardiac actin-positive cells also expressed cardiac

  1. Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Ping Zhang; Gangyong Zhao; Xianjiang Kang; Likai Su

    2012-01-01

    In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus.

  2. The association between brain natriuretic peptide and tissue Doppler parameters in children with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Taliha Öner

    2016-01-01

    Full Text Available In this study, we investigated the association between brain natriuretic peptide (BNP levels and tissue Doppler imaging measurements and also screening for deadly mutations in patients with hypertrophic cardiomyopathy (HCM. We enrolled 20 patients diagnosed with HCM (age:10.7±5 years (1-17, 85% male, weight:42.25±23.10 kg, height:141.80±32.45 cm and 20 age, gender and body weight-matched control subjects. We performed electrocardiography, transthoracic echocardiography, and tissue Doppler echocardiography in each group, as well as genetic tests (for Arg403Gln, Arg453Cys, Arg719Trp and Arg719Gln mutations in MYH7 Exons 13, 14, 19 and BNP in the patients. The patients were divided into two groups according to the presence (Group 1 or absence (Group 2 of left ventricular (LV outflow tract obstruction. QTc dispersion and the LV ejection fraction and left atrial (LA volume index were increased in Group 1. The LA volume index and the mitral and septal E/Ea ratio and septum Z-score were increased while the mitral lateral annulus and septal annulus Ea wave velocities and the mitral and tricuspid E/A ratio were decreased in patients with high levels of BNP compared to those with normal BNP levels. There were no mutations that are associated with increased risk of sudden death found in patients included in this study. In the light of our data, we conclude that such parameters BNP levels above the 98 pg/mL, septal thickness Z-score ˃6, and higher mitral and septal E/Ea ratios can be used for management of patients with HCM according to life-threatening conditions.

  3. Tissomics: two- and three-dimensional distribution of nuclei in brain tissue using laser scanning cytometry (LSC)

    Science.gov (United States)

    Lenz, Domnik; Mittag, Anja; Mosch, Birgit; Bocsi, Jozsef; Arendt, Thomas; Tarnok, Attila

    2005-03-01

    Automated quantitative (i.e. stochiometric) analysis of tissues is of eminent importance in the understanding of all interactions between cells in their natural environment. In tissue cytometry a solid trigger is necessary in order to unequivocally differentiate between cellular and non-cellular events. This can be best performed by nuclear staining. Aim of this study was to analyze a brain tissue section by laser scanning cytometry (LSC) in order to depict the threedimensional distribution of nuclei in the tissue. To this end the section was measured in several foci and different nuclei detected in several depths of the tissue were assigned to the respective layer. Frozen sections of formalin-fixed rat or human brain tissue (120μm thickness) were incubated with propidiumiodide (PI) (50μg/ml) and covered on slides. For analysis by the LSC propidiumiodide was used as trigger. After a first analysis focussed on the top of the tissue, the focus was adjusted in 30μm steps deeper into the tissue. Per analysis data of at least 50,000 cells were acquired. After finishing measurements from all depths of the field were merged, i.e. data were combined into a composite data file. With the special features of the LSC it was possible to develop a method depicting the threedimensional distribution of the nuclei in solid tissue sections. LSC can be useful tool for this relatively new field of solid tissue cytometry termed tissomics. After evaluation of methods like this, so far not available data can be analysed for diagnostic purposes. By these studies we intend to demonstrate the power of the LSC for the routine pathological use. This should add up to the bright versatility of applications for the LSC as a cytometric instrument suitable for high throughput and high content analysis.

  4. 嗅鞘细胞和神经干细胞联合移植阿尔茨海默病大鼠脑内的增殖和定向分化%Proliferation and directed differentiation of neural stem cells and olfactory ensheathing cells after co-transplantation into the brain of Alzheimer's disease rats

    Institute of Scientific and Technical Information of China (English)

    盛宝英; 李洋; 姜尧佳; 魏春杰; 李莹; 任秀敏

    2011-01-01

    BACKGROUND: The number of neurons is reduced in the brain of Alzheimer's disease rats, and the proliferation and differentiation ability of transplanted neural stem cells (NSCs) into neurons is limited.OBJECTIVE: To investigate the effects of olfactory ensheathing cells (OECs) on the proliferation and differentiation of NSCs to cholinergic neurons after co-transplantation into the brain of Alzheimer's disease rats.METHODS: OECs and NSCs were separately cultured in vtro. And the NSCs labeled with 5-bromodeoxyuridine(BrdU) before transplantation. Normal saline, NSCs and NSCs+OECs were separately transplanted into the hippocampi of Alzheimer's rate. At 7. 14.21 and 28 days after transplantation, the immunohistochemical staining was used to detects the expression of BrdU and choline acetyty Itr ans ferase (ChAT) in the slice of rat brain tissues to analyze the transplanted cells' proliferation and differentiation. RESULTS AND CONCLUSION: The condition of proliferation and differentiation of the NSCs co-transplanted with OECs was the best. The BrdU-posrtive cells and ChAT-posrtive cells of the OECs and NSCs co-transplantation groupwerethe most of the three groups (P < 0.01). OECs can promote the proliferation and differentiation of NSCs to cholinergic neurons after co-transplantation in the brain of Alzheimer's disease rats.%背景:阿尔茨海默病大鼠脑内神经元减少,神经干细胞移植后增殖和向神经元分化能力有限.目的:观察联合移植嗅鞘细胞和神经干细胞在阿尔茨海默病大鼠脑内,嗅鞘细胞对神经干细胞的增殖和向胆碱能神经元分化的影响.方法:体外培养嗅鞘细胞和神经干细胞,移植前用5-溴脱氧尿嘧啶核苷标记神经干细胞.将生理盐水,神经干细胞和神经干细胞+嗅鞘细胞分别移植入阿尔茨海默病模型大鼠海马.移植7,14,21,28 d后,进行大鼠脑组织切片免疫组织化学染色检测BrdU和ChAT阳性表达.结果与结论:联合移植组神经干细

