WorldWideScience

Sample records for brain tissue sodium

  1. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  2. Disposition and tissue distribution of boron after infusion of borocaptate sodium in patients with malignant brain tumors

    International Nuclear Information System (INIS)

    Horn, Vladimir; Pharm, D.; Slansky, Josef; Janku, Ivo; Strouf, Oldrich; Sourek, Karel; Tovarys, Frantisek

    1998-01-01

    Purpose: In the frame of the Czech boron neutron capture therapy (BNCT) project, a clinical Phase I study of borocaptate sodium [Na 2 B 12 H 11 SH (BSH)] as the boron-10 delivery agent was performed to obtain data on disposition and tissue distribution of boron after an infusion of this compound, as well as to establish an optimal protocol for BNCT of malignant cerebral tumors. Methods and Materials: The kinetics of boron disposition after an infusion of borocaptate sodium (25 mg/kg body wt over the period of 1 h) was studied in a group of 10 patients with astrocytoma or glioblastoma of cerebral hemispheres using a modification of the Soloway-Messer colorimetric method. The boron content of tissues (tumor, healthy brain, dura mater, muscle, skin, and cranial bone) removed during the operation performed with latencies varying between 3 and 18 h was investigated by atomic emission spectrometry. Results: Compartmental analysis of boron blood concentrations has shown that in the majority of patients (four males and three females), the concentration decline can be adequately described by a two-compartment pharmacokinetic model (i.e., by a biexponential relationship). The calculated half-lives of the initial (fast) phase of the concentration decline varied between 0.85 and 3.65 h, whereas the half-life values for the terminal (slow) phase ranged between 22.2 and 111.8 h. However, in the remaining three patients (all females), the goodness of fit of the boron concentration data was significantly better when a pharmacokinetic model with three compartments was assumed. In these patients, therefore, an additional ultrafast phase with a half-life varying between 17 and 37 min was detected in the beginning of the boron blood concentration decline. On the other hand, in one of these patients, the half-life of the terminal phase was found to be 415 h (i.e., more than 17 days). Such a long persistence in the body is explained by the very high value of the total distribution

  3. Astrocyte Sodium Signalling and Panglial Spread of Sodium Signals in Brain White Matter.

    Science.gov (United States)

    Moshrefi-Ravasdjani, Behrouz; Hammel, Evelyn L; Kafitz, Karl W; Rose, Christine R

    2017-09-01

    In brain grey matter, excitatory synaptic transmission activates glutamate uptake into astrocytes, inducing sodium signals which propagate into neighboring astrocytes through gap junctions. These sodium signals have been suggested to serve an important role in neuro-metabolic coupling. So far, it is unknown if astrocytes in white matter-that is in brain regions devoid of synapses-are also able to undergo such intra- and intercellular sodium signalling. In the present study, we have addressed this question by performing quantitative sodium imaging in acute tissue slices of mouse corpus callosum. Focal application of glutamate induced sodium transients in SR101-positive astrocytes. These were largely unaltered in the presence of ionotropic glutamate receptors blockers, but strongly dampened upon pharmacological inhibition of glutamate uptake. Sodium signals induced in individual astrocytes readily spread into neighboring SR101-positive cells with peak amplitudes decaying monoexponentially with distance from the stimulated cell. In addition, spread of sodium was largely unaltered during pharmacological inhibition of purinergic and glutamate receptors, indicating gap junction-mediated, passive diffusion of sodium between astrocytes. Using cell-type-specific, transgenic reporter mice, we found that sodium signals also propagated, albeit less effectively, from astrocytes to neighboring oligodendrocytes and NG2 cells. Again, panglial spread was unaltered with purinergic and glutamate receptors blocked. Taken together, our results demonstrate that activation of sodium-dependent glutamate transporters induces sodium signals in white matter astrocytes, which spread within the astrocyte syncytium. In addition, we found a panglial passage of sodium signals from astrocytes to NG2 cells and oligodendrocytes, indicating functional coupling between these macroglial cells in white matter.

  4. Sodium MR imaging of human brain neoplasms

    International Nuclear Information System (INIS)

    Kobayashi, Shu; Yoshikawa, Kohki; Takakura, Kintomo; Iio, Masahiro

    1988-01-01

    We reported the experience of the sodium magnetic resonance imaging of 5 patients with brain tumors (4 astrocytomas and 1 craniopharyngioma), using a Siemens 1.5 Tesla superconductive magnet. We used two-dimensional Fourier imaging with a spin-echo scanning sequence (and with the repetition time of 140 msec and the echo time of 11 - 14 msec). The radiofrequency was maintained at 17 MHz. Sodium MR imaging was achieved with a 64 x 64 data acquisition (30 mm slice thickness) in 19.1 min. On the sodium MRI, all four astrocytomas, along with the eye balls and the cerebrospinal fluid spaces, appeared as high-intensity areas. Peritumoral edema is also visualized as highly intense, so that it is difficult to discriminate tumor extent from the surrounding edema. Our comparative studies with malignant glioma cases using the same equipment are needed to clarify the relationship between sodium signal intensities and the malignancy of gliomas, and to evaluate the potential clinical utility of sodium MRI. A craniopharyngioma than contained a yellowish cystic fluid with a sodium concentration as high as CSF was shown on sodium MRI as a mass with highly intense signals. The ability to differentiate extracellular from intracellular sodium, that has been studied by several investigators, would greatly augment the clinical specificity of MR imaging. (author)

  5. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    Science.gov (United States)

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    Science.gov (United States)

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  7. Sodium-23 magnetic resonance brain imaging

    International Nuclear Information System (INIS)

    Winkler, S.S.; Wisconsin Univ., Madison

    1990-01-01

    This is a review of recent work in 23 Na MR imaging. The main emphasis of recent papers has been pulse sequences that, with appropriate postprocessing, give images of the fast, slow, and intermediate components of T 2 decay. The assignment of compartmental designation to the T 2 component remains a problem except for homogeneous structures easily identifiable anatomically (ventricles, superior sagittal sinus, globe of the eye). Compartmental distribution of sodium is described. The predominance of the interstitial and plasma compartment, the invisibility of part of the intracellular sodium, and the difficulty in imaging the very fast T 2 component of visible intracellular sodium make the usual Na spin-echo image essentially an image of the interstitial and plasma space. Use of paramagnetic iron oxide coupled to dextran as a contrast medium may help to identify the plasma compartment. Because the usual Na MR images are essentially interstitial and plasma images, our own interest is in observing functional changes in these compartments. Another proposed application is the detection of the very fast T 2 component in brain tumors to aid in defining tumor grade and extent. (orig.)

  8. Photon Entanglement Through Brain Tissue.

    Science.gov (United States)

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  9. Sodium MR imaging of human brain neoplasms. A preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shu; Yoshikawa, Kohki; Takakura, Kintomo; Iio, Masahiro

    1988-08-01

    We reported the experience of the sodium magnetic resonance imaging of 5 patients with brain tumors (4 astrocytomas and 1 craniopharyngioma), using a Siemens 1.5 Tesla superconductive magnet. We used two-dimensional Fourier imaging with a spin-echo scanning sequence (and with the repetition time of 140 msec and the echo time of 11 - 14 msec). The radiofrequency was maintained at 17 MHz. Sodium MR imaging was achieved with a 64 x 64 data acquisition (30 mm slice thickness) in 19.1 min. On the sodium MRI, all four astrocytomas, along with the eye balls and the cerebrospinal fluid spaces, appeared as high-intensity areas. Peritumoral edema is also visualized as highly intense, so that it is difficult to discriminate tumor extent from the surrounding edema. Our comparative studies with malignant glioma cases using the same equipment are needed to clarify the relationship between sodium signal intensities and the malignancy of gliomas, and to evaluate the potential clinical utility of sodium MRI. A craniopharyngioma than contained a yellowish cystic fluid with a sodium concentration as high as CSF was shown on sodium MRI as a mass with highly intense signals. The ability to differentiate extracellular from intracellular sodium, that has been studied by several investigators, would greatly augment the clinical specificity of MR imaging.

  10. Evaluation tissue dissolution property of 2.5 % Sodium Hypochlorite Prepared by Hydrochloric Acid and Sodium Bicarbonate: An in vitro

    Directory of Open Access Journals (Sweden)

    Hamid Razavian

    2016-08-01

    Full Text Available Successful endodontic treatment requires chemical preparation in addition to mechanical preparation. The most common material for chemical preparations is sodium hypochlorite. One way to reduce the effects of pH adjustment is the use of sodium hypochlorite. The present paper was conducted to examine the effect of dilution with hydrochloric acid and sodium bicarbonate and reduce pH on ability of tissue solubility of sodium hypochlorite. The present study was conducted in vitro on bovine muscle tissue. Ability of tissue solubility was conducted in four groups respectively with active ingredient including 1 sodium hypochlorite diluted with distilled water 2 sodium hypochlorite diluted with sodium bicarbonate 3 sodium hypochlorite diluted with hydrochloric acid and finally 4 distilled water (control group. Each sample was firstly weighed and then placed in contact with 10 m/L solution for 60 minutes (five 12 -minute intervals. The sample was weighted every five minutes and solution was renewed. The results were analyzed using SPSS-21 Software based on variance analysis, Tukey and T-test (α=0.05. The findings showed that there was significant difference between first, second and third groups in terms of ability of tissue solubility. However, the tissue solubility in second and third groups was lower than first group and it was similar in second and third groups (P Value <0.001. Reduction of sodium bicarbonate PH using sodium hypochlorite and hydrochloric acid reduces ability of tissue solubility in sodium hypochlorite.

  11. Response of rat brain protein synthesis to ethanol and sodium barbital

    International Nuclear Information System (INIS)

    Tewari, S.; Greenberg, S.A.; Do, K.; Grey, P.A.

    1987-01-01

    Central nervous system (CNS) depressants such as ethanol and barbiturates under acute or chronic conditions can induce changes in rat brain protein synthesis. While these data demonstrate the individual effects of drugs on protein synthesis, the response of brain protein synthesis to alcohol-drug interactions is not known. The goal of the present study was to determine the individual and combined effects of ethanol and sodium barbital on brain protein synthesis and gain an understanding of the mechanisms by which these alterations in protein synthesis are produced. Specifically, the in vivo and in vitro effects of sodium barbital (one class of barbiturates which is not metabolized by the hepatic tissue) were examined on brain protein synthesis in rats made physically dependent upon ethanol. Using cell free brain polysomal systems isolated from Control, Ethanol and 24 h Ethanol Withdrawn rats, data show that sodium barbital, when intubated intragastrically, inhibited the time dependent incorporation of 14 C) leucine into protein by all three groups of ribosomes. Under these conditions, the Ethanol Withdrawn group displayed the largest inhibition of the 14 C) leucine incorporation into protein when compared to the Control and Ethanol groups. In addition, sodium barbital when added at various concentrations in vitro to the incubation medium inhibited the incorporation of 14 C) leucine into protein by Control and Ethanol polysomes. The inhibitory effects were also obtained following preincubation of ribosomes in the presence of barbital but not cycloheximide. Data suggest that brain protein synthesis, specifically brain polysomes, through interaction with ethanol or barbital are involved in the functional development of tolerance. These interactions may occur through proteins or polypeptide chains or alterations in messenger RNA components associated with the ribosomal units

  12. Pediatric brain tumors of neuroepithelial tissue

    International Nuclear Information System (INIS)

    Papanagiotou, P.; Politi, M.; Bergmann, M.; Pekrun, A.; Juergens, K.U.

    2014-01-01

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [de

  13. Metabolomics studies in brain tissue: A review.

    Science.gov (United States)

    Gonzalez-Riano, Carolina; Garcia, Antonia; Barbas, Coral

    2016-10-25

    Brain is still an organ with a composition to be discovered but beyond that, mental disorders and especially all diseases that curse with dementia are devastating for the patient, the family and the society. Metabolomics can offer an alternative tool for unveiling new insights in the discovery of new treatments and biomarkers of mental disorders. Until now, most of metabolomic studies have been based on biofluids: serum/plasma or urine, because brain tissue accessibility is limited to animal models or post mortem studies, but even so it is crucial for understanding the pathological processes. Metabolomics studies of brain tissue imply several challenges due to sample extraction, along with brain heterogeneity, sample storage, and sample treatment for a wide coverage of metabolites with a wide range of concentrations of many lipophilic and some polar compounds. In this review, the current analytical practices for target and non-targeted metabolomics are described and discussed with emphasis on critical aspects: sample treatment (quenching, homogenization, filtration, centrifugation and extraction), analytical methods, as well as findings considering the used strategies. Besides that, the altered analytes in the different brain regions have been associated with their corresponding pathways to obtain a global overview of their dysregulation, trying to establish the link between altered biological pathways and pathophysiological conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    Science.gov (United States)

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  15. The beneficial effects of l-cysteine on brain antioxidants of rats affected by sodium valproate.

    Science.gov (United States)

    Hamza, R Z; El-Shenawy, N S

    2017-11-01

    Oxidative stress caused by sodium valproate (SV) is known to play a key role in the pathogenesis of brain tissue. The present study was designed to evaluate the protective effect of l-cysteine (LC) on the antioxidants of brain tissue of rats. The animals were divided into six groups: control group 1 was treated with saline as vehicle, groups 2 and 3 were treated with low and high doses of SV (100 and 500 mg/kg, respectively), group 4 was treated with LC (100 mg/kg), and groups 5 and 6 were treated with low-dose SV + LC and high-dose SV + LC, respectively. All the groups were treated orally by gastric tube for 30 successive days. Some antioxidant parameters were determined. Brain tissue (cerebral cortex) of SV-treated animals showed an increase in lipid peroxidation (LPO) and reduction in activity of enzymatic antioxidant and total antioxidant levels. Histopathological examination of cerebral cortex of SV rats showed astrocytic swelling, inflammation, and necrosis. After 4 weeks of the combination treatment of SV and LC daily, results showed significant improvement in the activity of cathepsin marker enzymes and restored the structure of the brain. LC was able to ameliorate oxidative stress deficits observed in SV rats. LC decreased LPO level and was also able to restore the activity of antioxidant enzymes as well as structural deficits observed in the brain of SV animals. The protective effect of LC in SV-treated rats is mediated through attenuation of oxidative stress, suggesting a therapeutic role for LC in individuals treated with SV.

  16. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visualizations of three-dimensional fibre bundles. One class of these algorithms is probabilistic...... the possibility of using high-field experimental MR scanners and long scanning times, thereby significantly improving the signal-to-noise ratio (SNR) and anatomical resolution. Moreover, many of the degrading effects observed in vivo, such as physiological noise, are no longer present. However, the post mortem...

  17. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    Science.gov (United States)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  18. NMR imaging of cell phone radiation absorption in brain tissue

    Science.gov (United States)

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  19. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  20. Dietary Sodium/Potassium Intake Does Not Affect Cognitive Function or Brain Imaging Indices.

    Science.gov (United States)

    Nowak, Kristen L; Fried, Linda; Jovanovich, Anna; Ix, Joachim; Yaffe, Kristine; You, Zhiying; Chonchol, Michel

    2018-01-01

    Dietary sodium may influence cognitive function through its effects on cerebrovascular function and cerebral blood flow. The aim of this study was to evaluate the association of dietary sodium intake with cognitive decline in community-dwelling older adults. We also evaluated the associations of dietary potassium and sodium:potassium intake with cognitive decline, and associations of these nutrients with micro- and macro-structural brain magnetic resonance imaging (MRI) indices. In all, 1,194 participants in the Health Aging and Body Composition study with measurements of dietary sodium intake (food frequency questionnaire [FFQ]) and change in the modified Mini Mental State Exam (3MS) were included. The age of participants was 74 ± 3 years with a mean dietary sodium intake of 2,677 ± 1,060 mg/day. During follow-up (6.9 ± 0.1 years), 340 (28%) had a clinically significant decline in 3MS score (≥1.5 SD of mean decline). After adjustment, dietary sodium intake was not associated with odds of cognitive decline (OR 0.96, 95% CI 0.50-1.84 per doubling of sodium). Similarly, potassium was not associated with cognitive decline; however, higher sodium:potassium intake was associated with increased odds of cognitive decline (OR 2.02 [95% CI 1.01-4.03] per unit increase). Neither sodium or potassium alone nor sodium:potassium were associated with micro- or macro-structural brain MRI indices. These results are limited by the use of FFQ. In community-dwelling older adults, higher sodium:potassium, but not sodium or potassium intake alone, was associated with decline in cognitive function, with no associations observed with micro- and macro-structural brain MRI indices. These findings do not support reduction dietary sodium/increased potassium intake to prevent cognitive decline with aging. © 2018 S. Karger AG, Basel.

  1. Mechanical properties of brain tissue by indentation : interregional variation

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Sande, van der T.P.J.; Hrapko, M.; Peters, G.W.M.

    2010-01-01

    Although many studies on the mechanical properties of brain tissue exist, some controversy concerning the possible differences in mechanical properties of white and gray matter tissue remains. Indentation experiments are conducted on white and gray matter tissue of various regions of the cerebrum

  2. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  3. Combined Bisulfite Restriction Analysis for brain tissue identification.

    Science.gov (United States)

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The sodium iodide symporter (NIS) and potential regulators in normal, benign and malignant human breast tissue.

    LENUS (Irish Health Repository)

    Ryan, James

    2011-01-01

    The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro.

  5. Arginase induction by sodium phenylbutyrate in mouse tissues and human cell lines.

    Science.gov (United States)

    Kern, R M; Yang, Z; Kim, P S; Grody, W W; Iyer, R K; Cederbaum, S D

    2007-01-01

    Hyperargininemia is a urea cycle disorder caused by mutations in the gene for arginase I (AI) resulting in elevated blood arginine and ammonia levels. Sodium phenylacetate and a precursor, sodium phenylbutyrate (NaPB) have been used to lower ammonia, conjugating glutamine to produce phenylacetylglutamine which is excreted in urine. The elevated arginine levels induce the second arginase (AII) in patient kidney and kidney tissue culture. It has been shown that NaPB increases expression of some target genes and we tested its effect on arginase induction. Eight 9-week old male mice fed on chow containing 7.5 g NaPB/kg rodent chow and drank water with 10 g NaPB/L, and four control mice had a normal diet. After one week all mice were sacrificed. The arginase specific activities for control and NaPB mice, respectively, were 38.2 and 59.4 U/mg in liver, 0.33 and 0.42 U/mg in kidney, and 0.29 and 1.19 U/mg in brain. Immunoprecipitation of arginase in each tissue with AI and AII antibodies showed the activity induced by NaPB is mostly AI. AII may also be induced in kidney. AI accounts for the fourfold increased activity in brain. In some cell lines, NaPB increased arginase activity up to fivefold depending on dose (1-5 mM) and exposure time (2-5 days); control and NaPB activities, respectively, are: erythroleukemia, HEL, 0.06 and 0.31 U/mg, and K562, 0.46 and 1.74 U/mg; embryonic kidney, HEK293, 1.98 and 3.58 U/mg; breast adenocarcinoma, MDA-MB-468, 1.11 and 4.06 U/mg; and prostate adenocarcinoma, PC-3, 0.55 and 3.20 U/mg. In MDA-MB-468 and HEK most, but not all, of the induced activity is AI. These studies suggest that NaPB may induce AI when used to treat urea cycle disorders. It is relatively less useful in AI deficiency, although it could have some effect in those patients with missense mutations.

  6. Distinct molecular sites of anaesthetic action: pentobarbital block of human brain sodium channels is alleviated by removal of fast inactivation

    NARCIS (Netherlands)

    Wartenberg, H. C.; Urban, B. W.; Duch, D. S.

    1999-01-01

    Fast inactivation of sodium channel function is modified by anaesthetics. Its quantitative contribution to the overall anaesthetic effect is assessed by removing the fast inactivation mechanism enzymatically. Sodium channels from human brain cortex were incorporated into planar lipid bilayers. After

  7. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  8. Digital tissue and what it may reveal about the brain.

    Science.gov (United States)

    Morgan, Josh L; Lichtman, Jeff W

    2017-10-30

    Imaging as a means of scientific data storage has evolved rapidly over the past century from hand drawings, to photography, to digital images. Only recently can sufficiently large datasets be acquired, stored, and processed such that tissue digitization can actually reveal more than direct observation of tissue. One field where this transformation is occurring is connectomics: the mapping of neural connections in large volumes of digitized brain tissue.

  9. Determination of friction coefficient in unconfined compression of brain tissue.

    Science.gov (United States)

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. AAnti-leakage mechanism and effect of sodium aescinate on the permeability of blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Ping GUO

    2012-02-01

    Full Text Available Objective  To study the anti-leakage mechanism and protective effect of sodium aescinate on the blood-brain barrier of rats acutely exposed to hypoxia. Methods  Seventy-five healthy SD rats were randomly divided into 3 groups (25 each: normoxic control (NC, simple hypoxic (SH and drug treated (DT group. Acute hypoxia brain edema rat model was established by a simulation of acute high-altitude hypoxia for 5 days. The cerebral water content was determined by dry-wet method. The permeability of the blood-brain barrier (BBB was evaluated by Evans blue (EB method. The pathological change of the brain was detected by HE staining. The state of BBB tight junction (TJ and ultrastructures of the brain tissues were observed by lanthanum nitrate tracer method under transmission electron microscope (TEM. Protein and mRNA expression of Occludin, Zo-1 and Claudin-5 were investigated by immunohistochemistry, Western-blotting and real-time PCR respectively. Results  After exposure to acute hypoxia for 5 days, compared with NC group, the water content of brain in SH group increased obviously (PPPPPConclusion  Acute hypoxia exposure may lead to a remarkable decline of the expressions of rat's brain Occludin protein and the Occludin, Zo-1 and Claudin-5 mRNA, and an obvious increase of BBB permeability. Sodium aescinate can up-regulate the expression level of these molecules and decrease BBB permeability, thus playing a profitable role of anti-leakage and BBB protection.

  11. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  12. Effect of alcohol and kolanut interaction on brain sodium pump ...

    African Journals Online (AJOL)

    brain of each rat was harvested and processed to examine several biochemical parameters, i.e., total ATpase, ouabain-insensitive ATpase, ouabain sensitive ATpase (Na+ - K+ - ATpase), non-enzymatic breakdown of ATP and inorganic phosphate (Pi) released. The results showed that the essential enzyme of the brain ...

  13. Brain tissue stiffness is a sensitive marker for acidosis.

    Science.gov (United States)

    Holtzmann, Kathrin; Gautier, Hélène O B; Christ, Andreas F; Guck, Jochen; Káradóttir, Ragnhildur Thóra; Franze, Kristian

    2016-09-15

    Carbon dioxide overdose is frequently used to cull rodents for tissue harvesting. However, this treatment may lead to respiratory acidosis, which potentially could change the properties of the investigated tissue. Mechanical tissue properties often change in pathological conditions and may thus offer a sensitive generic readout for changes in biological tissues with clinical relevance. In this study, we performed force-indentation measurements with an atomic force microscope on acute cerebellar slices from adult rats to test if brain tissue undergoes changes following overexposure to CO2 compared to other methods of euthanasia. The pH significantly decreased in brain tissue of animals exposed to CO2. Concomitant with the drop in pH, cerebellar grey matter significantly stiffened. Tissue stiffening was reproduced by incubation of acute cerebellar slices in acidic medium. Tissue stiffness provides an early, generic indicator for pathophysiological changes in the CNS. Atomic force microscopy offers unprecedented high spatial resolution to detect such changes. Our results indicate that the stiffness particularly of grey matter strongly correlates with changes of the pH in the cerebellum. Furthermore, the method of tissue harvesting and preparation may not only change tissue stiffness but very likely also other physiologically relevant parameters, highlighting the importance of appropriate sample preparation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Coronaviruses in brain tissue from patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Dessau, R B; Lisby, G; Frederiksen, J L

    2001-01-01

    Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E...... and three PCR assays with primers specific for the nucleocapsid protein of human coronavirus strain OC43 were performed. Sporadic positive PCR assays were observed in both patients and controls in some of the PCR assays. However, these results were not reproducible and there was no difference...... in the proportion of positive signals from the MS patients compared to controls. Evidence for a chronic infection with the human coronaviruses strain 229E or OC43 in brain tissue from patients with MS or controls has not been found in this study....

  15. Three-dimensional assessment of brain tissue morphology

    Science.gov (United States)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  16. Aluminium in brain tissue in familial Alzheimer's disease.

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  18. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-01-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca +2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca +2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  19. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  20. Computer modeling the boron compound factor in normal brain tissue

    International Nuclear Information System (INIS)

    Gavin, P.R.; Huiskamp, R.; Wheeler, F.J.; Griebenow, M.L.

    1993-01-01

    The macroscopic distribution of borocaptate sodium (Na 2 B 12 H 11 SH or BSH) in normal tissues has been determined and can be accurately predicted from the blood concentration. The compound para-borono-phenylalanine (p-BPA) has also been studied in dogs and normal tissue distribution has been determined. The total physical dose required to reach a biological isoeffect appears to increase directly as the proportion of boron capture dose increases. This effect, together with knowledge of the macrodistribution, led to estimates of the influence of the microdistribution of the BSH compound. This paper reports a computer model that was used to predict the compound factor for BSH and p-BPA and, hence, the equivalent radiation in normal tissues. The compound factor would need to be calculated for other compounds with different distributions. This information is needed to design appropriate normal tissue tolerance studies for different organ systems and/or different boron compounds

  1. Sodium Pyruvate Reduced Hypoxic-Ischemic Injury to Neonatal Rat Brain

    OpenAIRE

    Pan, Rui; Rong, Zhihui; She, Yun; Cao, Yuan; Chang, Li-Wen; Lee, Wei-Hua

    2012-01-01

    Background Neonatal hypoxia-ischemia (HI) remains a major cause of severe brain damage and is often associated with high mortality and lifelong disability. Immature brains are extremely sensitive to hypoxia-ischemia, shown as prolonged mitochondrial neuronal death. Sodium pyruvate (SP), a substrate of the tricarboxylic acid cycle and an extracellular antioxidant, has been considered as a potential treatment for hypoxic-ischemic encephalopathy (HIE), but its effects have not been evaluated in ...

  2. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  3. Progression of thanatophagy in cadaver brain and heart tissues

    Directory of Open Access Journals (Sweden)

    Gulnaz T. Javan

    2016-03-01

    Full Text Available Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully elucidated whether postmortem autophagy, also known as thanatophagy, occurs in dead bodies is a function of the time of death. In this study, we tested the hypothesis that thanatophagy would increase in proportion to time elapsed since death for tissues collected from cadavers. Brain and heart tissue from corpses at different time intervals after death were analyzed by Western blot. Densitometry analysis demonstrated that thanatophagy occurred in a manner that was dependent on the time of death. The autophagy-associated proteins, LC3 II, p62, Beclin-1 and Atg7, increased in a time-dependent manner in heart tissues. A potent inducer of autophagy, BNIP3, decreased in the heart tissues as time of death increased, whereas the protein levels increased in brain tissues. However, there was no expression of BNIP3 at extended postmortem intervals in both brain and heart samples. Collectively, the present study demonstrates for the first time that thanatophagy occurs in brain and heart tissues of cadavers in a time-dependent manner. Further, our data suggest that cerebral thanatophagy may occur in a Beclin-1- independent manner. This unprecedented study provides potential insight into thanatophagy as a novel method for the estimation of the time of death in criminal investigationsAbstract: Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully

  4. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  5. Detection of Rabies Antigen in the Brain Tissues of Apparetly ...

    African Journals Online (AJOL)

    Rabies is a serious public health hazard and recently outbreaks of the disease have been reported in three local government areas in Cross River State. Detection of rabies antigen in the brain tissues of apparently healthy dogs indicates the presence of rabies virus and this is a significant factor in the transmission and ...

  6. Effects of acupuncture on tissue oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  7. Discovery of Undescribed Brain Tissue Changes Around Implanted Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Himanshi Desai

    2012-01-01

    Full Text Available Brain-implantable microelectrode arrays are devicesdesigned to record or electrically stimulate the activity ofneurons in the brain. These devices hold the potential tohelp treat epilepsy, paralysis, blindness, and deafness, andalso provide researchers with insights into a varietyof neural processes, such as memory formation.While these devices have a very promising future,researchers are discovering that their long-termfunctionality is greatly limited by the brain’s naturalimmune response to foreign objects. To improve thefunctional lifetime of these devices, one solution lies infully characterizing and understanding this tissue response.Roles for microglia and astrocytes in this biologicalresponse have been characterized. However, changesto oligodendrocytes, cells that myelinate axons, remainpoorly understood. These cells provide insulationto the axons, which is required for proper neuralfunctioning. Here we report on the changes that occurwith oligodendrocyte processes in tissue aroundmicroelectrode implants in the brain.Six rats were surgically implanted with microelectrodearrays and allowed to recover for 1, 2, or 4 weeks.Subjects were then sacrificed and the brain tissue wasprocessed using our recently developed method, Device-Capture Histology. Immunohistochemistry and confocalmicroscopy was employed to assess the responsearound the device. Results indicated a decrease inoligodendrocyte density and a loss in typical directionalorientation of oligodendrocyte processes in tissue near thedevice. These results suggest alterations in the underlyingneuronal networks around these devices, which maygreatly impact the current functional utility of thesepromising devices.

  8. A Dirichlet process mixture model for brain MRI tissue classification.

    Science.gov (United States)

    Ferreira da Silva, Adelino R

    2007-04-01

    Accurate classification of magnetic resonance images according to tissue type or region of interest has become a critical requirement in diagnosis, treatment planning, and cognitive neuroscience. Several authors have shown that finite mixture models give excellent results in the automated segmentation of MR images of the human normal brain. However, performance and robustness of finite mixture models deteriorate when the models have to deal with a variety of anatomical structures. In this paper, we propose a nonparametric Bayesian model for tissue classification of MR images of the brain. The model, known as Dirichlet process mixture model, uses Dirichlet process priors to overcome the limitations of current parametric finite mixture models. To validate the accuracy and robustness of our method we present the results of experiments carried out on simulated MR brain scans, as well as on real MR image data. The results are compared with similar results from other well-known MRI segmentation methods.

  9. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  10. Influence of Concentration and Agitation of Sodium Hypochlorite and Peracetic Acid Solutions on Tissue Dissolution.

    Science.gov (United States)

    Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria

    2015-11-01

    To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.

  11. Site of anticonvulsant action on sodium channels: autoradiographic and electrophysiological studies in rat brain

    International Nuclear Information System (INIS)

    Worley, P.F.; Baraban, J.M.

    1987-01-01

    The anticonvulsants phenytoin and carbamazepine interact allosterically with the batrachotoxin binding site of sodium channels. In the present study, we demonstrate an autoradiographic technique to localize the batrachotoxin binding site on sodium channels in rat brain using [ 3 H]batrachotoxinin-A 20-alpha-benzoate (BTX-B). Binding of [ 3 H]BTX-B to brain sections is dependent on potentiating allosteric interactions with scorpion venom and is displaced by BTX-B (Kd approximately 200 nM), aconitine, veratridine, and phenytoin with the same rank order of potencies as described in brain synaptosomes. The maximum number of [ 3 H]BTX-B binding sites in forebrain sections also agrees with biochemical determinations. Autoradiographic localizations indicate that [ 3 H]BTX-B binding sites are not restricted to cell bodies and axons but are present in synaptic zones throughout the brain. For example, a particularly dense concentration of these sites in the substantia nigra is associated with afferent terminals of the striatonigral projection. By contrast, myelinated structures possess much lower densities of binding sites. In addition, we present electrophysiological evidence that synaptic transmission, as opposed to axonal conduction, is preferentially sensitive to the action of aconitine and veratridine. Finally, the synaptic block produced by these sodium channel activators is inhibited by phenytoin and carbamazepine at therapeutic anticonvulsant concentrations

  12. Microwave reflection, transmission, and absorption by human brain tissue

    Science.gov (United States)

    Ansari, M. A.; Akhlaghipour, N.; Zarei, M.; Niknam, A. R.

    2018-04-01

    These days, the biological effects of electromagnetic (EM) radiations on the brain, especially in the frequency range of mobile communications, have caught the attention of many scientists. Therefore, in this paper, the propagation of mobile phone electromagnetic waves in the brain tissues is investigated analytically and numerically. The brain is modeled by three layers consisting of skull, grey and white matter. First, we have analytically calculated the microwave reflection, transmission, and absorption coefficients using signal flow graph technique. The effect of microwave frequency and variations in the thickness of layers on the propagation of microwave through brain are studied. Then, the penetration of microwave in the layers is numerically investigated by Monte Carlo method. It is shown that the analytical results are in good agreement with those obtained by Monte Carlo method. Our results indicate the absorbed microwave energy depends on microwave frequency and thickness of brain layers, and the absorption coefficient is optimized at a number of frequencies. These findings can be used for comparing the microwave absorbed energy in a child's and adult's brain.

  13. Cells in human postmortem brain tissue slices remain alive for several weeks in culture

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Hermens, Wim T. J. M. C.; Dijkhuizen, PaulaA; ter Brake, Olivier; Baker, Robert E.; Salehi, Ahmad; Sluiter, Arja A.; Kok, Marloes J. M.; Muller, Linda J.; Verhaagen, Joost; Swaab, Dick F.

    2002-01-01

    Animal models for human neurological and psychiatric diseases only partially mimic the underlying pathogenic processes. Therefore, we investigated the potential use of cultured postmortem brain tissue from adult neurological patients and controls. The present study shows that human brain tissue

  14. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  15. Improvement of Brain Tissue Oxygenation by Inhalation of Carbogen

    DEFF Research Database (Denmark)

    Ashkanian, M.; Borghammer, P.; Gjedde, A.

    2008-01-01

    tomography (PET) to measure CBF and cerebral metabolic rate of oxygen (CMRO(2)) during inhalation of test gases (O(2), CO(2), carbogen and atmospheric air) in 10 healthy volunteers. Arterial blood gases were recorded during administration of each gas. The data were analyzed with volume-of-interest and voxel...... is sufficient for optimal oxygenation of healthy brain tissue, whereas carbogen induces concomitant increases of CBF and Sa(O2)....

  16. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    Choi, Sun Seob; Huh, Ki Yeong; Han, Jin Yeong; Lee, Yong Chul; Eun, Choong Gi; Yang, Yeong Il

    1996-01-01

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  17. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    Science.gov (United States)

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  18. The national DBS brain tissue network pilot study: need for more tissue and more standardization.

    Science.gov (United States)

    Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S

    2011-08-01

    Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to

  19. Effects of tissue susceptibility on brain temperature mapping.

    Science.gov (United States)

    Maudsley, Andrew A; Goryawala, Mohammed Z; Sheriff, Sulaiman

    2017-02-01

    A method for mapping of temperature over a large volume of the brain using volumetric proton MR spectroscopic imaging has been implemented and applied to 150 normal subjects. Magnetic susceptibility-induced frequency shifts in gray- and white-matter regions were measured and included as a correction in the temperature mapping calculation. Additional sources of magnetic susceptibility variations of the individual metabolite resonance frequencies were also observed that reflect the cellular-level organization of the brain metabolites, with the most notable differences being attributed to changes of the N-Acetylaspartate resonance frequency that reflect the intra-axonal distribution and orientation of the white-matter tracts with respect to the applied magnetic field. These metabolite-specific susceptibility effects are also shown to change with age. Results indicate no change of apparent brain temperature with age from 18 to 84 years old, with a trend for increased brain temperature throughout the cerebrum in females relative for males on the order of 0.1°C; slightly increased temperatures in the left hemisphere relative to the right; and a lower temperature of 0.3°C in the cerebellum relative to that of cerebral white-matter. This study presents a novel acquisition method for noninvasive measurement of brain temperature that is of potential value for diagnostic purposes and treatment monitoring, while also demonstrating limitations of the measurement due to the confounding effects of tissue susceptibility variations. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Raman molecular imaging of brain frozen tissue sections.

    Science.gov (United States)

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.

  1. The effect of dentin on the pulp tissue dissolution capacity of sodium hypochlorite and calcium hydroxide.

    Science.gov (United States)

    Slutzky-Goldberg, Iris; Hanut, Aiham; Matalon, Shlomo; Baev, Valery; Slutzky, Hagay

    2013-08-01

    Sodium hypochlorite (NaOCl) and calcium hydroxide (Ca[OH]2) have tissue dissolution capacity. The aim of this study was to evaluate the potential effect of dentin on their tissue dissolution capacity in a novel dentin model. Dentin models were prepared from 25 freshly extracted human molar teeth; the crowns were separated from the roots, and a rectangular inner shape was prepared. Pulp tissue samples adjusted to similar weights of 6.5 ± 0.2 mg were randomly divided into 6 groups: NaOCl groups in test tubes or dentin models for 1 hour, Ca(OH)2 groups in test tubes or dentin models for 1 week, and control groups saline in test tubes or dentin models for 1 week. The final weights after the experimental period were checked and compared with the initial weights. The differences were statistically analyzed. The tissue dissolution capacity of Ca(OH)2 was affected by the presence of dentin. Similarly, NaOCl lost its effect on the pulp tissue after incubation in dentin. Comparison between all test groups showed highly significant differences (P interactions between local endodontic medicaments, dentin, and pulp tissue. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Effect of silymarin on sodium fluoride-induced toxicity and oxidative stress in rat cardiac tissues

    Directory of Open Access Journals (Sweden)

    Seyed M. Nabavi

    2012-12-01

    Full Text Available This study aim to evaluate the protective effect of silymarin on sodium fluoride-induced oxidative stress in rat cardiac tissues. Animals were pretreated with silymarin at 20 and 10 mg/kg prior to sodium fluoride consumption (600 ppm through drinking water. Vitamin C at 10 mg/kg was used as standard antioxidant. There was a significant increase in thiobarbituric acid reactive substances level (59.36 ± 2.19 nmol MDA eq/g tissue along with a decrease in antioxidant enzymes activity (64.27 ± 1.98 U/g tissue for superoxide dismutase activity and 29.17 ± 1.01 µmol/min/mg protein for catalase activity and reduced glutathione level (3.8 ± 0.15 µg/mg protein in the tissues homogenates of the sodium fluoride-intoxicated rats. Silymarin administration to animals before sodium fluoride consumption modified the levels of biochemical parameters.Este estudo objetiva avaliar o efeito protetor da silimarina em fluoreto de sódio induzida por estresse oxidativo em tecido cardíaco de ratos. Os animais foram pré-tratados com silimarina a 20 e 10 mg/kg antes do consumo de fluoreto de sódio (600 ppm através da água de beber. A vitamina C a 10 mg/kg foi utilizada como antioxidante padrão. Houve um aumento significativo no nível de substâncias tiobarbitúrico reativo de ácido (59,36 ± 2.19 nmol MDA eq/g tecido, juntamente com uma diminuição da atividade de enzimas antioxidantes (64,27 ± 1,98 U/g tecido para a atividade de superóxido dismutase e 29,7 ± 1,01 mmol/min/mg de proteína para a atividade da catalase e nível de glutationa reduzida (3,8 ± 0,15 mg/mg de proteína nos homogeneizados de tecidos dos fluoreto de sódio-intoxicados ratos. Administração de silimarina a animais, antes do consumo de fluoreto de sódio modifou os níveis de parâmetros bioquímicos.

  3. sodium

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les initiatives de réduction de la consommation de sel qui visent l'ensemble de la population et qui ciblent la teneur en sodium des aliments et sensibilisent les consommateurs sont susceptibles de réduire la consommation de sel dans toutes les couches de la population et d'améliorer la santé cardiovasculaire. Ce projet a ...

  4. Lifelong consumption of sodium selenite: gender differences on blood-brain barrier permeability in convulsive, hypoglycemic rats.

    Science.gov (United States)

    Seker, F Burcu; Akgul, Sibel; Oztas, Baria

    2008-07-01

    The aim of this study was to compare the effects of hypoglycemia and induced convulsions on the blood-brain barrier permeability in rats with or without lifelong administration of sodium selenite. There is a significant decrease of the blood-brain barrier permeability in three brain regions of convulsive, hypoglycemic male rats treated with sodium selenite when compared to sex-matched untreated rats (p0.05). The blood-brain barrier permeability of the left and right hemispheres of untreated, moderately hypoglycemic convulsive rats of both genders was better than their untreated counterparts (peffect against blood-brain barrier permeability during convulsions and that the effects of sodium selenite are gender-dependent.

  5. Assessment of Autophagy in Neurons and Brain Tissue

    Science.gov (United States)

    Benito-Cuesta, Irene; Diez, Héctor; Ordoñez, Lara; Wandosell, Francisco

    2017-01-01

    Autophagy is a complex process that controls the transport of cytoplasmic components into lysosomes for degradation. This highly conserved proteolytic system involves dynamic and complex processes, using similar molecular elements and machinery from yeast to humans. Moreover, autophagic dysfunction may contribute to a broad spectrum of mammalian diseases. Indeed, in adult tissues, where the capacity for regeneration or cell division is low or absent (e.g., in the mammalian brain), the accumulation of proteins/peptides that would otherwise be recycled or destroyed may have pathological implications. Indeed, such changes are hallmarks of pathologies, like Alzheimer’s, Prion or Parkinson’s disease, known as proteinopathies. However, it is still unclear whether such dysfunction is a cause or an effect in these conditions. One advantage when analysing autophagy in the mammalian brain is that almost all the markers described in different cell lineages and systems appear to be present in the brain, and even in neurons. By contrast, the mixture of cell types present in the brain and the differentiation stage of such neurons, when compared with neurons in culture, make translating basic research to the clinic less straightforward. Thus, the purpose of this review is to describe and discuss the methods available to monitor autophagy in neurons and in the mammalian brain, a process that is not yet fully understood, focusing primarily on mammalian macroautophagy. We will describe some general features of neuronal autophagy that point to our focus on neuropathologies in which macroautophagy may be altered. Indeed, we centre this review around the hypothesis that enhanced autophagy may be able to provide therapeutic benefits in some brain pathologies, like Alzheimer’s disease, considering this pathology as one of the most prevalent proteinopathies. PMID:28832529

  6. Comparative evaluation of calcium hypochlorite and sodium hypochlorite on soft-tissue dissolution.

    Science.gov (United States)

    Dutta, Arindam; Saunders, William P

    2012-10-01

    The aim of this study was to compare in vitro the tissue-dissolution properties of 5% and 10% calcium hypochlorite (Ca(OCl)(2)) with two concentrations (1.36% and 4.65%) of proprietary sodium hypochlorite (NaOCl) on bovine muscle tissue. The available chlorine concentration of each solution was determined using iodometric titration. Tissue specimens from bovine muscle were weight adjusted (50 ± 5 mg). Ten tissue specimens in each group were immersed in 5 mL each test solution, removed after 5 minutes, blotted dry, and weighed. The process was repeated every 5 minutes with a fresh 5-mL aliquot of the test solution for 60 minutes or until complete tissue dissolution, whichever was quickest. The percentage weight loss of the specimens was calculated over the experimental period. Available chlorine concentrations of the irrigants ranged from 1.36% to 4.65%. All solutions dissolved tissue completely after 60 minutes except 5% Ca(OCl)(2) (99.4% dissolution). Between the 35- and 60-minute test readings, there were no significant differences between the solutions. Chlorax (4.65% NaOCl) (Cerkamed Group, Nisko, Poland) dissolved tissue quicker during the first 35 minutes (P Tesco bleach (1.36% NaOCl) (Tesco Stores Ltd, Chestnut, UK) in the first 35 minutes except at the 5-minute measurement. Within the limitations of this study, Chlorax (4.65% NaOCl) dissolved tissue faster than the Ca(OCl)(2) solutions and Tesco thin bleach (1.36% NaOCl) over the first 35 minutes, but there were no significant differences among the solutions thereafter. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. The tissue residues of sodium dehydroacetate used as feed preservative in swine.

    Science.gov (United States)

    Liu, Hao; Han, Lingling; Xie, Jiayu; Wu, Yingchao; Xie, Yang; Zhang, Yumei

    2018-01-01

    Sodium dehydroacetate (Na-DHA) is a food and feed additive with antimicrobial effects. There is little information on Na-DHA residue levels in foods derived from animals. In this study, Na-DHA residue levels in swine tissues were determined by HLPC, and the pharmacokinetics of Na-DHA in tissues were determined. The Na-DHA residue levels in swine tissues were liver > muscle > fat. The pharmacokinetics of Na-DHA followed a binomial regression model, and the half-time of Na-DHA in swine tissues was 9.07 days for kidney, 7.19 days for liver, 6.66 days for muscle, and 5.39 days for fat tissue. The accuracy of the HPLC method for Na-DHA determination ranged from 80.18% to 91.33% recovery, with coefficients of variation swine diet is a safe feed additive based on residue elimination and ADI values reported. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  9. Effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    Objective:To study the effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection.Methods: A total of 74 patients who received brain glioma resection in our hospital between May 2014 and December 2016 were selected and randomly divided into Dex group and control group who received dexmedetomidine intervention and saline intervention before induction respectively. Serum brain tissue damage marker, PI3K/AKT/iNOS and oxidation reaction molecule contents as well as cerebral oxygen metabolism index levels were determined before anesthesia (T0), at dura mater incision (T1), immediately after recovery (T2) and 24 h after operation (T3).Results: Serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of both groups at T2 and T3 were significantly higher than those at T0 and T1 while serum SOD and CAT contents as well as SjvO2levels were significantly lower than those at T0 and T1, and serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of Dex group at T2 and T3 were significantly lower than those of control group while serum SOD and CAT contents as well as SjvO2 levels were significantly higher than those of control group.Conclusions: Dexmedetomidine combined with propofol can reduce the brain tissue damage in brain glioma resection.

