WorldWideScience

Sample records for brain tissue oxygenation

  1. Real-time changes in brain tissue oxygen during endovascular treatment of cerebral vasospasm

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Bache, Søren; Stavngaard, Trine

    2015-01-01

    minute-by-minute changes in brain tissue oxygen during balloon angioplasty and intraarterial administration of vasodilators in three patients.Our results confirm that endovascular intervention is capable of not only resolving angiographic vasospasm, but also of normalizing values of brain tissue oxygen...

  2. Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    John P. Lowry

    2005-11-01

    Full Text Available In this communication we review selected experiments involving the use ofcarbon paste electrodes (CPEs to monitor and measure brain tissue O2 levels in awakefreely-moving animals. Simultaneous measurements of rCBF were performed using the H2clearance technique. Voltammetric techniques used include both differential pulse (O2 andconstant potential amperometry (rCBF. Mild hypoxia and hyperoxia produced rapidchanges (decrease and increase respectively in the in vivo O2 signal. Neuronal activation(tail pinch and stimulated grooming produced similar increases in both O2 and rCBFindicating that CPE O2 currents provide an index of increases in rCBF when such increasesexceed O2 utilization. Saline injection produced a transient increase in the O2 signal whilechloral hydrate produced slower more long-lasting changes that accompanied the behavioralchanges associated with anaesthesia. Acetazolamide increased O2 levels through an increasein rCBF.

  3. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy.

    Science.gov (United States)

    Rejmstad, Peter; Johansson, Johannes D; Haj-Hosseini, Neda; Wårdell, Karin

    2017-03-01

    Continuous measurement of local brain oxygen saturation (SO2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO2 ), which is closely related to SO2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO2 for different blood concentrations. The P3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile.

  4. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease Increased oxygen transport to hypoperfused brain

    DEFF Research Database (Denmark)

    Ashkanian, Mahmoud; Gjedde, Albert; Mouridsen, Kim

    2009-01-01

    comparisons by an additive ANOVA model showed that carbogen significantly increased CBF by 7.51 + or - 1.62 ml/100 g/min while oxygen tended to reduce it by -3.22 + or - 1.62 ml/100 g/min. A separate analysis of the hemisphere contralateral to the hypoperfused hemisphere showed that carbogen significantly...... and Sa(O2) are readily obtained with carbogen, while oxygen increases only Sa(O2). Thus, carbogen improves oxygen transport to brain tissue more efficiently than oxygen alone. Further studies with more subjects are, however, needed to investigate the applicability of carbogen for long-term inhalation...

  5. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  6. High dose Erythropoietin increases Brain Tissue Oxygen Tension in Severe Vasospasm after Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Helbok Raimund

    2012-06-01

    Full Text Available Abstract Background Vasospasm-related delayed cerebral ischemia (DCI significantly impacts on outcome after aneurysmal subarachnoid hemorrhage (SAH. Erythropoietin (EPO may reduce the severity of cerebral vasospasm and improve outcome, however, underlying mechanisms are incompletely understood. In this study, the authors aimed to investigate the effect of EPO on cerebral metabolism and brain tissue oxygen tension (PbtO2. Methods Seven consecutive poor grade SAH patients with multimodal neuromonitoring (MM received systemic EPO therapy (30.000 IU per day for 3 consecutive days for severe cerebral vasospasm. Cerebral perfusion pressure (CPP, mean arterial blood pressure (MAP, intracranial pressure (ICP, PbtO2 and brain metabolic changes were analyzed during the next 24 hours after each dose given. Statistical analysis was performed with a mixed effects model. Results A total of 22 interventions were analyzed. Median age was 47 years (32–68 and 86 % were female. Three patients (38 % developed DCI. MAP decreased 2 hours after intervention (P btO2 significantly increased over time (P  Conclusions EPO increases PbtO2 in poor grade SAH patients with severe cerebral vasospasm. The effect on outcome needs further investigation.

  7. Correlation of brain tissue oxygen tension with cerebral near-infrared spectroscopy and mixed venous oxygen saturation during extracorporeal membrane oxygenation.

    Science.gov (United States)

    Tyree, Kreangkai; Tyree, Melissa; DiGeronimo, Robert

    2009-09-01

    The aim of this prospective, animal study was to compare brain tissue oxygen tension (PbtO(2)) with cerebral near infrared spectroscopy (NIRS) and mixed venous oxygen saturation (SVO(2)) during venoarterial extracorporeal membrane oxygenation (VA ECMO) in a porcine model. This was accomplished using twelve immature piglets with surgically implanted catheters placed in the superficial cerebral cortex to measure brain PbtO(2) and microdialysis metabolites. The NIRS sensor was placed overlying the forehead to measure cerebral regional saturation index (rSO(2)i) while SVO(2) was measured directly from the ECMO circuit. Animals were placed on VA ECMO followed by an initial period of stabilization, after which they were subjected to graded hypoxia and recovery. Our results revealed that rSO(2)i and SVO(2) correlated only marginally with PbtO(2) (R(2)=0.32 and R(2)=0.26, respectively) while the correlation between rSO(2)i and SVO( 2) was significantly stronger (R(2)=0.59). Cerebral metabolites and rSO(2)i were significantly altered during attenuation of PbtO( 2), p<0.05). A subset of animals, following exposure to hypoxia, experienced markedly delayed recovery of both rSO(2)i and PbtO( 2) despite rapid normalization of SVO(2). Upon further analysis, these animals had significantly lower blood pressure (p=0.001), lower serum pH (p=0.01), and higher serum lactate (p=0.02). Additionally, in this subgroup, rSO(2)i correlated better with PbtO(2) (R(2)=0.76). These findings suggest that, in our ECMO model, rSO(2)i and SVO( 2) correlate reasonably well with each other, but not necessarily with brain PbtO(2) and that NIRS-derived rSO(2)i may more accurately reflect cerebral tissue hypoxia in sicker animals.

  8. Effects of acetazolamide on cerebral blood flow and brain tissue oxygenation

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L; Kastrup, J

    1987-01-01

    Oral administration of 1 g of acetazolamide to 8 normal subjects studied at sea level and in normoxia caused an acute increase in cerebral blood flow (CBF). During the subsequent prolonged oral treatment with 1 g of acetazolamide daily, CBF returned to normal within 2 days. The alveolar CO2 tension...... decreased gradually to 70% of the control value, indicating hyperventilation. At sea level hyperventilation will not increase brain oxygenation significantly in normal man, as the arterial oxygen content only increases minimally, while CBF is unchanged. At high altitude the beneficial effects...... of acetazolamide on the symptoms of acute mountain sickness may well be due to an improved oxygen supply to the brain, as hyperventilation will, at the low ambient PO2, cause a significant increase of the arterial oxygen content, while CBF presumably is unaffected by the drug. During hypoxia at high altitude...

  9. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  10. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review.

    Science.gov (United States)

    Nangunoori, Raj; Maloney-Wilensky, Eileen; Stiefel, Michael; Park, Soojin; Andrew Kofke, W; Levine, Joshua M; Yang, Wei; Le Roux, Peter D

    2012-08-01

    Observational clinical studies demonstrate that brain hypoxia is associated with poor outcome after severe traumatic brain injury (TBI). In this study, available medical literature was reviewed to examine whether brain tissue oxygen (PbtO2)-based therapy is associated with improved patient outcome after severe TBI. Clinical studies published between 1993 and 2010 that compared PbtO2-based therapy combined with intracranial and cerebral perfusion pressure (ICP/CPP)-based therapy to ICP/CPP-based therapy alone were identified from electronic databases, Index Medicus, bibliographies of pertinent articles, and expert consultation. For analysis, each selected paper had to have adequate data to determine odds ratios (ORs) and confidence intervals (CIs) of outcome described by the Glasgow outcome score (GOS). Seven studies that compared ICP/CPP and PbtO2- to ICP/CPP-based therapy were identified. There were no randomized studies and no comparison studies in children. Four studies, published in 2003, 2009, and 2010 that included 491 evaluable patients were used in the final analysis. Among patients who received PbtO2-based therapy, 121(38.8%) had unfavorable and 191 (61.2%) had a favorable outcome. Among the patients who received ICP/CPP-based therapy 104 (58.1%) had unfavorable and 75 (41.9%) had a favorable outcome. Overall PbtO2-based therapy was associated with favorable outcome (OR 2.1; 95% CI 1.4-3.1). Summary results suggest that combined ICP/CPP- and PbtO2-based therapy is associated with better outcome after severe TBI than ICP/CPP-based therapy alone. Cross-organizational practice variances cannot be controlled for in this type of review and so we cannot answer whether PbtO2-based therapy improves outcome. However, the potentially large incremental value of PbtO2-based therapy provides justification for a randomized clinical trial.

  11. Measuring tissue oxygenation

    Science.gov (United States)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  12. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: jmweaver@salud.unm.edu [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  13. Brain tissue oxygen tension and its response to physiological manipulations: influence of distance from injury site in a swine model of traumatic brain injury.

    Science.gov (United States)

    Hawryluk, Gregory W J; Phan, Nicolas; Ferguson, Adam R; Morabito, Diane; Derugin, Nikita; Stewart, Campbell L; Knudson, M Margaret; Manley, Geoffrey; Rosenthal, Guy

    2016-11-01

    OBJECTIVE The optimal site for placement of tissue oxygen probes following traumatic brain injury (TBI) remains unresolved. The authors used a previously described swine model of focal TBI and studied brain tissue oxygen tension (PbtO2) at the sites of contusion, proximal and distal to contusion, and in the contralateral hemisphere to determine the effect of probe location on PbtO2 and to assess the effects of physiological interventions on PbtO2 at these different sites. METHODS A controlled cortical impact device was used to generate a focal lesion in the right frontal lobe in 12 anesthetized swine. PbtO2 was measured using Licox brain tissue oxygen probes placed at the site of contusion, in pericontusional tissue (proximal probe), in the right parietal region (distal probe), and in the contralateral hemisphere. PbtO2 was measured during normoxia, hyperoxia, hypoventilation, and hyperventilation. RESULTS Physiological interventions led to expected changes, including a large increase in partial pressure of oxygen in arterial blood with hyperoxia, increased intracranial pressure (ICP) with hypoventilation, and decreased ICP with hyperventilation. Importantly, PbtO2 decreased substantially with proximity to the focal injury (contusion and proximal probes), and this difference was maintained at different levels of fraction of inspired oxygen and partial pressure of carbon dioxide in arterial blood. In the distal and contralateral probes, hypoventilation and hyperventilation were associated with expected increased and decreased PbtO2 values, respectively. However, in the contusion and proximal probes, these effects were diminished, consistent with loss of cerebrovascular CO2 reactivity at and near the injury site. Similarly, hyperoxia led to the expected rise in PbtO2 only in the distal and contralateral probes, with little or no effect in the proximal and contusion probes, respectively. CONCLUSIONS PbtO2 measurements are strongly influenced by the distance from the

  14. Fluctuation of Brain Tissue Oxygen Partial Pressure: A Biochemical Landmark in the Arctic Ground Squirrel's Spontaneous Arousal

    Directory of Open Access Journals (Sweden)

    Yi L. Ma

    2011-01-01

    Full Text Available Hibernation in the Arctic ground Squirrel (AGS is a regulated, adaptive response to arctic environmental conditions. Problem statement: Regional brain Blood Flow (rCBF has been observed to increase dramatically during arousal in hibernators. However, the real time dynamic change in PtO2 during arousal has not been studied, we hypothesized that PtO2 is Interdependent of Tbrain and a key component in the arousal process. Approach: Simultaneous in vivo measurements of PtO2 and brain temperature (Tbrain in conjunction with oxygen consumption (V02 were conducted in the striatum of non-sedated, non-anesthetized Arctic ground squirrels during spontaneous arousal from hibernation. Results: A dramatic fluctuation of brain tissue oxygen partial pressure (PtO2 is associated with the complex phenomena of spontaneous arousal. In this study, we observed that: (1 a PtO2 elevation precedes changes in Tbrain and V02; (2 PtO2 changes do not correlate with changes in V02 during arousal and (3, endogenous O2 shift from O2 enriched blood to brain in hibernating AGS induces an arousal with the pharmaceutical chemical, efaproxiral (RSR-13. Conclusion: The four turning points of PtO2 appearing at different Tbrain during arousal suggest that changes in PtO2 are Tbrain interdependent and support the concept that arousal from hibernation is complex process invoking different feedbacks.

  15. Study on changes of partial pressure of brain tissue oxygen and brain temperature in acute phase of severe head injury during mild hypothermia therapy

    Institute of Scientific and Technical Information of China (English)

    朱岩湘; 姚杰; 卢尚坤; 章更生; 周关仁

    2003-01-01

    Objective: To study the changes of partial pressure of brain tissue oxygen (PbtO2) and brain temperature in acute phase of severe head injury during mild hypothermia therapy and the clinical significance.Methods: One hundred and sixteen patients with severe head injury were selected and divided into a mild hypothermia group (n=58), and a control group (n=58) according to odd and even numbers of hospitalization. While mild hypothermia therapy was performed PbtO2 and brain temperature were monitored for 1-7 days (mean=86 hours), simultaneously, the intracranial pressure, rectum temperature, cerebral perfusion pressure, PaO2 and PaCO2 were also monitored. The patients were followed up for 6 months and the prognosis was evaluated with GOS (Glasgow outcome scale).Results: The mean value of PbtO2 within 24 hour monitoring in the 116 patients was 13.7 mm Hg±4.94 mm Hg, lower than the normal value (16 mm Hg±40 mm Hg) The time of PbtO2 recovering to the normal value in the mild hypothermia group was shortened by 10±4.15 hours compared with the control group (P<0.05). The survival rate of the mild hypothermia group was 60.43%, higher than that of the control group (46.55%). After the recovery of the brain temperature, PbtO2 increased with the rise of the brain temperature. Conclusions: Mild hypothermia can improve the survival rate of severe head injury. The technique of monitoring PbtO2 and the brain temperature is safe and reliable, and has important clinical significance in judging disease condition and instructing clinical therapy.

  16. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T.

    Science.gov (United States)

    Atkinson, Ian C; Thulborn, Keith R

    2010-06-01

    The reduction of molecular oxygen to water is the final step of oxidative phosphorylation that couples adenosine triphosphate production to the reoxidation of reducing equivalents formed during the oxidation of glucose to carbon dioxide. This coupling makes the cerebral metabolic rate of oxygen consumption (CMRO(2)) an excellent reflection of the metabolic health of the brain. A multi-nuclear magnetic resonance (MR) imaging based method for CMRO(2) mapping is proposed. Oxygen consumption is determined by applying a new three-phase metabolic model for water generation and clearance to the changing 17-oxygen ((17)O) labeled water MR signal measured using quantitative (17)O MR imaging during inhalation of (17)O-enriched oxygen gas. These CMRO(2) data are corrected for the regional brain tissue mass computed from quantitative 23-sodium MR imaging of endogenous tissue sodium ions to derive quantitative results of oxygen consumption in micromoles O(2)/g tissue/minute that agree with literature results reported from positron emission tomography. The proposed technique is demonstrated in the human brain using a 9.4 T MR scanner optimized for human brain imaging.

  17. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Chien-Min Lin

    2015-01-01

    Full Text Available The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP- guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg, and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg in the neurosurgical intensive care unit (NICU; demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.

  18. Effect of mild hypothermia on partial pressure of oxygen in brain tissue and brain temperature in patients with severe head injury

    Institute of Scientific and Technical Information of China (English)

    张赛; 只达石; 林欣; 尚彦国; 牛玉德

    2002-01-01

    Objective: To study the changes of partial pressure of oxygen in brain tissue (PbtO2) and brain temperature (BT) in patients in acute phase of severe head injury, and to study the effect of mild hypothermia on PbtO2 and BT.   Methods: The PbtO2 and the BT of 18 patients with severe head injury were monitored, and the patients were treated with mild hypothermia within 20 hours after injury. The rectal temperature (RT) of the patients was kept on 31.5-34.9℃ for 1-7 days (57.7 hours±28.4 hours averagely), simultaneously, the indexes of PbtO2 and BT were monitored for 1-5 days (with an average of 54.8 hours±27.0 hours). According to Glasgow Outcome Scale (GOS), the prognosis of the patients was evaluated at 6 months after injury.   Results: Within 24 hours after severe head injury, the PbtO2 was significantly lower (9.6 mm Hg±6.8 mm Hg, 1 mm Hg=0.133 kPa) than the normal value (16-40 mm Hg). After treatment of mild hypothermia, the mean PbtO2 increased to 28.7 mm Hg±8.8 mm Hg during the first 24 hours, and the PbtO2 was still maintained within the range of normal value at 3 days after injury. The BT was higher than the RT in the patients in acute phase of severe head injury, and the difference between the BT and the RT significantly increased after treatment of mild hypothermia. Hyperventilation (the partial pressure of carbon dioxide in artery (PaCO2)≈25 mm Hg) decreased the high intracranial pressure (ICP) and significantly decreased the PbtO2.   Conclusions: This study demonstrates that PptO2 and BT monitoring is a safe, reliable and sensitive diagnostic method to follow cerebral oxygenation. It might become an important tool in our treatment regime for patients in the acute phase of severe head injury requiring hypothermia and hyperventilation.

  19. Effects of Hyperoxia on Brain Tissue Oxygen Tension in Non-Sedated, Non- Anesthetized Arctic Ground Squirrels: An Animal Model of Hyperoxic Stress

    Directory of Open Access Journals (Sweden)

    Y. Ma

    2011-01-01

    Full Text Available Arctic Ground Squirrels (AGS are classic hibernators known for their tolerance to hypoxia. AGS have been studied as a model of hypoxia with potential as a medical research model. Problem statement: Their unique resistance to the stressors of low oxygen led us to hypothesize that AGS might also be adaptable to hyperoxia. Approach: This study examined the physiological pattern associated with hyperoxia in response to brain tissue oxygen partial pressure (PtO2, brain temperature (Tbrain, global oxygen consumption (VO2 and respiratory frequency (fR using non-sedated and nonanesthetized Arctic Ground Squirrels (AGS and rats. Results: We found that 1 100% inspired oxygen (FiO2 increased the baseline values of brain PtO2 significantly in both summer euthermic AGS (24.4 ± 3.6-87.3 ± 3.6 mmHg, n=6 and in rats (18.2 ± 5.2-73.3 ± 5.2 mmHg, n = 3; PtO2 was significantly higher in AGS than in rats during hyperoxic exposure; 2 hyperoxic exposure had no effect on brain temperature in either AGS or rats, with the brain temperatures maintaining constancy before, during and after 100% O2 exposure; 3 systemic metabolic rates increased significantly during hyperoxic exposure in both euthermic AGS and rats; moreover, VO2 were significantly lower in AGS than in rats during hyperoxic exposure; 4 the respiratory rates for rats were maintained before, during and after 100% O2 exposure, while the respiratory responding patterns to hyperoxic exposure changed after exposure in AGS. AGS fR was significantly lower after hyperoxic exposure than before the exposure. Conclusion: These results suggest that hyperoxic ventilation induced PtO2 and VO2 differences between AGS and rats and led to altered respiratory patterns between these species. AGS and the rat serves as an excellent comparative model for hypoxic and hyperoxic stress studies of the brain.

  20. Spectromicroscopy of Brain Tissue

    Science.gov (United States)

    Frazer, Bradley; Cannara, Rachel; Gilbert, Benjamin; Destasio, Gelsomina; Ogg, Mandy; Gough, Kathy

    2001-03-01

    X-ray PhotoElectron Emission Microscopy (X-PEEM) was originally developed for studying the surface microchemistry of materials science specimens. It has then evolved into a valuable tool to investigate the magnetic properties of materials and the microchemistry of cells and tissues. We used the MEPHISTO X-PEEM instrument, installed at the UW-Synchrotron Radiation Center to detect trace concentrations of non-physiological elements in senile brain tissue specimens. These tissues contain a large number of plaques, in which all the compounds and elements that the brain does not need are disposed and stored. We hypothesized that plaques should contain elements, such as Si, B, and Al which are very abundant on the Earth crust but absent from healthy tissues. We verified this hypothesis with MEPHISTO and found evidence of Si and B, and suspect Al. We also found a higher than normal concentration of Fe.

  1. Probing brain oxygenation with near infrared spectroscopy

    CERN Document Server

    Gersten, Alexander; Raz, Amir; Fried, Robert

    2011-01-01

    The fundamentals of near infrared spectroscopy (NIRS) are reviewed. This technique allows to measure the oxygenation of the brain tissue. The particular problems involved in detecting regional brain oxygenation (rSO2) are discussed. The dominant chromophore (light absorber) in tissue is water. Only in the NIR light region of 650-1000 nm, the overall absorption is sufficiently low, and the NIR light can be detected across a thick layer of tissues, among them the skin, the scull and the brain. In this region, there are many absorbing light chromophores, but only three are important as far as the oxygenation is concerned. They are the hemoglobin (HbO2), the deoxy-hemoglobin (Hb) and cytochrome oxidase (CtOx). In the last 20 years there was an enormous growth in the instrumentation and applications of NIRS. . The devices that were used in our experiments were : Somanetics's INVOS Brain Oximeter (IBO) and Toomim's HEG spectrophotometer. The performances of both devices were compared including their merits and draw...

  2. Cerebral Tissue Oxygenation during Immediate Neonatal Transition and Resuscitation

    Science.gov (United States)

    Pichler, Gerhard; Schmölzer, Georg M.; Urlesberger, Berndt

    2017-01-01

    This article provides a review of cerebral tissue oxygenation during immediate transition after birth in human neonates. Recommended routine monitoring, especially if resuscitation is needed, during this period includes arterial oxygen saturation and heart rate measured by pulse oximetry and electrocardiogram. However, there is increasing interest to monitor in addition with near-infrared spectroscopy (NIRS) the oxygenation of the brain. There is a different pattern of increase between cerebral tissue oxygenation and arterial oxygen saturation during the immediate transition, with cerebral tissue oxygenation reaching a plateau faster than arterial oxygen saturation. Differences can be explained, since cerebral tissue oxygenation is not only affected by arterial oxygen saturation but also by cerebral blood flow, hemoglobin content, and cerebral oxygen consumption. Normal values have already been established for different devices, gestational ages, and modes of delivery in neonates without any medical support. Cerebral hypoxia during immediate transition might cause brain damage. In preterm neonates with cerebral hemorrhage evolving in the first week after birth, the cerebral tissue oxygenation is already lower in the first minutes after birth compared to preterm neonates without cerebral hemorrhage. Using cerebral NIRS in combination with intervention guidelines has been shown to reduce the burden of cerebral hypoxia in preterm neonates. Cerebral tissue oxygenation during immediate transition seems to have an impact on outcome, whereby NIRS monitoring is feasible and has the advantage of continuous, non-invasive recording. The impact of NIRS monitoring and interventions on short- and long-term outcomes still need to be evaluated. PMID:28280719

  3. Measurement of brain oxygenation changes using dynamic T1-weighted imaging

    DEFF Research Database (Denmark)

    Haddock, Bryan; Larsson, Henrik B W; Hansen, Adam E

    2013-01-01

    Magnetic resonance imaging (MRI) has proven useful in evaluating oxygenation in several types of tissue and blood. This study evaluates brain tissue oxygenation changes between normoxia and hyperoxia in healthy subjects using dynamic T1 and T2*-weighted imaging sequences. The change in FiO2 induced...... in the brain with a potential to provide quantitative information on tissue oxygenation....

  4. Brain tissue oxygen amperometry in behaving rats demonstrates functional dissociation of dorsal and ventral hippocampus during spatial processing and anxiety

    OpenAIRE

    McHugh, Stephen B.; Fillenz, Marianne; Lowry, John P; Rawlins, J Nicolas P; Bannerman, David M.

    2011-01-01

    Traditionally, the function of the hippocampus (HPC) has been viewed in unitary terms, but there is growing evidence that the HPC is functionally differentiated along its septotemporal axis. Lesion studies in rodents and functional brain imaging in humans suggest a preferential role for the septal HPC in spatial learning and a preferential role for the temporal HPC in anxiety. To better enable cross-species comparison, we present an in vivo amperometric technique that measures changes in brai...

  5. The effect of NMDA-R antagonism on simultaneously acquired local field potentials and tissue oxygen levels in the brains of freely-moving rats.

    Science.gov (United States)

    Kealy, John; Commins, Sean; Lowry, John P

    2017-01-11

    Non-competitive NMDA receptor antagonists are known to induce psychosis-like symptoms in rodents. Administration of such compounds cause behavioural effects such as memory impairment and hyperlocomotion. Additionally, drugs such as phencyclidine (PCP), ketamine and MK-801 all cause distinctive increases in striatal local field potential (LFP) in the high frequency oscillation (HFO) band in the power spectrum (140-180 Hz). Amperometric sensors provide a means to measure tissue oxygen (tO2; a BOLD-like signal) in the brains of freely-moving rats while simultaneously acquiring LFP using the same electrode. Carbon paste electrodes were implanted into the striatum and hippocampus of male Wistar rats. Rats were administered with saline, ketamine (10 mg/kg), MK-801 (0.1 mg/kg) and PCP (2.5 mg/kg) and recordings were made at 1 kHz using three different potentials (-650 mV to measure tO2; 0 mV and +700 mV as control conditions). NMDA receptor antagonism caused significant increases in tO2 in both the striatum and the hippocampus. Power spectrum analysis showed significant increases in HFO power in the striatum but not in the hippocampus. Conversely, there were significant decreases in delta and alpha power along with increases in theta and gamma power in the hippocampus that were absent in the striatum. This supports findings that LFP can be obtained from an amperometric sensor signal; allowing simultaneous acquisition of two translational biomarkers of neuronal activity (LFP and tO2).

  6. Lactate, Glucose and Oxygen Uptake in Human Brain During Recovery from Maximal Exercise

    DEFF Research Database (Denmark)

    Kojiro, I.; Schmalbruch, I.K.; Quistorff, B.

    1999-01-01

    Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake......Skeletal muscle, brain lactate uptake, brain oxygen uptake, energy metabolism, brain glucose uptake...

  7. Oxygen radicals, inflammation, and tissue injury.

    Science.gov (United States)

    Ward, P A; Warren, J S; Johnson, K J

    1988-01-01

    Inflammatory reactions often result in the activation and recruitment of phagocytic cells (e.g., neutrophils and/or tissue macrophages) whose products result in injury to the tissue. In killing of endothelial cells by activated neutrophils as well as in lung injury produced by either activated neutrophils or activated macrophages there is evidence that H2O2 and iron play a role. HO. may be a key oxygen product related to the process of injury. Endothelial cells in some vascular compartments may be susceptible to neutrophil mediated injury in a manner that is independent of oxygen radicals. On the basis of in vitro observations, a synergy exits between platelets and neutrophils, resulting in enhanced oxygen radical formation by the latter. Finally, the cytokines, interleukin 1 and tumor necrosis factor, released from macrophages have both direct stimulatory effects on oxygen radical formation in neutrophils and can "prime" macrophages for enhanced oxygen radical responses to other agonists. Cytokines may also alter endothelial cells rendering them more susceptible to oxygen radical mediated injury by neutrophils. This suggests a complex network of interactions between phagocytic cells and peptide mediators, the result of which is acute, oxygen radical mediated tissue injury.

  8. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations--Protective Effects of the Oxygen Radical Scavenger Edaravone.

    Science.gov (United States)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki; Ishida, Yusuke; Ogiwara, Yukihiko; Inazu, Masato; Kuroda, Masahiko; Karlsson, Michael; Sjovall, Fredrik; Elmér, Eskil; Uchino, Hiroyuki

    2015-12-01

    The pathophysiology of sepsis-associated encephalopathy (SAE) is complex and remains incompletely elucidated. Dysregulated reactive oxygen species (ROS) production and mitochondrial-mediated necrotic-apoptotic pathway have been proposed as part of the pathogenesis. The present study aimed at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE), and sham-operated (Sham). Mice in CLPV and CLPE were injected with saline or edaravone intraperitoneally at a dose of 10 mg/kg twice daily. The treatments were initiated 4 days prior to the surgical procedure. Mortality, histological changes, electron microscopy (EM), and expression of Bcl-2 family genes (Bcl-2 and Bax) were analyzed in selected brain regions. CLPE showed significant improvement in survival compared with CLPV 18 h postinduction of sepsis (P free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death.

  9. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices.

    Science.gov (United States)

    Chazalviel, Laurent; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO2) = 1 atmospheres absolute (ATA) = 0.1 MPa) and HBO (pO2 = 2.5 ATA = 0.25 MPa) through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support) of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  10. Effect observation of hyperbaric oxygen on repairing of injured brain tissue after child encephalitis%高压氧促进儿童脑炎受损脑组织修复的疗效观察

    Institute of Scientific and Technical Information of China (English)

    王湘渝; 王强; 晏莉娜; 谭聪; 张香菊; 郑世钢

    2003-01-01

    @@ BACKGROUND: There are no effective methods to treatmentof epidemic encephalitis B and sporadic encephalitis at present. Inearly stage of disease course, most patients present with coma thatis the inflammatory reaction of brain parenchyma, leads to ischemiaand hypoxia of brain tissue and encephaloedema and was the ex-pression of serious injury of brain tissue.

  11. Improvement of oxygen supply by an artificial carrier in combination with normobaric oxygenation decreases the volume of tissue hypoxia and tissue damage from transient focal cerebral ischemia

    NARCIS (Netherlands)

    Seiffge, David J.; Lapina, Natalia E.; Tsagogiorgas, Charalambos; Theisinger, Bastian; Henning, Robert H.; Schilling, Lothar

    2012-01-01

    Tissue hypoxia may play an important role in the development of ischemic brain damage. In the present study we investigated in a rat model of transient focal brain ischemia the neuroprotective effects of increasing the blood oxygen transport capacity by applying a semifluorinated alkane (SFA)-contai

  12. Metabolic Prosthesis for Oxygenation of Ischemic Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias [ORNL

    2009-01-01

    This communication discloses new ideas and preliminary results on the development of a "metabolic prosthesis" for local oxygenation of ischemic tissue under physiological neutral conditions. We report for the first time the selective electrolysis of physiological saline by repetitively pulsed charge-limited electrolysis for the production of oxygen and suppression of free chlorine. For example, using 800 A amplitude current pulses and <200 sec pulse durations, we demonstrated prompt oxygen production and delayed chlorine production at the surface of a shiny 0.85 mm diameter spherical platinum electrode. The data, interpreted in terms of the ionic structure of the electric double layer, suggest a strategy for in situ production of metabolic oxygen via a new class of "smart" prosthetic implants for dealing with ischemic disease such as diabetic retinopathy. We also present data indicating that drift of the local pH of the oxygenated environment can be held constant using a feedback-controlled three electrode electrolysis system that chooses anode and cathode pair based on pH data provided by local microsensors. The work is discussed in the context of diabetic retinopathy since surgical techniques for multielectrode prosthetic implants aimed at retinal degenerative diseases have been developed.

  13. Signals Analysis and Clinical Validation of Blood and Oxygen Data in Human Brain

    Institute of Scientific and Technical Information of China (English)

    LI Kai-yang; LIU Li-jun; WANG Xiang; QIN Zhao; XIE Ze-ping

    2005-01-01

    With a self-made near-infrared analytical instrument to blood and oxygen parameters in human brain, 80 cases in which 20 are healthy persons and 30are anaesthetised cases and others are patients with heart function lack is taken to examine, and the data of blood and oxygen in brain tissue were collected and analyzed by the method of power spectrum and correlation function. The results indicate that: (1) The average brain oxygen saturation of healthy persons and anaesthetised cases is about 80%, in accord with normal parameter of physiology. Contrastively, the average brain oxygen saturation of patients with heart function lack is 72. 8%, which is obviously less than that of healthy persons and anaesthetised cases. The probability of medical statistics is less than 0. 01. (2) The shapes of wave of brain blood and oxygen for the healthy person and the anaesthetised case reveal small periodical fluctuations with stable shape and base line, and the trend of increase or decrease of blood and oxygen parameters in brain tissue is synchronous and a phase reversal, but for the patient with heart function lack in a brain oxygen lack state, the shapes of wave are irregular. This is a hint that near infrared light passing through tissue can reflect the intuitionistic change of brain blood and oxygen parameters. (3) The power spectra of brain blood and oxygen for the healthy person and the anaesthetised case has a clear main peak, narrow bandwidth and perfect superposition each other, but the power spectra for the patient with heart function lack in a brain oxygen lack state is on the contrary. (4) The average cross correlation coefficient of brain blood and oxygen for healthy persons and anaesthetised cases is -0. 9825±0. 1027 close to -1. But the average cross correlation coefficient for patients with heart function lack in a brain oxygen lack state is merely -0. 8923± 0. 1035 which is obviously greater than -1 and the probability of medical statistics is less than 0. 01

  14. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations-Protective Effects of the Oxygen Radical Scavenger Edaravone

    DEFF Research Database (Denmark)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki

    2015-01-01

    (Bcl-2 and Bax) were analyzed in selected brain regions. CLPE showed significant improvement in survival compared with CLPV 18 h postinduction of sepsis (P death in both parietal cortex...... at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE...... induced by cecal ligation alters cerebral redox status and supports a proapoptotic phenotype. The free radical scavenger edavarone reduces mortality of septic mice and protects against sepsis-induced neuronal cell death....

  15. Early oxygen-utilization and brain activity in preterm infants.

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    Full Text Available The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS and cerebral activity using amplitude-integrated EEG (aEEG could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2 and cerebral fractional tissue oxygen extraction (cFTOE, and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT per minute (SAT rate, the interval in seconds (i.e. time between SATs (ISI and the minimum amplitude of the EEG in μV (min aEEG were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004 and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006. cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008 and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007. Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants.

  16. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    Science.gov (United States)

    2008-04-01

    biological tissue, and allow for detection of specific light-absorbing chromophores in human in vivo, such as oxygenated and deoxygenated hemoglobin...spectra from tumor tissue. Briefly, continuous wave (CW) light from a 20 W tungsten-halogen light source (HL-2000HP, ocean optics, FL) is coupled...spectrometer (USB2000, Ocean optics, FL). The broadband light diffuse spectrometer provides reflectance spectra from 400 to 900 nm. According to

  17. Ischemia/reperfusion mediated oxygen free radical production in rat brain endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Grammas, P.; Wood, K. (Univ. of Oklahoma, Oklahoma City (United States)); Liu, G.J.; Floyd, R.A. (Oklahoma Medical Research Foundation, Oklahoma City (United States)); Wood, K. (Univ. of Oklahoma Health Sciences Center, Oklahoma City (United States) Oklahoma Medical Research Foundation, Oklahoma City (United States))

    1991-03-11

    Oxygen free radicals have been increasingly implicated in ischemia/reperfusion mediated injury to tissue. Recent methods of assessing tissue oxygen free radical flux including spin trapping, salicylate hydroxylation, protein oxidation and specific enzymatic activity loss have clearly shown that ischemia/reperfusion mediates oxidative damage in brain. Vascular endothelia cells are increasingly implicated in inactivating oxidative damage. The authors have used salicylate to assess hydroxyl free radical flux during an anoxia-reoxygenation insult in isolated brain microvessels. Brain microvessels that were subjected to a 20 min anoxia period and then reoxygenated for 20 min hydroxylated salicylate to form tissue localized 2,3-dihydroxybenzoic acid (2,3-DHBA) whereas microvessels that remained oxygenated throughout contained very little 2,3-DHBA. The data suggest that anoxia/reoxygenation of microvessels produces tissue localized hydroxyl free radical flux.

  18. Persistent Postconcussive Symptoms Are Accompanied by Decreased Functional Brain Oxygenation.

    Science.gov (United States)

    Helmich, Ingo; Saluja, Rajeet S; Lausberg, Hedda; Kempe, Mathias; Furley, Philip; Berger, Alisa; Chen, Jen-Kai; Ptito, Alain

    2015-01-01

    Diagnostic methods are considered a major concern in the determination of mild traumatic brain injury. The authors examined brain oxygenation patterns in subjects with severe and minor persistent postconcussive difficulties and a healthy control group during working memory tasks in prefrontal brain regions using functional near-infrared spectroscopy. The results demonstrated decreased working memory performances among concussed subjects with severe postconcussive symptoms that were accompanied by decreased brain oxygenation patterns. An association appears to exist between decreased brain oxygenation, poor performance of working memory tasks, and increased symptom severity scores in subjects suffering from persistent postconcussive symptoms.

  19. Temperature Effects on Brain Tissue in Compression

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.04.005

    2013-01-01

    Extensive research has been carried out for at least 50 years to understand the mechanical properties of brain tissue in order to understand the mechanisms of traumatic brain injury (TBI). The observed large variability in experimental results may be due to the inhomogeneous nature of brain tissue and to the broad range of test conditions. However, test temperature is also considered as one of the factors influencing the properties of brain tissue. In this research, the mechanical properties of porcine brain have been investigated at 22C (room temperature) and at 37C (body temperature) while maintaining a constant preservation temperature of approximately 4-5C. Unconfined compression tests were performed at dynamic strain rates of 30 and 50/s using a custom made test apparatus. There was no significant difference (p = 0.8559 - 0.9290) between the average engineering stresses of the brain tissue at the two different temperature conditions. The results of this study should help to understand the behavior of bra...

  20. O2 supplementation to secure the near-infrared spectroscopy determined brain and muscle oxygenation in vascular surgical patients

    DEFF Research Database (Denmark)

    Rokamp, Kim Z; Secher, Niels H; Eiberg, Jonas;

    2014-01-01

    This study addresses three questions for securing tissue oxygenation in brain (rScO2) and muscle (SmO2) for 100 patients (age 71 ± 6 years; mean ± SD) undergoing vascular surgery: (i) Does preoxygenation (inhaling 100% oxygen before anesthesia) increase tissue oxygenation, (ii) Does inhalation...... of 70% oxygen during surgery prevent a critical reduction in rScO2 (patients and the intraoperative inspired oxygen fraction was set to 0.70 while tissue...... oxygenation was determined by INVOS 5100C. Preoxygenation increased rScO2 (from 65 ± 8 to 72 ± 9%; P patients. Following anesthesia and tracheal intubation an eventual change...

  1. Organotypic slice culture of embryonic brain tissue.

    Science.gov (United States)

    Daza, Ray A M; Englund, Chris; Hevner, Robert F

    2007-12-01

    INTRODUCTIONThis protocol describes how to dissect, assemble, and cultivate mouse embryonic (E) brain tissue from age E11.5 to E18.5 (days) for organotypic slice culture. These preparations can be used for a variety of assays and studies including coculture of different brain regions, cell migration assays, axon guidance assays, and DNA electroporation experiments. During electroporation, an electric current is applied to the surface of a specific target area of the brain slice in order to open holes in the plasma membrane and introduce a plasmid of coding DNA. The floating slice-on-membrane construct helps to preserve the structural integrity of the brain slices, while maintaining easy experimental access and optimal viability. Experiments can be monitored in living slices (e.g., with confocal imaging), and further studies can be completed using slices that have been fixed and cryosectioned at the end of the experiment. Any region of embryonic brain or spinal tissue can be used in this protocol.

  2. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation

    Science.gov (United States)

    Clair, Marie-Philippine; Rambaud, Jérôme; Flahault, Adrien; Guedj, Romain; Guilbert, Julia; Guellec, Isabelle; Durandy, Amélie; Demoulin, Maryne; Jean, Sandrine; Mitanchez, Delphine; Chalard, François; Sileo, Chiara; Carbajal, Ricardo; Renolleau, Sylvain

    2017-01-01

    Objectives Extracorporeal membrane oxygenation support is indicated in severe and refractory respiratory or circulatory failures. Neurological complications are typically represented by acute ischemic or hemorrhagic lesions, which induce higher morbidity and mortality. The primary goal of this study was to assess the prognostic value of cerebral tissue oxygen saturation (StcO2) on mortality in neonates and young infants treated with ECMO. A secondary objective was to evaluate the association between StcO2 and the occurrence of cerebral lesions. Study design This was a prospective study in infants < 3 months of age admitted to a pediatric intensive care unit and requiring ECMO support. Measurements The assessment of cerebral perfusion was made by continuous StcO2 monitoring using near-infrared spectroscopy (NIRS) sensors placed on the two temporo-parietal regions. Neurological lesions were identified by MRI or transfontanellar echography. Results Thirty-four infants <3 months of age were included in the study over a period of 18 months. The ECMO duration was 10±7 days. The survival rate was 50% (17/34 patients), and the proportion of brain injuries was 20% (7/34 patients). The mean StcO2 during ECMO in the non-survivors was reduced in both hemispheres (p = 0.0008 right, p = 0.03 left) compared to the survivors. StcO2 was also reduced in deceased or brain-injured patients compared to the survivors without brain injury (p = 0.002). Conclusion StcO2 appears to be a strong prognostic factor of survival and of the presence of cerebral lesions in young infants during ECMO. PMID:28278259

  3. Hyperbaric oxygen therapy improves cognitive functioning after brain injury

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Guangyu Shen; Shukun Deng; Xiubin Wang; Qinfeng Wu; Aisong Guo

    2013-01-01

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury;however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney’s free fal ing method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig-nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibril ary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im-proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me-diated by metabolic changes and nerve cellrestoration in the hippocampal CA3 region.

  4. Hyperbaric oxygen therapy improves cognitive functioning after brain injury.

    Science.gov (United States)

    Liu, Su; Shen, Guangyu; Deng, Shukun; Wang, Xiubin; Wu, Qinfeng; Guo, Aisong

    2013-12-15

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.

  5. Intraoperative transfusion threshold and tissue oxygenation

    DEFF Research Database (Denmark)

    Nielsen, K; Dahl, B; Johansson, P I;

    2012-01-01

    Transfusion with allogeneic red blood cells (RBCs) may be needed to maintain oxygen delivery during major surgery, but the appropriate haemoglobin (Hb) concentration threshold has not been well established. We hypothesised that a higher level of Hb would be associated with improved subcutaneous...

  6. Oxygen radical microscopy in living plant tissues

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Møller, Ian Max; Schulz, Alexander

    Reactive oxygen species (ROS) play a crucial role in a wide variety of processes. Initiation of many different cellular pathways, crosstalk between cells, developmental signalling in planta, programmed cell death and hypersensitive response in connection with plant-pathogen interactions are among...

  7. Brain Oxygen Monitoring via Jugular Venous Oxygen Saturation in a Patient with Fulminant Hepatic Failure

    Directory of Open Access Journals (Sweden)

    Yerim Kim

    2016-08-01

    Full Text Available Fulminant hepatic failure (FHF is often accompanied by a myriad of neurologic complications, which are associated with high morbidity and mortality. Although appropriate neuromonitoring is recommended for early diagnosis and to minimize secondary brain injury, individuals with FHF usually have a high chance of coagulopathy, which limits the ability to use invasive neuromonitoring. Jugular bulb venous oxygen saturation (JvO2 monitoring is well known as a surrogate direct measures of global brain oxygen use. We report the case of a patient with increased intracranial pressure due to FHF, in which JvO2 was used for appropriate brain oxygen monitoring.

  8. Myoglobin Expression in Chelonia mydas Brain, Heart and Liver Tissues

    Directory of Open Access Journals (Sweden)

    RINI PUSPITANINGRUM

    2010-09-01

    Full Text Available An understanding of the underpinning physiology and biochemistry of animals is essential to properly understand the impact of anthropogenic changes and natural catastrophes upon the conservation of endangered species. An observation on the tissue location of the key respiratory protein, myoglobin, now opens up new opportunities for understanding how hypoxia tolerance impacts on diving lifestyle in turtles. The respiratory protein, myoglobin has functions other than oxygen binding which are involved in hypoxia tolerance, including metabolism of reactive oxygen species and of the vascular function by metabolism of nitric oxide. Our work aims to determine whether myoglobin expression in the green turtle exists in multiple non muscle tissues and to confirm the hypothesis that reptiles also have a distributed myoglobin expression which is linked to the hypoxiatolerant trait. This initial work in turtle hatch Chelonia mydas confirms the presence of myoglobin transcriptin brain, heart and liver tissues. Furthermore, it will serve as a tool for completing the sequence and generating an in situ hybridization probe for verifying of cell location in expressing tissues.

  9. Tissue tracking: applications for brain MRI classification

    Science.gov (United States)

    Melonakos, John; Gao, Yi; Tannenbaum, Allen

    2007-03-01

    Bayesian classification methods have been extensively used in a variety of image processing applications, including medical image analysis. The basic procedure is to combine data-driven knowledge in the likelihood terms with clinical knowledge in the prior terms to classify an image into a pre-determined number of classes. In many applications, it is difficult to construct meaningful priors and, hence, homogeneous priors are assumed. In this paper, we show how expectation-maximization weights and neighboring posterior probabilities may be combined to make intuitive use of the Bayesian priors. Drawing upon insights from computer vision tracking algorithms, we cast the problem in a tissue tracking framework. We show results of our algorithm on the classification of gray and white matter along with surrounding cerebral spinal fluid in brain MRI scans. We show results of our algorithm on 20 brain MRI datasets along with validation against expert manual segmentations.

  10. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... tractography. Although probabilistic tractography currently holds great promise as a powerful non-invasive connectivity-measurement tool, its accuracy and limitations remain to be evaluated. Probabilistic tractography was assessed post mortem in an in vitro environment. Postmortem DWI benefits from...... environment differs from that of in vivo both due to a lowered environmental temperature and due to the fixation process itself. We argue that the perfusion fixation procedure employed in this thesis ensures that the postmortem tissue is as close to that of in vivo as possible. Different fibre reconstruction...

  11. Effect of hyperbaric oxygenation treatment on expression of NF-κB p50 in the rat brain tissue after traumatic brain injury%高压氧干预对大鼠创伤性脑损伤后脑组织NF-κB(p50)表达的影响

    Institute of Scientific and Technical Information of China (English)

    杨柏林; 王欢; 彭军; 徐其明; 余超

    2014-01-01

    Objective To observe the effect of hyperbaric oxygenation treatment ( HBOT) on expression of NF-κB( p50) in the rat brain tissue after traumatic brain injury ( TBI) and discuss its mechanism .Methods Thirty-five Sprague-Dawley rats were divided into sham operation control group(5 rats), TBI group(15 rats) and HBOT group(15 rats).Based on the Feeney’s model of modified Allen’s method, experimental animals were treated with HBOT .The animals were sacrificed at the 8th hour, and on days 1,3,5,8,re-spectively.The expression of protein NF-κB was determined by Westernblotting .Results The expression of NF-κB was significantly higher in traumatic group than that in control group at the time of 8 hour and 1,3,5and 8 days after injury (P<0.05).The level of NF-κB reached peak on the 3th day, and maintained a high status from 5 to 8 days.Compared with traumatic group, the NF-κB level was significantly lower in the HBOT group (P<0.05).Conclusion HBOT can weaken NF-κB expression in traumatic brain tissue and inhibit effectively inflammatory response , which provides theoretical basis for treating severe traumatic brain injury .%目的:观察高压氧干预(hyperbaric oxygenation treatment, HBOT)对大鼠创伤性脑损伤(traumatic brain injury, TBI)后NF-κB(p50)表达的影响,并探讨其机制。方法将35只SD大鼠完全随机分为假手术对照组(Con组)5只、创伤组(TBI)15只、高压氧干预组(HBOT)15只。采用Allen’s改良法制造大鼠自由落体重型脑损伤模型,Con组仅切开头皮去骨窗,TBI组给予撞击损伤,HBOT组于创伤后给予高压氧治疗。利用Western-blot法分别于伤后8 h及1、3、5、8 d检测脑组织NF-κB的表达。结果与Con 组比,TBI 组各时点脑组织 NF-κB 表达均升高( P <0.05),损伤后3 d 达高峰(0.7267±0.0305),5~8 d 仍维持较高水平(0.5567±0.0603)。 HBOT 组各时点 NF-κB 表达水平均较 TBI

  12. Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels.

    Directory of Open Access Journals (Sweden)

    Gerardo Mauleon

    Full Text Available The acute brain slice preparation is an excellent model for studying the details of how neurons and neuronal tissue respond to a variety of different physiological conditions. But open slice chambers ideal for electrophysiological and imaging access have not allowed the precise spatiotemporal control of oxygen in a way that might realistically model stroke conditions. To address this problem, we have developed a microfluidic add-on to a commercially available perfusion chamber that diffuses oxygen throughout a thin membrane and directly to the brain slice. A microchannel enables rapid and efficient control of oxygen and can be modified to allow different regions of the slice to experience different oxygen conditions. Using this novel device, we show that we can obtain a stable and homogeneous oxygen environment throughout the brain slice and rapidly alter the oxygen tension in a hippocampal slice. We also show that we can impose different oxygen tensions on different regions of the slice preparation and measure two independent responses, which is not easily obtainable with current techniques.

  13. NMR imaging of cell phone radiation absorption in brain tissue

    OpenAIRE

    Gultekin, David H.; Moeller, Lothar

    2012-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance...

  14. Light-scattering signal may indicate critical time zone to rescue brain tissue after hypoxia

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2011-02-01

    A light-scattering signal, which is sensitive to cellular/subcellular structural integrity, is a potential indicator of brain tissue viability because metabolic energy is used in part to maintain the structure of cells. We previously observed a unique triphasic scattering change (TSC) at a certain time after oxygen/glucose deprivation for blood-free rat brains; TSC almost coincided with the cerebral adenosine triphosphate (ATP) depletion. We examine whether such TSC can be observed in the presence of blood in vivo, for which transcranial diffuse reflectance measurement is performed for rat brains during hypoxia induced by nitrogen gas inhalation. At a certain time after hypoxia, diffuse reflectance intensity in the near-infrared region changes in three phases, which is shown by spectroscopic analysis to be due to scattering change in the tissue. During hypoxia, rats are reoxygenated at various time points. When the oxygen supply is started before TSC, all rats survive, whereas no rats survive when the oxygen supply is started after TSC. Survival is probabilistic when the oxygen supply is started during TSC, indicating that the period of TSC can be regarded as a critical time zone for rescuing the brain. The results demonstrate that light scattering signal can be an indicator of brain tissue reversibility.

  15. The Impact of Vasoactive Drugs on Oxygenation and Tissue Perfusion

    Science.gov (United States)

    1992-01-01

    useful in the management of congestive heart failure, cardiogenic pulmonary edema , mitral or aortic regurgitation and persistent chest pain...administration include refractory cardiac failure, cardiogenic shock, septic shock, post cardiac surgery, and acute renal failure (Opie, 1991; Budnv... cardiogenic , anaphylactic, and septic shock, and cardiac arrest (Zaritsky & Eisenberg, 1986). Affect on Oxygenation and Tissue Perfusion Epinephrine, as with

  16. Hyperbaric oxygen in chronic traumatic brain injury: oxygen, pressure, and gene therapy.

    Science.gov (United States)

    Harch, Paul G

    2015-01-01

    Hyperbaric oxygen therapy is a treatment for wounds in any location and of any duration that has been misunderstood for 353 years. Since 2008 it has been applied to the persistent post-concussion syndrome of mild traumatic brain injury by civilian and later military researchers with apparent conflicting results. The civilian studies are positive and the military-funded studies are a mixture of misinterpreted positive data, indeterminate data, and negative data. This has confused the medical, academic, and lay communities. The source of the confusion is a fundamental misunderstanding of the definition, principles, and mechanisms of action of hyperbaric oxygen therapy. This article argues that the traditional definition of hyperbaric oxygen therapy is arbitrary. The article establishes a scientific definition of hyperbaric oxygen therapy as a wound-healing therapy of combined increased atmospheric pressure and pressure of oxygen over ambient atmospheric pressure and pressure of oxygen whose main mechanisms of action are gene-mediated. Hyperbaric oxygen therapy exerts its wound-healing effects by expression and suppression of thousands of genes. The dominant gene actions are upregulation of trophic and anti-inflammatory genes and down-regulation of pro-inflammatory and apoptotic genes. The combination of genes affected depends on the different combinations of total pressure and pressure of oxygen. Understanding that hyperbaric oxygen therapy is a pressure and oxygen dose-dependent gene therapy allows for reconciliation of the conflicting TBI study results as outcomes of different doses of pressure and oxygen.

  17. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  18. Early Oxygen-Utilization and Brain Activity in Preterm Infants

    NARCIS (Netherlands)

    Tataranno, ML; Alderliesten, Thomas; De Vries, Linda S.; Groenendaal, Floris; Toet, MC; Lemmers, Petra M A; van de Vosse, R.; Van Bel, Frank; Benders, Manon J N L

    2015-01-01

    The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and qu

  19. Hyperbaric oxygen therapy in spontaneous brain abscess patients

    DEFF Research Database (Denmark)

    Bartek, Jiri; Jakola, Asgeir S; Skyrman, Simon

    2016-01-01

    BACKGROUND: There is a need to improve outcome in patients with brain abscesses and hyperbaric oxygen therapy (HBOT) is a promising treatment modality. The objective of this study was to evaluate HBOT in the treatment of intracranial abscesses. METHOD: This population-based, comparative cohort...

  20. NMR imaging of cell phone radiation absorption in brain tissue.

    Science.gov (United States)

    Gultekin, David H; Moeller, Lothar

    2013-01-02

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.

  1. Immunohistochemical detection of brain tissue in heated meat products.

    Science.gov (United States)

    Tersteeg, M H G; Koolmees, P A; van Knapen, F

    2002-05-01

    Immunohistochemical methods were used to determine whether brain tissue could be detected in test batches of meat products prepared with known levels of this tissue (0, 1, 5, 10, or 20% bovine brain tissue or 5% porcine brain tissue). Four different, commercially-available antibodies were examined: anti-Neurofilament (anti-NF), anti-MyelinBasicProtein (anti-MBP), anti-NeuronSpecificEnolase (anti-NSE) and anti-GlialFibrillaryAcidicProtein (anti-GFAP). Results obtained with the four antibodies differed with the heat treatment applied to the products (pasteurisation or sterilisation). The amount of immunoreaction product in the raw meat product varied with the antibody, even when the sample contained the same amount of brain tissue. The staining pattern also varied with the antibody. Overall, the anti-MBP antibody proved to be most useful in detecting brain tissue in finely comminuted heated meat products.

  2. Hyperbaric oxygen therapy ameliorates local brain metabolism, brain edema and inflammatory response in a blast-induced traumatic brain injury model in rabbits.

    Science.gov (United States)

    Zhang, Yongming; Yang, Yanyan; Tang, Hong; Sun, Wenjiang; Xiong, Xiaoxing; Smerin, Daniel; Liu, Jiachuan

    2014-05-01

    Many studies suggest that hyperbaric oxygen therapy (HBOT) can provide some clinically curative effects on blast-induced traumatic brain injury (bTBI). The specific mechanism by which this occurs still remains unknown, and no standardized time or course of hyperbaric oxygen treatment is currently used. In this study, bTBI was produced by paper detonators equivalent to 600 mg of TNT exploding at 6.5 cm vertical to the rabbit's head. HBO (100% O2 at 2.0 absolute atmospheres) was used once, 12 h after injury. Magnetic resonance spectroscopy was performed to investigate the impact of HBOT on the metabolism of local injured nerves in brain tissue. We also examined blood-brain barrier (BBB) integrity, brain water content, apoptotic factors, and some inflammatory mediators. Our results demonstrate that hyperbaric oxygen could confer neuroprotection and improve prognosis after explosive injury by promoting the metabolism of local neurons, inhibiting brain edema, protecting BBB integrity, decreasing cell apoptosis, and inhibiting the inflammatory response. Furthermore, timely intervention within 1 week after injury might be more conducive to improving the prognosis of patients with bTBI.