  5. Modulation of lipid peroxidation, hypolipidemic and antioxidant activities in brain tissues of diabetic rats by fibre - Enriched biscuits

    Institute of Scientific and Technical Information of China (English)

    Ochuko L Erukainure; Folasade O Adeboyejo; Gloria N Elemo; Osaretin AT Ebuehi

    2012-01-01

    Objective: To investigate the effect of feeding fibre - enriched biscuit on the antioxidant and hypolipidemic activities in brain tissues of diabetic rats. Method: Diabetes was induced by a single intraperitoneal injection of alloxan. Treatment lasted for 14 d, after which the rats were sacrificed by cervical dislocation. Brain tissues were used for the assessment of GSH, catalase, SOD and lipid peroxidation as well as lipid profiles. Result: Induction of diabetes led to a significant decrease in GSH level, elevated SOD and catalase activities. These were significantly modified by the biscuits. There was an elevated level of malondialdehyde in the brain tissues of the untreated diabetic rats; this was significantly reduced by the biscuits. There was a significant decrease in HDL and a significant increase in LDL levels, total cholesterol and triglycerides in the untreated (diabetic) rats. Feeding with fibre - enriched biscuits led to decrease in the levels of total cholesterol, triglyceride, LDL - cholesterol and caused a significant increase in the levels of HDL. Conclusions: These results suggest a therapeutic and protective effect of the fibre -enriched biscuits against diabetic - induced brain toxicity in rats.

  6. Improved two-photon imaging of living neurons in brain tissue through temporal gating.

    Science.gov (United States)

    Gautam, Vini; Drury, Jack; Choy, Julian M C; Stricker, Christian; Bachor, Hans-A; Daria, Vincent R

    2015-10-01

    We optimize two-photon imaging of living neurons in brain tissue by temporally gating an incident laser to reduce the photon flux while optimizing the maximum fluorescence signal from the acquired images. Temporal gating produces a bunch of ~10 femtosecond pulses and the fluorescence signal is improved by increasing the bunch-pulse energy. Gating is achieved using an acousto-optic modulator with a variable gating frequency determined as integral multiples of the imaging sampling frequency. We hypothesize that reducing the photon flux minimizes the photo-damage to the cells. Our results, however, show that despite producing a high fluorescence signal, cell viability is compromised when the gating and sampling frequencies are equal (or effectively one bunch-pulse per pixel). We found an optimum gating frequency range that maintains the viability of the cells while preserving a pre-set fluorescence signal of the acquired two-photon images. The neurons are imaged while under whole-cell patch, and the cell viability is monitored as a change in the membrane's input resistance. PMID:26504651

  7. Continuous-wave near-infrared spectroscopy is not related to brain tissue oxygen tension.

    Science.gov (United States)

    Kerz, Thomas; Beyer, Christian; Huthmann, Alexandra; Kalasauskas, Darius; Amr, Amr Nimer; Boor, Stephan; Welschehold, Stefan

    2016-10-01

    Near-infrared spectroscopy (NIRS) has gained acceptance for cerebral monitoring, especially during cardiac surgery, though there are few data showing its validity. We therefore aimed to correlate invasive brain tissue oxygen measurements (PtiO2) with the corresponding NIRS-values (regional oxygen saturation, rSO2). We also studied whether NIRS was able to detect ischemic events, defined as a PtiO2-value of wave NIRS. PtiO2-correlation with corresponding NIRS-values was calculated. We found no correlation between PtiO2- and NIRS-readings. Measurement of rSO2 was no better than flipping a coin in the detection of cerebral ischemia when a commonly agreed ischemic PtiO2 cut-off value of wave-NIRS was unable to reliably detect ischemic cerebral episodes, defined as a PtiO2 value <15 mmHg. Displayed NIRS-values did not correlate with invasively measured PtiO2-values. CW-NIRS should not be used for the detection of cerebral ischemia. PMID:26289038

  8. Effects of ELF fields on calcium-ion efflux from brain tissues in vitro

    International Nuclear Information System (INIS)

    It has been previously demonstrated that carrier waves of 50 and 147 MHz, when sinusoidally amplitude modulated at 16 Hz (ELF), can cause enhanced efflux of radiolabeled calcium ions from chick brain tissue in vitro. This phenomenon occurs only when the samples are exposed to specific intensity ranges of the carrier wave. Unmodulated carrier waves do not affect the ion efflux. Since the ELF signal must be demodulated from the carrier wave to be effective, a study of the efflux ehnancement due to the ELF signal alone may lead to an identification of the site of demodulation, as well as provide clues to the underlying mechanism. We report here that 16-Hz sinusoidal fields in the absence of a carrier wave can alter the efflux rate of calcium ions. The results show a frequency-dependent, field-induced enhancement of calcium-ion efflux within the ranges 5 to 7.5 V/m and 35 to 50 V/m (peak-to-peak incident field in air) with no enhancement within the ranges 1 to 2, 10 to 30, and 60 to 70 V/m

  9. Magnetization transfer studies of the fast and slow tissue water diffusion components in the human brain.

    Science.gov (United States)