  10. Myoglobin Expression in Chelonia mydas Brain, Heart and Liver Tissues

    Directory of Open Access Journals (Sweden)

    RINI PUSPITANINGRUM

    2010-09-01

    Full Text Available An understanding of the underpinning physiology and biochemistry of animals is essential to properly understand the impact of anthropogenic changes and natural catastrophes upon the conservation of endangered species. An observation on the tissue location of the key respiratory protein, myoglobin, now opens up new opportunities for understanding how hypoxia tolerance impacts on diving lifestyle in turtles. The respiratory protein, myoglobin has functions other than oxygen binding which are involved in hypoxia tolerance, including metabolism of reactive oxygen species and of the vascular function by metabolism of nitric oxide. Our work aims to determine whether myoglobin expression in the green turtle exists in multiple non muscle tissues and to confirm the hypothesis that reptiles also have a distributed myoglobin expression which is linked to the hypoxiatolerant trait. This initial work in turtle hatch Chelonia mydas confirms the presence of myoglobin transcriptin brain, heart and liver tissues. Furthermore, it will serve as a tool for completing the sequence and generating an in situ hybridization probe for verifying of cell location in expressing tissues.

  11. Myoglobin Expression in Chelonia mydas Brain, Heart and Liver Tissues

    Directory of Open Access Journals (Sweden)

    RINI PUSPITANINGRUM

    2010-09-01

    Full Text Available An understanding of the underpinning physiology and biochemistry of animals is essential to properly understand the impact of anthropogenic changes and natural catastrophes upon the conservation of endangered species. An observation on the tissue location of the key respiratory protein, myoglobin, now opens up new opportunities for understanding how hypoxia tolerance impacts on diving lifestyle in turtles. The respiratory protein, myoglobin has functions other than oxygen binding which are involved in hypoxia tolerance, including metabolism of reactive oxygen species and of the vascular function by metabolism of nitric oxide. Our work aims to determine whether myoglobin expression in the green turtle exists in multiple non muscle tissues and to confirm the hypothesis that reptiles also have a distributed myoglobin expression which is linked to the hypoxia-tolerant trait. This initial work in turtle hatch Chelonia mydas confirms the presence of myoglobin transcriptin brain, heart and liver tissues. Furthermore, it will serve as a tool for completing the sequence and generating an in situ hybridization probe for verifying of cell location in expressing tissues.

  12. Tumor sterilization dose and radiation induced change of the brain tissue in radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Takano, Shingo

    1987-01-01

    Ninety-seven patients with brain tumors (38 gliomas, 26 brain metastases, 18 sellar tumors, 15 others) were treated by cobalt gamma ray or proton radiotherapy. In this study, normal brain injury due to radiation was analysed in terms of time-dose-fractionation (TDF), nominal standard dose (NSD) by the Ellis formula and NeuNSD by a modification in which the N exponent was -0.44 and the T exponent was -0.06. Their calculated doses were analysed in relationship to the normal brain radiation induced change (RIC) and the tumor sterilization dose. All brain tumors with an exception of many patients with brain metastases were received a surgical extirpation subtotally or partially prior to radiotherapy. And all patients with glioma and brain metastasis received also immuno-chemotherapy in the usual manner during radiotherapy. The calculated dose expressed by NeuNSD and TDF showed a significant relationship between a therapeutic dose and a postradiation time in terms of the appearance of RIC. It was suggested that RIC was caused by a dose over 800 in NeuNSD and a dose over 70 in TDF. Furthermore, it was suggested that an aged patient and a patient who had the vulnerable brain tissue to radiation exposure in the irradiated field had the high risk of RIC. On the other hand, our results suggested that the tumor sterilization dose should be over 1,536 NeuNSD and the irradiated method should be further considered in addition to the radiobiological concepts for various brain tumors. (author)

  13. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury.

    Science.gov (United States)

    Ponce, Lucido L; Pillai, Shibu; Cruz, Jovany; Li, Xiaoqi; Julia, H; Gopinath, Shankar; Robertson, Claudia S

    2012-06-01

    Monitoring brain tissue PO2 (PbtO2) is part of multimodality monitoring of patients with traumatic brain injury (TBI). However, PbtO2 measurement is a sampling of only a small area of tissue surrounding the sensor tip. To examine the effect of catheter location on the relationship between PbtO2 and neurological outcome. A total of 405 patients who had PbtO2 monitoring as part of standard management of severe traumatic brain injury were studied. The relationships between probe location and resulting PbtO2 and outcome were examined. When the probe was located in normal brain, PbtO2 averaged 30.8 ± 18.2 compared with 25.6 ± 14.8 mm Hg when placed in abnormal brain (P < .001). Factors related to neurological outcome in the best-fit logistic regression model were age, PbtO2 probe position, postresuscitation motor Glasgow Coma Scale score, and PbtO2 trend pattern. Although average PbtO2 was significantly related to outcome in univariate analyses, it was not significant in the final logistic model. However, the interaction between PbtO2 and probe position was statistically significant. When the PbtO2 probe was placed in abnormal brain, the average PbtO2 was higher in those with a favorable outcome, 28.8 ± 12.0 mm Hg, compared with those with an unfavorable outcome, 19.5 ± 13.7 mm Hg (P = .01). PbtO2 and outcome were not related when the probe was placed in normal-appearing brain. These results suggest that the location of the PbtO2 probe determines the PbtO2 values and the relationship of PbtO2 to neurological outcome.

  14. Ionizing radiation alters the properties of sodium channels in rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, M J; Hunt, W A; Harris, R A

    1986-08-01

    The effect of ionizing radiation on neuronal membrane function was assessed by measurement of neurotoxin-stimulated /sup 22/Na/sup +/ uptake by rat brain synaptosomes. High-energy electrons and gamma photons were equally effective in reducing the maximal uptake of /sup 22/Na/sup +/ with no significant change in the affinity of veratridine for its binding site in the channel. Ionizing radiation reduced the veratridine-stimulated uptake at the earliest times measured (3 and 5 s), when the rate of uptake was greatest. Batrachotoxin-stimulated /sup 22/Na/sup +/ uptake was less sensitive to inhibition by radiation. The binding of (/sup 3/H)saxitoxin to its receptor in the sodium channel was unaffected by exposure to ionizing radiation. The effect of ionizing radiation on the lipid order of rat brain synaptic plasma membranes was measured by the fluorescence polarization of the molecular probes 1,6-diphenyl-1,3,5-hexatriene and 1-(4-(trimethylammonium)phenyl)-6-phenyl-1,3,5-hexatriene. A dose of radiation that reduced the veratridine-stimulated uptake of /sup 22/Na/sup +/ had no effect on the fluorescence polarization of either probe. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive sodium channels in rat brain synaptosomes. This effect of radiation is not dependent on changes in the order of membrane lipids.

  15. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin.

    Science.gov (United States)

    Jungbluth, Holger; Marending, Monika; De-Deus, Gustavo; Sener, Beatrice; Zehnder, Matthias

    2011-05-01

    When sodium hypochlorite solutions react with tissue, their pH drops and tissue sorption decreases. We studied whether stabilizing a NaOCl solution at a high pH would increase its soft-tissue dissolution capacity and effects on the dentin matrix compared with a standard NaOCl solution of the same concentration and similar initial pH. NaOCl solutions were prepared by mixing (1:1) a 10% stock solution with water (standard) or 2 mol/L NaOH (stabilized). Physiological saline and 1 mol/L NaOH served as the controls. Chlorine content and alkaline capacity of NaOCl solutions were determined. Standardized porcine palatal soft-tissue specimens and human root dentin bars were exposed to test and control solutions. Weight loss percentage was assessed in the soft-tissue dissolution assay. Three-point bending tests were performed on the root dentin bars to determine the modulus of elasticity and flexural strength. Values between groups were compared using one-way analysis of variance with the Bonferroni correction for multiple testing (α pH level of 7.5, respectively. The stabilized NaOCl dissolved significantly more soft tissue than the standard solution, and the pH remained high. It also caused a higher loss in elastic modulus and flexure strength (P < .05) than the control solutions, whereas the standard solution did not. NaOH-stabilized NaOCl solutions have a higher alkaline capacity and are thus more proteolytic than standard counterparts. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. State-of-the-Art Methods for Brain Tissue Segmentation: A Review.

    Science.gov (United States)

    Dora, Lingraj; Agrawal, Sanjay; Panda, Rutuparna; Abraham, Ajith

    2017-01-01

    Brain tissue segmentation is one of the most sought after research areas in medical image processing. It provides detailed quantitative brain analysis for accurate disease diagnosis, detection, and classification of abnormalities. It plays an essential role in discriminating healthy tissues from lesion tissues. Therefore, accurate disease diagnosis and treatment planning depend merely on the performance of the segmentation method used. In this review, we have studied the recent advances in brain tissue segmentation methods and their state-of-the-art in neuroscience research. The review also highlights the major challenges faced during tissue segmentation of the brain. An effective comparison is made among state-of-the-art brain tissue segmentation methods. Moreover, a study of some of the validation measures to evaluate different segmentation methods is also discussed. The brain tissue segmentation, content in terms of methodologies, and experiments presented in this review are encouraging enough to attract researchers working in this field.

  17. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  18. Severe blood-brain barrier disruption and surrounding tissue injury.

    Science.gov (United States)

    Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D

    2009-12-01

    Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of

  19. Suitable reference tissues for quantitative susceptibility mapping of the brain.

    Science.gov (United States)

    Straub, Sina; Schneider, Till M; Emmerich, Julian; Freitag, Martin T; Ziener, Christian H; Schlemmer, Heinz-Peter; Ladd, Mark E; Laun, Frederik B

    2017-07-01

    Since quantitative susceptibility mapping (QSM) quantifies magnetic susceptibility relative to a reference value, a suitable reference tissue has to be available to compare different subjects and stages of disease. To find such a suitable reference tissue for QSM of the brain, melanoma patients with and without brain metastases were measured. Twelve reference regions were chosen and assessed for stability of susceptibility values with respect to multiple intra-individual and inter-individual measurements, age, and stage of disease. Cerebrospinal fluid (CSF), the internal capsule and one region in the splenium of the corpus callosum are the regions with the smallest standard deviations of the mean susceptibility value. The mean susceptibility is 0.010 ± 0.014 ppm for CSF in the atrium of the lateral ventricles (csf post ), -0.060 ± 0.019 ppm for the posterior limb of the internal capsule (ci2), and -0.008 ± 0.019 ppm for the splenium of the corpus callosum. csf post and ci2 show nearly no dependence on age or stage of disease, whereas some other regions, e.g., the red nucleus, show moderate dependence on age or disease. The internal capsule and CSF appear to be the most suitable reference regions for QSM of the brain in the melanoma patients studied. Both showed virtually no dependence on age or disease and small variations among patients. Magn Reson Med 78:204-214, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Biological activity of the functional epitope of ciguatoxin fragment AB on the neuroblastoma sodium channel in tissue culture.

    Science.gov (United States)

    Hokama, Y; Chun, K E; Campora, C E; Higa, N; Suma, C; Hamajima, A; Isobe, M

    2006-01-01

    It is well established that the targeted receptor for ciguatoxin (CTX) in mammalian tissues is the sodium channel, affecting the influx of sodium into cells and altering the action potential and function of the cell. Since the syntheses of fragments of CTX has become available, our focus has been on the receptor functions of the west sphere AB and east sphere JKLM fragments using the neuroblastoma cell assay, guinea pig atrium assay, and the membrane immunobead assay (MIA). The data presented here suggest that the west sphere AB of the ciguatoxin molecule is the active portion and is responsible for the activation of the sodium channels. (c) 2006 Wiley-Liss, Inc.

  1. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: Effects on tissue fibrosis and apoptosis.

    Science.gov (United States)

    Al-Gayyar, Mohammed M H; Hassan, Hanan M; Alyoussef, Abdullah; Abbas, Ahmed; Darweish, Mohamed M; El-Hawwary, Amany A

    2016-03-01

    Sodium nitrite, a food preservative, has been reported to increase oxidative stress indicators such as lipid peroxidation, which can affect different organs including the kidney. Here, we investigated the toxic effects of oral sodium nitrite on kidney function in rats and evaluated potential protective effects of Nigella sativa oil (NSO). Seventy adult male Sprague-Dawley rats received 80 mg/kg sodium nitrite orally in the presence or absence of NSO (2.5, 5, and 10 ml/kg) for 12 weeks. Morphological changes were assessed by hematoxylin and eosin, Mallory trichome, and periodic acid-Schiff staining. Renal tissues were used for measurements of oxidative stress markers, C-reactive protein, cytochrome C oxidase, transforming growth factor (TGF)-beta1, monocyte chemotactic protein (MCP)-1, pJNK/JNK, and caspase-3. NSO significantly reduced sodium nitrite-induced elevation in serum urea and creatinine, as well as increasing normal appearance of renal tissue. NSO also prevented reductions in glycogen levels caused by sodium nitrite alone. Moreover, NSO treatment resulted in dose-dependent significant reductions in fibrosis markers after sodium nitrite-induced 3- and 2.7-fold increase in MCP-1 and TGF-beta1, respectively. Finally, NSO partially reduced the elevated caspase-3 and pJNK/JNK. NSO ameliorates sodium nitrite-induced nephrotoxicity through blocking oxidative stress, attenuation of fibrosis/inflammation, restoration of glycogen level, amelioration of cytochrome C oxidase, and inhibition of apoptosis.

  2. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  3. Effect of pheniramine maleate on reperfusion injury in brain tissue.

    Science.gov (United States)

    Yürekli, Ismail; Gökalp, Orhan; Kiray, Müge; Gökalp, Gamze; Ergüneş, Kazım; Salman, Ebru; Yürekli, Banu Sarer; Satoğlu, Ismail Safa; Beşir, Yüksel; Cakır, Habib; Gürbüz, Ali

    2013-12-06

    The aim of this study was to investigate the protective effects of methylprednisolone (Pn), which is a potent anti-inflammatory agent, and pheniramine maleate (Ph), which is an antihistaminic with some anti-inflammatory effects, on reperfusion injury in brain developing after ischemia of the left lower extremity of rats. Twenty-eight randomly selected male Sprague-Dawley rats were divided into 4 groups: Group 1 was the control group, Group 2 was the sham group (I/R), Rats in Group 3 were subjected to I/R and given Ph, and rats in Group 4 were subjected to I/R and given Pn. A tourniquet was applied at the level of left groin region of subjects in the I/R group after induction of anesthesia. One h of ischemia was performed with no drug administration. In the Ph group, half of a total dose of 10 mg/kg Ph was administered intraperitoneally before ischemia and the remaining half before reperfusion. In the Pn group, subjects received a single dose of 50 mg/kg Pn intraperitoneally at the 30th min of ischemia. Brains of all subjects were removed after 24 h for examination. Malondialdehyde (MDA) levels of the prefrontal cortex were significantly lower in the Ph group than in the I/R group (p<0.05). Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were found to be significantly higher in the Ph group than in the I/R group (p<0.05). Histological examination demonstrated that Ph had protective effects against I/R injury developing in the brain tissue. Ph has a protective effect against ischemia/reperfusion injury created experimentally in rat brains.

  4. Evaluation of cartilage repair tissue in the knee and ankle joint using sodium magnetic resonance imaging at 7 Tesla

    International Nuclear Information System (INIS)

    Zbyn, S.

    2015-01-01

    Articular cartilage of adults shows no or very limited intrinsic capacity for self-repair. Since untreated chondral defects often progress to osteoarthritis, symptomatic defects should be treated. Different cartilage repair procedures have been developed with the goal to restore joint function and prevent further cartilage degeneration by providing repair tissue of the same structure, composition, and biomechanical properties as native cartilage. Various cartilage repair procedures have been developed; including bone marrow stimulation (BMS) techniques such as microfracture (MFX), cell-based techniques such as matrix-associated autologous chondrocyte transplantation (MACT), and others. Since biopsies of cartilage repair tissue are invasive and cannot be repeated, a noninvasive method is needed that could follow-up the quality of cartilage and repair tissue. Negatively charged glycosaminoglycans (GAG) are very important for cartilage function as they attract positive ions such as sodium. The high concentration of ions in cartilage is responsible for osmotic pressure providing cartilage its resilience to compression. Since GAGs are counterbalanced by sodium ions, sodium magnetic resonance imaging (MRI) was validated as a sensitive method for the in vivo evaluation of GAG concentration in native cartilage but not for repair tissue. Thus, the main goal of this thesis was to optimize and validate sodium 7 Tesla MRI for the evaluation of cartilage repair tissue quality in patients after different cartilage repair surgeries in the knee and ankle joint. In our studies, sodium MRI was used for the first time for the clinical evaluation of cartilage repair tissue. A strong correlation found between sodium imaging and dGEMRIC (another GAG-sensitive technique) in patients after MACT on femoral cartilage proved sensitivity of sodium MRI to GAG changes in native cartilage and repair tissue in vivo. Comparison between BMS and MACT patients showed significantly lower sodium values

  5. Assessment of residual active chlorine in sodium hypochlorite solutions after dissolution of porcine incisor pulpal tissue.

    Science.gov (United States)

    Clarkson, R M; Smith, T K; Kidd, B A; Evans, G E; Moule, A J

    2013-12-01

    In previous studies, surfactant-containing Hypochlor brands of sodium hypochlorite showed better tissue solubilizing abilities than Milton; differences not explained by original active chlorine content or presence of surfactant. It was postulated that exhaustion of active chlorine content could explain differences. This study aimed to assess whether Milton's poorer performance was due to exhaustion of active chlorine. Parallel experiments assessed the influence of titration methods, and the presence of chlorates, on active chlorine measurements. Time required to dissolve one or groups of 10 samples of porcine incisor pulp samples in Milton was determined. Residual active chlorine was assessed by thermometric titration. Iodometric and thermometric titration was carried out on samples of Milton. Chlorate content was also measured. Dissolution of single and 10 pulp samples caused a mean loss of 1% and 3% respectively of active chlorine, not being proportional to tissue dissolved. Thermometric ammonium ion titration resulted in 10% lower values than iodometric titration. Chlorate accounted for much of this difference. Depletion of active chlorine is not the reason for differences in tissue dissolving capabilities of Milton. Thermometric ammonium ion titration gives more accurate measurement of active chlorine content than iodometric titration. © 2013 Australian Dental Association.

  6. Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.

    Science.gov (United States)

    Ma, Jinhui; Ju, Zhihai; Yu, Jie; Qiao, Yeru; Hou, Chenwei; Wang, Chen; Hei, Feilong

    Perfusion decellularization with detergents is effective to maintain the architecture and proteins of extracellular matrix (ECM) for use in the field of lung tissue engineering (LTE). However, it is unclear which detergent is ideal to produce an acellular lung scaffold. In this study, we obtained two decellularized rat lung scaffolds using a novel detergent sodium lauryl ether sulfate (SLES) and a conventional detergent sodium dodecyl sulfate (SDS). Both decellularized lung scaffolds were assessed by histology, immunohistochemistry, scanning electron microscopy, DNA quantification, sulfated glycosaminoglycans (GAGs) quantification and western blot. Subsequently, the scaffolds were implanted subcutaneously in rats for 6 weeks and were evaluated via hematoxylin and eosin staining and Masson staining. Results indicated that SLES was effective to remove cells; moreover, lungs decellularized with SLES showed better preservation of sulfated GAGs, lung architecture, and ECM proteins than SDS. After 6 weeks, SLES scaffolds demonstrated a significantly greater potential for cell infiltration and blood vessel formation compared with SDS scaffolds. Taken together, we conclude that SLES is a promising detergent to produce an acellular scaffold using LTE for eventual transplantation.

  7. Influence of dietary sodium selenite on tissue selenium levels of growing pigs

    International Nuclear Information System (INIS)

    Moksnes, K.; Tollersrud, S.; Larsen, H.J.

    1982-01-01

    Twenty Norwegian Landrace pigs were divided into 5 groups and fed a basal diet consisting of a mixture of dried skim milk and whey powder together with ground barley. The diet was supplemented with 0, 0.2, 0.8, 1.2, and 2.2 μg/g selenium as sodium selenite and was fed for 12 weeks. The muscle selenium level was increased by a factor of about 4 and the liver selenium by a factor of about 12 when the dietary selenium supplement was increased from zero to 2.2μg/g. There was a significant linear correlation between dietary selenium and selenium concentrations in tissues. Possible benefit for humans consuming meat from animals having received the selenium doses used in this experiment are discussed. (author)

  8. Tissue concentration-time profile of selenium after sodium selenite administration to rats

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Megumi; Natsuhori, Masahiro; Ito, Nobuhiko [Department of Veterinary Radiology and Radiation Biology, Kitasato University School of Veterinary Medicine, Towada, Aomori (Japan); Sera, Koichiro [Cyclotron Research Center, Iwate Medical University, Takizuka, Iwate (Japan); Futatsugawa, Shoji [Nishina Memorial Cyclotron Center (NMCC), Takizuka, Iwate (Japan)

    1999-07-01

    Selenium (Se) concentration-time profiles in plasma and organs including liver, kidney, heart, lung, spleen and brain of rats (Jcl Wister, 9 wks old, n=32) were investigated after a single intravenous (iv) / oral (po) administration of sodium selenite (dose is equivalent to 2 mg/kg b.w. of Se). The Se concentration was determined by PIXE analysis. Among the investigated biological samples, Se concentration was the highest in the kidney or liver, followed by the heart, lung or spleen, then plasma, and the brain. Se concentrations in these organs were 0.5 to 5 times of plasma Se. The distribution profiles of Se in the organs were dependent on the route of administration. Furthermore, their profiles appeared almost parallel to the plasma Se-concentration in a logarithmic scale. Compared to the Se concentration-time profiles in plasma and organs by the route of administration, po group showed about 1/4-1/2 of the Se concentration in iv group except for kidney. Kidney kept relatively higher concentration of Se, which was similar in the both groups. This may explain our recently published data that urinary excretion was similar in the both groups. The relative oral bioavailability of plasma and each organ was calculated by the ratio of area under the concentration-time curve after oral administration (AUCpo) to AUCiv. Each organ appeared to have their own bioavailability (i.e., liver 39%, kidney 97%, heart 37%, lung 18%, spleen 10%, and brain 72%), where plasma was 46%. These results highly suggested that different Se distribution in organs by the different route of administration was due to the different metabolic profile. (author)

  9. Tissue concentration-time profile of selenium after sodium selenite administration to rats

    International Nuclear Information System (INIS)

    Kaneko, Megumi; Natsuhori, Masahiro; Ito, Nobuhiko; Sera, Koichiro; Futatsugawa, Shoji

    1999-01-01

    Selenium (Se) concentration-time profiles in plasma and organs including liver, kidney, heart, lung, spleen and brain of rats (Jcl Wister, 9 wks old, n=32) were investigated after a single intravenous (iv) / oral (po) administration of sodium selenite (dose is equivalent to 2 mg/kg b.w. of Se). The Se concentration was determined by PIXE analysis. Among the investigated biological samples, Se concentration was the highest in the kidney or liver, followed by the heart, lung or spleen, then plasma, and the brain. Se concentrations in these organs were 0.5 to 5 times of plasma Se. The distribution profiles of Se in the organs were dependent on the route of administration. Furthermore, their profiles appeared almost parallel to the plasma Se-concentration in a logarithmic scale. Compared to the Se concentration-time profiles in plasma and organs by the route of administration, po group showed about 1/4-1/2 of the Se concentration in iv group except for kidney. Kidney kept relatively higher concentration of Se, which was similar in the both groups. This may explain our recently published data that urinary excretion was similar in the both groups. The relative oral bioavailability of plasma and each organ was calculated by the ratio of area under the concentration-time curve after oral administration (AUCpo) to AUCiv. Each organ appeared to have their own bioavailability (i.e., liver 39%, kidney 97%, heart 37%, lung 18%, spleen 10%, and brain 72%), where plasma was 46%. These results highly suggested that different Se distribution in organs by the different route of administration was due to the different metabolic profile. (author)

  10. Quantification of brain tissue through incorporation of partial volume effects

    Science.gov (United States)

    Gage, Howard D.; Santago, Peter, II; Snyder, Wesley E.

    1992-06-01

    This research addresses the problem of automatically quantifying the various types of brain tissue, CSF, white matter, and gray matter, using T1-weighted magnetic resonance images. The method employs a statistical model of the noise and partial volume effect and fits the derived probability density function to that of the data. Following this fit, the optimal decision points can be found for the materials and thus they can be quantified. Emphasis is placed on repeatable results for which a confidence in the solution might be measured. Results are presented assuming a single Gaussian noise source and a uniform distribution of partial volume pixels for both simulated and actual data. Thus far results have been mixed, with no clear advantage being shown in taking into account partial volume effects. Due to the fitting problem being ill-conditioned, it is not yet clear whether these results are due to problems with the model or the method of solution.

  11. Brain insulin controls adipose tissue lipolysis and lipogenesis

    Science.gov (United States)

    Scherer, Thomas; O’Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J.; Previs, Stephen F.; Buettner, Christoph

    2011-01-01

    SUMMARY White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin sensitizing fatty acid species like palmitoleate. Here we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague Dawley rats increases WAT lipogenic protein expression, and inactivates hormone sensitive lipase (Hsl) and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and in particular hypothalamic insulin action play a pivotal role in WAT functionality. PMID:21284985

  12. Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    John P. Lowry

    2005-11-01

    Full Text Available In this communication we review selected experiments involving the use ofcarbon paste electrodes (CPEs to monitor and measure brain tissue O2 levels in awakefreely-moving animals. Simultaneous measurements of rCBF were performed using the H2clearance technique. Voltammetric techniques used include both differential pulse (O2 andconstant potential amperometry (rCBF. Mild hypoxia and hyperoxia produced rapidchanges (decrease and increase respectively in the in vivo O2 signal. Neuronal activation(tail pinch and stimulated grooming produced similar increases in both O2 and rCBFindicating that CPE O2 currents provide an index of increases in rCBF when such increasesexceed O2 utilization. Saline injection produced a transient increase in the O2 signal whilechloral hydrate produced slower more long-lasting changes that accompanied the behavioralchanges associated with anaesthesia. Acetazolamide increased O2 levels through an increasein rCBF.

  13. Real-time changes in brain tissue oxygen during endovascular treatment of cerebral vasospasm

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Bache, Søren; Stavngaard, Trine

    2015-01-01

    pressure (PtiO₂) in target parenchyma. However, during the intervention, dangerously low levels of brain tissue oxygen, leading to cerebral infarction, may occur. Thus, no clinical improvement was seen in two of the patients and a dramatic worsening was observed in the third patient. Because the decrease...... minute-by-minute changes in brain tissue oxygen during balloon angioplasty and intraarterial administration of vasodilators in three patients.Our results confirm that endovascular intervention is capable of not only resolving angiographic vasospasm, but also of normalizing values of brain tissue oxygen...... in brain tissue oxygen was seen after administration of vasopressor agents, this may be a contributing factor....

  14. Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    Science.gov (United States)

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  15. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry.

    Science.gov (United States)

    Sawada, Yoshikazu; Izumida, Yoshihiko; Takeuchi, Yoshinori; Aita, Yuichi; Wada, Nobuhiro; Li, EnXu; Murayama, Yuki; Piao, Xianying; Shikama, Akito; Masuda, Yukari; Nishi-Tatsumi, Makiko; Kubota, Midori; Sekiya, Motohiro; Matsuzaka, Takashi; Nakagawa, Yoshimi; Sugano, Yoko; Iwasaki, Hitoshi; Kobayashi, Kazuto; Yatoh, Shigeru; Suzuki, Hiroaki; Yagyu, Hiroaki; Kawakami, Yasushi; Kadowaki, Takashi; Shimano, Hitoshi; Yahagi, Naoya

    2017-11-04

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors have both anti-diabetic and anti-obesity effects. However, the precise mechanism of the anti-obesity effect remains unclear. We previously demonstrated that the glycogen depletion signal triggers lipolysis in adipose tissue via liver-brain-adipose neurocircuitry. In this study, therefore, we investigated whether the anti-obesity mechanism of SGLT2 inhibitor is mediated by this mechanism. Diet-induced obese mice were subjected to hepatic vagotomy (HVx) or sham operation and loaded with high fat diet containing 0.015% tofogliflozin (TOFO), a highly selective SGLT2 inhibitor, for 3 weeks. TOFO-treated mice showed a decrease in fat mass and the effect of TOFO was attenuated in HVx group. Although both HVx and sham mice showed a similar level of reduction in hepatic glycogen by TOFO treatment, HVx mice exhibited an attenuated response in protein phosphorylation by protein kinase A (PKA) in white adipose tissue compared with the sham group. As PKA pathway is known to act as an effector of the liver-brain-adipose axis and activate triglyceride lipases in adipocytes, these results indicated that SGLT2 inhibition triggered glycogen depletion signal and actuated liver-brain-adipose axis, resulting in PKA activation in adipocytes. Taken together, it was concluded that the effect of SGLT2 inhibition on weight loss is in part mediated via the liver-brain-adipose neurocircuitry. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  17. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Bergström, Ann-Louise; Ohm, Jakob

    2008-01-01

    spongiform encephalopathy (bovine brain), scrapie (ovine brain) and experimental scrapie in hamster and in mice. The antibodies were also used for PET-blotting in which PrPSc blotted from brain tissue sections onto a nitrocellulose membrane is visualized with antibodies after protease and denaturant...

  18. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  19. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    Science.gov (United States)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  20. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Science.gov (United States)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  1. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue.

    Science.gov (United States)

    Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L

    2016-01-01

    The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.

  2. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.

    Science.gov (United States)

    Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V

    2018-03-01

    The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

    Science.gov (United States)

    Wu, Yu; Yuan, Liu; Sheng, Nai-an; Gu, Zi-qi; Feng, Wen-hao; Yin, Hai-yue; Morsi, Yosry; Mo, Xiu-mei

    2017-09-01

    Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (ASA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.

  4. Global Proteomic Analysis of Brain Tissues in Transient Ischemia Brain Damage in Rats

    Directory of Open Access Journals (Sweden)

    Jiann-Hwa Chen

    2015-05-01

    Full Text Available Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM and the control rats were separated using two-dimensional gel electrophoresis (2-DE to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT and cathepsin D (CATD, which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2 protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia

  5. Indomethacin inhibits the uptake of 22sodium by ovine trophoblastic tissue in vitro

    International Nuclear Information System (INIS)

    Lewis, G.S.

    1986-01-01

    Blastocysts from several species synthesize prostaglandins in vitro, but the exact functions of the prostaglandins are unknown. The purpose of this study was to determine if indomethacin, an inhibitor of prostaglandin synthesis, would inhibit the uptake of 22sodium ([22Na]) by ovine trophoblastic tissue. To determine the concentration of indomethacin that would inhibit the synthesis of PGF2 alpha and 13,14-dihydro-15-keto-PGF2 alpha (PGFM) by blastocysts, blastocysts were collected from ewes 16 days after mating, sliced into pieces approximately 2 mm in length and incubated for 48 h at 37 degrees C in 2 ml of medium containing either 0, 0.2, 0.4, 0.8 or 1.6 mM of indomethacin. Concentrations of indomethacin greater than or equal to 0.2 mM reduced (P less than .01) trophoblastic release (ng/micrograms DNA) of PGF2 alpha from 205 +/- 71.2 to less than or equal to 3.3 +/- 0.2, reduced PGFM from 0.7 +/- 0.1 to less than or equal to 0.17 +/- 0.01, and inhibited formation of trophoblastic vesicles. In a second experiment, blastocysts were recovered from ewes 16 days after mating and pieces of trophoblast were incubated with [22Na] and either 0 or 0.4 mM of indomethacin. Indomethacin reduced the uptake of [22Na], which is an indirect measure of the transport of water across epithelia, from 3680 +/- 1118 to 934 +/- 248 cpm/micrograms DNA (P less than .03) and prevented formation of trophoblastic vesicles. Prostaglandins produced by ovine blastocysts might be involved in controlling uptake of water, which is essential for expansion of blastocysts

  6. Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Jill A.; Zalesny, Ronald S.; Wiese, Adam H.; Sexton, Bart; Hall, Richard B.

    2008-01-01

    The response of Populus to irrigation sources containing elevated levels of sodium (Na + ) and chloride (Cl - ) is poorly understood. We irrigated eight Populus clones with fertilized well water (control) (N, P, K) or municipal solid waste landfill leachate weekly during 2005 and 2006 in Rhinelander, Wisconsin, USA (45.6 deg. N, 89.4 deg. W). During August 2006, we tested for differences in total Na + and Cl - concentration in preplanting and harvest soils, and in leaf, woody (stems + branches), and root tissue. The leachate-irrigated soils at harvest had the greatest Na + and Cl - levels. Genotypes exhibited elevated total tree Cl - concentration and increased biomass (clones NC14104, NM2, NM6), elevated Cl - and decreased biomass (NC14018, NC14106, DM115), or mid levels of Cl - and biomass (NC13460, DN5). Leachate tissue concentrations were 17 (Na + ) and four (Cl - ) times greater than water. Sodium and Cl - levels were greatest in roots and leaves, respectively. - Sodium and chloride supplied via landfill leachate irrigation is accumulated at high concentrations in tissues of Populus

  7. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    Science.gov (United States)

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from...... conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean...

  9. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A

    2011-01-01

    no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from......Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean...

  10. The Identification of Aluminum in Human Brain Tissue Using Lumogallion and Fluorescence Microscopy

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2016-01-01

    Aluminum in human brain tissue is implicated in the etiologies of neurodegenerative diseases including Alzheimer’s disease. While methods for the accurate and precise measurement of aluminum in human brain tissue are widely acknowledged, the same cannot be said for the visualization of aluminum. Herein we have used transversely-heated graphite furnace atomic absorption spectrometry to measure aluminum in the brain of a donor with Alzheimer’s disease, and we have developed and validated fluorescence microscopy and the fluor lumogallion to show the presence of aluminum in the same tissue. Aluminum is observed as characteristic orange fluorescence that is neither reproduced by other metals nor explained by autofluorescence. This new and relatively simple method to visualize aluminum in human brain tissue should enable more rigorous testing of the aluminum hypothesis of Alzheimer’s disease (and other neurological conditions) in the future. PMID:27472886

  11. Effect of equiosmolar solutions of hypertonic sodium lactate versus mannitol in craniectomy patients with moderate traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Muhammad R. Ahmad

    2014-03-01

    Full Text Available Background: Brain relaxation and prevention from cerebral edema are essential in craniectomy. Osmotherapy with 20% mannitol are generally used to withdraw fluid from the brain parenchyma, however may cause hemodynamic fluctuation, due to increase diuresis. On the other hand 0.5 M hypertonic sodium lactate (HSL appeared as an alternative of osmotherapy. This study  aimed to observe the effect of hypertonic sodium lactate (HSL on brain relaxation, blood glucose level and hemodynamic variables in craniectomy due to moderate brain injury.Methods: A randomized controlled study of 42 cases with moderate brain injury, aged 18 - 65 years, ASA 1 - 3, between September-November 2012, was carried out. The patients were divided into group M (n = 21 that received 2.5 mL/kg 20% mannitol and group HSL that received 2.5 mL/kg 0.5M HSL. Mean arterial pressures (MAP, central venous pressures (CVP and urine output were measured after induction, and at 15, 30, 45, 60 min after infusion. Brain relaxation was assessed at a four-point scale after opening the duramater. Blood glucose levels were measured before induction and at 60 min after the infusion. Appropriate statistical tests were used for comparison. Unpaired t-test was used to compare hemodynamic and blood glucose level, and chi-square was used to compare brain relaxation.Results: MAP at 60 minute was significantly higher in HSL group than M group (81.66 ± 7.85 vs 74.33 ± 6.18 mmHg; p = 0.002. There was no difference in brain relaxation (p = 0.988. A significant increase in blood glucose level was observed in group HSL (17.95 ± 11.46 mg/dL; p = 0.001.Conclusion: Half-molar HSL was as effective as 20% mannitol in producing brain relaxation, with better hemodynamic stability and gave significant increase in blood glucose level.Keywords: brain relaxation, hemodynamic, hypertonic sodium lactate, mannitol, traumatic brain injury

  12. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    OpenAIRE

    Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the...

  13. Evaluation of tissue-equivalent materials to be used as human brain tissue substitute in dosimetry for diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.C., E-mail: cassio.c.ferreira@gmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Ximenes Filho, R.E.M., E-mail: raimundoximenes@hotmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Vieira, J.W., E-mail: jwvieira@br.inter.ne [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Av. Professor Luiz Freire, 500 Curado, CEP 50740-540, Recife (Brazil); Escola Politecnica de Pernambuco, Universidade de Pernambuco (EPP/UPE), Rua Benfica, 455, Madalena, CEP 50720-001, Recife (Brazil); Tomal, A., E-mail: alessandratomal@pg.ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Garcia, C.A.B., E-mail: cgarcia@ufs.b [Departamento de Quimica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Maia, A.F., E-mail: afmaia@ufs.b [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil)

    2010-08-15

    Tissue-equivalent materials to be used as substitutes for human brain tissue in dosimetry for diagnostic radiology have been investigated in terms of calculated total mass attenuation coefficient ({mu}/{rho}), calculated mass energy-absorption coefficient ({mu}{sub en}/{rho}) and absorbed dose. Measured linear attenuation coefficients ({mu}) have been used for benchmarking the calculated total mass attenuation coefficient ({mu}/{rho}). The materials examined were bolus, nylon (registered) , orange articulation wax, red articulation wax, PMMA (polymethylmethacrylate), bees wax, paraffin I, paraffin II, pitch and water. The results show that water is the best substitute for brain among the materials investigated. The average percentage differences between the calculated {mu}/{rho} and {mu}{sub en}/{rho} coefficients for water and those for brain were 1.0% and 2.5%, respectively. Absorbed doses determined by Monte Carlo methods confirm water as being the best brain substitute to be used in dosimetry for diagnostic radiology, showing maximum difference of 0.01%. Additionally this study showed that PMMA, a material often used for the manufacturing of head phantoms for computed tomography, cannot be considered to be a suitable substitute for human brain tissue in dosimetry.

  14. Comparison of the dynamic behaviour of brain tissue and two model materials

    NARCIS (Netherlands)

    Brands, D.W.A.; Bovendeerd, P.H.M.; Peters, G.W.M.; Wismans, J.S.H.M.; Paas, M.H.J.W.; Bree, van J.L.M.J.; Brands, D.W.A.

    1999-01-01

    Linear viscoelastic material parameters of porcine brain tissue and two brain substitute/ materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained

  15. Purification of cells from fresh human brain tissue: primary human glial cells.

    NARCIS (Netherlands)

    Mizee, Mark R; van der Poel, Marlijn; Huitinga, I.; Huitinga, I.; Webster, M.J.

    2018-01-01

    In order to translate the findings obtained from postmortem brain tissue samples to functional biologic mechanisms of central nervous system disease, it will be necessary to understand how these findings affect the different cell populations in the brain. The acute isolation and analysis of pure

  16. Salt-Induced Hypertension in a Mouse Model of Liddle's Syndrome is Mediated by Epithelial Sodium Channels in the Brain

    Science.gov (United States)

    Van Huysse, James W.; Amin, Md. Shahrier; Yang, Baoli; Leenen, Frans H. H.

    2012-01-01

    Neural precursor cell expressed and developmentally downregulated 4-2 protein (Nedd4-2) facilitates the endocytosis of epithelial Na channels (ENaC). Both mice and humans with a loss of regulation of ENaC by Nedd4-2 have salt-induced hypertension. ENaC is also expressed in the brain, where it is critical for hypertension on high salt diet in salt-sensitive rats. In the present studies we assessed whether Nedd4-2 knockout (−/−) mice have: 1) increased brain ENaC; 2) elevated CSF sodium on high salt diet; and 3) enhanced pressor responses to CSF sodium and hypertension on high salt diet, both mediated by brain ENaC. Prominent choroid plexus and neuronal ENaC staining was present in −/− but not in wild-type (W/T) mice. In chronically instrumented mice, intracerebroventricular (icv) infusion of Na-rich aCSF increased MAP 3-fold higher in −/− than W/T. Icv infusion of the ENaC blocker benzamil abolished this enhancement. In telemetered −/− mice on high salt diet (8% NaCl), CSF [Na+], MAP and HR increased significantly, MAP by 30-35 mmHg. These MAP and HR responses were largely prevented by icv benzamil, but only to a minor extent by sc benzamil at the icv rate. We conclude that increased ENaC expression in the brain of Nedd 4-2 −/− mice mediates their hypertensive response to high salt diet, by causing increased sodium levels in the CSF as well as hyper-responsiveness to CSF sodium. These findings highlight the possible causative contribution of CNS ENaC in the etiology of salt-induced hypertension. PMID:22802227

  17. The Effects of Stereotactic Cerebroventricular Administration of Albumin, Mannitol, Hypertonic Sodium Chloride, Glycerin and Dextran in Rats with Experimental Brain Edema.

    Science.gov (United States)

    Ates, Tuncay; Gezercan, Yurdal; Menekse, Guner; Turkoz, Yusuf; Parlakpinar, Hakan; Okten, Ali Ihsan; Akyuva, Yener; Onal, Selami Cagatay

    2017-01-01

    To evaluate the effects of cerebroventricular administration of hyperoncotic/hyperosmotic agents on edematous brain tissue in rats with experimental head trauma. The study included 54 female Sprague-Dawley rats with weights ranging between 200 and 250 g. Six experimental groups were examined with each group containing 9 rats. All rats were exposed to head trauma, and treatment groups were administered 2 µl of one of the drugs (albumin, mannitol, hypertonic sodium chloride (NaCl), glycerin and dextran) 6, 12 and 24 hours after the trauma via the cerebroventricular route and using a stereotactic device. Rats were sacrificed 48 hours after the trauma, and brain tissues were extracted without damage. Biochemical analyses including reduced glutathione (GSH), nitric oxide (NO), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) were performed on the injured left hemisphere. Compared with the control group, the albumin, mannitol, 3% NaCl and glycerin treatment groups revealed dramatic increases in GSH levels (p < 0.001). Levels of MDA, which is the end-product of brain edema and lipid peroxidation, failed to show a statistically significant decrease, but there was a decreasing trend observed in the inter-group comparisons. NO levels were also decreased in the 3% NaCl treatment group. An analysis of TNF-α and IL-1β, two proinflammatory cytokines associated with the trauma, revealed that IL-1β decreased significantly in all treatment groups (p=0.001), whereas no significant difference was detected in TNF-α levels. Cerebroventricular administration of hyperoncotic/hyperosmotic agents provides substantial effects on the treatment of brain edema.

  18. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    Science.gov (United States)

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  19. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  20. Sodium-dependent vitamin C transporter 2 (SVCT2 expression and activity in brain capillary endothelial cells after transient ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Burkhard Gess

    Full Text Available Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2 was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2-5 days. Radioactive uptake assays using (14C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy.

  1. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    Science.gov (United States)

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Determination of trace elements in human brain tissues using neutron activation analysis

    International Nuclear Information System (INIS)

    Leite, R.E.P.; Jacob-Filho, W.; Grinberg, L.T.; Ferretti, R.E.L.

    2008-01-01

    Neutron activation analysis was applied to assess trace element concentrations in brain tissues from normal (n = 21) and demented individuals (n = 21) of both genders aged more than 50 years. Concentrations of the elements Br, Fe, K, Na, Rb, Se and Zn were determined. Comparisons were made between the results obtained for the hippocampus and frontal cortex tissues, as well as, those obtained in brains of normal and demented individuals. Certified reference materials, NIST 1566b Oyster Tissue and NIST 1577b Bovine Liver were analyzed for quality of the analytical results. (author)

  3. Prostacyclin infusion may prevent secondary damage in pericontusional brain tissue

    DEFF Research Database (Denmark)

    Reinstrup, Peter; Nordström, Carl-Henrik

    2011-01-01

    Prostacyclin is a potent vasodilator, inhibitor of leukocyte adhesion, and platelet aggregation, and has been suggested as therapy for cerebral ischemia. A case of focal traumatic brain lesion that was monitored using intracerebral microdialysis, and bedside analysis and display is reported here........ When biochemical signs of cerebral ischemia progressed, i.v. infusion of prostacyclin was started....

  4. Mechanical properties of brain tissue: characterisation and constitutive modelling

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Hrapko, M.; Peters, G.W.M.; Kamkin, A.; Kiseleva, I.

    2009-01-01

    The head is often considered as the most critical region of the human body for life-threatening injuries sustained in accidents. In order to develop effective protective measures, a better understanding of the process of injury development in the brain is required. Finite Element (FE) models are

  5. Sodium appetite elicited by low-sodium diet is dependent on p44/42 mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activation in the brain.

    Science.gov (United States)

    Monteiro, L R N; Marangon, P B; Elias, L L K; Reis, L C; Antunes-Rodrigues, J; Mecawi, A S

    2017-09-01

    Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low-sodium

  6. A Hybrid Hierarchical Approach for Brain Tissue Segmentation by Combining Brain Atlas and Least Square Support Vector Machine

    Science.gov (United States)

    Kasiri, Keyvan; Kazemi, Kamran; Dehghani, Mohammad Javad; Helfroush, Mohammad Sadegh

    2013-01-01

    In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth. PMID:24696800

  7. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  8. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Miller, M.; Leahy, J.P.; McConville, F.; Morgane, P.J.; Resnick, O.