  3. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Directory of Open Access Journals (Sweden)

    Kuan Zhang

    Full Text Available Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG of the hippocampus and the sub-ventricular zone (SVZ of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCsin vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr and DG (approximately 10 Torr were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr. Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  4. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Science.gov (United States)

    Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  5. Diagnosis of Compartment Syndrome Based on Tissue Oxygenation

    Science.gov (United States)

    2015-06-01

    was added in our model. Dobutamine is an inotropic agent commonly used in patients with cardiogenic shock to increase heart rate, contractility, and...to soft tissue edema and skin turgor changes after trauma that alter the depth of the muscle to be evaluated and the ability of the probe to maintain...and cardiogenic shock. Infection. 1991;19:317–323. 18. Bylund-Fellenius AC, Walker PM, Elander A, et al. Energy metabolism in relation to oxygen partial

  6. Brain and muscle oxygenation monitoring using near-infrared spectroscopy (NIRS) during all-night sleep

    Science.gov (United States)

    Zhang, Zhongxing; Khatami, Ramin

    2013-03-01

    The hemodynamic changes during natural human sleep are still not well understood. NIRS is ideally suited for monitoring the hemodynamic changes during sleep due to the properties of local measurement, totally safe application and good tolerance to motion. Several studies have been conducted using NIRS in both normal subjects and patients with various sleep disorders during sleep to characterize the hemodynamic changing patterns during different sleep stages and during different symptoms such as obstructive apneas. Here we assessed brain and muscle oxygenation changes in 7 healthy adults during all-night sleep with combined polysomnography measurement to test the notion if hemodynamic changes in sleep are indeed brain specific. We found that muscle and brain showed similar hemodynamic changes during sleep initiation. A decrease in HbO2 and tissue oxygenation index (TOI) while an increase in HHb was observed immediately after sleep onset, and an opposite trend was found after transition with progression to deeper slow-wave sleep (SWS) stage. Spontaneous low frequency oscillations (LFO) and very low frequency oscillations (VLFO) were smaller (Levene's test, psleep (LS) and rapid-eye-movement (REM) sleep in both brain and muscle. Spectral analysis of the NIRS signals measured from brain and muscle also showed reductions in VLFO and LFO powers during SWS with respect to LS and REM sleep. These results indicate a systemic attenuation rather than local cerebral reduction of spontaneous hemodynamic activity in SWS. A systemic physiological mechanism may exist to regulate the hemodynamic changes in brain and muscle during sleep.

  7. Coronaviruses in brain tissue from patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Dessau, R B; Lisby, G; Frederiksen, J L

    2001-01-01

    Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E...... in the proportion of positive signals from the MS patients compared to controls. Evidence for a chronic infection with the human coronaviruses strain 229E or OC43 in brain tissue from patients with MS or controls has not been found in this study....

  8. Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues

    Institute of Scientific and Technical Information of China (English)

    Yichao Teng; Haishu Ding; Lan Huang; Yue Li; Quanzhong Shan; Datian Ye; Haiyan Ding; Jenchung Chien; Betau Hwang

    2008-01-01

    In this paper,the biological tissue oxygen saturation(rS02)is obtained non-invasively and in real time based on near infrared spec-troscopy(NIRS)using two emitting wavelengths and two detectors,where the tissue is covered with overlying tissues.Our group devel-oped an NIRS oximeter based on the above principle independently,and validated it using liquid tissue model calibrations and animal experiments.The results indicate that(1)in the normal range of tissue oxygen saturation(40-70%),the rS02 measured by NIRS is accu-rate enough and little influenced by the background absorptions(such as the absorption of water)and overlying tissues(such as fat);(2)during cerebral hypoxia and recovery of three piglets,there is excellent correlation(p<0.001)between cerebral rS02 and jugular venous oxygen saturation(Sj02),meaning that the rS02 can be indicated by the Sj02 to a large extent;during the death of the three piglets induced by heart beat stopping,cerebral rS02 decreases continuously to significantly low levels(<25%)because cerebral blood supply does not exist any more.All the above results are of explicit physiological importance.

  9. Speech therapy changes blood circulation and oxygenation in the brain and muscle: a near-infrared spectrophotometry study.

    Science.gov (United States)

    Wolf, Martin; von Bonin, Dietrich; Wolf, Ursula

    2011-01-01

    Recently it has been shown that artistic speech therapy (AST) has effects on heart rate variability. The aim of this pilot study was to investigate whether AST also affects hemodynamics and tissue oxygenation in the brain and skeletal muscle measured by near infrared spectrophotometry(NIRS). The results show that ATS has effects on important physiological parameters, i.e., it leads to a decrease in cerebral blood flow during recitation and to brain activation thereafter.

  10. Monitoring microvascular free flaps with tissue oxygen measurement and PET.

    Science.gov (United States)

    Schrey, Aleksi R; Kinnunen, Ilpo A J; Grénman, Reidar A; Minn, Heikki R I; Aitasalo, Kalle M J

    2008-07-01

    Tissue oxygen measurement and positron emission tomography (PET) were evaluated as methods for predicting ischemia in microvascular free flaps of the head and neck. Ten patients with head and neck squamous cell cancer underwent resection of the tumour followed by microvascular reconstruction with a free flap. Tissue oxygenation of the flap (P(ti)O(2)) was continuously monitored for three postoperative (POP) days and the blood flow of the flap was assessed using oxygen-15 labelled water and PET. In three free flaps a perfusion problem was suspected due to a remarkable drop in P(ti)O(2)-values, due to two anastomosis problems and due to POP turgor. No flap losses occurred. During the blood flow measurements with PET [mean 8.5 mL 100 g(-1) min(-1 )(SD 2.5)], the mean P(ti)O(2) of the flaps [46.8 mmHg (SD 17.0)] appeared to correlate with each other in each patient (pmonitoring system of free flaps. The perfusion-study with PET correlates with P(ti)O(2)-measurement.

  11. Prolonging in utero-like oxygenation after birth diminishes oxidative stress in the lung and brain of mice pups

    Directory of Open Access Journals (Sweden)

    Javier Escobar

    2013-01-01

    Conclusions: Delaying the increase in tissue oxygenation to occur after birth reduces short-and-long-term oxidative stress in the lung. Similar yet more subtle effects were found in the brain. Apparently, the fetal-to-neonatal transition under hypoxic conditions appears to have protective qualities.

  12. Near-infrared oxymeter prototype for noninvasive analysis of rat brain oxygenation

    Science.gov (United States)

    Crespi, Francesco; Donini, Maurizio; Bandera, Andrea; Heidbreder, Christian; Salvatori, Giorgia; Rovati, Luigi

    2004-09-01

    The feasibility of non-invasive analysis of brain activities was studied in the attempt to overcome the major limitation of actual in vivo methodologies i.e. invasiveness. Optic fibre probes were used as optical head of a novel, highly sensitive near infrared continuous wave spectroscopy (CW-NIR) instrument. This prototype was designed for non-invasive analysis of the two main forms of haemoglobin: oxy-haemoglobin (HbO2) and deoxy-haemoglobin (Hb), chromophores present in biological tissues. It was tested in peripheral tissue (human gastrocnemius muscle) and then reset to perform measurement on rat brain. In animal studies, the optical head was firmly placed using stereotaxic apparatus upon the sagittal line of anaesthetised adult rat's head, without any surgery. Then pharmacological treatments with saline (300μl s.c.) amphetamine (2mg/kg) or nicotine (0.4mg/kg) were performed. Within 10-20 min amphetamine substantially increased HbO2 and reduced Hb control levels. Nicotine produced a rapid initial increase followed by a decrease of HbO2. In contrast to amphetamine, nicotine treatment also reduced Hb and blood volume. These results support the capacity of our CW-NIR prototype to measure non-invasively HbO2 and Hb levels in the rat brain, markers of the degree of tissue oxygenation, index of blood level then of the state of brain metabolism.

  13. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    Science.gov (United States)

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found good correlation between MRI and micro probe measurements. However, direct conversion of tissue pO2 to blood oxygen saturation by using the Hill equation is very limited. Furthermore, adverse effects of anesthesia and

  14. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  15. T2 and T2* measurements of fetal brain oxygenation during hypoxia with MRI at 3T: correlation with fetal arterial blood oxygen saturation

    Energy Technology Data Exchange (ETDEWEB)

    Wedegaertner, Ulrike; Adam, Gerhard [Universitaetsklinikum Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Kooijman, Hendrik [Philips Medical Systems, Best (Netherlands); Andreas, Thomas; Beindorff, Nicola; Hecher, Kurt [University Hospital Hamburg-Eppendorf, Department of Obstetrics and Prenatal Medicine, Hamburg (Germany)

    2010-01-15

    The purpose of this prospective study was to determine the oxygen saturation of blood in the fetal brain based on T2 and T2* measurements in a fetal sheep model. Five sheep fetuses were investigated during normoxia and hypoxia by 3T MRI. Multi-echo gradient-echo and turbo-spin-echo sequences were performed on the fetal brain. MR-determined oxygen saturation (MR-sO{sub 2}) of blood in the fetal brain was calculated based on T2 and T2* values. Fetal arterial blood oxygen saturation (blood-sO{sub 2}) was measured during the two experimental phases. The slope of MR-sO{sub 2} as a function of blood-sO{sub 2} was estimated and tested for compatibility using the one-sample t-test. During normoxia, mean values for carotid blood oxygen saturation were 67%, 83 ms for T2*, 202 ms for T2 and 96% for MR-sO{sub 2}. During hypoxia, arterial blood oxygen saturation, T2* and calculated MR-sO{sub 2} decreased to 22%, 64 ms, and 68% respectively. The one-sample t-test revealed the slope to be significantly different from 0(T=5.023, df=4, P=0.007). It is feasible to perform quantitative T2 and T2* measurements in the fetal brain. MR-sO{sub 2} and fetal arterial blood oxygen saturation correlated significantly. However, based on these data a reliable quantification of fetal brain tissue oxygenation is not possible. (orig.)

  16. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    Science.gov (United States)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  17. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    Science.gov (United States)

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a short-arm human centrifuge as a countermeasure.

  18. Determination of blood oxygenation in the brain by time-resolved reflectance spectroscopy: influence of the skin, skull, and meninges

    Science.gov (United States)

    Hielscher, Andreas H.; Liu, Hanli; Wang, Lihong; Tittel, Frank K.; Chance, Britton; Jacques, Steven L.

    1994-07-01

    Near infrared light has been used for the determination of blood oxygenation in the brain but little attention has been paid to the fact that the states of blood oxygenation in arteries, veins, and capillaries differ substantially. In this study, Monte Carlo simulations for a heterogeneous system were conducted, and near infrared time-resolved reflectance measurements were performed on a heterogeneous tissue phantom model. The model was made of a solid polyester resin, which simulates the tissue background. A network of tubes was distributed uniformly through the resin to simulate the blood vessels. The time-resolved reflectance spectra were taken with different absorbing solutions filled in the network. Based on the simulation and experimental results, we investigated the dependence of the absorption coefficient obtained from the heterogeneous system on the absorption of the actual absorbing solution filled in the tubes. We show that light absorption by the brain should result from the combination of blood and blood-free tissue background.

  19. Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation.

    Science.gov (United States)

    Chapman, J D; Schneider, R F; Urbain, J L; Hanks, G E

    2001-01-01

    Radiotherapy prescription can now be customized to target the major mechanism(s) of resistance of individual tumors. In that regard, functional imaging techniques should be exploited to identify the dominant mechanism(s). Tumor biology research has identified several mechanisms of tumor resistance that may be unique to radiation treatments. These fall into 3 broad areas associated with (1) tumor hypoxic fraction, (2) tumor growth rate, (3) and the intrinsic radiosensitivity of tumor clonogens. Imaging research has markers in various stages of development for quantifying relevant information about each of these mechanisms, and those that measure tumor oxygenation and predict for radioresistance are the most advanced. Positron-emission tomography (PET) measurement of oxygen 15 has yielded important information, particularly about brain tissue perfusion, metabolism, and function. Indirect markers of tumor hypoxia have exploited the covalent binding of bioreductive intermediates of azomycin-containing compounds whose uptakes are inversely proportional to intracellular oxygen concentrations. Pilot clinical studies with single-photon emission computed tomography (SPECT) and PET detection of radiolabeled markers to tumor hypoxia have been reported. Recently, other studies have attempted to exploit the reduction properties of both technetium and copper chelates for the selective deposition of radioactive metals in hypoxic tissues. A growing number of potentially useful isotopes are now available for labeling several novel chemicals that could have the appropriate specificity and sensitivity. Preclinical studies with "microSPECT" and "microPET" will be important to define the optimal radiodiagnostic(s) for measuring tissue oxygenation and for determining the time after their administration for optimal hypoxic signal acquisition. Radiolabeled markers of growth kinetics and intrinsic radiosensitivity of cells in solid tumors are also being developed. We conclude that

  20. Impacts of Shisiwei Jianzhong Decoction on the Convulsion Latency and the Content of Cytokines in Brain Tissue of the Mice with Oxygen Convulsion%十四味建中汤对氧惊厥小鼠惊厥潜伏期及脑组织炎症细胞因子含量的影响

    Institute of Scientific and Technical Information of China (English)

    雷箴; 王国忠

    2015-01-01

    Objective To discuss the impacts and significance of shisiwei jianzhong decoction on convulsion latency and the content of IL - 1β and IL - 10 in brain tissue of the mice with oxygen convulsion. Methods Fifty - six mice were randomized into 7 groups,named an oxygen - convulsion 6 h group(6 h group),a 24 h group,a 48 h group,a shisiwei jianzhong decoction + oxygen - convulsion 6 h group(a therapy 6 h group),a therapy 24 h group,a therapy 48group and a normal control group. In all of the therapy groups, 2 weeks before convulsion induced by oxygen,shishiwei jianzhong decoction was used for gastric perfusion, once every day. The mice in all of the oxygen convulsion groups and the therapy groups were placed in 500 kPa oxygen environment till the seizure so as to prepare the model of oxygen convulsion. The enzyme - linked immunosorbent assay was used to detect the content of IL - 1β and IL - 10 in brain tissue. Results There was no significant difference in convulsion latency between the therapy groups and the oxygen convulsion groups(P ﹥ 0. 05). In the 24 h group and the 48 h group,the content of IL - 1β was higher significantly than that in the normal control group,indicating the significant difference(P ﹤ 0. 05),and that in the therapy 24 h group and the therapy 48 h group was lower significantly than that in the corresponding oxygen convulsion groups of the same time point,indicating the significant difference in the pair comparison(P ﹤ 0. 05). At the same time point,the difference in the content of IL - 10 was not significant among the oxygen convulsion groups,the therapy groups and the normal control group(P ﹥ 0. 05). Conclusion Shisiwei jianzhong decoc-tion does not significantly prolong the latency of oxygen convulsion in the mice,but it effectively reduces the content of IL - 1β,benefits the re - balance of proinflammatory cytokine and anti - inflammatory cytokine and alleviates the convulsive brain damage.%目的:探讨十四味建中汤对氧惊

  1. Investigation of tissue oxygenation by in vivo laser-induced photodissociation of cutaneous arterial blood oxyhemoglobin

    Science.gov (United States)

    Asimov, M. M.; Korolevich, A. N.

    2008-06-01

    A novel method of direct control of local tissue oxygenation based on laser-induced photodissociation of oxyhemoglobin in cutaneous blood vessels is discussed. New technology in selective and local increase of the concentration of free molecular oxygen in tissue that enhances metabolism of cells is demonstrated. Direct in vivo measurements of the tissue oxygen tension are carried out on human skin. Kinetics of oxygen tension in tissue is investigated under the effect of He-Ne laser radiation at the power of 1mW relatively to initial value of tissue oxygen tension. The results of experimental study the kinetics of oxygen distribution into tissue from arterial blood is presented. Biomedical applications of proposed new technology in laser therapy of pathologies where elimination of local tissue hypoxia is critical are discussed.

  2. [Brain hypoxia and the role of active forms of oxygen and of energy deficit in the neuron degeneration].

    Science.gov (United States)

    Ivanov, K P

    2012-01-01

    The concepts about physiological mechanisms of oxygen transport to the brain have recently changed substantially. Precise data on the capillary blood flow rate, on a substantial dispersion of corresponding values, on the influence of the capillary blood flow rate on pO2 in the capillaries and tissues have evolved. Krog's paradigm about an exclusive role of capillaries in the gas exchange between the blood and tissues amounting to almost 100 years was abandoned. All these data also changed the concepts about the development of various types of hypoxia in the brain tissues. The study of pO2 in the brain at normoxia showed that pO2 exhibits the fluctuations from 1-2 to 80-85 mm Hg. This means, in particular, that hypoxic phenomena take place in the normal healthy brain. During hypoxia the mass adhesion of leukocytes to the walls of microvessels was shown to hamper the capillary blood flow and can become one of the reasons for the death of the brain during hypoxia. The brain hypoxia is not an occasional pathologic process. It exists in an intact brain owing to physiological fluctuations of pO2 in various microregions of the brain. It occurs during various physiological states in the norm and also during various illnesses associated with the changes and disruptions in the oxygen transport. The final stage of hypoxia is the destruction of the cells. The development of this process and its particular reasons are nowadays the subject of multiple physiological and biochemical studies. Certain changes are introduced into modern ideas about the reasons for the degradation of the nervous cells upon hypoxia. The degradation of the neurons during hypoxia or anemia is postulated to be associated not only with the cell generation of active forms of oxygen (AFO), but also with the energy deficiency. This means a deficient synthesis or a complete absence of ATP in a cell during hypoxia, anemia, and ishemia.

  3. Aluminium in brain tissue in familial Alzheimer's disease.

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease.

  4. Investigation of elemental changes in brain tissues following excitotoxic injury

    Science.gov (United States)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca+2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca+2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  5. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  6. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age

    OpenAIRE

    Sutherland, Greg T.; Sheedy, Donna; Kril, Jillian J.

    2013-01-01

    The New South Wales Tissue Resource Centre (NSW TRC) at the University of Sydney, Australia is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency and alcoholic n...

  7. Age-related changes in reactive oxygen species production in rat brain homogenates.

    Science.gov (United States)

    Driver, A S; Kodavanti, P R; Mundy, W R

    2000-01-01

    The generation of reactive oxygen species (ROS) and resultant oxidative stress have been implicated in the mechanism of brain dysfunction due to age-related neurodegenerative diseases or exposure to environmental chemicals. We have investigated intrinsic age-related differences in the ability of the various brain regions to generate ROS in the absence and presence of Fe(2)+. ROS production in crude brain homogenates from adult rats was linear with respect to time and tissue concentration, and was stimulated to a greater extent by Fe(2)+ than was TBARS production. ROS production was then determined in homogenates from cerebral cortex, striatum, hippocampus, and cerebellum of 7-day-old, 14-day-old, 21-day-old, adult (3-6-month old), and aged (24-month-old) rats using the fluorescent probe 2',7'-dichlorodihydrofluorescin (DCFH). Basal levels of ROS production were similar in 7-, 14-, and 21-day olds, increased in adults, and highest in aged rats, and did not differ between brain regions. ROS production was stimulated by Fe(2)+ (0. 3-30 microM) in a concentration-dependent manner in all brain regions. However, the stimulation of ROS production by Fe(2)+ varied with age. ROS production was greater in 14- and 21-day-old rats compared with adult and aged animals. ROS production in 7-day-old rats was decreased at low Fe(2)+ concentrations and increased at high Fe(2)+ concentrations compared to adult and aged rats. These data show that brain homogenates from neonatal rats respond differently to Fe(2)+, and suggest that developing animals may be more sensitive to oxidative stress in the brain after exposure to toxicants. Published by Elsevier Science Inc.

  8. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  9. Progression of thanatophagy in cadaver brain and heart tissues

    Directory of Open Access Journals (Sweden)

    Gulnaz T. Javan

    2016-03-01

    Full Text Available Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully elucidated whether postmortem autophagy, also known as thanatophagy, occurs in dead bodies is a function of the time of death. In this study, we tested the hypothesis that thanatophagy would increase in proportion to time elapsed since death for tissues collected from cadavers. Brain and heart tissue from corpses at different time intervals after death were analyzed by Western blot. Densitometry analysis demonstrated that thanatophagy occurred in a manner that was dependent on the time of death. The autophagy-associated proteins, LC3 II, p62, Beclin-1 and Atg7, increased in a time-dependent manner in heart tissues. A potent inducer of autophagy, BNIP3, decreased in the heart tissues as time of death increased, whereas the protein levels increased in brain tissues. However, there was no expression of BNIP3 at extended postmortem intervals in both brain and heart samples. Collectively, the present study demonstrates for the first time that thanatophagy occurs in brain and heart tissues of cadavers in a time-dependent manner. Further, our data suggest that cerebral thanatophagy may occur in a Beclin-1- independent manner. This unprecedented study provides potential insight into thanatophagy as a novel method for the estimation of the time of death in criminal investigationsAbstract: Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully

  10. A High Rate Tension Device for Characterizing Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1177/1754337112436900

    2013-01-01

    The mechanical characterization of brain tissue at high loading velocities is vital for understanding and modeling Traumatic Brain Injury (TBI). The most severe form of TBI is diffuse axonal injury (DAI) which involves damage to individual nerve cells (neurons). DAI in animals and humans occurs at strains > 10% and strain rates > 10/s. The mechanical properties of brain tissues at these strains and strain rates are of particular significance, as they can be used in finite element human head models to accurately predict brain injuries under different impact conditions. Existing conventional tensile testing machines can only achieve maximum loading velocities of 500 mm/min, whereas the Kolsky bar apparatus is more suitable for strain rates > 100/s. In this study, a custom-designed high rate tension device is developed and calibrated to estimate the mechanical properties of brain tissue in tension at strain rates < 90/s, while maintaining a uniform velocity. The range of strain can also be extended to 100% de...

  11. Injury Response of Resected Human Brain Tissue In Vitro.

    Science.gov (United States)

    Verwer, Ronald W H; Sluiter, Arja A; Balesar, Rawien A; Baaijen, Johannes C; de Witt Hamer, Philip C; Speijer, Dave; Li, Yichen; Swaab, Dick F

    2015-07-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by resection (interruption of the circulation) and aggravated by the preparation of slices (severed neuronal and glial processes and blood vessels) reflect the reaction of human brain tissue to severe injury. We investigated this process using immunocytochemical markers, reverse transcriptase quantitative polymerase chain reaction and Western blot analysis. Essential features were rapid shrinkage of neurons, loss of neuronal marker expression and proliferation of reactive cells that expressed Nestin and Vimentin. Also, microglia generally responded strongly, whereas the response of glial fibrillary acidic protein-positive astrocytes appeared to be more variable. Importantly, some reactive cells also expressed both microglia and astrocytic markers, thus confounding their origin. Comparison with post-mortem human brain tissue obtained at rapid autopsies suggested that the reactive process is not a consequence of epilepsy.

  12. Decreased relative brain tissue levels of inositol in fetal hydrocephalus.

    NARCIS (Netherlands)

    Kok, R.D.; Steegers-Theunissen, R.P.M.; Eskes, T.K.A.B.; Heerschap, A.; Berg, P.P. van den

    2003-01-01

    OBJECTIVE: Inositol seems to play a role in the development of the central nervous system. In this study, the brain tissue level of inositol in fetal hydrocephalus was compared with that of healthy control subjects. STUDY DESIGN: Proton magnetic resonance spectroscopy was used to examine the inosito

  13. A novel three-phase model of brain tissue microstructure.

    Directory of Open Access Journals (Sweden)

    Jana L Gevertz

    Full Text Available We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.

  14. Iron biomineralization of brain tissue and neurodegenerative disorders

    Science.gov (United States)

    Mikhaylova (Mikhailova), Albina

    The brain is an organ with a high concentration of iron in specific areas, particularly in the globus pallidus, the substantia nigra, and the red nucleus. In certain pathological states, such as iron overload disease and neurodegenerative disorders, a disturbed iron metabolism can lead to increased accumulation of iron not only in these areas, but also in the brain regions that are typically low in iron content. Recent studies of the physical and magnetic properties of metalloproteins, and in particular the discovery of biogenic magnetite in human brain tissue, have raised new questions about the role of biogenic iron formations in living organisms. Further investigations revealed the presence of magnetite-like crystalline structures in human ferritin, and indicated that released ferritin iron might act as promoter of oxidative damage to tissue, therefore contributing to pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. The purpose of this work was to examine the elemental composition and structure of iron deposits in normal brain tissue as well as tissue affected by neurodegenerative disorders. Employing the methods of X-ray microfocus fluorescence mapping, X-ray Absorption Near Edge Structure (XANES), X-ray Absorption Fine Structure spectroscopy (XAFS), and light and electron microscopic examinations allows one to obtain qualitative as well as quantitative data with respect to the cellular distribution and chemical state of iron at levels not detected previously. The described tissue preparation technique allows not only satisfactory XAS iron elemental imaging in situ but also multimodal examination with light and electron microscopes of the same samples. The developed protocol has assured consistent and reproducible results on relatively large sections of flat-embedded tissue. The resulting tissue samples were adequate for XAS examination as well as sufficiently well-preserved for future microscopy studies

  15. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan; Fiehler, Jens [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neuroradiology; Reitz, Matthias; Schmidt, Nils O. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neurosurgery; Bolar, Divya S. [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States). Radiology; Adalsteinsson, Elfar [Massachusetts Institute of Technology, Cambridge, MA (United States). Electrical Engineering and Computer Science

    2015-05-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s {sup and} -1] = 20.7/20.4/20.1, R2*[s {sup and} -1] = 31.6/29.6/25.9, R2'[s {sup and} 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min {sup and} -1.100g {sup and} -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood

  16. Segmenting and validating brain tissue definitions in the presence of varying tissue contrast.

    Science.gov (United States)

    Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S

    2017-01-01

    We propose a method for segmenting brain tissue as either gray matter or white matter in the presence of varying tissue contrast, which can derive from either differential changes in tissue water content or increasing myelin content of white matter. Our method models the spatial distribution of intensities as a Markov Random Field (MRF) and estimates the parameters for the MRF model using a maximum likelihood approach. Although previously described methods have used similar models to segment brain tissue, accurate model of the conditional probabilities of tissue intensities and adaptive estimates of tissue properties to local intensities generates tissue definitions that are accurate and robust to variations in tissue contrast with age and across illnesses. Robustness to variations in tissue contrast is important to understand normal brain development and to identify the brain bases of neurological and psychiatric illnesses. We used simulated brains of varying tissue contrast to compare both visually and quantitatively the performance of our method with the performance of prior methods. We assessed validity of the cortical definitions by associating cortical thickness with various demographic features, clinical measures, and medication use in our three large cohorts of participants who were either healthy or who had Bipolar Disorder (BD), Autism Spectrum Disorder (ASD), or familial risk for Major Depressive Disorder (MDD). We assessed validity of the tissue definitions using synthetic brains and data for three large cohort of individuals with various neuropsychiatric disorders. Visual inspection and quantitative analyses showed that our method accurately and robustly defined the cortical mantle in brain images with varying contrast. Furthermore, associating the thickness with various demographic and clinical measures generated findings that were novel and supported by histological analyses or were supported by previous MRI studies, thereby validating the cortical

  17. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  18. Variable ATP yields and uncoupling of oxygen consumption in human brain

    DEFF Research Database (Denmark)

    Gjedde, Albert; Aanerud, Joel; Peterson, Ericka;

    2011-01-01

    The distribution of brain oxidative metabolism values among healthy humans is astoundingly wide for a measure that reflects normal brain function and is known to change very little with most changes of brain function. It is possible that the part of the oxygen consumption rate that is coupled...... to ATP turnover is the same in all healthy human brains, with different degrees of uncoupling explaining the variability of total oxygen consumption among people. To test the hypothesis that about 75% of the average total oxygen consumption of human brains is common to all individuals, we determined...... the variability in a large group of normal healthy adults. To establish the degree of variability in different regions of the brain, we measured the regional cerebral metabolic rate for oxygen in 50 healthy volunteers aged 21-66 and projected the values to a common age of 25.Within each subject and region, we...

  19. The Effect of Hyperbaric Oxygen on Symptoms after Mild Traumatic Brain Injury

    Science.gov (United States)

    2012-11-20

    Journal Article 3. DATES COVERED (From – To) Aug 2008 – Dec 2013 4. TITLE AND SUBTITLE The Effect of Hyperbaric Oxygen on Symptoms after Mild...absolute (ATA) hyperbaric oxygen (HBO2) on post-concussion symptoms in 50 military service members with at least one combat-related, mild traumatic brain...symptoms after mild TBI. 15. SUBJECT TERMS: hyperbaric oxygen, HBOT, HBO, HBO2, traumatic brain injury, TBI, mTBI, post-traumatic stress disorder, PTSD

  20. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy.

    Science.gov (United States)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T

    2017-03-01

    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T2-prepared Blood Imaging of Oxygen Saturation (T2-BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R(2 )= 0.64, p infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R(2 )= 0.71, 0.50, 0.65; p infrared spectroscopy and T2-prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.

  1. Determination of Friction Coefficient in Unconfined Compression of Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.05.001

    2013-01-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow for homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient mu of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that mu was equal to 0.09 +/- 0.03, 0.18 +/- 0.04, 0.18 +/- 0.04 and 0.20 +/- 0.02 at strain rates of...

  2. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539).

  3. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  4. Inhomogeneous Deformation of Brain Tissue During Tension Tests

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael D; 10.1016/j.commatsci.2012.05.030

    2013-01-01

    Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI). In this research, we present the design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0-14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters (mu = 4395.0 Pa, alpha = -2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine Young's modulus (E= 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S < 1.0 are required to minimise the effects of inhomogeneous...

  5. Distribution of opiate alkaloids in brain tissue of experimental animals.

    Science.gov (United States)

    Djurendic-Brenesel, Maja; Pilija, Vladimir; Mimica-Dukic, Neda; Budakov, Branislav; Cvjeticanin, Stanko

    2012-12-01

    The present study examined regional distribution of opiate alkaloids from seized heroin in brain regions of experimental animals in order to select parts with the highest content of opiates. Their analysis should contribute to resolve causes of death due to heroin intake. The tests were performed at different time periods (5, 15, 45 and 120 min) after male and female Wistar rats were treated with seized heroin. Opiate alkaloids (codeine, morphine, acetylcodeine, 6-acetylmorphine and 3,6-diacetylmorphine) were quantitatively determined in brain regions known for their high concentration of µ-opiate receptors: cortex, brainstem, amygdala and basal ganglia, by using gas chromatography-mass spectrometry (GC-MS). The highest content of opiate alkaloids in the brain tissue of female animals was found 15 min and in male animals 45 min after treatment. The highest content of opiates was determined in the basal ganglia of the animals of both genders, indicating that this part of brain tissue presents a reliable sample for identifying and assessing contents of opiates after heroin intake.

  6. Tissue-specific sparse deconvolution for brain CT perfusion.

    Science.gov (United States)

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

  7. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    Science.gov (United States)

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  8. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Zhichun Feng; Jing Liu; Rong Ju

    2013-01-01

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2′-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2′- deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  9. The effect of hyperbaric oxygen on the expression of hypoxia inducible factor-1alpha in brain tissue after acute organophosphate poisoning%高压氧干预对急性有机磷中毒大鼠脑组织中缺氧诱导因子-1α表达的影响

    Institute of Scientific and Technical Information of China (English)

    杨勇; 杨金连; 谢智慧

    2015-01-01

    疗组,其作用机制与抗氧化损伤和抑制HIF-1α的表达有关.%Objective To study the expression of hypoxia-inducible factor-1 (HIF-1) in the brain tissue after the brain injury caused by acute organophosphate poisoning,and the interventional effect and mechanism of hyperbaric oxygen (HBO) therapy.Methods Sixty healthy male Sprague-Dawley rats randomly divided into a control group (n=6),a poisoning group (n=18),a routine group (n=18) and an HBO group (n=18) according to a random number table.Acute organophosphate poisoning was induced into all rats except those in the control group.The routine group was given penehyclidine hydrochloride and pralidoxime chloride for once,while the HBO group was provided with HBO therapy immediately on the basis of routine treatment.At 1,3 and 7 hours after acute organophosphate poisoning was induced,six rats were sacrificed at each time point and the blood samples were taken from inferior caval vein to measure the content of Malondialdehyde (MDA).The expression of HIF-1α mRNA in the brain tissue was detected by the quantitative real-time PCR,and that of HIF-1 protein was evaluated by immunohistochemical method.Meanwhile,pathologic changes of the brain tissues were observed using hematoxylin-eosin (HE) staining.Results Compared with the poisoning group,the pathological damage to cerebral tissues lessened in the HBO group.The expression of HIF-1 protein and HIF-1 mRNA of the poisoning and the HBO groups was significantly higher than the control group at 3 different time points.After the HBO treatment,the protein expression of HIF-1 lowered from 226.57 ± 57.49,to 205.91 ± 30.36 and further to 187.67 ± 29.25,while the MDA content decreased from 7.74 ± 0.14,to 7.40 ± 0.13 and later to 6.10 ±0.08,both were significantly lower than those of the poisoning group at all time points,with HIF-1 being 1305.67 ± 167.17,2667.83 ± 367.79 and 1709.24 ± 199.07,along with MDA content being 9.48 ± 0.05,11.56 ± 0.13 and 12.26 ± 0

  10. The effects of different hyperbaric oxygen manipulations in rats after traumatic brain injury.

    Science.gov (United States)

    Yang, Yang; Zhang, Yong-Gang; Lin, Guo-An; Xie, He-Qiu; Pan, Hai-Tao; Huang, Ben-Qing; Liu, Ji-Dong; Liu, Hui; Zhang, Nan; Li, Li; Chen, Jian-Hua

    2014-03-20

    The protective effects of hyperbaric oxygenation following traumatic brain injury have been widely investigated; however, few studies have made systematic comparisons between the different hyperbaric oxygenation manipulations and their corresponding effects. In this study, male Sprague-Dawley rats were observed at 4h, 15d and 75d after traumatic brain injury. The effects of the different hyperbaric oxygenation manipulations on the rats were compared based on morphological, molecular biological and behavioral tests. Our results showed that hyperbaric oxygenation inhibited cell apoptosis in the rat hippocampus and improved their physiological functions. The effects observed in the hyperbaric oxygen-early group were better than the hyperbaric oxygen-delayed group, and the hyperbaric oxygen-early-delayed group demonstrated the best effects among all the groups. Our results showed the hyperbaric oxygenation was recommended early and delayed post-traumatic brain injury and exposure to hyperbaric oxygenation should be prolonged. These findings provide new ideal therapeutic insight for the clinical treatment of traumatic brain injury.

  11. In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen

    Science.gov (United States)

    Weaver, John; Burks, Scott R.; Liu, Ke Jian; Kao, Joseph P. Y.; Rosen, Gerald M.

    2016-10-01

    Variations in brain oxygen (O2) concentration can have profound effects on brain physiology. Thus, the ability to quantitate local O2 concentrations noninvasively in vivo could significantly enhance understanding of several brain pathologies. However, quantitative O2 mapping in the brain has proven difficult. The electron paramagnetic resonance (EPR) spectra of nitroxides are sensitive to molecular O2 and can be used to estimate O2 concentrations in aqueous media. We recently synthesized labile-ester-containing nitroxides, such as 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 4), which accumulate in cerebral tissue after in situ hydrolysis, and thus enable spatial mapping of O2 concentrations in the mouse brain by EPR imaging. In an effort to improve O2 quantitation, we prepared 3-acetoxymethoxycarbonyl-2,2,5,5-tetra(2H3)methyl-1-(3,4,4-2H3,1-15N)pyrrolidinyloxyl (nitroxide 2), which proved to be a more sensitive probe than its normo-isotopic version for quantifying O2 in aqueous solutions of various O2 concentrations. We now demonstrate that this isotopically substituted nitroxide is ∼2-fold more sensitive in vivo than the normo-isotopic nitroxide 4. Moreover, in vitro and in vivo EPR spectral-spatial imaging results with nitroxide 2 demonstrate significant improvement in resolution, reconstruction and spectral response to local O2 concentrations in cerebral tissue. Thus, isotopic-substituted nitroxides, such as 2, are excellent sensors for in vivo O2 quantitation in tissues, such as the brain.

  12. Determination of oxygen tension in the subcutaneous tissue of cosmonauts during the Salyut-6 mission

    Science.gov (United States)

    Baranski, S.; Bloszczynski, R.; Hermaszewski, M.; Kubiczkowa, J.; Piorko, A.; Saganiak, R.; Sarol, Z.; Skibniewsky, F.; Stendera, J.; Walichnowski, W.

    1982-01-01

    A polarographic technique was used to measure the oxygen tension in subcutaneous tissue of the forearm of a cosmonaut prior to, after, and on the fourth day of a space mission performed by Salut-6. A drop in the oxygen exchange rate in the peripheral tissues during weightlessness was observed. The mechanisms of this change are studied, taking into consideration the blood distribution in the organism and microcirculation disorders reflected by a decreased blood flow rate in arterial-venous junctions.

  13. Implementing oxygen control in chip-based cell and tissue culture systems

    NARCIS (Netherlands)

    Oomen, Pieter; Skolimowski, Maciej; Verpoorte, Elisabeth

    2016-01-01

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-ch

  14. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease

    DEFF Research Database (Denmark)

    Boushel, R; Langberg, Henning; Olesen, J

    2001-01-01

    Near infrared spectroscopy (NIRS) is becoming a widely used research instrument to measure tissue oxygen (O2) status non-invasively. Continuous-wave spectrometers are the most commonly used devices, which provide semi-quantitative changes in oxygenated and deoxygenated hemoglobin in small blood v...

  15. Extracorporeal Membrane Oxygenation for the Support of a Potential Organ Donor with a Fatal Brain Injury before Brain Death Determination

    Directory of Open Access Journals (Sweden)

    Sung Wook Chang

    2016-05-01

    Full Text Available The shortage of available organ donors is a significant problem and various efforts have been made to avoid the loss of organ donors. Among these, extracorporeal membrane oxygenation (ECMO has been introduced to help support and manage potential donors. Many traumatic brain injury patients have healthy organs that might be eligible for donation for transplantation. However, the condition of a donor with a fatal brain injury may rapidly deteriorate prior to brain death determination; this frequently results in the loss of eligible donors. Here, we report the use of venoarterial ECMO to support a potential donor with a fatal brain injury before brain death determination, and thereby preserve donor organs. The patient successfully donated his liver and kidneys after brain death determination.

  16. LOCALISED MUSCLE TISSUE OXYGENATION DURING DYNAMIC EXERCISE WITH WHOLE BODY VIBRATION

    Directory of Open Access Journals (Sweden)

    Daniel Robbins

    2012-06-01

    Full Text Available Despite increasing use of whole body vibration during exercise an understanding of the exact role of vibration and the supporting physiological mechanisms is still limited. An important aspect of exercise analysis is the utilisation of oxygen, however, there have been limited studies considering tissue oxygenation parameters, particularly during dynamic whole body vibration (WBV exercise. The aim of this study was to determine the effect of adding WBV during heel raise exercises and assessing changes in tissue oxygenation parameters of the lateral gastrocnemius using Near Infra Red Spectroscopy (NIRS. Twenty healthy subjects completed ten alternating sets of 15 heel raises (vibration vs. no vibration. Synchronous oxygenation and motion data were captured prior to exercise to determine baseline levels, for the duration of the exercise and 20 sec post exercise for the recovery period. Both vibration and no vibration conditions elicited a characteristic increase in deoxyhaemoglobin and decreases in oxyhaemoglobin, total haemoglobin, tissue oxygenation index and normalised tissue haemoglobin index which are indicative of local tissue hypoxia. However, the addition of vibration elicited significantly lower (p < 0. 001 depletions in oxyhaemoglobin, total haemoglobin, normalised tissue haemoglobin index but no significant differences in deoxyhaemoglobin. These findings suggest that addition of vibration to exercise does not increase the cost of the exercise for the lateral gastrocnemius muscle, but does decrease the reduction in local muscle oxygenation parameters, potentially resulting from increased blood flow to the calf or a vasospastic response in the feet. However, further studies are needed to establish the mechanisms underlying these findings

  17. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, Thomas; Hyldegaard, Ole

    2012-01-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing...... and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied...... prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently...

  18. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    CERN Document Server

    Tzoumas, Stratis; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2015-01-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation by tissue optical properties, an effect that causes spectral corruption. Predictions of the spectral variations of light fluence in tissue are challenging since the spatial distribution of optical properties in tissue cannot be resolved in high resolution or with high accuracy by current methods. Spectral corruption has fundamentally limited the quantification accuracy of optical and optoacoustic methods and impeded the long sought-after goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical but still unattainable target for the assessment of oxygenation in physiological processes and disease. We discover a new principle underlying light fluence in tissues, which describes the wavelength dependence of light fluence as an affine function of a few reference base spectra, independently of the specific distribution of tissue optical properties. This finding enables the introd...

  19. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  20. Hyperbaric oxygen suppresses hypoxic-ischemic brain damage in newborn rats.

    Science.gov (United States)

    Zhu, Min; Lu, Mengru; Li, Qing-Jie; Zhang, Zhuo; Wu, Zheng-Zheng; Li, Jie; Qian, Lai; Xu, Yun; Wang, Zhong-Yuan

    2015-01-01

    The optimal therapeutic time-window and protective mechanism of hyperbaric oxygen in hypoxic-ischemic brain damage remain unclear. This study aimed to determine the neuroprotective effects of hyperbaric oxygen. Following hypoxic-ischemic brain damage modeling in neonatal rats, hyperbaric oxygen was administered at 6, 24, 48, and 72 hours and 1 week after hypoxia, respectively, once daily for 1 week. Fourteen days after hypoxic-ischemic brain damage, cell density and apoptosis rate, number of Fas-L+, caspase-8+, and caspase-3+ neuronal cells, levels of nitric oxide, malondialdehyde, and superoxide dismutase in hippocampus were examined. Morris water maze test was conducted 28 days after insult. Significant improvements were found in cell density, rate of apoptosis, oxidative stress markers, FasL, and caspases in rats treated with hyperbaric oxygen within 72 hours compared to hypoxic-ischemic injury. Similarly, time-dependent behavioral amelioration was observed in pups treated with hyperbaric oxygen. Our findings suggest that hyperbaric oxygen protects against hypoxic-ischemic brain damage by inhibiting oxidative stress and FasL-induced apoptosis, and optimal therapeutic time window is within 72 hours after hypoxic-ischemic brain damage.

  1. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Olesen, J

    2001-01-01

    Near infrared spectroscopy (NIRS) is becoming a widely used research instrument to measure tissue oxygen (O2) status non-invasively. Continuous-wave spectrometers are the most commonly used devices, which provide semi-quantitative changes in oxygenated and deoxygenated hemoglobin in small blood...... vessels (arterioles, capillaries and venules). Refinement of NIRS hardware and the algorithms used to deconvolute the light absorption signal have improved the resolution and validity of cytochrome oxidase measurements. NIRS has been applied to measure oxygenation in a variety of tissues including muscle...

  2. Evaluation of hyperbaric oxygen treatment of neuropsychiatric disorders following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-yan; TANG Zhong-quan; SUN Da; HE Xiao-jun

    2006-01-01

    Background Improvement of clinical symptoms following hyperbaric oxygen (HBO) treatment of neuropsychiatric disorders arising from traumatic brain injury was proved by our previous study. This study was aim to obtain the evidence of other changes.Methods Three hundred and ten patients with neuropsychiatric disorders arising from traumatic brain injury were treated twice with hyperbaric oxygen. Cerebral single photon emissions computed tomography (SPECT)images and computed tomography scans (CT) before and after hyperbaric oxygen treatment, were compared.Results Before treatment, the proportion of abnormal cerebral changes detected by SPECT was 81.3% but only 15.2% by CT. After HBO treatment, 70.3% of SPECT scans showed no abnormalities and these patients were clinically improved. Treatment improved regional cerebral blood flow.Conclusion SPECT was much more sensitive than CT in the diagnosis of neuropsychiatric disorders following hyperbaric oxygen treatment of neuropsychiatric disorders arising from traumatic brain injury.

  3. Comparative Tissue Stainability of Lawsonia inermis (Henna) and Eosin as Counterstains to Hematoxylin in Brain Tissues.

    Science.gov (United States)

    Alawa, Judith N; Gideon, Gbenga O; Adetiba, Bamidele; Alawa, Clement B

    2015-04-01

    We hyposthesized that henna staining could provide an alternative to eosin when used as a counterstain to hematoxylin for understanding basic neurohistological principles. Therefore, this study was aimed at investigating the suitability of henna as counterstain to hematoxylin for the demonstration of the layer stratification and cellular distribution in the brain tissue. Henna stained nervous tissue by reacting with the basic elements in proteins via its amino groups. It stained the neuropil and connective tissue membranes brown and effectively outlined the perikarya of neurons with no visible nuclei demonstrating that it is an acidic dye. Henna as a counterstain to hematoxylin demonstrated reliability as a new neurohistological stain. It facilitated identification of cortical layer stratification and cellular distribution in brain tissue sections from Wistar rats. This was comparable to standard hematoxylin and eosin staining as morphological and morphometrical analyses of stained cells did not show significant differences in size or number. This study presents a method for staining with henna and demonstrates that although henna and eosin belong to different dye groups (anthraquinone and xanthenes, respectively) based on their chromophores, they share similar staining techniques and thus could be used interchangeably in neurohistology.

  4. Hyperbaric oxygen therapy for the treatment of traumatic brain injury: a meta-analysis.

    Science.gov (United States)

    Wang, Fei; Wang, Yong; Sun, Tao; Yu, Hua-Lin

    2016-05-01

    Compelling evidence suggests the advantage of hyperbaric oxygen therapy (HBOT) in traumatic brain injury. The present meta-analysis evaluated the outcomes of HBOT in patients with traumatic brain injury (TBI). Prospective studies comparing hyperbaric oxygen therapy vs. control in patients with mild (GCS 13-15) to severe (GCS 3-8) TBI were hand-searched from medical databases using the terms "hyperbaric oxygen therapy, traumatic brain injury, and post-concussion syndrome". Glasgow coma scale (GCS) was the primary outcome, while Glasgow outcome score (GOS), overall mortality, and changes in post-traumatic stress disorder (PTSD) score, constituted the secondary outcomes. The results of eight studies (average age of patients, 23-41 years) reveal a higher post-treatment GCS score in the HBOT group (pooled difference in means = 3.13, 95 % CI 2.34-3.92, P traumatic brain injury.

  5. Brain tissue pressure measurements in perinatal and adult rabbits.

    Science.gov (United States)

    Hornig, G W; Lorenzo, A V; Zavala, L M; Welch, K

    1987-12-01

    Brain tissue pressure (BTP) in pre- and post-natal anesthetized rabbits, held in a stereotactic head holder, was measured with a fluid filled 23 gauge open-ended cannula connected distally to a pressure transducer. By advancing the cannula step wise through a hole in the cranium it was possible to sequentially measure pressure from the cranial subarachnoid space, cortex, ventricle and basal ganglia. Separate cannulas and transducers were used to measure CSFP from the cisterna magna and arterial and/or venous pressure. Pressure recordings obtained when the tip of the BTP cannula was located in the cranial subarachnoid space or ventricle exhibited respiratory and blood pressure pulsations equivalent to and in phase with CSF pulsations recorded from the cisterna magna. When the tip was advanced into brain parenchymal sites such pulsations were suppressed or non-detectable unless communication with a CSF compartment had been established inadvertently. Although CSF pressures in the three spinal fluid compartments were equivalent, in most animals BTP was higher than CSFP. However, after momentary venting of the system BTP equilibrated at a pressure below that of CSFP. We speculate that venting of the low compliance system (1.20 x 10(-5) ml/mmHg) relieves the isometric pressure build-up due to insertion of the cannula into brain parenchyma. Under these conditions, and at all ages examined, BTP in the rabbit is consistently lower than CSFP and, as with CSFP, it increases as the animal matures.

  6. Tissue Oxygenation Monitoring using Resonance Raman Spectroscopy during Hemorrhage

    Science.gov (United States)

    2013-12-27

    by the fact that young swine are highly susceptible to iron-deficient anemia secondary to low tissue stores at birth and extremely rapid growth.40 The...venous oximetry and shock index in the emergency department: use in the evaluation of clinical shock. Am J Emerg Med. 1992;10:538 541. 38. Rivers EP

  7. Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion

    Science.gov (United States)

    Ren, Wenqi; Gan, Qi; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2015-12-01

    Simultaneous and quantitative assessment of multiple tissue parameters may facilitate more effective diagnosis and therapy in many clinical applications, such as wound healing. However, existing wound assessment methods are typically subjective and qualitative, with the need for sequential data acquisition and coregistration between modalities, and lack of reliable standards for performance evaluation or calibration. To overcome these limitations, we developed a multimodal imaging system for quasi-simultaneous assessment of cutaneous tissue oxygenation and perfusion in a quantitative and noninvasive fashion. The system integrated multispectral and laser speckle imaging technologies into one experimental setup. Tissue oxygenation and perfusion were reconstructed by advanced algorithms. The accuracy and reliability of the imaging system were quantitatively validated in calibration experiments and a tissue-simulating phantom test. The experimental results were compared with a commercial oxygenation and perfusion monitor. Dynamic detection of cutaneous tissue oxygenation and perfusion was also demonstrated in vivo by a postocclusion reactive hyperemia procedure in a human subject and a wound healing process in a wounded mouse model. Our in vivo experiments not only validated the performance of the multimodal imaging system for cutaneous tissue oxygenation and perfusion imaging but also demonstrated its technical potential for wound healing assessment in clinical practice.

  8. Magnetic resonance brain tissue segmentation based on sparse representations

    Science.gov (United States)

    Rueda, Andrea

    2015-12-01

    Segmentation or delineation of specific organs and structures in medical images is an important task in the clinical diagnosis and treatment, since it allows to characterize pathologies through imaging measures (biomarkers). In brain imaging, segmentation of main tissues or specific structures is challenging, due to the anatomic variability and complexity, and the presence of image artifacts (noise, intensity inhomogeneities, partial volume effect). In this paper, an automatic segmentation strategy is proposed, based on sparse representations and coupled dictionaries. Image intensity patterns are singly related to tissue labels at the level of small patches, gathering this information in coupled intensity/segmentation dictionaries. This dictionaries are used within a sparse representation framework to find the projection of a new intensity image onto the intensity dictionary, and the same projection can be used with the segmentation dictionary to estimate the corresponding segmentation. Preliminary results obtained with two publicly available datasets suggest that the proposal is capable of estimating adequate segmentations for gray matter (GM) and white matter (WM) tissues, with an average overlapping of 0:79 for GM and 0:71 for WM (with respect to original segmentations).

  9. Influence of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhengrong Peng; Sue Wang; Pingtian Xiao

    2009-01-01

    BACKGROUND: It has been previously shown that hyperbaric oxygen may promote proliferation of neural stem cells and reduce death of endogenous neural stem cells (NSCs).OBJECTIVE: To explore the effects of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived NSCs into neuron-like cells and compare with high-concentration oxygen and high pressure.DESIGN, TIME AND SETTING: An in vitro contrast study, performed at Laboratory of Neurology,Central South University between January and May 2006.MATERIALS: A hyperbaric oxygen chamber (YLC 0.5/1A) was provided by Wuhan Shipping Design Research Institute; mouse anti-rat microtubute-associated protein 2 monoclonal antibody by Jingmei Company, Beijing; mouse anti-rat glial fibrillary acidic protein monoclonal antibody by Neo Markers,USA; mouse anti-rat galactocerebroside monoclonal antibody by Santa Cruz Biotechnology Inc.,USA; and goat anti-mouse fluorescein isothiocyanate-labeled secondary antibody by Wuhan Boster Bioengineering Co., Ltd., China.METHODS: Brain-derived NSCs isolated from brain tissues of neonatal Sprague Dawiey rats werecloned and passaged, and assigned into five groups: normal control, model, high-concentration oxygen, high pressure, and hyperbaric oxygen groups. Cells in the four groups, excluding the normal control group, were incubated in serum-containing DMEM/F12 culture medium. Hypoxic/ischemic models of NSCs were established in an incubator comprising 93% N2, 5% CO2, and 2% O2.Thereafter, cells were continuously cultured as follows: compressed air (0.2 MPa, 1 hour, once a day)in the high pressure group, compressed air+a minimum of 80% O2 in the hyperbaric oxygen group,and a minimum of 80% O2 in the high-concentration oxygen group. Cells in the normal control and model groups were cultured as normal.MAIN OUTCOME MEASURES: At day 7 after culture, glial fibrillary acidic protein,microtubule-associated protein 2, and galactocerebroside immunofluorescence staining were examined to

  10. Oxygenation and Blood Volume Periodic Waveforms in the Brain

    CERN Document Server

    Gersten, Alexander; Raz, Amir

    2011-01-01

    Results of an experiment are presented whose aim is to explore the relationship between respiration and cerebral oxygenation. Measurements of end tidal CO2 (EtCO2) were taken simultaneously with cerebral oxygen saturation (rSO2) using the INVOS Cerebral Oximeter of Somanetics. Due to the device limitations we could explore only subjects who could perform with a breathing rate of around 2/min or less. Six subjects were used who were experienced in yoga breathing techniques. They performed an identical periodic breathing exercise including periodicity of about 2/min. The results of all six subjects clearly show a periodic change of cerebral oxygenation with the same period as the breathing exercises. Similar periodic changes in blood volume index were observed as well.

  11. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury:not by immediately improving cerebral oxygen saturation and oxygen partial pressure

    Institute of Scientific and Technical Information of China (English)

    Bao-chun Zhou; Li-jun Liu; Bing Liu

    2016-01-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO2) and oxygen partial pressure (PaO2). To test this idea, we compared two groups:a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO2 were measured. The controls were also examined for rSO2 and PaO2, but received no treatment. rSO2 levels in the patients did not differ signiifcantly after treatment, but levels before and after treatment were signiifcantly lower than those in the control group. PaO2 levels were signiifcantly decreased after the 30-minute HBO treatment. Our ifndings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  12. Brain-derived neurotrophic factor expression is higher in brain tissue from patients with refractory epilepsy than in normal controls

    Institute of Scientific and Technical Information of China (English)

    Yudan Lv; Jiqing Qiu; Zan Wang; Li Cui; Hongmei Meng; Weihong Lin

    2011-01-01

    The role of the brain-derived neurotrophic factor in epilepsy remains controversial. The present study utilized light and electron microscopy to investigate pathological and ultrastructural changes in brain tissue obtained from the seizure foci of 24 patients with temporal epilepsy. We found that epileptic tissue showed neuronal degeneration, glial cell proliferation, nuclear vacuolization, and neural cell tropism. Immunoelectron microscopy and immunohistochemistry showed that brain-derived neurotrophic factor was expressed at significantly higher levels in patients with refractory temporal epilepsy compared with normal controls, demonstrating that the pathological changes within seizure foci in patients with refractory epilepsy are associated with brain-derived neurotrophic factor expression alterations.