    Mulkern, Robert V; Vajapeyam, Sridhar; Haker, Steven J; Maier, Stephan E

    2005-05-01

    Magnetization transfer (MT) properties of the fast and slow diffusion components recently observed in the human brain were assessed experimentally. One set of experiments, performed at 1.5 T in healthy volunteers, was designed to determine whether the amplitudes of fast and slow diffusion components, differentiated on the basis of biexponential fits to signal decays over a wide range of b-factors, demonstrated a different or similar magnetization transfer ratio (MTR). Another set of experiments, performed at 3 T in healthy volunteers, was designed to determine whether MTRs differed when measured from high signal-to-noise images acquired with b-factor weightings of 350 vs 3500 s/mm2. The 3 T studies included measurements of MTR as a function of off-resonance frequency for the MT pulse at both low and high b-factors. The primary conclusion drawn from all the studies is that there appears to be no significant difference between the magnetization transfer properties of the fast and slow tissue water diffusion components. The conclusions do not lend support to a direct interpretation of the 'components' of the biexponential diffusion decay in terms of the 'compartments' associated with intra- and extracellular water. PMID:15578729

  10. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  11. Heart and Brain Tissue Banks for Research on Co-Occurring Cardiovascular and Neurological/Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Milos D. Ikonomovic

    2009-01-01

    Full Text Available Epidemiological studies point to a strong and possibly causal association of psychiatric and neurological disorders with cardiovascular disease (CVD. Mechanistic links between these co-occurring illnesses are not well understood. Better insight into their relationship could help identify novel diagnostic markers and therapeutic targets. For successful translation of basic biomedical research into clinical practice, analyses of postmortem human tissues are essential. However, current tissue banks dedicated to psychiatric and neurological research collect only brain tissue samples deemed most important to the institution's participating investigators. While this practice is often dictated by budget constraints, restricted tissue storage space and other practical reasons, it limits the ability of the biological research community to access and study multiple organ systems relevant to cardiovascular and neuronal systems dysfunction. This problem is worsened when clinical records pertaining to coexistent systemic pathology are not available. To promote further understanding of co-occurring CVD and psychiatric/neurological disorders, efforts should be made to support tissue banks that harvest heart, coronary arteries, and aorta samples as well as brain tissue, from the same subjects.

  12. The quantitative analysis of S100 in the brain tissue and serum following diffuse brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Wang Qi; Huang Ping; Xing Bo; Tuo Ya; Zhang Yongpan; Tian Weiping; Wang Zhenyuan

    2007-01-01

    Objective To investigate the dynamics of the level of S100 in cerebrum, brainstem, and serum following the diffuse brain injury in rats and provide the experimental evidences for estimating injury time. Methods ELISA was used to determine whether S100 protein is changed after diffuse brain injury in rats. Forty rats were sacrificed at 0.5 hour, 2 hours, 4 hours, 12 hours, 24 hours, 3 d and 7 d after diffuse brain injury and normal rats as control. Results The level of S100 in cerebrum, brainstem, and serum increased, followed by a decrease, and then further increased. The level of S100 could be detected to increase at 30 minutes and reached the peak at 4 hours after DBI. The level decreased gradually to the normal at 1d and till 3 d formed the second peak. The level returned to the normal at 7d following injury again. In the postmortem injury groups, there were no significant changes compared to the control group. Conclusion The present study showed that the time-dependent expression of S100 is obvious following diffuse brain injury in rats and suggested that S100 will be a suitable marker for diffuse brain injury age determination.

  13. Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors.

    Directory of Open Access Journals (Sweden)

    Leor Zach

    Full Text Available The current standard of care for newly diagnosed glioblastoma multiforme (GBM is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that

  14. A Hybrid DE-RGSO-ELM for Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    K. Kothavari

    2014-01-01

    Full Text Available Medical diagnostics, a technique used for visualizing the internal structures and functions of human body, serves as a scientific tool to assist physicians and involves direct use of digital imaging system analysis. In this scenario, identification of brain tumors is complex in the diagnostic process. Magnetic resonance imaging (MRI technique is noted to best assist tissue contrast for anatomical details and also carries out mechanisms for investigating the brain by functional imaging in tumor predictions. Considering 3D MRI model, analyzing the anatomy features and tissue characteristics of brain tumor is complex in nature. Henceforth, in this work, feature extraction is carried out by computing 3D gray-level cooccurence matrix (3D GLCM and run-length matrix (RLM and feature subselection for dimensionality reduction is performed with basic differential evolution (DE algorithm. Classification is performed using proposed extreme learning machine (ELM, with refined group search optimizer (RGSO technique, to select the best parameters for better simplification and training of the classifier for brain tissue and tumor characterization as white matter (WM, gray matter (GM, cerebrospinal fluid (CSF, and tumor. Extreme learning machine outperforms the standard binary linear SVM and BPN for medical image classifier and proves better in classifying healthy and tumor tissues. The comparison between the algorithms proves that the mean and standard deviation produced by volumetric feature extraction analysis are higher than the other approaches. The proposed work is designed for pathological brain tumor classification and for 3D MRI tumor image segmentation. The proposed approaches are applied for real time datasets and benchmark datasets taken from dataset repositories.

  15. Behavioral and histopathological assessment of adult ischemic rat brains after intracerebral transplantation of NSI-566RSC cell lines.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available Stroke is a major cause of death and disability, with very limited treatment option. Cell-based therapies have emerged as potential treatments for stroke. Indeed, studies have shown that transplantation of neural stem cells (NSCs exerts functional benefits in stroke models. However, graft survival and integration with the host remain pressing concerns with cell-based treatments. The current study set out to investigate those very issues using a human NSC line, NSI-566RSC, in a rat model of ischemic stroke induced by transient occlusion of the middle cerebral artery. Seven days after stroke surgery, those animals that showed significant motor and neurological impairments were randomly assigned to receive NSI-566RSC intracerebral transplants at two sites within the striatum at three different doses: group A (0 cells/µl, group B (5,000 cells/µl, group C (10,000 cells/µl, and group D (20,000 cells/µl. Weekly behavioral tests, starting at seven days and continued up to 8 weeks after transplantation, revealed dose-dependent recovery from both motor and neurological deficits in transplanted stroke animals. Eight weeks after cell transplantation, immunohistochemical investigations via hematoxylin and eosin staining revealed infarct size was similar across all groups. To identify the cell graft, and estimate volume, immunohistochemistry was performed using two human-specific antibodies: one to detect all human nuclei (HuNu, and another to detect human neuron-specific enolase (hNSE. Surviving cell grafts were confirmed in 10/10 animals of group B, 9/10 group C, and 9/10 in group D. hNSE and HuNu staining revealed similar graft volume estimates in transplanted stroke animals. hNSE-immunoreactive fibers were also present within the corpus callosum, coursing in parallel with host tracts, suggesting a propensity to follow established neuroanatomical features. Despite absence of reduction in infarct volume, NSI-566RSC transplantation produced behavioral