    1978-01-01

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14 C-leucine, 14 C-phenylalanine, and 14 C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14 C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14 C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  9. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  10. Brain tissue analysis of impacts to American football helmets.

    Science.gov (United States)

    Post, Andrew; Kendall, Marshall; Cournoyer, Janie; Karton, Clara; Oeur, R Anna; Dawson, Lauren; Hoshizaki, T Blaine

    2018-02-01

    Concussion in American football is a prevalent concern. Research has been conducted examining frequencies, location, and thresholds for concussion from impacts. Little work has been done examining how impact location may affect risk of concussive injury. The purpose of this research was to examine how impact site on the helmet and type of impact, affects the risk of concussive injury as quantified using finite element modelling of the human head and brain. A linear impactor was used to impact a helmeted Hybrid III headform in several locations and using centric and non-centric impact vectors. The resulting dynamic response was used as input for the Wayne State Brain Injury Model to determine the risk of concussive injury by utilizing maximum principal strain as the predictive variable. The results demonstrated that impacts that occur primarily to the side of the head resulted in higher magnitudes of strain in the grey and white matter, as well as the brain stem. Finally, commonly worn American football helmets were used in this research and significant risk of injury was incurred for all impacts. These results suggest that improvements in American football helmets are warranted, in particular for impacts to the side of the helmet.

  11. Changes in Lecithin Concentration in the Human Brain Tissue in Some Neurodegenerative Conditions

    International Nuclear Information System (INIS)

    Ajanovic, A.; Mihaljevic, M.; Hasanbasic, D.; Rukavina, D.; Sofic, E.

    2011-01-01

    As a consequence of a possible increase in oxidative stress or deterioration of nerve cells during aging, in some states neurodegeneration was demonstrated by multiple biochemical deficiency, especially deficiency of cholesterol and lecithin in brain regions. The aim of this study was to determine the changes in the concentration of lecithin in different regions of brain tissue (MC - motor cortex, NC - nucleus caudates, GT - temporal gyrus) dissected postmortem from people with senile dementia of Alzheimer's type (SDAT), and persons with Parkinson's disease (PD) as compared to people who died without these diseases (C). Spectrophotometric determination of lecithin in 18 postmortem brain tissue regions collected from of 12 persons with SDAT, in 11 postmortem brain tissue regions of 8 persons with PD and in 18 postmortem brain tissue regions of 8 control persons, was performed by enzymatic method. The content of lecithin in MC: 14.4 mg/g fresh tissue (f.t.) and GT: 13.1 mg/g (f.t.) for SDAT was significantly reduced (p < 0.01) by about 30 %, compared to control where there was: 21.6 mg/g (f.t.) in MC and 18.3 mg/g (f.t.) in the GT estimated. In all regions of the brain of PD patients, the content of lecithin was decreased by about 12 % compared to control, but without statistical significance. These results suggest that changes in the content of lecithin in these regions of brain tissue might affect the changes in the membrane potential and cell degeneration. (author)

  12. Mary Jane Hogue (1883-1962): A pioneer in human brain tissue culture.

    Science.gov (United States)

    Zottoli, Steven J; Seyfarth, Ernst-August

    2018-05-16

    The ability to maintain human brain explants in tissue culture was a critical step in the use of these cells for the study of central nervous system disorders. Ross G. Harrison (1870-1959) was the first to successfully maintain frog medullary tissue in culture in 1907, but it took another 38 years before successful culture of human brain tissue was accomplished. One of the pioneers in this achievement was Mary Jane Hogue (1883-1962). Hogue was born into a Quaker family in 1883 in West Chester, Pennsylvania, and received her undergraduate degree from Goucher College in Baltimore, Maryland. Research with the developmental biologist Theodor Boveri (1862-1915) in Würzburg, Germany, resulted in her Ph.D. (1909). Hogue transitioned from studying protozoa to the culture of human brain tissue in the 1940s and 1950s, when she was one of the first to culture cells from human fetal, infant, and adult brain explants. We review Hogue's pioneering contributions to the study of human brain cells in culture, her putative identification of progenitor neuroblast and/or glioblast cells, and her use of the cultures to study the cytopathogenic effects of poliovirus. We also put Hogue's work in perspective by discussing how other women pioneers in tissue culture influenced Hogue and her research.

  13. Trace element determinations in brain tissues from normal and clinically demented individuals

    International Nuclear Information System (INIS)

    Saiki, Mitiko; Genezini, Frederico A.; Leite, Renata E.P.; Grinberg, Lea T.; Ferretti, Renata E.L.; Suemoto, Claudia; Pasqualucci, Carlos A.; Jacob-Filho, Wilson

    2013-01-01

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  14. Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues.

    Science.gov (United States)

    Huang, Yu; Williams, Justin C; Johnson, Stephen M

    2012-06-21

    Isolated brain tissue, especially brain slices, are valuable experimental tools for studying neuronal function at the network, cellular, synaptic, and single channel levels. Neuroscientists have refined the methods for preserving brain slice viability and function and converged on principles that strongly resemble the approach taken by engineers in developing microfluidic devices. With respect to brain slices, microfluidic technology may 1) overcome the traditional limitations of conventional interface and submerged slice chambers and improve oxygen/nutrient penetration into slices, 2) provide better spatiotemporal control over solution flow/drug delivery to specific slice regions, and 3) permit successful integration with modern optical and electrophysiological techniques. In this review, we highlight the unique advantages of microfluidic devices for in vitro brain slice research, describe recent advances in the integration of microfluidic devices with optical and electrophysiological instrumentation, and discuss clinical applications of microfluidic technology as applied to brain slices and other non-neuronal tissues. We hope that this review will serve as an interdisciplinary guide for both neuroscientists studying brain tissue in vitro and engineers as they further develop microfluidic chamber technology for neuroscience research.

  15. Adaptive online learning based tissue segmentation of MR brain images

    NARCIS (Netherlands)

    Damkat, C.

    2007-01-01

    The aging population in the European Union and the US has increased the importance of research in neurodegenerative diseases. Imaging plays an essential role in this endeavor by providing insight to the intricate cellular and inter-cellular processes in living tissues that will otherwise be

  16. The brain modulates insulin sensitivity in multiple tissues

    NARCIS (Netherlands)

    Parlevliet, Edwin T.; Coomans, Claudia P.; Rensen, Patrick C. N.; Romijn, Johannes A.

    2014-01-01

    Insulin sensitivity is determined by direct effects of circulating insulin on metabolically active tissues in combination with indirect effects of circulating insulin, i.e. via the central nervous system. The dose-response effects of insulin differ between the various physiological effects of

  17. Development of an experimental model of brain tissue heterotopia in the lung

    Science.gov (United States)

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  18. Gene expression profiles help identify the Tissue of Origin for metastatic brain cancers

    Directory of Open Access Journals (Sweden)

    VandenBerg Scott R

    2010-04-01

    Full Text Available Abstract Background Metastatic brain cancers are the most common intracranial tumor and occur in about 15% of all cancer patients. In up to 10% of these patients, the primary tumor tissue remains unknown, even after a time consuming and costly workup. The Pathwork® Tissue of Origin Test (Pathwork Diagnostics, Redwood City, CA, USA is a gene expression test to aid in the diagnosis of metastatic, poorly differentiated and undifferentiated tumors. It measures the expression pattern of 1,550 genes in these tumors and compares it to the expression pattern of a panel of 15 known tumor types. The purpose of this study was to evaluate the performance of the Tissue of Origin Test in the diagnosis of primary sites for metastatic brain cancer patients. Methods Fifteen fresh-frozen metastatic brain tumor specimens of known origins met specimen requirements. These specimens were entered into the study and processed using the Tissue of Origin Test. Results were compared to the known primary site and the agreement between the two results was assessed. Results Fourteen of the fifteen specimens produced microarray data files that passed all quality metrics. One originated from a tissue type that was off-panel. Among the remaining 13 cases, the Tissue of Origin Test accurately predicted the available diagnosis in 12/13 (92.3% cases. Discussion This study demonstrates the accuracy of the Tissue of Origin Test when applied to predict the tissue of origin of metastatic brain tumors. This test could be a very useful tool for pathologists as they classify metastatic brain cancers.

  19. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.

    Science.gov (United States)

    Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I

    2013-05-30

    Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a

  20. Three-dimensional structure of brain tissue at submicrometer resolution

    Energy Technology Data Exchange (ETDEWEB)

    Saiga, Rino; Mizutani, Ryuta, E-mail: ryuta@tokai-u.jp [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki [Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari [Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.

  1. Metabolism of [14C] testosterone by human foetal and brain tissue

    International Nuclear Information System (INIS)

    Jenkins, J.S.; Hall, C.J.

    1977-01-01

    The metabolism of [ 14 C] testosterone in vitro by various areas of the human foetal brain has been studied and compared with that of an adult brain. The predominant metabolites were 5α-dihydrotestosterone and 5α-androstane-3α,17β-diol, and also androstenedione, and all areas of the foetal brain showed similar activity. In the foetal pituitary gland, the activity of 5α-reductase was less prominent than that of 17β-hydroxysteroid-dehydrogenase. Small quantities of oestradiol-17 β were produced from testosterone by the hypothalamus, temporal lobe and amygdala only, and no aromatization could be detected in the pituitary gland. 5α-Reductase activity was much lower in adult brain tissues and no oestradiol was identified in adult temporal lobe tissue. (author)

  2. Frequency dependence of complex moduli of brain tissue using a fractional Zener model

    International Nuclear Information System (INIS)

    Kohandel, M; Sivaloganathan, S; Tenti, G; Darvish, K

    2005-01-01

    Brain tissue exhibits viscoelastic behaviour. If loading times are substantially short, static tests are not sufficient to determine the complete viscoelastic behaviour of the material, and dynamic test methods are more appropriate. The concept of complex modulus of elasticity is a powerful tool for characterizing the frequency domain behaviour of viscoelastic materials. On the other hand, it is well known that classical viscoelastic models can be generalized by means of fractional calculus to describe more complex viscoelastic behaviour of materials. In this paper, the fractional Zener model is investigated in order to describe the dynamic behaviour of brain tissue. The model is fitted to experimental data of oscillatory shear tests of bovine brain tissue to verify its behaviour and to obtain the material parameters

  3. Analysis of sports related mTBI injuries caused by elastic wave propagation through brain tissue

    Directory of Open Access Journals (Sweden)

    D Case

    2016-10-01

    Full Text Available Repetitive concussions and sub-concussions suffered by athletes have been linked to a series of sequelae ranging from traumatic encephalopathy to dementia pugilistica. A detailed finite element model of the human head was developed based on standard libraries of medical imaging. The model includes realistic material properties for the brain tissue, bone, soft tissue, and CSF, as well as the structure and properties of a protective helmet. Various impact scenarios were studied, with a focus on the strains/stresses and pressure gradients and concentrations created in the brain tissue due to propagation of waves produced by the impact through the complex internal structure of the human head. This approach has the potential to expand our understanding of the mechanism of brain injury, and to better assess the risk of delayed neurological disorders for tens of thousands of young athletes throughout the world.

  4. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  5. Brain tissues volume measurements from 2D MRI using parametric approach

    Science.gov (United States)

    L'vov, A. A.; Toropova, O. A.; Litovka, Yu. V.

    2018-04-01

    The purpose of the paper is to propose a fully automated method of volume assessment of structures within human brain. Our statistical approach uses maximum interdependency principle for decision making process of measurements consistency and unequal observations. Detecting outliers performed using maximum normalized residual test. We propose a statistical model which utilizes knowledge of tissues distribution in human brain and applies partial data restoration for precision improvement. The approach proposes completed computationally efficient and independent from segmentation algorithm used in the application.

  6. Characterization of a sequential pipeline approach to automatic tissue segmentation from brain MR Images

    International Nuclear Information System (INIS)

    Hou, Zujun; Huang, Su

    2008-01-01

    Quantitative analysis of gray matter and white matter in brain magnetic resonance imaging (MRI) is valuable for neuroradiology and clinical practice. Submission of large collections of MRI scans to pipeline processing is increasingly important. We characterized this process and suggest several improvements. To investigate tissue segmentation from brain MR images through a sequential approach, a pipeline that consecutively executes denoising, skull/scalp removal, intensity inhomogeneity correction and intensity-based classification was developed. The denoising phase employs a 3D-extension of the Bayes-Shrink method. The inhomogeneity is corrected by an improvement of the Dawant et al.'s method with automatic generation of reference points. The N3 method has also been evaluated. Subsequently the brain tissue is segmented into cerebrospinal fluid, gray matter and white matter by a generalized Otsu thresholding technique. Intensive comparisons with other sequential or iterative methods have been carried out using simulated and real images. The sequential approach with judicious selection on the algorithm selection in each stage is not only advantageous in speed, but also can attain at least as accurate segmentation as iterative methods under a variety of noise or inhomogeneity levels. A sequential approach to tissue segmentation, which consecutively executes the wavelet shrinkage denoising, scalp/skull removal, inhomogeneity correction and intensity-based classification was developed to automatically segment the brain tissue into CSF, GM and WM from brain MR images. This approach is advantageous in several common applications, compared with other pipeline methods. (orig.)

  7. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Guangjun Zhao

    2016-01-01

    Full Text Available Cryosection brain images in Chinese Visible Human (CVH dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel. Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  8. Prompt gamma-ray spectrometry for measurement of B-10 concentration in brain tissue and blood

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kitamura, Katsuji; Kobayashi, Toru; Matsumoto, Keizo; Hatanaka, Hiroshi.

    1993-01-01

    Boron-10 (B-10) concentration in the brain tissue and blood was measured continuously for 24 hours after injection of the B-10 compound in live rabbits using prompt gamma-ray spectrometry. Following injection of B-10 compound (Na 2 B 12 H 11 SH, 50mg/kg) dissolved in physiological saline, B-10 concentration was continuously measured in the brain tissue. Intermittently the concentration of B-10 in blood and cerebro-spinal fluid (CSF) was also measured. In 10 minutes after the injection of B-10 compound, the level of B-10 concentration reached the peak of 400-500 ppm in blood and 20-30 ppm in the normal brain tissue. In 60 minutes the level of B-10 concentration rapidly decreased and then a gradual decline was observed. The value was 15-30 ppm at 3 hours after injection, 5-10 ppm at 6 hours and 2-5 ppm at 24 hours in the blood. The concentration in the brain tissue was 3-8 ppm at 3 hours, 2-5 ppm at 6 hours and below 1.5 ppm at 24 hours. B-10 concentration in cerebro-spinal fluid was below 1 ppm. B-10 concentration was also measured in the brain tumor and blood in the human cases at boron neutron capture therapy (BNCT). These data studied by prompt gamma-ray spectrometry are very important and useful to decide the irradiation time. (author)

  9. Effects of acupuncture on tissue-oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1977-01-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by sympathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex of the animals through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture loci (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible. The effect was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase of inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes an increase of brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients. Dilatation of cerebral vascular vessels and improvement of autoregulation in the brain by acupuncture stimulation may also explain the effectiveness of acupuncture in the treatment of migraine headache.

  10. Role of Fish Oil against Physiological Disturbances in Rats Brain Induced by Sodium Fluoride and/or Gamma Rays

    International Nuclear Information System (INIS)

    Said, U.Z.; El-Tahawy, N.A.; Ibrahim, F.R.; Kamal, G.M.; EL-Sayed, T.M.

    2015-01-01

    The impacts of environmental and occupational exposure to ionizing radiation and to long-term intake of high levels of fluoride have caused health problems and increasingly alarming in recent years. Fish oil omega-3 (polyunsaturated fatty acids essential fatty acids) is found in the highest concentrations in fish oil, claim a plethora of health benefits. The objective of the present study was to evaluate the role of fish oil rich in omega-3 fatty acids on sodium fluoride (NaF) and or gamma (γ) rays in inducing neurological and biochemical disturbances in rat’s brain cerebral hemispheres. The results revealed that whole body exposure to γ- radiation at 6 Gy applied as fractionated doses (1.5 Gy x 4 times) and/or chronic receipt of NaF solution (0.13 mg/Kg/day) for a period of 28 days, significantly increased brain fluoride and calcium content, decreased level of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and induced brain oxidative stress which led to neurotransmitters dysfunction. Supplementation of treated rats with fish oil, via gavages, at a dose of 400 mg/kg body wt has significantly modulated oxidative stress and neurotransmitters alterations. It could be concluded that EPA and DHA, found in fish oil, could possibly protect brain from damaging free radicals and consequently minimize the severity of brain biochemical disturbances

  11. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats

    OpenAIRE

    Chen, Yuan; Lian, Yajun; Ma, Yunqing; Wu, Chuanjie; Zheng, Yake; Xie, Nanchang

    2017-01-01

    The expression and significance of tyrosine hydroxylase (TH) in brain tissue of rats with Parkinson's disease (PD) were explored and analyzed. A total of 120 clean-grade and healthy adult Wistar rats weighing 180–240 g were randomly divided equally into four groups according to the random number table method. Rats were sacrificed before and after the model establishment for 3, 6 or 8 weeks. The number of revolutions in rats was observed and the relative expression of TH mRNA in brain tissue w...

  12. Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Sakadžić, Sava; Fischl, Bruce; Boas, David A

    2017-12-01

    Quantification of tissue optical properties with optical coherence tomography (OCT) has proven to be useful in evaluating structural characteristics and pathological changes. Previous studies primarily used an exponential model to analyze low numerical aperture (NA) OCT measurements and obtain the total attenuation coefficient for biological tissue. In this study, we develop a systematic method that includes the confocal parameter for modeling the depth profiles of high NA OCT, when the confocal parameter cannot be ignored. This approach enables us to quantify tissue optical properties with higher lateral resolution. The model parameter predictions for the scattering coefficients were tested with calibrated microsphere phantoms. The application of the model to human brain tissue demonstrates that the scattering and back-scattering coefficients each provide unique information, allowing us to differentially identify laminar structures in primary visual cortex and distinguish various nuclei in the midbrain. The combination of the two optical properties greatly enhances the power of OCT to distinguish intricate structures in the human brain beyond what is achievable with measured OCT intensity information alone, and therefore has the potential to enable objective evaluation of normal brain structure as well as pathological conditions in brain diseases. These results represent a promising step for enabling the quantification of tissue optical properties from high NA OCT.

  13. The Neuroprotective Effect of Cornus mas on Brain Tissue of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Renata Francik

    2014-01-01

    Full Text Available Cornelian cherry (Cornus mas is a valuable source of phenolic antioxidants. Flavonoid derivatives as nonenzymatic antioxidants are important in the pathophysiology of many diseases including neurological disorders (e.g., Alzheimer’s disease or heart disease. In this study, we examined the effect of an addition of freeze-dried fruit of cornelian cherry on three types of diets: control diet, fructose diet, and diet enriched in fats (high-fat diet. This effect was studied by determining the following antioxidant parameters in both brain tissue and plasma in rats: catalase, ferric reducing ability of plasma, paraoxonase, protein carbonyl groups, and free thiol groups. Results indicate that both fructose diet and high-fat diet affect the antioxidant capacity of the organism. Furthermore, an addition of cornelian cherry resulted in increased activity of catalase in brain tissue, while in plasma it caused the opposite effect. In turn, with regard to paraoxonase activity in both brain tissue and plasma, it had a stimulating effect. Adding cornelian cherry to the tested diets increased the activity of PON in both tested tissues. Moreover, protective effect of fruits of this plant was observed in the process of oxidation of proteins by decreasing levels of protein carbonyl groups and thiol groups in brain tissue as well as in plasma.

  14. MR imaging of brain tissue changes in acute and chronic solvent intoxication

    International Nuclear Information System (INIS)

    Rinck, P.A.; Nilsen, G.; Kvaerness, J.

    1988-01-01

    Acute and chronic intoxication with solvents is found both as an occupational hazard and as self-inflicted in addicts to solvent. Objective demonstration of such brain tissue changes is difficult with conventional imaging methods, and in most cases findings are negative. In a preliminary study, the brains of eight patients (aged 28-62 years) exposed to aggressive solvents for 1-27 years were examined with magnetic resonance imaging. All of the patients showed brain atrophy of varying extent, and seven of eight patients (all except the youngest and least exposed) had brain lesions that somewhat resembled dymyelinating changes (focal and confluent periventricular and deep white matter lesions, brain stem and cerebellar lesions); one patient showed cloudy, poorly defined lesions

  15. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue

    DEFF Research Database (Denmark)

    Hanrieder, Jørg; Wicher, Grzegorz; Bergquist, Jonas

    2011-01-01

    . Complementary proteomic experiments revealed the identity of these signature proteins that were predominantly expressed in the different glial cell types, including histone H4 for oligodendrocytes and S100-A10 for astrocytes. MALDI imaging MS was performed, and signature masses were employed as molecular...... tracers for prediction of oligodendroglial and astroglial localization in brain tissue. The different cell type specific protein distributions in tissue were validated using immunohistochemistry. ICMS of intact neuroglia is a simple and straightforward approach for characterization and discrimination...

  16. Gene expression changes with age in skin, adipose tissue, blood and brain.

    Science.gov (United States)

    Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D

    2013-07-26

    Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.

  17. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.

    Science.gov (United States)

    Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping

    2015-04-01

    Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  19. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  20. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    International Nuclear Information System (INIS)

    Diniz, P.R.B.; Brum, D.G.; Santos, A. C.; Murta-Junior, L.O.; Araujo, D.B. de

    2010-01-01

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  1. Study into penetration speed during laser cutting of brain tissues.

    Science.gov (United States)

    Yilbas, Z; Sami, M; Patiroglu, T

    1998-01-01

    The applications of CO2 continuous-wave lasers in neurosurgery have become important in recent years. Theoretical considerations of laser applicability in medicine are subsequently confirmed experimentally. To obtain precision operation in the laser cutting process, further theoretical developments and experimental studies need to be conducted. Consequently, in the present study, the heat transfer mechanism taking place during laser-tissue interaction is introduced using Fourier theory. The results obtained from the theoretical model are compared with the experimental results. In connection with this, an experiment is designed to measure the penetration speed during the laser cutting process. The measurement is carried out using an optical method. It is found that both results for the penetration speed obtained from the theory and experiment are in a good agreement.

  2. Evaluating temperature changes of brain tissue due to induced heating of cell phone waves

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2018-01-01

    Full Text Available Background: Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones. This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. Methods: This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917 with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. Results: In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Conclusions: Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation.

  3. Is human blood a good surrogate for brain tissue in transcriptional studies?

    Directory of Open Access Journals (Sweden)

    van den Berg Leonard H

    2010-10-01

    Full Text Available Abstract Background Since human brain tissue is often unavailable for transcriptional profiling studies, blood expression data is frequently used as a substitute. The underlying hypothesis in such studies is that genes expressed in brain tissue leave a transcriptional footprint in blood. We tested this hypothesis by relating three human brain expression data sets (from cortex, cerebellum and caudate nucleus to two large human blood expression data sets (comprised of 1463 individuals. Results We found mean expression levels were weakly correlated between the brain and blood data (r range: [0.24,0.32]. Further, we tested whether co-expression relationships were preserved between the three brain regions and blood. Only a handful of brain co-expression modules showed strong evidence of preservation and these modules could be combined into a single large blood module. We also identified highly connected intramodular "hub" genes inside preserved modules. These preserved intramodular hub genes had the following properties: first, their expression levels tended to be significantly more heritable than those from non-preserved intramodular hub genes (p -90; second, they had highly significant positive correlations with the following cluster of differentiation genes: CD58, CD47, CD48, CD53 and CD164; third, a significant number of them were known to be involved in infection mechanisms, post-transcriptional and post-translational modification and other basic processes. Conclusions Overall, we find transcriptome organization is poorly preserved between brain and blood. However, the subset of preserved co-expression relationships characterized here may aid future efforts to identify blood biomarkers for neurological and neuropsychiatric diseases when brain tissue samples are unavailable.

  4. Characterization of the binding of the Ptychodiscus brevis neurotoxin T17 to sodium channels in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Poli, M.A.

    1985-01-01

    The lipid-soluble polyether neurotoxins isolated from the marine dinoflagellate Ptychodiscus brevis (formerly Gymnodinium breve) have been determined to bind to a unique receptor site associated with the voltage-sensitive sodium channel in rat brain synaptosomes. Reduction of the C 42 aldehyde function of T34 to the alcohol function of T17 using NaB 3 H 4 yielded 3 H-T17 with a specific activity of 15 Ci;/mmol. Using this specific probe, binding to sodium channels was measured at 4 0 CC, 22 0 C, and 37 0 C. Rosenthal analysis of the binding data yielded a K/sub d/ of 2.9 nM and B/sub max/ of 6.8 pmoles 3 H-T17 per mg of synaptosomal protein at 4 0 C. Both K/sub d/ and B/sub max/ were found to be temperature dependent. Depolarization of the synaptosomes by osmotic lysis resulted in the loss of 34% of the available receptor sites, with no decrease in binding affinity. Unlabeled T17, T34, and synthetic T17 (reduced T34) were equipotent in their ability to displace 3 H-T17 from its specific receptor site. Competition experiments using natural toxin probes specific for sites I-IV on the voltage-sensitive sodium channel demonstrate that 3 H-T17 does not bind to any of the previously-described neurotoxin receptor sites. A fifth site is proposed

  5. Chlorine and sodium perfusion and electrolyte balance in human tissue and tumours before and during neutron and photon radiotherapy

    Science.gov (United States)

    Koester, L.; Knopf, K.; Auberger, Th

    1997-08-01

    Radiotherapy with nuclear reactor fission neutrons was applied in 49 cases of pre-treated patients with superficial metastases or relapses from primary carcinoma. Measurements of the decay rates of the radiation-induced radioactivity of , and in the irradiated tissue resulted in values for the simultaneous local kinetics of chlorine and sodium, and in approximate data on the electrolyte masses. The electrolytes were present in non-exchangeable and exchangeable compartments of soft tissue. Exchange times of the intravascular to extravascular turnover and the frequencies of the exchange fractions were determined for a series of irradiations. The results have been interpreted in terms of the mean electrolyte exchange rates, of a standardized functional blood flow, and of the supply capacity of the vascular system. In the average of all cases, the regional perfusion was reduced by about 30% by irradiation up to 14 Gy (equivalent photon dose ) connected with an increase in the non-exchangeable fractions. After fractionated doses higher than 14 Gy, functional blood flow and supply capacity increased to 120%, and fixed electrolytes were removed from the irradiated tissue. Data on electrolyte kinetics and vascularity are compared with the literature.

  6. Quantitative Susceptibility Mapping of Human Brain Reflects Spatial Variation in Tissue Composition

    Science.gov (United States)

    Li, Wei; Wu, Bing; Liu, Chunlei

    2011-01-01

    Image phase from gradient echo MRI provides a unique contrast that reflects brain tissue composition variations, such as iron and myelin distribution. Phase imaging is emerging as a powerful tool for the investigation of functional brain anatomy and disease diagnosis. However, the quantitative value of phase is compromised by its nonlocal and orientation dependent properties. There is an increasing need for reliable quantification of magnetic susceptibility, the intrinsic property of tissue. In this study, we developed a novel and accurate susceptibility mapping method that is also phase-wrap insensitive. The proposed susceptibility mapping method utilized two complementary equations: (1) the Fourier relationship of phase and magnetic susceptibility; and (2) the first-order partial derivative of the first equation in the spatial frequency domain. In numerical simulation, this method reconstructed the susceptibility map almost free of streaking artifact. Further, the iterative implementation of this method allowed for high quality reconstruction of susceptibility maps of human brain in vivo. The reconstructed susceptibility map provided excellent contrast of iron-rich deep nuclei and white matter bundles from surrounding tissues. Further, it also revealed anisotropic magnetic susceptibility in brain white matter. Hence, the proposed susceptibility mapping method may provide a powerful tool for the study of brain physiology and pathophysiology. Further elucidation of anisotropic magnetic susceptibility in vivo may allow us to gain more insight into the white matter microarchitectures. PMID:21224002

  7. Prenatal binge-like alcohol exposure alters brain and systemic responses to reach sodium and water balance.

    Science.gov (United States)

    Godino, A; Abate, P; Amigone, J L; Vivas, L; Molina, J C

    2015-12-17

    The aim of the present work is to analyze how prenatal binge-like ethanol exposure to a moderate dose (2.0 g/kg; group Pre-EtOH) during gestational days (GD) 17-20 affects hydroelectrolyte regulatory responses. This type of exposure has been observed to increase ethanol consumption during adolescence (postnatal day 30-32). In this study we analyzed basal brain neural activity and basal-induced sodium appetite (SA) and renal response stimulated by sodium depletion (SD) as well as voluntary ethanol consumption as a function of vehicle or ethanol during late pregnancy. In adolescent offspring, SD was induced by furosemide and a low-sodium diet treatment (FURO+LSD). Other animals were analyzed in terms of immunohistochemical detection of Fra-like (Fra-LI-ir) protein and serotonin (5HT) and/or vasopressin (AVP). The Pre-EtOH group exhibited heightened voluntary ethanol intake and a reduction in sodium and water intake induced by SD relative to controls. Basal Na and K concentrations in urine were also reduced in Pre-EtOH animals while the induced renal response after FURO treatment was similar across prenatal treatments. However, the correlation between urine volume and water intake induced by FURO significantly varied across these treatments. At the brain level of analysis, the number of basal Fra-LI-ir was significantly increased in AVP magnocellular neurons of the paraventricular nucleus (PVN) and in 5HT neurons in the dorsal raphe nucleus (DRN) in Pre-EtOH pups. In the experimental group, we also observed a significant increase in Fra-LI along the nucleus of the solitary tract (NTS) and in the central extended amygdala nuclei. In summary, moderate Pre-EtOH exposure produces long-lasting changes in brain organization, affecting basal activity of central extended amygdala nuclei, AVP neurons and the inhibitory areas of SA such as the NTS and the 5HT-DRN. These changes possibly modulate the above described variations in basal-induced drinking behaviors and renal

  8. Polychlorinated biphenyls in adipose tissue, liver, and brain from nine stillborns of varying gestational ages

    NARCIS (Netherlands)

    Huisman, M; Muskiet, FAJ; Van Der Paauw, CG; Essed, CE; Boersma, ER

    We analyzed polychlorinated biphenyls (PCBs) in s.c. adipose tissue, liver, and brain of nine fetuses who died in utero. Their median (range) gestational ages and birth weights were 34 (17-40) wk and 2050 (162-3225) g. Three fetuses were small for gestational age. The levels of PCB congener nos.

  9. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  10. Immunological Detection of Rabies Virus in Brain Tissues of Infected Dogs by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Nyoman Mantik Astawa

    2010-12-01

    Full Text Available In order to establish an immunological detection of rabies virus in tissues of infected dogs, monoclonalantibodies (mAbs against rabies virus (RV were produced. The mAbs were produced by fusion of mielomacells with the lymphocytes of mice immunized with RV. The mAbs produced were then characterized andused for the detection of rabies virus in brain tissues of infected dogs. Six mAbs designated CC6, EG4,DG10, BB12, CA9 dan EB5 were used in this study. In Western blotting test, some mAbs reacted with 66KDa which is the glycoprotein of the virus. In immunoperoxidase, 2 mAbs (CC6 and DG10 detected RVin the brain of infected dogs. By direct immunoflourescence, flourescence isotyocyanate (FITC labelledDG10 mAbs detected RV in fresh and formaldehyde fixed brain tissues. RV was detected in 12 infecteddogs but not in normal uninfected dogs. In this study it was confirmed that rabies virus can be detected inthe brain tissues of infected dogs by monoclonal antibodies.

  11. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model.

    Science.gov (United States)

    Pavlíková, G; Foltán, R; Burian, M; Horká, E; Adámek, S; Hejčl, A; Hanzelka, T; Sedý, J

    2011-08-01

    Piezosurgery is a promising meticulous system for bone cutting, based on ultrasound microvibrations. It is thought that the impact of piezosurgery on the integrity of soft tissue is generally low, but it has not been examined critically. The authors undertook an experimental study to evaluate the brain tissue response to skull bone removal using piezosurgery compared with a conventional drilling method. In Wistar male rats, a circular bone window was drilled to the parietal bone using piezosurgery on one side and a conventional bone drill on the other side. The behavioural performance of animals was evaluated using the motor BBB test and sensory plantar test. The brains of animals were evaluated by magnetic resonance imaging (MRI) and histology. The results of MRI showed significantly increased depth and width of the brain lesion in the region of conventional drilling compared with the region where piezosurgery was used. Cresylviolet and NF 160 staining confirmed these findings. There was no significant difference in any of the behavioural tests between the two groups. In conclusion, piezosurgery is a safe method for the performance of osteotomy in close relation to soft tissue, including an extremely injury-sensitive tissue such as brain. Copyright © 2011 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Are brain and heart tissue prone to the development of thiamine deficiency?

    NARCIS (Netherlands)

    Klooster, Astrid; Larkin, James R.; Wiersema-Buist, Janneke; Gans, Reinold O. B.; Thornalley, Paul J.; Navis, Gerjan; van Goor, Harry; Leuvenink, Henri G. D.; Bakker, Stephan J. L.

    Thiamine deficiency is a continuing problem leading to beriberi and Wernicke's encephalopathy. The symptoms of thiamine deficiency develop in the heart, brain and neuronal tissue. Yet, it is unclear how rapid thiamine deficiency develops and which organs are prone to development of thiamine

  13. Mercury speciation in brain tissue of polar bears (Ursus maritimus) from the Canadian Arctic.

    Science.gov (United States)

    Krey, Anke; Kwan, Michael; Chan, Hing Man

    2012-04-01

    Methylmercury (MeHg) is a neurotoxicant that has been found at elevated concentrations in the Arctic ecosystem. Little is known about its internal dose in wildlife such as polar bears. We measured concentrations of mercury (Hg) in three different brain regions (cerebellum, frontal lobe and brain stem) of 24 polar bears collected from the Nunavik, Canada between 2000 and 2003. Speciation of Hg was measured by High Performance Liquid Chromatography coupled to Inductively Coupled Plasma Mass Spectroscopy (HPLC-ICP-MS). Concentrations of mean total Hg in brain tissue were up to 625 times lower (0.28 ± 0.07 mg kg(-1) dry weight (dw) in frontal lobe, 0.23 ± 0.07 mg kg(-1) dw in cerebellum and 0.12 ± 0.0 3mg kg(-1) dw in brain stem) than the mean total Hg concentration previously reported in polar bear liver collected from Eastern Baffin Island. Methylmercury (MeHg) accounted for 100% of the Hg found in all three brain regions analyzed. These results suggest that polar bear might reduce the toxic effects of Hg by limiting the uptake into the brain and/or decrease the rate of demethylation so that Hg can be excreted from the brain more easily. The toxicokinetics and the blood-brain-barrier mechanisms of polar bears are still unknown and further research is required. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    Directory of Open Access Journals (Sweden)

    N.M. Jadavji

    2015-06-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM. In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT, which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid.

  15. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain.

    Science.gov (United States)

    MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D

    2017-07-15

    Traumatic brain injury (TBI) has become a recent focus of biomedical research with a growing international effort targeting material characterization of brain tissue and simulations of trauma using computer models of the head and brain to try to elucidate the mechanisms and pathogenesis of TBI. The meninges, a collagenous protective tri-layer, which encloses the entire brain and spinal cord has been largely overlooked in these material characterization studies. This has resulted in a lack of accurate constitutive data for the cranial meninges, particularly under dynamic conditions such as those experienced during head impacts. The work presented here addresses this lack of data by providing for the first time, in situ large deformation material properties of the porcine dura-arachnoid mater composite under dynamic indentation. It is demonstrated that this tissue is substantially stiffer (shear modulus, μ=19.10±8.55kPa) and relaxes at a slower rate (τ 1 =0.034±0.008s, τ 2 =0.336±0.077s) than the underlying brain tissue (μ=6.97±2.26kPa, τ 1 =0.021±0.007s, τ 2 =0.199±0.036s), reducing the magnitudes of stress by 250% and 65% for strains that arise during indentation-type deformations in adolescent brains. We present the first mechanical analysis of the protective capacity of the cranial meninges using in situ micro-indentation techniques. Force-relaxation tests are performed on in situ meninges and cortex tissue, under large strain dynamic micro-indentation. A quasi-linear viscoelastic model is used subsequently, providing time-dependent mechanical properties of these neural tissues under loading conditions comparable to what is experienced in TBI. The reported data highlights the large differences in mechanical properties between these two tissues. Finite element simulations of the indentation experiments are also performed to investigate the protective capacity of the meninges. These simulations show that the meninges protect the underlying brain tissue

  16. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  17. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. An analytical model for nanoparticles concentration resulting from infusion into poroelastic brain tissue.

    Science.gov (United States)

    Pizzichelli, G; Di Michele, F; Sinibaldi, E

    2016-02-01

    We consider the infusion of a diluted suspension of nanoparticles (NPs) into poroelastic brain tissue, in view of relevant biomedical applications such as intratumoral thermotherapy. Indeed, the high impact of the related pathologies motivates the development of advanced therapeutic approaches, whose design also benefits from theoretical models. This study provides an analytical expression for the time-dependent NPs concentration during the infusion into poroelastic brain tissue, which also accounts for particle binding onto cells (by recalling relevant results from the colloid filtration theory). Our model is computationally inexpensive and, compared to fully numerical approaches, permits to explicitly elucidate the role of the involved physical aspects (tissue poroelasticity, infusion parameters, NPs physico-chemical properties, NP-tissue interactions underlying binding). We also present illustrative results based on parameters taken from the literature, by considering clinically relevant ranges for the infusion parameters. Moreover, we thoroughly assess the model working assumptions besides discussing its limitations. While not laying any claims of generality, our model can be used to support the development of more ambitious numerical approaches, towards the preliminary design of novel therapies based on NPs infusion into brain tissue. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Zika Virus RNA Replication and Persistence in Brain and Placental Tissue

    Science.gov (United States)

    Rabeneck, Demi B.; Martines, Roosecelis B.; Reagan-Steiner, Sarah; Ermias, Yokabed; Estetter, Lindsey B.C.; Suzuki, Tadaki; Ritter, Jana; Keating, M. Kelly; Hale, Gillian; Gary, Joy; Muehlenbachs, Atis; Lambert, Amy; Lanciotti, Robert; Oduyebo, Titilope; Meaney-Delman, Dana; Bolaños, Fernando; Saad, Edgar Alberto Parra; Shieh, Wun-Ju; Zaki, Sherif R.

    2017-01-01

    Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections. PMID:27959260

  20. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  1. Effects of variation in cerebral haemodynamics during aneurysm surgery on brain tissue oxygen and metabolism.

    Science.gov (United States)

    Kett-White, R; Hutchinson, P J; Czosnyka, M; al-Rawi, P; Gupta, A; Pickard, J D; Kirkpatrick, P J

    2002-01-01

    This study explores the sensitivities of multiparameter tissue gas sensors and microdialysis to variations in blood pressure, CSF drainage and to well-defined periods of ischaemia accompanying aneurysm surgery, and their predictive value for infarction. A Neurotrend sensor [brain tissue partial pressure of oxygen (PBO2), carbon dioxide (PBCO2), brain pH (pHB) and temperature] and microdialysis catheter were inserted into the appropriate vascular territory prior to craniotomy. Baseline data showed a clear correlation between PBO2 and mean arterial pressure (MAP) below a threshold of 80 mmHg. PBO2 improved with CSF drainage in 20 out of 28 (Wilcoxon: P sensors can be sensitive to acute ischaemia. Microdialysis shows potential in the detection of metabolic changes during tissue hypoxia.

  2. Distribution of soya-saponin in brain and peripheral tissue after peritoneal injection

    International Nuclear Information System (INIS)

    Zhu Shigong; Wang Jianchun; Zhang Peiyin

    1997-01-01

    125 I-soya-saponin was prepared to study the distribution of soya-saponin in body of rat, as well as in different areas of brain when peritoneal injection. The results showed that the peak value of radioactive soya-saponin in all tissue appeared at 30 min after peritoneal injection. There were higher radioactivities in brain and suprarene comparing with other organs. The highest radioactivity was seen in hypothalamus among the every brain areas. It is a first report that soyasaponin can pass through the blood brain barrier when peripheral injection. The result also supported the opinion that soyasaponin might act on the hypothalamus and central regulation of cardiovascular system. Another finding was that soyasaponin also showed a higher affinity with adrenal gland, which indicated that the soyasaponin might possess of peripheral effect for regulation of cardiovascular system as well

  3. Effect of decimeter waves on brain and surrounding tissue temperature (experimental study)

    Energy Technology Data Exchange (ETDEWEB)

    Malikova, S.N.; Malyshev, V.L.; Balakyreva, V.N.; Gorban' , L.G.

    Temperature changes in brain and surrounding tissue evoked by decimeter waves (DMW) were studied on phantoms (wood shavings wetted with physiological solution), rabbits and dogs under light nembutal anesthesia and on animal cadavers. The data obtained showed that living organisms, in contrast to phantoms, exhibited a response to heat generation of DMW; this was manifested by maintenance of the temperature at certain level or by a tendency to lower it after about a 10 min exposure to DMW. Thus it was shown that there is a functional cooling system in living organisms: increased local blood flow and a specialized cooling system for the brain. Rabbits showed considerably higher brain temperature elevation than the experimental dogs. Overall, the brain temperature upon exposure to DMW depended on the intensity and duration of DMW action as well as on the state of circulating cooling system of the animals. 4 references, 4 figures.

  4. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  5. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  6. The importance of brain banks for molecular neuropathological research: The New South Wales Tissue Resource Centre experience.

    Science.gov (United States)

    Dedova, Irina; Harding, Antony; Sheedy, Donna; Garrick, Therese; Sundqvist, Nina; Hunt, Clare; Gillies, Juliette; Harper, Clive G

    2009-01-01

    New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders.

  7. The cerebrovascular structure and brain tissue volume: a comparative study between beagle dogs and mongrel dogs

    International Nuclear Information System (INIS)

    Liu Sheng; Shi Haibin; Hu Weixing; Zu Qingquan; Lu Shanshan; Xu Xiaoquan; Sun Lei; Li Linsun

    2011-01-01

    Objective: To compare the differences of cerebrovascular structure and brain tissue volume between beagle and mongrel dogs by using angiography and MR scanning. Methods: A total of 40 dogs, including 20 beagle dogs (beagle group) and 20 mongrel dogs (mongrel group), were enrolled in this study. Under general anesthesia, all dogs were examined with cerebral angiography and MR scanning. The cerebrovascular structure was evaluated with angiography via selective catheterization of aortic arch, bilateral external cerebral arteries (ECA), maxillary arteries, internal cerebral arteries (ICA) and vertebral arteries separately. The diameters of the ICA, middle cerebral artery (MCA), rostral cerebral artery (RCA), the anastomosis channel ICA and ECA, and basilar artery (BA) were measured at the similar point of each dog. Meanwhile the volumes of the brain tissue were calculated in coronal T2 view of MR scanning. The statistical analysis was performed among the weight of dogs, the diameter of arteries and the volume of brain tissue. The differences in the diameters and brain tissue volume were compared between the two groups. Results: No obvious variations in the cerebrovascular structure and brain tissue volume were found in these dogs. One mongrel dog was excluded from this study because of the severe stenosis of ICA. The mean weight of 20 beagle dogs and 19 mongrel dogs was (12.81±1.29) kg and (12.85±1.12) kg, respectively. The diameters of the ICA, MCA, RCA, the anastomosis channel between ICA and ECA and BA in beagle group were (1.26±0.07) mm, (0.90±0.05) mm, (0.58±0.07) mm, (0.55±0.07) mm and (0.95±0.06) mm, respectively. These parameters in mongrel group were (1.27±0.07) mm, (0.92±0.05) mm, (0.59±0.06) mm, (0.67±0.07) mm and (0.94±0.05) mm, respectively. The volume of brain in two groups was (76232.33±5018.51) mm 3 and (71863.96±4626.87) mm 3 , respectively. There were no obvious correlation among the body weight, the cerebrovascular diameters and brain

  8. Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain.

    Directory of Open Access Journals (Sweden)

    Austin J Moy

    Full Text Available The microvasculature is the network of blood vessels involved in delivering nutrients and gases necessary for tissue survival. Study of the microvasculature often involves immunohistological methods. While useful for visualizing microvasculature at the µm scale in specific regions of interest, immunohistology is not well suited to visualize the global microvascular architecture in an organ. Hence, use of immunohistology precludes visualization of the entire microvasculature of an organ, and thus impedes study of global changes in the microvasculature that occur in concert with changes in tissue due to various disease states. Therefore, there is a critical need for a simple, relatively rapid technique that will facilitate visualization of the microvascular network of an entire tissue.The systemic vasculature of a mouse is stained with the fluorescent lipophilic dye DiI using a method called "vessel painting". The brain, or other organ of interest, is harvested and fixed in 4% paraformaldehyde. The organ is then sliced into 1 mm sections and optically cleared, or made transparent, using FocusClear, a proprietary optical clearing agent. After optical clearing, the DiI-labeled tissue microvasculature is imaged using confocal fluorescence microscopy and adjacent image stacks tiled together to produce a depth-encoded map of the microvasculature in the tissue slice. We demonstrated that the use of optical clearing enhances both the tissue imaging depth and the estimate of the vascular density. Using our "optical histology" technique, we visualized microvasculature in the mouse brain to a depth of 850 µm.Presented here are maps of the microvasculature in 1 mm thick slices of mouse brain. Using combined optical clearing and optical imaging techniques, we devised a methodology to enhance the visualization of the microvasculature in thick tissues. We believe this technique could potentially be used to generate a three-dimensional map of the

  9. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    Science.gov (United States)

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific

  10. Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues.