  13. Cerebral tissue oxygenation index and superior vena cava blood flow in the very low birth weight infant.

    LENUS (Irish Health Repository)

    Moran, M

    2012-02-01

    BACKGROUND: Superior vena cava (SVC) flow assesses blood flow from the upper body, including the brain. Near infrared spectroscopy (NIRS) provides information on brain perfusion and oxygenation. AIM: To assess the relationship between cerebral tissue oxygenation index (cTOI) and cardiac output measures in the very low birth weight (VLBW) infant in the first day of life. METHODS: A prospective observational cohort study. Neonates with birth weight less than 1500 g (VLBW) were eligible for enrollment. Newborns with congenital heart disease, major congenital malformations and greater than Papile grade1 Intraventricular Haemorrhage on day 1 of life were excluded. Echocardiographic evaluation of SVC flow was performed in the first 24 h of life. Low SVC flow states were defined as a flow less than 40 mL\\/kg\\/min. cTOI was measured using NIRO 200 Hamamatsu. RESULTS: Twenty-seven VLBW neonates had both echocardiography and NIRS performed. The median (range) gestation was 29\\/40 (25 + 3 to 31 + 5 weeks) and median birth weight was 1.2 kg (0.57-1.48 kg). The mean (SD) TOI was 68.1 (7.9)%. The mean (SD) SVC flow was 70.36(39.5) mLs\\/kg\\/min. The correlation coefficient of cerebral tissue oxygenation and SVC flow was r = 0.53, p-value 0.005. There was a poor correlation between right and left ventricular output and cTOI which is not surprising considering the influence of intra- and extracardiac shunts. CONCLUSION: There is a positive relationship between cerebral TOI values and SVC flow in the very low birth infant on day one of life.

  14. Glasgow Coma Scale, brain electric activity mapping and Glasgow Outcome Scale after hyperbaric oxygen treatment of severe brain injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study the effect of hyperbaric oxygen (HBO) treatment of severe brain injury.Methods: Fifty-five patients were divided into a treatment group (n = 35 receiving HBO therapy ) and a control group (n = 20 receiving dehydrating, cortical steroid and antibiotic therapy) to observe the alteration of clinic GCS (Glasgow Coma Scale), brain electric activity mapping (BEAM), prognosis and GOS (Glasgow Outcome Scale) before and after hyperbaric oxygen treatment.Results: In the treatment group GCS, BEAM and GOS were improved obviously after 3 courses of treatment,GCS increased from 5.1 to 14.6 ( P < 0.01-0.001 ), the BEAM abnormal rate reduced from 94.3% to 38% (P <0.01-0.001 ), the GOS good-mild disability rate was 83.7%, and the middle-severe disability rate was 26.3%compared with the control group. There was a statistic significant difference between the two groups (P < 0.01-0.001).Conclusions: Hyperbaric oxygen treatment could improve obviously GCS, BEAM and GOS of severe brain injury patients, and effectively reduce the mortality and morbidity. It is an effective method to treat severe brain injury. two g

  15. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Luisa Ciobanu

    Full Text Available During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T(2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine. We showed that the brain/vessels contrast in T(2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation.

  16. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  17. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-01-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology. PMID:27358000

  18. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    Science.gov (United States)

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.

  19. Effect of hyperbaric oxygen on cytochrome C, Bcl-2 and bax expression after experimental traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan; JIAO Qing-fang; YOU Chao; CHE Yan-jun; SU Fang-zhong

    2006-01-01

    Objective: To explore the effects of hyperbaric oxygen (HBO) treatment on the neuronal apoptosis at an earlier stage and the expressions of Cytochrome C (Cyt C), Bcl-2 (B-cell lymphoma-2 family) and Bax (Bcl-2associated X protein) in rat brain tissues after traumatic brain injury (TBI).Methods: Forty adult rats were divided into two groups, i.e., Group A ( the rats with untreated TBI) and Group B ( rats with HBO treatment after TBI). Sections of brain tissues of these two groups were then detected at 3,6,12,24,72 hours after TBI by immunohistochemistry and electronmicroscope, respectively.Results: HBO treatment could up-regulate the expression of Bcl-2 within 72 hours, reduce the release of Cyt C from mitochondria, attenuate the formation of dimeric Bax and alleviate the mitochondrial edema within 24 hours after TBI.Conclusions: HBO treatment can alleviate neuronal apoptosis after TBI by reducing the release of Cyt C and the dimers of Bax and up-regulating the expression of Bcl-2.

  20. Characterisation of new monoclonal antibodies reacting with prions from both human and animal brain tissues

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Bergström, Ann-Louise; Ohm, Jakob

    2008-01-01

    spongiform encephalopathy (bovine brain), scrapie (ovine brain) and experimental scrapie in hamster and in mice. The antibodies were also used for PET-blotting in which PrPSc blotted from brain tissue sections onto a nitrocellulose membrane is visualized with antibodies after protease and denaturant...

  1. Perfluorocarbon-loaded lipid nanocapsules as oxygen sensors for tumor tissue pO₂ assessment.

    Science.gov (United States)

    Lemaire, L; Bastiat, G; Franconi, F; Lautram, N; Duong Thi Dan, T; Garcion, E; Saulnier, P; Benoit, J P

    2013-08-01

    The assessment of tumor oxygenation is a crucial factor in cancer therapy and may be carried out using fluorine MRI once fluorine probes have been distributed within the tumor. However, the deposit of those highly fluorinated compounds often jeopardizes anatomical image quality and requires emulsification of the probes. Due to the high density and the high lipophilicity of perfluorocarbons, nanoemulsion of these molecules usually requires high-energy processes. In the present work, we discuss the synthesis and the physico-chemical characterization of perfluorocarbon nanocapsules using a low-energy phase-inversion process. The nanocapsules were tested on a mouse tumor brain model to assess oxygenation.

  2. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation

    DEFF Research Database (Denmark)

    Madsen, P L; Hasselbalch, S G; Hagemann, L P;

    1995-01-01

    fraction of the activation-induced excess glucose uptake. These data confirm earlier reports that brain activation can induce resetting of the cerebral oxygen/glucose consumption ratio, and indicate that the resetting persists for a long period after cerebral activation has been terminated and physiologic...

  3. Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates

    DEFF Research Database (Denmark)

    Sorensen, Line C; Greisen, Gorm

    2006-01-01

    The use of cerebral tissue oxygenation index (c-TOI) in a clinical setting is limited by doubts concerning the accuracy of the measurements. Since there is no gold standard, validation is difficult. Our modest aim was to quantify the precision of c-TOI doing repeated measurements by reapplying th...

  4. Non-invasive monitoring of tissue oxygenation during laparoscopic donor nephrectomy

    Directory of Open Access Journals (Sweden)

    Kirk Allan D

    2008-04-01

    Full Text Available Abstract Background Standard methods for assessment of organ viability during surgery are typically limited to visual cues and tactile feedback in open surgery. However, during laparoscopic surgery, these processes are impaired. This is of particular relevance during laparoscopic renal donation, where the condition of the kidney must be optimized despite considerable manipulation. However, there is no in vivo methodology to monitor renal parenchymal oxygenation during laparoscopic surgery. Methods We have developed a method for the real time, in vivo, whole organ assessment of tissue oxygenation during laparoscopic nephrectomy to convey meaningful biological data to the surgeon during laparoscopic surgery. We apply the 3-CCD (charge coupled device camera to monitor qualitatively renal parenchymal oxygenation with potential real-time video capability. Results We have validated this methodology in a porcine model across a range of hypoxic conditions, and have then applied the method during clinical laparoscopic donor nephrectomies during clinically relevant pneumoperitoneum. 3-CCD image enhancement produces mean region of interest (ROI intensity values that can be directly correlated with blood oxygen saturation measurements (R2 > 0.96. The calculated mean ROI intensity values obtained at the beginning of the laparoscopic nephrectomy do not differ significantly from mean ROI intensity values calculated immediately before kidney removal (p > 0.05. Conclusion Here, using the 3-CCD camera, we qualitatively monitor tissue oxygenation. This means of assessing intraoperative tissue oxygenation may be a useful method to avoid unintended ischemic injury during laparoscopic surgery. Preliminary results indicate that no significant changes in renal oxygenation occur as a result of pneumoperitoneum.

  5. Experimental research of mechanical behavior of porcine brain tissue under rotational shear stress.

    Science.gov (United States)

    Li, Gang; Zhang, Jianhua; Wang, Kan; Wang, Mingyu; Gao, Changqing; Ma, Chao

    2016-04-01

    The objective of this paper is to investigate mechanical behavior of porcine brain tissue with a series of rotational shear stress control experiments. To this end, several experiments including stress sweep tests, frequency sweep tests and quasi-static creep tests were designed and conducted with a standard rheometer (HAAKE RheoStress6000). The effects of the loading stress rates to mechanical properties of brain tissue were also studied in stress sweep tests. The results of stress sweep tests performed on the same brain showed that brain tissue had an obvious regional inhomogeneity and the mechanical damage occurred at the rotational shear stress of 10-15Pa. The experimental data from three different loading stress rates demonstrated that the mechanical behavior of porcine brain tissue was loading stress rate dependent. With the decrease of loading stress rate, a stiffer mechanical characteristic of brain tissue was observed and the occurrence of mechanical damage can be delayed to a higher stress. From the results of frequency sweep tests we found that brain tissue had almost completely elastic properties at high frequency area. The nonlinear creep response under the rotational shear stress of 1, 3, 5, 7 and 9Pa was shown in results of creep tests. A new nonlinear viscoelastic solid model was proposed for creep tests and matched well with the test data. Considering the regional differences, loading stress rates and test conditions effects, loss tangent tan δ in porcine brain tissue showed a high uniformity of 0.25-0.45.

  6. Endothelin receptor blockade improves oxygenation in contralateral TRAM flap tissue in pigs.

    Science.gov (United States)

    Erni, D; Wessendorf, R; Wettstein, R; Schilling, M K; Banic, A

    2001-07-01

    Partial skin and fat necrosis is the most common complication occurring in TRAM flaps. It is related to disturbances of the microcirculation and oxygenation in the contralateral part of the flap. It may be hypothesised that the development of necrosis is promoted by the vasoconstrictor endothelin, the production of which is enhanced in ischaemic flap tissues. The purpose of this study was to evaluate the effect of tezosentan, a new endothelin receptor blocker, on microcirculation and oxygenation in experimental TRAM flaps. The administration of tezosentan began preoperatively (3 mg/kg body weight) and then continued at a rate of 1.5 mg/kg/h. A TRAM flap with a skin island measuring 16 x 8 cm was raised in the middle of the epigastrium in minipigs. The flap was pedicled on the right superior epigastric vessels. Microcirculatory blood flow was measured with laser Doppler flowmetry and tissue oxygen tension was measured with a Clark-type microprobe. Dominant subcutaneous veins were cannulated in both the ipsilateral and the contralateral parts of the flap. Subdermal tissue oxygen tension in the contralateral part of the flap was significantly reduced 4h after surgery to 5 mmHg (ca. 48 mmHg in normal tissue) in the control group, but to only 12 mmHg in the group that had been administered tezosentan (Peffluent of the contralateral part of the flap, although microcirculatory blood flow remained virtually unchanged. Our findings suggest that tezosentan improves oxygenation and metabolism in the jeopardised contralateral flap tissue, probably as a result of a decrease in venous vascular resistance and fluid extravasation.

  7. [Influence of mastication on the amount of hemoglobin in human brain tissue].

    Science.gov (United States)

    Sasaki, A

    2001-03-01

    The purpose of this study was to investigate the influence of mastication on the amount of hemoglobin in human brain tissue. Nine healthy volunteers (6 males and 3 females) participated in this study. They underwent two tasks: 1) at rest, 2) gum-chewing. In seven of the nine (4 males and 3 females), experimental occlusal interference was applied to the first molar of the mandibule on the habitual masticatory side. They underwent the gum-chewing task. To evaluate the amount of hemoglobin, both the hemoglobin oxygenation state and blood volume during gum-chewing were measured in the frontal region, using near-infrared spectroscopy. The amount of total-hemoglobin (blood volume) and oxyhemoglobin of subjects significantly increased during gum-chewing (p < 0.01). When the subjects finished gum-chewing, both levels returned to the original levels. When experimental occlusal interference was imposed on the subject, the amount of them significantly decreased compared with subjects without experimental occlusal interference (p < 0.05). The results suggested that increases of cerebral blood flow in the frontal region were not due to the mandibular movement, and that human brain activity caused by mastication was not only in the cortical masticatory area but also in the frontal region.

  8. Age-dependent effect of static magnetic field on brain tissue hydration.

    Science.gov (United States)

    Deghoyan, Anush; Nikoghosyan, Anna; Heqimyan, Armenuhi; Ayrapetyan, Sinerik

    2014-01-01

    Age-dependent effect of Static Magnetic Field (SMF) on rats in a condition of active and inactive Na(+)/K(+) pump was studied for comparison of brain tissues hydration state changes and magnetic sensitivity. Influence of 15 min 0, 2 Tesla (T) SMF on brain tissue hydration of three aged groups of male albino rats was studied. Tyrode's physiological solution and 10(-4) M ouabain was used for intraperitoneal injections. For animal immobilization, the liquid nitrogen was used and the definition of tissue water content was performed by tissue drying method. Initial water content in brain tissues of young animals is significantly higher than in those of adult and aged ones. SMF exposure leads to decrease of water content in brain tissues of young animals and increase in brain tissues of adult and aged ones. In case of ouabain-poisoned animals, SMF gives reversal effects on brain tissue's hydration both in young and aged animals, while no significant effect on adults is observed. It is suggested that initial state of tissue hydration could play a crucial role in animal age-dependent magnetic sensitivity and the main reason for this could be age-dependent dysfunction of Na(+)/K(+) pump.

  9. Expression of hypoxia-inducible factor 1 alpha and oligodendrocyte lineage gene-1 in cultured brain slices after oxygen-glucose deprivation

    Institute of Scientific and Technical Information of China (English)

    Hong Cui; Weijuan Han; Lijun Yang; Yanzhong Chang

    2013-01-01

    Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor 1α, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage. There is little evidence of direct regulatory effects of hypoxia-inducible factor 1α on oligodendrocyte lineage gene-1. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor 1α or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor 1α and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor 1α, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor 1α levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor 1α can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.

  10. Oxygen regulation of uricase and sucrose synthase synthesis in soybean callus tissue is exerted at the mRNA level

    DEFF Research Database (Denmark)

    Xue, Z T; Larsen, K; Jochimsen, B U

    1991-01-01

    The effect of lowering oxygen concentration on the expression of nodulin genes in soybean callus tissue devoid of the microsymbiont has been examined. Poly(A)+ RNA was isolated from tissue cultivated in 4% oxygen and in normal atmosphere. Quantitative mRNA hybridization experiments using nodule...

  11. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness

    DEFF Research Database (Denmark)

    Randsoe, T; Hyldegaard, O

    2009-01-01

    for nitrogen causing faster nitrogen tissue desaturation. In anesthetized rats decompressed from a 60-min hyperbaric exposure breathing air at 385 kPa, we visually followed the resolution of micro-air bubbles injected into abdominal adipose tissue while the rats breathed either air, oxygen, or oxygen breathing...

  12. Apnea test in the determination of brain death in patients treated with extracorporeal membrane oxygenation (ECMO).

    Science.gov (United States)

    Saucha, Wojciech; Sołek-Pastuszka, Joanna; Bohatyrewicz, Romuald; Knapik, Piotr

    2015-01-01

    Extracorporeal Membrane Oxygenation (ECMO) is a well-established method of support in patients with severe respiratory and/or circulatory failure. Unfortunately, this invasive method of treatment is associated with a high risk of neurological complications including brain death. Proper diagnosis of brain death is crucial for the termination of futile medical care. Currently, the legal system in Poland does not provide an accepted protocol for apnea tests for patients on ECMO support. Veno-arterial ECMO is particularly problematic in this regard because it provides both gas exchange and circulatory support. CO₂ elimination by ECMO prevents hypercapnia, which is required to perform an apnea test. Several authors have described a safe apnea test procedure in patients on ECMO. Maximal reduction of the sweep gas flow to the oxygenator should maintain an acceptable haemoglobin oxygenation level and reduce elimination of carbon dioxide. Hypercapnia achieved via this method should allow an apnea test to be conducted in the typical manner. In the case of profound desaturation and an inadequate increase in the arterial CO₂ concentration, the sweep gas flow rate may be increased to obtain the desired oxygenation level, and exogenous carbon dioxide may be added to achieve a target carbon dioxide level. Incorporation of an apnea test for ECMO patients is planned in the next edition of the Polish guidelines on the determination of brain death.

  13. Temporal dynamics and determinants of whole brain tissue volume changes during recovery from alcohol dependence.

    Science.gov (United States)

    Gazdzinski, Stefan; Durazzo, Timothy C; Meyerhoff, Dieter J

    2005-06-01

    Brain shrinkage and its partial reversibility with abstinence is a common neuroimaging finding in alcohol dependent individuals. We used an automated three-dimensional whole brain magnetic resonance imaging method (boundary shift integral) in 23 alcohol dependent individuals to measure the temporal dynamics of cerebral tissue and spinal fluid volume changes over a 12-month interval and to examine the major determinants of brain tissue change rates during abstinence and non-abstinence. We found more rapid brain tissue gain during the first month of sobriety than in the following months. The most rapid volume recovery was observed in abstinent individuals with the greatest baseline brain shrinkage and drinking severity. The rapid reversal of brain volume gains in non-abstinent individuals and tissue volume changes are modulated by duration of abstinence and non-abstinence periods, as well as recency of non-abstinence. Age, family history density of alcoholism, relapse severity, and duration or age of onset of heavy drinking were not major determinants of brain shrinkage and brain volume recovery rates. Treatment providers may use this tangible information to reinforce the biomedical benefits of sobriety. Previous quantitative measurements of brain volumes in alcohol dependent individuals performed after several weeks of abstinence likely underestimated the full extent of chronic alcohol-associated brain shrinkage.

  14. Phospholipase A2 changes and its significance on brain tissue of rat in severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Yao Xuan; Chen Xi; Ji Zongzheng

    2007-01-01

    Objective To survey changes and the significance of phospholipase A2(PLA2) on brain tissue of SD rat in acute pancreatitis. Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct, rat model of severe acute pancreatitis (SAP) was made,and it included four groups: the control group, the sham-operation group, the SAP group and the PLA2 inhibitor-treated group of SAP. Serum amylases, PLA2 and PLA2 in brain tissue were measured and the brain tissue changes were observed. Results There were no significant difference in serum amylases, PLA2 and PLA2 in brain tissue between the sham-operation and the control groups; the levels of serum amylases, PLA2 and PLA2 in brain tissue in the SAP group were higher than those in the control. In the SAP group expansion and hemorrhage of meninges, intracephalic arteriolar hyperemia, in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed, significant differences were found between two groups.Compared with the SAP group, the level of serum amylase, PLA2 and PLA2 in brain tissue were reduced significantly in the treatment group of SAP. Pathological damages in the treatment group were significantly reduced when compared with the SAP group. Conclusion PLA2 might play an important role in brain tissue damages in severe acute pancreatitis.

  15. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue

    Science.gov (United States)

    Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.

    2015-06-01

    Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.

  16. Tissue oxygen regime and factors guaranteeing it in vibration disease of miners

    Energy Technology Data Exchange (ETDEWEB)

    Filin, A.P.; Dudinskii, A.M.; Amanbekov, U.A.

    1985-09-01

    Trophic function of microcirculatory system during vibration disease (VD) is examined. Oxygen regime of soft tissues of upper extremities of 198 drillers with various stages of VD and 38 healthy miners as control group was studied by combined use of chronoamperography and ischemic test. Hemodynamics of microcirculatory system was studied by rheovasography and radioisotope (/sup 133/X) clearance technique. Miners with VD showed reliable decrease in the oxygen supply to soft tissues of fingers, wrist and forearms relative to clinical manifestations of VD. Symptoms increase with limitation of oxygen supply to tissues due to decrease of volume of blood flow in microcirculatory channels and metabolic activity of tissues. Method of chronoamperography and ischemic test used by the authors has broad application for diagnosis. It forms the basis of selecting optimum methods of effectively treating and controling VD such as massage (number of treatments depends on status of patient) combined with electrophoresis with sulfide of calcium chloride on cervical and thoracic portions of spine and on wrists. 2 references.

  17. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    Science.gov (United States)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  18. [Effect of hyperbaric oxygenation on local tissue blood flow to a small intestine transplant intended for esophagoplasty].

    Science.gov (United States)

    Vinnitskiĭ, L I; Piuskiulian, L I; Zhidkov, I L; Demurov, E A

    1981-04-01

    The time course of the local tissue blood flow in the small intestinal graft used for esophagoplasty was studied in 54 acute experiments on rabbits exposed to hyperbaric oxygenation (1 hour, 2 ata). It has been shown that hyperbaric oxygenation prevents alterations in the local tissue blood flow in the small intestine. This fact provides evidence in favour of hyperbaric oxygenation application under clinical conditions.

  19. Laparoscopy in children and its impact on brain oxygenation during routine inguinal hernia repair

    Science.gov (United States)

    Pelizzo, Gloria; Bernardi, Luciano; Carlini, Veronica; Pasqua, Noemi; Mencherini, Simonetta; Maggio, Giuseppe; De Silvestri, Annalisa; Bianchi, Lucio; Calcaterra, Valeria

    2017-01-01

    BACKGROUND: The systemic impact of intra-abdominal pressure (IAP) and/or changes in carbon dioxide (CO2) during laparoscopy are not yet well defined. Changes in brain oxygenation have been reported as a possible cause of cerebral hypotension and perfusion. The side effects of anaesthesia could also be involved in these changes, especially in children. To date, no data have been reported on brain oxygenation during routine laparoscopy in paediatric patients. PATIENTS AND METHODS: Brain and peripheral oxygenation were investigated in 10 children (8 male, 2 female) who underwent elective minimally invasive surgery for inguinal hernia repair. Intraoperative transcranial near-infrared spectroscopy to assess regional cerebral oxygen saturation (rScO2), peripheral oxygen saturation using pulse oximetry and heart rate (HR) were monitored at five surgical intervals: Induction of anaesthesia (baseline T1); before CO2 insufflation induced pneumoperitoneum (PP) (T2); CO2 PP insufflation (T3); cessation of CO2 PP (T4); before extubation (T5). RESULTS: rScO2 decreases were recorded immediately after T1 and became significant after insufflation (P = 0.006; rScO2 decreased 3.6 ± 0.38%); restoration of rScO2 was achieved after PP cessation (P = 0.007). The changes in rScO2 were primarily due to IAP increases (P = 0.06). The HR changes were correlated to PP pressure (P < 0.001) and CO2 flow rate (P = 0.001). No significant peripheral effects were noted. CONCLUSIONS: The increase in IAP is a critical determinant in cerebral oxygenation stability during laparoscopic procedures. However, the impact of anaesthesia on adaptive changes should not be underestimated. Close monitoring and close collaboration between the members of the multidisciplinary paediatric team are essential to guarantee the patient's safety during minimally invasive surgical procedures. PMID:27251842

  20. Identifying markers of pathology in SAXS data of malignant tissues of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Siu, K.K.W. [School of Physics and Materials Engineering, PO Box 27, Monash University, Victoria 3800 (Australia)]. E-mail: Karen.Siu@spme.monash.edu.au; Butler, S.M. [School of Computer Science and Software Engineering, PO Box 75, Monash University, Victoria 3800 (Australia); Beveridge, T. [School of Physics and Materials Engineering, PO Box 27, Monash University, Victoria 3800 (Australia); Gillam, J.E. [School of Physics and Materials Engineering, PO Box 27, Monash University, Victoria 3800 (Australia); Hall, C.J. [Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); Kaye, A.H. [Department of Surgery, University of Melbourne, Parkville 3050 (Australia); Department of Neurosurgery, Royal Melbourne Hospital, Parkville 3050 (Australia); Lewis, R.A. [Monash Centre for Synchrotron Science, PO Box 27, Monash University, Victoria 3800 (Australia); Mannan, K. [Division of Neurosurgery, University of Saskatchewan, Saskatoon S7N 5E5 (Canada); McLoughlin, G. [Division of Neurosurgery, University of Saskatchewan, Saskatoon S7N 5E5 (Canada); Pearson, S. [Physics and Electronics, University of New England, Armidale, New South Wales 2351 (Australia); Round, A.R. [Department of Materials and Medical Sciences, Cranfield University, Wiltshire SN6 8LA (United Kingdom); Schueltke, E. [Division of Neurosurgery, University of Saskatchewan, Saskatoon S7N 5E5 (Canada); Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon S7N 5E5 (Canada); Department of Neurological Science, Walton Medical Centre, University of Liverpool, L97 LJ (United Kingdom); Webb, G.I. [School of Computer Science and Software Engineering, PO Box 75, Monash University, Victoria 3800 (Australia); Wilkinson, S.J. [Department of Materials and Medical Sciences, Cranfield University, Wiltshire SN6 8LA (United Kingdom)

    2005-08-11

    Conventional neuropathological analysis for brain malignancies is heavily reliant on the observation of morphological abnormalities, observed in thin, stained sections of tissue. Small Angle X-ray Scattering (SAXS) data provide an alternative means of distinguishing pathology by examining the ultra-structural (nanometer length scales) characteristics of tissue. To evaluate the diagnostic potential of SAXS for brain tumors, data was collected from normal, malignant and benign tissues of the human brain at station 2.1 of the Daresbury Laboratory Synchrotron Radiation Source and subjected to data mining and multivariate statistical analysis. The results suggest SAXS data may be an effective classifier of malignancy.

  1. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  2. Tissue oxygen monitoring by photoacoustic lifetime imaging (PALI) and its application to image-guided photodynamic therapy (PDT)

    Science.gov (United States)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2015-03-01

    The oxygen partial pressure (pO2), which results from the balance between oxygen delivery and its consumption, is a key component of the physiological state of a tissue. Images of oxygen distribution can provide essential information for identifying hypoxic tissue and optimizing cancer treatment. Previously, we have reported a noninvasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor on small animals to identify hypoxia area. We also showed that PALI is able monitor changes of tissue oxygen, in an acute ischemia and breathing modulation model. Here we present our work on developing a treatment/imaging modality (PDT-PALI) that integrates PDT and a combined ultrasound/photoacoustic imaging system. The system provides real-time feedback of three essential parameters namely: tissue oxygen, light penetration in tumor location, and distribution of photosensitizer. Tissue oxygen imaging is performed by applying PALI, which relies on photoacoustic probing of oxygen-dependent, excitation lifetime of Methylene Blue (MB) photosensitizer. Lifetime information can also be used to generate image showing the distribution of photosensitizer. The level and penetration depth of PDT illumination can be deduced from photoacoustic imaging at the same wavelength. All images will be combined with ultrasound B-mode images for anatomical reference.

  3. The dual roles of red blood cells in tissue oxygen delivery

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Vertebrate red blood cells (RBCs) seem to serve tissue oxygen delivery in two distinct ways. Firstly, RBCs enable the adequate transport of O2 between respiratory surfaces and metabolizing tissues by means of their high intracellular concentration of hemoglobin (Hb), appropriate allosteric...... that enhance blood flow in hypoxic tissues. This latter function could be important in matching tissue O2 delivery with local O2 demand. Three main mechanisms by which RBCs can regulate their own distribution in the microcirculation have been proposed. These are: (1) deoxygenation-dependent release of ATP from...... with regard to their mechanisms, experimental evidence in their support and details that remain unresolved. The prime focus is on human/mammalian models, where most evidence for a role of erythrocyte ATP and NO release in blood flow regulation have accumulated. Information from other vertebrate groups...

  4. Estimation of Drug Binding to Brain Tissue: Methodology and in Vivo Application of a Distribution Assay in Brain Polar Lipids.

    Science.gov (United States)

    Belli, Sara; Assmus, Frauke; Wagner, Bjoern; Honer, Michael; Fischer, Holger; Schuler, Franz; Alvarez-Sánchez, Rubén

    2015-12-01

    The unbound drug concentration-effect relationship in brain is a key aspect in CNS drug discovery and development. In this work, we describe an in vitro high-throughput distribution assay between an aqueous buffer and a microemulsion of porcine brain polar lipids (BPL). The derived distribution coefficient LogDBPL was applied to the prediction of unbound drug concentrations in brain (Cu,b) and nonspecific binding to brain tissue. The in vivo relevance of the new assay was assessed for a large set of proprietary drug candidates and CNS drugs by (1) comparing observed compound concentrations in rat CSF with Cu,b calculated using the LogDBPL assay in combination with total drug brain concentrations, (2) comparing Cu,b derived from LogDBPL and total drug brain concentrations to Cu,b estimated using in vitro P-glycoprotein efflux ratio data and unbound drug plasma levels, and (3) comparing tissue nonspecific binding data from human brain autoradiography studies for 17 PET tracer candidates to distribution in BPL. In summary, the LogDBPL assay provides a predicted drug fraction unbound in brain tissue that is nearly identical to brain homogenate equilibrium dialysis with an estimation of in vivo Cu,b that is superior to LogD in octanol. LogDBPL complements the approach for predicting Cu,b based on in vitro P-glycoprotein efflux ratio and in vivo unbound plasma concentration and stands as a fast and cost-effective tool for nonspecific brain binding optimization of PET ligand candidates.

  5. Baseline oxygenation in the brain: Correlation between respiratory-calibration and susceptibility methods.

    Science.gov (United States)

    Fan, Audrey P; Schäfer, Andreas; Huber, Laurentius; Lampe, Leonie; von Smuda, Steffen; Möller, Harald E; Villringer, Arno; Gauthier, Claudine J

    2016-01-15

    New MRI methods for noninvasive imaging of baseline oxygen extraction fraction (OEF) in the brain show great promise. Quantitative O2 imaging (QUO2) applies a biophysical model to measure OEF in tissue from BOLD, cerebral blood flow (CBF), and end-tidal O2 (ETO2) signals acquired during two or more gas manipulations. Alternatively, quantitative susceptibility mapping (QSM) maps baseline OEF along cerebral vessels based on the deoxyhemoblogin (dHb) susceptibility shift between veins and water. However, these approaches have not been carefully compared to each other or to known physiological signals. The aims of this study were to compare OEF values by QUO2 and QSM; and to see if baseline OEF relates to BOLD and CBF changes during a visual task. Simultaneous BOLD and arterial spin labeling (ASL) scans were acquired at 7T in 11 healthy subjects continuously during hypercapnia (5% CO2, 21% O2), hyperoxia (100% O2), and carbogen (5% CO2, 95% O2) for QUO2 analysis. Separate BOLD-ASL scans were acquired during a checkerboard stimulus to identify functional changes in the visual cortex. Gradient echo phase images were also collected at rest for QSM reconstruction of OEF along cerebral veins draining the visual cortex. Mean baseline OEF was (43.5±14)% for QUO2 with two gases, (42.3±17)% for QUO2 with three gases, and (29.4±3)% for QSM across volunteers. Three-gas QUO2 values of OEF correlated with QSM values of OEF (P=0.03). However, Bland-Altman analysis revealed that QUO2 tended to measure higher baseline OEF with respect to QSM, which likely results from underestimation of the hyperoxic BOLD signal and low signal-to-noise ratio of the ASL acquisitions. Across subjects, the percent CBF change during the visual task correlated with OEF measured by 3-gas QUO2 (P<0.04); and by QSM (P=0.035), providing evidence that the new methods measure true variations in brain physiology across subjects.

  6. Comparison of Cerebral Oxygen Saturation and Cerebral Perfusion Computed Tomography in Cerebral Blood Flow in Patients with Brain Injury.

    Science.gov (United States)

    Trofimov, Alexey O; Kalentiev, George; Voennov, Oleg; Grigoryeva, Vera

    2016-01-01

    The purpose of this study was to determine the relationship between cerebral tissue oxygen saturation and cerebral blood volume in patients with traumatic brain injury. Perfusion computed tomography of the brain was performed in 25 patients with traumatic brain injury together with simultaneous SctO2 level measurement using cerebral near-infrared oxymetry. The mean age of the injured persons was 34.5±15.6 years (range 15-65); 14 men, 11 women. The Injury Severity Score (ISS) values were 44.4±9.7 (range 25-81). The Glasgow Coma Score (GCS) mean value before the study was 10.6±2.1 (range 5-13). SctO2 ranged from 51 to 89%, mean 62±8.2%. Cerebral blood volume (CBV) values were 2.1±0.67 ml/100 g (min 1.1; max 4.3 ml/100 g). Cerebral blood flow (CBF) was 31.99±13.6 ml/100 g×min. Mean transit time (MTT) values were 5.7±4.5 s (min 2.8; max 34.3 s). The time to peak (TTP) was 22.2±3.1 s. A statistically significant correlation was found between SctO2 level and cerebral blood volume (CBV) level (R=0.9; pperfusion.

  7. Localized increase of tissue oxygen tension by magnetic targeted drug delivery

    Science.gov (United States)

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-07-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to

  8. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    Science.gov (United States)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is

  9. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    OpenAIRE

    Polf, Jerimy C.; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured ...

  10. Neuroprotection afforded by diazepam against oxygen/glucose deprivation-induced injury in rat cortical brain slices.

    Science.gov (United States)

    Ricci, Lorenzo; Valoti, Massimo; Sgaragli, Giampietro; Frosini, Maria

    2007-04-30

    The aim of the present investigation was to assess neuroprotection exerted by diazepam (0.1-25 microM) in rat cortical brain slices subjected to oxygen-glucose deprivation and reoxygenation. Neuronal injury and neuroprotection were assessed by measuring the release of glutamate and lactate dehydrogenase and tissue water content. Results demonstrate that diazepam exerted neuroprotective effects according to a "U-shaped", hormetic-like, concentration-response curve, with an efficacy window of 0.5-5 microM concentration. Flumazenil (20 microM) fully antagonised neuroprotection afforded by 5 microM diazepam. In conclusion, the hormetic response of diazepam should be taken into consideration when designing experiments aimed at assessing diazepam neuroprotection against ischemia/reoxygenation injury.

  11. A new system for cutting brain tissue preserving vessels: water jet cutting.

    Science.gov (United States)

    Terzis, A J; Nowak, G; Rentzsch, O; Arnold, H; Diebold, J; Baretton, G

    1989-01-01

    The water jet cutting system allows transaction and dissection of biological structures with little bleeding. Structures of higher tissue rigidity remain unchanged while softer tissues are mechanically dissected. In brain tissue, all vessels larger than 20 microns are left intact after the passage of the jet stream with a pressure of up to 5 bar, and therefore vessels can be isolated selectively from the surrounding tissue. Oedema is present adjacent to the cut and no increase of temperature occurs.

  12. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A;

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from...... conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean...

  13. Effect of HSH on oxygen free radicals and histopathological change of brain tissue in dog with acute intracranial hypertension and hemorrhagic shock%高渗氯化钠羟乙基淀粉注射液输注对急性颅内高压伴失血性休克犬脑组织病理学及氧自由基的影响

    Institute of Scientific and Technical Information of China (English)

    徐翔; 古妙宁; 肖金仿; 肖华平; 赵振龙; 刘高望

    2008-01-01

    Objective To observe the effects of hypertonic sodium chloride hydroxyethyl starch 40 injection(HSH) on recovering of circulating blood volume, lessening edema of brain tissue and decreasing oxygen free radicals in dog with acute intracranial hypertension and hemorrhagic shock. Methods 20 healthy dogs were randomly divided into 4 groups: Group hydroxyethyl starch (HES), Group Ringer- lactate solution (RL), Group hypertonic saline solution (HS) and Group HSH. Acute intracranial hypertension and hemorrhagic shock were made by injecting water into epidural balloon and bleeding artery. Corresponding injections were infused respectively 1h after shock. Mean arterial blood pressure (MAP), central venous pressure (CVP), heart rate (HR) and intracranial pressure (ICP) were monitored, and the level of superoxide dismutase (SOD) and malondialdehyde (MDA) in brain tissue were examined. Specimens of brain tissue were prepared for pathological examination. Results After resuscitation, injections of 4 groups can effectively increase MAP( P < 0.05 )while ICP of Group HES and Group RL significantly increased (P < 0.05 ). Two hours after resuscitation, MAP of Group HS began to decrease (P < 0.05 ). Four hours after resuscitation, only Group HSH can maintain an higher MAP and lower ICP. MDA and SOD levels in Group HSH were evidently lower than other groups at four hours after resuscitation (P < 0. 05). Pathological examination revealed less injury in Group HSH than other groups. Conclusion HSH could effectively resuscitate hemorrhagic shock, decrease ICP, reduce oxygen free radicals levels in brain tissue and relieve tissue ischemia/reperfusion injury.%目的 观察高渗氯化钠羟乙基淀粉40注射液(HSH)在犬急性颅内高压伴失血性休克模型中恢复循环血容量、减轻脑组织水肿和降低脑组织氧自由基含量的作用.方法 健康杂种犬20只,采用硬膜外球囊注水和动脉放血的方法复制急性颅内高压伴失血性休克模型.动物

  14. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    Science.gov (United States)

    2014-09-29

    the value of this experimental platform to investigate the single bubble cavitation- induced damage in a biological tissue is illustrated with an...Lei Wu, Malisa Sarntinoranont, Huikai Xie1. Refractive index measurement of acute rat brain tissue slices using optical coherence tomography, Optics...b-TBI, i.e. what is “broken”, in the brain during exposure to shock loading is currently unknown. While blast waves are well known to have negative

  15. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    Science.gov (United States)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  16. Primary Microglia Isolation from Mixed Glial Cell Cultures of Neonatal Rat Brain Tissue

    OpenAIRE

    2012-01-01

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity 1,2. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain inj...

  17. Evaluation of tissue-equivalent materials to be used as human brain tissue substitute in dosimetry for diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.C., E-mail: cassio.c.ferreira@gmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Ximenes Filho, R.E.M., E-mail: raimundoximenes@hotmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Vieira, J.W., E-mail: jwvieira@br.inter.ne [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Av. Professor Luiz Freire, 500 Curado, CEP 50740-540, Recife (Brazil); Escola Politecnica de Pernambuco, Universidade de Pernambuco (EPP/UPE), Rua Benfica, 455, Madalena, CEP 50720-001, Recife (Brazil); Tomal, A., E-mail: alessandratomal@pg.ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Garcia, C.A.B., E-mail: cgarcia@ufs.b [Departamento de Quimica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Maia, A.F., E-mail: afmaia@ufs.b [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil)

    2010-08-15

    Tissue-equivalent materials to be used as substitutes for human brain tissue in dosimetry for diagnostic radiology have been investigated in terms of calculated total mass attenuation coefficient ({mu}/{rho}), calculated mass energy-absorption coefficient ({mu}{sub en}/{rho}) and absorbed dose. Measured linear attenuation coefficients ({mu}) have been used for benchmarking the calculated total mass attenuation coefficient ({mu}/{rho}). The materials examined were bolus, nylon (registered) , orange articulation wax, red articulation wax, PMMA (polymethylmethacrylate), bees wax, paraffin I, paraffin II, pitch and water. The results show that water is the best substitute for brain among the materials investigated. The average percentage differences between the calculated {mu}/{rho} and {mu}{sub en}/{rho} coefficients for water and those for brain were 1.0% and 2.5%, respectively. Absorbed doses determined by Monte Carlo methods confirm water as being the best brain substitute to be used in dosimetry for diagnostic radiology, showing maximum difference of 0.01%. Additionally this study showed that PMMA, a material often used for the manufacturing of head phantoms for computed tomography, cannot be considered to be a suitable substitute for human brain tissue in dosimetry.

  18. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures.

    Science.gov (United States)

    Randsoe, Thomas; Hyldegaard, Ole

    2012-08-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently until they disappeared from view at a net disappearance rate (0.02 mm(2) × min(-1)) significantly faster than for similar bubbles at 25 kPa altitude (0.01 mm(2) × min(-1)). At 25 kPa, most bubbles initially grew for 2-40 min, after which they shrank and disappeared. Four bubbles did not disappear while at 25 kPa. The results support bubble kinetic models based on Fick's first law of diffusion, Boyles law, and the oxygen window effect, predicting that oxygen contributes more to bubble volume and growth during hypobaric conditions. As the effect of oxygen increases, the lower the ambient pressure. The results indicate that recompression is instrumental in the treatment of aDCS.

  19. Evaluation of tissue oxygen measurements for flap monitoring in an animal model

    DEFF Research Database (Denmark)

    Bonde, Christian; Elberg, Jens; Holstein-Rathlou, N.-H.

    2008-01-01

    Tissue oxygen tension (p(ti)O(2)) measurements are common in neurosurgery but uncommon in plastic surgery. We examined this technique as a monitoring method with probe placement in the subcutaneous tissue and addressed the importance of probe placement. Myocutaneous flaps were raised in an animal...... model and p(ti)O(2) measurements performed at different levels in the subcutaneous fat. Flap artery and vein were occluded until a 50% p(ti)O(2) reduction had occurred (T(1/2)). We found no significant effect of depth (P>0.10) on the level of p(ti)O(2). T(1/2)(arterial) was 7.2 minutes and T(1/2)(venous...... in the subcutaneous tissue and is highly sensitive to changes in both arterial and venous blood flow....

  20. Acute supramaximal exercise increases the brain oxygenation in relation to cognitive workload

    Directory of Open Access Journals (Sweden)

    Cem Seref Bediz

    2016-04-01

    Full Text Available Single bout of exercise can improve the performance on cognitive tasks. However, cognitive responses may be controversial due to different type, intensity, and duration of exercise. In addition, the mechanism of the effect of acute exercise on brain is still unclear. This study was aimed to investigate the effects of supramaximal exercise on cognitive tasks by means of brain oxygenation monitoring. The brain oxygenation of Prefrontal cortex (PFC was measured on 35 healthy male volunteers via functional Near Infrared Spectroscopy (fNIRS system. Subjects performed 2-Back test before and after the supramaximal exercise (Wingate Anaerobic Test lasting 30-s on cycle ergometer. The PFC oxygenation change evaluation revealed that PFC oxygenation rise during post-exercise 2-Back task was considerably higher than those in pre-exercise 2-Back task. In order to describe the relationship between oxygenation change and exercise performance, subjects were divided into two groups as high performers (HP and low performers (LP according to their peak power values (PP obtained from the supramaximal test. The oxy-hemoglobin (oxy-Hb values were compared between pre- and post-exercise conditions within subjects and also between subjects according to peak power. When performers were compared, in the HP group, the oxy-Hb values in post-exercise 2-Back test were significantly higher than those in pre-exercise 2-Back test. HP had significantly higher post-exercise oxy-Hb change (Δ than those of LP. In addition, peak power values of the total group were significantly correlated with Δoxy-Hb. The key findings of the present study revealed that acute supramaximal exercise has an impact on the brain oxygenation during a cognitive task. Also, the higher the anaerobic PP describes the larger the oxy-Hb response in post-exercise cognitive task. The current study also demonstrated a significant correlation between peak power (exercise load and post-exercise hemodynamic

  1. Expression of IL-1 β and TNF-α in edematous cerebral tissues of rats after traumatic brain injury and the effect of hyperbaric oxygen on its expression%白细胞介素-1β和肿瘤坏死因子-α在脑外伤大鼠脑水肿组织中的表达及高压氧对其影响的研究

    Institute of Scientific and Technical Information of China (English)

    何俊德; 谢泽宇; 陈葆; 瞿文军

    2012-01-01

    目的 探讨脑外伤大鼠脑水肿组织中白细胞介-素-1β(IL-1β)和肿瘤坏死因子-α(TNF-α)的表达变化及不同时间窗高压氧(HBO)治疗对其表达的影响.方法 将96只大鼠随机分为:正常对照组(A组)、液压冲击脑外伤模型组(B组)、液压冲击脑外伤模型+常规治疗组(C组)、液压冲击脑外伤模型+常规治疗+ HBO 治疗组(D组),每组24只:D组模型建立后根据进行HBO治疗的时间点(3、12、24、72 h),分为4亚组(D-3 h组、D-12 h组、D-24h组和D-72 h组,每亚组6只),其中B、C、D组分别按照采用大鼠侧位液压冲击构建脑损伤动物模型后进行不同治疗.RT-PCR和免疫组化分别检测脑组织中IL-1β和TNF-a的mRNA表达和蛋白表达情况.结果 IL-1β3和TNF-α mRNA表达及蛋白表达方面A组<D-3 h组<D-12 h组<D-24 h组<D-72 b组<C组<B组(P均< 0.05).结论 IL-1β和TNF-α与脑外伤大鼠脑水肿组织的形成密切相关,HBO可以下调IL-β3和TNF-α的表达,减轻脑水肿,从而改善颅脑损伤大鼠的学习能力,而且这种高压氧治疗的时间宜尽早实施.%Objective To study the changes of expression of IL-1β and TNF-αt in edematous cerebral tissues of rats after traumatic brain injury and the effect of hyperbaric oxygen(HBO)on the expression.Methods The traumatic brain injury model was established by use of graded lateral fluid percussion in rats.Minty-six rats were randomly divided into 4 groups:control group(group A),traumatic brain injury group(group B),traumatic brain injury and conventional therapy group(group C),traumatic brain injury and conventional therapy and HBO therapy group(group D)(n =24).And group D were sub divided into 4 groups:group D-3 h,group D-12 h,group D-24 h and groups D-72 h that HBO therapy was administered at 3,12,24,72 h after traumatic brain injury(n =6).Cerebral IL-1β and TNF-α protein expression and mRNA expression were tested by immunohistochemistry and RT-PCR in each group after

  2. In vivo detection of epileptic brain tissue using static fluorescence and diffuse reflectance spectroscopy.

    Science.gov (United States)

    Yadav, Nitin; Bhatia, Sanjiv; Ragheb, John; Mehta, Rupal; Jayakar, Prasanna; Yong, William; Lin, Wei-Chiang

    2013-02-01

    Diffuse reflectance and fluorescence spectroscopy are used to detect histopathological abnormalities of an epileptic brain in a human subject study. Static diffuse reflectance and fluorescence spectra are acquired from normal and epileptic brain areas, defined by electrocorticography (ECoG), from pediatric patients undergoing epilepsy surgery. Biopsy specimens are taken from the investigated sites within an abnormal brain. Spectral analysis reveals significant differences in diffuse reflectance spectra and the ratio of fluorescence and diffuse reflectance spectra from normal and epileptic brain areas defined by ECoG and histology. Using these spectral differences, tissue classification models with accuracy above 80% are developed based on linear discriminant analysis. The differences between the diffuse reflectance spectra from the normal and epileptic brain areas observed in this study are attributed to alterations in the static hemodynamic characteristics of an epileptic brain, suggesting a unique association between the histopathological and the hemodynamic abnormalities in an epileptic brain.

  3. Oxygen-glucose deprivation and reoxygenation as an in vitro ischemia-reperfusion injury model for studying blood-brain barrier dysfunction.

    Science.gov (United States)

    Alluri, Himakarnika; Anasooya Shaji, Chinchusha; Davis, Matthew L; Tharakan, Binu

    2015-05-07

    Ischemia-Reperfusion (IR) injury is known to contribute significantly to the morbidity and mortality associated with ischemic strokes. Ischemic cerebrovascular accidents account for 80% of all strokes. A common cause of IR injury is the rapid inflow of fluids following an acute/chronic occlusion of blood, nutrients, oxygen to the tissue triggering the formation of free radicals. Ischemic stroke is followed by blood-brain barrier (BBB) dysfunction and vasogenic brain edema. Structurally, tight junctions (TJs) between the endothelial cells play an important role in maintaining the integrity of the blood-brain barrier (BBB). IR injury is an early secondary injury leading to a non-specific, inflammatory response. Oxidative and metabolic stress following inflammation triggers secondary brain damage including BBB permeability and disruption of tight junction (TJ) integrity. Our protocol presents an in vitro example of oxygen-glucose deprivation and reoxygenation (OGD-R) on rat brain endothelial cell TJ integrity and stress fiber formation. Currently, several experimental in vivo models are used to study the effects of IR injury; however they have several limitations, such as the technical challenges in performing surgeries, gene dependent molecular influences and difficulty in studying mechanistic relationships. However, in vitro models may aid in overcoming many of those limitations. The presented protocol can be used to study the various molecular mechanisms and mechanistic relationships to provide potential therapeutic strategies. However, the results of in vitro studies may differ from standard in vivo studies and should be interpreted with caution.

  4. Transient oxygen-glucose deprivation sensitizes brain capillary endothelial cells to rtPA at 4h of reoxygenation.

    Science.gov (United States)

    Kuntz, Mélanie; Mysiorek, Caroline; Pétrault, Olivier; Boucau, Marie-Christine; Aijjou, Rachid; Uzbekov, Rustem; Bérézowski, Vincent

    2014-01-01

    Thrombolysis treatment of acute ischemic stroke is limited by the pro-edematous and hemorrhagic effects exerted by reperfusion, which disrupts the blood-brain barrier (BBB) capillary endothelium in the infarct core. Most studies of the ischemic BBB overlook the complexity of the penumbral area, where the affected brain cells are still viable following deprivation. Our present objective was to examine in vitro the kinetic impact of reoxygenation on the integrity of ischemic BBB cells after oxygen-glucose deprivation. Through the use of a co-culture of brain capillary endothelial cells and glial cells, we first showed that the transendothelial permeability increase induced by deprivation can occur with both preserved cell viability and interendothelial tight junction network. The subtle and heterogeneous alteration of the tight junctions was observable only through electron microscopy. A complete permeability recovery was then found after reoxygenation, when Vimentin and Actin networks were reordered. However, still sparse ultrastructural alterations of tight junctions suggested an acquired vulnerability. Endothelial cells were then exposed to recombinant tissue-type plasminogen activator (rtPA) to define a temporal profile for the toxic effect of this thrombolytic on transendothelial permeability. Interestingly, the reoxygenated BBB broke down with aggravated tight junction disruption when exposed to rtPA only at 4h after reoxygenation. Moreover, this breakdown was enhanced by 50% when ischemic glial cells were present during the first hours of reoxygenation. Our results suggest that post-stroke reoxygenation enables retrieval of the barrier function of brain capillary endothelium when in a non-necrotic environment, but may sensitize it to rtPA at the 4-hour time point, when both endothelial breakdown mechanisms and glial secretions could be identified and targeted in a therapeutical perspective.

  5. Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging.

    Science.gov (United States)

    Hasan, Khader M; Sankar, Ambika; Halphen, Christopher; Kramer, Larry A; Brandt, Michael E; Juranek, Jenifer; Cirino, Paul T; Fletcher, Jack M; Papanicolaou, Andrew C; Ewing-Cobbs, Linda

    2007-10-29

    We used a diffusion tensor imaging-based whole-brain tissue segmentation to characterize age-related changes in (a) whole-brain grey matter, white matter, and cerebrospinal fluid relative to intracranial volume and (b) the corresponding brain tissue microstructure using measures of diffusion tensor anisotropy and mean diffusivity. The sample, a healthy cohort of 119 right-handed males and females aged 7-68 years. Our results demonstrate that white matter and grey matter volumes and their corresponding diffusion tensor anisotropy and mean diffusivity follow nonlinear trajectories with advancing age. In contrast, cerebrospinal fluid volume increases linearly with age.

  6. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity.

    Science.gov (United States)

    Unhavaithaya, Yingdee; Orr-Weaver, Terry L

    2012-01-01

    Proper development requires coordination in growth of the cell types composing an organ. Many plant and animal cells are polyploid, but how these polyploid tissues contribute to organ growth is not well understood. We found the Drosophila melanogaster subperineurial glia (SPG) to be polyploid, and ploidy is coordinated with brain mass. Inhibition of SPG polyploidy caused rupture of the septate junctions necessary for the blood-brain barrier. Thus, the increased SPG cell size resulting from polyploidization is required to maintain the SPG envelope surrounding the growing brain. Polyploidization likely is a conserved strategy to coordinate tissue growth during organogenesis, with potential vertebrate examples.

  7. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen

    Science.gov (United States)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.

    1979-01-01

    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  8. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    Directory of Open Access Journals (Sweden)

    Woo Chul Jeong

    2015-08-01

    Full Text Available Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  9. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    Science.gov (United States)

    Jeong, Woo Chul; Wi, Hun; Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-08-01

    Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR)-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  10. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  11. Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice.

    Science.gov (United States)

    Amador-Alvarado, Leticia; Montiel, Teresa; Massieu, Lourdes

    2014-09-01

    Hypoglycemia is a serious complication of insulin therapy in patients suffering from type 1 Diabetes Mellitus. Severe hypoglycemia leading to coma (isoelectricity) induces massive neuronal death in vulnerable brain regions such as the hippocampus, the striatum and the cerebral cortex. It has been suggested that the production of reactive oxygen species (ROS) and oxidative stress is involved in hypoglycemic brain damage, and that ROS generation is stimulated by glucose reintroduction (GR) after the hypoglycemic coma. However, the distribution of ROS in discrete brain regions has not been studied in detail. Using the oxidation sensitive marker dihydroethidium (DHE) we have investigated the distribution of ROS in different regions of the mouse brain during prolonged severe hypoglycemia without isoelectricity, as well as the effect of GR on ROS levels. Results show that ROS generation increases in the hippocampus, the cerebral cortex and the striatum after prolonged severe hypoglycemia before the coma. The hippocampus showed the largest increases in ROS levels. GR further stimulated ROS production in the hippocampus and the striatum while in the cerebral cortex, only the somatosensory and parietal areas were significantly affected by GR. Results suggest that ROS are differentially produced during the hypoglycemic insult and that a different response to GR is present among distinct brain regions.

  12. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    Science.gov (United States)

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy.

  13. Effects of different concentrations of pollen extract on brain tissues of Oncorhynchus mykiss

    Institute of Scientific and Technical Information of China (English)

    Mehmet Fuat Gulhan; Hasan Akgul; Taner Dastan; Sevgi Durna Dastan; Zeliha Selamoglu Talas

    2014-01-01

    Objective: To determine the antioxidant capacities of pollen extract applied at different concentrations on biochemical parameters in brain tissues of rainbow trouts. Methods:parameters in brain tissues of fish treated at various concentrations of the pollen extract (0.5, 2.5, 5, 10, 20 and 30 mg/L) for 96 h. The malondialdehyde levels, total antioxidant status, total oxidant status, oxidative stress index and amounts of total free sulfhydryl groups were analyzed in fish brain. Results:The effective concentration of pollen was determined with some biochemical treated compared to control group (P Conclusions: To apply the pollen to fish reduces the detrimental effects and modulates oxidative status via activating antioxidant defense systems at brain tissue. As a result, pollen can be added up to 10 mg/L to the medium of rainbow trout to improve health of fish.