  16. Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids

    OpenAIRE

    Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine D.; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2014-01-01

    The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirementsof encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerninghow energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment intoother costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been...

  17. Bone marrow transplant - discharge

    Science.gov (United States)

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - discharge; ...

  18. Effect of montelukast on the expression of interleukin-18, telomerase reverse transcriptase, and Bcl-2 in the brain tissue of neonatal rats with hypoxic-ischemic brain damage.

    Science.gov (United States)

    Liu, J L; Zhao, X H; Zhang, D L; Zhang, J B; Liu, Z H

    2015-01-01

    The aim of this study was to investigate the effect of montelukast on the expression of interleukin (IL)-18, telomerase reverse transcriptase (TERT), and Bcl-2 in the brain tissue of neonatal rats with hypox-ic-ischemic brain damage (HIBD). To establish the model of HIBD, 8% oxygen was applied to rats after the unilateral carotid artery was ligated. Twenty rats were randomly assigned to the control group, while another 40 were used to establish the HIBD model and were randomly divided equally into model group and treatment group. A 0.1 mg/kg dose of montelukast or an equal volume of saline was intraperitoneally injected to the rats in the treatment group and the model group, respectively. Brain tissue from 4 rats in each group was sampled at 0, 6, 12, 24, and 72 h after brain damage, and immunohistochemistry was used to measure IL-18, TERT and Bcl-2 expressions. IL-18, TERT, and Bcl-2 levels increased after 12 h in both the model group and treatment group, peaked after 48 h, and then decreased. Although not statistically significant, IL-18, TERT, and Bcl-2 expressions after 24, 48, and 96 h were all lower in the treatment group than those in the model group. In conclusion, montelukast has a protective effect on the cerebral tissue of neonatal rats with HIBD, and may mediate an increase of TERT and Bcl-2 levels but not of IL-18. Further study is required to elucidate the mechanism of the protective effect of montelukast on HIBD. PMID:26345821

  19. Quantitative analysis of sodium fast and slow component in in vivo human brain tissue using MR Na image

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Hirokazu; Yamasaki, Katsuhito; Kidena, Hitoshi; Kono, Michio (Kobe Univ. (Japan). School of Medicine)

    1992-12-01

    In vivo sodium concentrations in the normal brain tissue and a tumorous tissue were analyzed using MR Na image. The nuclear magnetic resonance enabled us to divide the signal from sodium in the living tissue into 2 parts based on the differences of T[sub 2] value. Those are fast component having the T[sub 2] value of less than 5 msec and slow component of 15-40 msec. We investigated the effect of macromolecules on T[sub 2] value of sodium image using polyvinylalcohol (PVA) powder. MR Na image was taken with the parameters of TR/TD, 110 ms/1.9 ms (FID image) and TR/TE, 110 ms/20 ms (SE image). Saline solution showed high intensity on both FID image and SE image. Saline solution added PVA (PVA phantom) also showed high intensity on FID image, whereas the signal intensity of PVA phantom in SE image extinguished. To know the relation between the signal intensity and sodium concentration, sodium concentration-signal intensity curve was obtained using phantoms with various sodium concentrations (0.05-1.0%). This curve showed a direct proportion between sodium concentration and signal intensity on Na image. We measured further the sodium concentrations of the human brain tissue. Sodium phantoms were arranged around the heads and the MR Na images of the normal brains from 3 volunteers and a patient with a brain tumor (meningioma) were taken. The sodium concentrations of occipital lobe, basal ganglia and the tumorous tissue were calculated using the sodium concentration-signal intensity curve obtained from the phantoms arranged around the heads. Two tailed t-test shows significant differences (p<0.01) in total sodium and slow component between occipital lobe and basal ganglia. Further more high concentration of fast component in tumorous tissue was observed. As fast component reflects the intracellular condition, present experiments suggest that measurement of fast component may be useful for obtaining the functional information of the brain tissue. (author).

  20. Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy.

    Science.gov (United States)

    Krasieva, Tatiana B; Ehren, Jennifer; O'Sullivan, Thomas; Tromberg, Bruce J; Maher, Pamela

    2015-10-01

    Over the last few years, we have identified an orally active, novel neuroprotective and cognition-enhancing molecule, the flavonoid fisetin. Fisetin not only has direct antioxidant activity but it can also increase the intracellular levels of glutathione, the major intracellular antioxidant. Fisetin can also activate key neurotrophic factor signaling pathways. In addition, it has anti-inflammatory activity against microglia and astrocytes and inhibits the activity of lipoxygenases, thereby reducing the production of pro-inflammatory eicosanoids and their by-products. However, key questions about its targets and brain penetration remain. In this study, we used label-free two-photon microscopy of intrinsic fisetin fluorescence to examine the localization of fisetin in living nerve cells and the brains of living mice. In cells, fisetin but not structurally related flavonols with different numbers of hydroxyl groups, localized to the nucleoli suggesting that key targets of fisetin may reside in this organelle. In the mouse brain, following intraperitoneal injection and oral administration, fisetin rapidly distributed to the blood vessels of the brain followed by a slower dispersion into the brain parenchyma. Thus, these results provide further support for the effects of fisetin on brain function. In addition, they suggest that label-free two-photon microscopy may prove useful for studying the intracellular and tissue distribution of other intrinsically-fluorescent flavonoids.