    Directory of Open Access Journals (Sweden)

    Muhammad Attique

    Full Text Available Characterization of tissues like brain by using magnetic resonance (MR images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii a segmentation method (both hard and soft segmentation to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM, white matter (WM, and cerebrospinal fluid (CSF using prior anatomical knowledge. Results have been successfully validated on human T2-weighted (T2 brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described.

  11. Effects of different concentrations of pollen extract on brain tissues of Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Mehmet Fuat Gulhan

    2014-03-01

    Full Text Available Objective: To determine the antioxidant capacities of pollen extract applied at different concentrations on biochemical parameters in brain tissues of rainbow trouts. Methods: The effective concentration of pollen was determined with some biochemical parameters in brain tissues of fish treated at various concentrations of the pollen extract (0.5, 2.5, 5, 10, 20 and 30 mg/L for 96 h. The malondialdehyde levels, total antioxidant status, total oxidant status, oxidative stress index and amounts of total free sulfhydryl groups were analyzed in fish brain. Results: The malondialdehyde levels decreased in groups of 0.5, 2.5, 5, 10, 20 and 30 mg/L pollen-treated compared to control group (P<0.05. The highest level of total antioxidant status (P<0.05 and the lowest value (P<0.05 of the total oxidant status was 10 mg/L concentration of pollen. Oxidative stress index and level of sulfhydryl groups showed lowest values (P<0.05 in 10 mg/L pollen treated group compared with control group. Conclusions: To apply the pollen to fish reduces the detrimental effects and modulates oxidative status via activating antioxidant defense systems at brain tissue. As a result, pollen can be added up to 10 mg/L to the medium of rainbow trout to improve health of fish.

  12. The average baboon brain: MRI templates and tissue probability maps from 89 individuals.

    Science.gov (United States)

    Love, Scott A; Marie, Damien; Roth, Muriel; Lacoste, Romain; Nazarian, Bruno; Bertello, Alice; Coulon, Olivier; Anton, Jean-Luc; Meguerditchian, Adrien

    2016-05-15

    The baboon (Papio) brain is a remarkable model for investigating the brain. The current work aimed at creating a population-average baboon (Papio anubis) brain template and its left/right hemisphere symmetric version from a large sample of T1-weighted magnetic resonance images collected from 89 individuals. Averaging the prior probability maps output during the segmentation of each individual also produced the first baboon brain tissue probability maps for gray matter, white matter and cerebrospinal fluid. The templates and the tissue probability maps were created using state-of-the-art, freely available software tools and are being made freely and publicly available: http://www.nitrc.org/projects/haiko89/ or http://lpc.univ-amu.fr/spip.php?article589. It is hoped that these images will aid neuroimaging research of the baboon by, for example, providing a modern, high quality normalization target and accompanying standardized coordinate system as well as probabilistic priors that can be used during tissue segmentation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Elemental analysis of the frontal lobe of 'normal' brain tissue and that affected by Alzheimer's disease

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    'Normal' brain tissue and brain tissue affected by Alzheimer's disease has been taken from the frontal lobe of both hemispheres and their elemental compositions in terms of major, minor and trace elements compared. Brain samples were obtained from the MRC Alzheimer's Disease Brain Bank, London. 25 samples were taken from 18 individuals (5 males and 13 females) of mean age 79.9 ± 7.3 years with pathologically confirmed Alzheimer's disease and 26 samples from 15 individuals (8 males and 7 females) of mean age 71.8 ± 13.0 years with no pathological sings of Alzheimer's disease ('normals'). The elemental concentration of the samples were determined by the techniques of Rutherford backscattering (RBS) analysis, particle induced X-ray emission (PIXE) analysis and instrumental neutron activation analysis (INAA). Na, Mg, Al, Cl, K, Sc, Fe, Zn, Se, Br, Rb and Cs were detected by INAA and significant differences in concentrations were found between concentrations in normal and Alzheimer tissue for the elements. Na, Cl, K, Se, Br and Rb, P, S, Cl, K, Ca, Fe, Zn and Cd were detected by PIXE analysis and significant differences found for the elements P, S, Cl, K and Ca. (author)

  14. Decomposing the Hounsfield unit: probabilistic segmentation of brain tissue in computed tomography.

    Science.gov (United States)

    Kemmling, A; Wersching, H; Berger, K; Knecht, S; Groden, C; Nölte, I

    2012-03-01

    The aim of this study was to present and evaluate a standardized technique for brain segmentation of cranial computed tomography (CT) using probabilistic partial volume tissue maps based on a database of high resolution T1 magnetic resonance images (MRI). Probabilistic tissue maps of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) were derived from 600 normal brain MRIs (3.0 Tesla, T1-3D-turbo-field-echo) of 2 large community-based population studies (BiDirect and SEARCH Health studies). After partial tissue segmentation (FAST 4.0), MR images were linearly registered to MNI-152 standard space (FLIRT 5.5) with non-linear refinement (FNIRT 1.0) to obtain non-binary probabilistic volume images for each tissue class which were subsequently used for CT segmentation. From 150 normal cerebral CT scans a customized reference image in standard space was constructed with iterative non-linear registration to MNI-152 space. The inverse warp of tissue-specific probability maps to CT space (MNI-152 to individual CT) was used to decompose a CT image into tissue specific components (GM, WM, CSF). Potential benefits and utility of this novel approach with regard to unsupervised quantification of CT images and possible visual enhancement are addressed. Illustrative examples of tissue segmentation in different pathological cases including perfusion CT are presented. Automated tissue segmentation of cranial CT images using highly refined tissue probability maps derived from high resolution MR images is feasible. Potential applications include automated quantification of WM in leukoaraiosis, CSF in hydrocephalic patients, GM in neurodegeneration and ischemia and perfusion maps with separate assessment of GM and WM.

  15. Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats.

    Science.gov (United States)

    Vasatkova, Anna; Krizova, Sarka; Krystofova, Olga; Adam, Vojtech; Zeman, Ladislav; Beklova, Miroslava; Kizek, Rene

    2009-01-01

    The aim of this study is to determine level of metallothioneins (MTs) in brain tissues of rats administered by feed mixtures with different content of mouldy wheat or fungi. Selected male laboratory rats of Wistar albino at age of 28 days were used in our experiments. The rats were administered by feed mixtures with different content of vitamins, naturally mouldy wheat or fungi for 28 days. At the very end of the experiment, the animals were put to death and brains were sampled. MT level was determined by differential pulse voltammetry Brdicka reaction. We found that MTs' level in brain tissues from rats administered by standard feed mixtures was significantly higher compared to the level of MTs in rats supplemented by vitamins. Further we studied the effect of supplementation of naturally mouldy wheat on MTs level in rats. In mouldy wheat we detected the presence of following fungi species: Mucor spp., Absidia spp., Penicillium spp., Aspergillus spp. and Fusarium spp. Moreover we also identified and quantified following mycotoxins - deoxynivalenol, zearalenone, T2-toxin and aflatoxins. Level of MTs determined in rats treated with 33 or 66% of mouldy wheat was significantly lower compared to control ones. On the other hand rats treated with 100% of mouldy wheat had less MTs but not significantly. Supplementation of vitamins to rats fed by mouldy wheat had adverse effect on MTs level compared to rats with no other supplementation by vitamins. Moreover vitamins supplementation has no effect on MTs level in brain tissues of rats treated or non-treated with Ganoderma lucidum L. Both mycotoxins and vitamins have considerable effect on level of MTs in brain tissues. It can be assumed that the administered substances markedly influence redox metabolism, which could negatively influence numerous biochemical pathways including those closely related with MTs.

  16. Systemic delivery of blood-brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue.

    Science.gov (United States)

    Saucier-Sawyer, Jennifer K; Deng, Yang; Seo, Young-Eun; Cheng, Christopher J; Zhang, Junwei; Quijano, Elias; Saltzman, W Mark

    2015-01-01

    Delivery of therapeutic agents to the central nervous system is a significant challenge, hindering progress in the treatment of diseases such as glioblastoma. Due to the presence of the blood-brain barrier (BBB), therapeutic agents do not readily transverse the brain endothelium to enter the parenchyma. Previous reports suggest that surface modification of polymer nanoparticles (NPs) can improve their ability to cross the BBB, but it is unclear whether the observed enhancements in transport are large enough to enhance therapy. In this study, we synthesized two degradable polymer NP systems surface-modified with ligands previously suggested to improve BBB transport, and tested their ability to cross the BBB after intravenous injection in mice. All the NP preparations were able to cross the BBB, although generally in low amounts (brain uptake (∼0.8% of the injected dose): a block copolymer of polylactic acid and hyperbranched polyglycerol, surface modified with adenosine (PLA-HPG-Ad). PLA-HPG-Ad NPs provided controlled release of camptothecin, killing U87 glioma cells in culture. When administered intravenously in mice with intracranial U87 tumors, they failed to increase survival. These results suggest that enhancing NP transport across the BBB does not necessarily yield proportional pharmacological effects.

  17. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Science.gov (United States)

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO2 changes in male C57BL/6 mice (16–20g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO2 to 64%. More importantly, pO2 did not recover fully to control levels even 24 hrs after administration of a single dose of METH. and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO2, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. PMID:24412707

  18. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor

    2012-01-01

    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  19. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    Science.gov (United States)

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  20. Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther

    2015-12-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.

  1. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  2. Can fruits and vegetables be used as substitute phantoms for normal human brain tissues in magnetic resonance imaging?

    International Nuclear Information System (INIS)

    Teramoto, Daisuke; Ushioda, Yuichi; Sasaki, Ayaka; Sakurai Yuki; Nagahama, Hiroshi; Nakamura, Manami; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-01-01

    Various custom-made phantoms designed to optimize magnetic resonance imaging (MRI) sequences have been created and subsequently reported in Japanese Society of Radiological Technology (JSRT). However, custom-made phantoms that correctly match the T 1 -value and T 2 -values of human brain tissue (gray matter and white matter) cannot be made easily or quickly. The aim of this project was to search for alternative materials, such as fruits and vegetables, for optimizing MRI sequences. The following eight fruits and vegetables were investigated: apple, tomato, melon, apple mango (Mangifera indica), banana, avocado, peach, and eggplant. Their potential was studied for use in modeling phantoms of normal human brain tissues. MRI (T 1 - and T 2 -weighted sequences) was performed on the human brain and the fruits and vegetables using various concentrations of contrast medium (gadolinium) in the same size tubes as the custom-made phantom. The authors compared the signal intensity (SI) in human brain tissue (gray matter and white matter) with that of the fruits and the custom-made phantom. The T 1 and T 2 values were measured for banana tissue and compared with those for human brain tissue in the literature. Our results indicated that banana tissue is similar to human brain tissue (both gray matter and white matter). Banana tissue can thus be employed as an alternative phantom for the human brain for the purpose of MRI. (author)

  3. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    International Nuclear Information System (INIS)

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O 2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O 2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO 2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO 2 changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO 2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO 2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO 2 to 64%. More importantly, pO 2 did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO 2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO 2 , which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO 2 in vivo after METH administration by EPR oximetry. • pO 2 was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO 2 did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO 2 may be associated with a decrease in CBF. • Administration of methamphetamine may lead to hypoxic

  4. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: jmweaver@salud.unm.edu [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  5. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    Science.gov (United States)

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  6. Research on terahertz properties of rat brain tissue sections during dehydration

    Science.gov (United States)

    Cui, Gangqiang; Liang, Jianfeng; Zhao, Hongwei; Zhao, Xianghui; Chang, Chao

    2018-01-01

    Biological tissue sections are always kept in a system purged with dry nitrogen for the measurement of terahertz spectrum. However, the injected nitrogen will cause dehydration of tissue sections, which will affect the accuracy of spectrum measurement. In this paper, terahertz time-domain spectrometer is used to measure the terahertz spectra of rat brain tissue sections during dehydration. The changes of terahertz properties, including terahertz transmittance, refractive index and extinction coefficient during dehydration are also analyzed. The amplitudes of terahertz time-domain spectra increase gradually during the dehydration process. Besides, the terahertz properties show obvious changes during the dehydration process. All the results indicate that the injected dry nitrogen has a significant effect on the terahertz spectra and properties of tissue sections. This study contributes to further research and application of terahertz technology in biomedical field.

  7. Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea

    Directory of Open Access Journals (Sweden)

    Torres Marta

    2010-01-01

    Full Text Available Abstract Background Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2 during repetitive apneas translate into oxygen partial pressure (PtO2 in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods Twenty-four male Sprague-Dawley rats (300-350 g were used. Sixteen rats were anesthetized and non-invasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]. By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011. In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p 2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of

  8. Cerebral oxygenation in contusioned vs. nonlesioned brain tissue: monitoring of PtiO2 with Licox and Paratrend.

    Science.gov (United States)

    Sarrafzadeh, A S; Kiening, K L; Bardt, T F; Schneider, G H; Unterberg, A W; Lanksch, W R

    1998-01-01

    Brain tissue PO2 in severely head injured patients was monitored in parallel with two different PO2-microsensors (Licox and Paratrend). Three different locations of sensor placement were chosen: (1) both catheters into non lesioned tissue (n = 3), (2) both catheters into contusioned tissue (n = 2), and (3) one catheter (Licox) into pericontusional versus one catheter (Paratrend) into non lesioned brain tissue (n = 2). Mean duration of PtiO2-monitoring with both microsensors in parallel was 68.1 hours. Brain tissue PO2 varied when measured in lesioned and nonlesioned tissue. In non lesioned tissue both catheters closely correlated (delta Licox/Paratrend: mean PtiO2 delta lesioned/non lesioned: mean PtiO2: 10.3 mm Hg). In contusioned brain tissue PtiO2 was always below the "hypoxic threshold" of 10 mm Hg, independent of the type of microsensor used. During a critical reduction in cerebral perfusion pressure (PO2, only increased PtiO2 when measured in pericontusional and nonlesioned brain. To recognize critical episodes of hypoxia or ischemia, PtiO2-monitoring of cerebral oxygenation is recommended in nonlesioned brain tissue.

  9. Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy

    Science.gov (United States)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Kowalski, Rafał; Palus, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka

    2018-01-01

    Absence epilepsy is the neurological disorder characterized by the pathological spike-and wave discharges present in the electroencephalogram, accompanying a sudden loss of consciousness. Experiments were performed on brain slices obtained from young male WAG/Rij rats (2-3 weeks old), so that they were sampled before the appearance of brain-damaging seizures symptoms. Two differing brain areas of the rats' brain tissue were studied: the somatosensory cortex (Sc) and the dorsal lateral geniculate nucleus of the thalamus (DLG). The Raman spectra of the fresh brain scraps, kept during measurements in artificial cerebrospinal fluid, were collected using as an excitation source 442 nm, 514.5 nm, 785 nm and 1064 nm laser line. The average spectra were analyzed by 2D correlation method regarding laser line as an external perturbation. In 2D synchronous spectra positive auto-peaks corresponding to the Cdbnd C stretching and amide I band vibrations show maxima at 1660 cm- 1 and 1662 cm- 1 for Sc and DLG, respectively. The prominent auto-peak at 2937 cm- 1, originated from the CH3 mode in DLG brain area, seems to indicate the importance of methylation, considered to be significant in epileptogenesis. Synchronous and asynchronous correlations peaks, glutamic acid and gamma-aminobutyric acid (GABA), appear in Sc and DLG, respectively. In the 1730-1600 cm- 1 range occur cross-peaks which appearance might be triggered by glial fibrillary acidic protein (GFAP) activation.

  10. Characterization of the binding of the Ptychodiscus brevis neurotoxin T17 to sodium channels in rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Poli, M.A.

    1985-01-01

    The lipid-soluble polyether neurotoxins isolated from the marine dinoflagellate Ptychodiscus brevis (formerly Gymnodinium breve) have been determined to bind to a unique receptor site associated with the voltage-sensitive sodium channel in rat brain synaptosomes. Reduction of the C/sub 42/ aldehyde function of T34 to the alcohol function of T17 using NaB/sup 3/H/sub 4/ yielded /sup 3/H-T17 with a specific activity of 15 Ci;/mmol. Using this specific probe, binding to sodium channels was measured at 4/sup 0/CC, 22/sup 0/C, and 37/sup 0/C. Rosenthal analysis of the binding data yielded a K/sub d/ of 2.9 nM and B/sub max/ of 6.8 pmoles /sup 3/H-T17 per mg of synaptosomal protein at 4/sup 0/C. Both K/sub d/ and B/sub max/ were found to be temperature dependent. Depolarization of the synaptosomes by osmotic lysis resulted in the loss of 34% of the available receptor sites, with no decrease in binding affinity. Unlabeled T17, T34, and synthetic T17 (reduced T34) were equipotent in their ability to displace /sup 3/H-T17 from its specific receptor site. Competition experiments using natural toxin probes specific for sites I-IV on the voltage-sensitive sodium channel demonstrate that /sup 3/H-T17 does not bind to any of the previously-described neurotoxin receptor sites. A fifth site is proposed.

  11. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child.

    Science.gov (United States)

    Cui, Shihai; Li, Haiyan; Li, Xiangnan; Ruan, Jesse

    2015-01-01

    Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE) method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT) data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  12. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child

    Directory of Open Access Journals (Sweden)

    Shihai Cui

    2015-01-01

    Full Text Available Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  13. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue.

    Science.gov (United States)

    Tedford, Clark E; DeLapp, Scott; Jacques, Steven; Anders, Juanita

    2015-04-01

    Photobiomodulation (PBM) also known as low-level light therapy has been used successfully for the treatment of injury and disease of the nervous system. The use of PBM to treat injury and diseases of the brain requires an in-depth understanding of light propagation through tissues including scalp, skull, meninges, and brain. This study investigated the light penetration gradients in the human cadaver brain using a Transcranial Laser System with a 30 mm diameter beam of 808 nm wavelength light. In addition, the wavelength-dependence of light scatter and absorbance in intraparenchymal brain tissue using 660, 808, and 940 nm wavelengths was investigated. Intact human cadaver heads (n = 8) were obtained for measurement of light propagation through the scalp/skull/meninges and into brain tissue. The cadaver heads were sectioned in either the transverse or mid-sagittal. The sectioned head was mounted into a cranial fixture with an 808 nm wavelength laser system illuminating the head from beneath with either pulsed-wave (PW) or continuous-wave (CW) laser light. A linear array of nine isotropic optical fibers on a 5 mm pitch was inserted into the brain tissue along the optical axis of the beam. Light collected from each fiber was delivered to a multichannel power meter. As the array was lowered into the tissue, the power from each probe was recorded at 5 mm increments until the inner aspect of the dura mater was reached. Intraparenchymal light penetration measurements were made by delivering a series of wavelengths (660, 808, and 940 nm) through a separate optical fiber within the array, which was offset from the array line by 5 mm. Local light penetration was determined and compared across the selected wavelengths. Unfixed cadaver brains provide good anatomical localization and reliable measurements of light scatter and penetration in the CNS tissues. Transcranial application of 808 nm wavelength light penetrated the scalp, skull, meninges, and brain

  14. The Effects on Antioxidant Enzyme Systems in Rat Brain Tissues of Lead Nitrate and Mercury Chloride

    OpenAIRE

    Baş, Hatice; Kalender, Suna; Karaboduk, Hatice; Apaydın, Fatma

    2014-01-01

    The present study was undertaken to evaluate the effects of lead nitrate and mercury chloride in brain tissues of Wistar rats. Mercury chloride (0.02 mg/kg bw) and lead nitrate (45 mg/kg bw) were administered orally for 28 days rats. The mercury chloride and lead nitrate treated animals were exhibited a significant inhibition of superoxide dismutase, catalase, glutation peroxidase and glutathione-S-transferase activities and increasing of malondialdehyde levels. In our present study mercury c...

  15. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  16. [Correlation between RNA Expression Level and Early PMI in Human Brain Tissue].

    Science.gov (United States)

    Lü, Y H; Ma, K J; Li, Z H; Gu, J; Bao, J Y; Yang, Z F; Gao, J; Zeng, Y; Tao, L; Chen, L

    2016-08-01

    To explore the correlation between the expression levels of several RNA markers in human brain tissue and early postmortem interval (PMI). Twelve individuals with known PMI (range from 4.3 to 22.5 h) were selected and total RNA was extracted from brain tissue. Eight commonly used RNA markers were chosen including β -actin, GAPDH, RPS29, 18S rRNA, 5S rRNA, U6 snRNA, miRNA-9 and miRNA-125b, and the expression levels were detected in brain tissue by real-time fluorescent quantitative PCR. The internal reference markers with stable expression in early PMI were screened using geNorm software and the relationship between its expression level and some relevant factors such as age, gender and cause of death were analyzed. RNA markers normalized by internal reference were inserted into the mathematic model established by previous research for PMI estimation using R software. Model quality was judged by the error rate calculated with estimated PMI. 5S rRNA, miRNA-9 and miRNA-125b showed quite stable expression and their expression levels had no relation with age, gender and cause of death. The error rate of estimated PMI using β -actin was 24.6%, while GAPDH was 41.0%. 5S rRNA, miRNA-9 and miRNA-125b are suitable as internal reference markers of human brain tissue owing to their stable expression in early PMI. The expression level of β -actin correlates well with PMI, which can be used as an additional index for early PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine

  17. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    Science.gov (United States)

    2014-09-29

    objective of this project is to determine the conditions conducive for cavitation in cerebrospinal fluid (CSF) and corresponding tissue injury in 2-D brain...the radius of an isolated spherical bubble in an infinite, incompressible liquid is given by Where, R is the instantaneous bubble radius, which can...by the pressure transducer placed in the test chamber, and PR is the pressure in the liquid at the boundary of the bubble. The measurable bubble

  18. Determination of nitrosourea compounds in brain tissue by gas chromatography and electron capture detection.

    Science.gov (United States)

    Hassenbusch, S J; Colvin, O M; Anderson, J H

    1995-07-01

    A relatively simple, high-sensitivity gas chromatographic assay is described for nitrosourea compounds, such as BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] and MeCCNU [1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea], in small biopsy samples of brain and other tissues. After extraction with ethyl acetate, secondary amines in BCNU and MeCCNU are derivatized with trifluoroacetic anhydride. Compounds are separated and quantitated by gas chromatography using a capillary column with temperature programming and an electron capture detector. Standard curves of BCNU indicate a coefficient of variance of 0.066 +/- 0.018, a correlation coefficient of 0.929, and an extraction efficiency from whole brain of 68% with a minimum detectable amount of 20 ng in 5-10 mg samples. The assay has been facile and sensitive in over 1000 brain biopsy specimens after intravenous and intraarterial infusions of BCNU.

  19. Preclinical pharmacokinetics, tissue distribution and plasma protein binding of sodium (±-5-bromo-2-(α-hydroxypentyl benzoate (BZP, an innovative potent anti-ischemic stroke agent

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-08-01

    Full Text Available Sodium (±-5-bromo-2-(α-hydroxypentyl benzoate (BZP is a potential cardiovascular drug and exerts potent neuroprotective effect against transient and long-term ischemic stroke in rats. BZP could convert into 3-butyl-6-bromo-1(3H-isobenzofuranone (Br-NBP in vitro and in vivo. However, the pharmacokinetic profiles of BZP and Br-NBP still have not been evaluated. For the purpose of investigating the pharmacokinetic profiles, tissue distribution and plasma protein binding of BZP and Br-NBP, a rapid, sensitive and specific method based on liquid chromatography coupled to mass spectrometry (LC-MS/MS has been developed for determination of BZP and Br-NBP in biological samples. The results indicated that BZP and Br-NBP showed a short elimination half-life, and pharmacokinetic profile in rats (3, 6 and 12 mg/kg; i.v. and beagle dogs (1, 2 and 4 mg/kg; i.v.gtt were obtained after single dosing of BZP. After multiple dosing of BZP, there was no significant accumulation of BZP and Br-NBP in the plasma of rats and beagle dogs. Following i.v. single dose (6 mg/kg to rats, BZP and Br-NBP were distributed rapidly into all tissues examined, with the highest concentrations of BZP and Br-NBP in lung and kidney, respectively. The brain distribution of Br-NBP in middle cerebral artery occlusion (MCAO rats was more than in normal rats (P<0.05. The plasma protein binding degree of BZP at three concentrations (8000, 20000 and 80000 ng/mL from rat, beagle dog and human plasma were 98.1~98.7%, 88.9~92.7% and 74.8%~83.7% respectively. In conclusion, both BZP and Br-NBP showed short half-life, good dose-linear pharmacokinetic profile, wide tissue distribution and different degree protein binding to various species plasma. This was the first preclinical pharmacokinetic investigation of BZP and Br-NBP in both rats and beagle dogs, which provided vital guidance for further preclinical research and the subsequent clinical trials.

  20. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  1. 2D correlation Raman microspectroscopy of chosen parts of rat's brain tissue

    Science.gov (United States)

    Zięba-Palus, J.; Wesełucha-Birczyńska, A.; Sacharz, J.; Lewandowski, M. H.; Palus, K.; Chrobok, Ł.; Kowalski, R.; Moskal, P.; Birczyńska, M.; Sozańska, Agnieszka

    2017-11-01

    Raman spectra of two areas of Wistar rat brain tissue, tissue that are linked functionally to one another -the somatosensory cortex (Sc) and the dorsolateral geniculate nucleus of the thalamus (DLG)- excited with 442 nm, 514.5 nm, 785 nm and 1064 nm laser lines- were studied. No fixation method was used to preserve samples taken from the precisely defined anatomical areas of the brain. The brain slides were kept in artificial cerebrospinal fluid during the measurements. Averaged spectra were analyzed using the 2D correlation method. The varying wavelength/energy of the excitation laser was regarded as an external stimulus. 2D correlation analysis resolved differences between Sc and DLG in the range of 1800-1000 cm-1 and also in the hetero-spectral regions of about 1800-1200 cm-1 and 3100-2500 cm-1. Auto-peaks at 1659 cm-1 and 1666 cm-1 characterize the phase of the constituent lipid clusters with proteins and cholesterol in Sc and cholesterol in DLG, respectively. Appearing cross-peaks indicate the correlations with different phospholipids structures and protein bands and also cholesterol for Sc and DLG, respectively. Asynchronous spectra distinguish between areas of the brain due to the presence of neurotransmitters.

  2. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  3. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.

    Science.gov (United States)

    Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G

    2016-01-01

    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.

  4. Brain Tissue PO2 Measurement During Normoxia and Hypoxia Using Two-Photon Phosphorescence Lifetime Microscopy.

    Science.gov (United States)

    Xu, Kui; Boas, David A; Sakadžić, Sava; LaManna, Joseph C

    2017-01-01

    Key to the understanding of the principles of physiological and structural acclimatization to changes in the balance between energy supply (represented by substrate and oxygen delivery, and mitochondrial oxidative phosphorylation) and energy demand (initiated by neuronal activity) is to determine the controlling variables, how they are sensed and the mechanisms initiated to maintain the balance. The mammalian brain depends completely on continuous delivery of oxygen to maintain its function. We hypothesized that tissue oxygen is the primary sensed variable. In this study two-photon phosphorescence lifetime microscopy (2PLM) was used to determine and define the tissue oxygen tension field within the cerebral cortex of mice to a cortical depth of between 200-250 μm under normoxia and acute hypoxia (FiO 2  = 0.10). High-resolution images can provide quantitative distributions of oxygen and intercapillary oxygen gradients. The data are best appreciated by quantifying the distribution histogram that can then be used for analysis. For example, in the brain cortex of a mouse, at a depth of 200 μm, tissue oxygen tension was mapped and the distribution histogram was compared under normoxic and mild hypoxic conditions. This powerful method can provide for the first time a description of the delivery and availability of brain oxygen in vivo.

  5. Diagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disorders

    Energy Technology Data Exchange (ETDEWEB)

    Lunsing, Roelineke J.; Strating, Kim [University Medical Centre Groningen, University of Groningen, Department of Child Neurology, Groningen (Netherlands); Koning, Tom J. de [University Medical Centre Groningen, University of Groningen, Department of Pediatric Metabolic Diseases, Groningen (Netherlands); Sijens, Paul E. [University Medical Centre Groningen, University of Groningen, Department of Radiology, Groningen (Netherlands)

    2017-03-15

    Magnetic resonance spectroscopy (MRS) of children with or without neurometabolic disease is used for the first time for quantitative assessment of brain tissue lactate signals, to elaborate on previous suggestions of MRS-detected lactate as a marker of mitochondrial disease. Multivoxel MRS of a transverse plane of brain tissue cranial to the ventricles was performed in 88 children suspected of having neurometabolic disease, divided into 'definite' (n = 17, ≥1 major criteria), 'probable' (n = 10, ≥2 minor criteria), 'possible' (n = 17, 1 minor criterion) and 'unlikely' mitochondrial disease (n = 44, none of the criteria). Lactate levels, expressed in standardized arbitrary units or relative to creatine, were derived from summed signals from all voxels. Ten 'unlikely' children with a normal neurological exam served as the MRS reference subgroup. For 61 of 88 children, CSF lactate values were obtained. MRS lactate level (>12 arbitrary units) and the lactate-to-creatine ratio (L/Cr >0.22) differed significantly between the definite and the unlikely group (p = 0.015 and p = 0.001, respectively). MRS L/Cr also differentiated between the probable and the MRS reference subgroup (p = 0.03). No significant group differences were found for CSF lactate. MRS-quantified brain tissue lactate levels can serve as diagnostic marker for identifying mitochondrial disease in children. (orig.)

  6. Diagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disorders

    International Nuclear Information System (INIS)

    Lunsing, Roelineke J.; Strating, Kim; Koning, Tom J. de; Sijens, Paul E.

    2017-01-01

    Magnetic resonance spectroscopy (MRS) of children with or without neurometabolic disease is used for the first time for quantitative assessment of brain tissue lactate signals, to elaborate on previous suggestions of MRS-detected lactate as a marker of mitochondrial disease. Multivoxel MRS of a transverse plane of brain tissue cranial to the ventricles was performed in 88 children suspected of having neurometabolic disease, divided into 'definite' (n = 17, ≥1 major criteria), 'probable' (n = 10, ≥2 minor criteria), 'possible' (n = 17, 1 minor criterion) and 'unlikely' mitochondrial disease (n = 44, none of the criteria). Lactate levels, expressed in standardized arbitrary units or relative to creatine, were derived from summed signals from all voxels. Ten 'unlikely' children with a normal neurological exam served as the MRS reference subgroup. For 61 of 88 children, CSF lactate values were obtained. MRS lactate level (>12 arbitrary units) and the lactate-to-creatine ratio (L/Cr >0.22) differed significantly between the definite and the unlikely group (p = 0.015 and p = 0.001, respectively). MRS L/Cr also differentiated between the probable and the MRS reference subgroup (p = 0.03). No significant group differences were found for CSF lactate. MRS-quantified brain tissue lactate levels can serve as diagnostic marker for identifying mitochondrial disease in children. (orig.)

  7. The Protective Effects of Vitamins C and E on The Oxidative Stress Induced by Sodium Metabisulfite on The Kidney Tissue in Adult Rats

    Directory of Open Access Journals (Sweden)

    Abdolnabi Peyravi

    2016-09-01

    Full Text Available Background & Objective: Sodium metabisulfite which is used as a food preservative in the food industry, has adverse effects on body organs such as kidney and body grouth rate. In this research we have studied the protective effect of Vitamin C and E as antioxidants, on the kidney tissue damage after the consumption of Sodium metabisulfite. Materials & methods: Forty-eight Adult male Wistar rats of 150-200 grams were divided into 6 groups of 8 each. Rats in the experimental groups received Sodium metabisulfite (520 mg / kg body weight by gavage feeding for 30 consecutive days. Also during this period, the experimental groups 2 and 3 received a daily dose of 100 mg / kg vitamins C and E, Respectively. The experimental group 4 received 50 mg / kg vitamin C plus 50 mg / kg of vitamin E by the same root. Control group received only normal diet and water. The placebo received vehicle (drug solvent as well as normal diet and water. At the end of the exprimental period the body growth rate was measured between the groups. The histhopatological examination was performed on the kidney tissue sections. by light microscope Results: The results showed sodium metabisulfite in daily dietary could lead to the kidney tissue damage and reduced body weight in rats (p <0.05. However, vitamins C and E can reduce the kidney tissue damage and allow a normal growth weight (p <0.05. Conclusion: With this study we could conclude that the antioxidant effect of that vitamins C and E have a protective effect on renal damage induced by sodium metabisulfite consumption

  8. Sex-specific differences in transcriptome profiles of brain and muscle tissue of the tropical gar.

    Science.gov (United States)

    Cribbin, Kayla M; Quackenbush, Corey R; Taylor, Kyle; Arias-Rodriguez, Lenin; Kelley, Joanna L

    2017-04-07

    The tropical gar (Atractosteus tropicus) is the southernmost species of the seven extant species of gar fishes in the world. In Mexico and Central America, the species is an important food source due to its nutritional quality and low price. Despite its regional importance and increasing concerns about overexploitation and habitat degradation, basic genetic information on the tropical gar is lacking. Determining genetic information on the tropical gar is important for the sustainable management of wild populations, implementation of best practices in aquaculture settings, evolutionary studies of ancient lineages, and an understanding of sex-specific gene expression. In this study, the transcriptome of the tropical gar was sequenced and assembled de novo using tissues from three males and three females using Illumina sequencing technology. Sex-specific and highly differentially expressed transcripts in brain and muscle tissues between adult males and females were subsequently identified. The transcriptome was assembled de novo resulting in 80,611 transcripts with a contig N50 of 3,355 base pairs and over 168 kilobases in total length. Male muscle, brain, and gonad as well as female muscle and brain were included in the assembly. The assembled transcriptome was annotated to identify the putative function of expressed transcripts using Trinotate and SwissProt, a database of well-annotated proteins. The brain and muscle datasets were then aligned to the assembled transcriptome to identify transcripts that were differentially expressed between males and females. The contrast between male and female brain identified 109 transcripts from 106 genes that were significantly differentially expressed. In the muscle comparison, 82 transcripts from 80 genes were identified with evidence for significant differential expression. Almost all genes identified as differentially expressed were sex-specific. The differentially expressed transcripts were enriched for genes involved in

  9. Photothermal effect of infrared lasers on ex vivo lamb brain tissues

    Science.gov (United States)

    Özgürün, Baturay; Gülsoy, Murat

    2018-02-01

    Here, the most suitable infrared laser for a neurosurgery operation is suggested, among 1940-nm thulium fiber, 1470-nm diode, 1070-nm ytterbium fiber and 980-nm diode lasers. Cortical and subcortical ex-vivo lamb brain tissues are exposed to the laser light with the combinations of some laser parameters such as output power, energy density, operation mode (continuous and pulsed-modulated) and operation time. In this way, the greatest ablation efficiency associated with the best neurosurgical laser type can be defined. The research can be divided into two parts; pre-dosimetry and dosimetry studies. The former is used to determine safe operation zones for the dosimetry study by defining coagulation and carbonization onset times for each of the brain tissues. The latter is the main part of this research, and both tissues are exposed to laser irradiation with various energy density levels associated with the output power and operation time. In addition, photo-thermal effects are compared for two laser operation modes, and then coagulation and ablation diameters to calculate the ablation efficiency are measured under a light microscope. Consequently, results are compared graphically and statistically, and it is found that thulium and 1470-nm diode lasers can be utilized as subcortical and cortical tissue ablator devices, respectively.

  10. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    Science.gov (United States)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  11. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis

    International Nuclear Information System (INIS)

    Baczko, K.; Liebert, U.G.; Billeter, M.; Cattaneo, R.; Budka, H.; Ter Meulen, V.

    1986-01-01

    The persistence of measles virus in selected areas of the brains of four patients with subacute sclerosing panencephalitis (SSPE) was characterized by immunohistological and biochemical techniques. The five measles virus structural proteins were never simultaneously detectable in any of the bran sections. Nucleocapsid proteins and phosphoproteins were found in every diseased brain area, whereas hemagglutinin protein was detected in two cases, fusion protein was detected in three cases, and matrix protein was detected in only one case. Also, it could be shown that the amounts of measles virus RNA in the brains differed from patient to patient and in the different regions investigated. In all patients, plus-strand RNAs specific for these five viral genes could be detected. However, the amounts of fusion and hemagglutinin mRNAs were low compared with the amounts in lytically infected cells. The presence of particular measles virus RNAs in SSPE-infected brains did not always correlate with mRNA activity. In in vitro translations, the matrix protein was produced in only one case, and the hemagglutinin protein was produced in none. These results indicate that measles virus persistence in SSPE is correlated with different defects of several genes which probably prevent assembly of viral particles in SSPE-infected brain tissue

  12. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development. PMID:26848844

  13. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    Science.gov (United States)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain

  14. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    Science.gov (United States)

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  15. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    International Nuclear Information System (INIS)

    Baglan, R.J.; Marks, J.E.

    1981-01-01

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface. Patients treated with small portals ( 2 ) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams

  16. Antioxidant Role of Pomegranates on Liver and Brain Tissues of Rats Exposed to an Organophosphorus Insecticide

    International Nuclear Information System (INIS)

    Abd Elmonem, H.A.

    2014-01-01

    Toxicities of organophosphorus insecticides cause oxidative damage on many organs such as the liver and brain due to generation of reactive oxygen species. Pomegranate is among the richest fruit in poly - phenols. The aim of this study was to compare between the antioxidant strength of pomegranate juice (PJ) and pomegranate molasses (PM) and their effects on alanine transferase (ALT), aspartate aminotransferase (AST), Alkaline phosphatase (ALP) and total protein (TP) in liver and levels of malondialdehyde (MAD), reduced glutathione (GSH) and nitric oxide (NO) in rat liver and brain tissues exposed to 1/10 LD 50 diazinon (DI). Six groups each of 6 male albino rats were used comprising control, DI, PJ, PM, PJ + DI and PM + DI for 15 days. The activities of ALT, AST, and TP concentration in liver have been increased due to treatment of rats with DI. These increases restored to normalcy when rats were supplemented with PJ or PM with DI. The results demonstrate that treatment with DI induced significant increase in MDA and NO concentrations and significant decrease in GSH levels of liver and brain tissues. The administration of PJ or PM along with DI significant decrease in MDA and NO levels and significant increase in GSH level compared to DI-group. The present study suggest that PJ or PM has a potential protective effect as it can elevate antioxidant defense system, lessens induced oxidative dam - ages and protect the brain and liver tissue against DI-induced toxicity. In addition, comaring PJ with PM it was noticed that PJ had higher antioxidant activity as evidenced by increased GSH content and decreased NO level in the liver by greater extend than PM.

  17. New aspects of fenestrated vasculature and tissue dynamics in the sensory circumventricular organs of adult brains

    Directory of Open Access Journals (Sweden)

    Seiji eMiyata

    2015-10-01

    Full Text Available The blood–brain barrier (BBB generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs, which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT, subfornical organ (SFO, and area postrema (AP, have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF signaling may be involved in angiogenesis and

  18. Effects of compression injury on brain mitochondrial and tissue viability evaluated by a multiparametric monitoring system

    Science.gov (United States)

    Barbiro-Michaely, Efrat; Bachbut, Galit; Mayevsky, Avraham

    2008-02-01

    Neurosurgical procedures involve brain compression created by retractors. Although it is clear that retractors are causing damage to the brain tissue, the pathophysiology of the retraction was not investigated in details. In the present study we used the multiparametric monitoring approach for real time evaluation of mitochondrial function, hemodynamic, ionic and electrical activities monitored contralaterally to the retractor placement on the brain. The aims of the study were to test the effects of retractor size and severity of the compression on the degree of damage to the cerebral tissue. A special probe was lowered towards the cerebral cortex, (2mm and 4mm in depth) using a micromanipulator. Compression lasted for 30 minutes, than the retractor was elevated back to its initial position and monitoring continued for two hours. Additionally, two sizes of retractors were used 6mm and 3mm in diameter, the 3mm retractor included an intracranial pressure (ICP) probe. The results show that the combination of a large retractor with the depth of 4mm yielded high mortality rate (62%) of the rats while the use of a smaller retractor decreased significantly the percentage of mortality. Also, compression to the depth of 4mm increased tissue injury as compared to 2mm depth. In conclusion, the present study raises the importance and significance of multiparametric monitoring, and not only ICP and cerebral blood flow of the areas nearby the retractor position and not only the retraction site, as well as the effect of the retractor size on the damage induced to the cerebral tissue.

  19. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  20. Chronic vitamin C deficiency promotes redox imbalance in the brain but does not alter sodium-dependent vitamin C transporter 2 expression

    DEFF Research Database (Denmark)

    Paidi, Maya Devi; Schjoldager, Janne Gram; Lykkesfeldt, Jens

    2014-01-01

    Vitamin C (VitC) has several roles in the brain acting both as a specific and non-specific antioxidant. The brain upholds a very high VitC concentration and is able to preferentially retain VitC even during deficiency. The accumulation of brain VitC levels much higher than in blood is primarily...... achieved by the sodium dependent VitC transporter (SVCT2). This study investigated the effects of chronic pre-and postnatal VitC deficiency as well as the effects of postnatal VitC repletion, on brain SVCT2 expression and markers of oxidative stress in young guinea pigs. Biochemical analyses demonstrated...... significantly decreased total VitC and an increased percentage of dehydroascorbic acid, as well as increased lipid oxidation (malondialdehyde), in the brains of VitC deficient animals (p C repleted animals were not significantly different from controls. No significant changes...

  1. Brain Metastasis in Bone and Soft Tissue Cancers: A Review of Incidence, Interventions, and Outcomes

    Directory of Open Access Journals (Sweden)

    Faris Shweikeh

    2014-01-01

    Full Text Available Bone and soft tissue malignancies account for a small portion of brain metastases. In this review, we characterize their incidence, treatments, and prognosis. Most of the data in the literature is based on case reports and small case series. Less than 5% of brain metastases are from bone and soft tissue sarcomas, occurring most commonly in Ewing’s sarcoma, malignant fibrous tumors, and osteosarcoma. Mean interval from initial cancer diagnosis to brain metastasis is in the range of 20–30 months, with most being detected before 24 months (osteosarcoma, Ewing sarcoma, chordoma, angiosarcoma, and rhabdomyosarcoma, some at 24–36 months (malignant fibrous tumors, malignant peripheral nerve sheath tumors, and alveolar soft part sarcoma, and a few after 36 months (chondrosarcoma and liposarcoma. Overall mean survival ranges between 7 and 16 months, with the majority surviving < 12 months (Ewing’s sarcoma, liposarcoma, malignant fibrous tumors, malignant peripheral nerve sheath tumors, angiosarcoma and chordomas. Management is heterogeneous involving surgery, radiosurgery, radiotherapy, and chemotherapy. While a survival advantage may exist for those given aggressive treatment involving surgical resection, such patients tended to have a favorable preoperative performance status and minimal systemic disease.

  2. High affinity, ligand specific uptake of complexed copper-67 by brain tissue incubated in vitro

    International Nuclear Information System (INIS)

    Barnea, A.; Hartter, D.E.

    1987-01-01

    Copper is an essential metal that is highly concentrated in the brain. The blood, the sole source of tissue Cu, contains 16-20 μM Cu, of which >95% is complexed to proteins and 2 was 10 times greater than that of CuAlbumin or Cu(II). Within the range of 0.2-150μM Cu, multiple uptake sites for CuHis were apparent. Increasing the molar ratio of His:Cu had a differential effect on Cu uptake: enhancing uptake at [Cu] 1 μM. Thus, using a His:Cu ratio of 1000, they observed a high affinity process exhibiting saturating and half saturating values of 5 μM and 1.5 μM Cu, respectively; using a His:Cu ratio of 2, they observed a low affinity process exhibiting saturating and half-saturating values of 100 μM and 40 μM Cu, respectively. Both processes required thermic but not metabolic energy, suggestive of facilitated diffusion. Considering the blood brain barrier for proteins, CuHis appears to be the major substrate for Cu uptake by neuronal tissue. They demonstrate the existence of a ligand specific, high affinity (apparent Km about 1.5 μM Cu) uptake process for CuHis in the brain, operative at the physiological concentration range of CuHis and histidine

  3. The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders.

    Science.gov (United States)

    Letra, Liliana; Santana, Isabel

    2017-01-01

    The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer's disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.

  4. Elemental composition of 'normal' and Alzheimer brain tissue by INA and PIXE analyses

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    Instrumental methods based on the nuclear and atomic properties of the elements have been used for many years to determine elemental concentrations in a variety of materials for biomedical, industrial and environmental applications. These methods offer high sensitivity for accurate trace element measurements, suffer few interfering or competing effects. Present no blank problems and are convenient for both research and routine analyses. The present article describes the use of two trace element techniques. Firstly the use of activation of stable nuclei irradiated by neutrons in the core of a low power research reactor as a means of detection of elements through the resulting gamma-rays emitted. Secondly, the observations of the interactions of energetic ion beams with the material in order to identify elemental species. Over recent years there has been some interest in determining the elemental composition of 'normal' and Alzheimer affected brain tissue, however literature findings are inconsistent. Possible reasons for discrepancies need to be identified for further progress to be made. Here, post-mortem tissue samples, provided by the Alzheimer's Disease Brain Bank, Institute of Psychiatry, London, were taken from the frontal, occipital, parietal and temporal lobes of both hemispheres of brains from 13 'normal' and 19 Alzheimer subjects. The elemental composition of the samples was determined using the analytical techniques of INAA (instrumental neutron activation analysis), RBS (Rutherford back-scattering) and PIXE (particle induced x-ray emission). The principal findings are summarised here. (author)

  5. Distribution of dearomatised white spirit in brain, blood, and fat tissue after repeated exposure of rats

    DEFF Research Database (Denmark)

    Lof, A.; Lam, Henrik Rye; Gullstrand, E.