  14. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, T.; Kvist, T.M.; Hyldegaard, O.

    2008-01-01

    and heliox breathing. Preoxygenation enhanced bubble disappearance compared with oxygen and heliox breathing but did not prevent bubble growth. The results indicate that oxygen breathing at 25 kPa promotes air bubble growth in adipose tissue regardless of the tissue nitrogen pressure Udgivelsesdato: 2008/11......At altitude, bubbles are known to form and grow in blood and tissues causing altitude decompression sickness. Previous reports indicate that treatment of decompression sickness by means of oxygen breathing at altitude may cause unwanted bubble growth. In this report we visually followed the in vivo.......7) after which they started shrinking or remained stable throughout the observation period. Bubble growth time was significantly longer during oxygen breathing compared with heliox breathing and preoxygenated animals. Significantly more bubbles disappeared in preoxygenated animals compared with oxygen...

  15. Influence of oxygen tension on myocardial performance. Evaluation by tissue Doppler imaging

    Directory of Open Access Journals (Sweden)

    Poulsen Steen

    2004-11-01

    Full Text Available Abstract Background Low O2 tension dilates coronary arteries and high O2 tension is a coronary vasoconstrictor but reports on O2-dependent effects on ventricular performance diverge. Yet oxygen supplementation remains first line treatment in cardiovascular disease. We hypothesized that hypoxia improves and hyperoxia worsens myocardial performance. Methods Seven male volunteers (mean age 38 ± 3 years were examined with echocardiography at respiratory equilibrium during: 1 normoxia (≈21% O2, 79% N2, 2 while inhaling a hypoxic gas mixture (≈11% O2, 89% N2, and 3 while inhaling 100% O2. Tissue Doppler recordings were acquired in the apical 4-chamber, 2-chamber, and long-axis views. Strain rate and tissue tracking displacement analyses were carried out in each segment of the 16-segment left ventricular model and in the basal, middle and apical portions of the right ventricle. Results Heart rate increased with hypoxia (68 ± 4 bpm at normoxia vs. 79 ± 5 bpm, P Conclusion Hypoxia improves and hyperoxia worsens systolic myocardial performance in healthy male volunteers. Tissue Doppler measures of diastolic function are unaffected by hypoxia/hyperoxia which support that the changes in myocardial performance are secondary to changes in vascular tone. It remains to be settled whether oxygen therapy to patients with heart disease is a consistent rational treatment.

  16. The use of visible light spectroscopy to measure tissue oxygenation in free flap reconstruction.

    Science.gov (United States)

    Cornejo, Agustin; Rodriguez, Thomas; Steigelman, Megan; Stephenson, Stacy; Sahar, David; Cohn, Stephen M; Michalek, Joel E; Wang, Howard T

    2011-09-01

    The loss of a free flap is a feared complication for both the surgeon and the patient. Early recognition of vascular compromise has been shown to provide the best chance for flap salvage. The ideal monitoring technique for perioperative free flap ischemia would be noninvasive, continuous, and reliable. Visible light spectroscopy (VLS) was evaluated as a new method for predicting ischemia in microvascular cutaneous soft tissue free flaps. In an Institutional Review Board-approved prospective trial, 12 patients were monitored after free flap reconstructions. The tissue hemoglobin oxygen saturation (StO (2)) and total hemoglobin concentration (THB) of 12 flaps were continuously monitored using VLS for 72 hours postoperatively. Out of these 12 flaps 11 were transplanted successfully and 1 flap loss occurred. The StO (2 )was 48.99% and the THB was 46.74% for the 12 flaps. There was no significant difference in these values among the flaps. For the single flap loss, the device accurately reflected the ischemic drop in StO (2) indicating drastic tissue ischemia at 6 hours postoperatively before the disappearance of implantable Doppler signals or clinical signs of flap compromise. VLS, a continuous, noninvasive, and localized method to monitor oxygenation, appeared to predict early ischemic complications after free flap reconstruction.

  17. Correspondence of DNA Methylation Between Blood and Brain Tissue and Its Application to Schizophrenia Research.

    Science.gov (United States)

    Walton, Esther; Hass, Johanna; Liu, Jingyu; Roffman, Joshua L; Bernardoni, Fabio; Roessner, Veit; Kirsch, Matthias; Schackert, Gabriele; Calhoun, Vince; Ehrlich, Stefan

    2016-03-01

    Given the difficulty of procuring human brain tissue, a key question in molecular psychiatry concerns the extent to which epigenetic signatures measured in more accessible tissues such as blood can serve as a surrogate marker for the brain. Here, we aimed (1) to investigate the blood-brain correspondence of DNA methylation using a within-subject design and (2) to identify changes in DNA methylation of brain-related biological pathways in schizophrenia.We obtained paired blood and temporal lobe biopsy samples simultaneously from 12 epilepsy patients during neurosurgical treatment. Using the Infinium 450K methylation array we calculated similarity of blood and brain DNA methylation for each individual separately. We applied our findings by performing gene set enrichment analyses (GSEA) of peripheral blood DNA methylation data (Infinium 27K) of 111 schizophrenia patients and 122 healthy controls and included only Cytosine-phosphate-Guanine (CpG) sites that were significantly correlated across tissues.Only 7.9% of CpG sites showed a statistically significant, large correlation between blood and brain tissue, a proportion that although small was significantly greater than predicted by chance. GSEA analysis of schizophrenia data revealed altered methylation profiles in pathways related to precursor metabolites and signaling peptides.Our findings indicate that most DNA methylation markers in peripheral blood do not reliably predict brain DNA methylation status. However, a subset of peripheral data may proxy methylation status of brain tissue. Restricting the analysis to these markers can identify meaningful epigenetic differences in schizophrenia and potentially other brain disorders.

  18. Effect of xinmailong on metabolism of oxygen free radicals and content of lipofuscin in brain and hepatic tissues%心脉龙干预后氧自由基代谢及脑、肝组织脂褐质含量的变化

    Institute of Scientific and Technical Information of China (English)

    吴建新; 钮荣祥; 黄秀群; 田昆仑; 董丛丽

    2006-01-01

    dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum, content of malondialdehyde (MDA) in brain tissue and content of lipofuscin in cerebral and hepatic tissue were measured according to introduction of kits.MAIN OUTCOME MEASURES: ① Activities of CAT, SOD and GSHPx in serum; ② content of MDA in brain tissue and contents of lipofuscin in cerebral and hepatic tissues.RFSULTS: A total of 40 animals were involved in the final analysis without any loss. ① Activities of CAT, SOD and GSH-Px in serum of mice were lower in aging control group than those in young control group; however,activities of CAT, SOD and GSH-Px in serum of mice were increased in the two XML dosage groups, and there was significant difference from those in aging control group (P < 0.05 or P < 0.01). ② Content of MDA in brain tissue and contents of lipofuscin in cerebral and hepatic tissues of mice in aging control group were higher than those of mice in young control group, but those in the two dosage groups were decreased, which was significant difference from those of mice in aging control group (P < 0.01). However, there was no significant difference between the two dosage groups.CONCLUSION: XML has an effect on anti-aging through improving metabolism of free radicals.

  19. Acute effects of nicotine and smoking on blood flow, tissue oxygen, and aerobe metabolism of the skin and subcutis

    DEFF Research Database (Denmark)

    Sørensen, Lars Tue; Jørgensen, Stig; Petersen, Lars J

    2009-01-01

    and subcutaneous blood flow (QBF, SqBF) was assessed by Laser Doppler and 133Xe clearance. Tissue oxygen tension (TO(2)) was measured by a LICOX O(2)-electrode. Tissue glucose and lactate (Tgluc, Tlact) were assessed by microdialysis. The parameters were studied after intravenous infusion of 1.0 mg nicotine......, smoking of one cigarette, arterial occlusion, and reperfusion. RESULTS: Nicotine infusion decreased SqBF from 4.2 +/- 2.0 to 3.1 +/- 1.2 mL/100 g tissue/min (P ... by smoking, which distinctly decreases tissue blood flow, oxygen tension, and aerobe metabolism independent of smoking status....

  20. Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse

    Science.gov (United States)

    Crespi, F.; Donini, M.; Bandera, A.; Congestri, F.; Formenti, F.; Sonntag, V.; Heidbreder, C.; Rovati, L.

    2006-07-01

    The feasibility of non-invasive analysis of brain activities was studied in the attempt to overcome the major limitation of actual in vivo methodologies, i.e. invasiveness. Optic fibre probes were used as the optical head of a novel, highly sensitive near-infrared continuous wave spectroscopy (CW-NIR) instrument. This prototype was designed for non-invasive analysis of the two main forms of haemoglobin: oxy-haemoglobin (HbO2) and deoxy-haemoglobin (Hb), chromophores present in biological tissues. It was tested in peripheral tissue (human gastrocnemius muscle) and then reset to perform the measurement on rat brain. In animal studies, the optical head was firmly placed using stereotaxic apparatus upon the sagittal line of the head of anaesthetized adult rats, without any surgery. Then pharmacological treatments with saline (300 µl s.c.) amphetamine (2 mg kg-1) or nicotine (0.4 mg kg-1) were performed. Within 10-20 min amphetamine substantially increased HbO2 and reduced Hb control levels. Nicotine produced a rapid initial increase followed by a decrease in HbO2. In contrast to amphetamine, nicotine treatment also reduced Hb and blood volume. These results support the capacity of our CW-NIR prototype to measure non-invasively HbO2 and Hb levels in the rat brain, that are markers of the degree of tissue oxygenation, thus providing an index of blood levels and therefore of brain metabolism.

  1. A hybrid hierarchical approach for brain tissue segmentation by combining brain atlas and least square support vector machine.

    Science.gov (United States)

    Kasiri, Keyvan; Kazemi, Kamran; Dehghani, Mohammad Javad; Helfroush, Mohammad Sadegh

    2013-10-01

    In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth.

  2. Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging

    NARCIS (Netherlands)

    Anbeek, Petronella; Vincken, Koen L.; Groenendaal, Floris; Koeman, Annemieke; Van Osch, Matthias J. P.; Van der Grond, Jeroen

    2008-01-01

    A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and i

  3. Prostacyclin infusion may prevent secondary damage in pericontusional brain tissue

    DEFF Research Database (Denmark)

    Reinstrup, Peter; Nordström, Carl-Henrik

    2011-01-01

    Prostacyclin is a potent vasodilator, inhibitor of leukocyte adhesion, and platelet aggregation, and has been suggested as therapy for cerebral ischemia. A case of focal traumatic brain lesion that was monitored using intracerebral microdialysis, and bedside analysis and display is reported here....... When biochemical signs of cerebral ischemia progressed, i.v. infusion of prostacyclin was started....

  4. Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    NARCIS (Netherlands)

    R. de Boer (Renske)

    2011-01-01

    textabstractStudies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by human obs

  5. Reduction in the in vitro expression of Brain-Pancreas Relative Protein by oxygen and glucose-deprivation

    NARCIS (Netherlands)

    Lin, Yan-Hua; Liu, Ai-Hua; Pan, Yan; Westenbroek, Christel; Ter Horst, Gert J.; Yu, He-Ming; Li, Xue-Jun

    2007-01-01

    Brain-Pancreas Relative Protein (BPRP) is a novel protein found in our laboratory. In previous study we observed a significant reduction in BPRP in ischemic brain of rat. Here we undertook this study to explore the possible mediating mechanism by which oxygen and glucose-deprivation culture (OGD), a

  6. Use of diffuse optical spectroscopy to monitor muscle and brain oxygenation dynamics during isometric and isokinetic exercise

    Science.gov (United States)

    Ganesan, Goutham; Cotter, Joshua; Reuland, Warren; Warren, Robert V.; Mirzaei Zarandi, Soroush M.; Cerussi, Albert E.; Tromberg, Bruce J.; Galassetti, Pietro

    2013-03-01

    The use of near-infrared time-resolved spectroscopy (TRS-20, Hamamatsu Corporation) in two resistance type exercise applications in human subjects is described. First, using isometric flexion of the biceps, we compared the magnitude and relevance of tissue hemoglobin concentration and oxygen saturation (stO2) changes when assuming constant scattering versus continuous measurement of reduced scattering coefficients at three wavelengths. It was found that the assumption of constant scattering resulted in significant errors in hemoglobin concentration assessment during sustained isometric contractions. Secondly, we tested the effect of blood flow restriction (BFR) on oxygenation in a muscle (vastus medialis oblique, VMO) and in the prefrontal cortex (PFC) of the brain. The BFR training technique resulted in considerably more fatigability in subjects, and correlated with reduced muscle stO2 between sets of exertion. Additionally, exercise with BFR resulted in greater PFC deoxygenation than a condition with equivalent work performance but no BFR. These experiments demonstrate novel applications for diffuse optical spectroscopy in strength testing and targeted muscle rehabilitation.

  7. Gene Expression Profiling during Pregnancy in Rat Brain Tissue.

    Science.gov (United States)

    Mann, Phyllis E

    2014-03-04

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases "expectant brain" and "maternal brain". Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  8. Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury PCS and PTSD

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-10-1-0962 TITLE: Hyperbaric Oxygen therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury...Annual 3. DATES COVERED (From – To) 30Sep2014 - 29Sep2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-10-1-0962 Hyperbaric Oxygen therapy in...post- hyperbaric oxygen treatment. Four additional subjects have been screened in October 2015 and nine are awaiting first appointment for

  9. EEG abnormalities in clinically diagnosed brain death organ donors in Iranian tissue bank.

    Science.gov (United States)

    Tavakoli, Seyed Amir Hossein; Khodadadi, Abbas; Azimi Saein, Amir Reza; Bahrami-Nasab, Hasan; Hashemi, Behnam; Tirgar, Niloufar; Nozary Heshmati, Behnaz

    2012-01-01

    Brain death is defined as the permanent, irreversible and concurrent loss of all brain and brain stem functions. Brain death diagnosis is based on clinical criteria and it is not routine to use paraclinical studies. In some countries, electroencephalogram (EEG) is performed in all patients for the determination of brain death while there is some skepticism in relying on EEG as a confirmatory test for brain death diagnosis. In this study, we assessed the validity of EEG and its abnormalities in brain death diagnosis. In this retrospective study, we used 153 EEGs from medical records of 89 brain death patients in organ procurement unit of the Iranian Tissue Bank admitted during 2002-2008. We extracted and analyzed information including EEGs, which were examined by a neurologist for waves, artifacts and EEG abnormalities. The mean age of the patients was 27.2±12.7 years. The most common cause of brain death was multiple traumas due to accident (65%). The most prevalent artifact was electrical transformer. 125 EEGs (82%) were isoelectric (ECS) and seven EEGs (5%) were depictive of some cerebral activity which upon repeat EEGs, they showed ECS patterns too. There was no relationship between cause of brain death and cerebral activity in EEGs of the patients. In this study, we could confirm ECS patterns in all brain death patients whose status had earlier been diagnosed clinically. Considering the results of this study, it seems sensible to perform EEG as a final confirmatory test as an assurance to the patients' families.

  10. Dynamic effects of point source electroporation on the rat brain tissue.

    Science.gov (United States)

    Sharabi, Shirley; Last, David; Guez, David; Daniels, Dianne; Hjouj, Mohammad Ibrahim; Salomon, Sharona; Maor, Elad; Mardor, Yael

    2014-10-01

    In spite of aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme due to tumor infiltration into the surrounding brain as well as poor blood-brain barrier penetration of most therapeutic agents. In this paper we present a novel approach for a minimally invasive treatment and a non-invasive response assessment methodology consisting of applying intracranial point-source electroporation and assessing treatment effect volumes using magnetic resonance imaging. Using a unique setup of a single intracranial electrode and an external surface electrode we treated rats' brains with various electroporation protocols and applied magnetic resonance imaging to study the dependence of the physiological effects on electroporation treatment parameters. The extent of blood-brain barrier disruption and later volumes of permanent brain tissue damage were found to correlate significantly with the treatment voltages (r(2)=0.99, pelectroporation when planning a treatment for brain tumors.

  11. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, R; Langberg, Henning; Green, Stefan Mathias;

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise......, and (2) whether blood flow is coupled to oxidative metabolism. 2. Seven individuals performed dynamic plantar flexion from 1 to 9 W. Radial artery and popliteal venous blood were sampled for O2, peritendinous blood flow was determined by 133Xe-washout, calf blood flow by plethysmography, cardiac output...... by dye dilution, arterial pressure by an arterial catheter-transducer, and muscle and peritendinous O2 saturation by spatially resolved spectroscopy (SRS). 3. Calf blood flow rose 20-fold with exercise, reaching 44 +/- 7 ml (100 g)-1 min-1 (mean +/- s.e.m. ) at 9 W, while Achilles' peritendinous flow...

  12. Challenges in understanding the impact of blood pressure management on cerebral oxygenation in the preterm brain

    Directory of Open Access Journals (Sweden)

    Aminath eAzhan

    2012-12-01

    Full Text Available Systemic hypotension in preterm infants has been related to increased mortality, cerebrovascular lesions and neurodevelopmental morbidity. Treatment of hypotension with inotropic medications aims at preservation of end organ perfusion and oxygen delivery, especially the brain. The common inotropic medications in preterm infants include dopamine, dobutamine, adrenalin, with adjunctive use of corticosteroids in cases of refractory hypotension. Whether maintenance of mean arterial blood pressure (MAP by use of inotropic medication is neuroprotective or not remains unclear. This review explores the different inotropic agents and their effects on perfusion and oxygenation in the preterm brain, in clinical studies as well as in animal models. Dopamine and adrenalin, because of their -adrenergic vasoconstrictor actions, have raised concerns of reduction in cerebral blood flow (CBF. Several studies in hypotensive preterm infants have shown that dopamine elevates CBF together with increased MAP, in keeping with limited cerebro-autoregulation. Adrenaline is also effective in raising cerebral perfusion together with MAP in preterm infants. Experimental studies in immature animals show no cerebro-vasoconstrictive effects of dopamine or adrenaline, but demonstrate the consistent findings of increased cerebral perfusion and oxygenation with the use of dopamine, dobutamine and adrenaline, alongside with raised MAP. Both clinical and animal studies report the transitory effects of adrenaline in increasing plasma lactate, and blood glucose, which might render its use as a 2nd line therapy. To investigate the cerebral effects of inotropic agents in long-term outcome in hypotensive preterm infants, carefully designed prospective research possibly including preterm infants with permissive hypotension is required. Preterm animal models would be useful in investigating the relationship between the physiological effects of inotropes and histopathology outcomes in

  13. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E H; Bayly, P V [Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, Saint Louis, MO 63130 (United States); Garbow, J R, E-mail: clayton@wustl.edu, E-mail: garbow@wustl.edu, E-mail: pvb@wustl.edu [Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University in St Louis, 4525 Scott Avenue, Campus Box 8227, Saint Louis, MO 63110 (United States)

    2011-04-21

    Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G'') increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.

  14. Optimal Gaussian Mixture Models of Tissue Intensities in Brain MRI of Patients with Multiple-Sclerosis

    Science.gov (United States)

    Xiao, Yiming; Shah, Mohak; Francis, Simon; Arnold, Douglas L.; Arbel, Tal; Collins, D. Louis

    Brain tissue segmentation is important in studying markers in human brain Magnetic Resonance Images (MRI) of patients with diseases such as Multiple Sclerosis (MS). Parametric segmentation approaches typically assume unimodal Gaussian distributions on MRI intensities of individual tissue classes, even in applications on multi-spectral images. However, this assumption has not been rigorously verified especially in the context of MS. In this work, we evaluate the local MRI intensities of both healthy and diseased brain tissues of 21 multi-spectral MRIs (63 volumes in total) of MS patients for adherence to this assumption. We show that the tissue intensities are not uniform across the brain and vary across (anatomical) regions of the brain. Consequently, we show that Gaussian mixtures can better model the multi-spectral intensities. We utilize an Expectation Maximization (EM) based approach to learn the models along with a symmetric Jeffreys divergence criterion to study differences in intensity distributions. The effects of these findings are also empirically verified on automatic segmentation of brains with MS.

  15. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  16. Haloperidol imprinted polymer: preparation, evaluation, and application for drug assay in brain tissue.

    Science.gov (United States)

    Rahmani, Aboubakr; Mohammadpour, Amir Hooshang; Sahebnasagh, Adeleh; Mohajeri, Seyed Ahmad

    2014-11-01

    Several molecularly imprinted polymers (MIPs) were prepared in the present work, and their binding properties were evaluated in comparison with a nonimprinted polymer (NIP). An optimized MIP was selected and applied for selective extraction and analysis of haloperidol in rabbit brain tissue. A molecularly imprinted solid-phase extraction (MISPE) method was developed for cleanup and preconcentration of haloperidol in brain samples before HPLC-UV analysis. Selectivity of the MISPE procedure was investigated using haloperidol and some structurally different drugs with similar polarity that could exist simultaneously in brain tissue. The extraction and analytical process was calibrated in the range of 0.05-10 ppm. The recovery of haloperidol in this MISPE process was calculated between 79.9 and 90.4%. The limit of detection (LOD) and the limit of quantification (LOQ) of the assay were 0.008 and 0.05 ppm, respectively. Intraday precision and interday precision values for haloperidol analysis were less than 5.86 and 7.63%, respectively. The MISPE method could effectively extract and concentrate haloperidol from brain tissue in the presence of clozapine and imipramine. Finally, the imprinted polymer was successfully applied for the determination of haloperidol in a real rabbit brain sample after administration of a toxic dose. Therefore, the proposed MISPE method could be applied in the extraction and preconcentration before HPLC-UV analysis of haloperidol in rabbit brain tissue.

  17. Extraction of optical properties and prediction of light distribution in rat brain tissue

    Science.gov (United States)

    Azimipour, Mehdi; Baumgartner, Ryan; Liu, Yuming; Jacques, Steven L.; Eliceiri, Kevin; Pashaie, Ramin

    2014-07-01

    Predicting the distribution of light inside any turbid media, such as biological tissue, requires detailed information about the optical properties of the medium, including the absorption and scattering coefficients and the anisotropy factor. Particularly, in biophotonic applications where photons directly interact with the tissue, this information translates to system design optimization, precision in light delivery, and minimization of unintended consequences, such as phototoxicity or photobleaching. In recent years, optogenetics has opened up a new area in deep brain stimulation with light and the method is widely adapted by researchers for the study of the brain circuitries and the dynamics of neurological disorders. A key factor for a successful optogenetic stimulation is delivering an adequate amount of light to the targeted brain objects. The adequate amount of light needed to stimulate each brain object is identified by the tissue optical properties as well as the type of opsin expressed in the tissue, wavelength of the light, and the physical dimensions of the targeted area. Therefore, to implement a precise light delivery system for optogenetics, detailed information about the optical properties of the brain tissue and a mathematical model that incorporates all determining factors is needed to find a good estimation of light distribution in the brain. In general, three measurements are required to obtain the optical properties of any tissue, namely diffuse transmitted light, diffuse reflected light, and transmitted ballistic beam. In this report, these parameters were measured in vitro using intact rat brain slices of 500 μm thickness via a two-integrating spheres optical setup. Then, an inverse adding doubling method was used to extract the optical properties of the tissue from the collected data. These experiments were repeated to cover the whole brain tissue with high spatial resolution for the three different cuts (transverse, sagittal, and coronal

  18. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Mathiesen, Claus; Schaefer, Katharina

    2012-01-01

    Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation......-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy...... of metabolic and vascular control explains the gap between the stimulation-induced rises in CMRO(2) and CBF, and in turn the BOLD signal. Activity-dependent rises in CBF and CMRO(2) vary within and between brain regions due to differences in ATP turnover and Ca(2+)-dependent mechanisms. Nerve cells produce...

  19. Trace element determinations in brain tissues from normal and clinically demented individuals

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Mitiko; Genezini, Frederico A., E-mail: mitiko@ipen.br, E-mail: fredzini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator de Pesquisas; Leite, Renata E.P.; Grinberg, Lea T.; Ferretti, Renata E.L.; Suemoto, Claudia; Pasqualucci, Carlos A.; Jacob-Filho, Wilson, E-mail: renataleite@usp.br, E-mail: lea@grinberg.com.br, E-mail: reloah@usp.br, E-mail: farfel@usp.br, E-mail: csuemoto@gmail.com, E-mail: cpasqua@usp.br, E-mail: wijac@usp.br [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Fac. de Medicina

    2013-07-01

    Studies on trace element levels in human brains under normal and pathological conditions have indicated a possible correlation between some trace element concentrations and neurodegenerative diseases. In this study, analysis of brain tissues was carried out to investigate if there are any differences in elemental concentrations between brain tissues from a normal population above 50 years of age presenting Clinical Dementia Rating (CDR) equal to zero (CDR=0) and that cognitively affected population ( CDR=3). The tissues were dissected, ground, freeze-dried and then analyzed by instrumental neutron activation analysis. Samples and elemental standards were irradiated in a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. The induced gamma ray activities were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. The one-way ANOVA test (p< 0.05) was used to compare the results. All the elements determined in the hippocampus brain region presented differences between the groups presenting CDR=0 and CDR=3. In the case of frontal region only the elements Na, Rb and Zn showed differences between these two groups. These findings proved the correlation between elemental levels present in brain tissues neurodegenerative diseases. Biological standard reference materials SRM 1566b Oyster Tissue and SRM 1577b Bovine Liver analyzed for quality control indicated good accuracy and precision of the results. (author)

  20. Three-dimensional structure of brain tissue at submicrometer resolution

    Science.gov (United States)

    Saiga, Rino; Mizutani, Ryuta; Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki; Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari; Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio

    2016-01-01

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.

  1. Tissue motion and strain in the human brain assessed by intraoperative ultrasound in glioma patients.

    Science.gov (United States)

    Selbekk, Tormod; Brekken, Reidar; Solheim, Ole; Lydersen, Stian; Hernes, Toril A N; Unsgaard, Geirmund

    2010-01-01

    The objective of the study was to investigate tissue motion and strain imposed by cardiovascular pulsation in pathologic and normal brain parenchyma, as quantified from in vivo ultrasound data. Ultrasound acquired during surgery of 16 patients with glial tumors was retrospectively processed and analyzed. The tissue velocity was quantified at depths of 1cm, 2cm and 3cm from brain cortex to investigate spatial dependency with depth. Comparison of strain and velocity in tumor and adjacent normal parenchyma was performed by selecting two regions-of-interest in the hyperechoic tumor and two regions in the low-echogenic areas interpreted as mainly normal tissue with some degree of tumor cell infiltration. The absolute maximum tissue velocity is seen to increase with increasing depths in 14 of 16 cases (87.5%). The maximum tissue velocities in the four regions close to the ultrasound visible tumor border are not statistically different (p=0.163 to p=0.975). The strain magnitudes are significantly higher in the regions with expected normal brain parenchyma than in regions with expected glial tumor tissue, both for the two regions being closest to the tumor border (p=0.0004) and for the two regions further away from the tumor border (p=0.0009). We conclude that the velocity of the brain parenchyma imposed by arterial pulsation during a cardiac cycle is generally increasing with increasing depth from cortex. The maximum velocity appears to be similar in regions with expected normal brain and tumor tissue, thus, does not seem to be affected by pathology. Strain magnitude is, however, a suitable parameter for discrimination of glial tumor and normal brain parenchyma. (E-mail: Tormod.Selbekk@sintef.no).

  2. Early outcome and blood-brain barrier integrity after co-administered thrombolysis and hyperbaric oxygenation in experimental stroke

    Directory of Open Access Journals (Sweden)

    Michalski Dominik

    2011-06-01

    Full Text Available Abstract Background After promising results in experimental stroke, normobaric (NBO or hyperbaric oxygenation (HBO have recently been discussed as co-medication with tissue plasminogen activator (tPA for improving outcome. This study assessed the interactions of hyperoxia and tPA, focusing on survival, early functional outcome and blood-brain barrier (BBB integrity following experimental stroke. Methods Rats (n = 109 underwent embolic middle cerebral artery occlusion or sham surgery. Animals were assigned to: Control, NBO (60-minute pure oxygen, HBO (60-minute pure oxygen at 2.4 absolute atmospheres, tPA, or HBO+tPA. Functional impairment was assessed at 4 and 24 hours using Menzies score, followed by intravenous application of FITC-albumin as a BBB permeability marker, which was allowed to circulate for 1 hour. Further, blood sampling was performed at 5 and 25 hours for MMP-2, MMP-9, TIMP-1 and TIMP-2 concentration. Results Mortality rates did not differ significantly between groups, whereas functional improvement was found for NBO, tPA and HBO+tPA. NBO and HBO tended to stabilize BBB and to reduce MMP-2. tPA tended to increase BBB permeability with corresponding MMP and TIMP elevation. Co-administered HBO failed to attenuate these early deleterious effects, independent of functional improvement. Conclusions The long-term consequences of simultaneously applied tPA and both NBO and HBO need to be addressed by further studies to identify therapeutic potencies in acute stroke, and to avoid unfavorable courses following combined treatment.

  3. Monitoring Cerebral Oxygenation in Neonates: An Update

    Science.gov (United States)

    Dix, Laura Marie Louise; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-01-01

    Cerebral oxygenation is not always reflected by systemic arterial oxygenation. Therefore, regional cerebral oxygen saturation (rScO2) monitoring with near-infrared spectroscopy (NIRS) is of added value in neonatal intensive care. rScO2 represents oxygen supply to the brain, while cerebral fractional tissue oxygen extraction, which is the ratio between rScO2 and systemic arterial oxygen saturation, reflects cerebral oxygen utilization. The balance between oxygen supply and utilization provides insight in neonatal cerebral (patho-)physiology. This review highlights the potential and limitations of cerebral oxygenation monitoring with NIRS in the neonatal intensive care unit. PMID:28352624

  4. Adaptive online learning based tissue segmentation of MR brain images

    NARCIS (Netherlands)

    Damkat, C.

    2007-01-01

    The aging population in the European Union and the US has increased the importance of research in neurodegenerative diseases. Imaging plays an essential role in this endeavor by providing insight to the intricate cellular and inter-cellular processes in living tissues that will otherwise be difficul

  5. Hyperbaric oxygen therapy or hydroxycobalamin attenuates surges in brain interstitial lactate and glucose; and hyperbaric oxygen improves respiratory status in cyanide-intoxicated rats

    DEFF Research Database (Denmark)

    Lawson-Smith, P; Olsen, Niels Vidiendal; Hyldegaard, Ole

    2011-01-01

    Cyanide (CN) intoxication inhibits cellular oxidative metabolism and may result in brain damage. Hydroxycobalamin (OHCob) is one among other antidotes that may be used following intoxication with CN. Hyperbaric oxygen (HBO2) is recommended when supportive measures or antidotes fail. However...

  6. Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD) Signals from Children with Mild Traumatic Brain Injury (mTBI)

    Science.gov (United States)

    Dona, Olga; DeMatteo, Carol; Connolly, John F.

    2017-01-01

    Background Conventional imaging techniques are unable to detect abnormalities in the brain following mild traumatic brain injury (mTBI). Yet patients with mTBI typically show delayed response on neuropsychological evaluation. Because fractal geometry represents complexity, we explored its utility in measuring temporal fluctuations of brain resting state blood oxygen level dependent (rs-BOLD) signal. We hypothesized that there could be a detectable difference in rs-BOLD signal complexity between healthy subjects and mTBI patients based on previous studies that associated reduction in signal complexity with disease. Methods Fifteen subjects (13.4 ± 2.3 y/o) and 56 age-matched (13.5 ± 2.34 y/o) healthy controls were scanned using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 35/2000ms), acquired over 6 minutes. Motion correction was performed and anatomical and functional images were aligned and spatially warped to the N27 standard atlas. Fractal analysis, performed on grey matter, was done by estimating the Hurst exponent using de-trended fluctuation analysis and signal summation conversion methods. Results and Conclusions Voxel-wise fractal dimension (FD) was calculated for every subject in the control group to generate mean and standard deviation maps for regional Z-score analysis. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels (3.05% over the brain) were eliminated from subsequent analysis. For each mTBI patient, regions where Z-score values were at least 2 standard deviations away from the mean (i.e. where |Z| > 2.0) were identified. In individual patients the frequently affected regions were amygdala (p = 0.02), vermis(p = 0.03), caudate head (p = 0.04), hippocampus(p = 0.03), and hypothalamus(p = 0.04), all previously reported as dysfunctional after mTBI, but based on group analysis. It is well known that the brain is best modeled as a complex

  7. Nanoparticle-enhanced spectral photoacoustic tomography: effect of oxygen saturation and tissue heterogeneity

    Science.gov (United States)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2016-03-01

    Molecular imaging for breast cancer detection, infectious disease diagnostics and preclinical animal research may be achievable through combined use of targeted exogenous agents - such as nanoparticles - and spectral Photoacoustic Tomography (PAT). However, tissue heterogeneity can alter fluence distributions and acoustic propagation, corrupting measured PAT absorption spectra and complicating in vivo nanoparticle detection and quantitation. Highly absorptive vascular structures represent a common confounding factor, and variations in vessel hemoglobin saturation (SO2) may alter spectral content of signals from adjacent/deeper regions. To evaluate the impact of this effect on PAT nanoparticle detectability, we constructed heterogeneous phantoms with well-characterized channel-inclusion geometries and biologically relevant optical and acoustic properties. Phantoms contained an array of tubes at several depths filled with hemoglobin solutions doped with varying concentrations of gold nanorods with an absorption peak at 780 nm. Both overlying and target network SO2 was tuned using sodium dithionite. Phantoms were imaged from 700 to 900 nm using a custom PAT system comprised of a tunable pulsed laser and a research-grade ultrasound system. Recovered nanoparticle spectra were analyzed and compared with results from both spectrophotometry and PAT data from waterimmersed tubes containing blood and nanoparticle solutions. Results suggested that nanoparticle selection for a given PAT application should take into account expected oxygenation states of both target blood vessel and background tissue oxygenation to achieve optimal performance.

  8. Cyclosporine Treatment Reduces Oxygen Free Radical Generation and Oxidative Stress in the Brain of Hypoxia-Reoxygenated Newborn Piglets

    Science.gov (United States)

    Liu, Jiang-Qin; Chaudhary, Hetal; Brocks, Dion R.; Bigam, David L.; Cheung, Po-Yin

    2012-01-01

    Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation, we evaluated the effects of cyclosporine on the brain, focusing on hydrogen peroxide (H2O2) production and markers of oxidative stress. Piglets (1–4 d, 1.4–2.5 kg) were block-randomized into three hypoxia-reoxygenation experimental groups (2 h hypoxia followed by 4 h reoxygenation)(n = 8/group). At 5 min after reoxygenation, piglets were given either i.v. saline (placebo, controls) or cyclosporine (2.5 or 10 mg/kg i.v. bolus) in a blinded-randomized fashion. An additional sham-operated group (n = 4) underwent no hypoxia-reoxygenation. Systemic hemodynamics, carotid arterial blood flow (transit-time ultrasonic probe), cerebral cortical H2O2 production (electrochemical sensor), cerebral tissue glutathione (ELISA) and cytosolic cytochrome-c (western blot) levels were examined. Hypoxic piglets had cardiogenic shock (cardiac output 40–48% of baseline), hypotension (mean arterial pressure 27–31 mmHg) and acidosis (pH 7.04) at the end of 2 h of hypoxia. Post-resuscitation cyclosporine treatment, particularly the higher dose (10 mg/kg), significantly attenuated the increase in cortical H2O2 concentration during reoxygenation, and was associated with lower cerebral oxidized glutathione levels. Furthermore, cyclosporine treatment significantly attenuated the increase in cortical cytochrome-c and lactate levels. Carotid blood arterial flow was similar among groups during reoxygenation. Conclusively, post-resuscitation administration of cyclosporine significantly attenuates H2O2 production and minimizes oxidative stress in newborn piglets following hypoxia

  9. Cyclosporine treatment reduces oxygen free radical generation and oxidative stress in the brain of hypoxia-reoxygenated newborn piglets.

    Directory of Open Access Journals (Sweden)

    Richdeep S Gill

    Full Text Available Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation, we evaluated the effects of cyclosporine on the brain, focusing on hydrogen peroxide (H(2O(2 production and markers of oxidative stress. Piglets (1-4 d, 1.4-2.5 kg were block-randomized into three hypoxia-reoxygenation experimental groups (2 h hypoxia followed by 4 h reoxygenation (n = 8/group. At 5 min after reoxygenation, piglets were given either i.v. saline (placebo, controls or cyclosporine (2.5 or 10 mg/kg i.v. bolus in a blinded-randomized fashion. An additional sham-operated group (n = 4 underwent no hypoxia-reoxygenation. Systemic hemodynamics, carotid arterial blood flow (transit-time ultrasonic probe, cerebral cortical H(2O(2 production (electrochemical sensor, cerebral tissue glutathione (ELISA and cytosolic cytochrome-c (western blot levels were examined. Hypoxic piglets had cardiogenic shock (cardiac output 40-48% of baseline, hypotension (mean arterial pressure 27-31 mmHg and acidosis (pH 7.04 at the end of 2 h of hypoxia. Post-resuscitation cyclosporine treatment, particularly the higher dose (10 mg/kg, significantly attenuated the increase in cortical H(2O(2 concentration during reoxygenation, and was associated with lower cerebral oxidized glutathione levels. Furthermore, cyclosporine treatment significantly attenuated the increase in cortical cytochrome-c and lactate levels. Carotid blood arterial flow was similar among groups during reoxygenation. Conclusively, post-resuscitation administration of cyclosporine significantly attenuates H(2O(2 production and minimizes oxidative stress in newborn piglets following hypoxia-reoxygenation.

  10. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    Directory of Open Access Journals (Sweden)

    Phyllis E. Mann

    2014-03-01

    Full Text Available The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1 whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  11. Investigation on metal elements in the brain tissues from DNTC patients

    Energy Technology Data Exchange (ETDEWEB)

    Ide-Ektessabi, Ari E-mail: h51167@sakura.kudpc.kyoto-u.ac.jp; Kawakami, Takuo; Ishihara, Ryoko; Mizuno, Yutaka; Takeuchi, Tohru

    2004-07-01

    Trace metallic elements in human cells play important roles in various cell functions as metalloprotein, metalloenzyme or metallic ions. Diffuse neurofibrillary tangles with calcification (DNTC) is an atypical dementia and is characterized pathologically by diffuse neurofibrillary tangles without senile plaques. In this study, X-ray fluorescence (XRF) spectroscopy using synchrotron radiation (SR) was applied to determine the distribution and density of the ultra-trace elements in the brain tissues from DTNC patients. This method made it possible to determine trace metallic elements non-destructively. The trace metallic elements (such as Ca, Fe, Zn, and Pb) in the brain tissues were examined. Two-dimension imaging of the elements and relative quantification of the elements in the brains were performed. The lead concentrations were observed in the calcified blood vessel in the brains with DNTC.

  12. Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review.

    Science.gov (United States)

    Tohka, Jussi

    2014-11-28

    Quantitative analysis of magnetic resonance (MR) brain images are facilitated by the development of automated segmentation algorithms. A single image voxel may contain of several types of tissues due to the finite spatial resolution of the imaging device. This phenomenon, termed partial volume effect (PVE), complicates the segmentation process, and, due to the complexity of human brain anatomy, the PVE is an important factor for accurate brain structure quantification. Partial volume estimation refers to a generalized segmentation task where the amount of each tissue type within each voxel is solved. This review aims to provide a systematic, tutorial-like overview and categorization of methods for partial volume estimation in brain MRI. The review concentrates on the statistically based approaches for partial volume estimation and also explains differences to other, similar image segmentation approaches.

  13. The NSW brain tissue resource centre: Banking for alcohol and major neuropsychiatric disorders research.

    Science.gov (United States)

    Sutherland, G T; Sheedy, D; Stevens, J; McCrossin, T; Smith, C C; van Roijen, M; Kril, J J

    2016-05-01

    The New South Wales Brain Tissue Resource Centre (NSWBTRC) at the University of Sydney (Australia) is an established human brain bank providing tissue to the neuroscience research community for investigations on alcohol-related brain damage and major psychiatric illnesses such as schizophrenia. The NSWBTRC relies on wide community engagement to encourage those with and without neuropsychiatric illness to consent to donation through its allied research programs. The subsequent provision of high-quality samples relies on standardized operational protocols, associated clinical data, quality control measures, integrated information systems, robust infrastructure, and governance. These processes are continually augmented to complement the changes in internal and external governance as well as the complexity and diversity of advanced investigation techniques. This report provides an overview of the dynamic process of brain banking and discusses the challenges of meeting the future needs of researchers, including synchronicity with other disease-focus collections.

  14. Features of microelement maintenance in rat's brain tissues at experimental hypoxia of different degree.

    Directory of Open Access Journals (Sweden)

    Tarasova I.V.

    2011-01-01

    Full Text Available Features of microelement maintenance (iron, zinc, copper, manganese, and cobalt, conditionally toxic chrome and toxic lead were studied in newborn rat's brain tissues at experimental hypoxia of different degree. Tissues of newborn rat’s brain are characterized by high level of saturation and considerable dynamism of microelement maintenance. Till the end of the first week of life, the maintenance of these microelements decreases in 1,5 – 10 times. The level of the toxic lead decreases more than in 2,5 times. The hypoxia of easy degree of newborn rats invokes reduction cobalt level 3 times, iron level 2 times, manganese – on 27,65 %, chrome – on 25,84%, zinc – on 16,43%. It means that considerable deficiency and disbalance of microelement maintenance rat's brain tissues. The heavy degree of hypoxia is characterized by further increase of deficiency and disbalance of microelements.

  15. Effect of pineapple peel extract on total phospholipids and lipid peroxidation in brain tissues of rats

    Institute of Scientific and Technical Information of China (English)

    Erukainure OL; Ajiboye JA; Adejobi RO; Okafor OY; Kosoko SB; Owolabi FO

    2011-01-01

    Objective:To investigate the ability of the methanolic extract of pineapple peel to attenuate alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues. Methods:Oxidative stress was induced by oral administration of ethanol (20%w/v) at a dosage of 5 mL/kg bw in rats. After 28 days of treatment, the rats were fasted overnight and sacrificed by cervical dislocation. Brain tissues were assayed for total phospholipid (TP) content and malondialdehyde (MDA). Results:Administration of alcohol significantly caused a reduction in TP content. Treatment with pineapple peel extract significantly increased the TP content. Significant high levels of MDA was observed in alcohol-fed rats, treatment with pineapple peel extract significantly reduced the MDA levels. Conclusions:Results obtained from this study indicates that pineapple peel extract protects against alcohol-induced changes in total phospholipids and lipid peroxidation in brain tissues.

  16. Blood BDNF concentrations reflect brain-tissue BDNF levels across species

    DEFF Research Database (Denmark)

    Klein, Anders B; Williamson, Rebecca; Santini, Martin A

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been...... positive correlation between frontal cortex and hippocampal BDNF levels in mice (r2=0.81, p=0.0139). Our data support the view that measures of blood and plasma BDNF levels reflect brain-tissue BDNF levels....

  17. Three-dimensional structure of brain tissue at submicrometer resolution

    Energy Technology Data Exchange (ETDEWEB)

    Saiga, Rino; Mizutani, Ryuta, E-mail: ryuta@tokai-u.jp [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki [Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari [Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan)

    2016-01-28

    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.

  18. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  19. Protective effects of acupuncture on brain tissue following ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Mingshan Wang; Fuguo Ma; Huailong Chen

    2008-01-01

    BACKGROUND: In patients with cerebrovascular disease, by means of the neuroendocrine system, acupuncture supports the transformation of a local pathological status into a physiological status. Recently, great progress has been made in studying the protective effects of acupuncture on brain ischemia/reperfusion injury. OBJECTIVE: To summarize research advances in the protective effects of acupuncture on brain ischemia/reperfusion injury. RETRIEVAL STRATEGY: Using the terms "acupuncture, transcutaneous electrical acupoint stimulation, cerebral ischemia/reperfusion injury, and cerebral protection", we retrieved articles from the PubMed database published between January 1991 and June 1994. Meanwhile, we searched the China National Knowledge Infrastructure with the same terms. Altogether, 114 articles and their results were analyzed. Inclusive criteria: studies that were closely related to the protective effects of acupuncture on brain ischemia/reperfusion injury, or studies, whose contents were in the same study field and were published recently, or in the authorized journals. Exclusive criteria: repetitive studies. LITERATURE EVALUATION: Thirty articles that related to the protective effects of acupuncture on brain ischemia/reperfusion injury were included. Among them, 7 were clinical studies, and the remaining 23 articles were animal experimental studies. DATA SYNTHESIS: ① Animal experimental studies have demonstrated that acupuncture improves brain blood perfusion and brain electrical activity, influences pathomorphological and ultramicrostructural changes in ischemic brain tissue, is beneficial in maintaining the stability of intracellular and extracellular ions, resists free radical injury and lipid peroxidation, and influences cytokine, neurotransmitter, brain cell signal transduction, and apoptosis-regulating genes. ② Clinical studies have demonstrated that acupuncture not only promotes nutritional supply to local brain tissue in patients with cerebral

  20. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J. (IIT); (Keele); (Florida); (DRDC)

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  1. Multisite Tissue Oxygenation Monitoring Indicates Organ-Specific Flow Distribution and Oxygen Delivery Related to Low Cardiac Output in Preterm Infants With Clinical Sepsis

    NARCIS (Netherlands)

    van der Laan, Michelle E.; Roofthooft, Marcus T. R.; Fries, Marian W. A.; Schat, Trijntje E.; Bos, Arend F.; Berger, Rolf M. F.; Kooi, Elisabeth M. W.

    2016-01-01

    Objectives: Cardiac output may be compromised in preterm infants with sepsis. Whether low cardiac output is associated with low tissue oxygen supply in these patients is unclear. The aim of the current study was to assess the association between cardiac output, assessed by echocardiography, and tiss

  2. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    Science.gov (United States)

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  3. A low background Raman probe for optical biopsy of brain tissue

    Science.gov (United States)

    Stevens, Oliver A. C.; Hutchings, Joanne; Gray, William; Day, John C.

    2014-03-01

    Removal of intrinsic brain tumours is a delicate process, where a high degree of specificity is required to remove all of the tumour tissue without damaging healthy brain. The accuracy of this process can be greatly enhanced by intraoperative guidance. Optical biopsies using Raman spectroscopy are a minimally invasive and lower cost alternative to current guidance methods. A miniature Raman probe for performing optical biopsies of human brain tissue is presented. The probe allows sampling inside a conventional stereotactic brain biopsy system: a needle of length 200mm and inner diameter of 1.8mm. The probe achieves a very low fluorescent background whilst maintaining good collection of Raman signal by employing a miniature stand-off Raman design. To illustrate this, the probe is compared with a Raman probe that uses a pair of optical fibres for collection. The miniature stand-off Raman probe is shown to collect a comparable number of Raman scattered photons, but the fluorescence caused by silica fibres in a Raman needle probe is reduced by a factor of two for Raman shifts under 500 cm-1, and by 30% at 600-700 cm-1. In addition, this design contains only medically approved materials at the distal end. The probe's suitability for use on tissue is demonstrated by discriminating between different types of porcine brain tissue.

  4. Impact of Markov Random Field Optimizer on MRI-based Tissue Segmentation in the Aging Brain

    Science.gov (United States)

    Schwarz, Christopher G.; Tsui, Alex; Fletcher, Evan; Singh, Baljeet; DeCarli, Charles; Carmichael, Owen

    2013-01-01

    Automatically segmenting brain magnetic resonance images into grey matter, white matter, and cerebrospinal fluid compartments is a fundamentally important neuroimaging problem whose difficulty is heightened in the presence of aging and neurodegenerative disease. Current methods overlap greatly in terms of identifiable algorithmic components, and the impact of specific components on performance is generally unclear in important real-world scenarios involving serial scanning, multiple scanners, and neurodegenerative disease. Therefore we evaluated the impact that one such component, the Markov Random Field (MRF) optimizer that encourages spatially-smooth tissue labelings, has on brain tissue segmentation performance. Two challenging elderly sets were used to test segmentation consistency across scanners and biological plausibility of tissue change estimates; and a simulated young brain data set was used to test accuracy against ground truth. Comparisons among Graph Cuts (GC), Belief Propagation (BP), and Iterative Conditional Modes (ICM) suggested that in the elderly brain, BP and GC provide the highest segmentation performance, with a slight advantage to BP, and that performance is often superior to that provided by popular methods SPM and FAST. Conversely, SPM and FAST excelled in the young brain, thus emphasizing the unique challenges involved in imaging the aging brain. PMID:22256150

  5. Improving the specificity of R2' to the deoxyhaemoglobin content of brain tissue: Prospective correction of macroscopic magnetic field gradients.

    Science.gov (United States)

    Blockley, Nicholas P; Stone, Alan J

    2016-07-15

    The reversible transverse relaxation rate, R2', is sensitive to the deoxyhaemoglobin content of brain tissue, enabling information about the oxygen extraction fraction to be obtained. However, R2' is also sensitive to macroscopic magnetic field gradients, particularly at air-tissue interfaces where a large susceptibility difference is present. It is important that this latter effect is minimised in order to produce meaningful estimates of blood oxygenation. Therefore, the aim of this study was to implement a technique to prospectively correct for the effect of susceptibility induced magnetic field gradients on R2' weighted data. This was achieved by combining the Gradient-Echo Slice Excitation Profile Imaging (GESEPI) technique with an Asymmetric Spin Echo (ASE) pulse sequence. The main advantages of this approach are (i) shorter acquisition times, since a separately acquired magnetic field map is not required and (ii) simpler analysis, since retrospective correction for the effects of magnetic field gradients in postprocessing is not required. In these experiments we show that with this newly developed technique it is possible to correct the majority of grey matter voxels for the expected distribution of through-slice magnetic field gradients to produce maps of R2' in a short scan duration.

  6. Mitochondrial Respiration Chain Enzymatic Activities in the Human Brain: Methodological Implications for Tissue Sampling and Storage.

    Science.gov (United States)

    Ronsoni, Marcelo Fernando; Remor, Aline Pertile; Lopes, Mark William; Hohl, Alexandre; Troncoso, Iris H Z; Leal, Rodrigo Bainy; Boos, Gustavo Luchi; Kondageski, Charles; Nunes, Jean Costa; Linhares, Marcelo Neves; Lin, Kátia; Latini, Alexandra Susana; Walz, Roger

    2016-04-01

    Mitochondrial respiratory chain complexes enzymatic (MRCCE) activities were successfully evaluated in frozen brain samples. Epilepsy surgery offers an ethical opportunity to study human brain tissue surgically removed to treat drug resistant epilepsies. Epilepsy surgeries are done with hemodynamic and laboratory parameters to maintain physiology, but there are no studies analyzing the association among these parameters and MRCCE activities in the human brain tissue. We determined the intra-operative parameters independently associated with MRCCE activities in middle temporal neocortex (Cx), amygdala (AMY) and head of hippocampus (HIP) samples of patients (n = 23) who underwent temporal lobectomy using multiple linear regressions. MRCCE activities in Cx, AMY and HIP are differentially associated to trans-operative mean arterial blood pressure, O2 saturation, hemoglobin, and anesthesia duration to time of tissue sampling. The time-course between the last seizure occurrence and tissue sampling as well as the sample storage to biochemical assessments were also associated with enzyme activities. Linear regression models including these variables explain 13-17 % of MRCCE activities and show a moderate to strong effect (r = 0.37-0.82). Intraoperative hemodynamic and laboratory parameters as well as the time from last seizure to tissue sampling and storage time are associated with MRCCE activities in human samples from the Cx, AMYG and HIP. Careful control of these parameters is required to minimize confounding biases in studies using human brain samples collected from elective neurosurgery.

  7. The Neuroprotective Effect of Cornus mas on Brain Tissue of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Renata Francik

    2014-01-01

    Full Text Available Cornelian cherry (Cornus mas is a valuable source of phenolic antioxidants. Flavonoid derivatives as nonenzymatic antioxidants are important in the pathophysiology of many diseases including neurological disorders (e.g., Alzheimer’s disease or heart disease. In this study, we examined the effect of an addition of freeze-dried fruit of cornelian cherry on three types of diets: control diet, fructose diet, and diet enriched in fats (high-fat diet. This effect was studied by determining the following antioxidant parameters in both brain tissue and plasma in rats: catalase, ferric reducing ability of plasma, paraoxonase, protein carbonyl groups, and free thiol groups. Results indicate that both fructose diet and high-fat diet affect the antioxidant capacity of the organism. Furthermore, an addition of cornelian cherry resulted in increased activity of catalase in brain tissue, while in plasma it caused the opposite effect. In turn, with regard to paraoxonase activity in both brain tissue and plasma, it had a stimulating effect. Adding cornelian cherry to the tested diets increased the activity of PON in both tested tissues. Moreover, protective effect of fruits of this plant was observed in the process of oxidation of proteins by decreasing levels of protein carbonyl groups and thiol groups in brain tissue as well as in plasma.

  8. Profile analysis of hepatic porcine and murine brain tissue slices obtained with a vibratome.

    Science.gov (United States)

    Mattei, G; Cristiani, I; Magliaro, C; Ahluwalia, A

    2015-01-01

    This study is aimed at characterizing soft tissue slices using a vibratome. In particular, the effect of two sectioning parameters (i.e., step size and sectioning speed) on resultant slice thickness was investigated for fresh porcine liver as well as for paraformaldehyde-fixed (PFA-fixed) and fresh murine brain. A simple framework for embedding, sectioning and imaging the slices was established to derive their thickness, which was evaluated through a purposely developed graphical user interface. Sectioning speed and step size had little effect on the thickness of fresh liver slices. Conversely, the thickness of PFA-fixed murine brain slices was found to be dependent on the step size, but not on the sectioning speed. In view of these results, fresh brain tissue was sliced varying the step size only, which was found to have a significant effect on resultant slice thickness. Although precision-cut slices (i.e., with regular thickness) were obtained for all the tissues, slice accuracy (defined as the match between the nominal step size chosen and the actual slice thickness obtained) was found to increase with tissue stiffness from fresh liver to PFA-fixed brain. This quantitative investigation can be very helpful for establishing the most suitable slicing setup for a given tissue.

  9. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration.

    Science.gov (United States)

    Bonar, Nicolle A; Petersen, Christian P

    2017-03-01

    Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema.