  1. Covalent binding of formalin fixed paraffin embedded brain tissue sections to glass slides suitable for in situ hybridization.

    Science.gov (United States)

    Tourtellotte, W W; Verity, A N; Schmid, P; Martinez, S; Shapshak, P

    1987-02-01

    A novel method for covalently binding formalin fixed paraffin embedded (FFPE) tissue sections to glass microscope slides is validated suitable for in situ hybridization (ISH). Using the organosilane methodology of Maples (1985), 100% tissue adhesion is reported with no nonspecific probe binding, staining, or autoradiographic artefacts. JC viral nucleic acid sequences are successfully detected in FFPE progressive multifocal leukoencephalopathy brain tissue and the Tm of the hybridized product is estimated. From the Tm the most stringent washing condition resulting in an optimal signal to noise ratio is determined. A comparison is made between currently used methods of tissue adhesion and the proposed organosilane methodology. This methodology greatly facilitates studies of conditions for ISH and elucidation of mechanisms of viral infections requiring consecutive FFPE sections. It is also applicable to studies using cryosections and cultured cells.

  2. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it

    OpenAIRE

    Foster, Michelle T.; Softic, Samir; Caldwell, Jody; Kohli, Rohit; deKloet, Annette D; Seeley, Randy J.

    2013-01-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance, and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the...

  3. [THE AGING OF MICROVASCULAR NETWORK FORMED IN CORTEX FOLLOWING INTRACEREBRAL TRANSPLANTATION OF MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Sokolova, I B; Anisimov, S V; Puzanov, M V; Sergeev, I V; Dvoretskiĭ, D P

    2015-01-01

    Using a TV device to study microcirculation in brain we found that intracerebral transplantation of mesenchymal stem cells to 12-months old rats led to a significant increase (circa 1,5-fold times) of microvascular density in pia tissue and to increased constriction reactions of pia arterioles in response to noradrenalin application on a brain surface. Both microvascular density and pia arterioles reactivity was completely preserved in aging until 22-24 months. PMID:26390610

  4. Effects of cadmium and copper on sialic acid levels in blood and brain tissues of Cyprinus carpio L.

    Institute of Scientific and Technical Information of China (English)

    Utku Gner; Elvan Bakar

    2014-01-01

    Objective: To investigate the effects of cadmium (Cd) and copper (Cu) on sialic acid levels of brain and blood tissues of Cyprinus carpio.Methods:Adult carps were exposed to 0.1, 0.5 mg/L Cu, 0.1, 0.5 and 1.0 mg/L Cd and 0.1 mg/L Cu+0.1 mg/L Cd under static experiment conditions for 1 week. At the end of exposure period, heavy metal accumulations and sialic acid levels in blood and brain tissues of the test animals were analyzed.Results:Cu and Cd accumulated in tissues in a dramatically increasing dose-dependent manner. Sialic acids level of the fish exposed to 0.1, 0.5 and 1.0 mg/L Cu and Cd and control grups for 1 week were 0.834, 1.427, 0.672, 0.934, 2.968, 4.714 mg/mL respectively. The results also showed that Cu has an antagonistic effect on tissue sialic acid level.Conclusions:We propose that Cd and Cu make a complex with sialic acids of membranes in the tissues researched. This complex between metal ions and sialic acid migth account for the cellular toxicity based on Cu and Cd.

  5. Study on changes of partial pressure of brain tissue oxygen and brain temperature in acute phase of severe head injury during mild hypothermia therapy

    Institute of Scientific and Technical Information of China (English)

    朱岩湘; 姚杰; 卢尚坤; 章更生; 周关仁

    2003-01-01

    Objective: To study the changes of partial pressure of brain tissue oxygen (PbtO2) and brain temperature in acute phase of severe head injury during mild hypothermia therapy and the clinical significance.Methods: One hundred and sixteen patients with severe head injury were selected and divided into a mild hypothermia group (n=58), and a control group (n=58) according to odd and even numbers of hospitalization. While mild hypothermia therapy was performed PbtO2 and brain temperature were monitored for 1-7 days (mean=86 hours), simultaneously, the intracranial pressure, rectum temperature, cerebral perfusion pressure, PaO2 and PaCO2 were also monitored. The patients were followed up for 6 months and the prognosis was evaluated with GOS (Glasgow outcome scale).Results: The mean value of PbtO2 within 24 hour monitoring in the 116 patients was 13.7 mm Hg±4.94 mm Hg, lower than the normal value (16 mm Hg±40 mm Hg) The time of PbtO2 recovering to the normal value in the mild hypothermia group was shortened by 10±4.15 hours compared with the control group (P<0.05). The survival rate of the mild hypothermia group was 60.43%, higher than that of the control group (46.55%). After the recovery of the brain temperature, PbtO2 increased with the rise of the brain temperature. Conclusions: Mild hypothermia can improve the survival rate of severe head injury. The technique of monitoring PbtO2 and the brain temperature is safe and reliable, and has important clinical significance in judging disease condition and instructing clinical therapy.