    1999-01-01

    Petroleum products with low content of aromatics have been increasingly used during the past years. This study investigates tissue disposition of dearomatised white spirit. In addition, brain neurotransmitter concentrations were measured. Male rats were exposed by inhalation to 0, 400 (2.29 mg....../l), or 800 p.p.m. (4.58 mg/l) of dearomatised white spirit, 6 hr/day, 5 days/week up to 3 weeks. Five rats from each group were sacrificed immediately after the exposure for 1, 2, or 3 weeks and 2, 4, 6, or 24 hr after the end of 3 weeks' exposure. After 3 weeks of exposure the concentration of total white...... spirit was 1.5 and 5.6 mg/kg in blood; 7.1 and 17.1 mg/kg in brain; 432 and 1452 mg/kg in fat tissue at the exposure levels of 400 and 800 p.p.m., respectively. The concentrations of n-nonane, n-decane, n-undecane, and total white spirit in blood and brain were not affected by the duration of exposure...

  6. A simple method for measuring glucose utilization of insulin-sensitive tissues by using the brain as a reference

    International Nuclear Information System (INIS)

    Namba, Hiroki; Nakagawa, Keiichi; Iyo, Masaomi; Fukushi, Kiyoshi; Irie, Toshiaki

    1994-01-01

    A simple method, without measurement of the plasma input function, to obtain semiquantitative values of glucose utilization in tissues other than the brain with radioactive deoxyglucose is reported. The brain, in which glucose utilization is essentially insensitive to plasma glucose and insulin concentrations, was used as an internal reference. The effects of graded doses of oral glucose loading (0.5, 1 and 2 mg/g body weight) on insulin-sensitive tissues (heart, muscle and fat tissue) were studied in the rat. By using the brain-reference method, dose-dependent increases in glucose utilization were clearly shown in all the insulin-sensitive tissues examined. The method seems to be of value for measurement of glucose utilization using radioactive deoxyglucose and positron emission tomography in the heart or other insulin-sensitive tissues, especially during glucose loading. (orig.)

  7. Effects of isomers of apomorphines on dopamine receptors in striatal and limbic tissue of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Kula, N.S.; Baldessarini, R.J.; Bromley, S.; Neumeyer, J.L.

    1985-09-16

    The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (Da) receptors in extrapyramidal and limbic preparations of rat brain tissues. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulation adenylate cyclase (D-1 sites) and in competing for high affinity binding of /sup 3/H-spiroperidol (D-2 sites) and of /sup 3/H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity of higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.

  8. MR brain scan tissues and structures segmentation: local cooperative Markovian agents and Bayesian formulation

    International Nuclear Information System (INIS)

    Scherrer, B.

    2008-12-01

    Accurate magnetic resonance brain scan segmentation is critical in a number of clinical and neuroscience applications. This task is challenging due to artifacts, low contrast between tissues and inter-individual variability that inhibit the introduction of a priori knowledge. In this thesis, we propose a new MR brain scan segmentation approach. Unique features of this approach include (1) the coupling of tissue segmentation, structure segmentation and prior knowledge construction, and (2) the consideration of local image properties. Locality is modeled through a multi-agent framework: agents are distributed into the volume and perform a local Markovian segmentation. As an initial approach (LOCUS, Local Cooperative Unified Segmentation), intuitive cooperation and coupling mechanisms are proposed to ensure the consistency of local models. Structures are segmented via the introduction of spatial localization constraints based on fuzzy spatial relations between structures. In a second approach, (LOCUS-B, LOCUS in a Bayesian framework) we consider the introduction of a statistical atlas to describe structures. The problem is reformulated in a Bayesian framework, allowing a statistical formalization of coupling and cooperation. Tissue segmentation, local model regularization, structure segmentation and local affine atlas registration are then coupled in an EM framework and mutually improve. The evaluation on simulated and real images shows good results, and in particular, a robustness to non-uniformity and noise with low computational cost. Local distributed and cooperative MRF models then appear as a powerful and promising approach for medical image segmentation. (author)

  9. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment.

    Science.gov (United States)

    Sun, Hongtao; Zheng, Maohua; Wang, Yanmin; Diao, Yunfeng; Zhao, Wanyong; Wei, Zhengjun

    2016-01-01

    The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2) in the course of mild hypothermia treatment (MHT) for treating severe traumatic brain injury (sTBI). There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP), jugular venous oxygen saturation (SjvO2), and cerebral perfusion pressure (CPP) were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome.

  10. Prognostic value of changes in brain tissue oxygen pressure before and after decompressive craniectomy following severe traumatic brain injury.

    Science.gov (United States)

    Lubillo, Santiago T; Parrilla, Dácil M; Blanco, José; Morera, Jesús; Dominguez, Jaime; Belmonte, Felipe; López, Patricia; Molina, Ismael; Ruiz, Candelaria; Clemente, Francisco J; Godoy, Daniel A

    2018-05-01

    OBJECTIVE In severe traumatic brain injury (TBI), the effects of decompressive craniectomy (DC) on brain tissue oxygen pressure (PbtO 2 ) and outcome are unclear. The authors aimed to investigate whether changes in PbtO 2 after DC could be used as an independent prognostic factor. METHODS The authors conducted a retrospective, observational study at 2 university hospital ICUs. The study included 42 patients who were admitted with isolated moderate or severe TBI and underwent intracranial pressure (ICP) and PbtO 2 monitoring before and after DC. The indication for DC was an ICP higher than 25 mm Hg refractory to first-tier medical treatment. Patients who underwent primary DC for mass lesion evacuation were excluded. However, patients were included who had undergone previous surgery as long as it was not a craniectomy. ICP/PbtO 2 monitoring probes were located in an apparently normal area of the most damaged hemisphere based on cranial CT scanning findings. PbtO 2 values were routinely recorded hourly before and after DC, but for comparisons the authors used the first PbtO 2 value on ICU admission and the number of hours with PbtO 2 areas under the curve for the mean PbtO 2 values at 12 and 24 hours after DC were 0.878 (95% CI 0.75-1, p areas of the most damaged hemisphere, have independent prognostic value for the 6-month outcome in TBI patients.

  11. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    International Nuclear Information System (INIS)

    Streitberger, Kaspar-Josche; Fehlner, Andreas; Sack, Ingolf; Pache, Florence; Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander; Bellmann-Strobl, Judith; Ruprecht, Klemens; Braun, Juergen; Paul, Friedemann; Wuerfel, Jens

    2017-01-01

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  12. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    Energy Technology Data Exchange (ETDEWEB)

    Streitberger, Kaspar-Josche [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Fehlner, Andreas; Sack, Ingolf [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Pache, Florence [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Bellmann-Strobl, Judith [Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Braun, Juergen [Charite - Universitaetsmedizin Berlin, Institute of Medical Informatics, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Medical Image Analysis Center (MIAC AG), Basel (Switzerland)

    2017-05-15

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  13. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    Science.gov (United States)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  14. Fabrication of electrospun poly(D,L lactide-co-glycolide)80/20 scaffolds loaded with diclofenac sodium for tissue engineering.

    Science.gov (United States)

    Nikkola, Lila; Morton, Tatjana; Balmayor, Elizabeth R; Jukola, Hanna; Harlin, Ali; Redl, Heinz; van Griensven, Martijn; Ashammakhi, Nureddin

    2015-06-05

    Adaptation of nanotechnology into materials science has also advanced tissue engineering research. Tissues are basically composed of nanoscale structures hence making nanofibrous materials closely resemble natural fibers. Adding a drug release function to such material may further advance their use in tissue repair. In the current study, bioabsorbable poly(D,L lactide-co-glycolide)80/20 (PDLGA80/20) was dissolved in a mixture of acetone/dimethylformamide. Twenty percent of diclofenac sodium was added to the solution. Nanofibers were manufactured using electrospinning. The morphology of the obtained scaffolds was analyzed by scanning electron microscopy (SEM). The release of the diclofenac sodium was assessed by UV/Vis spectroscopy. Mouse fibroblasts (MC3T3) were seeded on the scaffolds, and the cell attachment was evaluated with fluorescent microscopy. The thickness of electrospun nanomats was about 1 mm. SEM analysis showed that polymeric nanofibers containing drug particles formed very interconnected porous nanostructures. The average diameter of the nanofibers was 500 nm. Drug release was measured by means of UV/Vis spectroscopy. After a high start peak, the release rate decreased considerably during 11 days and lasted about 60 days. During the evaluation of the release kinetics, a material degradation process was observed. MC3T3 cells attached to the diclofenac sodium-loaded scaffold. The nanofibrous porous structure made of PDLGA polymer loaded with diclofenac sodium is feasible to develop, and it may help to improve biomaterial properties for controlled tissue repair and regeneration.

  15. Immunocytochemistry of formalin-fixed human brain tissues: microwave irradiation of free-floating sections.

    Science.gov (United States)

    Shiurba, R A; Spooner, E T; Ishiguro, K; Takahashi, M; Yoshida, R; Wheelock, T R; Imahori, K; Cataldo, A M; Nixon, R A

    1998-01-01

    Formalin fixation, the chemical process in which formaldehyde binds to cells and tissues, is widely used to preserve human brain specimens from autolytic decomposition. Ultrastructure of cellular and mitochondrial membranes is markedly altered by vesiculation, but this does not interfere with diagnostic evaluation of neurohistology by light microscopy. Serious difficulties are encountered, however, when immunocytochemical staining is attempted. Antigens that are immunoreactive in unfixed frozen sections and protein extracts appear to be concealed or destroyed in formalin-fixed tissues. In dilute aqueous solution, formaldehyde is in equilibrium with methylene glycol and its polymeric hydrates, the balance by far in favor of methylene glyco. Carbonylic formaldehyde is a reactive electrophilic species well known for crosslinking functional groups in tissue proteins, nucleic acids, and polysaccharides. Some of its methylene crosslinks are readily hydrolyzed. Others are stable and irreversible. During immunostaining reactions, intra- and inter-molecular links between macromolecules limit antibody permeation of tissue sections, alter protein secondary structure, and reduce accessibility of antigenic determinants . Accordingly, immunoreactivity is diminished for many antigens. Tissues are rapidly penetrated by methylene glycol, but formaldehyde binding to cellular constituents is relatively slow, increasing progressively until equilibrium is reached. In addition, prolonged storage in formalin may result in acidification of human brain specimens. Low pH favors dissociation of methylene glycol into formaldehyde, further reducing both classical staining and antigen detectability. Various procedures have been devised to counter the antigen masking effects of formaldehyde. Examples include pretreatment of tissue sections with proteases, formic acid, or ultrasound. Recently, heating of mounted sections in ionic salt solution by microwave energy was found to restore many

  16. Proposals for best-quality immunohistochemical staining of paraffin-embedded brain tissue slides in forensics.

    Science.gov (United States)

    Trautz, Florian; Dreßler, Jan; Stassart, Ruth; Müller, Wolf; Ondruschka, Benjamin

    2018-01-03

    Immunohistochemistry (IHC) has become an integral part in forensic histopathology over the last decades. However, the underlying methods for IHC vary greatly depending on the institution, creating a lack of comparability. The aim of this study was to assess the optimal approach for different technical aspects of IHC, in order to improve and standardize this procedure. Therefore, qualitative results from manual and automatic IHC staining of brain samples were compared, as well as potential differences in suitability of common IHC glass slides. Further, possibilities of image digitalization and connected issues were investigated. In our study, automatic staining showed more consistent staining results, compared to manual staining procedures. Digitalization and digital post-processing facilitated direct analysis and analysis for reproducibility considerably. No differences were found for different commercially available microscopic glass slides regarding suitability of IHC brain researches, but a certain rate of tissue loss should be expected during the staining process.

  17. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  18. Scintigraphic assessment of vascularity and blood-tissue barrier of human brain tumours

    International Nuclear Information System (INIS)

    Front, D.

    1978-01-01

    Assessment of vascularity and blood-tissue barrier was performed by sequential scintigraphy in 43 patients with brain tumours. The blood-tumour barrier was evaluated by use of sup(99m)Tc-pertechnetate, and vascularity using sup(99m)Tc-labelled red blood cells. Three groups of tumours were found: tumours with low vascularity and permeable barrier, tumours with high vascularity and permeable barrier, and tumours with low vascularity and relatively impermeable barrier. The first group indicates that when vessels are permeable, there may be a rapid penetration of large amounts of pertechnetate into the tumour even when vascularity is not increased. In the other two groups penetration of pertechnetate into the tumour is affected by vascularity, as it determines the total area where passage of the radiopharmaceutical takes place. It is suggested that the permeability of the blood-tumour barrier and the amount of vascularity may have an effect on the success of chemotherapy in brain tumours. (author)

  19. Imaging characteristics, tissue distribution, and spread of a novel oncolytic vaccinia virus carrying the human sodium iodide symporter.

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    Full Text Available INTRODUCTION: Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS. METHODS: GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide (131I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via (124I-positron emission tomography (PET. Detection of systemic administration of virus was investigated with both (124I-PET and 99m-technecium gamma-scintigraphy. RESULTS: GLV-1h153 successfully facilitated time-dependent intracellular uptake of (131I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05. In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 10(9 plaque-forming unit (PFU/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82 ± 0.46 (P<0.05 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via (124I-PET and 99m-technecium-scintigraphy. CONCLUSION: GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic

  20. Normal bone and soft tissue distribution of fluorine-18-sodium fluoride and artifacts on 18F-NaF PET/CT bone scan: a pictorial review.

    Science.gov (United States)

    Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud

    2017-10-01

    Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.

  1. Pediatric brain tumors of neuroepithelial tissue; Hirntumoren des neuroepithelialen Gewebes im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Politi, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany); Bergmann, M. [Klinikum Bremen-Mitte, Institut fuer Klinische Neuropathologie, Bremen (Germany); Pekrun, A. [Klinikum Bremen-Mitte, Klinik fuer Kinder- und Jugendmedizin, paed. Haematologie/Onkologie, Neonatologie, Bremen (Germany); Juergens, K.U. [Klinikum Bremen-Mitte, ZEMODI-Zentrum fuer moderne Diagnostik, MRT, Nuklearmedizin und PET-CT, Bremen (Germany)

    2014-08-15

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [German] Tumoren des neuroepithelialen Gewebes stellen die mit Abstand groesste Gruppe der paediatrischen Hirntumoren dar und werden je nach deren Ursprung in diversen Subtypen unterteilt. Das Neuropil beinhaltet diverse Subtypen von Gliazellen: Astrozyten, Oligodendrozyten, ependymale Zellen und modifizierte ependymale Zellen, die den Plexus choroideus formen. In diesem Review werden die bildgebenden Aspekte mittels CT und MRT der haeufigsten Tumoren des neuroepithelialen Gewebes diskutiert. (orig.)

  2. Differential Temporal Evolution Patterns in Brain Temperature in Different Ischemic Tissues in a Monkey Model of Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Zhihua Sun

    2012-01-01

    Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.

  3. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

    Directory of Open Access Journals (Sweden)

    Sergi Valverde

    2015-01-01

    Full Text Available Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM and white matter (WM using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

  4. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue.

    Science.gov (United States)

    Tamashiro, Tami T; Dalgard, Clifton Lee; Byrnes, Kimberly R

    2012-08-15

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted. Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study. The principle and protocol of this methodology have been described in the literature. Additionally, alternate methodologies to isolate primary microglia are well described. Homogenized brain tissue may be separated

  5. Use of flow cytometry for high-throughput cell population estimates in fixed brain tissue

    Directory of Open Access Journals (Sweden)

    Nicole A Young

    2012-07-01

    Full Text Available The numbers and types of cells in an area of cortex define its function. Therefore it is essential to characterize the numbers and distributions of total cells in areas of the cortex, as well as to identify numbers of subclasses of neurons and glial cells. To date, the large size of the primate brain and the lack of innovation in cell counting methods have been a roadblock to obtaining high-resolution maps of cell and neuron density across the cortex in humans and non-human primates. Stereological counting methods and the isotropic fractionator are valuable tools for estimating cell numbers, but are better suited to smaller, well-defined brain structures or to cortex as a whole. In the present study, we have extended our flow-cytometry based counting method, the flow fractionator (Collins et al., 2010a, to include high-throughput total cell population estimates in homogenized cortical samples. We demonstrate that our method produces consistent, accurate and repeatable cell estimates quickly. The estimates we report are in excellent agreement with estimates for the same samples obtained using a Neubauer chamber and a fluorescence microscope. We show that our flow cytometry-based method for total cell estimation in homogenized brain tissue is more efficient and more precise than manual counting methods. The addition of automated nuclei counting to our flow fractionator method allows for a fully automated, rapid characterization of total cells and neuronal and non-neuronal populations in human and non-human primate brains, providing valuable data to further our understanding of the functional organization of normal, aging and diseased brains.

  6. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stirling Emma J

    2010-10-01

    Full Text Available Abstract Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors.

  7. Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.

    Science.gov (United States)

    Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J

    2018-04-01

    Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.

  8. In vivo NMR imaging of sodium-23 in the human head.

    Science.gov (United States)

    Hilal, S K; Maudsley, A A; Ra, J B; Simon, H E; Roschmann, P; Wittekoek, S; Cho, Z H; Mun, S K

    1985-01-01

    We report the first clinical nuclear magnetic resonance (NMR) images of cerebral sodium distribution in normal volunteers and in patients with a variety of pathological lesions. We have used a 1.5 T NMR magnet system. When compared with proton distribution, sodium shows a greater variation in its concentration from tissue to tissue and from normal to pathological conditions. Image contrast calculated on the basis of sodium concentration is 7 to 18 times greater than that of proton spin density. Normal images emphasize the extracellular compartments. In the clinical studies, areas of recent or old cerebral infarction and tumors show a pronounced increase of sodium content (300-400%). Actual measurements of image density values indicate that there is probably a further accentuation of the contrast by the increased "NMR visibility" of sodium in infarcted tissue. Sodium imaging may prove to be a more sensitive means for early detection of some brain disorders than other imaging methods.

  9. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    Science.gov (United States)

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  10. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain?liver axis

    OpenAIRE

    Yang, B; Ren, Q; Zhang, J-c; Chen, Q-X; Hashimoto, K

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF...

  11. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Feng Fu; Chong Chen; Sai Zhang; Ming-liang Zhao; Xiao-hong Li; Zhe Qin; Chao Xu; Xu-yi Chen; Rui-xin Li; Li-na Wang; Ding-wei Peng; Hong-tao Sun; Yue Tu

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.

  12. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    Science.gov (United States)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  13. Some positive effects of pine oil on brain tissue in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Demir, E.; Keser, S.; Yilmiz, O.

    2016-01-01

    Pine oil has antiseptic, expectorant and antioxidant properties and has been used for treatment of rheumatism, respiratory and urinary system and skin diseases. We aimed to determine protective effects of pine oil (PO) on the lipid-soluble vitamins, cholesterol, GSH, total protein, MDA, fatty acid levels of brain tissue of the streptozotocin-induced diabetic rats. Rats were randomly divided into three groups: Control (C), streptozotocin (STZ), streptozotocin+pine oil (PO) groups. Streptozotocin was injected intraperitoneally single dose (65 mg/kg) to the STZ and PO groups for inducing of diabetes. To the PO group 1 mg/kg dose pine oil was intraperitoneally injected every next day. While the GSH and total protein were significantly decreased in the Streptozotocin (STZ) group, their levels were protected in PO group. MDA level was significantly increased in STZ group, its level significantly decreased in the PO group. Our results showed that PO has a positive effect on the GSH, total protein, and MDA levels in the brain tissue of diabetic rats. The PO and STZ administrations were affected by levels of some important fatty acids. The decrease in the MDA level and observed protecting effects can be attributed to PO extract, because it contains some important phytochemical constituents. (author)

  14. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    International Nuclear Information System (INIS)

    Manley, N.B.

    1988-01-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. The decrease in the values of the labeling indices 1 week after charged particle irradiation was dose- and ion-dependent. Mitotic indices 1 week after 10 and 25 Gy helium and after 10 Gy neon were the same as those seen in the control mice. Analysis of cell kinetics 1 week after 10 Gy helium and 10 Gy neon irradiation suggests the presence of a progenitor subpopulation that is proliferating with a shorter cell cycle. Comparison of the responses to the different charged particle beams indicates that neon ions are more effective in producing direct cellular damage than the helium ions, but the surviving proliferating cells several divisions later continue to maintain active cell renewal. Based on the 1 week post-irradiation H 3 -TdR labeling indices, a rough estimate of the RBE for neon ions is at least 2.5 when compared to helium ions

  15. Imaging cellular and subcellular structure of human brain tissue using micro computed tomography

    Science.gov (United States)

    Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert

    2017-09-01

    Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.

  16. Antioxidant effect of sericin in brain and peripheral tissues of oxidative stress induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Meetali Deori

    2016-09-01

    Full Text Available This study evaluated the antioxidant effect of crude sericin extract (CSE from Antheraea assamenisis (Aa in high cholesterol fed rats. Investigation was conducted by administering graded oral dose of 0.25 and 0.5 gm/kg body weight (b.w./day of CSE for a period of 28 days. Experiments were conducted in 30 rats and were divided into five groups: normal control (NC, high cholesterol fed (HCF, HCF + 0.065 gm/kg b.w./day fenofibrate (FF, HCF + sericin 0.25 gm/kg b.w./day (LSD and HCF + sericin 0.5 gm/kg b.w./day (HSD. In brain, heart, liver, serum and kidney homogenates nitric oxide (NO, thiobarbituric acid reactive substances (TBARS, protein carbonyl content (PCC, superoxide dismutase (SOD, reduced glutathione (GSH was measured. LSD treatment prevented the alterations in GSH and PCC levels in hypercholesterolemic (HyC brain tissue homogenates of rats. CSE lowers the serum total cholesterol level in HyC rats by promoting fecal cholesterol (FC excretion. CSE increases FC level by promoting inhibition of cholesterol absorption in intestine. The endogenous antioxidant reduced significantly and the oxidative stress (OS marker TBARS level increases significantly in the peripheral tissue of HCF rats. However, the administration of LSD and HSD exhibited a good antioxidant activity by reducing the TBARS level and increasing the endogenous antioxidant in peripheral tissue. In addition, a histological examination revealed loss of normal liver and kidney architecture in cholesterol fed rats which were retained in sericin treated groups. The findings of this study suggested that CSE improves hypercholesterolemia in rats fed a HyC diet. Clinical relevance of this effect of CSE seems worthy of further studies.

  17. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  18. Application of Quantitative MRI for Brain Tissue Segmentation at 1.5 T and 3.0 T Field Strengths

    Science.gov (United States)

    West, Janne; Blystad, Ida; Engström, Maria; Warntjes, Jan B. M.; Lundberg, Peter

    2013-01-01

    Background Brain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences. Methods In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences. Results Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem. Conclusions Most of the brain was identically classified at the two field strengths, although some regional differences were observed. PMID:24066153

  19. Aluminium and Gamma Irradiation Induced Oxidative Damage in Brain Tissue of Male Rats - Protective Role of Ferulic Acid

    International Nuclear Information System (INIS)

    Mansour, S.Z.; Hanafi, N.; Noaman, E.

    2011-01-01

    The current study was carried out to investigate the potential role of ferulic acid (FA) against Aluminium chloride (AlCl 3 ), γ- radiation either alone or combination induced oxidative stress in brain tissue of Wistar rats. The period of the experiment was eight weeks. Animals were administrated by aluminium chloride at a dose of 8.5 mg/kg/day and exposed to a single dose (4 Gy) of γ-radiation. FA was administered orally (50 mg/Kg body weight)/day. Histopathological observations and myeloid protein distribution were recorded in brain tissue. Induction of oxidative stress was recorded after all exposures. Brain tissue of AlCl 3 and γ- irradiation treatments either alone or combined revealed many altered changes and myeloid protein distribution. Also a decrease in serotonin concentration was recorded. An increase in Malonaldialdahyde (MDA) and acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue was recorded. Reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) in blood and brain showed a significant decrease. Treatment of AlCl 3 loaded animals by FA showed simple atrophy as shrunken morphology saw in amyotrophic lateral sclerosis and a decrease in myeloid protein deposition. FA treatment of AlCl 3 loaded or irradiated animals represented a significant increase in serotonin concentration and ameliorated affects on oxidative stress markers, acetylcholinesterase activity and percentage of saturated fatty acids in plasma and brain tissue. In conclusion FA has a role in reducing the oxidative stress of AlCl 3 and γ- irradiation on brain tissue of rats

  20. Regular aerobic exercise correlates with reduced anxiety and incresed levels of irisin in brain and white adipose tissue.

    Science.gov (United States)

    Uysal, Nazan; Yuksel, Oguz; Kizildag, Servet; Yuce, Zeynep; Gumus, Hikmet; Karakilic, Aslı; Guvendi, Guven; Koc, Basar; Kandis, Sevim; Ates, Mehmet

    2018-05-29

    We have recently shown that regular voluntary aerobic exercised rats have low levels of anxiety. Irisin is an exercise-induced myokine that is produced by many tissues; and the role it plays in anxiolytic behavior is unknown. In this study we aimed to investigate the correlation between anxiety like behavior and irisin levels following regular voluntary aerobic exercise in male mice. We've have shown that anxiety levels decreased in exercised mice, while irisin levels increased in the brain, brown adipose tissue, white adipose tissue, kidney, and pancreas tissues. No significant difference of irisin levels in the liver, muscle and serum were detected in the exercise group, when compared to controls. In addition, there was a strong positive correlation between brain irisin levels and activity in middle area of open field test and in the open arms of elevated plus maze test; both which are indicators of low anxiety levels. Our results suggest that decrease in anxiolytic behavior due to regular voluntary exercise may be associated with locally produced brain irisin. White adipose tissue irisin levels also correlated very strongly with low anxiety. However, no serum irisin increase was detected, ruling out the possibility of increased peripheral irisin levels affecting the brain via the bloodstream. Further research is necessary to explain the mechanisms of which peripheral and central irisin effects anxiety and the brain region affected. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Brain physiological state evaluated by real-time multiparametric tissue spectroscopy in vivo

    Science.gov (United States)

    Mayevsky, Avraham; Barbiro-Michaely, Efrat; Kutai-Asis, Hofit; Deutsch, Assaf; Jaronkin, Alex

    2004-07-01

    The significance of normal mitochondrial function in cellular energy homeostasis as well as its involvement in acute and chronic neurodegenerative disease was reviewed recently (Nicholls & Budd. Physiol Rev. 80: 315-360, 2000). Nevertheless, monitoring of mitochondrial function in vivo and real time mode was not used by many investigators and is very rare in clinical practice. The main principle tool available for the evaluation of mitochondrial function is the monitoring of NADH fluorescence. In order to interpret correctly the changes in NADH redox state in vivo, it is necessary to correlate this signal to other parameters, reflecting O2 supply to the brain. Therefore, we have developed and applied a multiparametric optical monitoring system, by which microcirculatory blood flow and hemoglobin oxygenation is measured, together with mitochondrial NADH fluorescence. Since the calibration of these signals is not in absolute units, the simultaneous monitoring provide a practical tool for the interpretation of brain functional state under various pathophysiological conditions. The monitoring system combines a time-sharing fluorometer-reflectometer for the measurement of NADH fluorescence and hemoglobin oxygenation as well as a laser Doppler flowmeter for the recording of microcirculatory blood flow. A combined fiber optic probe was located on the surface of the brain using a skull cemented cannula. Rats and gerbils were exposed to anoxia, ischemia and spreading depression and the functional state of the brain was evaluated. The results showed a clear correlation between O2 supply/demand as well as, energy balance under the various pathophysiological conditions. This monitoring approach could be adapted to clinical monitoring of tissue vitality.

  2. Some growth factors in neoplastic tissues of brain tumors of different histological structure

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Introduction. Pathologic angiogenesis is typical for angiogenic diseases including tumor growth. Vascular endothelial growth factor (VEGF, fibroblast growth factor (FGF, transforming growth factor alpha and beta (which are also known as “triggers” of angiogenesis, and other factors (Gacche, Meshram, 2013; Nijaguna et al., 2015 play a special role in its development. Evaluation of the important mechanisms of angiogenesis in physiological and pathological conditions remains to be a subject of heightened interest for the past 30 years. It is known that VEGF A is the main trigger of growing blood vessels into the tumor tissue. This is specific mitogen signal for endothelial cells that triggers the mechanisms of cell division and migration. VEGF-induced tumor vasculature has a number of structural and functional features that provide growth and progression of tumors, including increased permeability of blood vessels and their chaotic arrangement.Objective: to study in comparative aspect the level of certain growth factors in the following tissues: glioblastomas, brain metastasis of the breast cancer, meningiomas as well as corresponding peritumoral areas.Materials and methods. Tissue samples were obtained from 56 patients admitted to the surgical treatment in Rostov Research Institute of Oncology: 24 patients had glioblastomas, 19 patients had brain metastasis of the breast cancer, 13 patients with meningiomas without peritumoral edema. Histological control was carried out in all cases. Age of patients ranged from 35 to 72 years. The level of growth factor was detected in the samples of tumor tissue and regions immediately adjacent to the tumor foci (peritumoral area by the method of immunoassay and using standard test systems. The following growth factor were detected: VEGF-A and its receptors VEGF-R1 (BenderMedSystem, Austria, VEGF-C and its receptor VEGF-R3 (BenderMedSystem, Austria, EGF (Biosource, USA, IFR-1 and IFR-2 (Mediagnost, USA, TGF

  3. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  4. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  5. Effect of Brain Tumor Presence During Radiation on Tissue Toxicity: Transcriptomic and Metabolic Changes.

    Science.gov (United States)

    Zawaski, Janice A; Sabek, Omaima M; Voicu, Horatiu; Eastwood Leung, Hon-Chiu; Gaber, M Waleed

    2017-11-15

    Radiation therapy (RT) causes functional and transcriptomic changes in the brain; however, most studies have been carried out in normal rodent brains. Here, the long-term effect of irradiation and tumor presence during radiation was investigated. Male Wistar rats ∼7 weeks old were divided into 3 groups: sham implant, RT+sham implant, and RT+tumor implant (C6 glioma). Hypofractionated irradiation (8 or 6 Gy/day for 5 days) was localized to a 1-cm strip of cranium starting 5 days after implantation, resulting in complete tumor regression and prolonged survival. Biopsy of tissue was performed in the implant area 65 days after implantation. RNA was hybridized to GeneChip Rat Exon 1.0 ST array. Data were analyzed using significant analysis of microarrays and ingenuity pathway analysis. 1 H magnetic resonance spectroscopy ( 1 H-MRS) imaging was performed in the implantation site 65 to 70 days after implantation using a 9.4 T Biospec magnetic resonance imaging scanner with a quadrature rat brain array. Immunohistochemical staining for astrogliosis, HMG-CoA synthase 2, γ-aminobutyric acid (GABA) and taurine was performed at ∼65 days after implantation. Eighty-four genes had a false discovery rate <3.5%. We compared RT+tumor implant with RT+sham implant animals. The tumor presence affected networks associated with cancer/cell morphology/tissue morphology. 1 H-MRS showed significant reduction in taurine levels (P<.04) at the implantation site in both groups. However, the RT+tumor group also showed significant increase in levels of neurotransmitter GABA (P=.02). Hippocampal taurine levels were only significantly reduced in the RT+tumor group (P=.03). HMG-CoA synthase 2, GABA and taurine levels were confirmed using staining. Glial fibrillary acidic protein staining demonstrated a significant increase in inflammation that was heightened in the RT+tumor group. Our data indicate that tumor presence during radiation significantly affects long-term functional

  6. Preliminary morphological and morphometric study of rat cerebellum following sodium arsenite exposure during rapid brain growth (RBG) period

    International Nuclear Information System (INIS)

    Dhar, Pushpa; Mohari, Nivedita; Mehra, Raj D.

    2007-01-01

    The effects of arsenic exposure during rapid brain growth (RBG) period were studied in rat brains with emphasis on the Purkinje cells of the cerebellum. The RBG period in rats extends from postnatal day 4 (PND 4) to postnatal day 10 (PND 10) and is reported to be highly vulnerable to environmental insults. Mother reared Wistar rat pups were administered intraperitoneal injections (i.p.) of sodium arsenite (aqueous solution) in doses of 1.0, 1.5 and 2.0 mg/kg body weight (bw) to groups II, III and IV (n = 6 animals/group) from PND 4 to 10 (sub acute). Control animals (group I) received distilled water by the same route. On PND 11, the animals were perfusion fixed with 4% paraformaldehyde in 0.1 M phosphate buffer (PB) with pH 7.4. The cerebellum obtained from these animals was post-fixed and processed for paraffin embedding. Besides studying the morphological characteristics of Purkinje cells in cresyl violet (CV) stained paraffin sections (10 μm), morphometric analysis of Purkinje cells was carried out using Image Analysis System (Image Proplus software version 4.5) attached to Nikon Microphot-FX microscope. The results showed that on PND 11, the Purkinje cells were arranged in multiple layers extending from Purkinje cell layer (PL) to outer part of granule cell layer (GL) in experimental animals (contrary to monolayer arrangement within PL in control animals). Also, delayed maturation (well defined apical cytoplasmic cones and intense basal basophilia) was evident in Purkinje cells of experimental animals on PND 11. The mean Purkinje cell nuclear area was significantly increased in the arsenic treated animals compared to the control animals. The observations of the present study (faulty migration, delayed maturation and alteration in nuclear area measurements of Purkinje cells subsequent to arsenic exposure) thus provided the morphological evidence of structural alterations subsequent to arsenite induced developmental neurotoxicity which could be presumed to be

  7. X-ray micro-tomography for investigations of brain tissues on cellular level

    Science.gov (United States)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based

  8. Revisiting the Logan plot to account for non-negligible blood volume in brain tissue.

    Science.gov (United States)

    Schain, Martin; Fazio, Patrik; Mrzljak, Ladislav; Amini, Nahid; Al-Tawil, Nabil; Fitzer-Attas, Cheryl; Bronzova, Juliana; Landwehrmeyer, Bernhard; Sampaio, Christina; Halldin, Christer; Varrone, Andrea

    2017-08-18

    Reference tissue-based quantification of brain PET data does not typically include correction for signal originating from blood vessels, which is known to result in biased outcome measures. The bias extent depends on the amount of radioactivity in the blood vessels. In this study, we seek to revisit the well-established Logan plot and derive alternative formulations that provide estimation of distribution volume ratios (DVRs) that are corrected for the signal originating from the vasculature. New expressions for the Logan plot based on arterial input function and reference tissue were derived, which included explicit terms for whole blood radioactivity. The new methods were evaluated using PET data acquired using [ 11 C]raclopride and [ 18 F]MNI-659. The two-tissue compartment model (2TCM), with which signal originating from blood can be explicitly modeled, was used as a gold standard. DVR values obtained for [ 11 C]raclopride using the either blood-based or reference tissue-based Logan plot were systematically underestimated compared to 2TCM, and for [ 18 F]MNI-659, a proportionality bias was observed, i.e., the bias varied across regions. The biases disappeared when optimal blood-signal correction was used for respective tracer, although for the case of [ 18 F]MNI-659 a small but systematic overestimation of DVR was still observed. The new method appears to remove the bias introduced due to absence of correction for blood volume in regular graphical analysis and can be considered in clinical studies. Further studies are however required to derive a generic mapping between plasma and whole-blood radioactivity levels.

  9. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    Science.gov (United States)

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society

  10. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  11. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    Science.gov (United States)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is

  12. The effects of ethylenediamine tetraacetic acid, peracetic acid, and etidronic acid on the tissue dissolution capacity of sodium hypochlorite: in vitro

    Directory of Open Access Journals (Sweden)

    Özgür İlke Atasoy Ulusoy

    2017-05-01

    Full Text Available Objective: The aim of this study was to evaluate the effects of 18% ethylenediamine tetraacetic acid (EDTA, 2% peracetic acid (PAA, and 9% etidronic acid (HEBP on the organic tissue dissolution activity of sodium hypochlorite (NaOCl. Materials and Method: Sixty samples with similar weight and dimensions were obtained from bovine muscle tissue. The tissue samples were blotted dry on filter paper and weighed with a precision balance. The specimens were immersed in following solutions: (1 2 mL 2.5% NaOCl, (2 1 mL 5% NaOCl + 1 mL 18% EDTA, (3 1 mL 5% NaOCl + 1 mL 2% PAA, (4 1 mL 5% NaOCl + 1 mL 9% HEBP. The specimens were then dried and weighed again. The weight loss of each specimen incubated in the test solutions was measured at 30 and 60 min. The data were statistically analyzed with one-way ANOVA and post-hoc Tukey tests. Results: Use of NaOCl (5% together with 18% EDTA resulted in minimal tissue dissolution capacity compared to the other groups at both time points (p<0.001. The tissue dissolution capacity of NaOCl was also affected by 9% HEBP. The greatest tissue weight reduction values were obtained in the NaOCl+PAA group at 30 minutes (p<0.001. At 60 min, NaOCl and NaOCl+PAA groups exhibited the greatest tissue dissolution capacity (p<0.001; no significant difference was found between these two groups (p=0.169. Conclusion: EDTA and HEBP decreased the tissue dissolution capacity of NaOCl, whereas PAA did not have any negative effect on the ability of NaOCl to dissolve the organic tissue.

  13. Amyloid structure exhibits polymorphism on multiple length scales in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiliang; Costantino, Isabel; Venugopalan, Nagarajan; Fischetti, Robert F.; Hyman, Bradley; Frosch, Matthew; Gomez-Isla, Teresa; Makowski, Lee

    2016-09-15

    Although aggregation of Aβ amyloid fibrils into plaques in the brain is a hallmark of Alzheimer's Disease (AD), the correlation between amyloid burden and severity of symptoms is weak. One possible reason is that amyloid fibrils are structurally polymorphic and different polymorphs may contribute differentially to disease. However, the occurrence and distribution of amyloid polymorphisms in human brain is poorly documented. Here we seek to fill this knowledge gap by using X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid within individual plaques; among proximal plaques and in subjects with distinct clinical histories. A 5 µ x-ray beam was used to generate diffraction data with each pattern arising from a scattering volume of only ~ 450 µ3 , making possible collection of dozens to hundreds of diffraction patterns from a single amyloid plaque. X-ray scattering from these samples exhibited all the properties expected for scattering from amyloid. Amyloid distribution was mapped using the intensity of its signature 4.7 Å reflection which also provided information on the orientation of amyloid fibrils across plaques. Margins of plaques exhibited a greater degree of orientation than cores and orientation around blood vessels frequently appeared tangential. Variation in the structure of Aβ fibrils is reflected in the shape of the 4.7 Å peak which usually appears as a doublet. Variations in this peak correspond to differences between the structure of amyloid within cores of plaques and at their periphery. Examination of tissue from a mismatch case - an individual with high plaque burden but no overt signs of dementia at time of death - revealed a diversity of structure and spatial distribution of amyloid that is distinct from typical AD cases. We demonstrate the existence of structural polymorphisms among amyloid within and among plaques of a single individual and suggest

  14. Spectroscopic method for determination of the absorption coefficient in brain tissue

    Science.gov (United States)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  15. [Influence of mastication on the amount of hemoglobin in human brain tissue].

    Science.gov (United States)

    Sasaki, A

    2001-03-01

    The purpose of this study was to investigate the influence of mastication on the amount of hemoglobin in human brain tissue. Nine healthy volunteers (6 males and 3 females) participated in this study. They underwent two tasks: 1) at rest, 2) gum-chewing. In seven of the nine (4 males and 3 females), experimental occlusal interference was applied to the first molar of the mandibule on the habitual masticatory side. They underwent the gum-chewing task. To evaluate the amount of hemoglobin, both the hemoglobin oxygenation state and blood volume during gum-chewing were measured in the frontal region, using near-infrared spectroscopy. The amount of total-hemoglobin (blood volume) and oxyhemoglobin of subjects significantly increased during gum-chewing (p experimental occlusal interference was imposed on the subject, the amount of them significantly decreased compared with subjects without experimental occlusal interference (p < 0.05). The results suggested that increases of cerebral blood flow in the frontal region were not due to the mandibular movement, and that human brain activity caused by mastication was not only in the cortical masticatory area but also in the frontal region.

  16. Protective effect of isoquercitrin against acute dextran sulfate sodium-induced rat colitis depends on the severity of tissue damage

    Czech Academy of Sciences Publication Activity Database

    Cibiček, N.; Roubalová, L.; Vrba, J.; Zatloukalová, M.; Ehrmann, J.; Zapletalová, J.; Večeřa, R.; Křen, Vladimír; Ulrichová, J.

    2016-01-01

    Roč. 68, č. 6 (2016), s. 1197-1204 ISSN 1734-1140 Institutional support: RVO:61388971 Keywords : Isoquercitrin * Quercetin-3-O-beta-D-glucopyranoside * Dextran sulfate sodium Subject RIV: CE - Biochemistry Impact factor: 2.587, year: 2016

  17. Increasing pro-survival factors within whole brain tissue of Sprague Dawley rats via intracerebral administration of modified valproic acid

    Directory of Open Access Journals (Sweden)

    Ryan C. Bates

    2015-08-01

    Full Text Available Neural tissue exposure to valproic acid (VPA increases several pro-survival phospho-proteins that can be used as biomarkers for indicating a beneficial drug response (pAktSer473, pGSK3βSer9, pErk1/2Thr202/Tyr204. Unfortunately, targeting VPA to neural tissue is a problem due to severe asymmetrical distribution, wherein the drug tends to remain in peripheral blood rather than localizing within the brain. Intracerebral delivery of an amide-linked VPA–PEG conjugate could address these issues by enhancing retention and promoting cerebro-global increases in pro-survival phospho-proteins. It is necessary to assay for the retained bioactivity of a PEGylated valproic acid molecule, along with locating an intracranial cannula placement that optimizes the increase of a known downstream biomarker for chronic VPA exposure. Here we show an acute injection of VPA–PEG conjugate within brain tissue increased virtually all of the assayed phospho-proteins, including well-known pro-survival factors. In contrast, an acute injection of VPA expectedly decreased signaling throughout the hour. Needle penetration into whole brain tissue is the intentional cause of trauma in this procedure. The trauma to brain tissue was observed to overcome known phospho-protein increases for unmodified VPA in the injected solution, while VPA–PEG conjugate appeared to induce significant increases in pro-survival phospho-proteins, despite the procedural trauma.

  18. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    Science.gov (United States)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  19. Multiscale biomechanics of brain tumours favours cancer invasion by cell softening and tissue stiffening

    Science.gov (United States)

    Kas, Josef; Fritsch, Anatol; Grosser, Steffen; Friebe, Sabrina; Reiss-Zimmermann, Martin; Müller, Wolf; Hoffmann, Karl-Titus; Sack, Ingolf

    Cancer progression needs two contradictory mechanical prerequisites. For metastasis individual cancer cells or small clusters have to flow through the microenvironment by overcoming the yield stress exerted by the surrounding. On the other hand a tumour has to behave as a solid to permit cell proliferation and spreading of the tumour mass against its surrounding. We determine that the high mechanical adaptability of cancer cells and the scale controlled viscoelastic properties of tissues reconcile both conflicting properties, fluid and solid, simultaneously in brain tumours. We resolve why different techniques that assess cell and tissue mechanics have produced apparently conflicting results by our finding that tumours generate different viscoelastic behaviours on different length scales, which are in concert optimal for tumour spreading and metastasis. Single cancer cells become very soft in their elastic behavior which promotes cell unjamming. On the level of direct cell-to-cell interactions cells feel their micro-environment as rigid elastic substrate that stimulates cancer on the molecular level. All over a tumour has predominately a stiff elastic character in terms of viscoelastic behaviour caused by a solid backbone. Simultaneously, the tumour mass is characterized by a large local variability in the storage and loss modulus that is caused by areas of a more fluid nature.

  20. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue.

    Science.gov (United States)

    Bischel, Lauren L; Coneski, Peter N; Lundin, Jeffrey G; Wu, Peter K; Giller, Carl B; Wynne, James; Ringeisen, Brad R; Pirlo, Russell K

    2016-04-01

    Gaining a greater understanding of the blood-brain barrier (BBB) is critical for improvement in drug delivery, understanding pathologies that compromise the BBB, and developing therapies to protect the BBB. In vitro human tissue models are valuable tools for studying these issues. The standard in vitro BBB models use commercially available cell culture inserts to generate bilayer co-cultures of astrocytes and endothelial cells (EC). Electrospinning can be used to produce customized cell culture substrates with optimized material composition and mechanical properties with advantages over off-the-shelf materials. Electrospun gelatin is an ideal cell culture substrate because it is a natural polymer that can aid cell attachment and be modified and degraded by cells. Here, we have developed a method to produce cell culture inserts with electrospun gelatin "biopaper" membranes. The electrospun fiber diameter and cross-linking method were optimized for the growth of primary human endothelial cell and primary human astrocyte bilayer co-cultures to model human BBB tissue. BBB co-cultures on biopaper were characterized via cell morphology, trans-endothelial electrical resistance (TEER), and permeability to FITC-labeled dextran and compared to BBB co-cultures on standard cell culture inserts. Over longer culture periods (up to 21 days), cultures on the optimized electrospun gelatin biopapers were found to have improved TEER, decreased permeability, and permitted a smaller separation between co-cultured cells when compared to standard PET inserts. © 2016 Wiley Periodicals, Inc.