  10. 65zinc uptake from blood into brain and other tissues in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, R.G.; Franklin, P.A.; Hall, G.H. (Sunderland Polytechnic, Tyne Wear (England))

    1990-10-01

    Zinc is essential for normal growth, development and brain function although little is known about brain zinc homeostasis. Therefore, in this investigation we have studied 65Zn uptake from blood into brain and other tissues and have measured the blood-brain barrier permeability to 65Zn in the anaesthetized rat in vivo. Adult male Wistar rats within the weight range 500-600 g were used. 65ZnCl2 and (125I)albumin, the latter serving as a vascular marker, were injected in a bolus of normal saline I.V. Sequential arterial blood samples were taken during experiments that lasted between 5 min and 5 hr. At termination, samples from the liver, spleen, pancreas, lung, heart, muscle, kidney, bone, testis, ileum, blood cells, csf, and whole brain were taken and analysed for radio-isotope activity. Data have been analysed by Graphical Analysis which suggests 65Zn uptake from blood by all tissues sampled was unidirectional during this experimental period except brain, where at circulation times less than 30 min, 65Zn fluxes were bidirectional. In addition to the blood space, the brain appears to contain a rapidly exchanging compartment(s) for 65Zn of about 4 ml/100g which is not csf.

  11. Improving aeration for efficient oxygenation in sea bass sea cages. Blood, brain and gill histology

    Directory of Open Access Journals (Sweden)

    Berillis Panagiotis

    2016-01-01

    Full Text Available An air diffusion based system (Airx was developed to control the dissolved oxygen levels in aquaculture sea cages. The system was introduced and then tested for 37 days in a sea bass sea cage (aerated cage. A second sea bass sea cage, without the AirX, was used as a control. Oxygen levels were measured in both cages at the start of the trial, before the AirX system was introduced, and during the working period of the AirX system. Fish samples were collected 15 days after the AirX system was introduced and at the end of the experiment. Blood smears were prepared and examined microscopically. Erythrocyte major axis, minor axis and area of fish erythrocytes were measured. Leucocyte differentiation was also examined. In the control cage, the fish had significantly larger red blood cells when compared with the red blood cells of the fish in the aerated cage. Histological examination of the gills and brain revealed no morphological differences or alterations between the two groups of fish. This study demonstrated that an air diffuser system could improve the water quality of fish farmed in sea cages and enhance sea bass physiological performance, especially if DO levels fall below 60% oxygen saturation.

  12. Changes in brain tissue and behavior patterns induced by single short-term fasting in mice.

    Directory of Open Access Journals (Sweden)

    Yuko Hisatomi

    Full Text Available In humans, emaciation from long-term dietary deficiencies, such as anorexia, reportedly increases physical activity and brain atrophy. However, the effects of single short-term fasting on brain tissue or behavioral activity patterns remain unclear. To clarify the impact of malnutrition on brain function, we conducted a single short-term fasting study as an anorexia model using male adult mice and determined if changes occurred in migratory behavior as an expression of brain function and in brain tissue structure. Sixteen-week-old C57BL/6J male mice were divided into either the fasted group or the control group. Experiments were conducted in a fixed indoor environment. We examined the effects of fasting on the number of nerve cells, structural changes in the myelin and axon density, and brain atrophy. For behavior observation, the amount of food and water consumed, ingestion time, and the pattern of movement were measured using a time-recording system. The fasted mice showed a significant increase in physical activity and their rhythm of movement was disturbed. Since the brain was in an abnormal state after fasting, mice that were normally active during the night became active regardless of day or night and performed strenuous exercise at a high frequency. The brain weight did not change by a fast, and brain atrophy was not observed. Although no textural change was apparent by fasting, the neuronal neogenesis in the subventricular zone and hippocampus was inhibited, causing disorder of the brain function. A clear association between the suppression of encephalic neuropoiesis and overactivity was not established. However, it is interesting that the results of this study suggest that single short-term fasting has an effect on encephalic neuropoiesis.

  13. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats

    Institute of Scientific and Technical Information of China (English)

    Na Zhang; Gen-Yang Cheng; Xian-Zhi Liu; Feng-Jiang Zhang

    2014-01-01

    Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue. Methods:Fourty eight rats were randomly divided into four groups(n=12): sham operation group,30 min ischemia60 min reperfusion group,60 min ischemia60 min reperfusion group, and 120 min ischemia60 min reperfusion group.The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreasedBcl-2 expression, increasedBax expression, upregulated expression ofNF-κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation.

  14. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  15. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  16. Study into penetration speed during laser cutting of brain tissues.

    Science.gov (United States)

    Yilbas, Z; Sami, M; Patiroglu, T

    1998-01-01

    The applications of CO2 continuous-wave lasers in neurosurgery have become important in recent years. Theoretical considerations of laser applicability in medicine are subsequently confirmed experimentally. To obtain precision operation in the laser cutting process, further theoretical developments and experimental studies need to be conducted. Consequently, in the present study, the heat transfer mechanism taking place during laser-tissue interaction is introduced using Fourier theory. The results obtained from the theoretical model are compared with the experimental results. In connection with this, an experiment is designed to measure the penetration speed during the laser cutting process. The measurement is carried out using an optical method. It is found that both results for the penetration speed obtained from the theory and experiment are in a good agreement.

  17. Non-Invasive, Simultaneous Quantification of Vascular Oxygenation and Glucose Uptake in Tissue

    Science.gov (United States)

    Rajaram, Narasimhan; Reesor, Andrew F.; Mulvey, Christine S.; Frees, Amy E.; Ramanujam, Nirmala

    2015-01-01

    We report the development of non-invasive, fiber-based diffuse optical spectroscopy for simultaneously quantifying vascular oxygenation (SO2) and glucose uptake in solid tumors in vivo. Glucose uptake was measured using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Quantification of label-free SO2 and 2-NBDG-fluorescence-based glucose uptake 60 minutes after administration of the tracer (2-NBDG60) was performed using computational models of light-tissue interaction. This study was carried out on normal tissue and 4T1 and 4T07 murine mammary tumor xenografts in vivo. Injection of 2-NBDG did not cause a significant change in optical measurements of SO2, demonstrating its suitability as a functional reporter of tumor glucose uptake. Correction of measured 2-NBDG-fluorescence for the effects of absorption and scattering significantly improved contrast between tumor and normal tissue. The 4T1 and 4T07 tumors showed significantly decreased SO2, and 4T1 tumors demonstrated increased 2-NBDG60 compared with normal tissue (60 minutes after the administration of 2-NBDG when perfusion-mediated effects have cleared). 2-NBDG-fluorescence was found to be highly sensitive to food deprivation-induced reduction in blood glucose levels, demonstrating that this endpoint is indeed sensitive to glycolytic demand. 2-NBDG60 was also found to be linearly related to dose, underscoring the importance of calibrating for dose when comparing across animals or experiments. 4T1 tumors demonstrated an inverse relationship between 2-NBDG60 and SO2 that was consistent with the Pasteur effect, particularly when exposed to hypoxic gas breathing. Our results illustrate the potential of optical spectroscopy to provide valuable information about the metabolic status of tumors, with important implications for cancer prognosis. PMID:25635865

  18. Non-invasive, simultaneous quantification of vascular oxygenation and glucose uptake in tissue.

    Directory of Open Access Journals (Sweden)

    Narasimhan Rajaram

    Full Text Available We report the development of non-invasive, fiber-based diffuse optical spectroscopy for simultaneously quantifying vascular oxygenation (SO2 and glucose uptake in solid tumors in vivo. Glucose uptake was measured using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-ylamino]-2-deoxyglucose (2-NBDG. Quantification of label-free SO2 and 2-NBDG-fluorescence-based glucose uptake 60 minutes after administration of the tracer (2-NBDG60 was performed using computational models of light-tissue interaction. This study was carried out on normal tissue and 4T1 and 4T07 murine mammary tumor xenografts in vivo. Injection of 2-NBDG did not cause a significant change in optical measurements of SO2, demonstrating its suitability as a functional reporter of tumor glucose uptake. Correction of measured 2-NBDG-fluorescence for the effects of absorption and scattering significantly improved contrast between tumor and normal tissue. The 4T1 and 4T07 tumors showed significantly decreased SO2, and 4T1 tumors demonstrated increased 2-NBDG60 compared with normal tissue (60 minutes after the administration of 2-NBDG when perfusion-mediated effects have cleared. 2-NBDG-fluorescence was found to be highly sensitive to food deprivation-induced reduction in blood glucose levels, demonstrating that this endpoint is indeed sensitive to glycolytic demand. 2-NBDG60 was also found to be linearly related to dose, underscoring the importance of calibrating for dose when comparing across animals or experiments. 4T1 tumors demonstrated an inverse relationship between 2-NBDG60 and SO2 that was consistent with the Pasteur effect, particularly when exposed to hypoxic gas breathing. Our results illustrate the potential of optical spectroscopy to provide valuable information about the metabolic status of tumors, with important implications for cancer prognosis.

  19. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  20. Diazepam binding inhibitor gene expression: Location in brain and peripheral tissues of rate

    Energy Technology Data Exchange (ETDEWEB)

    Alho, H.; Fremeau, R.T. Jr.; Tiedge, H.; Wilcox, J.; Bovolin, P.; Brosius, J.; Roberts, J.L.; Costa, E.

    1988-09-01

    Diazepam binding inhibitor (DBI), an endogenous 10-kDa polypeptide was isolated from rat and human brain by monitoring displacement of radioactive diazepam bound to specific recognition sites in brain synaptic and mitochondrial membranes. The cellular location of DBI mRNA was studied in rat brain and selected peripheral tissues by in situ hybridization histochemistry with a /sup 35/S-labeled single-stranded complementary RNA probe. DBI mRNA was heterogeneously distributed in rat brain, with particularly high levels in the area postrema, the cerebellar cortex, and ependyma of the third ventricle. Intermediate levels were found in the olfactory bulb, pontine nuclei, inferior colliculi, arcuate nucleus, and pineal gland. Relatively low but significant levels of silver grains were observed overlying many mesencephalic and telencephalic areas that have previously been shown to contain numerous DBI-immunoreactive neurons and a high density of central benzodiazepine receptors. In situ hybridizations also revealed high levels of DBI mRNA in the posterior lobe of the pituitary gland, liver, and germinal center of the white pulp of spleen, all tissues that are rich in peripheral benzodiazepine binding sites. The tissue-specific pattern of DBI gene expression described here could be exploited to further understand the physiological function of DBI in the brain and periphery.

  1. Elderly depression diagnostic of diabetic patients by brain tissue pulsatility imaging

    Science.gov (United States)

    Hachemi, Mélouka Elkateb; Remeniéras, Jean-pierre; Desmidt, Thomas; Camus, Vincent; Tranquart, François

    2010-01-01

    Pulsatile motion of brain parenchyma results from cardiac and breathing cycles and consists in a rapid displacement in systole, with slow diastolic recovery. Based on the vascular depression concept and recent studies where a correlation was found between cerebral haemodynamics and depression in the elderly, we emitted the hypothesis that tissue brain motion due to perfusion is correlated to elderly depression associated with cardiovascular risk factors. Tissue Pulsatlity Imaging (TPI) is a new ultrasound technique developed firstly at the University of Washington to assess the brain tissue motion. We used TPI technique to measure the brain displacement of two groups of elderly patients with diabetes as a vascular risk factor. The first group is composed of 11 depressed diabetic patients. The second group is composed of 12 diabetic patients without depressive symptoms. Transcranial acquisitions were performed with a 1.8 MHz ultrasound phased array probe through the right temporal bone window. The acquisition of six cardiac cycles was realized on each patient with a frame rate of 23 frames/s. Displacements estimation was performed by off-line analysis. A significant decrease in brain pulsatility was observed in the group of depressed patients compared to the group of non depressed patients. Mean displacement magnitude was about 44±7 μm in the first group and 68±13 μm in the second group.

  2. Effect of Oxytropis glabra DC. Poisoning on α-Mannosidase(AMA) Expression in Mice Brain Tissue

    Institute of Scientific and Technical Information of China (English)

    Wang Shuai; Jia Qizhen; Zhang Ling; Chen Genyuan; Ma Chunhui

    2015-01-01

    The effect of Oxytropis glabra DC. on α-mannosidase( AMA) expression in mice brain tissue was explored to reveal the toxicity mechanism of O. glabra. Forty mice were randomly divided into four groups,namely control group,experimental group I,experimental group II and experimental group III. The mice in three experimental groups were fed with O. glabra at the doses of 1,5 and 10 g per kilogram weight,respectively. After challenge for 63 d,mice brains were collected to detect changes in distribution and expression of AMA in different brain regions. The results showed that O. glabra poisoning led to declined AMA mRNA expression in mice brain tissue,but the mice in experimental group I had no significant difference with those in control group( P > 0. 05). The AMA mRNA expression in cerebellum,cerebrum and thalamus of mice in experimental groups II and III were significantly lower than that in control group( P 0. 05). AMA had very weak expression in hippocampus and brainstem,but it had expressions in other regions,and the expression was positively correlated with the number of neurons and granulosa cells. The results showed that different doses of O. glabra reduced AMA mRNA expression in mice brain tissue,while cerebellum,cerebrum and thalamus were the main target function areas.

  3. Alveolar gas exchange and tissue oxygenation during incremental treadmill exercise, and their associations with blood O(2) carrying capacity.

    Science.gov (United States)

    Rissanen, Antti-Pekka E; Tikkanen, Heikki O; Koponen, Anne S; Aho, Jyrki M; Hägglund, Harriet; Lindholm, Harri; Peltonen, Juha E

    2012-01-01

    The magnitude and timing of oxygenation responses in highly active leg muscle, less active arm muscle, and cerebral tissue, have not been studied with simultaneous alveolar gas exchange measurement during incremental treadmill exercise. Nor is it known, if blood O(2) carrying capacity affects the tissue-specific oxygenation responses. Thus, we investigated alveolar gas exchange and tissue (m. vastus lateralis, m. biceps brachii, cerebral cortex) oxygenation during incremental treadmill exercise until volitional fatigue, and their associations with blood O(2) carrying capacity in 22 healthy men. Alveolar gas exchange was measured, and near-infrared spectroscopy (NIRS) was used to monitor relative concentration changes in oxy- (Δ[O(2)Hb]), deoxy- (Δ[HHb]) and total hemoglobin (Δ[tHb]), and tissue saturation index (TSI). NIRS inflection points (NIP), reflecting changes in tissue-specific oxygenation, were determined and their coincidence with ventilatory thresholds [anaerobic threshold (AT), respiratory compensation point (RC); V-slope method] was examined. Blood O(2) carrying capacity [total hemoglobin mass (tHb-mass)] was determined with the CO-rebreathing method. In all tissues, NIPs coincided with AT, whereas RC was followed by NIPs. High tHb-mass associated with leg muscle deoxygenation at peak exercise (e.g., Δ[HHb] from baseline walking to peak exercise vs. tHb-mass: r = 0.64, p capacity for blood O(2) carrying was associated with a high level of m. vastus lateralis deoxygenation at peak exercise.

  4. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation.

    Science.gov (United States)

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-09-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C.Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland-Altman method was used to assess agreement between them.The devices showed agreement in overall tracking of changes in SO2. Test-retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range.Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative.

  5. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard.

    NARCIS (Netherlands)

    Pirman, D.A.; Reich, R.F.; Kiss, A.; Heeren, R.M.A.; Yost, R.A.

    2013-01-01

    Mass spectrometric imaging (MSI) is an analytical technique used to determine the distribution of individual analytes within a given sample. A wide array of analytes and samples can be investigated by MSI, including drug distribution in rats, lipid analysis from brain tissue, protein differentiation

  6. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  7. Visualization of damaged brain tissue after ischemic stroke with cobalt-55 positron emission tomography

    NARCIS (Netherlands)

    Jansen, H M; Pruim, J; vd Vliet, A M; Paans, A M; Hew, J M; Franssen, E J; de Jong, B M; Kosterink, J G; Haaxma, R; Korf, J

    1994-01-01

    UNLABELLED: In animal experiments, the radionuclide 55Co2+ has been shown to accumulate in degenerating cerebral tissue similar to Ca2+. METHODS: The potential role of 55Co2+ for in vivo brain PET imaging was investigated in four patients after ischemic stroke. RESULTS: PET showed uptake of 55Co2+ i

  8. Are brain and heart tissue prone to the development of thiamine deficiency?

    NARCIS (Netherlands)

    Klooster, Astrid; Larkin, James R.; Wiersema-Buist, Janneke; Gans, Reinold O. B.; Thornalley, Paul J.; Navis, Gerjan; van Goor, Harry; Leuvenink, Henri G. D.; Bakker, Stephan J. L.

    2013-01-01

    Thiamine deficiency is a continuing problem leading to beriberi and Wernicke's encephalopathy. The symptoms of thiamine deficiency develop in the heart, brain and neuronal tissue. Yet, it is unclear how rapid thiamine deficiency develops and which organs are prone to development of thiamine deficien

  9. Polychlorinated biphenyls in adipose tissue, liver, and brain from nine stillborns of varying gestational ages

    NARCIS (Netherlands)

    Huisman, M; Muskiet, FAJ; Van Der Paauw, CG; Essed, CE; Boersma, ER

    1998-01-01

    We analyzed polychlorinated biphenyls (PCBs) in s.c. adipose tissue, liver, and brain of nine fetuses who died in utero. Their median (range) gestational ages and birth weights were 34 (17-40) wk and 2050 (162-3225) g. Three fetuses were small for gestational age. The levels of PCB congener nos. 118

  10. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Lauriane Jugé

    Full Text Available Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both, an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM and rearrangement of the cortical gray matter microstructure (P < 0.001, for both, while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both. During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001, while a decrease in space was observed for the ventral internal capsule (P < 0.001. For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001. To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions

  11. PIXE analysis of low concentration aluminum in brain tissues of an Alzheimer's disease patient

    Science.gov (United States)

    Ishihara, R.; Hanaichi, T.; Takeuchi, T.; Ektessabi, A. M.

    1999-06-01

    An excess accumulation and presence of metal ions may significantly alter a brain cell's normal functions. There have been increasing efforts in recent years to measure and quantify the density and distribution of excessive accumulations of constituent elements (such as Fe, Zn, Cu, and Ca) in the brain, as well as the presence and distribution of contaminating elements (such as Al). This is particularly important in cases of neuropathological disorders such as Alzheimer's disease, Parkinson's disease and ALS. The aim of this paper was to measure the Al present in the temporal cortex of the brain of an Alzheimer's disease patient. The specimens were taken from an unfixed autopsy brain which has been preserved for a period of 4 years in the deep freezer at -80 °C. Proton Induced X-ray Emission Spectroscopy was used for the measurement of Al concentration in this brain tissue. A tandem accelerator with 2 MeV of energy was also used. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorbers were removed. The results show that the peak height depends on the measurement site. However, in certain cases an extremely high concentration of Al was observed in the PIXE spectra, with an intensity higher than those in the other major elements of the brain's matrix element. Samples from tissues affected by the same disease were analyzed using the EDX analyzer. The results are quantitatively in very good agreement with those of the PIXE analysis.

  12. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  13. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion.

    Science.gov (United States)

    Polanco, Michael; Bawab, Sebastian; Yoon, Hargsoon

    2016-06-16

    The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  14. Dynamical properties of the brain tissue under oscillatory shear stresses at large strain range

    Science.gov (United States)

    Boudjema, F.; Khelidj, B.; Lounis, M.

    2017-01-01

    In this experimental work, we study the viscoelastic behaviour of in vitro brain tissue, particularly the white matter, under oscillatory shear strain. The selective vulnerability of this tissue is the anisotropic mechanical properties of theirs different regions lead to a sensitivity to the angular shear rate and magnitude of strain. For this aim, shear storage modulus (G‧) and loss modulus (G″) were measured over a range of frequencies (1 to 100 Hz), for different levels of strain (1 %, to 50 %). The mechanical responses of the brain matter samples showed a viscoelastic behaviour that depend on the correlated strain level and frequency range and old age sample. The samples have been showed evolution behaviour by increasing then decreasing the strain level. Also, the stiffness anisotropy of brain matter was showed between regions and species.

  15. A comparative study of diazepam levels in bone marrow versus serum, saliva and brain tissue.

    Science.gov (United States)

    Takatori, T; Tomii, S; Terazawa, K; Nagao, M; Kanamori, M; Tomaru, Y

    1991-01-01

    The distribution of diazepam in biological fluids and tissues of rats was examined 1, 2, 4 and 8 h after intraperitoneal administration by using a radioimmunoassay with specific anti-diazepam antibody. The diazepam levels in serum, saliva, brain and bone marrow decreased over a period of 2 h and levelled off 4 h after administration. The diazepam concentration in bone marrow was much higher than in serum, saliva and brain, suggesting an accumulation of diazepam in this tissue. This indicates that bone marrow could be a very useful material for the detection of diazepam in skeletonized remains. The diazepam concentrations in bone marrow, serum, saliva and brain showed a linear relationship (r = 0.860-0.997), indicating that a valid estimate of diazepam concentration in blood can be made from bone marrow samples.

  16. Endocannabinoid metabolism in human glioblastomas and meningiomas compared to human non-tumour brain tissue

    DEFF Research Database (Denmark)

    Petersen, G.; Moesgaard, B.; Hansen, Harald S.

    2005-01-01

    The endogenous levels of the two cannabinoid receptor ligands 2-arachidonoyl glycerol and anandamide, and their respective congeners, monoacyl glycerols and N-acylethanolamines, as well as the phospholipid precursors of N-acylethanolamines, were measured by gas chromatography-mass spectrometry in...... in glioblastoma (WHO grade IV) tissue and meningioma (WHO grade I) tissue and compared with human non-tumour brain tissue. Furthermore, the metabolic turnover of N-acylethanolamines was compared by measurements of the enzymatic activity of N-acyltransferase, N...

  17. Vascular Steal Explains Early Paradoxical Blood Oxygen Level-Dependent Cerebrovascular Response in Brain Regions with Delayed Arterial Transit Times

    Directory of Open Access Journals (Sweden)

    Julien Poublanc

    2013-04-01

    Full Text Available Introduction: Blood oxygen level-dependent (BOLD magnetic resonance imaging (MRI during manipulation of inhaled carbon dioxide (CO2 can be used to measure cerebrovascular reactivity (CVR and map regions of exhausted cerebrovascular reserve. These regions exhibit a reduced or negative BOLD response to inhaled CO2. In this study, we sought to clarify the mechanism behind the negative BOLD response by investigating its time delay (TD. Dynamic susceptibility contrast (DSC MRI with the injection of a contrast agent was used as the gold standard in order to provide measurement of the blood arrival time to which CVR TD could be compared. We hypothesize that if negative BOLD responses are the result of a steal phenomenon, they should be synchronized with positive BOLD responses from healthy brain tissue, even though the blood arrival time would be delayed. Methods: On a 3-tesla MRI system, BOLD CVR and DSC images were collected in a group of 19 patients with steno-occlusive cerebrovascular disease. For each patient, we generated a CVR magnitude map by regressing the BOLD signal with the end-tidal partial pressure of CO2 (PETCO2, and a CVR TD map by extracting the time of maximum cross-correlation between the BOLD signal and PETCO2. In addition, a blood arrival time map was generated by fitting the DSC signal with a gamma variate function. ROI masks corresponding to varying degrees of reactivity were constructed. Within these masks, the mean CVR magnitude, CVR TD and DSC blood arrival time were extracted and averaged over the 19 patients. CVR magnitude and CVR TD were then plotted against DSC blood arrival time. Results: The results show that CVR magnitude is highly correlated to DSC blood arrival time. As expected, the most compromised tissues with the longest blood arrival time have the lowest (most negative CVR magnitude. However, CVR TD shows a noncontinuous relationship with DSC blood arrival time. CVR TD is well correlated to DSC blood arrival time

  18. Exercise induces autophagy in peripheral tissues and in the brain.

    Science.gov (United States)

    He, Congcong; Sumpter, Rhea; Levine, Beth

    2012-10-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.

  19. Global brain blood-oxygen level responses to autonomic challenges in obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    Full Text Available Obstructive sleep apnea (OSA is accompanied by brain injury, perhaps resulting from apnea-related hypoxia or periods of impaired cerebral perfusion. Perfusion changes can be determined indirectly by evaluation of cerebral blood volume and oxygenation alterations, which can be measured rapidly and non-invasively with the global blood oxygen level dependent (BOLD signal, a magnetic resonance imaging procedure. We assessed acute BOLD responses in OSA subjects to pressor challenges that elicit cerebral blood flow changes, using a two-group comparative design with healthy subjects as a reference. We separately assessed female and male patterns, since OSA characteristics and brain injury differ between sexes. We studied 94 subjects, 37 with newly-diagnosed, untreated OSA (6 female (age mean ± std: 52.1±8.1 yrs; apnea/hypopnea index [AHI]: 27.7±15.6 events/hr and 31 male 54.3±8.4 yrs; AHI: 37.4±19.6 events/hr, and 20 female (age 50.5±8.1 yrs and 37 male (age 45.6±9.2 yrs healthy control subjects. We measured brain BOLD responses every 2 s while subjects underwent cold pressor, hand grip, and Valsalva maneuver challenges. The global BOLD signal rapidly changed after the first 2 s of each challenge, and differed in magnitude between groups to two challenges (cold pressor, hand grip, but not to the Valsalva maneuver (repeated measures ANOVA, p<0.05. OSA females showed greater differences from males in response magnitude and pattern, relative to healthy counterparts. Cold pressor BOLD signal increases (mean ± adjusted standard error at the 8 s peak were: OSA 0.14±0.08% vs. Control 0.31±0.06%, and hand grip at 6 s were: OSA 0.08±0.03% vs. Control at 0.30±0.02%. These findings, indicative of reduced cerebral blood flow changes to autonomic challenges in OSA, complement earlier reports of altered resting blood flow and reduced cerebral artery responsiveness. Females are more affected than males, an outcome which may contribute to the sex

  20. Carcinoma cells misuse the host tissue damage response to invade the brain

    Science.gov (United States)

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis. PMID:23832647

  1. Susceptibility Contrast in High Field MRI of Human Brain as a Function of Tissue Iron Content

    Science.gov (United States)

    Yao, Bing; Li, Tie-Qiang; van Gelderen, Peter; Shmueli, Karin; de Zwart, Jacco A.; Duyn, Jeff H.

    2009-01-01

    Magnetic susceptibility provides an important contrast mechanism for MRI. Increasingly, susceptibility-based contrast is being exploited to investigate brain tissue microstructure and to detect abnormal levels of brain iron as these have been implicated in a variety of neuro-degenerative diseases. However, it remains unclear to what extent magnetic susceptibility-related contrast at high field relates to actual brain iron concentrations. In this study, we performed susceptibility weighted imaging as a function of field strength on healthy brains in vivo and post-mortem brain tissues at 1.5T, 3T and 7T. Iron histology was performed on the tissue samples for comparison. The calculated susceptibility-related parameters R2* and signal frequency shift in four iron-rich regions (putamen, globus pallidus, caudate, and thalamus) showed an almost linear dependence (r=0.90 for R2*; r=0.83 for phase, p<0.01) on field strength, suggesting that potential ferritin saturation effects are not relevant to susceptibility-weighted contrast for field strengths up to 7T. The R2* dependence on the putative (literature-based) iron concentration was 0.048 Hz/Tesla/ppm. The histological data from brain samples confirmed the linear dependence of R2* on field strength and showed a slope against iron concentration of 0.0099 Hz/Tesla/ppm dry-weight, which is equivalent to 0.05 Hz/Tesla/ppm wet-weight and closely matched the calculated value in vivo. These results confirm the validity of using susceptibility-weighted contrast as an indicator of iron content in iron-rich brain regions. The absence of saturation effects opens the way to exploit the benefits of MRI at high field strengths for the detection of iron distributions with high sensitivity and resolution. PMID:19027861

  2. Brain tissue volumes in the general population of the elderly: the AGES-Reykjavik study.

    Science.gov (United States)

    Sigurdsson, Sigurdur; Aspelund, Thor; Forsberg, Lars; Fredriksson, Jesper; Kjartansson, Olafur; Oskarsdottir, Bryndis; Jonsson, Palmi V; Eiriksdottir, Gudny; Harris, Tamara B; Zijdenbos, Alex; van Buchem, Mark A; Launer, Lenore J; Gudnason, Vilmundur

    2012-02-15

    Imaging studies have reported conflicting findings on how brain structure differs with age and sex. This may be explained by discrepancies and limitations in study population and study design. We report a study on brain tissue volumes in one of the largest cohorts of individuals studied to date of subjects with high mean age (mean ± standard deviation (SD) 76 ± 6 years). These analyses are based on magnetic resonance imaging (MRI) scans acquired at baseline on 4303 non-demented elderly, and 367 who had a second MRI, on average 2.5 ± 0.2 years later. Tissue segmentation was performed with an automatic image analysis pipeline. Total brain parenchymal (TBP) volume decreased with increasing age while there was an increase in white matter hyperintensities (WMH) in both sexes. A reduction in both normal white matter (NWM)- and gray matter (GM) volume contributed to the brain shrinkage. After adjusting for intra-cranial volume, women had larger brain volumes compared to men (3.32%, p < 0.001) for TBP volume in the cross-sectional analysis. The longitudinal analysis showed a significant age-sex interaction in TBP volume with a greater rate of annual change in men (-0.70%, 95%CI: -0.78% to -0.63%) than women (-0.55%, 95%CI: -0.61% to -0.49%). The annual change in the cross-sectional data was approximately 40% less than the annual change in the longitudinal data and did not show significant age-sex interaction. The findings indicate that the cross-sectional data underestimate the rate of change in tissue volumes with age as the longitudinal data show greater rate of change in tissue volumes with age for all tissues.

  3. Zika Virus RNA Replication and Persistence in Brain and Placental Tissue

    Science.gov (United States)

    Rabeneck, Demi B.; Martines, Roosecelis B.; Reagan-Steiner, Sarah; Ermias, Yokabed; Estetter, Lindsey B.C.; Suzuki, Tadaki; Ritter, Jana; Keating, M. Kelly; Hale, Gillian; Gary, Joy; Muehlenbachs, Atis; Lambert, Amy; Lanciotti, Robert; Oduyebo, Titilope; Meaney-Delman, Dana; Bolaños, Fernando; Saad, Edgar Alberto Parra; Shieh, Wun-Ju; Zaki, Sherif R.

    2017-01-01

    Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections. PMID:27959260

  4. DNA extraction from fresh-frozen and formalin-fixed, paraffin-embedded human brain tissue.

    Science.gov (United States)

    Wang, Jian-Hua; Gouda-Vossos, Amany; Dzamko, Nicolas; Halliday, Glenda; Huang, Yue

    2013-10-01

    Both fresh-frozen and formalin-fixed, paraffin-embedded (FFPE) human brain tissues are invaluable resources for molecular genetic studies of central nervous system diseases, especially neurodegenerative disorders. To identify the optimal method for DNA extraction from human brain tissue, we compared methods on differently-processed tissues. Fragments of LRRK2 and MAPT (257 bp and 483 bp/245 bp) were amplified for evaluation. We found that for FFPE samples, the success rate of DNA extraction was greater when using a commercial kit than a laboratory-based method (successful DNA extraction from 76% versus 33% of samples). PCR amplicon size and storage period were key factors influencing the success rate of DNA extraction from FFPE samples. In the fresh-frozen samples, the DNA extraction success rate was 100% using either a commercial kit (QIAamp DNA Micro) or a laboratory-based method (sample boiling in 0.1 mol/L NaOH, followed by proteinase K digestion, and then DNA extraction using Chelex-100) regardless of PCR amplicon length or tissue storage time. Although the present results demonstrate that PCR-amplifiable genomic DNA can be extracted from both fresh-frozen and FFPE samples, fresh brain tissue is recommended for DNA extraction in future neuropathological studies.

  5. Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke.

    Science.gov (United States)

    Wang, Yuanfei; Cooke, Michael J; Sachewsky, Nadia; Morshead, Cindi M; Shoichet, Molly S

    2013-11-28

    Stroke is a leading cause of disability with no effective regenerative treatment. One promising strategy for achieving tissue repair involves the stimulation of endogenous neural stem/progenitor cells through sequential delivery of epidermal growth factor (EGF) followed by erythropoietin (EPO). Yet currently available delivery strategies such as intracerebroventricular (ICV) infusion cause significant tissue damage. We designed a novel delivery system that circumvents the blood brain barrier and directly releases growth factors to the brain. Sequential release of the two growth factors is a key in eliciting tissue repair. To control release, we encapsulate pegylated EGF (EGF-PEG) in poly(lactic-co-glycolic acid) (PLGA) nanoparticles and EPO in biphasic microparticles comprised of a PLGA core and a poly(sebacic acid) coating. EGF-PEG and EPO polymeric particles are dispersed in a hyaluronan methylcellulose (HAMC) hydrogel which spatially confines the particles and attenuates the inflammatory response of brain tissue. Our composite-mediated, sequential delivery of EGF-PEG and EPO leads to tissue repair in a mouse stroke model and minimizes damage compared to ICV infusion.

  6. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    Science.gov (United States)

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  7. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro

    Science.gov (United States)

    Killian, Nathaniel J.; Vernekar, Varadraj N.; Potter, Steve M.; Vukasinovic, Jelena

    2016-01-01

    Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793

  8. Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: relevance to human brain injury.

    Science.gov (United States)

    Graham, D I; Raghupathi, R; Saatman, K E; Meaney, D; McIntosh, T K

    2000-02-01

    A characteristic feature of severe diffuse axonal injury in man is radiological evidence of the "shearing injury triad" represented by lesions, sometimes haemorrhagic, in the corpus callosum, deep white matter and the rostral brain stem. With the exception of studies carried out on the non-human primate, such lesions have not been replicated to date in the multiple and diverse rodent laboratory models of traumatic brain injury. The present report describes tissue tears in the white matter, particularly in the fimbria of Sprague-Dawley rats killed 12, 24, and 48 h and 7 days after lateral fluid percussion brain injury of moderate severity (2.1-2.4 atm). The lesions were most easily seen at 24 h when they appeared as foci of tissue rarefaction in which there were a few polymorphonuclear leucocytes. At the margins of these lesions, large amounts of accumulated amyloid precursor protein (APP) were found in axonal swellings and bulbs. By 1 week post-injury, there was macrophage infiltration with marked astrocytosis and early scar formation. This lesion is considered to be due to severe deformation of white matter and this is the first time that it has been identified reproducibly in a rodent model of head injury under controlled conditions.

  9. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    Science.gov (United States)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  10. Sequential process in brain-derived neurotrophic factor-induced functional periodontal tissue regeneration.

    Science.gov (United States)

    Konishi, Akihiro; Takeda, Katsuhiro; Fujita, Tsuyoshi; Kajiya, Mikihito; Matsuda, Shinji; Kittaka, Mizuho; Shiba, Hideki; Kurihara, Hidemi

    2016-04-01

    We recently demonstrated that brain-derived neurotrophic factor (BDNF) promotes periodontal tissue regeneration. The purpose of this study was to establish an essential component of a rational approach for the clinical application of BDNF in periodontal regenerative therapy. Here, we assessed the sequence of early events in BDNF-induced periodontal tissue regeneration, especially from the aspect of cementum regeneration. Brain-derived neurotrophic factor was applied into experimental periodontal defects in Beagle dogs. The localization of cells positive for neurotrophic tyrosine kinase, receptor, type 2, proliferating cell nuclear antigen, osteopontin, integrin αVβ3, and integrin α2β1 was evaluated by immunohistochemistry. The effects of BDNF on adhesion of cultured human periodontal ligament cells was examined by an in vitro study. The results suggest that BDNF could induce rapid cementum regeneration by stimulating adhesion, proliferation, and differentiation of periodontal ligament cells in the early regenerative phase, resulting in enhancement of periodontal tissue regeneration.

  11. Effects of Changes in Colored Light on Brain and Calf Muscle Blood Concentration and Oxygenation

    Directory of Open Access Journals (Sweden)

    J. Weinzirl

    2011-01-01

    Full Text Available Color light therapy is a therapeutic method in complementary medicine. In color therapy, light of two contrasting colors is often applied in a sequential order. The aim of this study was to investigate possible physiological effects, i.e., changes in the blood volume and oxygenation in the brain and calf muscle of healthy subjects who were exposed to red and blue light in sequential order. The hypothesis was that if a subject is first exposed to blue and then red light, the effect of the red light will be enhanced due to the contrastingly different characteristics of the two colors. The same was expected for blue light, if first exposing a subject to red and then to blue light. Twelve healthy volunteers (six male, six female were measured twice on two different days by near-infrared spectroscopy during exposure to colored light. Two sequences of colored light were applied in a controlled, randomized, crossover design: first blue, then red, and vice versa. For the brain and muscle, the results showed no significant differences in blood volume and oxygenation between the two sequences, and a high interindividual physiological variability. Thus, the hypothesis had to be rejected. Comparing these data to results from a previous study, where subjects were exposed to blue and red light without sequential color changes, shows that the results of the current study appear to be similar to those of red light exposure. This may indicate that the exposure to red light was preponderant and thus effects of blue light were outweighed.

  12. A Simplified Workflow for Protein Quantitation of Rat Brain Tissues Using Label-Free Proteomics and Spectral Counting.

    Science.gov (United States)

    Boutté, Angela M; Grant, Shonnette F; Dave, Jitendra R

    2016-01-01

    Mass spectrometry-based proteomics is an increasingly valuable tool for determining relative or quantitative protein abundance in brain tissues. A plethora of technical and analytical methods are available, but straightforward and practical approaches are often needed to facilitate reproducibility. This aspect is particularly important as an increasing number of studies focus on models of traumatic brain injury or brain trauma, for which brain tissue proteomes have not yet been fully described. This text provides suggested techniques for robust identification and quantitation of brain proteins by using molecular weight fractionation prior to mass spectrometry-based proteomics. Detailed sample preparation and generalized protocols for chromatography, mass spectrometry, spectral counting, and normalization are described. The rat cerebral cortex isolated from a model of blast-overpressure was used as an exemplary source of brain tissue. However, these techniques may be adapted for lysates generated from several types of cells or tissues and adapted by the end user.

  13. Static jaw collimation settings to minimize radiation dose to normal brain tissue during stereotactic radiosurgery.

    Science.gov (United States)

    Han, Eun Young; Zhang, Xin; Yan, Yulong; Sharma, Sunil; Penagaricano, Jose; Moros, Eduardo; Corry, Peter

    2012-01-01

    At the University of Arkansas for Medical Sciences (UAMS) intracranial stereotactic radiosurgery (SRS) is performed by using a linear accelerator with an add-on micromultileaf collimator (mMLC). In our clinical setting, static jaws are automatically adapted to the furthest edge of the mMLC-defined segments with 2-mm (X jaw) and 5-mm (Y jaw) margin and the same jaw values are applied for all beam angles in the treatment planning system. This additional field gap between the static jaws and the mMLC allows additional radiation dose to normal brain tissue. Because a radiosurgery procedure consists of a single high dose to the planning target volume (PTV), reduction of unnecessary dose to normal brain tissue near the PTV is important, particularly for pediatric patients whose brains are still developing or when a critical organ, such as the optic chiasm, is near the PTV. The purpose of this study was to minimize dose to normal brain tissue by allowing minimal static jaw margin around the mMLC-defined fields and different static jaw values for each beam angle or arc. Dose output factors were measured with various static jaw margins and the results were compared with calculated doses in the treatment planning system. Ten patient plans were randomly selected and recalculated with zero static jaw margins without changing other parameters. Changes of PTV coverage, mean dose to predefined normal brain tissue volume adjacent to PTV, and monitor units were compared. It was found that the dose output percentage difference varied from 4.9-1.3% for the maximum static jaw opening vs. static jaw with zero margins. The mean dose to normal brain tissue at risk adjacent to the PTV was reduced by an average of 1.9%, with negligible PTV coverage loss. This dose reduction strategy may be meaningful in terms of late effects of radiation, particularly in pediatric patients. This study generated clinical knowledge and tools to consistently minimize dose to normal brain tissue.

  14. Hyperbaric oxygen therapy or hydroxycobalamin attenuates surges in brain interstitial lactate and glucose; and hyperbaric oxygen improves respiratory status in cyanide-intoxicated rats

    DEFF Research Database (Denmark)

    Lawson-Smith, P; Olsen, Niels Vidiendal; Hyldegaard, O

    2011-01-01

    Cyanide (CN) intoxication inhibits cellular oxidative metabolism and may result in brain damage. Hydroxycobalamin (OHCob) is one among other antidotes that may be used following intoxication with CN. Hyperbaric oxygen (HBO2) is recommended when supportive measures or antidotes fail. However, the ...... this beneficial effect. In conclusion, CN intoxication in anesthetized rats produces specific uncoupling of cerebral oxidative metabolism resulting in interstitial lactate and glucose surges that may be ameliorated by treatment with either hydroxycobalamin or HBO2....

  15. The Importance of Brain Banks for Molecular Neuropathological Research: The New South Wales Tissue Resource Centre Experience

    Directory of Open Access Journals (Sweden)

    Antony Harding

    2009-01-01

    Full Text Available New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders.

  16. Dose-Dependent Hemodynamic, Biochemical, and Tissue Oxygen Effects of OC99 following Severe Oxygen Debt Produced by Hemorrhagic Shock in Dogs

    Directory of Open Access Journals (Sweden)

    William W. Muir

    2014-01-01

    Full Text Available We determined the dose-dependent effects of OC99, a novel, stabilized hemoglobin-based oxygen-carrier, on hemodynamics, systemic and pulmonary artery pressures, surrogates of tissue oxygen debt (arterial lactate 7.2±0.1 mM/L and arterial base excess −17.9 ± 0.5 mM/L, and tissue oxygen tension (tPO2 in a dog model of controlled severe oxygen-debt from hemorrhagic shock. The dose/rate for OC99 was established from a pilot study conducted in six bled dogs. Subsequently twenty-four dogs were randomly assigned to one of four groups (n=6 per group and administered: 0.0, 0.065, 0.325, or 0.65 g/kg of OC99 combined with 10 mL/kg lactated Ringers solution administered in conjunction with 20 mL/kg Hextend IV over 60 minutes. The administration of 0.325 g/kg and 0.65 g/kg OC99 produced plasma hemoglobin concentrations of 0.63±0.01 and 1.11±0.02 g/dL, respectively, improved systemic hemodynamics, enhanced tPO2, and restored lactate and base excess values compared to 0.0 and 0.065 g/kg OC99. The administration of 0.65 g/kg OC99 significantly elevated pulmonary artery pressure. Plasma hemoglobin concentrations of OC99 ranging from 0.3 to 1.1 g/dL, in conjunction with colloid based fluid resuscitation, normalized clinical surrogates of tissue oxygen debt, improved tPO2, and avoided clinically relevant increases in pulmonary artery pressure.

  17. Dose-Dependent Hemodynamic, Biochemical, and Tissue Oxygen Effects of OC99 following Severe Oxygen Debt Produced by Hemorrhagic Shock in Dogs.

    Science.gov (United States)

    Muir, William W; Del Rio, Carlos L; Ueyama, Yukie; Youngblood, Bradley L; George, Robert S; Rausch, Carl W; Lau, Billy S H; Hamlin, Robert L

    2014-01-01

    We determined the dose-dependent effects of OC99, a novel, stabilized hemoglobin-based oxygen-carrier, on hemodynamics, systemic and pulmonary artery pressures, surrogates of tissue oxygen debt (arterial lactate 7.2 ± 0.1 mM/L and arterial base excess -17.9 ± 0.5 mM/L), and tissue oxygen tension (tPO2) in a dog model of controlled severe oxygen-debt from hemorrhagic shock. The dose/rate for OC99 was established from a pilot study conducted in six bled dogs. Subsequently twenty-four dogs were randomly assigned to one of four groups (n = 6 per group) and administered: 0.0, 0.065, 0.325, or 0.65 g/kg of OC99 combined with 10 mL/kg lactated Ringers solution administered in conjunction with 20 mL/kg Hextend IV over 60 minutes. The administration of 0.325 g/kg and 0.65 g/kg OC99 produced plasma hemoglobin concentrations of 0.63 ± 0.01 and 1.11 ± 0.02 g/dL, respectively, improved systemic hemodynamics, enhanced tPO2, and restored lactate and base excess values compared to 0.0 and 0.065 g/kg OC99. The administration of 0.65 g/kg OC99 significantly elevated pulmonary artery pressure. Plasma hemoglobin concentrations of OC99 ranging from 0.3 to 1.1 g/dL, in conjunction with colloid based fluid resuscitation, normalized clinical surrogates of tissue oxygen debt, improved tPO2, and avoided clinically relevant increases in pulmonary artery pressure.

  18. The effects of hyperbaric air and hyperbaric oxygen on blood-brain barrier integrity in rats.

    Science.gov (United States)

    Cevik, Nihal Gunes; Orhan, Nurcan; Yilmaz, Canan Ugur; Arican, Nadir; Ahishali, Bulent; Kucuk, Mutlu; Kaya, Mehmet; Toklu, Akin Savas

    2013-09-19

    Hyperbaric oxygen (HBO) treatment yields conflicting results on blood-brain barrier (BBB) integrity under various pathological conditions and the effects of HBO on healthy brain is poorly understood. In this experimental study, the effects of HBO on BBB integrity were investigated in comparison with hyperbaric air (HBA) in intact rats. Four sessions of HBA or HBO were applied to intact rats in 24h. BBB integrity was functionally and structurally evaluated by determining extravasation of Evans blue (EB) dye and horseradish peroxidase (HRP) tracers. In immunohistochemical evaluation, relative staining intensity for occludin, a tight junction (TJ) protein, and aquaporin 4 (AQP4), a water-channel protein, was detected in the barrier type of microvessels of brain by image analysis. BBB permeability to EB dye significantly increased in animals in HBO treatment group compared to those in HBA and control groups (p<0.05). The immunoreactivity of occludin, a tight junction protein, remained essentially unaltered in capillaries of hippocampus in all groups. In animals exposed to HBO, AQP4 immunoreactivity significantly increased in parietal cortex compared to those in HBA and control groups (p<0.01). Ultrastructurally, frequent vesicles containing HRP reaction products were observed in capillary endothelial cells in cerebral cortex and hippocampus of rats subjected to both HBA and HBO. Our results indicate that the HBO administration to intact rats increased BBB permeability to both EB and HRP while HBA increased only HRP extravasation in these animals. The results of this study suggest that HBA also impairs the BBB integrity in intact rats as well as HBO.

  19. Distribution of dearomatised white spirit in brain, blood, and fat tissue after repeated exposure of rats

    DEFF Research Database (Denmark)

    Lof, A.; Lam, Henrik Rye; Gullstrand, E.

    1999-01-01

    spirit was 1.5 and 5.6 mg/kg in blood; 7.1 and 17.1 mg/kg in brain; 432 and 1452 mg/kg in fat tissue at the exposure levels of 400 and 800 p.p.m., respectively. The concentrations of n-nonane, n-decane, n-undecane, and total white spirit in blood and brain were not affected by the duration of exposure....... Two hours after the end of exposure the n-decane concentration decreased to about 25% in blood and 50% in brain. A similar pattern of elimination was also observed for n-nonane, n-undecane and total white spirit in blood and brain. In fat tissue the concentrations of n-nonane, n-decane, n......-undecane, and total white spirit increased during the 3 weeks of exposure. The time to reach steady-state concentrations is longer than 3 weeks. After the 3 weeks' exposure the fat tissue concentration of n-nonane, n-decane, n-undecane, and total white spirit decreased very slowly compared with the rate of decrease...

  20. Size-dependent long-term tissue response to biostable nanowires in the brain.

    Science.gov (United States)

    Gällentoft, Lina; Pettersson, Lina M E; Danielsen, Nils; Schouenborg, Jens; Prinz, Christelle N; Linsmeier, Cecilia Eriksson

    2015-02-01

    Nanostructured neural interfaces, comprising nanotubes or nanowires, have the potential to overcome the present hurdles of achieving stable communication with neuronal networks for long periods of time. This would have a strong impact on brain research. However, little information is available on the brain response to implanted high-aspect-ratio nanoparticles, which share morphological similarities with asbestos fibres. Here, we investigated the glial response and neuronal loss in the rat brain after implantation of biostable and structurally controlled nanowires of different lengths for a period up to one year post-surgery. Our results show that, as for lung and abdominal tissue, the brain is subject to a sustained, local inflammation when biostable and high-aspect-ratio nanoparticles of 5 μm or longer are present in the brain tissue. In addition, a significant loss of neurons was observed adjacent to the 10 μm nanowires after one year. Notably, the inflammatory response was restricted to a narrow zone around the nanowires and did not escalate between 12 weeks and one year. Furthermore, 2 μm nanowires did not cause significant inflammatory response nor significant loss of neurons nearby. The present results provide key information for the design of future neural implants based on nanomaterials.

  1. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord

    Science.gov (United States)

    Ersen, Ali; Elkabes, Stella; Freedman, David S.; Sahin, Mesut

    2015-02-01

    Objective. Microelectrodes implanted in the central nervous system (CNS) often fail in long term implants due to the immunological tissue response caused by tethering forces of the connecting wires. In addition to the tethering effect, there is a mechanical stress that occurs at the device-tissue interface simply because the microelectrode is a rigid body floating in soft tissue and it cannot reshape itself to comply with changes in the surrounding tissue. In the current study we evaluated the scar tissue formation to tetherless devices with two significantly different geometries in the rat brain and spinal cord in order to investigate the effects of device geometry. Approach. One of the implant geometries resembled the wireless, floating microstimulators that we are currently developing in our laboratory and the other was a (shank only) Michigan probe for comparison. Both electrodes were implanted into either the cervical spinal cord or the motor cortices, one on each side. Main results. The most pronounced astroglial and microglial reactions occurred within 20 μm from the device and decreased sharply at larger distances. Both cell types displayed the morphology of non-activated cells past the 100 μm perimeter. Even though the aspect ratios of the implants were different, the astroglial and microglial responses to both microelectrode types were very mild in the brain, stronger and yet limited in the spinal cord. Significance. These observations confirm previous reports and further suggest that tethering may be responsible for most of the tissue response in chronic implants and that the electrode size has a smaller contribution with floating electrodes. The electrode size may be playing primarily an amplifying role to the tethering forces in the brain whereas the size itself may induce chronic response in the spinal cord where the movement of surrounding tissues is more significant.

  2. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    Science.gov (United States)

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  3. NIRS-Derived Tissue Oxygen Saturation and Hydrogen Ion Concentration Following Bed Rest

    Science.gov (United States)

    Lee, S. M. C.; Everett, M. E.; Crowell, J. B.; Westby, C. M.; Soller, B. R.

    2010-01-01

    Long-term bed rest (BR), a model of spaceflight, results in a decrease in aerobic capacity and altered submaximal exercise responses. The strongest BR-induced effects on exercise appear to be centrally-mediated, but longer BR durations may result in peripheral adaptations (e.g., decreased mitochondrial and capillary density) which are likely to influence exercise responses. PURPOSE: To measure tissue oxygen saturation (SO2) and hydrogen ion concentration ([H+]) in the vastus lateralis (VL) using near infrared spectroscopy (NIRS) during cycle ergometry before and after . 30 d of BR. METHODS: Eight subjects performed a graded exercise test on a cycle ergometer to volitional fatigue 7 d before (pre-BR) and at the end or 1 day after BR (post-BR). NIRS spectra were collected from a sensor adhered to the skin overlying the VL. Oxygen consumption (VO2) was measured by open circuit spirometry. Blood volume (BV) was measured before and after BR using the carbon monoxide rebreathing technique. Changes in pre- and post-BR SO2 and [H+] data were compared using mixed model analyses. BV and peak exercise data were compared using paired t-tests. RESULTS: BV (pre-BR: 4.3+/-0.3, post-BR: 3.7+/-0.2 L, mean+/-SE, p=.01) and peak VO2 (pre-BR: 1.98+/-0.24, post-BR: 1.48 +/-0.21 L/min, padaptations which contribute to cardiovascular and muscular deconditioning as measured by NIRS-derived SO2 and [H+] in the VL and may contribute to lower post-BR exercise tolerance. Supported by the National Space Biomedical Research Institute through NASA NCC 9-58

  4. Neuropathological alterations in alcoholic brains. Studies arising from the New South Wales Tissue Resource Centre.

    Science.gov (United States)

    Harper, Clive; Dixon, Gavin; Sheedy, Donna; Garrick, Therese

    2003-09-01

    Alcohol dependence and abuse are among the most costly health problems in the world from both social and economic points of view. Patterns of drinking appear to be changing throughout the world with more women and young people drinking heavily. Excessive drinking can lead to impairment of cognitive function and structural brain changes--some permanent, some reversible. Patterns of damage appear to relate to lifetime alcohol consumption but, more importantly, to associated medical complications. The most significant of these is the alcohol-related vitamin deficient state, the Wernicke-Korsakoff syndrome (WKS), which is caused by thiamin deficiency but is seen most commonly in alcoholics. Careful selection and classification of alcoholic cases into those with and without these complications, together with detailed quantitative neuropathological analyses has provided data that gives clues to the most vulnerable regions and cells in the brain. Brain shrinkage is largely accounted for by loss of white matter. Some of this damage appears to be reversible. Alcohol-related neuronal loss has been documented in specific regions of the cerebral cortex (superior frontal association cortex), hypothalamus and cerebellum. No change is found in basal ganglia, nucleus basalis, or serotonergic raphe nuclei. Many of these regions which are normal in uncomplicated alcoholics are damaged in those with the WKS. Dendritic and synaptic changes have been documented in alcoholics and these, together with receptor and transmitter changes, may explain functional changes and cognitive deficits, which precede more severe structural neuronal changes. A resource to provide human brain tissues for these types of studies has been developed at the University of Sydney--the New South Wales Tissue Resource Centre. The aim of this facility is to provide research groups throughout the world with fresh and/or frozen tissues from well-characterized cases of alcohol-related brain damage and matched

  5. Differential gene expression in brain tissues of aggressive and non-aggressive dogs

    Directory of Open Access Journals (Sweden)

    Tverdal Aage

    2010-06-01

    Full Text Available Abstract Background Canine behavioural problems, in particular aggression, are important reasons for euthanasia of otherwise healthy dogs. Aggressive behaviour in dogs also represents an animal welfare problem and a public threat. Elucidating the genetic background of adverse behaviour can provide valuable information to breeding programs and aid the development of drugs aimed at treating undesirable behaviour. With the intentions of identifying gene-specific expression in particular brain parts and comparing brains of aggressive and non-aggressive dogs, we studied amygdala, frontal cortex, hypothalamus and parietal cortex, as these tissues are reported to be involved in emotional reactions, including aggression. Based on quantitative real-time PCR (qRT-PCR in 20 brains, obtained from 11 dogs euthanised because of aggressive behaviour and nine non-aggressive dogs, we studied expression of nine genes identified in an initial screening by subtraction hybridisation. Results This study describes differential expression of the UBE2V2 and ZNF227 genes in brains of aggressive and non-aggressive dogs. It also reports differential expression for eight of the studied genes across four different brain tissues (amygdala, frontal cortex, hypothalamus, and parietal cortex. Sex differences in transcription levels were detected for five of the nine studied genes. Conclusions The study showed significant differences in gene expression between brain compartments for most of the investigated genes. Increased expression of two genes was associated with the aggression phenotype. Although the UBE2V2 and ZNF227 genes have no known function in regulation of aggressive behaviour, this study contributes to preliminary data of differential gene expression in the canine brain and provides new information to be further explored.