  6. Expression of EF-Tumt and EF-Tsmt in brain tissues of patients with mesial temporal lobe epilepsy

    Institute of Scientific and Technical Information of China (English)

    Jun Lu; Qi-Chang Zeng; Qin Wang; Ya-Hui Huang; Qiong Peng

    2016-01-01

    Objective:To explore the expression of EF-Tumt and EF-Tsmt in brain tissue of patients with mesial temporal lobe epilepsy (MTLE). Methods:From January 2013 to January 2015, a total of 62 patients with MTLE who were treated with anterior temporal lobe resection in the Department of neurosurgery in Hunan Brain Hospital were selected and classified as the case group, at the same time, 48 patients with brain trauma were chosen and considered to be the control group. The expression of EF-Tumt and EF-Tsmt was detected and compared between the two groups. Results:EF-Tumt positive particles and EF-Tsmt positive particles were noticed in the mitochondria and cytoplasm of brain tissues of the medial temporal lobe in the two groups by election microscopic observation, and the number of the two types of positive particles in the case group was significantly more than that in the control group (P<0.05);similarly, EF-Tumt positive cells and EF-Tsmt positive cells were also observed in the neurons and astrocytes of brain tissues of the medial temporal lobe in the two groups by election microscopic observation, and the number of the above-mentioned positive cells in the case group was also significantly larger than that in the control group (P<0.05). Conclusions:The expression intensities of EF-Tsmt and EF-Tumt in patients with MTLE are higher than these in patients without epilepsy. Therefore, EF-Tsmt and EF-Tumt play important roles in MTLE.

  7. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  8. Differences in supratentorial white matter diffusion after radiotherapy - New biomarker of normal brain tissue damage?

    Energy Technology Data Exchange (ETDEWEB)

    Ravn, Soeren; Jens Broendum Froekaer, Jens [Dept. of Radiology, Aalborg Univ. Hospital, Aalborg (Denmark)], e-mail: sorl@rn.dk; Holmberg, Mats [Dept. of Oncology, Aalborg Univ. Hospital, Aalborg (Denmark); Soerensen, Preben [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark); Carl, Jesper [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark)

    2013-10-15

    Introduction: Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. Material and methods: DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on iso curves from Eclipse. Data was analysed by t-test. Estimates are given with 95 % CI. Results: A mean ADC difference of 4.6(0.3;8.9) X 10{sup -5} mm{sup 2}/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60) X 10{sup -5} mm{sup 2}/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58) X 10{sup -5} mm{sup 2}/s, p = 0.29; 15 Gy; 5.81(1.53;10.11) X 10{sup -5} mm{sup 2}/s, p = 0.01; 25 Gy; 5.80(2.43;9.18) X 10{sup -5} mm{sup 2}/s, p = 0.002; 35 Gy; 5.93(2.89;8.97) X 10

  9. Donor transplant programme

    International Nuclear Information System (INIS)

    The transplantation of organs and tissues from one human to another human has become an essential and well established form of therapy for many types of organ and tissue failure. In Malaysia, kidney, cornea and bone marrow transplantation are well established. Recently, liver, bone and heart transplanation have been performed. Unfortunately, because of the lack of cadaveric organ donation, only a limited number of solid organ transplantation have been performed. The cadaveric organ donor rate in Malaysia is low at less than one per million population. The first tissue transplanted in Malaysia was the cornea which was performed in the early 1970s. At that time and even now the majority of corneas came from Sri Lanka. The first kidney transplant was performed in 1975 from a live related donor. The majority of the 629 kidney transplants done at Hospital Kuala Lumpur to date have been from live related donors. Only 35 were from cadaver donors. Similarly, the liver transplantation programme which started in 1995 are from live related donors. A more concerted effort has been made recently to increase the awareness of the public and the health professionals on organ and tissue donation. This national effort to promote organ and tissue donation seems to have gathered momentum in 1997 with the first heart transplant successfully performed at the National Heart Institute. The rate of cadaveric donors has also increased from a previous average of I to 2 per year to 6 per year in the last one year. These developments are most encouraging and may signal the coming of age of our transplantati on programme. The Ministry of Health in conjunction with various institutions, organizations and professional groups, have taken a number of proactive measures to facilitate the development of the cadaveric organ donation programme. Efforts to increase public awareness and to overcome the negative cultural attitude towards organ donation have been intensified. Equally important are efforts

  10. Bone transplantation and tissue engineering, part I. Mythology, miracles and fantasy: from Chimera to the Miracle of the Black Leg of Saints Cosmas and Damian and the cock of John Hunter.

    Science.gov (United States)

    Hernigou, Philippe

    2014-12-01

    The replacement of diseased organs and tissues by the healthy ones of others has been a unique milestone in modern medicine. However, even though cloning, member transplantation and regenerative therapies with stem cells are available in the twentieth and twenty-first centuries, one should remember that all these techniques were in the imagination more than 2,000 years ago. For centuries, transplantation remained a theme of mythology, miracle or fantasy and was found only in literature and arts. This first paper explains the concept of tissue transplantation from the period when it was relegated to the imagination to the work of the Scottish surgeon and anatomist, John Hunter, who demonstrated the viability of bone allograft. PMID:25201179

  11. Bone transplantation and tissue engineering, part I. Mythology, miracles and fantasy: from Chimera to the Miracle of the Black Leg of Saints Cosmas and Damian and the cock of John Hunter.

    Science.gov (United States)

    Hernigou, Philippe

    2014-12-01

    The replacement of diseased organs and tissues by the healthy ones of others has been a unique milestone in modern medicine. However, even though cloning, member transplantation and regenerative therapies with stem cells are available in the twentieth and twenty-first centuries, one should remember that all these techniques were in the imagination more than 2,000 years ago. For centuries, transplantation remained a theme of mythology, miracle or fantasy and was found only in literature and arts. This first paper explains the concept of tissue transplantation from the period when it was relegated to the imagination to the work of the Scottish surgeon and anatomist, John Hunter, who demonstrated the viability of bone allograft.