  1. Effects of 60Co γ-radiation on brain hippocampal tissue of adult mice

    International Nuclear Information System (INIS)

    Liu Yongbao; Rao Yongqing; Xu Luxi

    2000-01-01

    Objective: To study neuro-pathological changes of hippocampus tissue in adult mice following a series of irradiation with 60 Co γ-rays. Methods: Male mice of Kunming strain in experimental group (n = 8) were exposed total-bodily to 60 Co γ-rays at 2.0 Gy once every two days. A histopathological imaging analysis of the mouse brain tissue was carried out after paraffin embedding and a series of sections were made and stained with Nissl and Weil staining methods. Results: In the irradiation group (the cumulative dose = 26 Gy) loss of pyramidal cells in hippocampus was significant when compared with the control group. Neuro-pathological changes were characterised by reduced neuron size, nuclear pyknosis and karyolysis. The neurofibrillar density of the pyramidal layer in the irradiation group was much lower than that of the control group (P CA2>CA3>CA4 in the hippocampus. Conclusion: The neuronal damage in hippocampus after 60 Co irradiation could form a pathological basis in reduction of memorial and learning ability

  2. What lies beneath? Diffusion EAP-based study of brain tissue microstructure.

    Science.gov (United States)

    Zucchelli, Mauro; Brusini, Lorenza; Andrés Méndez, C; Daducci, Alessandro; Granziera, Cristina; Menegaz, Gloria

    2016-08-01

    Diffusion weighted magnetic resonance signals convey information about tissue microstructure and cytoarchitecture. In the last years, many models have been proposed for recovering the diffusion signal and extracting information to constitute new families of numerical indices. Two main categories of reconstruction models can be identified in diffusion magnetic resonance imaging (DMRI): ensemble average propagator (EAP) models and compartmental models. From both, descriptors can be derived for elucidating the underlying microstructural architecture. While compartmental models indices directly quantify the fraction of different cell compartments in each voxel, EAP-derived indices are only a derivative measure and the effect of the different microstructural configurations on the indices is still unclear. In this paper, we analyze three EAP indices calculated using the 3D Simple Harmonic Oscillator based Reconstruction and Estimation (3D-SHORE) model and estimate their changes with respect to the principal microstructural configurations. We take advantage of the state of the art simulations to quantify the variations of the indices with the simulation parameters. Analysis of in-vivo data correlates the EAP indices with the microstructural parameters obtained from the Neurite Orientation Dispersion and Density Imaging (NODDI) model as a pseudo ground truth for brain data. Results show that the EAP derived indices convey information on the tissue microstructure and that their combined values directly reflect the configuration of the different compartments in each voxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Characterization and localization of 3H-arginine8-vasopressin binding to rat kidney and brain tissue

    International Nuclear Information System (INIS)

    Dorsa, D.M.; Majumdar, L.A.; Petracca, F.M.; Baskin, D.G.; Cornett, L.E.

    1983-01-01

    Anatomic, behavioral and pharmacologic evidence suggests that arginine8-vasopressin (AVP) serves as a CNS neurotransmitter or neuromodulator. AVP binding to membrane and tissue slice preparations from brain and kidney was characterized, and the anatomical distribution of these binding sites was examined. Conditions for the binding assay were optimized using kidney medullary tissue. Binding of 3 H-AVP (S.A. . 30-51 Ci/mmol, NEN) to brain and kidney membranes and tissue slices was saturable, temperature dependent, linearly related to protein concentration (or number of tissue slices), reversible, and specific since the ability of cold AVP to displace 3 H-AVP from binding was greater than oxytocin and other related peptide fragments. Autoradiographic localization of 3 H-AVP binding was restricted to kidney medullary tissue. In brain tissue, 3 H-AVP binding was found to occur in concentrated foci. Brainstem areas such as the nucleus tractus solitarius (NTS) showed a high density of AVP binding sites. Since local injections of AVP into the NTS have been shown to influence blood pressure, the present study presents the first anatomical evidence for the presence of AVP specific binding sites which might mediate this effect

  4. Contrast medium enhancement of soft tissues and brain in CT examinations of dogs

    International Nuclear Information System (INIS)

    Pavlicek, M.

    2000-11-01

    CT is an x-ray based method which shows less contrast for soft tissue as has been known from radiography. Therefore, it is necessary to use intravenously administered iodine contrast media to detect and localize tumors, fistulas or other pathologic lesions. Usually contrast medium is administered manually which yields random patterns of media distribution due to varying application pressure during varying administration time, therefore enhancement of parenchymous organs could not be used to the optimum extent. The use of an automatic injection pump guarantees the necessary constancy during the examination procedure to undoubtedly detect pathologic enhancement of organs in the CT-image as known from human medicine. The standards which are expected of the injection pump and the contrast media are: a good contrast enhancement, a good accumulation in the examined organs, an accumulation, which lasts long enough during the diagnostic phase, and a rapid excretion without side effects. Because of the short scan time of the modern CT-scanner, the best contrast enhancement can be administered by a short bolus injection, which can be applied by the automatic injection pump with a defined flow and a defined quantity of contrast media. This guarantees a good enhancement in the chosen region for the duration of the scan. The main aim of this study is to find a standardized flow and quantity of contrast media for defined regions and organs considering the speed of the scanner. In a subsequent step, the existing scan-protocols are then updated using the newly found information. This study showed, that CT examination of the head and brain in middle-sized dogs can be administered with a flow of 0.5 ml/s and a dose of 2 ml of contrast medium per kg weight. The contrast enhancement of the brain is caused by the enhancement of the vessels, the parenchym is free of contrast media - brain shows a low increase of density. Only if the blood-brain-barrier is destroyed, it is possible that

  5. Contrast medium enhancement of soft tissues and brain in CT examinations of dogs

    International Nuclear Information System (INIS)

    Pavlicek, M.

    2000-11-01

    CT is a x-ray based method which shows less contrast for soft tissue as has been known from radiography. Therefore, it is necessary to use intravenously administered iodine contrast media to detect and localize tumors, fistulas or other pathologic lesions. Usually contrast medium is administered manually which yields random patterns of media distribution due to varying application pressure during varying administration time, therefore enhancement of parenchymous organs could not be used to the optimum extent. The use of an automatic injection pump guarantees the necessary constancy during the examination procedure to undoubtedly detect pathologic enhancement of organs in the CT-image as known from human medicine. The standards which are expected of the injection pump and the contrast media are: a good contrast enhancement, a good accumulation in the examined organs, an accumulation, which lasts long enough during the diagnostic phase, and a rapid excretion without side effects. Because of the short scan time of the modern CT-scanner, the best contrast enhancement can be administered by a short bolus injection, which can be applied by the automatic injection pump with a defined flow and a defined quantity of contrast media. This guarantees a good enhancement in the chosen region for the duration of the scan. The main aim of this study is to find a standardized flow and quantity of contrast media for defined regions and organs considering the speed of the scanner. In a subsequent step, the existing scan-protocols are then updated using the newly found information. This study showed, that CT examination of the head and brain in middle-sized dogs can be administered with a flow of 0.5 ml/s and a dose of 2 ml of contrast medium per kg weight. The contrast enhancement of the brain is caused by the enhancement of the vessels, the parenchym is free of contrast media - brain shows a low increase of density. Only if the blood-brain-barrier is destroyed, it is possible that

  6. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO(2).

    Science.gov (United States)

    Ortiz-Prado, E; Natah, Siraj; Srinivasan, Sathyanarayanan; Dunn, Jeff F

    2010-11-30

    The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses.

    Directory of Open Access Journals (Sweden)

    Chang-Gyu Hahn

    Full Text Available Recent molecular genetics studies have suggested various trans-synaptic processes for pathophysiologic mechanisms of neuropsychiatric illnesses. Examination of pre- and post-synaptic scaffolds in the brains of patients would greatly aid further investigation, yet such an approach in human postmortem tissue has yet to be tested. We have examined three methods using density gradient based purification of synaptosomes followed by detergent extraction (Method 1 and the pH based differential extraction of synaptic membranes (Methods 2 and 3. All three methods separated fractions from human postmortem brains that were highly enriched in typical PSD proteins, almost to the exclusion of pre-synaptic proteins. We examined these fractions using electron microscopy (EM and verified the integrity of the synaptic membrane and PSD fractions derived from human postmortem brain tissues. We analyzed protein composition of the PSD fractions using two dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS and observed known PSD proteins by mass spectrometry. Immunoprecipitation and immunoblot studies revealed that expected protein-protein interactions and certain posttranscriptional modulations were maintained in PSD fractions. Our results demonstrate that PSD fractions can be isolated from human postmortem brain tissues with a reasonable degree of integrity. This approach may foster novel postmortem brain research paradigms in which the stoichiometry and protein composition of specific microdomains are examined.

  8. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M

    1983-01-01

    ). Autoregulation was impaired in all of the collaterally perfused areas while the CO2-response always was preserved. Steal phenomena were not seen. In the surrounding brain tissue, autoregulation was normal in 5 patients and impaired in 3 while the CO2-response seemed to be normal. The results confirm...

  9. Neospora caninum and Toxoplasma gondii in brain tissue of feral rodents and insectivores caught on farms in the Netherlands

    NARCIS (Netherlands)

    Meerburg, B.G.; Craeye, de S.; Dierick, K.; Kijlstra, A.

    2012-01-01

    We investigated the presence of both Neospora caninum and Toxoplasma gondii in 250 brain tissue samples from 9 species of feral rodents and insectivores caught on 10 organic farms in the Netherlands in 2004. Collected samples were conserved in 4% paraformaldehyde solution and analysed by real-time

  10. Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact

    NARCIS (Netherlands)

    Brands, D.W.A.; Peters, G.W.M.; Bovendeerd, P.H.M.

    2004-01-01

    Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. CurrentFE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model

  11. Radiation-induced brain damage in children; Histological analysis of sequential tissue changes in 34 autopsy cases

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi [Kobe Univ. (Japan). School of Medicine; Raimondi, A J

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author).

  12. Relationship between Concentrations of Lutein and StARD3 among Pediatric and Geriatric Human Brain Tissue.

    Directory of Open Access Journals (Sweden)

    Jirayu Tanprasertsuk

    Full Text Available Lutein, a dietary carotenoid, selectively accumulates in human retina and brain. While many epidemiological studies show evidence of a relationship between lutein status and cognitive health, lutein's selective uptake in human brain tissue and its potential function in early neural development and cognitive health have been poorly evaluated at a molecular level. The objective of this study was to evaluate the cross-sectional relationship between concentrations of brain lutein and StARD3 (identified as its binding protein in retinal tissue among three age groups: infants (1-4 months, n = 10, older adults (55-86 years, n = 8, and centenarians (98-105 years, n = 10. Brain lutein concentrations were analyzed by high-performance liquid chromatography and StARD3 levels were analyzed by Western Blot analysis. The strong relationship in infant brains (r = 0.75, P 0.05, seven of whom had mild cognitive impairment (MCI or dementia. These exploratory findings suggest an age-related decrease or abnormality of StARD3 activity in human brain. Given that StARD3 is also involved in cholesterol transportation, a process that is aberrant in neurodegenerative diseases, the potential protective function of lutein against these diseases remains to be explored.

  13. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit.

    Science.gov (United States)

    Li, Zhuang; Yi, Chun-Xia; Katiraei, Saeed; Kooijman, Sander; Zhou, Enchen; Chung, Chih Kit; Gao, Yuanqing; van den Heuvel, José K; Meijer, Onno C; Berbée, Jimmy F P; Heijink, Marieke; Giera, Martin; Willems van Dijk, Ko; Groen, Albert K; Rensen, Patrick C N; Wang, Yanan

    2017-11-03

    Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate. To study the contribution of satiety to the metabolic benefits of butyrate, mice were fed a high-fat diet with butyrate, and an additional pair-fed group was included. Mechanistic involvement of the gut-brain neural circuit was investigated in vagotomised mice. Acute oral, but not intravenous, butyrate administration decreased food intake, suppressed the activity of orexigenic neurons that express neuropeptide Y in the hypothalamus, and decreased neuronal activity within the nucleus tractus solitarius and dorsal vagal complex in the brainstem. Chronic butyrate supplementation prevented diet-induced obesity, hyperinsulinaemia, hypertriglyceridaemia and hepatic steatosis, largely attributed to a reduction in food intake. Butyrate also modestly promoted fat oxidation and activated brown adipose tissue (BAT), evident from increased utilisation of plasma triglyceride-derived fatty acids. This effect was not due to the reduced food intake, but explained by an increased sympathetic outflow to BAT. Subdiaphragmatic vagotomy abolished the effects of butyrate on food intake as well as the stimulation of metabolic activity in BAT. Butyrate acts on the gut-brain neural circuit to improve energy metabolism via reducing energy intake and enhancing fat oxidation by activating BAT. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  15. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.

    Science.gov (United States)

    Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M

    2015-08-01

    We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.

  16. Brain tissues atrophy is not always the best structural biomarker of physiological aging: A multimodal cross-sectional study.

    Science.gov (United States)

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Péran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2015-01-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2* relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. These findings highlight the importance of a combined evaluation of multimodal biomarkers for the study of aging and point to a number of novel applications for the method described.

  17. Histopathological investigation of radiation necrosis. Coagulation necrosis in the irradiated and non-irradiated brain tumors and in the normal brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N [Niigata Univ. (Japan). Brain Research Inst.

    1977-01-01

    Eighty four irradiated tumors (including 59 gliomas) and the surrounding brain tissue were analyzed. In 'normal' brain tissue, typical coagulation necrosis attributable to irradiation was observed in the cerebral white matter, presenting a whitish-yellow color but no remarkable changes in volume. Histologically there was complete desintegration of myelin and axon. Vascular changes included hyalinous thickening, concentric cleavage, fibrinoid degeneration, adventitial fibrosis and edema of small arteries, fibrin thrombi or occlusion of arterioles and capillaries, and telangiectasia of small veins and venules. While other tumors showed hyalinous or fibrous scar tissue and decrease in volume, the gliomas maintained their original volume without residual tumor cells. Massive coagulation necrosis was occasionally found even in full volume, non-irradiated gliomas (controls), although the changes were fewer and not so varied as in typical radiation necrosis. With small dosages, it was difficult to judge whether the necrosis was caused by irradiation or occurred spontaneously. Coagulation necrosis in tumor tissue was found in 25 of 59 cases (42%) of irradiated gliomas, but in only 2 of 49 cases (4%) of the nonirradiated gliomas. In 49 cases no coagulation necrosis of the surrounding tissue was found. Although histopathological judgement is difficult, it is suggested that there is a significant correlation between coagulation necrosis and irradiation. Discussion of the relationship between coagulation necrosis and NSD (nominal standard dose) led to the conclusion that coagulation necrosis will not be caused by irradiation of less than 1400 rets in NSD.

  18. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn

  19. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities.

    Science.gov (United States)

    McDonald, Robert J; McDonald, Jennifer S; Kallmes, David F; Jentoft, Mark E; Paolini, Michael A; Murray, David L; Williamson, Eric E; Eckel, Laurence J

    2017-11-01

    Purpose To determine whether gadolinium deposits in neural tissues of patients with intracranial abnormalities following intravenous gadolinium-based contrast agent (GBCA) exposure might be related to blood-brain barrier integrity by studying adult patients with normal brain pathologic characteristics. Materials and Methods After obtaining antemortem consent and institutional review board approval, the authors compared postmortem neuronal tissue samples from five patients who had undergone four to 18 gadolinium-enhanced magnetic resonance (MR) examinations between 2005 and 2014 (contrast group) with samples from 10 gadolinium-naive patients who had undergone at least one MR examination during their lifetime (control group). All patients in the contrast group had received gadodiamide. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy with energy-dispersive x-ray spectroscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Results Tissues from the four neuroanatomic regions of gadodiamide-exposed patients contained 0.1-19.4 μg of gadolinium per gram of tissue in a statistically significant dose-dependent relationship (globus pallidus: ρ = 0.90, P = .04). In contradistinction, patients in the control group had undetectable levels of gadolinium with ICP-MS. All patients had normal brain pathologic characteristics at autopsy. Three patients in the contrast group had borderline renal function (estimated glomerular filtration rate the contrast group was localized to the capillary endothelium and neuronal interstitium and, in two cases, within the nucleus of the cell. Conclusion Gadolinium deposition in neural tissues after GBCA administration occurs in the absence of intracranial abnormalities that might affect the permeability of the blood-brain barrier. These findings

  20. Effects of Pringle maneuver and partial hepatectomy on the pharmacokinetics and blood-brain barrier permeability of sodium fluorescein in rats.

    Science.gov (United States)

    Miah, Mohammad K; Shaik, Imam H; Bickel, Ulrich; Mehvar, Reza

    2015-08-27

    Liver diseases are known to affect the function of remote organs. The aim of the present study was to investigate the effects of Pringle maneuver, which results in hepatic ischemia-reperfusion (IR) injury, and partial hepatectomy (Hx) on the pharmacokinetics and brain distribution of sodium fluorescein (FL), which is a widely used marker of blood-brain barrier (BBB) permeability. Rats were subjected to Pringle maneuver (total hepatic ischemia) for 20 min with (HxIR) or without (IR) 70% hepatectomy. Sham-operated animals underwent laparotomy only. After 15 min or 8h of reperfusion, a single 25-mg/kg dose of FL was injected intravenously and serial (0-30 min) blood and bile and terminal brain samples were collected. Total and free (ultrafiltration) plasma, total brain homogenate, and bile concentrations of FL and/or its glucuronidated metabolite (FL-Glu) were determined by HPLC. Both IR and HxIR caused significant reductions in the biliary excretions of FL and FL-Glu, resulting in significant increases in the plasma AUC of the marker. Additionally, the free fraction of FL in plasma was significantly increased by HxIR. Although the brain concentrations of FL were increased by almost twofold in both IR and HxIR animals, the brain concentrations corrected by the free FL AUC (and not the total AUC) were similar in both groups at either time points. It is concluded that Pringle maneuver and/or partial hepatectomy substantially alters the hepatobiliary disposition, plasma AUC, plasma free fraction, and brain accumulation of FL without altering the BBB permeability to the marker. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The association between brain natriuretic peptide and tissue Doppler parameters in children with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Taliha Öner

    2016-01-01

    Full Text Available In this study, we investigated the association between brain natriuretic peptide (BNP levels and tissue Doppler imaging measurements and also screening for deadly mutations in patients with hypertrophic cardiomyopathy (HCM. We enrolled 20 patients diagnosed with HCM (age:10.7±5 years (1-17, 85% male, weight:42.25±23.10 kg, height:141.80±32.45 cm and 20 age, gender and body weight-matched control subjects. We performed electrocardiography, transthoracic echocardiography, and tissue Doppler echocardiography in each group, as well as genetic tests (for Arg403Gln, Arg453Cys, Arg719Trp and Arg719Gln mutations in MYH7 Exons 13, 14, 19 and BNP in the patients. The patients were divided into two groups according to the presence (Group 1 or absence (Group 2 of left ventricular (LV outflow tract obstruction. QTc dispersion and the LV ejection fraction and left atrial (LA volume index were increased in Group 1. The LA volume index and the mitral and septal E/Ea ratio and septum Z-score were increased while the mitral lateral annulus and septal annulus Ea wave velocities and the mitral and tricuspid E/A ratio were decreased in patients with high levels of BNP compared to those with normal BNP levels. There were no mutations that are associated with increased risk of sudden death found in patients included in this study. In the light of our data, we conclude that such parameters BNP levels above the 98 pg/mL, septal thickness Z-score ˃6, and higher mitral and septal E/Ea ratios can be used for management of patients with HCM according to life-threatening conditions.

  2. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Han Tong; Cui Shimin; Tong Xiaoguang; Liu Li; Xue Kai; Liu Meili; Liang Siquan; Zhang Yunting; Zhi Dashi

    2011-01-01

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ = 7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS u c = 2.664, P=0.008; Zubrod -ECOG -WHO u c =2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate

  3. The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment.

    Directory of Open Access Journals (Sweden)

    Benjamin B Gelman

    Full Text Available The National NeuroAIDS Tissue Consortium (NNTC performed a brain gene expression array to elucidate pathophysiologies of Human Immunodeficiency Virus type 1 (HIV-1-associated neurocognitive disorders.Twenty-four human subjects in four groups were examined A Uninfected controls; B HIV-1 infected subjects with no substantial neurocognitive impairment (NCI; C Infected with substantial NCI without HIV encephalitis (HIVE; D Infected with substantial NCI and HIVE. RNA from neocortex, white matter, and neostriatum was processed with the Affymetrix® array platform.With HIVE the HIV-1 RNA load in brain tissue was three log(10 units higher than other groups and over 1,900 gene probes were regulated. Interferon response genes (IFRGs, antigen presentation, complement components and CD163 antigen were strongly upregulated. In frontal neocortex downregulated neuronal pathways strongly dominated in HIVE, including GABA receptors, glutamate signaling, synaptic potentiation, axon guidance, clathrin-mediated endocytosis and 14-3-3 protein. Expression was completely different in neuropsychologically impaired subjects without HIVE. They had low brain HIV-1 loads, weak brain immune responses, lacked neuronally expressed changes in neocortex and exhibited upregulation of endothelial cell type transcripts. HIV-1-infected subjects with normal neuropsychological test results had upregulation of neuronal transcripts involved in synaptic transmission of neostriatal circuits.Two patterns of brain gene expression suggest that more than one pathophysiological process occurs in HIV-1-associated neurocognitive impairment. Expression in HIVE suggests that lowering brain HIV-1 replication might improve NCI, whereas NCI without HIVE may not respond in kind; array results suggest that modulation of transvascular signaling is a potentially promising approach. Striking brain regional differences highlighted the likely importance of circuit level disturbances in HIV/AIDS. In

  4. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    Science.gov (United States)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  5. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  6. Automatic quantification of mitochondrial fragmentation from two-photon microscope images of mouse brain tissue.

    Science.gov (United States)

    Lihavainen, E; Kislin, M; Toptunov, D; Khiroug, L; Ribeiro, A S

    2015-12-01

    The morphology of mitochondria can inform about their functional state and, thus, about cell vitality. For example, fragmentation of the mitochondrial network is associated with many diseases. Recent advances in neuronal imaging have enabled the observation of mitochondria in live brains for long periods of time, enabling the study of their dynamics in animal models of diseases. To aid these studies, we developed an automatic method, based on supervised learning, for quantifying the degree of mitochondrial fragmentation in tissue images acquired via two-photon microscopy from transgenic mice, which exclusively express Enhanced cyan fluorescent protein (ECFP) under Thy1 promoter, targeted to the mitochondrial matrix in subpopulations of neurons. We tested the method on images prior to and after cardiac arrest, and found it to be sensitive to significant changes in mitochondrial morphology because of the arrest. We conclude that the method is useful in detecting morphological abnormalities in mitochondria and, likely, in other subcellular structures as well. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. The role of glutamine transport in metabolism in the brain cortical tissue slice

    International Nuclear Information System (INIS)

    Hare, N.; Bubb, W.A.; Rae, C.; Broeer, S.

    2001-01-01

    The widely accepted 'glutamate/glutamine cycle' holds that glutamate released as a neurotransmitter in the brain is taken up by surrounding astrocytes, converted to neuro-inactive glutamine and transported back to neurons for reconversion to glutamate. Little, however, is known about the role of glutamine transport in this process. The situation is complicated by the fact that glutamine is transported by a variety of general amino-acid transporters of low specificity. The role of these transporters in flux of glutamine through the glutamate/glutamine cycle was investigated by 13 C NMR monitoring of the flux of C from [3- 13 C]L-lactate in guinea pig cortical tissue slices in the presence of competitive inhibitors of the A-type(α-(methylamino)isobutyrate; MeAIB) and N-type (histidine) transporters. The presence of each inhibitor (10 mM) produced no significant decrease in total metabolite pool size but resulted in a significant decrease in flux of [ 13 C] into the neurotransmitters glutamate and GABA and also into glutamine and alanine. The factional enrichment of glutamate and GABA was also significantly lower. By contrast there was no effect on the amount of [ 13 C] incorporated into aspartate isotopomers which may represent a predominantly astrocyte-labelled pool. These results are consistent with involvement of glutamine transporters in the recycling of synaptic glutamate by demonstrating partial blockage of incorporation of [ 13 C] label into neuronal metabolites

  8. Amyloid-β oligomer detection by ELISA in cerebrospinal fluid and brain tissue.

    Science.gov (United States)

    Bruggink, Kim A; Jongbloed, Wesley; Biemans, Elisanne A L M; Veerhuis, Rob; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2013-02-15

    Amyloid-β (Aβ) deposits are important pathological hallmarks of Alzheimer's disease (AD). Aβ aggregates into fibrils; however, the intermediate oligomers are believed to be the most neurotoxic species and, therefore, are of great interest as potential biomarkers. Here, we have developed an enzyme-linked immunosorbent assay (ELISA) specific for Aβ oligomers by using the same capture and (labeled) detection antibody. The ELISA predominantly recognizes relatively small oligomers (10-25 kDa) and not monomers. In brain tissue of APP/PS1 transgenic mice, we found that Aβ oligomer levels increase with age. However, for measurements in human samples, pretreatment to remove human anti-mouse antibodies (HAMAs) was required. In HAMA-depleted human hippocampal extracts, the Aβ oligomer concentration was significantly increased in AD compared with nondemented controls. Aβ oligomer levels could also be quantified in pretreated cerebrospinal fluid (CSF) samples; however, no difference was detected between AD and control groups. Our data suggest that levels of small oligomers might not be suitable as biomarkers for AD. In addition, we demonstrate the importance of avoiding HAMA interference in assays to quantify Aβ oligomers in human body fluids. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. A novel liquid chromatography/mass spectrometry method for determination of neurotransmitters in brain tissue: Application to human tauopathies.

    Science.gov (United States)

    Forgacsova, Andrea; Galba, Jaroslav; Garruto, Ralph M; Majerova, Petra; Katina, Stanislav; Kovac, Andrej

    2018-01-15

    Neurotransmitters, small molecules widely distributed in the central nervous system are essential in transmitting electrical signals across neurons via chemical communication. Dysregulation of these chemical signaling molecules is linked to numerous neurological diseases including tauopathies. In this study, a precise and reliable liquid chromatography method was established with tandem mass spectrometry detection for the simultaneous determination of aspartic acid, asparagine, glutamic acid, glutamine, γ-aminobutyric acid, N-acetyl-l-aspartic acid, pyroglutamic acid, acetylcholine and choline in human brain tissue. The method was successfully applied to the analysis of human brain tissues from three different tauopathies; corticobasal degeneration, progressive supranuclear palsy and parkinsonism-dementia complex of Guam. Neurotransmitters were analyzed on ultra-high performance chromatography (UHPLC) using an ethylene bridged hybrid amide column coupled with tandem mass spectrometry (MS/MS). Identification and quantification of neurotransmitters was carried out by ESI+ mass spectrometry detection. We optimized sample preparation to achieve simple and fast extraction of all nine analytes. Our method exhibited an excellent linearity for all analytes (all coefficients of determination >0.99), with inter-day and intra-day precision yielding relative standard deviations 3.2%-11.2% and an accuracy was in range of 92.6%-104.3%. The present study, using the above method, is the first to demonstrate significant alterations of brain neurotransmitters caused by pathological processes in the brain tissues of patient with three different tauopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    Science.gov (United States)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  11. A Hybrid DE-RGSO-ELM for Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    K. Kothavari

    2014-01-01

    Full Text Available Medical diagnostics, a technique used for visualizing the internal structures and functions of human body, serves as a scientific tool to assist physicians and involves direct use of digital imaging system analysis. In this scenario, identification of brain tumors is complex in the diagnostic process. Magnetic resonance imaging (MRI technique is noted to best assist tissue contrast for anatomical details and also carries out mechanisms for investigating the brain by functional imaging in tumor predictions. Considering 3D MRI model, analyzing the anatomy features and tissue characteristics of brain tumor is complex in nature. Henceforth, in this work, feature extraction is carried out by computing 3D gray-level cooccurence matrix (3D GLCM and run-length matrix (RLM and feature subselection for dimensionality reduction is performed with basic differential evolution (DE algorithm. Classification is performed using proposed extreme learning machine (ELM, with refined group search optimizer (RGSO technique, to select the best parameters for better simplification and training of the classifier for brain tissue and tumor characterization as white matter (WM, gray matter (GM, cerebrospinal fluid (CSF, and tumor. Extreme learning machine outperforms the standard binary linear SVM and BPN for medical image classifier and proves better in classifying healthy and tumor tissues. The comparison between the algorithms proves that the mean and standard deviation produced by volumetric feature extraction analysis are higher than the other approaches. The proposed work is designed for pathological brain tumor classification and for 3D MRI tumor image segmentation. The proposed approaches are applied for real time datasets and benchmark datasets taken from dataset repositories.

  12. Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice.

    Science.gov (United States)

    Jorba, Ignasi; Menal, Maria José; Torres, Marta; Gozal, David; Piñol-Ripoll, Gerard; Colell, Anna; Montserrat, Josep M; Navajas, Daniel; Farré, Ramon; Almendros, Isaac

    2017-07-01

    Recent evidence suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer´s disease (AD), with the latter promoting alterations in brain tissue stiffness, a feature of ageing. Here, we assessed the effects of age and intermittent hypoxia (IH) on brain tissue stiffness in a mouse model of OSA. Two-month-old and 18-month-old mice (N=10 each) were subjected to IH (20% O 2 40s - 6% O 2 20s) for 8 weeks (6h/day). Corresponding control groups for each age were kept under normoxic conditions in room air (RA). After sacrifice, the brain was excised and 200-micron coronal slices were cut with a vibratome. Local stiffness of the cortex and hippocampus were assessed in brain slices placed in an Atomic Force Microscope. For both brain regions, the Young's modulus (E) in each animal was computed as the average values from 9 force-indentation curves. Cortex E mean (±SE) values were 442±122Pa (RA) and 455±120 (IH) for young mice and 433±44 (RA) and 405±101 (IH) for old mice. Hippocampal E values were 376±62 (RA) and 474±94 (IH) for young mice and 486±93 (RA) and 521±210 (IH) for old mice. For both cortex and hippocampus, 2-way ANOVA indicated no statistically significant effects of age or challenge (IH vs. RA) on E values. Thus, neither chronic IH mimicking OSA nor ageing up to late middle age appear to modify local brain tissue stiffness in otherwise healthy mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Neuroprotective effect of Quince leaf hydroalcoholic extract on intracerebroventricular streptozotocin-induced oxidative stress in cortical tissue of rat brain

    Directory of Open Access Journals (Sweden)

    A Hajizadeh Moghaddam

    2015-12-01

    Full Text Available Background & aim: Oxidative stress is a result of the imbalance between free radicals and the antioxidant system of the body. Increased oxidative stress in brain causes dysfunction of brain activities, destruction of neurons, and disease such as Alzheimer. Antioxidants, for example vitamins, phenolic compounds and flavonoids have been extensively investigated as potential therapeutic agents in vitro and in vivo for prevention of neurodegenerative diseases. In the present experimental study, the neuro-protective effect of quince leaf hydroalcoholic extract (QLHE on intracerebroventricular streptozotocin (icv-STZ-induced oxidative stress in cortical tissue of rat brain was examined. Methods: In the present experimental research, forty-two Wistar rats were randomly divided into control, sham, icv-STZ and icv-STZ treated with QLHE groups. The ICV-STZ group rats were injected unilaterally with ICV-STZ (3 mg/kg using a stereotactic device and QLHE (50, 100 and 150 mg/kg/day were administered for 6 weeks starting from 3 weeks before of ICV-STZ injection. The rats were killed at the end of the study and their brain cortical tissue superoxide dismutase and catalase activity were measured. The assay of catalase and superoxide dismutase was performed by following the Genet method. The amount of protein was determined according to the Bradford method.The statistical analysis was performed using one way ANOVA. Data were expressed as mean±SD and  P<0.05 was considered significant. Results: The present study indicated that in the ICV-STZ group showed significant decrease (P<0.001 in enzymatic antioxidants superoxide dismutase and catalase in the cortical tissue of the brain. Treatment of different doses of QLHE significantly increased superoxide dismutase and catalase activity compared to icv-STZ group (P<0.001 in cortical tissue of the brain. Conclusion: The study demonstrated the effectiveness of quince leaf hydroalcoholic extract as a powerful antioxidant

  14. Sodium valproate increases the brain isoform of glycogen phosphorylase: looking for a compensation mechanism in McArdle disease using a mouse primary skeletal-muscle culture in vitro

    Directory of Open Access Journals (Sweden)

    Noemí de Luna

    2015-05-01

    Full Text Available McArdle disease, also termed ‘glycogen storage disease type V’, is a disorder of skeletal muscle carbohydrate metabolism caused by inherited deficiency of the muscle-specific isoform of glycogen phosphorylase (GP-MM. It is an autosomic recessive disorder that is caused by mutations in the PYGM gene and typically presents with exercise intolerance, i.e. episodes of early exertional fatigue frequently accompanied by rhabdomyolysis and myoglobinuria. Muscle biopsies from affected individuals contain subsarcolemmal deposits of glycogen. Besides GP-MM, two other GP isoforms have been described: the liver (GP-LL and brain (GP-BB isoforms, which are encoded by the PYGL and PYGB genes, respectively; GP-BB is the main GP isoform found in human and rat foetal tissues, including the muscle, although its postnatal expression is dramatically reduced in the vast majority of differentiated tissues with the exception of brain and heart, where it remains as the major isoform. We developed a cell culture model from knock-in McArdle mice that mimics the glycogen accumulation and GP-MM deficiency observed in skeletal muscle from individuals with McArdle disease. We treated mouse primary skeletal muscle cultures in vitro with sodium valproate (VPA, a histone deacetylase inhibitor. After VPA treatment, myotubes expressed GP-BB and a dose-dependent decrease in glycogen accumulation was also observed. Thus, this in vitro model could be useful for high-throughput screening of new drugs to treat this disease. The immortalization of these primary skeletal muscle cultures could provide a never-ending source of cells for this experimental model. Furthermore, VPA could be considered as a gene-expression modulator, allowing compensatory expression of GP-BB and decreased glycogen accumulation in skeletal muscle of individuals with McArdle disease.

  15. MRI Brain Images Healthy and Pathological Tissues Classification with the Aid of Improved Particle Swarm Optimization and Neural Network

    Science.gov (United States)

    Sheejakumari, V.; Sankara Gomathi, B.

    2015-01-01

    The advantages of magnetic resonance imaging (MRI) over other diagnostic imaging modalities are its higher spatial resolution and its better discrimination of soft tissue. In the previous tissues classification method, the healthy and pathological tissues are classified from the MRI brain images using HGANN. But the method lacks sensitivity and accuracy measures. The classification method is inadequate in its performance in terms of these two parameters. So, to avoid these drawbacks, a new classification method is proposed in this paper. Here, new tissues classification method is proposed with improved particle swarm optimization (IPSO) technique to classify the healthy and pathological tissues from the given MRI images. Our proposed classification method includes the same four stages, namely, tissue segmentation, feature extraction, heuristic feature selection, and tissue classification. The method is implemented and the results are analyzed in terms of various statistical performance measures. The results show the effectiveness of the proposed classification method in classifying the tissues and the achieved improvement in sensitivity and accuracy measures. Furthermore, the performance of the proposed technique is evaluated by comparing it with the other segmentation methods. PMID:25977706

  16. Maternal sodium butyrate supplement elevates the lipolysis in adipose tissue and leads to lipid accumulation in offspring liver of weaning-age rats.

    Science.gov (United States)

    Zhou, Jiabin; Gao, Shixing; Chen, Jinglong; Zhao, Ruqian; Yang, Xiaojing

    2016-07-22

    Sodium butyrate (SB) is reported to regulate lipid metabolism in mammals, and the relationship between maternal nutrition and offspring growth has drawn much attention in the last several years. To elucidate the effects of maternal dietary SB supplementation on hepatic lipid metabolism in weaning rats, we fed 16 primiparous purebred female SD rats either a chow-diet or a 1 % sodium butyrate diet throughout pregnancy and lactation. At weaning age, samples of the maternal subcutaneous adipose tissue and offspring liver were taken. The serum indexes and expressions of proteins related to lipid metabolism were detected in the mother and offspring, respectively. The results showed that the maternal SB supplement increased the concentration of non-esterified fatty acid (NEFA) in the maternal and offspring serum (P pregnancy and lactation increased the hepatic total cholesterol (Tch) content (P pregnancy and the lactation period promotes maternal fat mobilization, which may result in fatty acid uptake and lipid accumulation in the liver of the offspring.

  17. In vivo imaging of cerebral hemodynamics and tissue scattering in rat brain using a surgical microscope camera system

    Science.gov (United States)

    Nishidate, Izumi; Kanie, Takuya; Mustari, Afrina; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu; Kokubo, Yasuaki

    2018-02-01

    We investigated a rapid imaging method to monitor the spatial distribution of total hemoglobin concentration (CHbT), the tissue oxygen saturation (StO2), and the scattering power b in the expression of musp=a(lambda)^-b as the scattering parameters in cerebral cortex using a digital red-green-blue camera. In the method, Monte Carlo simulation (MCS) for light transport in brain tissue is used to specify a relation among the RGB-values and the concentration of oxygenated hemoglobin (CHbO), that of deoxygenated hemoglobin (CHbR), and the scattering power b. In the present study, we performed sequential recordings of RGB images of in vivo exposed brain of rats while changing the fraction of inspired oxygen (FiO2), using a surgical microscope camera system. The time courses of CHbO, CHbR, CHbT, and StO2 indicated the well-known physiological responses in cerebral cortex. On the other hand, a fast decrease in the scattering power b was observed immediately after the respiratory arrest, which is similar to the negative deflection of the extracellular DC potential so-called anoxic depolarization. It is said that the DC shift coincident with a rise in extracellular potassium and can evoke cell deformation generated by water movement between intracellular and extracellular compartments, and hence the light scattering by tissue. Therefore, the decrease in the scattering power b after the respiratory arrest is indicative of changes in light scattering by tissue. The results in this study indicate potential of the method to evaluate the pathophysiological conditions and loss of tissue viability in brain tissue.

  18. Unusual soft tissue uptake of F-18 sodium fluoride in three patients undergoing F-18 NaF PET/CT bone scans for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, Andrew S.; Howard, Brandon A. [Div. of Nuclear Medicine, Dept. of Radiology, Duke University Medical Center, Durham (United States)

    2017-09-15

    Three males aged 71 to 80 years with known stage IV metastatic prostate cancer underwent F-18 sodium fluoride (NaF) PET/CT to assess osseous metastatic disease burden and stability. In addition to F-18 NaF avid known osseous metastases, each patient also exhibited increased F-18 NaF activity in soft tissues. The first patient exhibited multiple F-18 NaF avid enlarged retroperitoneal and pelvic lymph nodes on consecutive PET/CT scans. The second patient demonstrated an F-18 NaF avid thyroid nodule on consecutive PET/CT scans. The third patient exhibited increased F-18 NaF activity in a hepatic metastasis.

  19. Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy.

    Science.gov (United States)

    Krasieva, Tatiana B; Ehren, Jennifer; O'Sullivan, Thomas; Tromberg, Bruce J; Maher, Pamela

    2015-10-01

    Over the last few years, we have identified an orally active, novel neuroprotective and cognition-enhancing molecule, the flavonoid fisetin. Fisetin not only has direct antioxidant activity but it can also increase the intracellular levels of glutathione, the major intracellular antioxidant. Fisetin can also activate key neurotrophic factor signaling pathways. In addition, it has anti-inflammatory activity against microglia and astrocytes and inhibits the activity of lipoxygenases, thereby reducing the production of pro-inflammatory eicosanoids and their by-products. However, key questions about its targets and brain penetration remain. In this study, we used label-free two-photon microscopy of intrinsic fisetin fluorescence to examine the localization of fisetin in living nerve cells and the brains of living mice. In cells, fisetin but not structurally related flavonols with different numbers of hydroxyl groups, localized to the nucleoli suggesting that key targets of fisetin may reside in this organelle. In the mouse brain, following intraperitoneal injection and oral administration, fisetin rapidly distributed to the blood vessels of the brain followed by a slower dispersion into the brain parenchyma. Thus, these results provide further support for the effects of fisetin on brain function. In addition, they suggest that label-free two-photon microscopy may prove useful for studying the intracellular and tissue distribution of other intrinsically-fluorescent flavonoids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of cadmium and copper on sialic acid levels in blood and brain tissues of Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Utku Güner

    2014-09-01

    Full Text Available Objective: To investigate the effects of cadmium (Cd and copper (Cu on sialic acid levels of brain and blood tissues of Cyprinus carpio. Methods: Adult carps were exposed to 0.1, 0.5 mg/L Cu, 0.1, 0.5 and 1.0 mg/L Cd and 0.1 mg/ L Cu+0.1 mg/L Cd under static experiment conditions for 1 week. At the end of exposure period, heavy metal accumulations and sialic acid levels in blood and brain tissues of the test animals were analyzed. Results: Cu and Cd accumulated in tissues in a dramatically increasing dose-dependent manner. Sialic acids level of the fish exposed to 0.1, 0.5 and 1.0 mg/L Cu and Cd and control grups for 1 week were 0.834, 1.427, 0.672, 0.934, 2.968, 4.714 mg/mL respectively. The results also showed that Cu has an antagonistic effect on tissue sialic acid level. Conclusions: We propose that Cd and Cu make a complex with sialic acids of membranes in the tissues researched. This complex between metal ions and sialic acid migth account for the cellular toxicity based on Cu and Cd.

  1. Nicotine affects hydrogen sulfide concentrations in mouse kidney and heart but not in brain and liver tissues.

    Science.gov (United States)

    Wiliński, Jerzy; Wiliński, Bogdan; Somogyi, Eugeniusz; Piotrowska, Joanna; Kameczura, Tomasz; Zygmunt, Małgorzata

    2017-01-01

    Nicotine, a potent parasympathomimetic alkaloid with stimulant effects, is contributing to addictive properties of tobacco smoking and is though used in the smoking cessation therapy. Hydrogen sulfide (H2S) is involved in physiology and pathophysiology of various systems in mammals. The interactions between nicotine and H2S are not fully recognized. The aim of the study is to assess the influence of nicotine on the H2S tissue concentrations in different mouse organs. Adult CBA male mice were administered intraperitoneally 1.5 mg/kg b.w. per day of nicotine (group D1, n = 10) or 3 mg/ kg b.w. per day of nicotine (group D2, n = 10). The control group (n = 10) received physiological saline. The measurements of the free and acid-labile H2S tissue concentrations were performed with the Siegel spectrophotometric modi ed method. ere was a significant increase in H2S concentrations in both nicotine doses groups in the kidney (D1 by 54.2%, D2 by 40.0%). In the heart the higher nicotine dose caused a marked decrease in H2S tissue level (by 65.4%), while the lower dose did not affect H2S content. Nicotine administration had no effect on H2S concentrations in the brain and liver. In conclusion, nicotine affects H2S tissue concentrations in kidney and heart but not in the liver and brain tissues.

  2. A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury

    Science.gov (United States)

    2016-01-01

    Pennsylvania, we completed computerized volumetric analysis of the structural MRI scans of the brain collected from the study subjects, using the... pharmacological management. Brain Injury 2001;15(2):139-48. 07. Wroblewski BA, Joseph AB, Kupfer J, Kalliel K. Effectiveness of valproic acid on

  3. A method to determine insulin responsiveness in synaptosomes isolated from frozen brain tissue.

    Science.gov (United States)

    Franklin, Whitney; Taglialatela, Giulio

    2016-03-01

    Studying the insulin signaling response at the synapse is an important approach to understand molecular mechanisms involved in disease-related neurodegenerative processes. We developed a method for studying the insulin responsiveness at the synaptic level by isolating functional synaptosomes from fresh or frozen tissue and exposing them to insulin in the presence of ATP (a critical step) to detect insulin receptor (IR) activation. We performed an ATP dose-response curve, insulin dose-response curve, and insulin response time course to optimize this method. We also demonstrated that our protocol reflects the degree of insulin responsiveness in vivo by using an animal model of known insulin resistance, AtENPP1-Tg mice. This method is advantageous over other methods detecting IR in total brain homogenates due to the ability to detect IR response without confounding contributions from other cell areas and cell types also expressing IR. Furthermore, ex vivo insulin stimulation can be compared to baseline synaptosomes obtained from the same animal which improves reliability and statistical power while decreasing the number of animals required to perform individual experiments. We have developed a reliable, efficient method to measure insulin-driven ex vivo phosphorylation of the synaptosomal insulin receptor that can reliably reflect the pre-existing insulin responsiveness status in the CNS of the animal. To the best of our knowledge, this is the first evidence of stimulation of isolated synaptosomes with insulin and a promising new technique to study the synaptic CNS insulin responsiveness under physiological or disease conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Differences in supratentorial white matter diffusion after radiotherapy - New biomarker of normal brain tissue damage?