  6. Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hebden, Jeremy C [Department of Medical Physics and Bioengineering, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Gibson, Adam [Department of Medical Physics and Bioengineering, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Austin, Topun [Department of Paediatrics and Child Health, University College London, 5 University Street, London WC1E 6JJ (United Kingdom); Yusof, Rozarina Md [Department of Medical Physics and Bioengineering, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Everdell, Nick [Department of Medical Physics and Bioengineering, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Delpy, David T [Department of Medical Physics and Bioengineering, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Arridge, Simon R [Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom); Meek, Judith H [Department of Paediatrics and Child Health, University College London, 5 University Street, London WC1E 6JJ (United Kingdom); Wyatt, John S [Department of Paediatrics and Child Health, University College London, 5 University Street, London WC1E 6JJ (United Kingdom)

    2004-04-07

    Induced haemodynamic and blood oxygenation changes occurring within the brain of a ventilated newborn infant have been imaged in three dimensions using optical tomography. Noninvasive measurements of the flight times of transmitted light were acquired during illumination of the brain by laser pulses at wavelengths of 780 nm and 815 nm. The oxygen and carbon dioxide partial pressures were adjusted through alterations to the ventilator settings, resulting in changes to the cerebral blood volume and oxygenation. Three-dimensional images were generated using the physiologically associated differences in the measured data, obviating the need for data calibration using a separate reference measurement. The results exhibit large changes in absorption coefficient at both wavelengths. Images corresponding to differences in concentrations of oxy- and deoxyhaemoglobin are in qualitative agreement with known physiological data.

  7. Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection

    Directory of Open Access Journals (Sweden)

    Baldellou Maribel

    2009-03-01

    Full Text Available Abstract Background Angiogenesis correlates with patient survival following acute ischaemic stroke, and survival of neurons is greatest in tissue undergoing angiogenesis. Angiogenesis is critical for the development of new microvessels and leads to re-formation of collateral circulation, reperfusion, enhanced neuronal survival and improved recovery. Results Here, we have isolated active (CD105/Flt-1 positive and inactive (CD105/Flt-1 minus (n=5 micro-vessel rich-regions from stroke-affected and contralateral tissue of patients using laser-capture micro-dissection. Areas were compared for pro- and anti-angiogenic gene expression using targeted TaqMan microfluidity cards containing 46 genes and real-time PCR. Further analysis of key gene de-regulation was performed by immunohistochemistry to define localization and expression patterns of identified markers and de novo synthesis by human brain microvessel endothelial cells (HBMEC was examined following oxygen-glucose deprivation (OGD. Our data revealed that seven pro-angiogenic genes were notably up-regulated in CD105 positive microvessel rich regions. These were, beta-catenin, neural cell adhesion molecule (NRCAM, matrix metalloproteinase-2 (MMP-2, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1, hepatocyte growth factor-alpha (HGF-alpha, monocyte chemottractant protein-1 (MCP-1 and and Tie-2 as well as c-kit. Immunohistochemistry demonstrated strong staining of MMP-2, HGF-alpha, MCP-1 and Tie-2 in stroke-associated regions of active remodeling in association with CD105 positive staining. In vitro, OGD stimulated production of Tie-2, MCP-1 and MMP-2 in HBMEC, demonstrated a de novo response to hypoxia. Conclusion In this work we have identified concurrent activation of key angiogenic molecules associated with endothelial cell migration, differentiation and tube-formation, vessel stabilization and stem cell homing mechanisms in areas of revascularization. Therapeutic stimulation of these

  8. Microinjection of membrane-impermeable molecules into single neural stem cells in brain tissue.

    Science.gov (United States)

    Wong, Fong Kuan; Haffner, Christiane; Huttner, Wieland B; Taverna, Elena

    2014-05-01

    This microinjection protocol allows the manipulation and tracking of neural stem and progenitor cells in tissue at single-cell resolution. We demonstrate how to apply microinjection to organotypic brain slices obtained from mice and ferrets; however, our technique is not limited to mouse and ferret embryos, but provides a means of introducing a wide variety of membrane-impermeable molecules (e.g., nucleic acids, proteins, hydrophilic compounds) into neural stem and progenitor cells of any developing mammalian brain. Microinjection experiments are conducted by using a phase-contrast microscope equipped with epifluorescence, a transjector and a micromanipulator. The procedure normally takes ∼2 h for an experienced researcher, and the entire protocol, including tissue processing, can be performed within 1 week. Thus, microinjection is a unique and versatile method for changing and tracking the fate of a cell in organotypic slice culture.

  9. Identifying signature Zernike modes for efficient light delivery through brain tissue

    CERN Document Server

    Sane, Sharmila; Lee, Woei Ming; Stricker, Christian; Bachor, Hans; Daria, Vincent

    2015-01-01

    Recent progress in neuroscience to image and investigate brain function has been made possible by impressive developments in optogenetic and opto-molecular tools. Such research requires advances in optical techniques for the delivery of light through brain tissue with high spatial resolution. The tissue causes distortions of the wavefront of the incoming light which broadens the focus, thereby reducing the intensity and resolution especially in techniques requiring focal illumination. Adaptive wavefront correction has been demonstrated to compensate for these distortions. However, in many situations iterative derivation of the corrective wavefront introduces time constraints that limit its usefulness when used to probe living cells. Here we demonstrate a direct and fast technique by working with a small set of Zernike modes and demonstrate that corrections derived a priori can lead to significant improvement of the focus. We verify this idea by the electrical response of whole-cell patched neurons following t...

  10. Changes of amino acid gradients in brain tissues induced by microwave irradiation and other means

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, C.F.; Parsons, J.E.; Oh, C.C.; Wasterlain, C.G.; Baldwin, R.A. (Neurochem. Labs, V.A. Med. Ctr. Sepulveda, CA (USA))

    1989-09-01

    Focused microwave irradiation to the head (FMI) has been used extensively by neurochemists for rapid inactivation of enzymatic activity in brain tissues and the preservation, for in vitro analysis, of in vivo substrate concentrations. Periodically the suitability of this technique for regional studies has been questioned. Evidence has now been obtained, on the basis of altered concentration gradients for GABA and taurine from the Substantia Nigra (SN) to an Adjacent Dorsal Area (ADJ), that FMI not only inactivates enzymes, but also facilitates rapid diffusion of small molecules from areas of high concentrations to adjacent areas of lower concentration. To a lesser extent, the implantation of plastic injection cannulas also decreased these concentration gradients. These results offer clear evidence that FMI is ill suited and unreliable for studies designed to map and compare the in vivo regional concentrations of diffusible organic molecules (such as amino acids) in brain tissues. Any invasive technique that compromises membrane barriers is likely to produce smaller similar effects.

  11. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    Science.gov (United States)

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  12. Concentrations of Nitric Oxide in Rat Brain Tissues after Diffuse Brain Injury and Neuroprotection by the Selective Inducible Nitric Oxide Synthase Inhibitor Aminoguanidine

    Institute of Scientific and Technical Information of China (English)

    Yi-bao Wang; Shao-wu Ou; Guang-yu Li; Yun-hui Liu

    2005-01-01

    @@ To investigate the effects of nitric oxide (NO) and the selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) on trauma, we explored the concentrations of nitric oxide in rat brain tissues at different time stamps after diffuse brain injury (DBI) with or without AG treatment.

  13. Focussed Ion Beam Milling and Scanning Electron Microscopy of Brain Tissue

    OpenAIRE

    Knott, Graham; Rosset, Stéphanie; Cantoni, Marco

    2011-01-01

    This protocol describes how biological samples, like brain tissue, can be imaged in three dimensions using the focussed ion beam/scanning electron microscope (FIB/SEM). The samples are fixed with aldehydes, heavy metal stained using osmium tetroxide and uranyl acetate. They are then dehydrated with alcohol and infiltrated with resin, which is then hardened. Using a light microscope and ultramicrotome with glass knives, a small block containing the region interest close to the surface is made....

  14. Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images.

    Science.gov (United States)

    Chen, Yunjie; Zhan, Tianming; Zhang, Ji; Wang, Hongyuan

    2016-01-01

    We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM) is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM) is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms.

  15. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  16. Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.01.022

    2013-01-01

    Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression tests and stress relaxation tests at strain rates < 90/s. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the compressive nominal stress at 30% strain was 8.83 +/- 1.94, 12.8 +/- 3.10 and 16.0 +/- 1.41 kPa (mean +/- SD) at strain rates of 30, 60 and 90/s, respectively. Relaxation tests were also conducted at 10%-50% strain with the average rise time of 10 ms, which can be used to derive time dependent parameters. Numerical simulations were performed using one-term Ogden model with initial shear modulus mu_0 = 6.06 +/- 1.44, 9.44 +/-...

  17. [Influence of n-hexane on vascular endothelial active substances in brain tissue in mice].

    Science.gov (United States)

    Lin, L; Zhang, Z Q; Zhang, C Z

    2017-01-20

    Objective: To investigate the influence of n-hexane on vascular endothelial active substances in brain tissue in mice and its significance. Methods: A total of 48 healthy Kunming mice were randomly divided into high-dose exposure group, middle-dose exposure group, low-dose exposure group, and control group, with 12 mice in each group. All groups except the control group were exposed to n-hexane via static inhalation (0.035 g/L, 0.018 g/L, and 0.009 g/L for the high-, middle-, and low-dose exposure groups, respectively) 4 hours a day for 21 days. the mice in the control groups were not exposed to n-hexane. After the exposure, the lev-els of endothelin-1 (ET-1) , nitric oxide (NO) , and angiotensin II (Ang II) in brain tissue were measured in all groups. Results: There were significant differences in the levels of ET-1, NO, and Ang II between the three ex-posure groups and the control group (PHexane can affect the vascular endothe-lial active substances in brain tissue in mice, and the changes and imbalance in vascular endothelial active sub-stances may be one of the reasons for central nervous system impairment caused by n-hexane.

  18. Optical vortex beam transmission with different OAM in scattering beads and brain tissue media

    Science.gov (United States)

    Wang, W. B.; Shi, Lingyan; Lindwasser, Lukas; Marque, Paulo; Lavery, M. P. J.; Alfano, R. R.

    2016-03-01

    Light transmission of Laguerre Gaussian (LG) vortex beams with different orbital angular momentum (OAM) values (L) in scattering beads and mouse brain tissue media were experimentally investigated for the first time in comparison with Gaussian (G) beams. The LG beams with different OAM were generated using a spatial light modulator (SLM) in reflection mode. The scattering beads media consist of various sizes and concentrations of latex beads in water solutions. The transmissions of LG and G beams through scattering beads and brain tissue media were measured with different ratios of sample thicknesses (z) to scattering mean free path (ls) of the turbid media, z/ls. The results indicate that within the ballistic region where z/ls is small, the LG and G beams show no significant difference, while in the diffusive region where z/ls is higher, the vortex beams show higher transmission than G beams. In the diffusive region, the LG beams with higher L values show higher transmission than the beams with lower L values due to the eigen channels in the media. The transition points from the ballistic to diffusive regions for different scattering beads and brain tissue media were studied.

  19. Preliminary observation of genes specifically expressed in brain tissues during stroke-like episodes in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-mei; ZHAO Bin; ZHU Shan-jun; ZHU Zhi-ming; ZHANG Qian; HUI Ru-tai

    2001-01-01

    Objective: To observe the difference of gene expressions of brain tissues during apoplectic episodes and those of normal brain in Wistar rats in order to study the pathological mechanism of apoplexy. Methods: A rat model of hypertension was established with the administration of cold stimulus and high salt intake as the environmental risk factors.Apoplexy occurred in the rats because of hypertension. Suppression subtractive hybridization(SSH) was used to identify and analyze the differential genes specifically expressed in cerebral tissues of stoke group and control rats. Results: A total of 226 genes out of the 228 were usable and analyzed. The average length of the 226 genes was (286.6±120.3) bp with a range from 50 bp to 619 bp. And 126 clones out of the 226 showed a sequence with significant identity to the known genes; 78 clones demonstrated homogenous sequences to the existing ESTs ofdbEST, but no one of the 78 showed sequence with identity to that of known genes; and remaining 22 were novel transrcipts exhibiting no similarity to any known sequences. All the clones which were highly homogenous to the known genes were categorized on the basis of their function. It was found that 26.5% of the mitochodrial genes in brain tissues underwent changes after apoplexy and the changes showed a twofold relationship of cause and effect. Conclusion: Environmental factors are able to induce changes of gene expression, which may increase the sensitivity to apoplectic stroke.

  20. Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation

    Directory of Open Access Journals (Sweden)

    Nicky Pirotte

    2015-01-01

    Full Text Available Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI or apocynin (APO causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS, in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.

  1. Relationship between light scattering and absorption due to cytochrome c oxidase reduction during loss of tissue viability in brains of rats

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2008-02-01

    We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.

  2. Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, Stephen R., E-mail: srbowen@wisc.edu [University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706 (United States); Kogel, Albert J. van der [University Medical Centre St. Radboud, Nijmegen (Netherlands); Nordsmark, Marianne [Aarhus University Hospital, Department of Experimental Clinical Oncology, Aarhus (Denmark); Bentzen, Soren M. [University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706 (United States); University of Wisconsin School of Medicine and Public Health, Department of Human Oncology, Clinical Sciences Center, Madison, WI 53792 (United States); Jeraj, Robert [University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI 53706 (United States); University of Wisconsin School of Medicine and Public Health, Department of Human Oncology, Clinical Sciences Center, Madison, WI 53792 (United States); Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2011-08-15

    Purpose: Unique uptake and retention mechanisms of positron emission tomography (PET) hypoxia tracers make in vivo comparison between them challenging. Differences in imaged uptake of two common hypoxia radiotracers, [{sup 61}Cu]Cu-ATSM and [{sup 18}F]FMISO, were characterized via computational modeling to address these challenges. Materials and Methods: An electrochemical formalism describing bioreductive retention mechanisms of these tracers under steady-state conditions was adopted to relate time-averaged activity concentration to tissue partial oxygen tension (PO{sub 2}), a common metric of hypoxia. Chemical equilibrium constants of product concentration to reactant concentration ratios were determined from free energy changes and reduction potentials of pertinent reactions reported in the literature. Resulting transformation functions between tracer uptake and PO{sub 2} were compared against measured values in preclinical models. Additionally, calculated PO{sub 2} distributions from imaged Cu-ATSM tracer activity concentrations of 12 head and neck squamous cell carcinoma (HNSCC) patients were validated against microelectrode PO{sub 2} measurements in 69 HNSCC patients. Results: Both Cu-ASTM- and FMISO-modeled PO{sub 2} transformation functions were in agreement with preclinical measured values within single-deviation confidence intervals. High correlation (r{sup 2}=0.94, P<.05) was achieved between modeled PO{sub 2} distributions and measured distributions in the patient populations. On average, microelectrode hypoxia thresholds (2.5 and 5.0 mmHg) corresponded to higher Cu-ATSM uptake [2.5 and 2.0 standardized uptake value (SUV)] and lower FMISO uptake (2.0 and 1.4 SUV). Uncertainties in the models were dominated by variations in the estimated specific activity and intracellular acidity. Conclusions: Results indicated that the high dynamic range of Cu-ATSM uptake was representative of a narrow range of low oxygen tension whose values were dependent on

  3. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus.

    Science.gov (United States)

    Jugé, Lauriane; Pong, Alice C; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P hydrocephalus development.

  4. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  5. A comparison of hyperelastic constitutive models applicable to brain and fat tissues.

    Science.gov (United States)

    Mihai, L Angela; Chin, LiKang; Janmey, Paul A; Goriely, Alain

    2015-09-06

    In some soft biological structures such as brain and fat tissues, strong experimental evidence suggests that the shear modulus increases significantly under increasing compressive strain, but not under tensile strain, whereas the apparent Young's elastic modulus increases or remains almost constant when compressive strain increases. These tissues also exhibit a predominantly isotropic, incompressible behaviour. Our aim is to capture these seemingly contradictory mechanical behaviours, both qualitatively and quantitatively, within the framework of finite elasticity, by modelling a soft tissue as a homogeneous, isotropic, incompressible, hyperelastic material and comparing our results with available experimental data. Our analysis reveals that the Fung and Gent models, which are typically used to model soft tissues, are inadequate for the modelling of brain or fat under combined stretch and shear, and so are the classical neo-Hookean and Mooney-Rivlin models used for elastomers. However, a subclass of Ogden hyperelastic models are found to be in excellent agreement with the experiments. Our findings provide explicit models suitable for integration in large-scale finite-element computations.

  6. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Zhu, Jingtan; Xu, Jianyi; Gong, Hui; Luo, Qingming; Zhu, Dan

    2017-01-01

    Tissue optical clearing technique shows a great potential for neural imaging with high resolution, especially for connectomics in brain. The passive clarity technique (PACT) is a relative simple clearing method based on incubation, which has a great advantage on tissue transparency, fluorescence preservation and immunostaining compatibility for imaging tissue blocks. However, this method suffers from long processing time. Previous studies indicated that increasing temperature can speed up the clearing. In this work, we aim to systematacially and quantitatively study this influence based on PACT with graded increase of temperatures. We investigated the process of optical clearing of brain tissue block at different temperatures, and found that elevated temperature could accelerate the clearing process and also had influence on the fluorescence intensity. By balancing the advantages with drawbacks, we conclude that 42–47 °C is an alternative temperature range for PACT, which can not only produce faster clearing process, but also retain the original advantages of PACT by preserving endogenous fluorescence well, achieving fine morphology maintenance and immunostaining compatibility. PMID:28139694

  7. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Zhu, Jingtan; Xu, Jianyi; Gong, Hui; Luo, Qingming; Zhu, Dan

    2017-01-01

    Tissue optical clearing technique shows a great potential for neural imaging with high resolution, especially for connectomics in brain. The passive clarity technique (PACT) is a relative simple clearing method based on incubation, which has a great advantage on tissue transparency, fluorescence preservation and immunostaining compatibility for imaging tissue blocks. However, this method suffers from long processing time. Previous studies indicated that increasing temperature can speed up the clearing. In this work, we aim to systematacially and quantitatively study this influence based on PACT with graded increase of temperatures. We investigated the process of optical clearing of brain tissue block at different temperatures, and found that elevated temperature could accelerate the clearing process and also had influence on the fluorescence intensity. By balancing the advantages with drawbacks, we conclude that 42–47 °C is an alternative temperature range for PACT, which can not only produce faster clearing process, but also retain the original advantages of PACT by preserving endogenous fluorescence well, achieving fine morphology maintenance and immunostaining compatibility.

  8. Effect of hyperbaric oxygen preconditioning on the expressions of B cell lymphoma/lewkmia-2 and Bcl-2 associated X protein in the brain tissue of rats with decompression sickness%高压氧预处理对减压病大鼠脑组织B细胞淋巴瘤/白血病基因-2蛋白及相关X蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    李娅; 岳荣; 王文岚; 薛莉; 任杰; 谢小萍; 迪力达尔; 李金声

    2014-01-01

    异均有统计学意义(P<0.05).结论 DCS组大鼠大脑皮层区神经元凋亡1d时最严重,海马区10 d时最明显;HBO预处理可以减轻减压对大鼠脑组织的病理损伤,减轻神经细胞的变性坏死,抑制线粒体途径的细胞凋亡.%Objective To investigate the effect of hyperbaric oxygen (HBO) preconditioning on the expressions of B cell lymphoma/lewkmia-2 (Bcl-2),Bcl-2 associated X protein (Bax) and cysteine aspartic acid specific protease-3 (Caspase-3) in the brain tissue of rats with decompression sickness.Methods Seventy-two male healthy Sprague-Dawley rats were randomly divided into the normal control,the HBO preconditioning group (or HBO group),the decompression sickness group (or the DCS group).Four time points (at days 1,5,7 and 10) were set for each subgroup,which consisted of 6 animals.Pathological changes in the brain tissue,following development of the decompression sickness model,were observed with HE staining,and the expressions of Bcl-2,Bax and Caspase-3 were detected with immunohistochemistry in various subgroups.Results (1) For the animals in the HBO and DCS groups,the state of illness was classified as mild and moderate (grade 1-3).(2) HE staining revealed that a large loose area in the rat cerebral cortex of the DCS group was detected,cortical and hippocampus neurons displayed a triangular degeneration and necrosis,cellular atrophy,volume reduction and degeneration,chromatin condensation or even fragmentation.For the animals in the HBO group,necrotic neuron degeneration and necrosis obviously alleviated.(3) At days 1,5 and 7,the expressions of Bcl-2 positive cells for the DCS group were (89.5 ± 15.60),(176.4 ± 10.22)and (265.52± 15.74) respectively,which were significantly lower than those in the control group (408.67 ± 29.57),with statistical significance (P < 0.05),while on the other hand,the expressions of Bcl-2 positive cells for the HBO group were (179.64 ± 12.21),(253.91 ± 14.00) and (341.15 ± 13.52) respectively,which were

  9. Alzheimer-like neurotransmitter deficits in adult Down's syndrome brain tissue.

    Science.gov (United States)

    Godridge, H; Reynolds, G P; Czudek, C; Calcutt, N A; Benton, M

    1987-01-01

    Brain tissue taken at necropsy from five cases of Down's syndrome and six controls was analysed for changes in neurotransmitter markers. Concentrations of noradrenaline (NA), dopamine (DA) and its major metabolite homovanillic acid (HVA), 5-hydroxytryptamine (5HT) and its metabolite 5-hydroxyindoleacetic acid (5HIAA) were determined by means of HPLC, whilst choline acetyltransferase (ChAT) was measured by a radiochemical technique. Significant reductions in NA, 5HT and ChAT were found in most cortical and subcortical regions of the Down's syndrome tissue investigated. The neuropathological lesions were assessed using a fluorescent stain for neuritic plaques and neurofibrillary tangles. These were present to varying extents in every Down's syndrome case except the youngest but were not found in control tissue of comparable age. The results indicate profound transmitter deficits and neuropathological abnormalities in adult patients with Down's syndrome, which closely resemble those of Alzheimer's disease. PMID:2440994

  10. Concentration of organochlorines in human brain, liver, and adipose tissue autopsy samples from Greenland

    DEFF Research Database (Denmark)

    Dewailly, Éric; Mulvad, Gert; Pedersen, Henning S.;

    1999-01-01

    Organochlorines are persistent lipophilic compounds that accumulate in Inuit people living in circumpolar countries. Organochlorines accumulate as a result of the Inuits' large consumption of sea mammal fat; however, available data are limited to blood lipids, milk fat, and adipose tissue. We...... report results of organochlorine determination in liver, brain, omental fat, and subcutaneous abdominal fat samples collected from deceased Greenlanders between 1992 and 1994. Eleven chlorinated pesticides and 14 polychlorinated biphenyl congeners were measured in tissue lipid extracts by high......-resolution gas chromatography with electron capture detection. Mean concentrations of polychlorinated biphenyls, 2, 2'-bis(4-chlorophenyl)-1,1-dichloroethylene, ss-hexachlorocyclohexane, hexachlorobenzene, mirex, trans-nonachlor, and oxychlordane in adipose tissue samples from Greenlanders were 3-34-fold higher...

  11. Supervised novelty detection in brain tissue classification with an application to white matter hyperintensities

    Science.gov (United States)

    Kuijf, Hugo J.; Moeskops, Pim; de Vos, Bob D.; Bouvy, Willem H.; de Bresser, Jeroen; Biessels, Geert Jan; Viergever, Max A.; Vincken, Koen L.

    2016-03-01

    Novelty detection is concerned with identifying test data that differs from the training data of a classifier. In the case of brain MR images, pathology or imaging artefacts are examples of untrained data. In this proof-of-principle study, we measure the behaviour of a classifier during the classification of trained labels (i.e. normal brain tissue). Next, we devise a measure that distinguishes normal classifier behaviour from abnormal behavior that occurs in the case of a novelty. This will be evaluated by training a kNN classifier on normal brain tissue, applying it to images with an untrained pathology (white matter hyperintensities (WMH)), and determine if our measure is able to identify abnormal classifier behaviour at WMH locations. For our kNN classifier, behaviour is modelled as the mean, median, or q1 distance to the k nearest points. Healthy tissue was trained on 15 images; classifier behaviour was trained/tested on 5 images with leave-one-out cross-validation. For each trained class, we measure the distribution of mean/median/q1 distances to the k nearest point. Next, for each test voxel, we compute its Z-score with respect to the measured distribution of its predicted label. We consider a Z-score >=4 abnormal behaviour of the classifier, having a probability due to chance of 0.000032. Our measure identified >90% of WMH volume and also highlighted other non-trained findings. The latter being predominantly vessels, cerebral falx, brain mask errors, choroid plexus. This measure is generalizable to other classifiers and might help in detecting unexpected findings or novelties by measuring classifier behaviour.

  12. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mori, N.; Hirayama, K. [Kumamoto University, School of Health Science, Kumamoto (Japan); Yasutake, A. [National Institute for Minamata Disease, Minamata (Japan)

    2007-11-15

    The involvement of oxidative stress has been suggested as a mechanism for neurotoxicity caused by methylmercury (MeHg), but the mechanism for MeHg selective toxicity in the central nervous system is still unclear. In this research, to clarify the mechanism of selective neurotoxicity caused by MeHg, the oxygen consumption levels, the reactive oxygen species (ROS) production rates and several antioxidant levels in mitochondria were compared among the cerebrum, cerebellum and liver of male Wistar rats. In addition, the alterations of these indexes were examined in MeHg-intoxicated rats (oral administration of 10 mg/kg day, for 5 days). Although the cerebrum and cerebellum in intact rats showed higher mitochondrial oxygen consumption levels and ROS production rates than the liver, glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities were much lower in the cerebrum and cerebellum than in the liver. Especially, the cerebellum showed the highest oxygen consumption and ROS production rate and the lowest mitochondrial glutathione (GSH) levels among the tissues examined. In the MeHg-treated rats, decrease in the oxygen consumption and increase in the ROS generation were found only in the cerebellum mitochondria, despite a lower Hg accumulation in the mitochondrial fraction compared to the liver. Since MeHg treatment produced an enhancement of ROS generation in cerebellum mitochondria supplemented with succinate substrates, MeHg-induced oxidative stress might affect the complex II-III mediated pathway in the electron transfer chain in the cerebellum mitochondria. Our study suggested that inborn factors, high production system activity and low defense system activity of ROS in the brain, would relate to the high susceptibility of the central nervous system to MeHg toxicity. (orig.)

  13. New aspects of fenestrated vasculature and tissue dynamics in the sensory circumventricular organs of adult brains

    Directory of Open Access Journals (Sweden)

    Seiji eMiyata

    2015-10-01

    Full Text Available The blood–brain barrier (BBB generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs, which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT, subfornical organ (SFO, and area postrema (AP, have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF signaling may be involved in angiogenesis and

  14. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains.

    Science.gov (United States)

    Miyata, Seiji

    2015-01-01

    The blood-brain barrier (BBB) generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs), which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs) sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF) signaling may be involved in angiogenesis and neurogliogenesis, both of

  15. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M;

    1983-01-01

    ischemic low flow areas were a constant finding in the collaterally perfused tissue. In 6 of the patients, the collaterally perfused part of the brain had low flow values comparable to those of an "ischemic penumbra" (viable, but functionally depressed brain tissue due to inadequate perfusion......In a group of 48 patients with completed stroke, 8 patients had viable collaterally perfused brain tissue which was accessible for rCBF recordings with a two dimensional technique. All 8 had deep subcortical infarcts on CT-scan, and angiographic occlusion of the arteries normally supplying...... the infarcted territory. The brain tissue overlying the deep infarcts appeared normal on CT-scan and was supplied by collateral circulation. rCBF was measured in all within 72 hours after the stroke. The intra-carotid Xe-133 injection method and a 254 multidetector camera were used to study rCBF. Relatively...

  16. Brain Metastasis in Bone and Soft Tissue Cancers: A Review of Incidence, Interventions, and Outcomes

    Directory of Open Access Journals (Sweden)

    Faris Shweikeh

    2014-01-01

    Full Text Available Bone and soft tissue malignancies account for a small portion of brain metastases. In this review, we characterize their incidence, treatments, and prognosis. Most of the data in the literature is based on case reports and small case series. Less than 5% of brain metastases are from bone and soft tissue sarcomas, occurring most commonly in Ewing’s sarcoma, malignant fibrous tumors, and osteosarcoma. Mean interval from initial cancer diagnosis to brain metastasis is in the range of 20–30 months, with most being detected before 24 months (osteosarcoma, Ewing sarcoma, chordoma, angiosarcoma, and rhabdomyosarcoma, some at 24–36 months (malignant fibrous tumors, malignant peripheral nerve sheath tumors, and alveolar soft part sarcoma, and a few after 36 months (chondrosarcoma and liposarcoma. Overall mean survival ranges between 7 and 16 months, with the majority surviving < 12 months (Ewing’s sarcoma, liposarcoma, malignant fibrous tumors, malignant peripheral nerve sheath tumors, angiosarcoma and chordomas. Management is heterogeneous involving surgery, radiosurgery, radiotherapy, and chemotherapy. While a survival advantage may exist for those given aggressive treatment involving surgical resection, such patients tended to have a favorable preoperative performance status and minimal systemic disease.

  17. Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry

    Science.gov (United States)

    Yousefnezhad, Mohsen; Fotouhi, Morteza; Vejdani, Kaveh; Kamali-Zare, Padideh

    2016-09-01

    We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ =√{D /D* } ) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D* = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes in the ECS dynamics. The evolution of the underlying dynamics is then captured by a level set method. Subsequently, using a homogenization technique, we derived a coarse-grained model with parameters that are explicitly related to the geometry of cells and their associated ECS. Our modeling results in very accurate analytical approximation of tortuosity based on time, space, osmolarity differences across cell membranes, and water permeability of cell membranes. Our model provides a unique platform for studying ECS dynamics not only in physiologic conditions such as sleep-wake cycles and aging but also in pathologic conditions such as stroke, seizure, and neoplasia, as well as in predictive pharmacokinetic modeling such as predicting medication biodistribution and efficacy and novel biomolecule development and testing.

  18. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics

    Science.gov (United States)

    Favre-Bulle, Itia A.; Preece, Daryl; Nieminen, Timo A.; Heap, Lucy A.; Scott, Ethan K.; Rubinsztein-Dunlop, Halina

    2015-06-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam’s degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics.

  19. Effects of formalin fixation on tissue optical properties of in-vitro brain samples

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Martelli, Fabrizio; Giordano, Flavio; Buccoliero, Anna Maria; Guerrini, Renzo; Pavone, Francesco S.

    2015-03-01

    Application of light spectroscopy based techniques for the detection of cancers have emerged as a promising approach for tumor diagnostics. In-vivo or freshly excised samples are normally used for point spectroscopic studies. However, ethical issues related to in-vivo studies, rapid decay of surgically excised tissues and sample availability puts a limitation on in-vivo and in-vitro studies. There has been a few studies reported on the application of formalin fixed samples with good discrimination capability. Usually formalin fixation is performed to prevent degradation of tissues after surgical resection. Fixing tissues in formalin prevents cell death by forming cross-linkages with proteins. Previous investigations have revealed that washing tissues fixed in formalin using phosphate buffered saline is known to reduce the effects of formalin during spectroscopic measurements. But this could not be the case with reflectance measurements. Hemoglobin is a principal absorbing medium in biological tissues in the visible range. Formalin fixation causes hemoglobin to seep out from red blood cells. Also, there could be alterations in the refractive index of tissues when fixed in formalin. In this study, we propose to investigate the changes in tissue optical properties between freshly excised and formalin fixed brain tissues. The results indicate a complete change in the spectral profile in the visible range where hemoglobin has its maximum absorption peaks. The characteristic bands of oxy-hemoglobin at 540, 580 nm and deoxy-hemoglobin at 555 nm disappear in the case of samples fixed in formalin. In addition, an increased spectral intensity was observed for the wavelengths greater than 650 nm where scattering phenomena are presumed to dominate.

  20. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue.

    Science.gov (United States)

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.

  1. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    Science.gov (United States)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  2. A white matter lesion-filling approach to improve brain tissue volume measurements

    Directory of Open Access Journals (Sweden)

    Sergi Valverde

    2014-01-01

    Full Text Available Multiple sclerosis white matter (WM lesions can affect brain tissue volume measurements of voxel-wise segmentation methods if these lesions are included in the segmentation process. Several authors have presented different techniques to improve brain tissue volume estimations by filling WM lesions before segmentation with intensities similar to those of WM. Here, we propose a new method to refill WM lesions, where contrary to similar approaches, lesion voxel intensities are replaced by random values of a normal distribution generated from the mean WM signal intensity of each two-dimensional slice. We test the performance of our method by estimating the deviation in tissue volume between a set of 30 T1-w 1.5 T and 30 T1-w 3 T images of healthy subjects and the same images where: WM lesions have been previously registered and afterwards replaced their voxel intensities to those between gray matter (GM and WM tissue. Tissue volume is computed independently using FAST and SPM8. When compared with the state-of-the-art methods, on 1.5 T data our method yields the lowest deviation in WM between original and filled images, independently of the segmentation method used. It also performs the lowest differences in GM when FAST is used and equals to the best method when SPM8 is employed. On 3 T data, our method also outperforms the state-of-the-art methods when FAST is used while performs similar to the best method when SPM8 is used. The proposed technique is currently available to researchers as a stand-alone program and as an SPM extension.

  3. Detection of constitutive and inducible HSP70 proteins in formalin fixed human brain tissue.

    Science.gov (United States)

    Preusse-Prange, A; Modrow, J-H; Schwark, T; von Wurmb-Schwark, N

    2014-02-01

    The investigation of formalin fixed and paraffin embedded tissue is a routine method in forensic histology. Since these samples are usually stored for decades they provide a unique tissue bank for different scientific issues. In the past, numerous studies were conducted using different kinds of paraffin embedded tissues. However, it is well known that formalin affects macromolecules and thus might hamper reliable and reproducible molecular experiments. The aim of this study was to find out if the treatment with formalin has a negative effect on different protein detection methods and additionally to define the dimension of those possible deleterious effects. We incubated brain tissue samples in formalin for up to three months. After incubation, the samples were analyzed using immunohistochemistry (IHC) and Western blotting to specifically detect and quantify members of the HSP70 superfamily (heat shock proteins). Our study shows that the Western blot analysis of formalin fixed tissues does not allow a reliable detection of proteins at all, while a reproducible detection by IHC was still possible after one month of incubation.

  4. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M. (Cleveland Clinic Foundation, OH (USA))

    1990-08-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures.

  5. IMPROVED HYBRID SEGMENTATION OF BRAIN MRI TISSUE AND TUMOR USING STATISTICAL FEATURES

    Directory of Open Access Journals (Sweden)

    S. Allin Christe

    2010-08-01

    Full Text Available Medical image segmentation is the most essential and crucial process in order to facilitate the characterization and visualization of the structure of interest in medical images. Relevant application in neuroradiology is the segmentation of MRI data sets of the human brain into the structure classes gray matter, white matter and cerebrospinal fluid (CSF and tumor. In this paper, brain image segmentation algorithms such as Fuzzy C means (FCM segmentation and Kohonen means(K means segmentation were implemented. In addition to this, new hybrid segmentation technique, namely, Fuzzy Kohonen means of image segmentation based on statistical feature clustering is proposed and implemented along with standard pixel value clustering method. The clustered segmented tissue images are compared with the Ground truth and its performance metric is also found. It is found that the feature based hybrid segmentation gives improved performance metric and improved classification accuracy rather than pixel based segmentation.

  6. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Hai-xiao Zhou; Zhi-gang Liu; Xiao-jiao Liu; Qian-xue Chen

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized lfuid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantationvia the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function signiifcantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and signiifcantly promotes recovery of neurological functions.

  7. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI.

    Science.gov (United States)

    Scott, Julia A; Habas, Piotr A; Kim, Kio; Rajagopalan, Vidya; Hamzelou, Kia S; Corbett-Detig, James M; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-08-01

    In the latter half of gestation (20-40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI). In this study, the volumes of major fetal zones-cortical plate (CP), subplate and intermediate zone (SP+IZ), germinal matrix (GMAT), deep gray nuclei (DG), and ventricles (VENT)--are calculated from automatic segmentation of motion-corrected, 3D reconstructed MRI. We analyzed 48 T2-weighted MRI scans from 39 normally developing fetuses in utero between 20.57 and 31.14 gestational weeks (GW). The supratentorial volume (STV) increased linearly at a rate of 15.22% per week. The SP+IZ (14.75% per week) and DG (15.56% per week) volumes increased at similar rates. The CP increased at a greater relative rate (18.00% per week), while the VENT (9.18% per week) changed more slowly. Therefore, CP increased as a fraction of STV and the VENT fraction declined. The total GMAT volume slightly increased then decreased after 25 GW. We did not detect volumetric sexual dimorphisms or total hemispheric volume asymmetries, which may emerge later in gestation. Further application of the automated fetal brain segmentation to later gestational ages will bridge the gap between volumetric studies of premature brain development and normal brain development in utero.

  8. Assessment of Breast, Brain and Skin Pathological Tissue Using Full Field OCM

    Science.gov (United States)

    Dalimier, Eugénie; Assayag, Osnath; Harms, Fabrice; Boccara, A. Claude

    The aim of this chapter is to assess whether the images of the breast, brain, and skin tissue obtained by FFOCM contain sufficient detail to allow pathologists to make a diagnosis of cancer and other pathologies comparable to what was obtained by conventional histological techniques. More precisely, it is necessary to verify on FFOCM images if it is possible to differentiate a healthy area from a pathological area. The reader interested in other organs or in animal studies may find a large number of 2D or 3D images in the atlas [2].

  9. Pediatric brain tumors of neuroepithelial tissue; Hirntumoren des neuroepithelialen Gewebes im Kindesalter

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Politi, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany); Bergmann, M. [Klinikum Bremen-Mitte, Institut fuer Klinische Neuropathologie, Bremen (Germany); Pekrun, A. [Klinikum Bremen-Mitte, Klinik fuer Kinder- und Jugendmedizin, paed. Haematologie/Onkologie, Neonatologie, Bremen (Germany); Juergens, K.U. [Klinikum Bremen-Mitte, ZEMODI-Zentrum fuer moderne Diagnostik, MRT, Nuklearmedizin und PET-CT, Bremen (Germany)

    2014-08-15

    Tumors of neuroepithelial tissue represent the largest group of pediatric brain tumors by far and has therefore been divided into several discrete tumor subtypes each corresponding to a specific component of the neuropil. The neuropil contains several subtypes of glial cells, including astrocytes, oligodendrocytes, ependymal cells and modified ependymal cells that form the choroid plexus. This review discusses the imaging aspects of the most common pediatric tumors of neuroepithelial tissue. (orig.) [German] Tumoren des neuroepithelialen Gewebes stellen die mit Abstand groesste Gruppe der paediatrischen Hirntumoren dar und werden je nach deren Ursprung in diversen Subtypen unterteilt. Das Neuropil beinhaltet diverse Subtypen von Gliazellen: Astrozyten, Oligodendrozyten, ependymale Zellen und modifizierte ependymale Zellen, die den Plexus choroideus formen. In diesem Review werden die bildgebenden Aspekte mittels CT und MRT der haeufigsten Tumoren des neuroepithelialen Gewebes diskutiert. (orig.)

  10. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

    Directory of Open Access Journals (Sweden)

    Sergi Valverde

    2015-01-01

    Full Text Available Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM and white matter (WM using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

  11. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling.

    Science.gov (United States)

    Valverde, Sergi; Oliver, Arnau; Roura, Eloy; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Sastre-Garriga, Jaume; Montalban, Xavier; Rovira, Àlex; Lladó, Xavier

    2015-01-01

    Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

  12. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  13. Terahertz spectroscopy and detection of brain tumor in rat fresh-tissue samples

    Science.gov (United States)

    Yamaguchi, S.; Fukushi, Y.; Kubota, O.; Itsuji, T.; Yamamoto, S.; Ouchi, T.

    2015-03-01

    Terahertz (THz) spectroscopy and imaging of biomedical samples is expected to be an important application of THz analysis techniques. Identification and localization of tumor tissue, imaging of biological samples, and analysis of DNA by THz spectroscopy have been reported. THz time-domain spectroscopy (TDS) is useful for obtaining the refractive index over a broad frequency range. However, THz-TDS spectra of fresh tissue samples are sensitive to procedures such as sample preparation, and a standardized measurement protocol is required. Therefore, in this work, we establish a protocol for measurements of THz spectra of fresh tissue and demonstrate reliable detection of rat brain tumor tissue. We use a reflection THz-TDS system to measure the refractive index spectra of the samples mounted on a quartz plate. The tissue samples were measured immediately after sectioning to avoid sample denaturalization during storage. Special care was taken in THz data processing to eliminate parasitic reflections and reduce noise. The error level in our refractive index measurements was as low as 0.02 in the frequency range 0.8-1.5 THz. With increasing frequency, the refractive index in the tumor and normal regions monotonically decreased, similarly to water, and it was 0.02 higher in the tumor regions. The spectral data suggest that the tumor regions have higher water content. Hematoxylin-eosin stained images showed that increased cell density was also responsible for the observed spectral features. A set of samples from 10 rats showed consistent results. Our results suggest that reliable tumor detection in fresh tissue without pretreatment is possible with THz spectroscopy measurements. THz spectroscopy has the potential to become a real-time in vivo diagnostic method.

  14. Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition.

    Science.gov (United States)

    Fitoussi, A; Dellu-Hagedorn, F; De Deurwaerdère, P

    2013-01-01

    The dopamine (DA), noradrenalin (NA) and serotonin (5-HT) monoaminergic systems are deeply involved in cognitive processes via their influence on cortical and subcortical regions. The widespread distribution of these monoaminergic networks is one of the main difficulties in analyzing their functions and interactions. To address this complexity, we assessed whether inter-individual differences in monoamine tissue contents of various brain areas could provide information about their functional relationships. We used a sensitive biochemical approach to map endogenous monoamine tissue content in 20 rat brain areas involved in cognition, including 10 cortical areas and examined correlations within and between the monoaminergic systems. Whereas DA content and its respective metabolite largely varied across brain regions, the NA and 5-HT contents were relatively homogenous. As expected, the tissue content varied among individuals. Our analyses revealed a few specific relationships (10%) between the tissue content of each monoamine in paired brain regions and even between monoamines in paired brain regions. The tissue contents of NA, 5-HT and DA were inter-correlated with a high incidence when looking at a specific brain region. Most correlations found between cortical areas were positive while some cortico-subcortical relationships regarding the DA, NA and 5-HT tissue contents were negative, in particular for DA content. In conclusion, this work provides a useful database of the monoamine tissue content in numerous brain regions. It suggests that the regulation of these neuromodulatory systems is achieved mainly at the terminals, and that each of these systems contributes to the regulation of the other two.

  15. Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Alejandra Borjabad

    2011-09-01

    Full Text Available Antiretroviral therapy (ART has reduced morbidity and mortality in HIV-1 infection; however HIV-1-associated neurocognitive disorders (HAND persist despite treatment. The reasons for the limited efficacy of ART in the brain are unknown. Here we used functional genomics to determine ART effectiveness in the brain and to identify molecular signatures of HAND under ART. We performed genome-wide microarray analysis using Affymetrix U133 Plus 2.0 Arrays, real-time PCR, and immunohistochemistry in brain tissues from seven treated and eight untreated HAND patients and six uninfected controls. We also determined brain virus burdens by real-time PCR. Treated and untreated HAND brains had distinct gene expression profiles with ART transcriptomes clustering with HIV-1-negative controls. The molecular disease profile of untreated HAND showed dysregulated expression of 1470 genes at p<0.05, with activation of antiviral and immune responses and suppression of synaptic transmission and neurogenesis. The overall brain transcriptome changes in these patients were independent of histological manifestation of HIV-1 encephalitis and brain virus burdens. Depending on treatment compliance, brain transcriptomes from patients on ART had 83% to 93% fewer dysregulated genes and significantly lower dysregulation of biological pathways compared to untreated patients, with particular improvement indicated for nervous system functions. However a core of about 100 genes remained similarly dysregulated in both treated and untreated patient brain tissues. These genes participate in adaptive immune responses, and in interferon, cell cycle, and myelin pathways. Fluctuations of cellular gene expression in the brain correlated in Pearson's formula analysis with plasma but not brain virus burden. Our results define for the first time an aberrant genome-wide brain transcriptome of untreated HAND and they suggest that antiretroviral treatment can be broadly effective in reducing

  16. An upgraded camera-based imaging system for mapping venous blood oxygenation in human skin tissue

    Science.gov (United States)

    Li, Jun; Zhang, Xiao; Qiu, Lina; Leotta, Daniel F.

    2016-07-01

    A camera-based imaging system was previously developed for mapping venous blood oxygenation in human skin. However, several limitations were realized in later applications, which could lead to either significant bias in the estimated oxygen saturation value or poor spatial resolution in the map of the oxygen saturation. To overcome these issues, an upgraded system was developed using improved modeling and image processing algorithms. In the modeling, Monte Carlo (MC) simulation was used to verify the effectiveness of the ratio-to-ratio method for semi-infinite and two-layer skin models, and then the relationship between the venous oxygen saturation and the ratio-to-ratio was determined. The improved image processing algorithms included surface curvature correction and motion compensation. The curvature correction is necessary when the imaged skin surface is uneven. The motion compensation is critical for the imaging system because surface motion is inevitable when the venous volume alteration is induced by cuff inflation. In addition to the modeling and image processing algorithms in the upgraded system, a ring light guide was used to achieve perpendicular and uniform incidence of light. Cross-polarization detection was also adopted to suppress surface specular reflection. The upgraded system was applied to mapping of venous oxygen saturation in the palm, opisthenar and forearm of human subjects. The spatial resolution of the oxygenation map achieved is much better than that of the original system. In addition, the mean values of the venous oxygen saturation for the three locations were verified with a commercial near-infrared spectroscopy system and were consistent with previously published data.

  17. Consent for Brain Tissue Donation after Intracerebral Haemorrhage: A Community-Based Study.

    Directory of Open Access Journals (Sweden)

    Neshika Samarasekera

    Full Text Available Spontaneous intracerebral haemorrhage is a devastating form of stroke and its incidence increases with age. Obtaining brain tissue following intracerebral haemorrhage helps to understand its cause. Given declining autopsy rates worldwide, the feasibility of establishing an autopsy-based collection and its generalisability are uncertain.We used multiple overlapping sources of case ascertainment to identify every adult diagnosed with intracerebral haemorrhage between 1st June 2010-31st May 2012, whilst resident in the Lothian region of Scotland. We sought consent from patients with intracerebral haemorrhage (or their nearest relative if the patient lacked mental capacity to conduct a research autopsy.Of 295 adults with acute intracerebral haemorrhage, 110 (37% could not be approached to consider donation. Of 185 adults/relatives approached, 91 (49% consented to research autopsy. There were no differences in baseline demographic variables or markers of intracerebral haemorrhage severity between consenters and non-consenters. Adults who died and became donors (n = 46 differed from the rest of the cohort (n = 249 by being older (median age 80, IQR 76-86 vs. 75, IQR 65-83, p = 0.002 and having larger haemorrhages (median volume 23 ml, IQR 13-50 vs. 13 ml, IQR 4-40; p = 0.002.Nearly half of those approached consent to brain tissue donation after acute intracerebral haemorrhage. The characteristics of adults who gave consent were comparable to those in an entire community, although those who donate early are older and have larger haemorrhage volumes.

  18. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  19. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke.

    Science.gov (United States)

    Cook, Douglas J; Nguyen, Cynthia; Chun, Hyun N; L Llorente, Irene; Chiu, Abraham S; Machnicki, Michal; Zarembinski, Thomas I; Carmichael, S Thomas

    2017-03-01

    Stroke is the leading cause of adult disability. Systemic delivery of candidate neural repair therapies is limited by the blood-brain barrier and off-target effects. We tested a bioengineering approach for local depot release of BDNF from the infarct cavity for neural repair in chronic periods after stroke. The brain release levels of a hyaluronic acid hydrogel + BDNF were tested in several stroke models in mouse (strains C57Bl/6, DBA) and non-human primate ( Macaca fascicularis) and tracked with MRI. The behavioral recovery effects of hydrogel + BDNF and the effects on tissue repair outcomes were determined. Hydrogel-delivered BDNF diffuses from the stroke cavity into peri-infarct tissue over 3 weeks in two mouse stroke models, compared with 1 week for direct BDNF injection. Hydrogel delivery of BDNF promotes recovery of motor function. Mapping of motor system connections indicates that hydrogel-BDNF induces axonal sprouting within existing cortical and cortico-striatal systems. Pharmacogenetic studies show that hydrogel-BDNF induces the initial migration of immature neurons into the peri-infarct cortex and their long-term survival. In chronic stroke in the non-human primate, hydrogel-released BDNF can be detected up to 2 cm from the infarct, a distance relevant to human functional recovery in stroke. The hydrogel can be tracked by MRI in mouse and primate.

  20. Heart tissue of harlequin (hq)/Big Blue mice has elevated reactive oxygen species without significant impact on the frequency and nature of point mutations in nuclear DNA

    Energy Technology Data Exchange (ETDEWEB)

    Crabbe, Rory A. [Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Hill, Kathleen A., E-mail: khill22@uwo.ca [Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)

    2010-09-10

    Age is a major risk factor for heart disease, and cardiac aging is characterized by elevated mitochondrial reactive oxygen species (ROS) with compromised mitochondrial and nuclear DNA integrity. To assess links between increased ROS levels and mutations, we examined in situ levels of ROS and cII mutation frequency, pattern and spectrum in the heart of harlequin (hq)/Big Blue mice. The hq mouse is a model of premature aging with mitochondrial dysfunction and increased risk of oxidative stress-induced heart disease with the means for in vivo mutation detection. The hq mutation produces a significant downregulation in the X-linked apoptosis-inducing factor gene (Aif) impairing both the antioxidant and oxidative phosphorylation functions of AIF. Brain and skin of hq disease mice have elevated frequencies of point mutations in nuclear DNA and histopathology characterized by cell loss. Reports of associated elevations in ROS in brain and skin have mixed results. Herein, heart in situ ROS levels were elevated in hq disease compared to AIF-proficient mice (p < 0.0001) yet, mutation frequency and pattern were similar in hq disease, hq carrier and AIF-proficient mice. Heart cII mutations were also assessed 15 days following an acute exposure to an exogenous ROS inducer (10 mg paraquat/kg). Acute paraquat exposure with a short mutant manifestation period was insufficient to elevate mutation frequency or alter mutation pattern in the post-mitotic heart tissue of AIF-proficient mice. Paraquat induction of ROS requires mitochondrial complex I and thus is likely compromised in hq mice. Results of this preliminary survey and the context of recent literature suggest that determining causal links between AIF deficiency and the premature aging phenotypes of specific tissues is better addressed with assay of mitochondrial ROS and large-scale changes in mitochondrial DNA in specific cell types.

  1. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications

    Science.gov (United States)

    Landry, Guillaume; Parodi, Katia; Wildberger, Joachim E.; Verhaegen, Frank

    2013-08-01

    Dedicated methods of in-vivo verification of ion treatment based on the detection of secondary emitted radiation, such as positron-emission-tomography and prompt gamma detection require high accuracy in the assignment of the elemental composition. This especially concerns the content in carbon and oxygen, which are the most abundant elements of human tissue. The standard single-energy computed tomography (SECT) approach to carbon and oxygen concentration determination has been shown to introduce significant discrepancies in the carbon and oxygen content of tissues. We propose a dual-energy CT (DECT)-based approach for carbon and oxygen content assignment and investigate the accuracy gains of the method. SECT and DECT Hounsfield units (HU) were calculated using the stoichiometric calibration procedure for a comprehensive set of human tissues. Fit parameters for the stoichiometric calibration were obtained from phantom scans. Gaussian distributions with standard deviations equal to those derived from phantom scans were subsequently generated for each tissue for several values of the computed tomography dose index (CTDIvol). The assignment of %weight carbon and oxygen (%wC,%wO) was performed based on SECT and DECT. The SECT scheme employed a HU versus %wC,O approach while for DECT we explored a Zeff versus %wC,O approach and a (Zeff, ρe) space approach. The accuracy of each scheme was estimated by calculating the root mean square (RMS) error on %wC,O derived from the input Gaussian distribution of HU for each tissue and also for the noiseless case as a limiting case. The (Zeff, ρe) space approach was also compared to SECT by comparing RMS error for hydrogen and nitrogen (%wH,%wN). Systematic shifts were applied to the tissue HU distributions to assess the robustness of the method against systematic uncertainties in the stoichiometric calibration procedure. In the absence of noise the (Zeff, ρe) space approach showed more accurate %wC,O assignment (largest error of

  2. A novel approach to quantify different iron forms in ex-vivo human brain tissue

    Science.gov (United States)

    Kumar, Pravin; Bulk, Marjolein; Webb, Andrew; van der Weerd, Louise; Oosterkamp, Tjerk H.; Huber, Martina; Bossoni, Lucia

    2016-01-01

    We propose a novel combination of methods to study the physical properties of ferric ions and iron-oxide nanoparticles in post-mortem human brain, based on the combination of Electron Paramagnetic Resonance (EPR) and SQUID magnetometry. By means of EPR, we derive the concentration of the low molecular weight iron pool, as well as the product of its electron spin relaxation times. Additionally, by SQUID magnetometry we identify iron mineralization products ascribable to a magnetite/maghemite phase and a ferrihydrite (ferritin) phase. We further derive the concentration of magnetite/maghemite and of ferritin nanoparticles. To test out the new combined methodology, we studied brain tissue of an Alzheimer’s patient and a healthy control. Finally, we estimate that the size of the magnetite/maghemite nanoparticles, whose magnetic moments are blocked at room temperature, exceeds 40–50 nm, which is not compatible with the ferritin protein, the core of which is typically 6–8 nm. We believe that this methodology could be beneficial in the study of neurodegenerative diseases such as Alzheimer’s Disease which are characterized by abnormal iron accumulation in the brain. PMID:27941952

  3. A novel approach to quantify different iron forms in ex-vivo human brain tissue

    Science.gov (United States)

    Kumar, Pravin; Bulk, Marjolein; Webb, Andrew; van der Weerd, Louise; Oosterkamp, Tjerk H.; Huber, Martina; Bossoni, Lucia

    2016-12-01

    We propose a novel combination of methods to study the physical properties of ferric ions and iron-oxide nanoparticles in post-mortem human brain, based on the combination of Electron Paramagnetic Resonance (EPR) and SQUID magnetometry. By means of EPR, we derive the concentration of the low molecular weight iron pool, as well as the product of its electron spin relaxation times. Additionally, by SQUID magnetometry we identify iron mineralization products ascribable to a magnetite/maghemite phase and a ferrihydrite (ferritin) phase. We further derive the concentration of magnetite/maghemite and of ferritin nanoparticles. To test out the new combined methodology, we studied brain tissue of an Alzheimer’s patient and a healthy control. Finally, we estimate that the size of the magnetite/maghemite nanoparticles, whose magnetic moments are blocked at room temperature, exceeds 40-50 nm, which is not compatible with the ferritin protein, the core of which is typically 6-8 nm. We believe that this methodology could be beneficial in the study of neurodegenerative diseases such as Alzheimer’s Disease which are characterized by abnormal iron accumulation in the brain.