  12. HSF1 is essential for the resistance of zebrafish eye and brain tissues to hypoxia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Nathan R Tucker

    Full Text Available Ischemia and subsequent reperfusion (IR produces injury to brain, eye and other tissues, contributing to the progression of important clinical pathologies. The response of cells to IR involves activation of several signaling pathways including those activating hypoxia and heat shock responsive transcription factors. However, specific roles of these responses in limiting cell damage and preventing cell death after IR have not been fully elucidated. Here, we have examined the role of heat shock factor 1 (HSF1 in the response of zebrafish embryos to hypoxia and subsequent return to normoxic conditions (HR as a model for IR. Heat shock preconditioning elevated heat shock protein expression and protected zebrafish embryo eye and brain tissues against HR-induced apoptosis. These effects were inhibited by translational suppression of HSF1 expression. Reduced expression of HSF1 also increased cell death in brain and eye tissues of embryos subjected to hypoxia and reperfusion without prior heat shock. Surprisingly, reduced expression of HSF1 had only a modest effect on hypoxia-induced expression of Hsp70 and no effect on hypoxia-induced expression of Hsp27. These results establish the zebrafish embryo as a model for the study of ischemic injury in the brain and eye and reveal a critical role for HSF1 in the response of these tissues to HR. Our results also uncouple the role of HSF1 expression from that of Hsp27, a well characterized heat shock protein considered essential for cell survival after hypoxia. Alternative roles for HSF1 are considered.

  13. AMP-activated protein kinase phosphorylation in brain is dependent on method of sacrifice and tissue preparation

    OpenAIRE

    Scharf, Matthew T.; Mackiewicz, Miroslaw; Naidoo, Nirinjini; O'Callaghan, James P.; Pack, Allan I.

    2007-01-01

    AMP-activated protein kinase is activated when the catalytic α subunit is phosphorylated on Thr172 and therefore, phosphorylation of the α subunit is used as a measure of activation. However, measurement of α-AMP-activated protein kinase phosphorylation in vivo can be technically challenging. To determine the most accurate method for measuring α-AMP-activated protein kinase phosphorylation in the mouse brain, we compared different methods of sacrifice and tissue preparation. We found that fre...

  14. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M;

    1983-01-01

    In a group of 48 patients with completed stroke, 8 patients had viable collaterally perfused brain tissue which was accessible for rCBF recordings with a two dimensional technique. All 8 had deep subcortical infarcts on CT-scan, and angiographic occlusion of the arteries normally supplying the in...... the experimental finding of an ischemic penumbra associated with acute cerebral infarcts and suggest that early restoration of the blood flow in acute stroke patients might improve recovery and prognosis in selected patients....

  15. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain.

    Science.gov (United States)

    Daniel, Sheril; Limson, Janice L; Dairam, Amichand; Watkins, Gareth M; Daya, Santy

    2004-02-01

    Curcumin, the major constituent of turmeric is a known, naturally occurring antioxidant. The present study examined the ability of this compound to protect against lead-induced damage to hippocampal cells of male Wistar rats, as well as lipid peroxidation induced by lead and cadmium in rat brain homogenate. The thiobarbituric assay (TBA) was used to measure the extent of lipid peroxidation induced by lead and cadmium in rat brain homogenate. The results show that curcumin significantly protects against lipid peroxidation induced by both these toxic metals. Coronal brain sections of rats injected intraperitoneally with lead acetate (20 mg/kg) in the presence and absence of curcumin (30 mg/kg) were compared microscopically to determine the extent of lead-induced damage to the cells in the hippocampal CA1 and CA3 regions, and to establish the capacity of curcumin to prevent such damage. Lead-induced damage to the neurons was significantly curtailed in the rats injected with curcumin. Possible chelation of lead and cadmium by curcumin as its mechanism of neuroprotection against such heavy metal insult to the brain was investigated using electrochemical, ultraviolet spectrophotometric and infrared spectroscopic analyses. The results of the study show that there is an interaction between curcumin and both cadmium and lead, with the possible formation of a complex between the metal and this ligand. These results imply that curcumin could be used therapeutically to chelate these toxic metals, thus potentially reducing their neurotoxicity and tissue damage.

  16. Changes in hemeoxygenase-1 and superoxide dismutase in the peri-hematomal brain tissues of rats following intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Jiami Wu; Qingwei Meng

    2006-01-01

    BACKGROUND: The mechanism of intracerebral hemorrhage (ICH)-induced hemorrhagic brain injury is very complicated, involving the position-occupying effect of oephalophyma, ischemio factors, the toxic effect of hematoma components, the destruction of blood-brain barrier, etc. The expression and effect of hemeoxygenase-1 (HO-1) in the cerebrovascular disease has been paid close attention.OBJECTIVE: To observe the expression of HO-1 and change of superoxide dismutase (SOD) in the peri-hematomal brain tissue of rats following ICH.DESIGN: Randomized controlled animal experiment.SETTING: Department of Neurology, Yijishan Hospital Affiliated to Wannan Medical College.MATERIALS: Forty healthy male SD rats, of clean grade, weighing from 250 to 300 g, were provided by Qinglongshan Animal Farm of Nanjing. The involved 40 rats were randomized into sham-operation group (n=5) and ICH group (n =35), and ICH group was divided into 7 subgroups with 5 rats in each: ICH 6, 12, 24, 48, 72,100 and 168 hours groups. Rabbit anti-rat HO-1 immunohistochemial kit ( Boster Co., Ltd., Wuhan) and SOD kit (Jiancheng Bioengineering Institute, Nanjing)were used in this experiment.METHODS: This experiment was carried out in the Department of Neurology, Yijishan Hospital Affiliated to Wannan Medical College Between April and July 2005. In the ICH group: Autologous blood of rats was injected into the head of caudate nucleus to create ICH animal models. In the sham-operation group, the same amount of normal saline was injected into the head of caudate nucleus of rats. The brains of rats in each group were harvested at different time points. The hematoma-side brain tissue was cut open in the coronal plane taking hematomal region as center, and the posterior part was fixed with 100 g/L neutral formaldehyde. 100 mg brain tissue was taken from anterior part. The number of positive cells in HO-1 and SOD activity in peri-hematomal brain tissue at different time after ICH were detected by immunohistochemical

  17. Organotypic slice cultures from rat brain tissue: a new approach for Naegleria fowleri CNS infection in vitro.

    Science.gov (United States)

    Gianinazzi, C; Schild, M; Müller, N; Leib, S L; Simon, F; Nuñez, S; Joss, P; Gottstein, B

    2005-12-01

    The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM.