    Energy Technology Data Exchange (ETDEWEB)

    Ravn, Soeren; Jens Broendum Froekaer, Jens [Dept. of Radiology, Aalborg Univ. Hospital, Aalborg (Denmark)], e-mail: sorl@rn.dk; Holmberg, Mats [Dept. of Oncology, Aalborg Univ. Hospital, Aalborg (Denmark); Soerensen, Preben [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark); Carl, Jesper [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark)

    2013-10-15

    Introduction: Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. Material and methods: DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on iso curves from Eclipse. Data was analysed by t-test. Estimates are given with 95 % CI. Results: A mean ADC difference of 4.6(0.3;8.9) X 10{sup -5} mm{sup 2}/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60) X 10{sup -5} mm{sup 2}/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58) X 10{sup -5} mm{sup 2}/s, p = 0.29; 15 Gy; 5.81(1.53;10.11) X 10{sup -5} mm{sup 2}/s, p = 0.01; 25 Gy; 5.80(2.43;9.18) X 10{sup -5} mm{sup 2}/s, p = 0.002; 35 Gy; 5.93(2.89;8.97) X 10

  5. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  6. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  7. Application of single- and dual-energy CT brain tissue segmentation to PET monitoring of proton therapy

    Science.gov (United States)

    Berndt, Bianca; Landry, Guillaume; Schwarz, Florian; Tessonnier, Thomas; Kamp, Florian; Dedes, George; Thieke, Christian; Würl, Matthias; Kurz, Christopher; Ganswindt, Ute; Verhaegen, Frank; Debus, Jürgen; Belka, Claus; Sommer, Wieland; Reiser, Maximilian; Bauer, Julia; Parodi, Katia

    2017-03-01

    The purpose of this work was to evaluate the ability of single and dual energy computed tomography (SECT, DECT) to estimate tissue composition and density for usage in Monte Carlo (MC) simulations of irradiation induced β + activity distributions. This was done to assess the impact on positron emission tomography (PET) range verification in proton therapy. A DECT-based brain tissue segmentation method was developed for white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). The elemental composition of reference tissues was assigned to closest CT numbers in DECT space (DECTdist). The method was also applied to SECT data (SECTdist). In a validation experiment, the proton irradiation induced PET activity of three brain equivalent solutions (BES) was compared to simulations based on different tissue segmentations. Five patients scanned with a dual source DECT scanner were analyzed to compare the different segmentation methods. A single magnetic resonance (MR) scan was used for comparison with an established segmentation toolkit. Additionally, one patient with SECT and post-treatment PET scans was investigated. For BES, DECTdist and SECTdist reduced differences to the reference simulation by up to 62% when compared to the conventional stoichiometric segmentation (SECTSchneider). In comparison to MR brain segmentation, Dice similarity coefficients for WM, GM and CSF were 0.61, 0.67 and 0.66 for DECTdist and 0.54, 0.41 and 0.66 for SECTdist. MC simulations of PET treatment verification in patients showed important differences between DECTdist/SECTdist and SECTSchneider for patients with large CSF areas within the treatment field but not in WM and GM. Differences could be misinterpreted as PET derived range shifts of up to 4 mm. DECTdist and SECTdist yielded comparable activity distributions, and comparison of SECTdist to a measured patient PET scan showed improved agreement when compared to SECTSchneider. The agreement between predicted and measured PET

  8. Technical pitfalls in a porcine brain retraction model. The impact of brain spatula on the retracted brain tissue in a porcine model: a feasibility study and its technical pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Thiex, R.; Hans, F.J.; Gilsbach, J.M. [Aachen University, Department of Neurosurgery, Aachen (Germany); Krings, T. [Aachen University, Department of Neuroradiology, Aachen (Germany); Sellhaus, B. [Aachen University, Department of Neuropathology, Aachen (Germany)

    2005-10-01

    We describe technical pitfalls of a porcine brain injury model for identifying primary and secondary pathological sequelae following brain retraction by brain spatula. In 16 anaesthetised male pigs, the right frontal brain was retracted in the interhemispheric fissure by a brain spatulum with varying pressures applied by the gravitational force of weights from 10 to 70 g for a duration of 30 min. The retracted brain tissue was monitored for changes in intracranial pressure and perfusion of the cortex using a Laser Doppler Perfusion Imager (MoorLDI). To evaluate the extent of oedema and cortical contusions, MRI was performed 30 min and 72 h after brain retraction. Following the MR scan, the retracted brain areas were histopathologically assessed using H and E and Fluoro-Jade B staining for neuronal damage. Sinus occlusion occurred in four animals, resulting in bilateral cortical contusions and extensive brain oedema. Retracting the brain with weights of 70 g (n=4) caused extensive oedema on FLAIR images that correlated clinically with a hemiparesis in three animals. Morphologically, an increased number of Fluoro-Jade B-positive neurons were found. A sequential decrease in weights prevented functional deficits in animals. A retraction pressure applied by 10-g weights (n=7) caused a mean rise in intracranial pressure to 4.0{+-}3.1 mm Hg, and a decrement in mean cortical perfusion from 740.8{+-}41.5 to 693.8{+-}72.4 PU/cm2, (P<0.24). A meticulous dissection of the interhemispheric fissure and a reduction of weights to 10 g were found to be mandatory to study the cortical impact caused by brain spatula reproducibly. (orig.)

  9. Technical pitfalls in a porcine brain retraction model. The impact of brain spatula on the retracted brain tissue in a porcine model: a feasibility study and its technical pitfalls

    International Nuclear Information System (INIS)

    Thiex, R.; Hans, F.J.; Gilsbach, J.M.; Krings, T.; Sellhaus, B.

    2005-01-01

    We describe technical pitfalls of a porcine brain injury model for identifying primary and secondary pathological sequelae following brain retraction by brain spatula. In 16 anaesthetised male pigs, the right frontal brain was retracted in the interhemispheric fissure by a brain spatulum with varying pressures applied by the gravitational force of weights from 10 to 70 g for a duration of 30 min. The retracted brain tissue was monitored for changes in intracranial pressure and perfusion of the cortex using a Laser Doppler Perfusion Imager (MoorLDI). To evaluate the extent of oedema and cortical contusions, MRI was performed 30 min and 72 h after brain retraction. Following the MR scan, the retracted brain areas were histopathologically assessed using H and E and Fluoro-Jade B staining for neuronal damage. Sinus occlusion occurred in four animals, resulting in bilateral cortical contusions and extensive brain oedema. Retracting the brain with weights of 70 g (n=4) caused extensive oedema on FLAIR images that correlated clinically with a hemiparesis in three animals. Morphologically, an increased number of Fluoro-Jade B-positive neurons were found. A sequential decrease in weights prevented functional deficits in animals. A retraction pressure applied by 10-g weights (n=7) caused a mean rise in intracranial pressure to 4.0±3.1 mm Hg, and a decrement in mean cortical perfusion from 740.8±41.5 to 693.8±72.4 PU/cm2, (P<0.24). A meticulous dissection of the interhemispheric fissure and a reduction of weights to 10 g were found to be mandatory to study the cortical impact caused by brain spatula reproducibly. (orig.)

  10. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2.

    Science.gov (United States)

    XiYang, Yan-Bin; Wang, You-Cui; Zhao, Ya; Ru, Jin; Lu, Bing-Tuan; Zhang, Yue-Ning; Wang, Nai-Chao; Hu, Wei-Yan; Liu, Jia; Yang, Jin-Wei; Wang, Zhao-Jun; Hao, Chun-Guang; Feng, Zhong-Tang; Xiao, Zhi-Cheng; Dong, Wei; Quan, Xiong-Zhi; Zhang, Lian-Feng; Wang, Ting-Hua

    2016-03-01

    The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.

  11. Effects of stress, circadian rhythms, and dietary sodium on brain cell-nuclear uptake of aldosterone and corticosterone

    International Nuclear Information System (INIS)

    Yongue, B.G.

    1985-01-01

    The binding of the adrenal steroid hormones aldosterone (ALD) and corticosterone (CORT) in brain cell-nuclei has been implicated as a necessary step in the behavioral and physiological actions of these hormones. In vivo uptake of radioactively labeled ALD and CORT in adrenalectomized (ADX) rats indicates a strong cell-nuclear localization of both of these hormones in limbic brain regions (such as hippocampus, septum and amygdala). Research using sub-cellular fractionation and radioimmunoassay (RIA), has confirmed both the presence of endogenously secreted CORT in cell-nuclei and its limbic localization in the brains of adrenal-intact rats. In this study, environmental and dietary factors were manipulated to induce variation in serum ALD and CORT. A series of experiments employing sub-cellular fractionation and RIA were performed, which reveal that: (1) endogenously secreted ALD and CORT, are concentrated by cell-nuclei of the brain in adrenal-intact rats, (2) the majority of the corticosteroids measured in ethanol extracts of brain cell-nuclei are associated with receptor molecules, and (3) the regional distribution of endogenously secreted ALD differs markedly from the predominantly limbic pattern predicted from in vivo uptake of labeled ALD in ADX rats. Instead, brain cell-nuclear ALD is heavily concentrated in the hypothalamus, which supports the hypothesized relationship between the interaction of ALD and angiotensin in the brain and the behavioral regulation of fluid/electrolyte balance

  12. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue.

    Science.gov (United States)

    Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew

    2016-05-01

    We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS.

  13. Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis.

    Science.gov (United States)

    Power, Krista A; Lu, Jenifer T; Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Zhang, Claire; Liu, Ronghua; Tsao, Rong; Robinson, Lindsay E; Wood, Geoffrey A; Wolyn, David J

    2016-11-01

    This study investigated the effects of cooked whole asparagus (ASP) versus its equivalent level of purified flavonoid glycoside, rutin (RUT), on dextran sodium sulfate (DSS)-induced colitis and subsequent colitis recovery in mice. C57BL/6 male mice were fed an AIN-93G basal diet (BD), or BD supplemented with 2% cooked ASP or 0.025% RUT for 2 wks prior to and during colitis induction with 2% DSS in water for 7 days, followed by 5 days colitis recovery. In colitic mice, both ASP and RUT upregulated mediators of improved barrier integrity and enhanced mucosal injury repair (e.g. Muc1, IL-22, Rho-A, Rac1, and Reg3γ), increased the proportion of mouse survival, and improved disease activity index. RUT had the greatest effect in attenuating DSS-induced colonic damage indicated by increased crypt and goblet cell restitution, reduced colonic myeloperoxidase, as well as attenuated DSS-induced microbial dysbiosis (reduced Enterobacteriaceae and Bacteroides, and increased unassigned Clostridales, Oscillospira, Lactobacillus, and Bifidobacterium). These findings demonstrate that dietary cooked ASP and its flavonoid glycoside, RUT, may be useful in attenuating colitis severity by modulating the colonic microenvironment resulting in reduced colonic inflammation, promotion of colonic mucosal injury repair, and attenuation of colitis-associated microbial dysbiosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  15. Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats.

    Science.gov (United States)

    Adedara, Isaac A; Olabiyi, Bolanle F; Ojuade, TeminiJesu D; Idris, Umar F; Onibiyo, Esther M; Farombi, Ebenezer O

    2017-09-01

    Excessive exposure to fluoride is associated with male reproductive dysfunction in humans and animals. Taurine (2-aminoethane sulfonic acid) is a free intracellular β-amino acid with antioxidant, anti-inflammatory, and neuroprotective properties. However, the effect of taurine on fluoride-induced reproductive toxicity has not been reported. The present study investigated the influence of taurine on sodium fluoride (NaF)-induced functional changes along the brain-pituitary-gonadal axis in male rats. NaF was administered singly in drinking water at 15 mg·L -1 alone or orally co-administered by gavage with taurine at 100 and 200 mg·(kg body mass) -1 for 45 consecutive days. Results showed that taurine significantly prevented NaF-induced increase in oxidative stress indices as well as augmented antioxidant enzymes activities and glutathione level in the brain, testes, and epididymis of the treated rats. Moreover, taurine reversed NaF-induced elevation in inflammatory biomarkers and caspase-3 activity as well as histological damage in the brain, testes, and epididymis of the treated rats. The significant reversal of NaF-induced decreases in testosterone level and testicular activities of acid phosphatase, alkaline phosphatase, and lactate dehydrogenase by taurine was accompanied by enhancement of sperm functional characteristics in the treated rats. Taurine may be a possible chemopreventive candidate against reproductive dysfunction resulting from fluoride exposure.

  16. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  17. Understanding the biophysical effects of transcranial magnetic stimulation on brain tissue: the bridge between brain stimulation and cognition.

    Science.gov (United States)

    Neggers, Sebastiaan F W; Petrov, Petar I; Mandija, Stefano; Sommer, Iris E C; van den Berg, Nico A T

    2015-01-01

    Transcranial magnetic stimulation (TMS) is rapidly being adopted in neuroscience, medicine, psychology, and biology, for basic research purposes, diagnosis, and therapy. However, a coherent picture of how TMS affects neuronal processing, and especially how this in turn influences behavior, is still largely unavailable despite several studies that investigated aspects of the underlying neurophysiological effects of TMS. Perhaps as a result from this "black box approach," TMS studies show a large interindividual variability in applied paradigms and TMS treatment outcome can be quite variable, hampering its general efficacy and introduction into the clinic. A better insight into the biophysical, neuronal, and cognitive mechanisms underlying TMS is crucial in order to apply it effectively in the clinic and to increase our understanding of brain-behavior relationship. Therefore, computational and experimental efforts have been started recently to understand and control the effect TMS has on neuronal functioning. Especially, how the brain shapes magnetic fields induced by a TMS coil, how currents are generated locally in the cortical surface, and how they interact with complex functional neuronal circuits within and between brain areas are crucial to understand the observed behavioral changes and potential therapeutic effects resulting from TMS. Here, we review the current knowledge about the biophysical underpinnings of single-pulse TMS and argue how to move forward to fully understand and exploit the powerful technique that TMS can be. © 2015 Elsevier B.V. All rights reserved.

  18. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  19. Caffeine and Cannabis Effects on Vital Neurotransmitters and Enzymes in the Brain Tissue of Juvenile Experimental Rats.

    Science.gov (United States)

    Owolabi, J O; Olatunji, S Y; Olanrewaju, A J

    2017-05-01

    Caffeine and cannabis are globally consumed and abused psychoactive substances. While caffeine is legally used in various forms, including in tea and coffee as beverages, it is also consumed in soda and energy drinks as additives. Cannabis, on the other hand, is considered illegal in most countries; albeit, it is being consumed globally particularly by adolescents. The adolescent stage marks a critical stage of brain development and maturation. Influences of agents on the brain at this stage may affect neuronal structural and functional attributes. To this end, the current experiment considered the effects of cannabis and caffeine on selected key neurotransmitters and enzymes in the brain tissues after regimented caffeine and cannabis treatment for 21 days. A total of 72 juvenile Wistar rats that were approximately 40 days old were divided into 6 groups A-F. The group A served as the control. Other groups were administered various dosages of caffeine or cannabis in distilled water, using oral gavages as follows: group B animals received 100 mg/kg body weight of caffeine, group C animals received 50 mg/kg body weight of caffeine, group D animals received 500 mg/kg body weight of cannabis, group E animals received 200 mg/kg body weight of cannabis, and group F received a low dose of cannabis (200 mg/kg body weight) plus a low dose of caffeine (50 mg/kg body weight). The animals were killed by cervical dislocation 24 h after the last administration. The brain tissues were excised and homogenized. The enzymes cytochrome C oxidase and glucose-6-phosphate dehydrogenase were assayed to observe tissue energy metabolism while the neurotransmitters gamma-amino butyric acid (GABA), glutamate, and dopamine were assayed to observe the effects of the psychoactive substances on their activities relative to mental activities. GABA, glutamate, and dopamine were generally higher in the treated groups of animals. The levels of G-6-PDH were higher in all treated animals' brains

  20. Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging

    Science.gov (United States)

    Pohling, Christoph; Bocklitz, Thomas; Duarte, Alex S.; Emmanuello, Cinzia; Ishikawa, Mariana S.; Dietzeck, Benjamin; Buckup, Tiago; Uckermann, Ortrud; Schackert, Gabriele; Kirsch, Matthias; Schmitt, Michael; Popp, Jürgen; Motzkus, Marcus

    2017-06-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image generated by SVM is then related to pathological information instead of single spectral intensities or spectral differences within the data set. The results show good agreement with the H&E stained reference and spontaneous Raman microscopy, proving the validity of the MCARS approach in combination with SVM.

  1. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    Science.gov (United States)

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    in brain tissues, especially in the hippocampus. These findings are the first evidence that testosterone depletion makes the brain prone to oxidative injury. © 2015 International Society for Neurochemistry.

  2. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain

    DEFF Research Database (Denmark)

    Ashkanian, Mahmoud; Gjedde, Albert; Mouridsen, Kim

    2009-01-01

    to inhaled oxygen (the mixture known as carbogen). In the present study, we measured CBF by positron emission tomography (PET) during inhalation of test gases (O(2), carbogen, and atmospheric air) in healthy volunteers (n = 10) and in patients with occlusive carotid artery disease (n = 6). Statistical...... and Sa(O2) are readily obtained with carbogen, while oxygen increases only Sa(O2). Thus, carbogen improves oxygen transport to brain tissue more efficiently than oxygen alone. Further studies with more subjects are, however, needed to investigate the applicability of carbogen for long-term inhalation...

  3. Unique gene expression and MR T2 relaxometry patterns define chronic murine dextran sodium sulphate colitis as a model for connective tissue changes in human Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Christine Breynaert

    Full Text Available INTRODUCTION: Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS ingestion, to mimic the relapsing nature of the human disease. MATERIALS AND METHODS: C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total. Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T 2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis. RESULTS: Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn's colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS. CONCLUSIONS: Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn's disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of

  4. [Interference of vitamin E on the brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats].

    Science.gov (United States)

    Gao, Xian; Luo, Rui; Ma, Bin; Wang, Hui; Liu, Tian; Zhang, Jing; Lian, Zhishun; Cui, Xi

    2013-07-01

    To investigate the interlerence ot vitamin E on brain tissue damage by electromagnetic radiation of cell phone in pregnant and fetal rats. 40 pregnant rats were randomly divided into five groups (positive control, negative control, low, middle and high dosage of vitamin E groups). The low, middle and high dosage of vitamin E groups were supplemented with 5, 15 and 30 mg/ml vitamin E respectively since the first day of pregnancy. And the negative control group and the positive control group were given peanut oil without vitamin E. All groups except for the negative control group were exposed to 900MHz intensity of cell phone radiation for one hour each time, three times per day for 21 days. After accouchement, the right hippocampus tissue of fetal rats in each group was taken and observed under electron microscope. The vitality of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) in pregnant and fetal rats' brain tissue were tested. Compared with the negative control group, the chondriosomes in neuron and neuroglia of brain tissues was swelling, mild edema was found around the capillary, chromatin was concentrated and collected, and bubbles were formed in vascular endothelial cells (VEC) in the positive fetal rat control group, whereas the above phenomenon was un-conspicuous in the middle and high dosage of vitamin E groups. We can see uniform chromatin, abundant mitochondrion, rough endoplasmic reticulum and free ribosomes in the high dosage group. The apoptosis has not fond in all groups'sections. In the antioxidase activity analysis, compared with the negative control group, the vitality of SOD and GSH-Px significantly decreased and the content of MDA significantly increased both in the pregnant and fetal rats positive control group (P electromagnetic radiation of cell phone in pregnant rats and fetal rats.

  5. Effect of sodium nitroprusside-induced hypotension on the blood flow in subcutaneous and intramuscular BT4An tumors and normal tissues in rats

    International Nuclear Information System (INIS)

    Krossnes, Baard Kronen; Mella, Olav; Tyssebotn, Ingvald

    1996-01-01

    Purpose: To examine the effect of infusion of the vasodilator sodium nitroprusside (SNP) on the blood flow in normal tissues and BT 4 An tumors growing subcutaneously or intramusculary in BD IX rats. Methods and Materials: Sodium nitroprusside was given as a continuous intravenous infusion to keep the mean arterial pressure stable at 60 mmHg. The cardiac output, organ blood flow, and perfusion of the BT 4 An tumors were measured by injection of radiolabelled microspheres at control conditions and after 20 min SNP infusion in each animal. Two series of experiments were performed with two anesthetics with different mechanisms of action, Inactin and the midazolam-fentanyl-fluanisone combination (MFF), to secure reliable conclusions. Results: Cardiac output, heart rate, and blood flow to the skeletal muscles, heart, and liver increased during SNP infusion in either anesthetic group. In the kidneys and particularly in the skin, decreased blood flow by SNP was observed. When located subcutaneously on the foot, the blood flow in the tumor fell to 23.4% and 21.4% of the control values in the MFF- and Inactin-anesthetized animals, respectively. This was accompanied by a similar fall in the blood flow in the foot (tumor bed) itself. In the intramuscular tumor the blood flow fell to 24.8% of the control value in the MFF group, whereas the corresponding figure was 36.2% in the Inactin group. In the surrounding muscle (tumor bed) the blood flow increased significantly, most pronounced in the MFF experiment, where it was tripled. Conclusion: The fall in the tumor perfusion by SNP may be exploited therapeutically to increase the tumor temperature during hyperthermia. Predominant heating of the tumor compared to the tumor bed can be expected if the tumor is growing in or near skeletal muscles

  6. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Chien-Min Lin

    2015-01-01

    Full Text Available The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP- guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg, and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg in the neurosurgical intensive care unit (NICU; demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.

  7. Characterization of the Transcriptome and Gene Expression of Brain Tissue in Sevenband Grouper (Hyporthodus septemfasciatus in Response to NNV Infection

    Directory of Open Access Journals (Sweden)

    Jong-Oh Kim

    2017-01-01

    Full Text Available Grouper is one of the favorite sea food resources in Southeast Asia. However, the outbreaks of the viral nervous necrosis (VNN disease due to nervous necrosis virus (NNV infection have caused mass mortality of grouper larvae. Many aqua-farms have suffered substantial financial loss due to the occurrence of VNN. To better understand the infection mechanism of NNV, we performed the transcriptome analysis of sevenband grouper brain tissue, the main target of NNV infection. After artificial NNV challenge, transcriptome of brain tissues of sevenband grouper was subjected to next generation sequencing (NGS using an Illumina Hi-seq 2500 system. Both mRNAs from pooled samples of mock and NNV-infected sevenband grouper brains were sequenced. Clean reads of mock and NNV-infected samples were de novo assembled and obtained 104,348 unigenes. In addition, 628 differentially expressed genes (DEGs in response to NNV infection were identified. This result could provide critical information not only for the identification of genes involved in NNV infection, but for the understanding of the response of sevenband groupers to NNV infection.

  8. Age dependence of dielectric properties of bovine brain and ocular tissues in the frequency range of 400 MHz to 18 GHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard

    2005-01-01

    In order to identify possible age-dependent dielectric properties of brain and eye tissues in the frequency range of 400 MHz to 18 GHz, measurements on bovine grey and white matter as well as on cornea, lens (cortical) and the vitreous body were performed using a commercially available open-ended coaxial probe and a computer-controlled vector network analyser. Freshly excised tissues of 52 animals of two age groups (42 adult animals, i.e. 16-24 month old and 10 young animals, i.e. 4-6 month old calves) were examined within 8 min (brain tissue) and 15 min (eye tissue), respectively, of the animals' death. Tissue temperatures for the measurements were 32 ± 1 0 C and 25 ± 1 0 C for brain and eye tissues, respectively. Statistical analysis of the measured data revealed significant differences in the dielectric properties of white matter and cortical lens tissue between the adult and the young group. In the case of white matter the mean values of conductivity and permittivity of young tissue were 15%-22% and 12%-15%, respectively, higher compared to the adult tissue in the considered frequency range. Similarly, young cortical lens tissue was 25%-76% higher in conductivity and 27%-39% higher in permittivity than adult cortical lens tissue

  9. Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion

    International Nuclear Information System (INIS)

    Thomas, Elaine R.; Dunfee, Rebecca L.; Stanton, Jennifer; Bogdan, Derek; Taylor, Joann; Kunstman, Kevin; Bell, Jeanne E.; Wolinsky, Steven M.; Gabuzda, Dana

    2007-01-01

    HIV infects macrophages and microglia in the central nervous system (CNS), which express lower levels of CD4 than CD4+ T cells in peripheral blood. To investigate mechanisms of HIV neurotropism, full-length env genes were cloned from autopsy brain and lymphoid tissues from 4 AIDS patients with HIV-associated dementia (HAD). Characterization of 55 functional Env clones demonstrated that Envs with reduced dependence on CD4 for fusion and viral entry are more frequent in brain compared to lymphoid tissue. Envs that mediated efficient entry into macrophages were frequent in brain but were also present in lymphoid tissue. For most Envs, entry into macrophages correlated with overall fusion activity at all levels of CD4 and CCR5. gp160 nucleotide sequences were compartmentalized in brain versus lymphoid tissue within each patient. Proline at position 308 in the V3 loop of gp120 was associated with brain compartmentalization in 3 patients, but mutagenesis studies suggested that P308 alone does not contribute to reduced CD4 dependence or macrophage-tropism. These results suggest that HIV adaptation to replicate in the CNS selects for Envs with reduced CD4 dependence and increased fusion activity. Macrophage-tropic Envs are frequent in brain but are also present in lymphoid tissues of AIDS patients with HAD, and entry into macrophages in the CNS and other tissues is dependent on the ability to use low receptor levels and overall efficiency of fusion

  10. [Changes in 2,3-diphosphoglycerate Levels in Blood and Brain Tissue after Craniocerebral Trauma and Cardiac Surgery].

    Science.gov (United States)

    Hausdörfer, J; Heller, W; Junger, H; Oldenkott, P; Stunkat, R

    1976-10-01

    The response of the 2,3-diphosphoglycerate (DPG) levels in the blood and brain tissue to a craniocerebral trauma of varying severity was studied in anaesthetized rats. A trauma producing cerebral contusion was followed within two hours by a highly significant rise in DPG concentration in the blood as compared with the control animals or only mildly traumatized rats. The DPG levels in the brain tissue showed no significant differences. Similar changes in DPG concentration were observed in the blood of patients with craniocerebral injuries. The DPG-mediated increased release of oxygen to the tissues represents a compensatory mechanism and is pathognomic for craniocerebral trauma. Patients undergoing surgery with extracorporeal circulation lack this mechanism for counteracting hypoxaemia; already during thoracotomy the DPG concentration in the blood fell significantly and did not reach its original level until 72 hours after the operation. In stored, ACD stabilized, blood the DPG concentration gradually decreases. Estimations carried out over 28 days showed a continuous statistically significant loss of DPG. After 24 hours the DPG levels in stored blood had already dropped to the lower limits of normal - a fact that has to be taken into account in massive blood transfusions.

  11. A robust, efficient and flexible method for staining myelinated axons in blocks of brain tissue.

    Science.gov (United States)

    Wahlsten, Douglas; Colbourne, Frederick; Pleus, Richard

    2003-03-15

    Previous studies have demonstrated the utility of the gold chloride method for en bloc staining of a bisected brain in mice and rats. The present study explores several variations in the method, assesses its reliability, and extends the limits of its application. We conclude that the method is very efficient, highly robust, sufficiently accurate for most purposes, and adaptable to many morphometric measures. We obtained acceptable staining of commissures in every brain, despite a wide variety of fixation methods. One-half could be stained 24 h after the brain was extracted and the other half could be stained months later. When staining failed because of an exhausted solution, the brain could be stained successfully in fresh solution. Relatively small changes were found in the sizes of commissures several weeks after initial fixation or staining. A half brain stained to reveal the mid-sagittal section could then be sectioned coronally and stained again in either gold chloride for myelin or cresyl violet for Nissl substance. Uncertainty, arising from pixelation of digitized images was far less than errors arising from human judgments about the histological limits of major commissures. Useful data for morphometric analysis were obtained by scanning the surface of a gold chloride stained block of brain with an inexpensive flatbed scanner.

  12. Methodological issues in protein and lipidic expressions in brain tissue exposed to Co60 based on DESI/MALDI-MS

    International Nuclear Information System (INIS)

    Soares, Matheus F.; Campos, Tarcísio P.R.; Augusti, Rodinei; Eberlin, Marcos N.; Vendramini, Pedro H.

    2017-01-01

    The present paper attempts to present some issues in the methodology of identifying lipid and protein changes in brain tissue induced by radiation. The goal was to address the analysis of the methodology and to investigate the feasibility of the generation of lipid/protein profiles of irradiated brain tissue, in order to identify radioinduced changes. Lipids and proteins are biomolecules with diverse structures and functionalities that participate in important intracellular processes. Changes in the lipid and the tissue protein profiles may indicate a cellular response to an external stimulus as well as the emergence of neoplasms or neurodegenerative diseases such as Alzheimer's. DESI-MS is a convenient method for identifying lipids and their spatial distribution in tissue beyond analytical quantification. DESI-MS allows the creation of an image of several low lipid m/z classes. MALDI-MS has already been a method used in the study of macromolecules as structural, membrane, hormone, neuromediator and immunological peptides. Through a full-scan matrix scan, with a m/z spectrum between 500-1000 for lipids and with a mass spectrum of 1000-15000 Da for proteins, the molecular profile can be analyzed. Generated pixel shape 2D chemical image. The produced image allows to associate the tissue distribution of the lipids and proteins with their chemical profile identified, allowing the verification of the changes radioinduced. Radiation triggers intense oxidative stress by increasing reactive oxygen species (ROS) and free radicals, causing DNA damage with consequent alterations in proteomics and cellular lipid explaining such changes in the lipid and protein expressions. The cellular morphophysiological changes are responsible for both the clonogenic inhibition and the induction of the apoptotic process. The images's production was directly dependent on the rigorous execution of the methodological procedures. Innumerable interferences could impair the image

  13. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain.

    Science.gov (United States)

    Valvassori, Samira S; Dal-Pont, Gustavo C; Steckert, Amanda V; Varela, Roger B; Lopes-Borges, Jéssica; Mariot, Edemilson; Resende, Wilson R; Arent, Camila O; Carvalho, André F; Quevedo, João

    2016-01-30

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidence indicates that epigenetic regulations have been implicated in the pathophysiology of mood disorders. Considering these evidences, the present study aimed to investigate the effects of sodium butyrate (SB), a histone deacetylase (HDAC)inhibitor, on manic-like behavior and oxidative stress parameters (TBARS and protein carbonyl content and SOD and CAT activities) in frontal cortex and hippocampus of rats subjected to the animal model of mania induced by intracerebroventricular (ICV) ouabain administration.The results showed that SB reversed ouabain-induced hyperactivity, which represents a manic-like behavior in rats. In addition, the ouabain ICV administration induced oxidative damage to lipid and protein and alters antioxidant enzymes activity in all brain structures analyzed. The treatment with SB was able to reversesboth behavioral and oxidative stress parameters alteration induced by ouabain.In conclusion, we suggest that SB can be considered a potential new mood stabilizer by acts on manic-like behavior and regulatesthe antioxidant enzyme activities, protecting the brain against oxidative damage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Vaccine-induced rabies in a red fox (Vulpes vulpes): isolation of vaccine virus in brain tissue and salivary glands.

    Science.gov (United States)

    Hostnik, Peter; Picard-Meyer, Evelyne; Rihtarič, Danijela; Toplak, Ivan; Cliquet, Florence

    2014-04-01

    Oral vaccination campaigns to eliminate fox rabies were initiated in Slovenia in 1995. In May 2012, a young fox (Vulpes vulpes) with typical rabies signs was captured. Its brain and salivary gland tissues were found to contain vaccine strain SAD B19. The Basic Logical Alignment Search Tool alignment of 589 nucleotides determined from the N gene of the virus isolated from the brain and salivary glands of the affected fox was 100% identical to the GenBank reference SAD B19 strain. Sequence analysis of the N and M genes (4,351 nucleotides) showed two nucleotide modifications at position 1335 (N gene) and 3114 (M gene) in the KC522613 isolate identified in the fox compared to SAD B19.

  15. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  16. Texture analysis in quantitative MR imaging. Tissue characterisation of normal brain and intracranial tumours at 1.5 T

    DEFF Research Database (Denmark)

    Kjaer, L; Ring, P; Thomsen, C

    1995-01-01

    The diagnostic potential of texture analysis in quantitative tissue characterisation by MR imaging at 1.5 T was evaluated in the brain of 6 healthy volunteers and in 88 patients with intracranial tumours. Texture images were computed from calculated T1 and T2 parameter images by applying groups o...... to be successful in some cases of clinical importance. However, no discrimination between benign and malignant tumour growth was possible. Much texture information seems to be contained in MR images, which may prove useful for classification and image segmentation....

  17. [Dynamics of bioelectric activity of the brain and erythrocyte ultrastructure after intravenous infusion of sodium bicarbonate to oncologic patients].

    Science.gov (United States)

    Davydova, I G; Kassil', V L; Raĭkhlin, N T; Filippova, N A

    1992-04-01

    23 patients with malignant tumors of different location and histogenesis were investigated. There were no metastases in 9 cases. 10 patients had metastases in regional areas and 4--distant. The results were compared with those obtained in 4 patients with nonmalignant diseases. EEG, blood gases, plasma acid--base balance and ultrastructure of erythrocytes were explored before and after intravenous infusion of 4.2% sodium bicarbonate solution. The metabolic alkalosis induced amelioration of EEG, which was changed basically, the condense of pre-membrane layer disappeared or decreased in erythrocytes, and disaggregation of erythrocytes took place in cancer patients vs those with nonmalignant tumors. The results confirm the suggestion of generalized intracellular acidosis in malignant tumor patients. This acidosis can be temporarily avoided or diminished artificially by blood alkalosis.

  18. High affinity for the rat brain sodium channel of newly discovered hydroxybenzoate saxitoxin analogues from the dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Llewellyn, Lyndon; Negri, Andrew; Quilliam, Michael

    2004-01-01

    The paralytic shellfish poison family has been recently extended by the discovery of several analogues possessing a hydoxybenzoate moiety instead of the carbamoyl group one finds in saxitoxin, the parent molecule of this toxin family. We have investigated the potency of these new analogues on a representative isoform of the pharmacological target of these toxins, the voltage gated sodium channel. These toxins were found to have K1's in the low nanomolar range, only slightly less potent than saxitoxin. The hydroxybenzoate group may increase the lipophilicity of these toxins and improve their ability to pass through epithelia and therefore its uptake and elimination in both intoxication victims and animals that bioaccumulate paralytic shellfish toxins.

  19. Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, H.E.L.; Leonel, L.V. [Comissao Nacional de Energia Nuclear - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte (Brazil)

    2000-03-01

    The detection of methylmercury species (MeHg) in fish tissue was investigated. Samples were digested with KOH-methanol and acidified prior to extraction with methylene chloride. MeHg was back-extracted from the organic phase into water. An aliquot of this aqueous solution (buffered to pH 5) was subjected to derivatization with sodium tetraphenylborate (NaBPh{sub 4}) and then extracted with toluene. The organic phase containing MePhHg was injected into a gas chromatograph (GC) which is on-line with a microwave-induced plasma atomic emission spectrometer (MIP-AED). The quantification limit was about 0.6 {mu}g/g and 0.1 {mu}g/g of MeHg (as Hg) for 0.08 g of freeze-dried fish powder and 0.5 g of fresh samples, respectively. Two certified reference materials, CRM 464 (tuna fish) from Community Bureau of Reference-BCR and DORM-2 (dogfish muscle) from National Research Council Canada-NRC were selected for checking the accuracy of the method. This methodology was applied to the determination of MeHg in some kinds of fish from the Carmo river with alluvial gold recovery activities (''garimpos'') in Mariana, Minas Gerais, Brazil. (orig.)

  20. Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate.

    Science.gov (United States)

    Palmieri, H E; Leonel, L V

    2000-03-01

    The detection of methylmercury species (MeHg) in fish tissue was investigated. Samples were digested with KOH-methanol and acidified prior to extraction with methylene chloride. MeHg was back-extracted from the organic phase into water. An aliquot of this aqueous solution (buffered to pH 5) was subjected to derivatization with sodium tetraphenylborate (NaBPh4) and then extracted with toluene. The organic phase containing MePhHg was injected into a gas chromatograph (GC) which is on-line with a microwave-induced plasma atomic emission spectrometer (MIP-AED). The quantification limit was about 0.6 microg/g and 0.1 microg/g of MeHg (as Hg) for 0.08 g of freeze-dried fish powder and 0.5 g of fresh samples, respectively. Two certified reference materials, CRM 464 (tuna fish) from Community Bureau of Reference-BCR and DORM-2 (dogfish muscle) from National Research Council Canada-NRC were selected for checking the accuracy of the method. This methodology was applied to the determination of MeHg in some kinds of fish from the Carmo river with alluvial gold recovery activities ("garimpos") in Mariana, Minas Gerais, Brazil.

  1. Respiratory difficulty caused by an ectopic brain tissue mass in the neck of a two-month-old baby: a case report

    Directory of Open Access Journals (Sweden)

    Aboud Mohammed J

    2011-06-01

    Full Text Available Abstract Introduction Neuroglial heterotopia, heterotopic brain tissue, or differentiated neural tissue outside the cranial vault is uncommon, and these anomalies most commonly occur in the nasal cavity. Case presentation We report a case of rare pure cystic heterotopic brain tissue in a two-month-old Caucasian baby girl that presented as a large cystic neck mass and was confused with a cystic hygroma. Her mother reported a progressive increase in the size of this swelling and mild respiratory difficulty when the girl was sleeping. A computed tomography scan of the brain and neck showed a large heterogeneous mass extending from the base of the skull to the left submandibular region; a cystic component was also noted. Our patient under went total excision of the cystic mass and prevention of airway obstruction by a left submandibular approach. The final gross pathology diagnosis was heterotopic brain tissue. Conclusions Pure cystic neck heterotopic brain tissue lesions are very uncommon, and a preoperative diagnosis of this lesion is difficult. Brain heterotopia is a rare, benign condition that should be considered in the differential diagnosis of the neonatal head and neck mass.

  2. The effects of raloxifene treatment on oxidative status in brain tissues and learning process of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Süreyya Osmanova

    2011-01-01

    Full Text Available Background: The effects of estrogene on central nervous system are still controversial. Objective: We aimed to investigate the effects of raloxifene on the antioxidant enzyme [superoxide dismutase (SOD and catalase (CAT] activities and malondialdehyde (MDA levels in brain homogenates of ovariectomized female rats and its effect on cognitive process of learning.Materials and Methods: Female Sprague Dawley rats (n=24 were divided into three groups. Three weeks after ovariectomy; nonovariectomized group (control group (n=8 was given physiological saline (SP as placebo. First ovariectomized group (n=8 received raloxifene 1mg/kg dissolved in a 1% solution of carboxymethylcellulose (CMC subcutaneusly (sc and second group of ovariectomized rats were given 1 % CMC 1mg/kg (sc every day for 14 days. Learning behaviors of rats were evaluated in active avoidence cage with using sound and electrical stimulation. The levels of oxidative stress (MDA and antioxidant enzymes (SOD, CAT in different regions of the brain homogenates were compared between three groups of decapitated rats.Results: Raloxifene had a significant attenuating effect on the levels of MDA in brain tissues suggesting raloxifene’s effect against lipid peroxidation at the end of training days. With the comparison of brain regions, cortex showed the highest average activity of SOD and CAT and cerebellum had the lowest average levels for both. Its effects on learning and cognitive process with active avoidence task were considered insignificant.Conclusion: Raloxifene treatment may have preventive effects for the brain against oxidative stress and lipid peroxidation in rats

  3. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  4. Neuropathology of tissues from patients treated by the Brain Tumor Study Group

    Energy Technology Data Exchange (ETDEWEB)

    Mahaley, M.S. Jr.; Vogel, F.S.; Burger, P.; Ghatak, N.R.

    1977-01-01

    The histopathologic diagnoses in 718 brain tumor patients entered in the Brain Tumor Study Group were reviewed, as well as those for 53 of these patients who were autopsied later. This review documented instances of progression of histologic anaplasia. Of particular interest in the autopsied cases were several instances of extensive necrosis in white matter distant from persisting glioma following chemotherapy and radiotherapy. This observation suggested the presence of a structural and/or metabolic alteration in the diseased hemisphere that perhaps makes it more susceptible to further alterations secondary to the adjunctive therapy.

  5. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies.

    Science.gov (United States)

    Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi

    2017-09-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Effects of sodium selenite supplementation on lead nitrate-induced oxidative stress in lung tissues of diabetic and non-diabetic rats

    OpenAIRE

    APAYDIN, Fatma; KALENDER, Suna; DEMİR, Filiz; BAŞ, Hatice

    2014-01-01

    In this study, diabetic and non-diabetic male rats were given to sodium selenite, lead nitrate and sodium selenite plus lead nitrate through gavage. At the end of the 4th week, lipid peroxidation and antioxidant enzyme activities was investigated compared to control group. No significant differences were observed between control and sodium selenite treated groups. By the end of the fourth week, lead nitrate led to increase the levels of MDA, and decrease in antioxidant activities compared wit...

  7. Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue.

    Science.gov (United States)

    Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S

    2018-01-01

    Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.

  8. Human brain receptor autoradiography using whole hemisphere sections: a general method that minimizes tissue artefacts

    International Nuclear Information System (INIS)

    Quirion, R.; Robitaille, Y.; Martial, J.; Chabot, J.G.; Lemoine, P.; Pilapil, C.; Dalpe, M.

    1987-01-01

    A general method for the preparation of high-quality, mostly ice-crystal-artefact-free whole human brain hemisphere sections is described. Upon receipt, hemispheres are divided; one is then fixed in buffered 10% formalin for neuropathological analysis while the other is cut in 8-10-mm-thick coronal slices that are then rapidly frozen in 2-methylbutane at -40 degrees C (10-15 sec) before being placed in the brain bank at -80 degrees C. Such rapid freezing markedly decreases the formation of ice-crystal artefacts. Whole-hemisphere 20-micron thick sections are then cut and mounted onto lantern-type gelatin-coated slides. These sections are subsequently used for both qualitative and quantitative in vitro receptor autoradiography. Examples of data obtained are given by using various radioligands labelling classical neutrotransmitter, neuropeptide, enzyme, and ion channel receptor binding sites. This method should be useful for the obtention of various receptor maps in human brain. Such information could be most useful for in vivo receptor visualization studies using positron emission tomography (PET) scanning. It could also indicate if a given receptor population is specifically and selectively altered in certain brain diseases, eventually leading to the development of new therapeutic approaches

  9. Characterization of the phosphoproteome and sialoproteome in brain tissues by mass spectrometry

    DEFF Research Database (Denmark)

    Ibáñez-Vea, María; Kempf, Stefan J.; Larsen, Martin R.

    2017-01-01

    Mass spectrometry is an essential tool for the characterization of proteins within neuroscience. The development of faster instruments enables neuroscientists to investigate a large proportion of the proteome in the brain in only short analysis time. Yet, a detailed functional investigation of th...

  10. Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients

    NARCIS (Netherlands)

    Wu, L.; Sluiter, A.A.; Guo, Ho Fu; Balesar, R. A.; Swaab, D. F.; Zhou, Jiang Ning; Verwer, R. W H

    Neurodegenerative diseases are progressive and incurable and are becoming ever more prevalent. To study whether neural stem cell can reactivate or rescue functions of impaired neurons in the human aging and neurodegenerating brain, we co-cultured postmortem slices from Alzheimer patients and control

  11. Effect of brain death on gene expression and tissue activation in human donor kidneys

    NARCIS (Netherlands)

    Nijboer, WN; Schuurs, TA; van der Hoeven, JAB; Fekken, S; Wiersema-Buist, J; Leuvenink, HGD; Hofker, Hendrik; Homan van der Heide, J; van Son, WJ; Ploeg, RJ

    2004-01-01

    Background. After kidney transplantation, decreased graft survival is seen in grafts from brain dead (BD) donors compared with living donors. This might result partly from a progressive nonspecific inflammation in the graft. In this study, we focused on the effects of BD on inflammatory response

  12. Effect of brain death on gene expression and tissue activation in human donor kidneys

    NARCIS (Netherlands)

    Nijboer, Willemijn N.; Schuurs, Theo A.; van der Hoeven, Joost A. B.; Fekken, Susan; Wiersema-Buist, Janneke; Leuvenink, Henri G. D.; Hofker, Sijbrand; Homan van der Heide, Jaap J.; van Son, Willem J.; Ploeg, Rutger J.

    2004-01-01

    After kidney transplantation, decreased graft survival is seen in grafts from brain dead (BD) donors compared with living donors. This might result partly from a progressive nonspecific inflammation in the graft. In this study, we focused on the effects of BD on inflammatory response (adhesion

  13. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    Directory of Open Access Journals (Sweden)

    Akbar Anaeigoudari

    2016-03-01

    Full Text Available Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum, on pentylenetetrazole (PTZ-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1 vehicle, (2 PTZ (90 mg/kg, (3 water fraction (WF of C. sativum (25 and 100 mg/kg, (4 n-butanol fraction (NBF of C. sativum (25 and 100 mg/kg, and (5 ethyl acetate fraction (EAF of C. sativum (25 and 100 mg/kg. Results: The first generalized tonic-clonic seizures (GTCS latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p< 0.01. In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS latency. Malondialdehyde (MDA levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p< 0.001. Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (pConclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  14. Flow cytometric examination of apoptotic effect on brain tissue in postnatal period created by intrauterine oxcarbazepine and gabapentin exposure.