  4. Detection of Neospora caninum-DNA in brain tissues from pigeons in Changchun, Jilin (China).

    Science.gov (United States)

    Du, Ling; Yang, Dongsheng; Zhai, Tao; Gong, Pengtao; Zhang, Xichen; Li, Jianhua

    2015-11-30

    Neospora caninum is an intracellular protozoan infecting many domestic and wild animals. The domestic chicken (Gallus domesticus) and the sparrow (Passer domesticus) are known as natural intermediate hosts of N. caninum, whereas the role of other birds such as pigeons is still unclear. In the present study, pigeon brain tissues collected in Jilin of China were screened by N. caninum specific-nested PCR to determine whether pigeons functioned as the natural intermediate hosts of N. caninum. The prevalences of N. caninum DNA and Toxoplasma gondii DNA among the brain samples were 30% (63/210) and 13.33% (28/210), respectively. One brain sample was co-infected with N. caninum and T. gondii in naturally infected pigeon. Of the 63 positive samples 42 could be assigned to the NC-PR genotype, 10 to the NC-1 genotypes and 5, 3 and 3 respectively to the each of the three new genotypes identified, indicating genetic polymorphism of N. caninum in pigeons in Jilin of China. The present study expanded the list of intermediate hosts of N. caninum to include pigeons which suggests that pigeons are involved in the transmission of the N. caninum.

  5. The early life history of tissue oxygenation in crustaceans: the strategy of the myodocopid ostracod Cylindroleberis mariae.

    Science.gov (United States)

    Corbari, Laure; Carbonel, Pierre; Massabuau, Jean-Charles

    2005-02-01

    We studied basic principles of respiratory physiology in Cylindroleberididae, Cylindroleberis mariae Baird 1850, which are millimetre-sized crustaceans (myodocop ostracod) having a fossil record dating back to about 425 millions years ago. Facing experimental changes of O2 partial pressures in the range 2-40 kPa (normoxia is 21 kPa), C. mariae lack any regulatory mechanism to adapt their ventilatory and circulatory activity. Thus, the oxygenation status of their internal milieu must follow, as a dependent variable, the ambient oxygenation. Freely behaving C. mariae exhibit a marked diurnal activity rhythm. They are actively swimming in the water column during night, where they inspire in normoxic-normocapnic water. They are resting in self-made nests during daytime, where they are rebreathing in a confined and hypoxic environment. By analogy to extensive previous literature data, we suggest that these changes of respiratory gas content, and the associated tissue gas status, participate to the shaping of their metabolic activity and behaviour. To conclude, as Cylindroleberididae are early crustaceans exhibiting a remarkable stasis since the Palaeozoic, present data illustrates how principles of tissue oxygenation strategy can cover an impressive time scale.

  6. Spectroscopic magnetic resonance imaging of the brain: voxel localisation and tissue segmentation in the follow up of brain tumour.

    Science.gov (United States)

    Poloni, Guy; Bastianello, S; Vultaggio, Angela; Pozzi, S; Maccabelli, Gloria; Germani, Giancarlo; Chiarati, Patrizia; Pichiecchio, Anna

    2008-01-01

    The field of application of magnetic resonance spectroscopy (MRS) in biomedical research is expanding all the time and providing opportunities to investigate tissue metabolism and function. The data derived can be integrated with the information on tissue structure gained from conventional and non-conventional magnetic resonance imaging (MRI) techniques. Clinical MRS is also strongly expected to play an important role as a diagnostic tool. Essential for the future success of MRS as a clinical and research tool in biomedical sciences, both in vivo and in vitro, is the development of an accurate, biochemically relevant and physically consistent and reliable data analysis standard. Stable and well established analysis algorithms, in both the time and the frequency domain, are already available, as is free commercial software for implementing them. In this study, we propose an automatic algorithm that takes into account anatomical localisation, relative concentrations of white matter, grey matter, cerebrospinal fluid and signal abnormalities and inter-scan patient movement. The endpoint is the collection of a series of covariates that could be implemented in a multivariate analysis of covariance (MANCOVA) of the MRS data, as a tool for dealing with differences that may be ascribed to the anatomical variability of the subjects, to inaccuracies in the localisation of the voxel or slab, or to movement, rather than to the pathology under investigation. The aim was to develop an analysis procedure that can be consistently and reliably applied in the follow up of brain tumour. In this study, we demonstrate that the inclusion of such variables in the data analysis of quantitative MRS is fundamentally important (especially in view of the reduced accuracy typical of MRS measures compared to other MRI techniques), reducing the occurrence of false positives.

  7. Mercuric chloride-induced reactive oxygen species and its effect on antioxidant enzymes in different regions of rat brain.

    Science.gov (United States)

    Hussain, S; Rodgers, D A; Duhart, H M; Ali, S F

    1997-05-01

    The present study was undertaken to determine if in vitro exposure to mercuric chloride produces reactive oxygen species (ROS) in the synaptosomes prepared from various regions of rat brain. The effects of in vivo exposure to mercury on antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in different regions of rat brain were also investigated. Adult male Sprague-Dawley (CD) rats were dosed with 0, 1, 2.0 or 4.0 mg HgCl2/kg body weight, for 7 days. One week after the last dose, animals were sacrificed by decapitation, their brains were removed and dissected and frozen in dry ice prior to measuring the activities of these enzymes. The results demonstrated that in vitro exposure to mercury produced a concentration-dependent increase of ROS in different regions of the rat brain. In vivo exposure to mercury produced a significant decrease of total SOD, Cu, Zn-SOD and Mn-SOD activities in the cerebellum of rats treated with different doses of mercury. SOD activity did not vary significantly in cerebral cortex and brain stem. GPx activity declined in a dose-dependent manner in the cerebellum with a significant reduction in animals receiving the 4 mg HgCl2/kg body weight. The activity of GPx increased in the brain stem while unchanged in the cerebral cortex. The results demonstrate that inorganic mercury decreased SOD activity significantly in the cerebellum while GPx activity was affected in both cerebellum and brain stem. Therefore, it can be concluded that oxidative stress may contribute to the development of neurodegenerative disorders caused by mercury intoxication.

  8. Neurohistological Investigations on General Oxygen Deficiency of the Brain. 2. The Behavior of Astocytes After Acute and Subacute Death

    Science.gov (United States)

    1951-03-01

    clasmatodendrosis might be explained as a con- deprived of the oxygen supply, causing the acute sequence of a necrobiosis caused by the arrest onset...odendrosis is a necrobiosis His opinion brief instant anoxia has not a deadly hut a stimo- rust now be modified to allow for the fact that ulative effect...in a strict sense does not exist. It is actually a necrobiosis of Astrocytes within a tissue infiltrate in a case of an the cells, which is

  9. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue.

    Directory of Open Access Journals (Sweden)

    Mohadeseh Mehrabian

    Full Text Available A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP, best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.

  10. Correlation of a novel noninvasive tissue oxygen saturation monitor to serum central venous oxygen saturation in pediatric patients with postoperative congenital cyanotic heart disease.

    Science.gov (United States)

    Yadlapati, Ajay; Grogan, Tristan; Elashoff, David; Kelly, Robert B

    2013-03-01

    Using a novel noninvasive, visible-light optical diffusion oximeter (T-Stat VLS Tissue Oximeter; Spectros Corporation, Portola Valley, CA) to measure the tissue oxygen saturation (StO2) of the buccal mucosa, the correlation between StOz and central venous oxygen saturation (ScvO2) was examined in children with congenital cyanotic heart disease undergoing a cardiac surgical procedure. Paired StO2 and serum ScvO2 measurements were obtained postoperatively and statistically analyzed for agreement and association. Thirteen children (nine male) participated in the study (age range, 4 days to 18 months). Surgeries included Glenn shunt procedures, Norwood procedures, unifocalization procedures with Blalock-Taussig shunt placement, a Kawashima/ Glenn shunt procedure, a Blalock-Taussig shunt placement, and a modified Norwood procedure. A total of 45 paired StO2-ScvO2 measurements was obtained. Linear regression demonstrated a Pearson's correlation of .58 (95% confidence interval [CI], .35-.75; p < .0001). The regression slope coefficient estimate was .95 (95% CI, .54-1.36) with an interclass correlation coefficient of .48 (95% CI, .22-.68). Below a clinically relevant average ScvO2 value, a receiver operator characteristic analysis yielded an area under the curve of .78. Statistical methods to control for repeatedly measuring the same subjects produced similar results. This study shows a moderate relationship and agreement between StO2 and ScvO2 measurements in pediatric patients with a history of congenital cyanotic heart disease undergoing a cardiac surgical procedure. This real-time monitoring device can act as a valuable adjunct to standard noninvasive monitoring in which serum SyvO2 sampling currently assists in the diagnosis of low cardiac output after pediatric cardiac surgery.

  11. Identification of the boundary between normal brain tissue and ischemia region using two-photon excitation fluorescence microscopy

    Science.gov (United States)

    Du, Huiping; Wang, Shu; Wang, Xingfu; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2016-10-01

    Ischemic stroke is one of the common neurological diseases, and it is becoming the leading causes of death and permanent disability around the world. Early and accurate identification of the potentially salvageable boundary region of ischemia brain tissues may enable selection of the most appropriate candidates for early stroke therapies. In this work, TPEF microscopy was used to image the microstructures of normal brain tissues, ischemia regions and the boundary region between normal and ischemia brain tissues. The ischemia brain tissues from Sprague-Dawley (SD) rats were subjected to 6 hours of middle cerebral artery occlusion (MCAO). Our study demonstrates that TPEF microscopy has the ability to not only reveal the morphological changes of the neurons but also identify the boundary between normal brain tissue and ischemia region, which correspond well to the hematoxylin and eosin (H and E) stained images. With the development of miniaturized TPEF microscope imaging devices, TPEF microscopy can be developed into an effectively diagnostic and monitoring tool for cerebral ischemia.

  12. Extra corporeal membrane oxygenation in newborns : implications for brain and lung

    NARCIS (Netherlands)

    Heijst, Adrianus Franciscus Jacobus van

    2004-01-01

    Extracorporeal membrane oxygenation (ECMO) is a rescue treatment for newborns with severe respiratory insufficiency. In veno-arterial ECMO, venous blood is drained from the right atrium, oxygenated in an artificial lung and reinfused in the aorta. For vascular access the right internal jugular vein

  13. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten Joan;

    2013-01-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen sa...

  14. Some growth factors in neoplastic tissues of brain tumors of different histological structure

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Introduction. Pathologic angiogenesis is typical for angiogenic diseases including tumor growth. Vascular endothelial growth factor (VEGF, fibroblast growth factor (FGF, transforming growth factor alpha and beta (which are also known as “triggers” of angiogenesis, and other factors (Gacche, Meshram, 2013; Nijaguna et al., 2015 play a special role in its development. Evaluation of the important mechanisms of angiogenesis in physiological and pathological conditions remains to be a subject of heightened interest for the past 30 years. It is known that VEGF A is the main trigger of growing blood vessels into the tumor tissue. This is specific mitogen signal for endothelial cells that triggers the mechanisms of cell division and migration. VEGF-induced tumor vasculature has a number of structural and functional features that provide growth and progression of tumors, including increased permeability of blood vessels and their chaotic arrangement.Objective: to study in comparative aspect the level of certain growth factors in the following tissues: glioblastomas, brain metastasis of the breast cancer, meningiomas as well as corresponding peritumoral areas.Materials and methods. Tissue samples were obtained from 56 patients admitted to the surgical treatment in Rostov Research Institute of Oncology: 24 patients had glioblastomas, 19 patients had brain metastasis of the breast cancer, 13 patients with meningiomas without peritumoral edema. Histological control was carried out in all cases. Age of patients ranged from 35 to 72 years. The level of growth factor was detected in the samples of tumor tissue and regions immediately adjacent to the tumor foci (peritumoral area by the method of immunoassay and using standard test systems. The following growth factor were detected: VEGF-A and its receptors VEGF-R1 (BenderMedSystem, Austria, VEGF-C and its receptor VEGF-R3 (BenderMedSystem, Austria, EGF (Biosource, USA, IFR-1 and IFR-2 (Mediagnost, USA, TGF

  15. Establishment of a Stable PrPSc Panel from Brain Tissues of Experimental Hamsters with Scrapie Strain 263K

    Institute of Scientific and Technical Information of China (English)

    BAO-YUN ZHANG; CHAN TIAN; JUN HAN; CHEN GAO; QI SHI; JIAN-MING CHEN; HUI-YING JIANG; WEI ZHOU; XIAO-Ping DONG

    2009-01-01

    Objective To establish a stable PrPSc panel from brain tissues of experimental hamsters infected with scrapie agent 263K for evaluating diagnostic techniques of human and animals' prion diseases. Methods Thirty brain tissue samples from hamsters intracerebrally infected with scrapie strain 263K and another 30 samples from normal hamsters were selected to prepare 10%, 1%, and 0.5% brain homogenates, which were aliquoted into stocks. PrPSc in each brain homogenate was determined by proteinase K digestions followed by Western blot assay and partially by immunohistochemistry. Stability and glycoforms of PrPSc were repeatedly detected by PrPSc-specific Western blots in half a year and 3 years later. Results PrPSc signals were observed in all 10% brain homogenates of infected hamsters. Twenty out of 30 stocks and 19 out of 30 stocks were PrPSc positive in 1% and 0.5% brain homogenatesof infected hamsters, respectively. Twenty-seven out of 30 stocks presented three positive bands in 10% brain homogenates, whereas none of 1% and 0.5% homogenates contained 3 bands. The detection of PrPSc-specific signals stored in half a year and 3 years later demonstrated that the ratio of PrPSc positive samples and glycoforms was almost unchanged. All normal hamsters' brain homogenates were PrPSc negative. Conclusion A PrPSc panel of prion disease can be established, which displays reliably stable PrPSc-specific signals and glycoforms.

  16. Multi-elemental analysis of brain tissue from healthy Wistar rats using sector field inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Mitchell C. [Molecular Structure and Detection Group, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan NSW 2308 (Australia); Parsons, Carl H. [School of Biomedical Science, University of Newcastle, Callaghan NSW 2308 (Australia); Calford, Mike B. [School of Biomedical Science, University of Newcastle, Callaghan NSW 2308 (Australia); Nagy-Felsobuki, Ellak I. von [Molecular Structure and Detection Group, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan NSW 2308 (Australia)]. E-mail: ellak@newcastle.edu.au

    2004-09-20

    The normal distribution of a range of elements in the brain tissue of healthy Wistar rats was established using sector field inductively coupled plasma mass spectrometry. A protocol was developed to determine concentrations of Ag, Cd, Hg, Pb, Bi, U, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As and Se in specific brain regions. The concentrations of these elements were determined in the range of 2{+-}1 (e.g. Cr in diencephalon) to 7558{+-}450 ng ml{sup -1} (e.g. Fe in olfactory bulb). The detection limits of the sixteen elements ranged between 5 and 300 pg ml{sup -1}, with U yielding the lowest and Fe the highest value. The validity of the protocol was assessed by the analysis of SRM 1577B Bovine Liver and brain tissue spike recoveries. A principal component analysis was used to reveal elemental patterns of the brain regions.

  17. Oxygen saturation, red blood cell tissue fraction and speed resolved perfusion - A new optical method for microcirculatory assessment.

    Science.gov (United States)

    Jonasson, Hanna; Fredriksson, Ingemar; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2015-11-01

    We have developed a new fiber-optic system that combines diffuse reflectance spectroscopy (DRS) and laser Doppler Flowmetry (LDF) for a multi-modal assessment of the microcirculation. Quantitative data is achieved with an inverse Monte Carlo algorithm based on an individually adaptive skin model. The output parameters are calculated from the model and given in absolute units: hemoglobin oxygen saturation (%), red blood cell (RBC) tissue fraction (%), and the speed resolved RBC perfusion separated into three speed regions; 0-1mm/s, 1-10mm/s and above 10mm/s (% mm/s). The aim was to explore microcirculatory parameters using the new optical method, integrating DRS and LDF in a joint skin model, during local heating of the dorsal foot and venous and arterial occlusion of the forearm in 23 healthy subjects (age 20-28years). There were differences in the three speed regions in regard to blood flow changes due to local heating, where perfusion for high speeds increased the most. There was also a high correlation between changes in oxygenation and changes in perfusion for higher speeds. Oxygen saturation at baseline was 44% on foot, increasing to 83% at plateau after heating. The larger increase in perfusion for higher speeds than for lower speeds together with the oxygenation increase during thermal provocation, shows a local thermoregulatory blood flow in presumably arteriolar dermal vessels. In conclusion, there are improved possibilities to assess microcirculation using integrated DRS and LDF in a joint skin model by enabling both oxygenation and speed resolved blood flow assessment simultaneously and in the same skin site. Output parameters in absolute units may also yield new insights about the microcirculatory system.

  18. X-ray micro-tomography for investigations of brain tissues on cellular level

    Science.gov (United States)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based

  19. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  20. Transient hyperoxia does not affect regional cerebral tissue oxygen saturation in moderately preterm or term newborns

    DEFF Research Database (Denmark)

    Thing, Mira; Sørensen, Line Carøe; Pryds, Ole

    2015-01-01

    oxygen saturation (rStO2 ) and to evaluate whether any observed prolonged cerebral vasoconstriction was related to maturity. METHODS: The study included 30 infants with a postmenstrual age of more than 32 weeks, who were treated with nasal continuous positive airway pressure and a fraction of inspired......, with a mean difference of 1.37% (95% CI 0.15, 2.6). After the second oxygen exposure, rStO2 remained unchanged with a mean difference of -0.4% (95% CI -1.6, 0.78). Differences in rStO2 were not related to gestational age in either of the two hyperoxic episodes. CONCLUSION: We found no evidence to support...... the theory that transient hyperoxia induces prolonged cerebral vasoconstriction in infants with a postmenstrual age above 32 weeks....

  1. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    Science.gov (United States)

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue.

  2. Evidence of a Heterogeneous Tissue Oxygenation: Renal Ischemia/Reperfusion Injury in a Large Animal Model

    Science.gov (United States)

    2013-03-01

    administered before vessel occlusion (via vessel loops). Pigs were subjected to normothermic (33°C, n ¼ 2) and hypothermic (5°C, n ¼ 3) ischemia. For...of the hypother- mic kidneys after 30 min of ischemia is approximately 70% of the baseline oxy-hemoglobin concentration, whereas the normo- thermic...normothermic kidneys (−71%, n ¼ 2) after hilar clamping, but that both normothermic and hypother- mic kidneys returned to renal oxygenation levels near 80

  3. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: dose/volume-response relations

    Energy Technology Data Exchange (ETDEWEB)

    Levegruen, S.; Schlegel, W. [Dept. of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg (Germany); Hof, H.; Debus, J. [Dept. of Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Essig, M. [Dept. of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2004-12-01

    Purpose: to evaluate late radiation effects in the brain after radiosurgery of patients with cerebral arteriovenous malformations (AVMs) and to quantify dose/volume-response relations for radiation-induced changes of brain tissue identified on follow-up neuroimaging. Patients and methods: data from 73 AVM patients who had stereotactic linac radiosurgery at DKFZ (German Cancer Research Center), Heidelberg, Germany, were retrospectively analyzed. The endpoint of radiation-induced changes of brain tissue on follow-up magnetic resonance (MR) neuroimaging (i.e., edema and blood-brain-barrier breakdown [BBBB]) was evaluated. Each endpoint was further differentiated into three levels with respect to the extent of the image change (small, intermediate, and large). A previous analysis of the data found correlation of the endpoints with several dose/volume variables (DV) derived from each patient's dose distribution in the brain, including the mean dose in a volume of 20 cm{sup 3} (Dmean20) and the absolute brain volume (including the AVM target) receiving a dose of at least 12 Gy (V12). To quantify dose/volume-response relations, patients were ranked according to DV (i.e., Dmean20 and V12) and classified into four groups of equal size. For each group, the actuarial rates of developing the considered endpoints within 2.5 years after radiosurgery were determined from Kaplan-Meier estimates. The dose/volume-response curves were fitted with a sigmoid-shape logistic function and characterized by DV{sub 50}, the dose for a 50% incidence, and the slope parameter k. Results: dose/volume-response relations, based on two alternative, but correlated, dose distribution variables that are a function of both dose and volume, were observed for radiation-induced changes of brain tissue. DV{sub 50} values of fitted dose/volume-response curves for tissue changes of large extent (e.g., V12{sub 50} = 22.0 {+-} 2.6 cm{sup 3} and Dmean20{sub 50} = 17.8 {+-} 2.0 Gy for the combined endpoint

  4. The large shear strain dynamic behaviour of in-vitro porcine brain tissue and a silicone gel model material.

    Science.gov (United States)

    Brands, D W; Bovendeerd, P H; Peters, G W; Wismans, J S

    2000-11-01

    The large strain dynamic behaviour of brain tissue and silicone gel, a brain substitute material used in mechanical head models, was compared. The non-linear shear strain behaviour was characterised using stress relaxation experiments. Brain tissue showed significant shear softening for strains above 1% (approximately 30% softening for shear strains up to 20%) while the time relaxation behaviour was nearly strain independent. Silicone gel behaved as a linear viscoelastic solid for all strains tested (up to 50%) and frequencies up to 461 Hz. As a result, the large strain time dependent behaviour of both materials could be derived for frequencies up to 1000 Hz from small strain oscillatory experiments and application of Time Temperature Superpositioning. It was concluded that silicone gel material parameters are in the same range as those of brain tissue. Nevertheless the brain tissue response will not be captured exactly due to increased viscous damping at high frequencies and the absence of shear softening in the silicone gel. For trend studies and benchmarking of numerical models the gel can be a good model material.

  5. Imaging MALDI MS of Dosed Brain Tissues Utilizing an Alternative Analyte Pre-extraction Approach

    Science.gov (United States)

    Quiason, Cristine M.; Shahidi-Latham, Sheerin K.

    2015-06-01

    Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry has been adopted in the pharmaceutical industry as a useful tool to detect xenobiotic distribution within tissues. A unique sample preparation approach for MALDI imaging has been described here for the extraction and detection of cobimetinib and clozapine, which were previously undetectable in mouse and rat brain using a single matrix application step. Employing a combination of a buffer wash and a cyclohexane pre-extraction step prior to standard matrix application, the xenobiotics were successfully extracted and detected with an 8 to 20-fold gain in sensitivity. This alternative approach for sample preparation could serve as an advantageous option when encountering difficult to detect analytes.

  6. Novel Discrete Compactness-Based Training for Vector Quantization Networks: Enhancing Automatic Brain Tissue Classification

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Aguila

    2013-01-01

    Full Text Available An approach for nonsupervised segmentation of Computed Tomography (CT brain slices which is based on the use of Vector Quantization Networks (VQNs is described. Images are segmented via a VQN in such way that tissue is characterized according to its geometrical and topological neighborhood. The main contribution rises from the proposal of a similarity metric which is based on the application of Discrete Compactness (DC which is a factor that provides information about the shape of an object. One of its main strengths lies in the sense of its low sensitivity to variations, due to noise or capture defects, in the shape of an object. We will present, compare, and discuss some examples of segmentation networks trained under Kohonen’s original algorithm and also under our similarity metric. Some experiments are established in order to measure the effectiveness and robustness, under our application of interest, of the proposed networks and similarity metric.

  7. Oxygen-glucose deprivation increases the enzymatic activity and the microvesicle-mediated release of ectonucleotidases in the cells composing the blood-brain barrier.

    Science.gov (United States)

    Ceruti, Stefania; Colombo, Laura; Magni, Giulia; Viganò, Francesca; Boccazzi, Marta; Deli, Mária A; Sperlágh, Beáta; Abbracchio, Maria P; Kittel, Agnes

    2011-08-01

    The blood-brain barrier (BBB), the dynamic interface between the nervous tissue and the blood, is composed by endothelial cells, pericytes and astrocytes. Extracellular nucleotides and nucleosides and their receptors (the purinergic system) constitute a widely diffused signaling system involved in many pathophysiological processes. However, the role of this system in controlling BBB functions is still largely unknown. By using cultures of these three cell types grown separately and a BBB in vitro model consisting of triple co-cultures, we studied for the first time the expression and distribution of the ecto-enzymes nucleoside triphosphate diphosphohydrolases (NTPDases, the enzymes which hydrolyze extracellular nucleotides) under control and ischemic (oxygen-glucose deprivation in vitro; OGD) conditions. NTPDase1 was detected in all three cell types, whereas NTPDase2 was expressed by astrocytes and pericytes and, to a lesser extent, by endothelial cells. Endothelial cells were extremely susceptible to cell death when OGD was applied to mimic in vitro the cytotoxicity induced by ischemia, whereas astrocytes and pericytes were more resistant. A semi-quantitative assay highlighted markedly increased e-ATPase activity following exposure to OGD in all three cell types, either when grown separately or when co-cultured together to resemble the composition of the BBB. Moreover, electron microscopy analysis showed that both endothelial cells and astrocytes shed microvesicles containing NTPDases from their membrane, which may suggest a novel mechanism to increase the breakdown of ATP released to toxic levels by damaged BBB cells. We hypothesize that this phenomenon could have a protective and/or modulatory effect for brain parenchymal cells. This in vitro model is therefore useful to study the role of extracellular nucleotides in modulating BBB responses to ischemic events, and to develop new effective purinergic-based approaches for brain ischemia.

  8. Pilot study to visualise and measure skin tissue oxygenation, erythema, total haemoglobin and melanin content using index maps in healthy controls

    Science.gov (United States)

    Poxon, Ian; Wilkinson, Jack; Herrick, Ariane; Dickinson, Mark; Murray, Andrea

    2014-02-01

    We report on a method for analysing multispectral images of skin in vivo for the measurement and visualisation of skin characteristics. Four different indices were used to characterise skin tissue oxygenation, erythema, total haemoglobin and melanin content. Index values were calculated pixel-wise and combined to create index maps to visualise skin properties. Quantitative measurement of tissue oxygenation saturation was possible by calibrating the oxygenation index using a commercial, calibrated oximeter. Index maps were tested by arterial occlusion of the index finger with multispectral images taken before, during and after occlusion in a pilot study with 10 healthy controls.

  9. Imaging extracellular potassium dynamics in brain tissue using a potassium-sensitive nanosensor.

    Science.gov (United States)

    Wellbourne-Wood, Joel; Rimmele, Theresa S; Chatton, Jean-Yves

    2017-01-01

    Neuronal activity results in the release of [Formula: see text] into the extracellular space (ECS). Classically, measurements of extracellular [Formula: see text] ([Formula: see text]) are carried out using [Formula: see text]-sensitive microelectrodes, which provide a single point measurement with undefined spatial resolution. An imaging approach would enable the spatiotemporal mapping of [Formula: see text]. Here, we report on the design and characterization of a fluorescence imaging-based [Formula: see text]-sensitive nanosensor for the ECS based on dendrimer nanotechnology. Spectral characterization, sensitivity, and selectivity of the nanosensor were assessed by spectrofluorimetry, as well as in both wide-field and two-photon microscopy settings, demonstrating the nanosensor efficacy over the physiologically relevant ion concentration range. Spatial and temporal kinetics of the nanosensor responses were assessed using a localized iontophoretic [Formula: see text] application on a two-photon imaging setup. Using acute mouse brain slices, we demonstrate that the nanosensor is retained in the ECS for extended periods of time. In addition, we present a ratiometric version of the nanosensor, validate its sensitivity in brain tissue in response to elicited neuronal activity and correlate the responses to the extracellular field potential. Together, this study demonstrates the efficacy of the [Formula: see text]-sensitive nanosensor approach and validates the possibility of creating multimodal nanosensors.

  10. Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue.

    Science.gov (United States)

    Nakielski, Paweł; Kowalczyk, Tomasz; Zembrzycki, Krzysztof; Kowalewski, Tomasz A

    2015-02-01

    Drug delivery systems based on nanofibrous mats appear to be a promising healing practice for preventing brain neurodegeneration after surgery. One of the problems encountered during planning and constructing optimal delivery system based on nanofibrous mats is the estimation of parameters crucial for predicting drug release dynamics. This study describes our experimental setup allowing for spatial and temporary evaluation of drug release from nanofibrous polymers to obtain data necessary to validate appropriate numerical models. We applied laser light sheet method to illuminate released fluorescent drug analog and CCD camera for imaging selected cross-section of the investigated volume. Transparent hydrogel was used as a brain tissue phantom. The proposed setup allows for continuous observation of drug analog (fluorescent dye) diffusion for time span of several weeks. Images captured at selected time intervals were processed to determine concentration profiles and drug release kinetics. We used presented method to evaluate drug release from several polymers to validate numerical model used for optimizing nanofiber system for neuroprotective dressing.

  11. Assessing Antioxidant Capacity in Brain Tissue: Methodologies and Limitations in Neuroprotective Strategies

    Directory of Open Access Journals (Sweden)

    Jennifer E. Slemmer

    2014-10-01

    Full Text Available The number of putative neuroprotective compounds with antioxidant activity described in the literature continues to grow. Although these compounds are validated using a variety of in vivo and in vitro techniques, they are often evaluated initially using in vitro cell culture techniques in order to establish toxicity and effective concentrations. Both in vivo and in vitro methodologies have their respective advantages and disadvantages, including, but not limited to, cost, time, use of resources and technical limitations. This review expands on the inherent benefits and drawbacks of in vitro and in vivo methods for assessing neuroprotection, especially in light of proper evaluation of compound efficacy and neural bioavailability. For example, in vivo studies can better evaluate the effects of protective compounds and/or its metabolites on various tissues, including the brain, in the whole animal, whereas in vitro studies can better discern the cellular and/or mechanistic effects of compounds. In particular, we aim to address the question of appropriate and accurate extrapolation of findings from in vitro experiment-where compounds are often directly applied to cellular extracts, potentially at higher concentrations than would ever cross the blood-brain barrier—to the more complex scenario of neuroprotection due to pharmacodynamics in vivo.

  12. Organization and evolution of brain lipidome revealed by large-scale analysis of human, chimpanzee, macaque, and mouse tissues.

    Science.gov (United States)

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Sherwood, Chet C; Hof, Patrick R; Ely, John J; Li, Yan; Steinhauser, Dirk; Willmitzer, Lothar; Giavalisco, Patrick; Khaitovich, Philipp

    2015-02-18

    Lipids are prominent components of the nervous system. Here we performed a large-scale mass spectrometry-based analysis of the lipid composition of three brain regions as well as kidney and skeletal muscle of humans, chimpanzees, rhesus macaques, and mice. The human brain shows the most distinct lipid composition: 76% of 5,713 lipid compounds examined in our study are either enriched or depleted in the human brain. Concentration levels of lipids enriched in the brain evolve approximately four times faster among primates compared with lipids characteristic of non-neural tissues and show further acceleration of change in human neocortical regions but not in the cerebellum. Human-specific concentration changes are supported by human-specific expression changes for corresponding enzymes. These results provide the first insights into the role of lipids in human brain evolution.

  13. RNA Sequencing Analysis Reveals Interactions between Breast Cancer or Melanoma Cells and the Tissue Microenvironment during Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Ryo Sato

    2017-01-01

    Full Text Available Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non–small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes Tph2, Sspo, Ptprq, and Pole as well as those of the human genes CXCR4, PLLP, TNFSF4, VCAM1, SLC8A2, and SLC7A11 were upregulated in brain tissue harboring metastases. Further characterization of such genes that contribute to the establishment of brain metastases may provide a basis for the development of new therapeutic strategies and consequent improvement in the prognosis of cancer patients.

  14. Generation of Reactive Oxygen Species (ROS) and Pro-Inflammatory Signaling in Human Brain Cells in Primary Culture.

    Science.gov (United States)

    Lukiw, Walter J; Bjattacharjee, Surjyadipta; Zhao, Yuhai; Pogue, Aileen I; Percy, Maire E

    2012-01-25

    The cellular generation of reactive oxygen species (ROS) has been implicated in contributing to the pathology of human neurological disorders including Alzheimer's disease (AD) and Parkinson's disease (PD). To further understand the triggering and participation of ROS-generating species to pro-inflammatory and pathological signaling in human brain cells, in these experiments we studied the effects of 22 different substances (including various common drugs, interleukins, amyloid precursor protein, amyloid peptides and trace metals) at nanomolar concentrations, in a highly sensitive human neuronal-glial (HNG) cell primary co-culture assay. The evolution of ROS was assayed using the cell-permeate fluorescent indicator 2',7'-dichlorofluorescein diacetate (H2DCFDA), that reacts with major ROS species, including singlet oxygen, hydroxyl radicals or superoxides (λEx 488 nm; λEm 530 nm). Western analysis was performed for cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and cytosolic phospholipase A (cPLA2) to study the effects of induced ROS on inflammatory gene expression within the same brain cell sample. The data indicate that apart from acetylsalicylic acid (aspirin) and simvastatin, several neurophysiologically-relevant concentrations of Aβpeptides and neurotoxic trace metals variably induced ROS induction, COX-2 and cPLA2 expression. These findings have mechanistic implications for ROS-triggered inflammatory gene expression programs that may contribute to AD and PD neuropathologic mechanisms.

  15. Accuracy of a Wearable Sensor for Measures of Head Kinematics and Calculation of Brain Tissue Strain.

    Science.gov (United States)

    Knowles, Brooklynn M; Yu, Henry; Dennison, Christopher R

    2017-02-01

    Wearable kinematic sensors can be used to study head injury biomechanics based on kinematics and, more recently, based on tissue strain metrics using kinematics-driven brain models. These sensors require in-situ calibration and there is currently no data conveying wearable ability to estimate tissue strain. We simulated head impact (n = 871) to a 50th percentile Hybrid III (H-III) head wearing a hockey helmet instrumented with wearable GForceTracker (GFT) sensors measuring linear acceleration and angular velocity. A GFT was also fixed within the H-III head to establish a lower boundary on systematic errors. We quantified GFT errors relative to H-III measures based on peak kinematics and cumulative strain damage measure (CSDM). The smallest mean errors were 12% (peak resultant linear acceleration) and 15% (peak resultant angular velocity) for the GFT within the H-III. Errors for GFTs on the helmet were on average 54% (peak resultant linear acceleration) and 21% (peak resultant angular velocity). On average, the GFT inside the helmet overestimated CSDM by 0.15.

  16. An atlas-based fuzzy connectedness method for automatic tissue classification in brain MRI

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yongxin; BAI Jing

    2006-01-01

    A framework incorporating a subject-registered atlas into the fuzzy connectedness (FC) method is proposed for the automatic tissue classification of 3D images of brain MRI. The pre-labeled atlas is first registered onto the subject to provide an initial approximate segmentation. The initial segmentation is used to estimate the intensity histograms of gray matter and white matter. Based on the estimated intensity histograms, multiple seed voxels are assigned to each tissue automatically. The normalized intensity histograms are utilized in the FC method as the intensity probability density function (PDF) directly. Relative fuzzy connectedness technique is adopted in the final classification of gray matter and white matter. Experimental results based on the 20 data sets from IBSR are included, as well as comparisons of the performance of our method with that of other published methods. This method is fully automatic and operator-independent. Therefore, it is expected to find wide applications, such as 3D visualization, radiation therapy planning, and medical database construction.

  17. Sources of Technical Variability in Quantitative LC-MS Proteomics: Human Brain Tissue Sample Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Piehowski, Paul D.; Petyuk, Vladislav A.; Orton, Daniel J.; Xie, Fang; Moore, Ronald J.; Ramirez Restrepo, Manuel; Engel, Anzhelika; Lieberman, Andrew P.; Albin, Roger L.; Camp, David G.; Smith, Richard D.; Myers, Amanda J.

    2013-05-03

    To design a robust quantitative proteomics study, an understanding of both the inherent heterogeneity of the biological samples being studied as well as the technical variability of the proteomics methods and platform is needed. Additionally, accurately identifying the technical steps associated with the largest variability would provide valuable information for the improvement and design of future processing pipelines. We present an experimental strategy that allows for a detailed examination of the variability of the quantitative LC-MS proteomics measurements. By replicating analyses at different stages of processing, various technical components can be estimated and their individual contribution to technical variability can be dissected. This design can be easily adapted to other quantitative proteomics pipelines. Herein, we applied this methodology to our label-free workflow for the processing of human brain tissue. For this application, the pipeline was divided into four critical components: Tissue dissection and homogenization (extraction), protein denaturation followed by trypsin digestion and SPE clean-up (digestion), short-term run-to-run instrumental response fluctuation (instrumental variance), and long-term drift of the quantitative response of the LC-MS/MS platform over the 2 week period of continuous analysis (instrumental stability). From this analysis, we found the following contributions to variability: extraction (72%) >> instrumental variance (16%) > instrumental stability (8.4%) > digestion (3.1%). Furthermore, the stability of the platform and its’ suitability for discovery proteomics studies is demonstrated.

  18. Quantitative comparison of preparation methodologies for X-ray fluorescence microscopy of brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    James, Simon A.; Sexton, Brett A.; Hoobin, Pamela; Mayo, Sheridan C. [CSIRO, Materials Science and Engineering and the Preventative Health Flagship, Clayton, VIC (Australia); Myers, Damian E. [St. Vincent s Hospital, Department of Surgery/Orthopaedics, Fitzroy, VIC (Australia); University of Melbourne, Department of Surgery, Parkville, VIC (Australia); Jonge, Martin D. de; Paterson, David; Howard, Daryl L. [Australian Synchrotron, Clayton, VIC (Australia); Vogt, Stefan [Argonne National Laboratory, X-ray Science Division, Argonne, IL (United States); Ryan, Chris G. [CSIRO, Earth Science and Resources Engineering, Clayton, VIC (Australia); University of Melbourne, School of Physics, Parkville, VIC (Australia); University of Tasmania, CODES Centre of Excellence, Hobart, TAS (Australia); Altissimo, Matteo [Melbourne Centre for Nanofabrication, Clayton, VIC (Australia); Moorhead, Gareth F. [CSIRO, Materials Science and Engineering and the Preventative Health Flagship, Clayton, VIC (Australia); University of Melbourne, School of Physics, Parkville, VIC (Australia); Wilkins, Stephen W. [CSIRO, Materials Science and Engineering and the Preventative Health Flagship, Clayton, VIC (Australia); Monash University, School of Physics, Clayton, VIC (Australia)

    2011-08-15

    X-ray fluorescence microscopy (XFM) facilitates high-sensitivity quantitative imaging of trace metals at high spatial resolution over large sample areas and can be applied to a diverse range of biological samples. Accurate determination of elemental content from recorded spectra requires proper calibration of the XFM instrument under the relevant operating conditions. Here, we describe the manufacture, characterization, and utilization of multi-element thin-film reference foils for use in calibration of XFM measurements of biological and other specimens. We have used these internal standards to assess the two-dimensional distribution of trace metals in a thin tissue section of a rat hippocampus. The data used in this study was acquired at the XFM beamline of the Australian Synchrotron using a new 384-element array detector (Maia) and at beamline 2-ID-E at the Advanced Photon Source. Post-processing of samples by different fixation techniques was investigated, with the conclusion that differences in solvent type and sample handling can significantly alter elemental content. The present study highlights the quantitative capability, high statistical power, and versatility of the XFM technique for mapping trace metals in biological samples, e.g., brain tissue samples in order to help understand neurological processes, especially when implemented in conjunction with a high-performance detector such as Maia. (orig.)

  19. In situ monitoring of brain tissue reaction of chronically implanted electrodes with an optical coherence tomography fiber system

    Science.gov (United States)

    Xie, Yijing; Hassler, Christina; Stieglitz, Thomas; Seifert, Andreas; Hofmann, Ulrich G.

    2014-03-01

    Neural microelectrodes are well established tools for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. However, long term implanted neural probes often become functionally impaired by tissue encapsulation. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities provide no sufficient resolution for a cellular measurement in deep brain regions. Optical coherence tomography (OCT) is a well developed imaging modality, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. Further more, a fiber based spectral domain OCT was shown to be capable of minimally invasive brain intervention. In the present study, we propose to use a fiber based spectral domain OCT to monitor the the progression of the tissue's immune response and scar encapsulation of microprobes in a rat animal model. We developed an integrated OCT fiber catheter consisting of an implantable ferrule based fiber cannula and a fiber patch cable. The fiber cannula was 18.5 mm long, including a 10.5 mm ceramic ferrule and a 8.0 mm long, 125 μm single mode fiber. A mating sleeve was used to fix and connect the fiber cannula to the OCT fiber cable. Light attenuation between the OCT fiber cable and the fiber cannula through the mating sleeve was measured and minimized. The fiber cannula was implanted in rat brain together with a microelectrode in sight used as a foreign body to induce the brain tissue immune reaction. Preliminary data showed a significant enhancement of the OCT backscattering signal during the brain tissue scarring process, while the OCT signal of the flexible microelectrode was getting weaker consequentially.

  20. Aluminium, iron and copper in human brain tissues donated to the Medical Research Council's Cognitive Function and Ageing Study.

    Science.gov (United States)

    House, Emily; Esiri, Margaret; Forster, Gill; Ince, Paul G; Exley, Christopher

    2012-01-01

    Aluminium, iron and copper are all implicated in the aetiology of neurodegenerative diseases including Alzheimer's disease. However, there are very few large cohort studies of the content of these metals in aged human brains. We have used microwave digestion and TH GFAAS to measure aluminium, iron and copper in the temporal, frontal, occipital and parietal lobes of 60 brains donated to the Cognitive Function and Ageing Study. Every precaution was taken to reduce contamination of samples and acid digests to a minimum. Actual contamination was estimated by preparing a large number of (170+) method blanks which were interspersed within the full set of 700+ tissue digests. Subtraction of method blank values (MBV) from tissue digest values resulted in metal contents in all tissues in the range, MBV to 33 μg g(-1) dry wt. for aluminium, 112 to 8305 μg g(-1) dry wt. for iron and MBV to 384 μg g(-1) dry wt. for copper. While the median aluminium content for all tissues was 1.02 μg g(-1) dry wt. it was informative that 41 brains out of 60 included at least one tissue with an aluminium content which could be considered as potentially pathological (> 3.50 μg g(-1) dry wt.). The median content for iron was 286.16 μg g(-1) dry wt. and overall tissue iron contents were generally high which possibly reflected increased brain iron in ageing and in neurodegenerative disease. The median content for copper was 17.41 μg g(-1) dry wt. and overall tissue copper contents were lower than expected for aged brains but they were commensurate with aged brains showing signs of neurodegenerative disease. In this study we have shown, in particular, the value of carrying out significant numbers of method blanks to identify unknown sources of contamination. When these values are subtracted from tissue digest values the absolute metal contents could be considered as conservative and yet they may still reflect aspects of ageing and neurodegenerative disease in individual brains.

  1. Sex- and Tissue-Specific Methylome Changes in Brains of Mice Perinatally Exposed to Lead

    Science.gov (United States)

    Sánchez-Martín, Francisco Javier; Lindquist, Diana M.; Landero-Figueroa, Julio; Zhang, Xiang; Chen, Jing; Cecil, Kim M.; Medvedovic, Mario; Puga, Alvaro

    2014-01-01

    Changes in DNA methylation and subsequent changes in gene expression regulation are the hallmarks of age- and tissue-dependent epigenetic drift and plasticity resulting from the combinatorial integration of genetic determinants and environmental cues. To determine whether perinatal lead exposure caused persistent DNA methylation changes in target tissues, we exposed mouse dams to 0, 3 or 30 ppm of lead acetate in drinking water for a period extending from 2 months prior to mating, through gestation, until weaning of pups at postnatal day-21, and analyzed whole-genome DNA methylation in brain cortex and hippocampus of 2-month old exposed and unexposed progeny. Lead exposure resulted in hypermethylation of three differentially methylated regions in the hippocampus of females, but not males. These regions mapped to Rn4.5s, Sfi1, and Rn45s loci in mouse chromosomes 2, 11 and 17, respectively. At a conservative fdr<0.001, 1,623 additional CpG sites were differentially methylated in female hippocampus, corresponding to 117 unique genes. Sixty of these genes were tested for mRNA expression and showed a trend towards negative correlation between mRNA expression and methylation in exposed females but not males. No statistically significant methylome changes were detected in male hippocampus or in cortex of either sex. We conclude that exposure to lead during embryonic life, a time when the organism is most sensitive to environmental cues, appears to have a sex- and tissue-specific effect on DNA methylation that may produce pathological or physiological deviations from the epigenetic plasticity operative in unexposed mice. PMID:25530354

  2. Olfactory cells via nasal biopsy reflect the developing brain in gene expression profiles: utility and limitation of the surrogate tissues in research for brain disorders.

    Science.gov (United States)

    Horiuchi, Yasue; Kano, Shin-Ichi; Ishizuka, Koko; Cascella, Nicola G; Ishii, Seiji; Talbot, C Conover; Jaffe, Andrew E; Okano, Hideyuki; Pevsner, Jonathan; Colantuoni, Carlo; Sawa, Akira

    2013-12-01

    Human olfactory cells obtained by rapid nasal biopsy have been suggested to be a good surrogate system to address brain disease-associated molecular changes. Nonetheless, whether use of this experimental strategy is justified remains unclear. Here we compared expression profiles of olfactory cells systematically with those from the brain tissues and other cells. Principal component analysis indicated that the expression profiles of olfactory cells are very different from those of blood cells, but are closer to those of stem cells, in particular mesenchymal stem cells, that can be differentiated into the cells of the central nervous system.

  3. Hyperbaric oxygen therapy as a potential treatment for post-traumatic stress disorder associated with traumatic brain injury

    Science.gov (United States)

    Eve, David J; Steele, Martin R; Sanberg, Paul R; Borlongan, Cesar V

    2016-01-01

    Traumatic brain injury (TBI) describes the presence of physical damage to the brain as a consequence of an insult and frequently possesses psychological and neurological symptoms depending on the severity of the injury. The recent increased military presence of US troops in Iraq and Afghanistan has coincided with greater use of improvised exploding devices, resulting in many returning soldiers suffering from some degree of TBI. A biphasic response is observed which is first directly injury-related, and second due to hypoxia, increased oxidative stress, and inflammation. A proportion of the returning soldiers also suffer from post-traumatic stress disorder (PTSD), and in some cases, this may be a consequence of TBI. Effective treatments are still being identified, and a possible therapeutic candidate is hyperbaric oxygen therapy (HBOT). Some clinical trials have been performed which suggest benefits with regard to survival and disease severity of TBI and/or PTSD, while several other studies do not see any improvement compared to a possibly poorly controlled sham. HBOT has been shown to reduce apoptosis, upregulate growth factors, promote antioxidant levels, and inhibit inflammatory cytokines in animal models, and hence, it is likely that HBOT could be advantageous in treating at least the secondary phase of TBI and PTSD. There is some evidence of a putative prophylactic or preconditioning benefit of HBOT exposure in animal models of brain injury, and the optimal time frame for treatment is yet to be determined. HBOT has potential side effects such as acute cerebral toxicity and more reactive oxygen species with long-term use, and therefore, optimizing exposure duration to maximize the reward and decrease the detrimental effects of HBOT is necessary. This review provides a summary of the current understanding of HBOT as well as suggests future directions including prophylactic use and chronic treatment. PMID:27799776

  4. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation.

    Science.gov (United States)

    Du, Yang; Deng, Wenjun; Wang, Zixing; Ning, MingMing; Zhang, Wei; Zhou, Yiming; Lo, Eng H; Xing, Changhong

    2016-01-01

    Mice and rats are the most commonly used animals for preclinical stroke studies, but it is unclear whether targets and mechanisms are always the same across different species. Here, we mapped the baseline expression of a chemokine/cytokine subnetwork and compared responses after oxygen-glucose deprivation in primary neurons, astrocytes, and microglia from mouse, rat, and human. Baseline profiles of chemokines (CX3CL1, CXCL12, CCL2, CCL3, and CXCL10) and cytokines (IL-1α, IL-1β, IL-6, IL-10, and TNFα) showed significant differences between human and rodents. The response of chemokines/cytokines to oxygen-glucose deprivation was also significantly different between species. After 4 h oxygen-glucose deprivation and 4 h reoxygenation, human and rat neurons showed similar changes with a downregulation in many chemokines, whereas mouse neurons showed a mixed response with up- and down-regulated genes. For astrocytes, subnetwork response patterns were more similar in rats and mice compared to humans. For microglia, rat cells showed an upregulation in all chemokines/cytokines, mouse cells had many down-regulated genes, and human cells showed a mixed response with up- and down-regulated genes. This study provides proof-of-concept that species differences exist in chemokine/cytokine subnetworks in brain cells that may be relevant to stroke pathophysiology. Further investigation of differential gene pathways across species is warranted.

  5. The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses.

    Directory of Open Access Journals (Sweden)

    Chang-Gyu Hahn

    Full Text Available Recent molecular genetics studies have suggested various trans-synaptic processes for pathophysiologic mechanisms of neuropsychiatric illnesses. Examination of pre- and post-synaptic scaffolds in the brains of patients would greatly aid further investigation, yet such an approach in human postmortem tissue has yet to be tested. We have examined three methods using density gradient based purification of synaptosomes followed by detergent extraction (Method 1 and the pH based differential extraction of synaptic membranes (Methods 2 and 3. All three methods separated fractions from human postmortem brains that were highly enriched in typical PSD proteins, almost to the exclusion of pre-synaptic proteins. We examined these fractions using electron microscopy (EM and verified the integrity of the synaptic membrane and PSD fractions derived from human postmortem brain tissues. We analyzed protein composition of the PSD fractions using two dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS and observed known PSD proteins by mass spectrometry. Immunoprecipitation and immunoblot studies revealed that expected protein-protein interactions and certain posttranscriptional modulations were maintained in PSD fractions. Our results demonstrate that PSD fractions can be isolated from human postmortem brain tissues with a reasonable degree of integrity. This approach may foster novel postmortem brain research paradigms in which the stoichiometry and protein composition of specific microdomains are examined.

  6. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    NARCIS (Netherlands)

    Matthews, G.D.; Gur, N.; Koopman, W.J.H.; Pines, O.; Vardimon, L.

    2010-01-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS

  7. Neospora caninum and Toxoplasma gondii in brain tissue of feral rodents and insectivores caught on farms in the Netherlands

    NARCIS (Netherlands)

    Meerburg, B.G.; Craeye, de S.; Dierick, K.; Kijlstra, A.

    2012-01-01

    We investigated the presence of both Neospora caninum and Toxoplasma gondii in 250 brain tissue samples from 9 species of feral rodents and insectivores caught on 10 organic farms in the Netherlands in 2004. Collected samples were conserved in 4% paraformaldehyde solution and analysed by real-time P

  8. Contents of myelin-basic protein and S-100 in serum and brain tissue of neonatal rats with intrauterine infection-caused brain injury

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Li; Hongying Li; Zhihai Lu

    2006-01-01

    BACKGROUND: The change of the content of myelin basic protein (MBP) in serum and brain tissue is the bio chemical diadynamic index of amyelination. S-100 is a specific and sensitive marker of central nervous system (CNS) injury. Whether or not the content of S-100 and MBP in blood and brain tissue can be used as the quan titative index for early diagnosing the intrauterine infection-caused brain injury still needs investigation. OBJECTIVE: To observe whether or not MBP and S-100 detection can be used as the biochemical indexes for early diagnosing the intrauterine infection-caused brain injury. DESIGN: Randomized controlled animal experiment. SETTING: Laboratory of Pediatric Neuro-rehabilitation, Medical College of Rehabilitation, Jiamusi University. MATERIALS: Sixty female and thirty male common Wistar rats, weighing from 180 to 240 g, were provided by the Experimental Animal Center of Jiamusi University. Reagent: Lipopolysaccharide(LPS, serological type 055: B5, SIGMA Company of USA); MBP enzyme linked immunosobent assay (ELISA) immunoreagent kit (Preclinicai Recombination DNA Laboratory, Chengdu Huaxi Medical Center, Sichuan Province); S-100 ELISA immunoreagent kit ( Department of Physiology, the Fourth Military Medical University of Chinese PLA) and bovine serum albumin(Haitaike Biotechnology Co.,Ltd.).METHODS: This experiment was carried out in the Laboratory of Pediatric Neuro-Rehabilitation, Experimental Animal Center, Department of Pathology and Central Laboratory of Jiamusi University from July 2005 to March 2006. ① Preparation of models and grouping: The female and male rats were placed in one cage at 2: 1 at 17:00 o'clock. Vaginal smear was checked at 8:00 on the next morning. Sperm was found and 0 day of pregnancy was recorded. Pregnant rats were bred in another cage. The pregnant 47 rats were randomly divided into 2 groups: control group (n =10) and experimental group (n =37). The experimental pregnant rats were intraperitoneally injected with LPS

  9. Monitoring the oxygenation of the preterm brain : What is there to gain?

    NARCIS (Netherlands)

    Alderliesten, T.

    2016-01-01

    Despite advances in perinatal care, preterm birth is still associated with adverse neurodevelopmental outcome, often caused by cerebral injury. The most common forms of cerebral injury are all associated with disturbances in cerebral oxygen and blood supply. Traditionally, infant wellbeing is evalua

  10. Texture analysis in quantitative MR imaging. Tissue characterisation of normal brain and intracranial tumours at 1.5 T

    DEFF Research Database (Denmark)

    Kjaer, L; Ring, P; Thomsen, C

    1995-01-01

    of common first-order and second-order grey level statistics. Tissue differentiation in the images was estimated by the presence or absence of significant differences between tissue types. A fine discrimination was obtained between white matter, cortical grey matter, and cerebrospinal fluid in the normal...... brain, and white matter was readily separated from the tumour lesions. Moreover, separation of solid tumour tissue and peritumoural oedema was suggested for some tumour types. Mutual comparison of all tumour types revealed extensive differences, and even specific tumour differentiation turned out...

  11. Average blood flow and oxygen uptake in the human brain during resting wakefulness

    DEFF Research Database (Denmark)

    Madsen, P L; Holm, S; Herning, M;

    1993-01-01

    tracer between the brain and its venous blood is not reached. As a consequence, normal values for CBF and CMRO2 of 54 ml 100 g-1 min-1 and 3.5 ml 100 g-1 min-1 obtained with the Kety-Schmidt technique are an overestimation of the true values. Using the Kety-Schmidt technique we have performed 57...

  12. METOVITAN PREVENTS ACCUMULATION OF THIAMIN DIPHOSPHATE OXYGENIZED FORM IN RAT TISSUES UNDER IRRADIATION

    OpenAIRE

    Yu. M. Parkhomenko; G. V. Donchenko; L. I. Chehovskaya; S. P. Stepanenko; O. A. Mejenskaya; E. N. Gorban

    2015-01-01

    The aim of the research was to test the ability of the drug “Metovitan” to prevent the redox balance disturbance in the tissues and thiamine diphosphate irreversible oxidation upon exposure of ionizing radiation on the body. The rats were undergo to a single exposure of the X-ray therapeutic instrument RUM-17 to create a dose of 0.5, 1.0 and 5.0 Gy. Preparation “Metovitan” were administered at a dose of 25 mg per 1 kg body weight for 22–24 h before irradiation. Contents of thiamin...