  18. CCl4 induces tissue-type plasminogen activator in rat brain; protective effects of oregano, rosemary or vitamin E.

    Science.gov (United States)

    Lavrentiadou, Sophia N; Tsantarliotou, Maria P; Zervos, Ioannis A; Nikolaidis, Efstathios; Georgiadis, Marios P; Taitzoglou, Ioannis A

    2013-11-01

    The high metabolic rate and relatively low antioxidant defenses of the lipid-rich brain tissue render it highly susceptible to reactive oxygen species (ROS) and oxidative stress, whereas the implication of ROS in the pathogenesis of several diseases in the central nervous system is well-established. The plasminogen activator (PA) system is a key modulator of extracellular proteolysis, extracellular matrix remodeling and neuronal cell signaling and has been implicated in the pathogenesis of these diseases. This study evaluates the role of tissue-type PA (t-PA) in oxidative stress and the protective role of dietary antioxidants in the rat brain. We used the CCl4 experimental model of ROS-induced lipid peroxidation and evaluated the antioxidant effect of oregano, rosemary or vitamin E. CCl4-treated Wistar rats exhibited elevated brain t-PA activity, which was decreased upon long-term administration of oregano, rosemary or vitamin E. PA inhibitor-1 (PAI-1) activity was also slightly elevated by CCl4, but this increase was not affected by the antioxidants. We hypothesize that the CCl4-induced t-PA activity indicates extracellular proteolytic activity that may be linked to neuronal cell death and brain damage. Vitamin E or antioxidants present in oregano or rosemary are effective in inhibiting t-PA elevation and can be considered as a potential protection against neuronal damage. PMID:23831191

  19. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  20. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics.

    Science.gov (United States)

    Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne

    2010-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.

  1. The expression of Fetuin-A in brain tissues of WAG/Rij Rats, genetic rat model of absence epilepsy

    Directory of Open Access Journals (Sweden)

    Ramazan Yüksel

    2015-12-01

    Full Text Available Objective: In the present study, we aimed to determine the Fetuin-A levels in different regions of the brain in absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij rats in order to contribute the identification of new potential biomarkers of the diagnosis, prognosis and follow up the epilepsy treatment. Methods: 1, 3 and 6 months old male WAG/Rij rats (n=21 with absence epilepsy were used in this study. All of the rats were decapitated under anesthesia and their cortex and thalamus tissues were isolated. Fetuin-A levels of the groups were determined by Western Blot method by using standard techniques and differences between densities of the groups were compared. Results: According to data obtained, there was no Fetuin-A expression in brain cortex and thalamus tissues of WAG/Rij rats with absence epilepsy. Conclusion: In this study, it was shown that Fetuin-A is not expressed in brain cortex and thalamus tissues of WAG/Rij rats with absence epilepsy throughout the age-related development. By evaluating the findings obtained, extensive researches that contain molecular and histological methods must be planned, Fetuin-A findings that are obtained experimentally must be confirmed. J Clin Exp Invest 2015; 6 (4: 387-390

  2. Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications(1,2,3).

    Science.gov (United States)

    Yona, Guy; Meitav, Nizan; Kahn, Itamar; Shoham, Shy

    2016-01-01

    In recent years, optogenetics has become a central tool in neuroscience research. Estimating the transmission of visible light through brain tissue is of crucial importance for controlling the activation levels of neurons in different depths, designing optical systems, and avoiding lesions from excessive power density. The Kubelka-Munk model and Monte Carlo simulations have previously been used to model light propagation through rodents' brain tissue, however, these prior attempts suffer from fundamental shortcomings. Here, we introduce and study two modified approaches for modeling the distributions of light emanating from a multimode fiber and scattering through tissue, using both realistic numerical Monte Carlo simulations and an analytical approach based on the beam-spread function approach. We demonstrate a good agreement of the new methods' predictions both with recently published data, and with new measurements in mouse brain cortical slices, where our results yield a new cortical scattering length estimate of ∼47 µm at λ = 473 nm, significantly shorter than ordinarily assumed in optogenetic applications.

  3. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  4. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  5. In vivo tracing of superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells transplanted for traumatic brain injury by susceptibility weighted imaging in a rat model

    Institute of Scientific and Technical Information of China (English)

    CHENG Jing-liang; YANG Yun-jun; LI Hua-li; WANG Juan; WANG Mei-hao; ZHANG Yong

    2010-01-01

    Objective:To label rat bone marrow mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide (SPIO) in vitro, and to monitor the survival and location of these labeled BMSCs in a rat model of traumatic brain injury (TBI) by susceptibility weighted imaging (SWI)sequence.Methods:BMSCs were cultured in vitro and then labeled with SPIO. Totally 24 male Sprague Dawley (SD) rats weighing 200-250 g were randomly divided into 4 groups: Groups A-D (n=6 for each group). Moderate TBI models of all the rats were developed in the left hemisphere following Feeney's method. Group A was the experimental group and stereotaxic transplantation of BMSCs labeled with SPIO into the region nearby the contusion was conducted in this group 24 hours after TBI modeling. Th