    Science.gov (United States)

    Erisgin, Z; Tekelioglu, Y

    For epileptics, pregnancy contains the balance between no seizure period and antiepileptic use having the least teratogenicity risk. The purpose is to analyse with flow cytometry the apoptotic effects on postnatal brain tissue caused by prenatal use of second generation antiepileptics oxcarbazepine (OXC) and gabapentin (GBP) having different effect mechanisms. 30 (n = 5 each group) Wistar albino male rats (45-days-old) are used. First 3 groups are exposed to OXC (100 mg/kg/day), GBP (50 mg/kg/day), and saline, respectively on the 1st-5th prenatal days (preimplantation-implantation period) while the second 3 groups are exposed to the same substances on the 6th-15th prenatal days (organogenesis), respectively. After sacrifice, brain tissue samples were made into suspension with mechanic and enzymatic digestion and examined with flow cytometry. While apoptosis rate appeared high in rats exposed to OXC on the 1st-5th (p effect in three treatment groups, while difference was not significant for PSS and GBP groups (p = 0.847 and p = 0.934), apoptosis rate was significantly high for OXC on the 6th-15th days compared to the 1st-5th days (p < 0.001). It is observed that the use of OXC causes neurotoxicity during preimplantation, implantation and, especially, organogenesis period (neurogenesis) whereas GBP does not (Fig. 3, Ref. 32).

  15. The Effect of Variation in Permittivity of Different Tissues on Induced Electric Field in the Brain during Transcranial Magnetic Stimulation

    Science.gov (United States)

    Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team

    2013-03-01

    Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.

  16. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues.

    Science.gov (United States)

    Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia

    2013-01-01

    DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.

  17. A study of neurotoxicity of BHC in relation to residual accumulation on the brain tissue of Heteropneustes fossilis (Bloch).

    Science.gov (United States)

    Hazarika, Ranjit

    2003-01-01

    Neurotoxic effect of BHC, the organochlorine pesticide in Heteropneustes fossilis has been studied exposing at the dose concentrations of 1 ppm, 5 ppm and 10 ppm in lab aquarium for 96 hours over a period of one year. The results showed the behavioural abnormalities in different exposure concentrations such as dysfunction of endocrine gland, excretion of mucus, dispigmentation, sign of restlessness, erratic swimming with rapid jurkey movement, spiralling and convolution showing severe effect in central nervous system. Therefore an attempt has been made for monitoring of BHC residues viz. alpha, beta, gamma isomers in the brain tissue exposed to different sublethal concentrations using Gas liquid chromatography. The mean values of isomers were found to be 1.587 microg/gm for 1 ppm, 2.993 microg/gm for 5 ppm and 3.78 microg/gm for 10 ppm test group. Severe behavioural abnormalities were recorded at high dose concentration of pesticides with higher accumulation of pesticide residues in brain tissue.

  18. Detection of hepatitis C virus sequences in brain tissue obtained in recurrent hepatitis C after liver transplantation.

    Science.gov (United States)

    Vargas, Hugo E; Laskus, Tomasz; Radkowski, Marek; Wilkinson, Jeff; Balan, Vijay; Douglas, David D; Harrison, M Edwyn; Mulligan, David C; Olden, Kevin; Adair, Debra; Rakela, Jorge

    2002-11-01

    Patients with chronic hepatitis C frequently report tiredness, easy fatigability, and depression. The aim of this study is to determine whether hepatitis C virus (HCV) replication could be found in brain tissue in patients with hepatitis C and depression. We report two patients with recurrent hepatitis C after liver transplantation who also developed severe depression. One patient died of multiorgan failure and the other, septicemia caused by Staphylococcus aureussis. Both patients had evidence of severe hepatitis C recurrence with features of cholestatic fibrosing hepatitis. We were able to study samples of their central nervous system obtained at autopsy for evidence of HCV replication. The presence of HCV RNA-negative strand, which is the viral replicative form, was determined by strand-specific Tth-based reverse-transcriptase polymerase chain reaction. Viral sequences were compared by means of single-strand conformation polymorphism and direct sequencing. HCV RNA-negative strands were found in subcortical white matter from one patient and cerebral cortex from the other patient. HCV RNA-negative strands amplified from brain tissue differed by several nucleotide substitutions from serum consensus sequences in the 5' untranslated region. These findings support the concept of HCV neuroinvasion, and we speculate that it may provide a biological substrate to neuropsychiatric disorders observed in patients with chronic hepatitis C. The exact lineage of cells permissive for HCV replication and the possible interaction between viral replication and cerebral function that may lead to depression remain to be elucidated.

  19. Automated brain tissue and myelin volumetry based on quantitative MR imaging with various in-plane resolutions.

    Science.gov (United States)

    Andica, C; Hagiwara, A; Hori, M; Nakazawa, M; Goto, M; Koshino, S; Kamagata, K; Kumamaru, K K; Aoki, S

    2018-05-01

    Segmented brain tissue and myelin volumes can now be automatically calculated using dedicated software (SyMRI), which is based on quantification of R 1 and R 2 relaxation rates and proton density. The aim of this study was to determine the validity of SyMRI brain tissue and myelin volumetry using various in-plane resolutions. We scanned 10 healthy subjects on a 1.5T MR scanner with in-plane resolutions of 0.8, 2.0 and 3.0mm. Two scans were performed for each resolution. The acquisition time was 7-min and 24-sec for 0.8mm, 3-min and 9-sec for 2.0mm and 1-min and 56-sec for 3.0mm resolutions. The volumes of white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), non-WM/GM/CSF (NoN), brain parenchymal volume (BPV), intracranial volume (ICV) and myelin were compared between in-plane resolutions. Repeatability for each resolution was then analyzed. No significant differences in volumes measured were found between the different in-plane resolutions, except for NoN between 0.8mm and 2.0mm and between 2.0mm and 3.0mm. The repeatability error value for the WM, GM, CSF, NoN, BPV and myelin volumes relative to ICV was 0.97%, 1.01%, 0.65%, 0.86%, 1.06% and 0.25% in 0.8mm; 1.22%, 1.36%, 0.73%, 0.37%, 1.18% and 0.35% in 2.0mm and 1.18%, 1.02%, 0.96%, 0.45%, 1.36%, and 0.28% in 3.0mm resolutions. SyMRI brain tissue and myelin volumetry with low in-plane resolution and short acquisition times is robust and has a good repeatability so could be useful for follow-up studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

    Science.gov (United States)

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.

    2018-01-01

    Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions

  1. Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla.

    Science.gov (United States)

    Shajan, G; Mirkes, Christian; Buckenmaier, Kai; Hoffmann, Jens; Pohmann, Rolf; Scheffler, Klaus

    2016-02-01

    A multinuclei imaging setup with the capability to acquire both sodium ((23) Na) and proton ((1) H) signals at 9.4 Tesla is presented. The main objective was to optimize coil performance at the (23) Na frequency while still having the ability to acquire satisfactory (1) H images. The setup consisted of a combination of three radio frequency (RF) coils arranged in three layers: the innermost layer was a 27-channel (23) Na receive helmet which was surrounded by a four-channel (23) Na transceiver array. The outer layer consisted of a four-channel (1) H dipole array for B0 shimming and anatomical localization. Transmit and receive performance of the (23) Na arrays was compared to a single-tuned (23) Na birdcage resonator. While the transmit efficiency of the (23) Na transceiver array was comparable to the birdcage, the (23) Na receive array provided substantial signal-to-noise ratio (SNR) gain near the surface and comparable SNR in the center. The utility of this customized setup was demonstrated by (23) Na images of excellent quality. High SNR, efficient transmit excitation and B0 shimming capability can be achieved for (23) Na MRI at 9.4T using novel coil combination. This RF configuration is easily adaptable to other multinuclei applications at ultra high field (≥ 7T). © 2015 Wiley Periodicals, Inc.

  2. The metabolism of Tay-Sachs ganglioside: catabolic studies with lysosomal enzymes from normal and Tay-Sachs brain tissue

    Science.gov (United States)

    Tallman, John F.; Johnson, William G.; Brady, Roscoe O.

    1972-01-01

    The catabolism of Tay-Sachs ganglioside, N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galactosylglucosylceramide, has been studied in lysosomal preparations from normal human brain and brain obtained at biopsy from Tay-Sachs patients. Utilizing Tay-Sachs ganglioside labeled with 14C in the N-acetylgalactosaminyl portion or 3H in the N-acetylneuraminosyl portion, the catabolism of Tay-Sachs ganglioside may be initiated by either the removal of the molecule of N-acetylgalactosamine or N-acetylneuraminic acid. The activity of the N-acetylgalactosamine-cleaving enzyme (hexosaminidase) is drastically diminished in such preparations from Tay-Sachs brain whereas the activity of the N-acetylneuraminic acid-cleaving enzyme (neuraminidase) is at a normal level. Total hexosaminidase activity as measured with an artificial fluorogenic substrate is increased in tissues obtained from patients with the B variant form of Tay-Sachs disease and it is virtually absent in the O-variant patients. The addition of purified neuraminidase and various purified hexosaminidases exerted only a minimal synergistic effect on the hydrolysis of Tay-Sachs ganglioside in the lysosomal preparations from the control or patient with the O variant of Tay-Sachs disease. Images PMID:4639018

  3. Robust volume assessment of brain tissues for 3-dimensional fourier transformation MRI via a novel multispectral technique.

    Directory of Open Access Journals (Sweden)

    Jyh-Wen Chai

    Full Text Available A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising

  4. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  5. ICG-assisted blood vessel detection during stereotactic neurosurgery: simulation study on excitation power limitations due to thermal effects in human brain tissue.

    Science.gov (United States)

    Rühm, Adrian; Göbel, Werner; Sroka, Ronald; Stepp, Herbert

    2014-09-01

    Intraoperative blood vessel detection based on intraluminal indocyanin-green (ICG) would allow to minimize the risk of blood vessel perforation during stereotactic brain tumor biopsy. For a fiber-based approach compatible with clinical conditions, the maximum tolerable excitation light power was derived from simulations of the thermal heat load on the tissue. Using the simulation software LITCIT, the temperature distribution in human brain tissue was calculated as a function of time for realistic single-fiber probes (0.72mm active diameter, numerical aperture 0.35, optional focusing to 0.29mm diameter) and for the optimum ICG excitation wavelength of 785nm. The asymptotic maximum temperature in the simulated tissue region was derived for different radiant fluxes at the distal fiber end. Worst case values were assumed for all other parameters. In addition to homogeneous (normal and tumor) brain tissue with homogeneous blood perfusion, models with localized extra blood vessels incorporated ahead of the distal fiber end were investigated. If one demands that destruction of normal brain tissue must be excluded by limiting the tissue heating to 42°C, then the radiant flux at the distal fiber end must be limited to 33mW with and 43mW without focusing. When considering extra blood vessels of 0.1mm diameter incorporated into homogeneously perfused brain tissue, the tolerable radiant flux is reduced to 22mW with and 32mW without focusing. The threshold value according to legal laser safety regulations for human skin tissue is 28.5mW. For the envisaged modality of blood vessel detection, light power limits for an application-relevant fiber configuration were determined and found to be roughly consistent with present legal regulations for skin tissue. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of acetazolamide on cerebral blood flow and brain tissue oxygenation

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L; Kastrup, J

    1987-01-01

    Oral administration of 1 g of acetazolamide to 8 normal subjects studied at sea level and in normoxia caused an acute increase in cerebral blood flow (CBF). During the subsequent prolonged oral treatment with 1 g of acetazolamide daily, CBF returned to normal within 2 days. The alveolar CO2 tension...... decreased gradually to 70% of the control value, indicating hyperventilation. At sea level hyperventilation will not increase brain oxygenation significantly in normal man, as the arterial oxygen content only increases minimally, while CBF is unchanged. At high altitude the beneficial effects...... of acetazolamide on the symptoms of acute mountain sickness may well be due to an improved oxygen supply to the brain, as hyperventilation will, at the low ambient PO2, cause a significant increase of the arterial oxygen content, while CBF presumably is unaffected by the drug. During hypoxia at high altitude...

  7. Irradiation effects on the tumor and adjacent tissues of brain tumor-bearing mice

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Tsunemoto, Hiroshi; Koike, Sachiko; Furukawa, Shigeo.

    1979-01-01

    C 3 H mice aged 56 - 70 days, weighing 27 - 37 g were used throughout this experiment. A transplantable fibrosarcoma arising spontaneously from C 3 H mice was used. For experiment, 10 4 tumor cells suspended in 0.025 ml of saline solution were injected into the cerebral hemisphere by a 26 gauge needle with a micrometer syringe under nembutal anesthesia. Whole brain irradiation was performed at 7 days after injection of the tumor cells and the radiation doses were 2,000 and 20,000 rads, respectively. The feature of x-rays were 200 kVp, 20 mA, 0.5 mm Cu + 0.5 mm Al filtration and TSD 20 cm. The dose-rate was 340 - 360 R/min. The articles of this study were as follows: a) Determination of LD 50 values for the mice, tumor-bearing in the brain or non-tumor-bearing; and b) Observation of clinical features and gross autopsy findings of the mice following irradiation. The LD 50 values for 2,000 rad irradiation in the tumor-bearing or non-tumor-bearing mice were 10.9 and 11.4 days, respectively. LD 50 values of 3.7 days and 4.3 days were the results for the tumor-bearing and non-tumor-bearing mice irradiated by 20,000 rad, respectively. On the other hand, the LD 50 value for the control group, i.e. non-irradiated mice, was 6.7 days. At postmortem examinations, gastrointestinal bleeding was observed frequently in mice bearing tumor in the brain. Whole brain irradiation is effective to prolong the life of tumor-bearing mice. However, in some instances, deaths have occurred earlier in tumor-bearing mice compared to the control group. (author)

  8. Comparative pharmacokinetics of two prodrugs of zidovudine in rabbits: enhanced levels of zidovudine in brain tissue.

    Science.gov (United States)

    Lupia, R H; Ferencz, N; Lertora, J J; Aggarwal, S K; George, W J; Agrawal, K C

    1993-04-01

    The pharmacokinetics of two prodrugs of zidovudine (AZT), 1,4-dihydro-1-methyl-3-[(pyridylcarbonyl)oxy] ester and isoleucinyl ester (DPAZT and IAZT, respectively), were investigated in a rabbit model to determine their potential utility as drugs against human immunodeficiency virus. Drugs were administered by intravenous infusion over 5 min at doses equal to 10 mg of AZT per kg of body weight. The levels of the prodrugs and of released AZT in plasma, cerebrospinal fluid (CSF), and brain were determined by high-performance liquid chromatography analysis. DPAZT disappeared rapidly from plasma, whereas IAZT maintained a sustained level in plasma for up to 4 h. The levels in plasma of AZT released from DPAZT were consistently lower than the levels of AZT released from IAZT or AZT itself. At 75 min after infusion of AZT, DPAZT, and IAZT, the CSF plasma AZT ratios were 0.23, 0.30, and 0.25, while the brain/CSF AZT ratios were 0.32, 0.63, and 0.64, respectively. These results indicate that the administration of each of the prodrugs produced a higher concentration of AZT in the brain than did the direct administration of AZT. Both prodrugs therefore may be superior to AZT itself with respect to achieving anti-human immunodeficiency virus concentrations within the central nervous system.

  9. Braque and Kokoschka: Brain Tissue Injury and Preservation of Artistic Skill.

    Science.gov (United States)

    Zaidel, D W

    2017-08-19

    The neural underpinning of art creation can be gleaned following brain injury in professional artists. Any alteration to their artistic productivity, creativity, skills, talent, and genre can help understand the neural underpinning of art expression. Here, two world-renown and influential artists who sustained brain injury in World War I are the focus, namely the French artist Georges Braque and the Austrian artist Oskar Kokoschka. Braque is particularly associated with Cubism, and Kokoschka with Expressionism. Before enlisting, they were already well-known and highly regarded. Both were wounded in the battlefield where they lost consciousness and treated in European hospitals. Braque's injury was in the left hemisphere while Kokoschka's was in the right hemisphere. After the injury, Braque did not paint again for nearly a whole year while Kokoschka commenced his artistic works when still undergoing hospital treatment. Their post-injury art retained the same genre as their pre-injury period, and their artistic skills, talent, creativity, and productivity remained unchanged. The quality of their post-injury artworks remained highly regarded and influential. These neurological cases suggest widely distributed and diffuse neural control by the brain in the creation of art.

  10. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  11. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-01-01

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  12. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  13. Anthropogenic changes in sodium affect neural and muscle development in butterflies

    Science.gov (United States)

    Snell-Rood, Emilie C.; Espeset, Anne; Boser, Christopher J.; White, William A.; Smykalski, Rhea

    2014-01-01

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5–30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates. PMID:24927579

  14. Anthropogenic changes in sodium affect neural and muscle development in butterflies.

    Science.gov (United States)

    Snell-Rood, Emilie C; Espeset, Anne; Boser, Christopher J; White, William A; Smykalski, Rhea

    2014-07-15

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5-30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates.

  15. Concentration of organochlorines in human brain, liver, and adipose tissue autopsy samples from Greenland

    DEFF Research Database (Denmark)

    Dewailly, Éric; Mulvad, Gert; Pedersen, Henning S.

    1999-01-01

    Organochlorines are persistent lipophilic compounds that accumulate in Inuit people living in circumpolar countries. Organochlorines accumulate as a result of the Inuits' large consumption of sea mammal fat; however, available data are limited to blood lipids, milk fat, and adipose tissue. We rep...

  16. Automated tissue classification of pediatric brains from magnetic resonance images using age-specific atlases

    Science.gov (United States)

    Metzger, Andrew; Benavides, Amanda; Nopoulos, Peg; Magnotta, Vincent

    2016-03-01

    The goal of this project was to develop two age appropriate atlases (neonatal and one year old) that account for the rapid growth and maturational changes that occur during early development. Tissue maps from this age group were initially created by manually correcting the resulting tissue maps after applying an expectation maximization (EM) algorithm and an adult atlas to pediatric subjects. The EM algorithm classified each voxel into one of ten possible tissue types including several subcortical structures. This was followed by a novel level set segmentation designed to improve differentiation between distal cortical gray matter and white matter. To minimize the req uired manual corrections, the adult atlas was registered to the pediatric scans using high -dimensional, symmetric image normalization (SyN) registration. The subject images were then mapped to an age specific atlas space, again using SyN registration, and the resulting transformation applied to the manually corrected tissue maps. The individual maps were averaged in the age specific atlas space and blurred to generate the age appropriate anatomical priors. The resulting anatomical priors were then used by the EM algorithm to re-segment the initial training set as well as an independent testing set. The results from the adult and age-specific anatomical priors were compared to the manually corrected results. The age appropriate atlas provided superior results as compared to the adult atlas. The image analysis pipeline used in this work was built using the open source software package BRAINSTools.

  17. DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue

    DEFF Research Database (Denmark)

    Avaliani, N.; Andersson, M.; Thomsen, Annika Højrup Runegaard

    2016-01-01

    and closely resemble features of human epileptic tissue. Studies suggest that chemically induced epileptiform activity in rat OHSCs is pharmacoresistant to most of AEDs. However, high-frequency electric stimulus train-induced bursting (STIB) in OHSCs is responsive to carbamazepine and phenytoin. We...

  18. Altered Loyalties of Neuronal Markers in Cultured Slices of Resected Human Brain Tissue

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baayen, Johannes C.; Speijer, Dave; Idema, Sander; Swaab, Dick F.

    2016-01-01

    Organotypic cultures from normal neocortical tissue obtained at epilepsy surgery show a severe injury response. This response involves both neuronal degeneration and the proliferation of reactive cells. A salient feature of the reactive cells is the co-expression of microglial and astrocytic

  19. Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms

    Science.gov (United States)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Chicherova, Natalia; Rack, Alexander; Zdora, Marie-Christine; Zanette, Irene; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    Cell visualization and counting plays a crucial role in biological and medical research including the study of neurodegenerative diseases. The neuronal cell loss is typically determined to measure the extent of the disease. Its characterization is challenging because the cell density and size already differs by more than three orders of magnitude in a healthy cerebellum. Cell visualization is commonly performed by histology and fluorescence microscopy. These techniques are limited to resolve complex microstructures in the third dimension. Phase- contrast tomography has been proven to provide sufficient contrast in the three-dimensional imaging of soft tissue down to the cell level and, therefore, offers the basis for the three-dimensional segmentation. Within this context, a human cerebellum sample was embedded in paraffin and measured in local phase-contrast mode at the beamline ID19 (ESRF, Grenoble, France) and the Diamond Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK). After the application of Frangi-based filtering the data showed sufficient contrast to automatically identify the Purkinje cells and to quantify their density to 177 cells per mm3 within the volume of interest. Moreover, brain layers were segmented in a region of interest based on edge detection. Subsequently performed histological analysis validated the presence of the cells, which required a mapping from the two- dimensional histological slices to the three-dimensional tomogram. The methodology can also be applied to further tissue types and shows potential for the computational tissue analysis in health and disease.

  20. Effects of Lead+Selenium Interaction on Acetylcholinesterase Activity in Brain and Accumulation of Metal in Tissues of Oreochromis niloticus (L., 1758

    Directory of Open Access Journals (Sweden)

    Gülsemin Şen

    2017-06-01

    Full Text Available The potential accumulation of lead in different tissues of Oreochromis niloticus and the effects of selenium in AChE inhibition caused by lead in brain were investigated. Juvenile O. niloticus samples were exposed to combination of 1 mg L-1 and 2 mg L-1 lead and 1mg L-1 lead+2mg L-1 selenium and 2mg L-1 lead+4mg L-1 selenium for 1, 7 and 15 days respectively. The accumulation of lead in gill, brain, liver and muscle tissues was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS as well as brain acetylcholinesterase (AChE, E.C.3.1.1.7 enzyme activity was also analyzed by spectrophotometric method. No mortality was observed during lead exposure in relation to time period and exposed concentrations. Lead accumulation was occurred in all tissues in relation to time. Maximum lead accumulation occurred in brain tissue, followed by the liver, gills and muscle tissues in relation to time period. Selenium caused decrease accumulation of lead in tissues (all selenium mixtures in muscle tissue on the first day, 1mg L-1 Pb+2mg L-1 selenium in gill tissue on the seventh day, in liver tissue on the seventh day except 2mg L-1 Pb+4mg L-1 selenium mixtures at the end of each of all three test periods. Inhibition of AChE activity was caused by the highest concentration and by the short-term effect of lead. Such effect of lead was eliminated by selenium mixture. Lead and selenium mixture were resulted an increase in activity on 15th day at the highest concentration. Selenium led to decrease in the accumulation of lead in the tissues and caused to improvement in the loss of AChE activity.

  1. Effect of MgSO4 on expression of NSE and S-100 in rats brain tissue irradiated by 6 MeV electron beam

    International Nuclear Information System (INIS)

    Zhou Juying; Wang Lili; Yu Zhiying; Qin Songbing; Xu Xiaoting; Li Li; Tu Yu

    2007-01-01

    Objective: To explore the protection of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: Thirty six mature Sprague-Dawley rats were randomly divided into 3 groups: blank control group, experimental control group and experimental administered group. The whole brain of SD rats of experimental control group and experimental-therapeutic group were irradiated with a dose of 20 Gy using 6 MeV electron beam. Magnesium sulfate was injected intraperitoneally into the rats of experimental-therapeutic group before and after irradiation for five times. The brain tissue were taken on days 1, 7, 14 and 30 after irradiation. Immunohistochemical method was used to detect the expressions of NSE and S-100 in brain tissue. All data were processed statistically with One-ANOVA analysis. Results: The expressions of NSE and S-100 after whole brain irradiation were time-dependent. Compared with blank control group, the expression of NSE in brains of experimental control group decreased significantly (P 4 can inhibit the expression of S-100, but induce the expression of NSE on radiation-induced acute brain injury. MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  2. Irradiation-injured brain tissues can self-renew in the absence of the pivotal tumor suppressor p53 in the medaka (Oryzias latipes) embryo

    International Nuclear Information System (INIS)

    Yasuda, Takako; Nagata, Kento; Igarashi, Kento; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi; Kimori, Yoshitaka

    2016-01-01

    The tumor suppressor protein, p53, plays pivotal roles in regulating apoptosis and proliferation in the embryonic and adult central nervous system (CNS) following neuronal injuries such as those induced by ionizing radiation. There is increasing evidence that p53 negatively regulates the self-renewal of neural stem cells in the adult murine brain; however, it is still unknown whether p53 is essential for self-renewal in the injured developing CNS. Previously, we demonstrated that the numbers of apoptotic cells in medaka (Oryzias latipes) embryos decreased in the absence of p53 at 12-24 h after irradiation with 10-Gy gamma rays. Here, we used histology to examine the later morphological development of the irradiated medaka brain. In p53-deficient larvae, the embryonic brain possessed similar vacuoles in the brain and retina, although the vacuoles were much smaller and fewer than those found in wild-type embryos. At the time of hatching (6 days after irradiation), no brain abnormality was observed. In contrast, severe disorganized neuronal arrangements were still present in the brain of irradiated wild-type embryos. Our present results demonstrated that self-renewal of the brain tissue completed faster in the absence of p53 than wild type at the time of hatching because p53 reduces the acute severe neural apoptosis induced by irradiation, suggesting that p53 is not essential for tissue self-renewal in developing brain. (author)

  3. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction

    International Nuclear Information System (INIS)

    Wels, Michael; Hornegger, Joachim; Zheng Yefeng; Comaniciu, Dorin; Huber, Martin

    2011-01-01

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average

  4. Localization of brain functions by dipole tracing method using individually measured tissue conductivities

    International Nuclear Information System (INIS)

    Furuya, Hajime; Kanamaru, Arata; Homma, Ikuo; Matsumoto, Kiyoshi; Okamoto, Yoshio

    2000-01-01

    The dipole tracing method (DT) has permitted calculations of source locations using a Scalp-Skull-Brain (SSB) real-shaped three-shell model of the head because bone conductivity is lower than the skin and the brain. The SSB/DT method utilizes standard conductivities of the three layers: scalp, skull, and brain. These conductivities are not calculated for each individual. We have previously used a realistic three-shell head model using realistic individually calculated conductivities of the scalp and skull layers with the SSB/DT method for current location mapping. The individual conductivities of the scalp and the skull were calculated from electrical stimulation through surface electrodes. Individual conductivities were used to calculate the source locations of SEP based upon surface EEG recordings using the SSB/DT method. A current square-wave pulse (0.1 mA and 10 msec duration) was applied through a pair of EEG electrodes; four different pairs were usually selected. The voltage change during the stimulation was recorded with the remaining surface electrodes and the conductivities of the skin and skull were calculated from the recorded signals. In nine healthy men, the mean skin conductivity was 0.61441±0.30128 [S/m], while the skull conductivity mean 0.00576±0.00397 [S/m]. Simulation for dipole current movement indicated lower bone conductivity in the inner location and high bone conductivity in the outer location. The conductivity ratios of bone and skin were 0.0125 in standard model and 0.00956 (mean) in realistic individually calculated conductivities. We compared the locations of the SEP estimated with the standard conductivity and realistic individually calculated conductivities; the dipole location was not significantly different. (author)

  5. Extraction, separation, and detections of 14C-diazepam and 14C-metabolites from brain tissue of mature and old rats

    International Nuclear Information System (INIS)

    Komiskey, H.L.; Rahman, A.; Weisenburger, W.P.; Hayton, W.L.; Zobrist, R.H.; Silvius, W.

    1985-01-01

    A rapid method for simultaneous determination of brain concentrations of diazepan and each of its three major metabolites in brain tissue by a reverse isotope dilution procedure is presented. Radiolabeled diazepam and metabolites were extracted from brain tissue of mature and senescent rats with ethyl ether. After the ether was evaporated the benzodiazepines were separated from the residue by passing the water soluble portion through C-18 bonded-phase extraction columns. High pressure liquid chromatography (HPLC) was used to separate the benzodiazepines from each other. Reverse isotope dilution analysis was used to quantify diazepam and its metabolites. The percent recovery of diazepam and its metabolites from the brain of mature or senescent rats did not vary significantly

  6. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.

    Science.gov (United States)

    Moncrieff, J

    1989-11-24

    Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.

  7. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    Science.gov (United States)

    Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.

  8. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    International Nuclear Information System (INIS)

    Khimchenko, A; Bikis, C; Schulz, G; Hieber, S E; Deyhle, H; Thalmann, P; Müller, B; Zdora, M-C; Zanette, I; Vila-Comamala, J; Schweighauser, G; Hench, J

    2017-01-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers ( Stratum moleculare and Stratum granulosum ), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H and E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology. (paper)

  9. Individual Case Analysis of Postmortem Interval Time on Brain Tissue Preservation.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Blair

    Full Text Available At autopsy, the time that has elapsed since the time of death is routinely documented and noted as the postmortem interval (PMI. The PMI of human tissue samples is a parameter often reported in research studies and comparable PMI is preferred when comparing different populations, i.e., disease versus control patients. In theory, a short PMI may alleviate non-experimental protein denaturation, enzyme activity, and other chemical changes such as the pH, which could affect protein and nucleic acid integrity. Previous studies have compared PMI en masse by looking at many different individual cases each with one unique PMI, which may be affected by individual variance. To overcome this obstacle, in this study human hippocampal segments from the same individuals were sampled at different time points after autopsy creating a series of PMIs for each case. Frozen and fixed tissue was then examined by Western blot, RT-PCR, and immunohistochemistry to evaluate the effect of extended PMI on proteins, nucleic acids, and tissue morphology. In our results, immunostaining profiles for most proteins remained unchanged even after PMI of over 50 h, yet by Western blot distinctive degradation patterns were observed in different protein species. Finally, RNA integrity was lower after extended PMI; however, RNA preservation was variable among cases suggesting antemortem factors may play a larger role than PMI in protein and nucleic acid integrity.

  10. Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue.

    Directory of Open Access Journals (Sweden)

    Erika Freemantle

    Full Text Available Fatty acids (FA play an integral role in brain function and alterations have been implicated in a variety of complex neurological disorders. Several recent genomic studies have highlighted genetic variability in the fatty acid desaturase (FADS1/2/3 gene cluster as an important contributor to FA alterations in serum lipids as well as measures of FA desaturase index estimated by ratios of relevant FAs. The contribution to alterations of FAs within the brain by local synthesis is still a matter of debate. Thus, the impact of genetic variants in FADS genes on gene expression and brain FA levels is an important avenue to investigate.Analyses were performed on brain tissue from prefrontal cortex Brodmann area 47 (BA47 of 61 male subjects of French Canadian ancestry ranging in age from young adulthood to middle age (18-58 years old, with the exception of one teenager (15 years old. Haplotype tagging SNPs were selected using the publicly available HapMap genotyping dataset in conjunction with Haploview. DNA sequencing was performed by the Sanger method and gene expression was measured by quantitative real-time PCR. FAs in brain tissue were analysed by gas chromatography. Variants in the FADS1 gene region were sequenced and analyzed for their influence on both FADS gene expression and FAs in brain tissue.Our results suggest an association of the minor haplotype with alteration in estimated fatty acid desaturase activity. Analysis of the impact of DNA variants on expression and alternative transcripts of FADS1 and FADS2, however, showed no differences. Furthermore, there was a significant interaction between haplotype and age on certain brain FA levels.This study suggests that genetic variability in the FADS genes cluster, previously shown to be implicated in alterations in peripheral FA levels, may also affect FA composition in brain tissue, but not likely by local synthesis.

  11. Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study

    International Nuclear Information System (INIS)

    Pichardo, Samuel; Hynynen, Kullervo

    2007-01-01

    Shear mode transmission through the skull has been previously proposed as a new trans-skull propagation technique for noninvasive therapeutic ultrasound (Clement 2004 J. Acoust. Soc. Am. 115 1356-64). The main advantage of choosing shear over longitudinal mode resides on the fact that there is less wavefront distortion with the former. In the present study, the regions of the brain suitable for shear-mode transmission were established for a simple focused ultrasound device. The device consists of a spherically curved transducer that has a focal length of 10 cm, an aperture between 30 0 and 60 0 and operates at 0.74 MHz. The regions suitable for shear-mode transmission were determined by the shear wave acoustic windows that matched the shape of the device acoustic field. The acoustic windows were calculated using segmentation and triangulation of outer and inner faces of skull from 3D-MRI head datasets. Nine heads of healthy adults were analyzed. The surface considered for the calculations was the head region found above the supra-orbital margin. For every inspected point in the brain volume, the axis of the device was determined by the vector between this inspection point and a point located in the center of the brain. Numerical predictions of the acoustic field, where shear-mode conversion through the skull was considered, were obtained and compared to the case of water-only conditions. The brain tissue that is close to the skull showed suitable acoustic windows for shear waves. The central region of the brain seems to be unreachable using shear-mode. Analysis of the acoustic fields showed a proportional relation between the acoustic window for shear mode and the effective degree of focusing. However, this relation showed significant differences among specimens. In general, highly focused fields were obtained when the acoustic window for shear waves (A SW ) intersected more than 67% of the entering acoustic window (A TX ) of the device. The average depth from the

  12. Hypoxia-ischemia or excitotoxin-induced tissue plasminogen activator- dependent gelatinase activation in mice neonate brain microvessels.

    Directory of Open Access Journals (Sweden)

    Priscilla L Omouendze

    Full Text Available Hypoxia-ischemia (HI and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9 activity links in HI and excitotoxicity lesion models in 5 day-old pups in wild type and in t-PA or its inhibitor (PAI-1 genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O₂. Excitotoxic lesions were produced by intra parenchymal cortical (i.c. injections of 10 µg ibotenate (Ibo. Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA⁻/⁻ and enhanced in PAI-1⁻/⁻ mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA⁻/⁻ mice. In PAI-1⁻/⁻ mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1⁻/⁻ and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 µM induced DQ-gelatin activation in vessels. The effect was not detected in t-PA⁻/⁻ mice, but was restored by concomitant exposure to recombinant t-PA (20 µg/mL. In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have

  13. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  14. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  15. Induced current magnetic resonance electrical impedance tomography of brain tissues based on the J-substitution algorithm: a simulation study

    International Nuclear Information System (INIS)

    Liu Yang; Zhu Shanan; He Bin

    2009-01-01

    We have investigated induced current magnetic resonance electrical impedance tomography (IC-MREIT) by means of computer simulations. The J-substitution algorithm was implemented to solve the IC-MREIT reconstruction problem. By providing physical insight into the charge accumulating on the interfaces, the convergence characteristics of the reconstruction algorithm were analyzed. The simulation results conducted on different objects were well correlated with the proposed theoretical analysis. The feasibility of IC-MREIT to reconstruct the conductivity distribution of head-brain tissues was also examined in computer simulations using a multi-compartment realistic head model. The present simulation results suggest that IC-MREIT may have the potential to become a useful conductivity imaging technique.

  16. Vaccine-induced rabies case in a cow (Bos taurus): Molecular characterisation of vaccine strain in brain tissue.

    Science.gov (United States)

    Vuta, Vlad; Picard-Meyer, Evelyne; Robardet, Emmanuelle; Barboi, Gheorghe; Motiu, Razvan; Barbuceanu, Florica; Vlagioiu, Constantin; Cliquet, Florence

    2016-09-22

    Rabies is a fatal neuropathogenic zoonosis caused by the rabies virus of the Lyssavirus genus, Rhabdoviridae family. The oral vaccination of foxes - the main reservoir of rabies in Europe - using a live attenuated rabies virus vaccine was successfully conducted in many Western European countries. In July 2015, a rabies vaccine strain was isolated from the brain tissues of a clinically suspect cow (Bos taurus) in Romania. The nucleotide analysis of both N and G gene sequences showed 100% identity between the rabid animal, the GenBank reference SAD B19 strain and five rabies vaccine batches used for the national oral vaccination campaign targeting foxes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus [MR and CT Contrast Media Research, Bayer Pharma AG, Berlin (Germany); Lenhard, Diana Constanze [Charite, Institute of Vegetative Physiology, Berlin (Germany); Naganawa, Shinji [Nagoya University Graduate School of Medicine, Department of Radiology, Nagoya (Japan)

    2017-07-15

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  18. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue

    International Nuclear Information System (INIS)

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Pietsch, Hubertus; Lenhard, Diana Constanze; Naganawa, Shinji

    2017-01-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. (orig.)

  19. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients.

    Science.gov (United States)

    Slagman, Maartje C J; Waanders, Femke; Vogt, Liffert; Damman, Kevin; Hemmelder, Marc; Navis, Gerjan; Laverman, Gozewijn D

    2012-03-01

    Renin-angiotensin aldosterone system (RAAS) blockade only partly reduces blood pressure, proteinuria and renal and cardiovascular risk in chronic kidney disease (CKD) but often requires sodium targeting [i.e. low sodium diet (LS) and/or diuretics] for optimal efficacy. However, both under- and overtitration of sodium targeting can easily occur. We evaluated whether N-terminal pro-brain natriuretic peptide (NT-proBNP), a biomarker of volume expansion, predicts the benefits of sodium targeting in CKD patients. In a cross-over randomized controlled trial, 33 non-diabetic CKD patients (proteinuria 3.8 ± 0.4 g/24 h, blood pressure 143/86 ± 3/2 mmHg, creatinine clearance 89 ± 5 mL/min) were treated during 6-week periods with placebo, angiotensin receptor blockade (ARB; losartan 100 mg/day) and ARB plus diuretics (losartan 100 mg/day plus hydrochlorothiazide 25 mg/day), combined with LS (93 ± 52 mmol Na(+)/24 h) and regular sodium diet (RS; 193 ± 62 mmol Na(+)/24 h, P diuretics and was normalized by ARB + diuretic + LS [39 (26-59) pg/mL, P = 0.65 versus controls]. NT-proBNP levels above the upper limit of normal (>125 pg/mL) predicted a larger reduction of blood pressure and proteinuria by LS and diuretics but not by ARB, during all steps of the titration regimen. Elevated NT-proBNP levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of sodium targeting, but not RAAS blockade, in proteinuric CKD patients. Importantly, this applies to the untreated condition, as well as to the subsequent treatment steps, consisting of RAAS blockade and even RAAS blockade combined with diuretics. NT-proBNP can be a useful tool to identify CKD patients in whom sodium targeting can improve blood pressure and proteinuria.

  20. Effects of high fat diet, ovariectomy, and physical activity on leptin receptor expression in rat brain and white fat tissue.

    Science.gov (United States)

    Blažetić, Senka; Labak, Irena; Viljetić, Barbara; Balog, Marta; Vari, Sandor G; Krivošíková, Zora; Gajdoš, Martin; Kramárová, Patrícia; Kebis, Anton; Vuković, Rosemary; Puljak, Livia; Has-Schön, Elizabeta; Heffer, Marija

    2014-06-01

    To evaluate in a rat animal model whether ovariectomy, high fat diet (HFD), and physical activity in the form of running affect leptin receptor (Ob-R) distribution in the brain and white fat tissue compared to sham (Sh) surgery, standard diet (StD), and sedentary conditions. The study included 48 female laboratory Wistar rats (4 weeks old). Following eight weeks of feeding with standard or HFD, rats were subjected to either OVX or Sh surgery. After surgery, all animals continued StD or HFD for the next 10 weeks. During these 10 weeks, ovariectomy and Sh groups were subjected to physical activity or sedentary conditions. Free-floating immunohistochemistry and Western blot methods were carried out to detect Ob-R in the brain and adipose tissue. StD-ovariectomy-sedentary group had a greater number of Ob-R positive neurons in lateral hypothalamic nuclei than StD-Sh-sedentary group. There was no difference in Ob-R positive neurons in arcuatus nuclei between all groups. Ob-R distribution in the barrel cortex was higher in HFD group than in StD group. Ob-R presence in perirenal and subcutaneous fat was decreased in StD-ovariectomy group. HFD and ovariectomy increased Ob-R distribution in lateral hypothalamic nuclei, but there was no effect on arcuatus nuclei. Our results are first to suggest that HFD, ovariectomy, and physical activity affect Ob-R distribution in the barrel cortex, which might be correlated with the role of Ob-R in election of food in rats.

  1. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators

    International Nuclear Information System (INIS)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K.; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G.

    2004-01-01

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues

  2. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators.

    Science.gov (United States)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G

    2004-09-15

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues.

  3. Acetazolamide during acute hypoxia improves tissue oxygenation in the human brain.

    Science.gov (United States)

    Wang, Kang; Smith, Zachary M; Buxton, Richard B; Swenson, Erik R; Dubowitz, David J

    2015-12-15

    Low doses of the carbonic anhydrase inhibitor acetazolamide provides accelerated acclimatization to high-altitude hypoxia and prevention of cerebral and other symptoms of acute mountain sickness. We previously observed increases in cerebral O2 metabolism (CMRO2 ) during hypoxia. In this study, we investigate whether low-dose oral acetazolamide (250 mg) reduces this elevated CMRO2 and in turn might improve cerebral tissue oxygenation (PtiO2 ) during acute hypoxia. Six normal human subjects were exposed to 6 h of normobaric hypoxia with and without acetazolamide prophylaxis. We determined CMRO2 and cerebral PtiO2 from MRI measurements of cerebral blood flow (CBF) and cerebral venous O2 saturation. During normoxia, low-dose acetazolamide resulted in no significant change in CBF, CMRO2 , or PtiO2 . During hypoxia, we observed increases in CBF [48.5 (SD 12.4) (normoxia) to 65.5 (20.4) ml·100 ml(-1)·min(-1) (hypoxia), P effect was improved cerebral tissue PtiO2 during acute hypoxia [11.4 (2.7) (hypoxia) to 16.5 (3.0) mmHg (hypoxia + acetazolamide), P effect, low-dose acetazolamide is effective at the capillary endothelium, and we hypothesize that local interruption in cerebral CO2 excretion accounts for the improvements in CMRO2 and ultimately in cerebral tissue oxygenation during hypoxia. This study suggests a potentially pivotal role of cerebral CO2 and pH in modulating CMRO2 and PtiO2 during acute hypoxia. Copyright © 2015 the American Physiological Society.

  4. Dental Fluorosis and Catalase Immunoreactivity of the Brain Tissues in Rats Exposed to High Fluoride Pre- and Postnatally.

    Science.gov (United States)

    Güner, Şirin; Uyar-Bozkurt, Süheyla; Haznedaroğlu, Eda; Menteş, Ali

    2016-11-01

    This study evaluated dental fluorosis of the incisors and immunoreactivity in the brain tissues of rats given chronic fluoride doses pre- and postnatally. Female rats were given drinking water with 0, 30 or 100 ppm fluoride ad libitum throughout gestation and the nursing period. In addition, 63 male offspring were treated with the same water regimens as the mothers after weaning and were followed for 1, 3 or 5 months. The upper and lower incisors were collected, and all teeth were examined under a stereomicroscope and scored by two blinded examiners using a modified rodent enamel fluorosis index. Cortical, hippocampal and cerebellar brain samples were evaluated morphologically and immunohistochemically. All fluoride-treated pups were born with low body weight (p = 0.001). All animals from the fluoride groups had enamel fluorosis with defects of various degrees. The increase in the dental fluorosis scores in the fluoride treatment groups was significant (p fluoride groups was significantly higher than that in the controls after 1, 3 and 5 months (p toxicity of fluoride.

  5. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  6. Detection of polyoma virus in brain tissue of patients with progressive multifocal leukoencephalopathy by real-time PCR and pyrosequencing.

    Science.gov (United States)

    Beck, Rose C; Kohn, Debra J; Tuohy, Marion J; Prayson, Richard A; Yen-Lieberman, Belinda; Procop, Gary W

    2004-03-01

    We evaluated 2 methods, a LightCycler PCR assay and pyrosequencing for the detection of the JC polyoma virus (JCV) in fixed brain tissue of 10 patients with and 3 control patients without progressive multifocal leukoencephalopathy (PML). Nucleic acid extraction was performed after deparaffinization and proteinase K digestion. The LightCycler assay differentiates the BK virus (BKV), JCV, and SV40 using melt curve analysis. Conventional PCR was used with the same primers to generate products for pyrosequencing. Two sequencing primers were used that differentiate the polyoma viruses. Seven of 11 biopsies (1 patient had 2 biopsies) with PML were positive for JCV by real-time PCR and/or PCR/pyrosequencing. Three of 4 remaining biopsies were positive by real-time PCR but had melting points between JCV and SV40. The 4 specimens that were negative or atypical by LightCycler PCR were positive by traditional PCR, but 1 had an amplicon of lower molecular weight by gel electrophoresis. These were shown to represent JCV by at least 1 of the 2 pyrosequencing primers. The biopsies from patients without PML were PCR negative. Both the LightCycler and pyrosequencing assays are useful for confirming JCV in brain biopsies from patients with PML, but variant JCVs may require supplementary methods to confirm JCV infection.

  7. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles

    Science.gov (United States)

    Kurokawa, Yoshika; Sone, Hideko; Win-Shwe, Tin-Tin; Zeng, Yang; Kimura, Hiroyuki; Koyama, Yosuke; Yagi, Yusuke; Matsui, Yasuto; Yamazaki, Masashi; Hirano, Seishiro

    2017-01-01

    Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD), an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB) in vitro using