  13. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes.

    Science.gov (United States)

    Nitzsche, Björn; Frey, Stephen; Collins, Louis D; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H; Fonov, Vladimir S; Boltze, Johannes

    2015-01-01

    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  14. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  15. Research of Electrosurgical Ablation with Antiadhesive Functionalization on Thermal and Histopathological Effects of Brain Tissues In Vivo

    Directory of Open Access Journals (Sweden)

    Wen-Tien Hsiao

    2014-01-01

    Full Text Available Thermal injury and tissue sticking are two major concerns in the electrosurgery. In the present study, the effect of lateral thermal injury caused by different electrosurgical electrodes on wound healing was investigated. An electrosurgical unit equipped with untreated (SS and titanium oxide layer-coated (TiO2-coated stainless steel needle-type electrodes was used to create lesions on the rat brain tissue. TiO2 layers were produced by radiofrequency plasma and magnetron sputtering in the form of amorphous (TO-SS-1, anatase (TO-SS-2, and rutile (TO-SS-3 phase. Animals were sacrificed for evaluations at 0, 2, 7, and 28 days postoperatively. TO-SS-3 electrodes generated lower levels of sticking tissue, and the thermographs showed that the recorded highest temperature in brain tissue from the TO-SS-3 electrode was significantly lower than in the SS electrode. The total injury area of brain tissue caused by TO-SS-1 and TO-SS-3 electrodes was significantly lower than that caused by SS electrodes at each time point. The results of the present study reveal that the plating of electrodes with a TiO2 film with rutile phases is an efficient method for improving the performance of electrosurgical units and should benefit wound healing.

  16. Research of electrosurgical ablation with antiadhesive functionalization on thermal and histopathological effects of brain tissues in vivo.

    Science.gov (United States)

    Hsiao, Wen-Tien; Kung, Chun-Ming; Chu, Jan-Show; Ou, Keng-Liang; Peng, Pei-Wen

    2014-01-01

    Thermal injury and tissue sticking are two major concerns in the electrosurgery. In the present study, the effect of lateral thermal injury caused by different electrosurgical electrodes on wound healing was investigated. An electrosurgical unit equipped with untreated (SS) and titanium oxide layer-coated (TiO2-coated) stainless steel needle-type electrodes was used to create lesions on the rat brain tissue. TiO2 layers were produced by radiofrequency plasma and magnetron sputtering in the form of amorphous (TO-SS-1), anatase (TO-SS-2), and rutile (TO-SS-3) phase. Animals were sacrificed for evaluations at 0, 2, 7, and 28 days postoperatively. TO-SS-3 electrodes generated lower levels of sticking tissue, and the thermographs showed that the recorded highest temperature in brain tissue from the TO-SS-3 electrode was significantly lower than in the SS electrode. The total injury area of brain tissue caused by TO-SS-1 and TO-SS-3 electrodes was significantly lower than that caused by SS electrodes at each time point. The results of the present study reveal that the plating of electrodes with a TiO2 film with rutile phases is an efficient method for improving the performance of electrosurgical units and should benefit wound healing.

  17. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn infant

  18. Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging.

    Science.gov (United States)

    Wehrl, Hans F; Bezrukov, Ilja; Wiehr, Stefan; Lehnhoff, Mareike; Fuchs, Kerstin; Mannheim, Julia G; Quintanilla-Martinez, Leticia; Kohlhofer, Ursula; Kneilling, Manfred; Pichler, Bernd J; Sauter, Alexander W

    2015-05-01

    Especially for neuroscience and the development of new biomarkers, a direct correlation between in vivo imaging and histology is essential. However, this comparison is hampered by deformation and shrinkage of tissue samples caused by fixation, dehydration and paraffin embedding. We used magnetic resonance (MR) imaging and computed tomography (CT) imaging to analyze the degree of shrinkage on murine brains for various fixatives. After in vivo imaging using 7 T MRI, animals were sacrificed and the brains were dissected and immediately placed in different fixatives, respectively: zinc-based fixative, neutral buffered formalin (NBF), paraformaldehyde (PFA), Bouin-Holland fixative and paraformaldehyde-lysine-periodate (PLP). The degree of shrinkage based on mouse brain volumes, radiodensity in Hounsfield units (HU), as well as non-linear deformations were obtained. The highest degree of shrinkage was observed for PLP (68.1%, P brain shrinkage and only small deformations and is therefore recommended for in vivo ex vivo comparison studies.

  19. Increased brain tissue sodium concentration in Huntington's Disease - a sodium imaging study at 4 T.

    Science.gov (United States)

    Reetz, Kathrin; Romanzetti, Sandro; Dogan, Imis; Saß, Christian; Werner, Cornelius J; Schiefer, Johannes; Schulz, Jörg B; Shah, N Jon

    2012-10-15

    The neuropathological hallmark of the autosomal dominantly inherited, neurodegenerative disorder Huntington's disease is progressive striatal loss starting several years prior to symptom manifestation. Magnetic resonance (MR) imaging has been widely used to detect altered structure in premanifest and early Huntington's disease. Given that neurodegeneration is likely preceded by substantial neuronal dysfunction, we used in vivo sodium MR imaging, which has been shown to be sensitive to cell death and viability, to investigate cellular and metabolic integrity of Huntington's disease brain tissue. We studied a total of thirteen healthy controls and thirteen Huntington's disease gene carriers (11 manifest and 2 premanifest). The manifest Huntington's disease group was subdivided into stages 1 and 2 according to their Total Functional Capacity scores. Clinical total motor and cognitive scores, as well as calibrated sodium and T1-weighted MR images were obtained with a 4 T Siemens MR scanner. Sodium images were acquired by means of a constant time imaging technique with an ultra-short "echo time". T1-weighted MR images were further analysed with voxel-based morphometry. The absolute total sodium concentration and grey matter values were measured in several Huntington's disease-specific and also non-specific areas. Statistical analysis of variance and Pearson correlation were applied. In Huntington's disease subjects, we found an increase of total sodium concentration of the entire brain compared to controls. Increased total sodium concentration values were found in structurally affected, but also in some non-affected, regions. The highest total sodium concentration values were found in the bilateral caudate, which was associated with caudate grey matter atrophy and CAG repeat length. In all Huntington's disease subjects we further found a profound increase of total sodium concentration in the putamen, pallidum, thalamus, hippocampus, insula, precuneus and occipital

  20. Quantification of Neurotransmitters in Mouse Brain Tissue by Using Liquid Chromatography Coupled Electrospray Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 mm × 100 mm, i.d., 3 μm column by adding a mixture of 10 mM ammonium formate in acetonitrile/water (75 : 25, v/v, 300 μl/min for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3 μ C18 (3.0 mm × 150 mm, i.d., 3 μm column was used by adding a mixture of 1% formic acid in acetonitrile/water (20 : 80, v/v, 350 μl/min. The total chromatographic run time was 5.5 min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000 ng/g for BH4 r2=0.995, 10 and 5000 ng/g for DA r2=0.997, 20 and 10000 ng/g for 5-HT r2=0.994, NE r2=0.993, and EP r2=0.993, and 0.2 and 200 μg/g for Glu r2=0.996 and GABA r2=0.999 in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain.

  1. Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths.

    Directory of Open Access Journals (Sweden)

    Janne West

    Full Text Available BACKGROUND: Brain tissue segmentation of white matter (WM, grey matter (GM, and cerebrospinal fluid (CSF are important in neuroradiological applications. Quantitative Mri (qMRI allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences. METHODS: In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences. RESULTS: Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p<0.001. Analyses of main effects showed that WM was underestimated, while GM and CSF were overestimated on 1.5 T compared to 3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem. CONCLUSIONS: Most of the brain was identically classified at the two field strengths, although some regional differences were observed.

  2. Tissue plasminogen activator followed by antioxidant-loaded nanoparticle delivery promotes activation/mobilization of progenitor cells in infarcted rat brain.

    Science.gov (United States)

    Petro, Marianne; Jaffer, Hayder; Yang, Jun; Kabu, Shushi; Morris, Viola B; Labhasetwar, Vinod

    2016-03-01

    Inherent neuronal and circulating progenitor cells play important roles in facilitating neuronal and functional recovery post stroke. However, this endogenous repair process is rather limited, primarily due to unfavorable conditions in the infarcted brain involving reactive oxygen species (ROS)-mediated oxidative stress and inflammation following ischemia/reperfusion injury. We hypothesized that during reperfusion, effective delivery of antioxidants to ischemic brain would create an environment without such oxidative stress and inflammation, thus promoting activation and mobilization of progenitor cells in the infarcted brain. We administered recombinant human tissue-type plasminogen activator (tPA) via carotid artery at 3 h post stroke in a thromboembolic rat model, followed by sequential administration of the antioxidants catalase (CAT) and superoxide dismutase (SOD), encapsulated in biodegradable nanoparticles (nano-CAT/SOD). Brains were harvested at 48 h post stroke for immunohistochemical analysis. Ipsilateral brain slices from animals that had received tPA + nano-CAT/SOD showed a widespread distribution of glial fibrillary acidic protein-positive cells (with morphology resembling radial glia-like neural precursor cells) and nestin-positive cells (indicating the presence of immature neurons); such cells were considerably fewer in untreated animals or those treated with tPA alone. Brain sections from animals receiving tPA + nano-CAT/SOD also showed much greater numbers of SOX2- and nestin-positive progenitor cells migrating from subventricular zone of the lateral ventricle and entering the rostral migratory stream than in t-PA alone treated group or untreated control. Further, animals treated with tPA + nano-CAT/SOD showed far fewer caspase-positive cells and fewer neutrophils than did other groups, as well as an inhibition of hippocampal swelling. These results suggest that the antioxidants mitigated the inflammatory response, protected neuronal cells

  3. Hypoxia inducible factor-1alpha mediates protection of DL-3-n-butylphthalide in brain microvascular endothelial cells against oxygen glucose deprivation-induced injury

    Institute of Scientific and Technical Information of China (English)

    Weihong Yang; Ling Li; Ruxun Huang; Zhong Pei; Songjie Liao; Jinsheng Zeng

    2012-01-01

    Studies have demonstrated that DL-3-n-butylphthalide can significantly alleviate oxygen glucose deprivation-induced injury of human umbilical vein endothelial cells at least partly associated with its enhancement on oxygen glucose deprivation -induced hypoxia inducible factor-1α expression. In this study, we hypothesized that DL-3-n-butylphthalide can protect against oxygen glucose deprivation-induced injury of newborn rat brain microvascular endothelial cells by means of upregulating hypoxia inducible factor-1α expression. MTT assay and Hoechst staining results showed that DL-3-n-butylphthalide protected brain microvascular endothelial cells against oxygen glucose deprivation-induced injury in a dose-dependent manner. Western blot and immunofluorescent staining results further confirmed that the protective effect was related to upregulation of hypoxia inducible factor-1α. Real-time RT-PCR reaction results showed that DL-3-n-butylphthalide reduced apoptosis by inhibiting downregulation of pro-apoptotic gene caspase-3 mRNA expression and upregulation of apoptosis-executive protease bcl-2 mRNA expression; however, DL-3-n-butylphthalide had no protective effects on brain microvascular endothelial cells after knockdown of hypoxia inducible factor-1α by small interfering RNA. These findings suggest that DL-3-n-butylphthalide can protect brain microvascular endothelial cells against oxygen glucose deprivation-induced injury by upregulating bcl-2 expression and downregulating caspase-3 expression though hypoxia inducible factor-1α pathway.

  4. c-Src and neural Wiskott-Aldrich syndrome protein (N-WASP promote low oxygen-induced accelerated brain invasion by gliomas.

    Directory of Open Access Journals (Sweden)

    Zhuo Tang

    Full Text Available Malignant gliomas remain associated with poor prognosis and high morbidity because of their ability to invade the brain; furthermore, human gliomas exhibit a phenotype of accelerated brain invasion in response to anti-angiogenic drugs. Here, we study 8 human glioblastoma cell lines; U251, U87, D54 and LN229 show accelerated motility in low ambient oxygen. Src inhibition by Dasatinib abrogates this phenotype. Molecular discovery and validation studies evaluate 46 molecules related to motility or the src pathway in U251 cells. Demanding that the molecular changes induced by low ambient oxygen are reversed by Dasatinib in U251 cells, identifies neural Wiskott-Aldrich syndrome protein (NWASP, Focal adhesion Kinase (FAK, [Formula: see text]-Catenin, and Cofilin. However, only Src-mediated NWASP phosphorylation distinguishes the four cell lines that exhibit enhanced motility in low ambient oxygen. Downregulating c-Src or NWASP by RNA interference abrogates the low-oxygen-induced enhancement in motility by in vitro assays and in organotypic brain slice cultures. The findings support the idea that c-Src and NWASP play key roles in mediating the molecular pathogenesis of low oxygen-induced accelerated brain invasion by gliomas.

  5. c-Src and neural Wiskott-Aldrich syndrome protein (N-WASP) promote low oxygen-induced accelerated brain invasion by gliomas.

    Science.gov (United States)

    Tang, Zhuo; Araysi, Lita M; Fathallah-Shaykh, Hassan M

    2013-01-01

    Malignant gliomas remain associated with poor prognosis and high morbidity because of their ability to invade the brain; furthermore, human gliomas exhibit a phenotype of accelerated brain invasion in response to anti-angiogenic drugs. Here, we study 8 human glioblastoma cell lines; U251, U87, D54 and LN229 show accelerated motility in low ambient oxygen. Src inhibition by Dasatinib abrogates this phenotype. Molecular discovery and validation studies evaluate 46 molecules related to motility or the src pathway in U251 cells. Demanding that the molecular changes induced by low ambient oxygen are reversed by Dasatinib in U251 cells, identifies neural Wiskott-Aldrich syndrome protein (NWASP), Focal adhesion Kinase (FAK), [Formula: see text]-Catenin, and Cofilin. However, only Src-mediated NWASP phosphorylation distinguishes the four cell lines that exhibit enhanced motility in low ambient oxygen. Downregulating c-Src or NWASP by RNA interference abrogates the low-oxygen-induced enhancement in motility by in vitro assays and in organotypic brain slice cultures. The findings support the idea that c-Src and NWASP play key roles in mediating the molecular pathogenesis of low oxygen-induced accelerated brain invasion by gliomas.

  6. The association between brain natriuretic peptide and tissue Doppler parameters in children with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Taliha Öner

    2016-01-01

    Full Text Available In this study, we investigated the association between brain natriuretic peptide (BNP levels and tissue Doppler imaging measurements and also screening for deadly mutations in patients with hypertrophic cardiomyopathy (HCM. We enrolled 20 patients diagnosed with HCM (age:10.7±5 years (1-17, 85% male, weight:42.25±23.10 kg, height:141.80±32.45 cm and 20 age, gender and body weight-matched control subjects. We performed electrocardiography, transthoracic echocardiography, and tissue Doppler echocardiography in each group, as well as genetic tests (for Arg403Gln, Arg453Cys, Arg719Trp and Arg719Gln mutations in MYH7 Exons 13, 14, 19 and BNP in the patients. The patients were divided into two groups according to the presence (Group 1 or absence (Group 2 of left ventricular (LV outflow tract obstruction. QTc dispersion and the LV ejection fraction and left atrial (LA volume index were increased in Group 1. The LA volume index and the mitral and septal E/Ea ratio and septum Z-score were increased while the mitral lateral annulus and septal annulus Ea wave velocities and the mitral and tricuspid E/A ratio were decreased in patients with high levels of BNP compared to those with normal BNP levels. There were no mutations that are associated with increased risk of sudden death found in patients included in this study. In the light of our data, we conclude that such parameters BNP levels above the 98 pg/mL, septal thickness Z-score ˃6, and higher mitral and septal E/Ea ratios can be used for management of patients with HCM according to life-threatening conditions.

  7. Tissomics: two- and three-dimensional distribution of nuclei in brain tissue using laser scanning cytometry (LSC)

    Science.gov (United States)

    Lenz, Domnik; Mittag, Anja; Mosch, Birgit; Bocsi, Jozsef; Arendt, Thomas; Tarnok, Attila

    2005-03-01

    Automated quantitative (i.e. stochiometric) analysis of tissues is of eminent importance in the understanding of all interactions between cells in their natural environment. In tissue cytometry a solid trigger is necessary in order to unequivocally differentiate between cellular and non-cellular events. This can be best performed by nuclear staining. Aim of this study was to analyze a brain tissue section by laser scanning cytometry (LSC) in order to depict the threedimensional distribution of nuclei in the tissue. To this end the section was measured in several foci and different nuclei detected in several depths of the tissue were assigned to the respective layer. Frozen sections of formalin-fixed rat or human brain tissue (120μm thickness) were incubated with propidiumiodide (PI) (50μg/ml) and covered on slides. For analysis by the LSC propidiumiodide was used as trigger. After a first analysis focussed on the top of the tissue, the focus was adjusted in 30μm steps deeper into the tissue. Per analysis data of at least 50,000 cells were acquired. After finishing measurements from all depths of the field were merged, i.e. data were combined into a composite data file. With the special features of the LSC it was possible to develop a method depicting the threedimensional distribution of the nuclei in solid tissue sections. LSC can be useful tool for this relatively new field of solid tissue cytometry termed tissomics. After evaluation of methods like this, so far not available data can be analysed for diagnostic purposes. By these studies we intend to demonstrate the power of the LSC for the routine pathological use. This should add up to the bright versatility of applications for the LSC as a cytometric instrument suitable for high throughput and high content analysis.

  8. Conservative surgical management of necrotic tissues following meningococcal sepsis: case report of a child treated with hyperbaric oxygen.

    Science.gov (United States)

    Takac, Ines; Kvolik, Slavica; Divkovic, Dalibor; Kalajdzic-Candrlic, Jasenka; Puseljic, Silvija; Izakovic, Senka

    2010-01-01

    This article presents the case of a 5-month-old infant, who survived a fulminant meningococcal sepsis with purpura fulminans, septic shock and severe DIC with gastrointestinal bleeding. Amputation and reconstructive surgery were considered to treat the multiple skin and limb necroses at high risk of superinfection, but the surgical intervention was delayed due to the extremely doubtful outcome. On Day 10 after the onset of the disease, a hemodynamic improvement was achieved. The baby overcame early critical period, but was still in poor general condition. The hyperbaric oxygenation (HBO2) as adjuvant therapy was started in the monoplace chamber using the following protocol: from first through fifth day 45 minutes twice a day on 1.5 atmosphere absolute (ATA); after a two-day break, once a day on 1.8 ATA for 60 minutes. During 52 HBO2 treatments multiple areas of necrotic skin and subcutaneous tissue, together with fingertips and toes, detached spontaneously. All wounds healed without reinfections. An increased oxygen concentration during HBO2 therapy promoted spontaneous wound healing. Bacterial superinfection was not observed in numerous low-perfused lesions. Since repeated anesthesia and surgical interventions were not needed, a final invalidity was minimized. To the best of our knowledge, this is the first report on the successful conservative surgical treatment of this mutilating disease without aggressive reconstructive surgery in an infant with the help of HBO2.

  9. Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors.

    Science.gov (United States)

    Lambrechts, T; Papantoniou, I; Sonnaert, M; Schrooten, J; Aerts, J-M

    2014-10-01

    Online and non-invasive quantification of critical tissue engineering (TE) construct quality attributes in TE bioreactors is indispensable for the cost-effective up-scaling and automation of cellular construct manufacturing. However, appropriate monitoring techniques for cellular constructs in bioreactors are still lacking. This study presents a generic and robust approach to determine cell number and metabolic activity of cell-based TE constructs in perfusion bioreactors based on single oxygen sensor data in dynamic perfusion conditions. A data-based mechanistic modeling technique was used that is able to correlate the number of cells within the scaffold (R(2)  = 0.80) and the metabolic activity of the cells (R(2)  = 0.82) to the dynamics of the oxygen response to step changes in the perfusion rate. This generic non-destructive measurement technique is effective for a large range of cells, from as low as 1.0 × 10(5) cells to potentially multiple millions of cells, and can open-up new possibilities for effective bioprocess monitoring.

  10. Cerebral oxygen delivery and consumption during evoked neural activity

    Directory of Open Access Journals (Sweden)

    Alberto L Vazquez

    2010-06-01

    Full Text Available Increases in neural activity evoke increases in the delivery and consumption of oxygen. Beyond observations of cerebral tissue and blood oxygen, the role and properties of cerebral oxygen delivery and consumption during changes in brain function are not well understood. This work overviews the current knowledge of functional oxygen delivery and consumption and introduces recent and preliminary findings to explore the mechanisms by which oxygen is delivered to tissue as well as the temporal dynamics of oxygen metabolism. Vascular oxygen tension measurements have shown that a relatively large amount of oxygen exits pial arterioles prior to capillaries. Additionally, increases in cerebral blood flow (CBF induced by evoked neural activation are accompanied by arterial vasodilation and also by increases in arteriolar oxygenation. This increase contributes not only to the down-stream delivery of oxygen to tissue, but also to delivery of additional oxygen to extra-vascular spaces surrounding the arterioles. On the other hand, the changes in tissue oxygen tension due to functional increases in oxygen consumption have been investigated using a method to suppress the evoked CBF response. The functional decreases in tissue oxygen tension induced by increases in oxygen consumption are slow to evoked changes in CBF under control conditions. Preliminary findings obtained using flavoprotein autofluorescence imaging suggest cellular oxidative metabolism changes at a faster rate than the average changes in tissue oxygen. These issues are important in the determination of the dynamic changes in tissue oxygen metabolism from hemoglobin-based imaging techniques such as blood oxygenation-level dependent functional magnetic resonance imaging (fMRI.

  11. Variations of brain edema and neurological function of rat models of cerebral infarction after hyperbaric oxygen therapy%高压氧干预脑梗死模型大鼠脑水肿及神经功能变化

    Institute of Scientific and Technical Information of China (English)

    田烜

    2015-01-01

    背景:研究认为,高压氧有较好保护脑神经和脑细胞的作用,应用高压氧可使氧分压快速弥撒到相对缺氧的脑组织中,增加脑组织的血氧含量,促进脑水肿及脑神经功能的恢复。目的:观察大脑中动脉阻塞造模后高压氧干预对大鼠脑梗死组织水肿的影响,并探讨其对脑梗死大鼠神经功能保护的可能作用机制。方法:成年雌性SD大鼠65只,造模成功60只,随机区组法分为假手术组、脑梗死组、高压氧组,每组20只,按照线栓线法建立大鼠大脑中动脉阻塞脑梗死模型。造模后3 d,通过TUNEL法检测各实验组大鼠脑梗死区神经细胞的凋亡情况。伤后72 h通过RT-PCR、Western blot检测脑梗死区周围AQP4/9、基质金属蛋白酶9/2基因转录和蛋白的表达,通过苏木精-伊红染色观察脑梗死区病理组织形态学变化,通过免疫组织化学法检测胶质纤维酸性蛋白的表达量,高压氧干预后24 h,3 d及伤后1、2周行Longa行为学评分,检测神经功能的损伤情况。结果与结论:①高压氧组Longa行为学评分在治疗后1,2 d均较脑梗死组显著降低(P <0.05)。②造模后3 d高压氧组细胞凋亡指数均明显低于脑梗死组(P<0.05)。③造模后72 h,与脑梗死组相比高压氧组AQP4/9、基质金属蛋白酶9/2基因和蛋白表达均较显著降低(P<0.05)。结果提示高压氧治疗通过减少大鼠脑梗死区神经细胞的凋亡和降低脑组织水肿,对脑梗死起到保护作用。%BACKGROUND:Several studies have suggested that hyperbaric oxygen could better protect cranial nerve and brain cels. Hyperbaric oxygen therapy can make oxygen partial pressure rapidly diffusing toward relatively hypoxic brain tissue, so as to increase blood oxygen content in the brain tissue, reduce brain edema and promote the recovery of brain function. OBJECTIVE: To observe the effects of hyperbaric oxygen therapy on brain tissue

  12. Postmortem concentrations of gamma-hydroxybutyrate (GHB) in peripheral blood and brain tissue - Differentiating between postmortem formation and antemortem intake.

    Science.gov (United States)

    Thomsen, Ragnar; Rasmussen, Brian Schou; Johansen, Sys Stybe; Linnet, Kristian

    2017-03-01

    Gamma-hydroxybutyrate (GHB) is a recreational drug, a drug of abuse, as well as an endogenous molecule in mammals. The drug has become infamous as a tool for drug-facilitated sexual assault. GHB is found in low concentrations in living humans, while at postmortem the concentration of GHB rises due to fermentation processes. The endogenous nature of GHB leads to difficulty in interpretation of concentrations, as the source of GHB is not obvious. Postmortem brain and blood samples were collected from 221 individuals at autopsy. Of these, 218 were not suspected of having ingested GHB, while GHB intake was reported for the last three (cases A-C). Decomposition level was estimated and cases classified into no/minor and advanced decomposition. Brain samples were extracted from the frontal lobe; only gray matter from the cerebral cortex was used. Blood was drawn from the femoral vein. Brain samples were homogenized and diluted with water. Brain homogenates or femoral blood were then prepared using protein precipitation and GHB was quantified with UHPLC-MS/MS. For 189 cases where ingestion of GHB was not suspected and where no/minor decomposition had occurred the concentrations were in the range 4.8-45.4mg/kg (median 15.3mg/kg) in blood and not-detected to 9.8mg/kg (median 4.8mg/kg) in brain tissue. For case A, where intoxication with GHB was deemed to be the sole cause of death, the concentrations were 199 and 166mg/kg in blood and brain, respectively. For case B, where intoxication with GHB was a contributing factor of death, the respective concentrations were 142 and 78.4mg/kg. For case C, where GHB was ingested but the cause of death was opioid poisoning, the concentrations were 40.3 and 12.7mg/kg. The results demonstrate that postmortem-formed levels of GHB are much lower in brain than peripheral blood. Analysis of GHB in brain tissue thus provides for an improved capability to identify an exogenous source of GHB. By measuring GHB in brain tissue and employing a cut

  13. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    Science.gov (United States)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  14. β-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygen-glucose deprivation in organotypic hippocampal slices

    Directory of Open Access Journals (Sweden)

    Cilio Corrado

    2010-12-01

    Full Text Available Abstract Background Inflammation acting in synergy with brain ischemia aggravates perinatal ischemic brain damage. The sensitizing effect of pro-inflammatory exposure prior to hypoxia is dependent on signaling by TNF-α through TNF receptor (TNFR 1. Adrenoceptor (AR activation is known to modulate the immune response and synaptic transmission. The possible protective effect of α˜ and β˜AR activation against neuronal damage caused by tissue ischemia and inflammation, acting in concert, was evaluated in murine hippocampal organotypic slices treated with lipopolysaccharide (LPS and subsequently subjected to oxygen-glucose deprivation (OGD. Method Hippocampal slices from mice were obtained at P6, and were grown in vitro for 9 days on nitrocellulose membranes. Slices were treated with β1(dobutamine-, β2(terbutaline-, α1(phenylephrine- and α2(clonidine-AR agonists (5 and 50 μM, respectively during LPS (1 μg/mL, 24 h -exposure followed by exposure to OGD (15 min in a hypoxic chamber. Cell death in the slice CA1 region was assessed by propidium iodide staining of dead cells. Results Exposure to LPS + OGD caused extensive cell death from 4 up to 48 h after reoxygenation. Co-incubation with β1-agonist (50 μM during LPS exposure before OGD conferred complete protection from cell death (P -/- and TNFR2-/- slices exposed to LPS followed by OGD. Conclusions Our data demonstrate that activation of both β1- and β2-receptors is neuroprotective and may offer mechanistic insights valuable for development of neuro-protective strategies in neonates.

  15. S100b Counteracts Neurodegeneration of Rat Cholinergic Neurons in Brain Slices after Oxygen-Glucose Deprivation

    Directory of Open Access Journals (Sweden)

    Daniela Serbinek

    2010-01-01

    Full Text Available Alzheimer's disease is a severe chronic neurodegenerative disorder characterized by beta-amyloid plaques, tau pathology, cerebrovascular damage, inflammation, reactive gliosis, and cell death of cholinergic neurons. The aim of the present study is to test whether the glia-derived molecule S100b can counteract neurodegeneration of cholinergic neurons after oxygen-glucose deprivation (OGD in organotypic brain slices of basal nucleus of Meynert. Our data showed that 3 days of OGD induced a marked decrease of cholinergic neurons (60% of control, which could be counteracted by 50 μg/mL recombinant S100b. The effect was dose and time dependent. Application of nerve growth factor or fibroblast growth factor-2 was less protective. C-fos-like immunoreactivity was enhanced 3 hours after OGD indicating metabolic stress. We conclude that S100b is a potent neuroprotective factor for cholinergic neurons during ischemic events.

  16. Modulation of lipid peroxidation, hypolipidemic and antioxidant activities in brain tissues of diabetic rats by fibre - Enriched biscuits

    Institute of Scientific and Technical Information of China (English)

    Ochuko L Erukainure; Folasade O Adeboyejo; Gloria N Elemo; Osaretin AT Ebuehi

    2012-01-01

    Objective: To investigate the effect of feeding fibre - enriched biscuit on the antioxidant and hypolipidemic activities in brain tissues of diabetic rats. Method: Diabetes was induced by a single intraperitoneal injection of alloxan. Treatment lasted for 14 d, after which the rats were sacrificed by cervical dislocation. Brain tissues were used for the assessment of GSH, catalase, SOD and lipid peroxidation as well as lipid profiles. Result: Induction of diabetes led to a significant decrease in GSH level, elevated SOD and catalase activities. These were significantly modified by the biscuits. There was an elevated level of malondialdehyde in the brain tissues of the untreated diabetic rats; this was significantly reduced by the biscuits. There was a significant decrease in HDL and a significant increase in LDL levels, total cholesterol and triglycerides in the untreated (diabetic) rats. Feeding with fibre - enriched biscuits led to decrease in the levels of total cholesterol, triglyceride, LDL - cholesterol and caused a significant increase in the levels of HDL. Conclusions: These results suggest a therapeutic and protective effect of the fibre -enriched biscuits against diabetic - induced brain toxicity in rats.

  17. Trends in brain oxygenation during mental and physical exercise measured using near-infrared spectroscopy (NIRS): potential for early detection of Alzheimer's disease

    Science.gov (United States)

    Allen, Monica S.; Allen, Jeffery W.; Mikkilineni, Shweta; Liu, Hanli

    2005-04-01

    Motivation: Early diagnosis of Alzheimer's disease (AD) is crucial because symptoms respond best to available treatments in the initial stages of the disease. Recent studies have shown that marked changes in brain oxygenation during mental and physical tasks can be used for noninvasive functional brain imaging to detect Alzheimer"s disease. The goal of our study is to explore the possibility of using near infrared spectroscopy (NIRS) and mapping (NIRM) as a diagnostic tool for AD before the onset of significant morphological changes in the brain. Methods: A 16-channel NIRS brain imager was used to noninvasively measure spatial and temporal changes in cerebral hemodynamics induced during verbal fluency task and physical activity. The experiments involved healthy subjects (n = 10) in the age range of 25+/-5 years. The NIRS signals were taken from the subjects' prefrontal cortex during the activities. Results and Conclusion: Trends of oxygenated and deoxygenated hemoglobin in the prefrontal cortex of the brain were observed. During the mental stimulation, the subjects showed significant increase in oxygenated hemoglobin [HbO2] with a simultaneous decrease in deoxygenated hemoglobin [Hb]. However, physical exercise caused a rise in levels of HbO2 with small variations in Hb. This study basically demonstrates that NIRM taken from the prefrontal cortex of the human brain is sensitive to both mental and physical tasks and holds potential to serve as a diagnostic means for early detection of Alzheimer's disease.

  18. Zinc-triggered induction of tissue plasminogen activator by brain-derived neurotrophic factor and metalloproteinases.

    Science.gov (United States)

    Hwang, Ih-Yeon; Sun, Eun-Sun; An, Ji Hak; Im, Hana; Lee, Sun-Ho; Lee, Joo-Yong; Han, Pyung-Lim; Koh, Jae-Young; Kim, Yang-Hee

    2011-09-01

    Tissue plasminogen activator (tPA) is necessary for hippocampal long-term potentiation. Synaptically released zinc also contributes to long-term potentiation, especially in the hippocampal CA3 region. Using cortical cultures, we examined whether zinc increased the concentration and/or activity of tPA. Two hours after a 10-min exposure to 300 μM zinc, expression of tPA and its substrate, plasminogen, were significantly increased, as was the proteolytic activity of tPA. In contrast, increasing extracellular or intracellular calcium levels did not affect the expression or secretion of tPA. Changing zinc influx or chelating intracellular zinc also failed to alter tPA/plasminogen induction by zinc, indicating that zinc acts extracellularly. Zinc-mediated extracellular activation of matrix metalloproteinase (MMP) underlies the up-regulation of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase (Trk) signaling. Consistent with these findings, co-treatment with a neutralizing antibody against BDNF or specific inhibitors of MMPs or Trk largely reversed tPA/plasminogen induction by zinc. Treatment of cortical cultures with p-aminophenylmercuric acetate, an MMP activator, MMP-2, or BDNF alone induced tPA/plasminogen expression. BDNF mRNA and protein expression was also increased by zinc and mediated by MMPs. Thus, an extracellular zinc-dependent, MMP- and BDNF-mediated synaptic mechanism may regulate the levels and activity of tPA.

  19. Focussed ion beam milling and scanning electron microscopy of brain tissue.

    Science.gov (United States)

    Knott, Graham; Rosset, Stéphanie; Cantoni, Marco

    2011-07-06

    This protocol describes how biological samples, like brain tissue, can be imaged in three dimensions using the focussed ion beam/scanning electron microscope (FIB/SEM). The samples are fixed with aldehydes, heavy metal stained using osmium tetroxide and uranyl acetate. They are then dehydrated with alcohol and infiltrated with resin, which is then hardened. Using a light microscope and ultramicrotome with glass knives, a small block containing the region interest close to the surface is made. The block is then placed inside the FIB/SEM, and the ion beam used to roughly mill a vertical face along one side of the block, close to this region. Using backscattered electrons to image the underlying structures, a smaller face is then milled with a finer ion beam and the surface scrutinised more closely to determine the exact area of the face to be imaged and milled. The parameters of the microscope are then set so that the face is repeatedly milled and imaged so that serial images are collected through a volume of the block. The image stack will typically contain isotropic voxels with dimenions as small a 4 nm in each direction. This image quality in any imaging plane enables the user to analyse cell ultrastructure at any viewing angle within the image stack.

  20. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  1. A Hybrid DE-RGSO-ELM for Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    K. Kothavari

    2014-01-01

    Full Text Available Medical diagnostics, a technique used for visualizing the internal structures and functions of human body, serves as a scientific tool to assist physicians and involves direct use of digital imaging system analysis. In this scenario, identification of brain tumors is complex in the diagnostic process. Magnetic resonance imaging (MRI technique is noted to best assist tissue contrast for anatomical details and also carries out mechanisms for investigating the brain by functional imaging in tumor predictions. Considering 3D MRI model, analyzing the anatomy features and tissue characteristics of brain tumor is complex in nature. Henceforth, in this work, feature extraction is carried out by computing 3D gray-level cooccurence matrix (3D GLCM and run-length matrix (RLM and feature subselection for dimensionality reduction is performed with basic differential evolution (DE algorithm. Classification is performed using proposed extreme learning machine (ELM, with refined group search optimizer (RGSO technique, to select the best parameters for better simplification and training of the classifier for brain tissue and tumor characterization as white matter (WM, gray matter (GM, cerebrospinal fluid (CSF, and tumor. Extreme learning machine outperforms the standard binary linear SVM and BPN for medical image classifier and proves better in classifying healthy and tumor tissues. The comparison between the algorithms proves that the mean and standard deviation produced by volumetric feature extraction analysis are higher than the other approaches. The proposed work is designed for pathological brain tumor classification and for 3D MRI tumor image segmentation. The proposed approaches are applied for real time datasets and benchmark datasets taken from dataset repositories.

  2. The quantitative analysis of S100 in the brain tissue and serum following diffuse brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Wang Qi; Huang Ping; Xing Bo; Tuo Ya; Zhang Yongpan; Tian Weiping; Wang Zhenyuan

    2007-01-01

    Objective To investigate the dynamics of the level of S100 in cerebrum, brainstem, and serum following the diffuse brain injury in rats and provide the experimental evidences for estimating injury time. Methods ELISA was used to determine whether S100 protein is changed after diffuse brain injury in rats. Forty rats were sacrificed at 0.5 hour, 2 hours, 4 hours, 12 hours, 24 hours, 3 d and 7 d after diffuse brain injury and normal rats as control. Results The level of S100 in cerebrum, brainstem, and serum increased, followed by a decrease, and then further increased. The level of S100 could be detected to increase at 30 minutes and reached the peak at 4 hours after DBI. The level decreased gradually to the normal at 1d and till 3 d formed the second peak. The level returned to the normal at 7d following injury again. In the postmortem injury groups, there were no significant changes compared to the control group. Conclusion The present study showed that the time-dependent expression of S100 is obvious following diffuse brain injury in rats and suggested that S100 will be a suitable marker for diffuse brain injury age determination.

  3. Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans

    DEFF Research Database (Denmark)

    Rasmussen, P; Nielsen, J; Overgaard, M

    2010-01-01

    of perceived exertion (RPE), arm maximal voluntary force (MVC), and voluntary activation of elbow flexor muscles assessed with transcranial magnetic stimulation. Low intensity exercise did not produce any indication of central fatigue or marked cerebral metabolic deviations. Exercise in hypoxia (0.10) reduced...... cerebral oxygen delivery 25% and decreased 11+/-4 mmHg (PMVC and voluntary activation were reduced (PMVC...... and voluntary activation were reduced (PMVCs were similar to resting values. Exhaustive exercise provoked cerebral deoxygenation, metabolic changes and indices of fatigue similar to those observed during exercise in hypoxia...

  4. Use of diffusion tensor imaging to assess the impact of normobaric hyperoxia within at-risk pericontusional tissue after traumatic brain injury.

    Science.gov (United States)

    Veenith, Tonny V; Carter, Eleanor L; Grossac, Julia; Newcombe, Virginia F; Outtrim, Joanne G; Nallapareddy, Sridhar; Lupson, Victoria; Correia, Marta M; Mada, Marius M; Williams, Guy B; Menon, David K; Coles, Jonathan P

    2014-10-01

    Ischemia and metabolic dysfunction remain important causes of neuronal loss after head injury, and we have shown that normobaric hyperoxia may rescue such metabolic compromise. This study examines the impact of hyperoxia within injured brain using diffusion tensor imaging (DTI). Fourteen patients underwent DTI at baseline and after 1 hour of 80% oxygen. Using the apparent diffusion coefficient (ADC) we assessed the impact of hyperoxia within contusions and a 1 cm border zone of normal appearing pericontusion, and within a rim of perilesional reduced ADC consistent with cytotoxic edema and metabolic compromise. Seven healthy volunteers underwent imaging at 21%, 60%, and 100% oxygen. In volunteers there was no ADC change with hyperoxia, and contusion and pericontusion ADC values were higher than volunteers (P<0.01). There was no ADC change after hyperoxia within contusion, but an increase within pericontusion (P<0.05). We identified a rim of perilesional cytotoxic edema in 13 patients, and hyperoxia resulted in an ADC increase towards normal (P=0.02). We demonstrate that hyperoxia may result in benefit within the perilesional rim of cytotoxic edema. Future studies should address whether a longer period of hyperoxia has a favorable impact on the evolution of tissue injury.

  5. A flexible infrared sensor for tissue oximetry

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl; Thyssen, Anders; Engholm, Mathias

    2013-01-01

    We present a flexible infrared sensor for use in tissue oximetry with the aim of treating prematurely born infants. The sensor will detect the oxygen saturation in brain tissue through near infrared spectroscopy. The sensor itself consists of several individual silicon photo detectors fully...

  6. The organ preservation and enhancement of donation success ratio effect of extracorporeal membrane oxygenation in circulatory unstable brain death donor.

    Science.gov (United States)

    Fan, Xiaoli; Chen, Zhiquan; Nasralla, David; Zeng, Xianpeng; Yang, Jing; Ye, Shaojun; Zhang, Yi; Peng, Guizhu; Wang, Yanfeng; Ye, Qifa

    2016-10-01

    Between 2010 and 2013, we recorded 66 cases of failed organ donation after brain death (DBD) due to the excessive use of the vasoactive drugs resulting in impaired hepatic and/or renal function. To investigate the effect of extracorporeal membrane oxygenation (ECMO) in donor management, ECMO was used to provide support for DBD donors with circulatory and/or respiratory failure from 2013 to 2015. A retrospective cohort study between circulatory non-stable DBD with vasoactive drugs (DBD-drug) and circulatory non-stable DBD with ECMO (DBD-ECMO) was designed to compare the transplant outcomes. A total of 19 brain death donors were supported by ECMO. The incidence rate of post-transplant liver primary non-function (PNF) was 10% (two of 20) in DBD-drug group and zero in DBD-ECMO group. Kidney function indicators, including creatinine clearance and urine production, were significantly better in DBD-ECMO group, as well as the kidney delayed graft function (DGF) rate was found to be decreased by the use of ECMO in our study. Donation success rate increased steadily from 47.8% in 2011 to 84.6% in 2014 after the ECMO intervention. The use of ECMO in assisting circulatory and respiratory function of DBD can reduce liver and kidney injury from vasoactive drugs, thereby improving organ quality and reducing the organ discard rates.

  7. 早期应用高压氧对脑梗死患者日常生活活动能力的影响%The effect of early hyperbaric oxygenation on ability of daily life of patients with stroke

    Institute of Scientific and Technical Information of China (English)

    杨晓娟; 李凯; 何韬

    2003-01-01

    BACKGROUND:Brain tissue is often thought as the most vigorous organ and is very sensitive to hypoxia.Hyperbaric oxygenation means improving blood oxygen content for decreasing the brain harm caused by stroke.Anaerobic metabolism of brain tissue decreases and aerobic metabolism increases,which cause more power and accelerate clearing of acidic product of metabolism,so provide fine material base for regeneration of neural tissue and recovery of neural function.

  8. Quantitative analysis of sodium fast and slow component in in vivo human brain tissue using MR Na image

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Hirokazu; Yamasaki, Katsuhito; Kidena, Hitoshi; Kono, Michio (Kobe Univ. (Japan). School of Medicine)

    1992-12-01

    In vivo sodium concentrations in the normal brain tissue and a tumorous tissue were analyzed using MR Na image. The nuclear magnetic resonance enabled us to divide the signal from sodium in the living tissue into 2 parts based on the differences of T[sub 2] value. Those are fast component having the T[sub 2] value of less than 5 msec and slow component of 15-40 msec. We investigated the effect of macromolecules on T[sub 2] value of sodium image using polyvinylalcohol (PVA) powder. MR Na image was taken with the parameters of TR/TD, 110 ms/1.9 ms (FID image) and TR/TE, 110 ms/20 ms (SE image). Saline solution showed high intensity on both FID image and SE image. Saline solution added PVA (PVA phantom) also showed high intensity on FID image, whereas the signal intensity of PVA phantom in SE image extinguished. To know the relation between the signal intensity and sodium concentration, sodium concentration-signal intensity curve was obtained using phantoms with various sodium concentrations (0.05-1.0%). This curve showed a direct proportion between sodium concentration and signal intensity on Na image. We measured further the sodium concentrations of the human brain tissue. Sodium phantoms were arranged around the heads and the MR Na images of the normal brains from 3 volunteers and a patient with a brain tumor (meningioma) were taken. The sodium concentrations of occipital lobe, basal ganglia and the tumorous tissue were calculated using the sodium concentration-signal intensity curve obtained from the phantoms arranged around the heads. Two tailed t-test shows significant differences (p<0.01) in total sodium and slow component between occipital lobe and basal ganglia. Further more high concentration of fast component in tumorous tissue was observed. As fast component reflects the intracellular condition, present experiments suggest that measurement of fast component may be useful for obtaining the functional information of the brain tissue. (author).

  9. Protective Effects of Inducible HO-1 on Oxygen Toxicity in Rat Brain Endothelial Microvessel Cells

    Directory of Open Access Journals (Sweden)

    Seung-Jun Yoo

    2014-09-01

    Full Text Available BackgroundReperfusion in ischemia is believed to generate cytotoxic oxidative stress, which mediates reperfusion injury. These stress conditions can initiate lipid peroxidation and damage to proteins, as well as promote DNA strand breaks. As biliverdin and bilirubin produced by heme oxygenase isoform 1 (HO-1 have antioxidant properties, the production of both antioxidants by HO-1 may help increase the resistance of the ischemic brain to oxidative stress. In the present study, the survival effect of HO-1 was confirmed using hemin.MethodsTo confirm the roles of HO-1, carbon monoxide, and cyclic guanosine monophosphate further in the antioxidant effect of HO-1 and bilirubin, cells were treated with cycloheximide, desferoxamine, and zinc deuteroporphyrin IX 2,4 bis glycol, respectively.ResultsHO-1 itself acted as an antioxidant. Furthermore, iron, rather than carbon monoxide, was involved in the HO-1-mediated survival effect. HO-1 activity was also important in providing bilirubin as an antioxidant.ConclusionOur results suggested that HO-1 helped to increase the resistance of the ischemic brain to oxidative stress.

  10. Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy.

    Science.gov (United States)

    Krasieva, Tatiana B; Ehren, Jennifer; O'Sullivan, Thomas; Tromberg, Bruce J; Maher, Pamela

    2015-10-01

    Over the last few years, we have identified an orally active, novel neuroprotective and cognition-enhancing molecule, the flavonoid fisetin. Fisetin not only has direct antioxidant activity but it can also increase the intracellular levels of glutathione, the major intracellular antioxidant. Fisetin can also activate key neurotrophic factor signaling pathways. In addition, it has anti-inflammatory activity against microglia and astrocytes and inhibits the activity of lipoxygenases, thereby reducing the production of pro-inflammatory eicosanoids and their by-products. However, key questions about its targets and brain penetration remain. In this study, we used label-free two-photon microscopy of intrinsic fisetin fluorescence to examine the localization of fisetin in living nerve cells and the brains of living mice. In cells, fisetin but not structurally related flavonols with different numbers of hydroxyl groups, localized to the nucleoli suggesting that key targets of fisetin may reside in this organelle. In the mouse brain, following intraperitoneal injection and oral administration, fisetin rapidly distributed to the blood vessels of the brain followed by a slower dispersion into the brain parenchyma. Thus, these results provide further support for the effects of fisetin on brain function. In addition, they suggest that label-free two-photon microscopy may prove useful for studying the intracellular and tissue distribution of other intrinsically-fluorescent flavonoids.

  11. Covalent binding of formalin fixed paraffin embedded brain tissue sections to glass slides suitable for in situ hybridization.

    Science.gov (United States)

    Tourtellotte, W W; Verity, A N; Schmid, P; Martinez, S; Shapshak, P

    1987-02-01

    A novel method for covalently binding formalin fixed paraffin embedded (FFPE) tissue sections to glass microscope slides is validated suitable for in situ hybridization (ISH). Using the organosilane methodology of Maples (1985), 100% tissue adhesion is reported with no nonspecific probe binding, staining, or autoradiographic artefacts. JC viral nucleic acid sequences are successfully detected in FFPE progressive multifocal leukoencephalopathy brain tissue and the Tm of the hybridized product is estimated. From the Tm the most stringent washing condition resulting in an optimal signal to noise ratio is determined. A comparison is made between currently used methods of tissue adhesion and the proposed organosilane methodology. This methodology greatly facilitates studies of conditions for ISH and elucidation of mechanisms of viral infections requiring consecutive FFPE sections. It is also applicable to studies using cryosections and cultured cells.

  12. How to Get Hyperbaric Oxygen Therapy for Children with Cerebral Palsy or Brain Injury: Navigating Insurance Denials, Red Tape, and Other Challenges

    Science.gov (United States)

    Console, Richard P., Jr.

    2010-01-01

    Medical professionals who use hyperbaric oxygen therapy (HBOT) say that recent studies, as well as anecdotal evidence, indicate that this treatment significantly improves the lives of many children with cerebral palsy and other types of chronic brain injury. So why do many children with these diagnoses not have access to this treatment? Simply…

  13. Elevated Cytoplasmic Free Zinc and Increased Reactive Oxygen Species Generation in the Context of Brain Injury.

    Science.gov (United States)

    Stork, Christian J; Li, Yang V

    2016-01-01

    Intracellular zinc release and the generation of reactive oxygen species (ROS) have been reported to be common ingredients in numerous toxic signaling mechanisms in neurons. A key source for intracellular zinc release is its liberation from metallothionein-III (MT-III). MT-III binds and regulates intracellular zinc levels under physiological conditions, but the zinc-binding thiols readily react with certain ROS and reactive nitrogen species (RNS) to result in intracellular zinc liberation. Liberated zinc induces ROS and RNS generation by multiple mechanisms, including the induction of mitochondrial ROS production, and also promotes ROS formation outside the mitochondria by interaction with the enzymes NADPH oxidase and 12-lipoxygenase. Of particular relevance to neuronal injury in the context of ischemia and prolonged seizures, the positive feedback cycle between ROS/RNS generation and increasing zinc liberation will be examined.

  14. Probing Brain Oxygenation with Near Infrared spectroscopy, the Role of Carbon Dioxide and Blood Pressure

    CERN Document Server

    Gersten, Alexander

    2015-01-01

    The fundamentals of near infrared spectroscopy (NIRS) are reviewed. Among the major factors controlling the cerebral blood flow (CBF), the effect of PaCO2 is peculiar in that it violates autoregulatory CBF mechanisms and allows to explore the full range of the CBF. A simple physical model, with a four parameter formula, relating the CBF to PaCO2 is presented. It can be used to transform the fits of one animal to the fits of another one. It enable the use of rats data as monkeys data simply by rescaling the PaCO2 values and the CBF data. Controlled breathing can change the PaCO2. Experiments on human subjects relating the PaCO2 to rSO2, measured with brain oximeters, are presented. A simple model relating the mean blood pressure to CBF is worked out.

  15. 组织细胞氧合障碍的机制及其对策%Mechanism and strategy of oxygenation dysfunction in tissue and cell levels

    Institute of Scientific and Technical Information of China (English)

    赵良

    2013-01-01

    According to theory of oxygen transport, mechanism of oxygenation dysfunction in tissue and cell levels can be divided into five types: low oxygen supply, high oxygen consumption, decreased oxygen extraction, oxygen utilization dysfunction and mixed pattern. Up to now, clinically corresponding strategy have been taken. Oxygen supply in global levels can be increased by blood transfusion, use of positive inotropic drugs, elevation of inspired oxygen fraction. Oxygen supply in tissue levels can be elevated by regulation of blood vessel tension, improvement of blood hemorheology. Oxygen consumption can be decreased by anesthesia, sedation, muscle relaxation, hypothermia and mechanical ventilation. Improvement of capillary permeability can increase oxygen uptake by enlargement in diffusion area of oxygen. On basis of osmotic pressure elevation, the edema eliminated by diuresis or dehydration can facilitate oxygen extraction through shortening diffusion distance of oxygen.%依据氧输送原理可以将组织细胞氧合障碍的机制划分为五种类型:①低氧供;②高氧耗;③氧摄取能力减退;④氧利用障碍;⑤混合型.迄今为止,临床上能够采取的相应对策有输血、应用正性肌力药物、提高吸氧浓度以增加系统水平氧供给,调节血管张力、改善血液流变学来增加组织水平氧供给.麻醉、镇静、肌肉松弛、降温和机械通气等措施降低氧耗;改善毛细血管通透性,通过扩大氧弥散面积,增加组织水平氧摄取;在提高胶体渗透压基础上利尿、脱水消除水肿,通过缩短氧弥散距离,易化组织水平氧摄取.

  16. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  17. Expression of EF-Tumt and EF-Tsmt in brain tissues of patients with mesial temporal lobe epilepsy

    Institute of Scientific and Technical Information of China (English)

    Jun Lu; Qi-Chang Zeng; Qin Wang; Ya-Hui Huang; Qiong Peng

    2016-01-01

    Objective:To explore the expression of EF-Tumt and EF-Tsmt in brain tissue of patients with mesial temporal lobe epilepsy (MTLE). Methods:From January 2013 to January 2015, a total of 62 patients with MTLE who were treated with anterior temporal lobe resection in the Department of neurosurgery in Hunan Brain Hospital were selected and classified as the case group, at the same time, 48 patients with brain trauma were chosen and considered to be the control group. The expression of EF-Tumt and EF-Tsmt was detected and compared between the two groups. Results:EF-Tumt positive particles and EF-Tsmt positive particles were noticed in the mitochondria and cytoplasm of brain tissues of the medial temporal lobe in the two groups by election microscopic observation, and the number of the two types of positive particles in the case group was significantly more than that in the control group (P<0.05);similarly, EF-Tumt positive cells and EF-Tsmt positive cells were also observed in the neurons and astrocytes of brain tissues of the medial temporal lobe in the two groups by election microscopic observation, and the number of the above-mentioned positive cells in the case group was also significantly larger than that in the control group (P<0.05). Conclusions:The expression intensities of EF-Tsmt and EF-Tumt in patients with MTLE are higher than these in patients without epilepsy. Therefore, EF-Tsmt and EF-Tumt play important roles in MTLE.

  18. Protein-energy malnutrition during pregnancy alters caffeine's effect on brain tissue of neonate rats.

    Science.gov (United States)

    Mori, M; Wilber, J F; Nakamoto, T

    1984-12-17

    We studied whether protein-energy malnutrition changed brain susceptibility to a small dose of caffeine in newborn rats. Since we had demonstrated previously that caffeine intake during lactation increased the brain neuropeptide on newborns, we investigated further the effects of the prenatal administration of caffeine on TRH and cyclo (His-Pro). From day 13 of gestation to delivery day, pregnant rats in one group were fed either a 20% or a 6% protein diet ad libitum, and those in the other group were pair-fed with each protein diet supplemented with caffeine at an effective dose of 2 mg/100 g body weight. Upon delivery, brain weight, brain protein, RNA, DNA and the neuropeptides thyrotropin-releasing hormone (TRH) and cyclo (His-Pro) were measured in the newborn rats. A 6% protein without caffeine diet caused reductions in brain weights and brain protein, RNA and DNA contents, but did not alter brain TRH and cyclo (His-Pro) concentrations in the newborn animals. In the offspring from dams fed a 6% protein diet, caffeine administration significantly elevated brain weights and brain contents of protein, RNA and DNA. In contrast, these values were similar between noncaffeine and caffeine-supplemented animals in a 20% protein diet group. Brain TRH and cyclo (His-Pro) concentrations were not changed by caffeine administration. These data suggest that caffeine augments protein synthesis in the newborn rat brain when malnourished, but that