WorldWideScience

Sample records for brain surface electric

  1. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  2. Electrically driven surface plasmon nanosources

    Science.gov (United States)

    Boer-Duchemin, Elizabeth; Wang, Tao; Le Moal, Eric; Dujardin, Gérald

    2015-03-01

    Electrical nanosources of surface plasmons will be an integral part of any future plasmonic circuits. Three different types of such nanosources (based on inelastic electron tunneling, high energy electron bombardment, and the electrical injection of a semiconductor device) are briefly described here. An example of a fundamental experiment using an electrical nanosource consisting of the tunnel junction formed between a scanning tunneling microscope (STM) and a metallic sample is given. In this experiment, the temporal coherence of the broadband STM-plasmon source is probed using a variant of Young's double slit experiment, and the coherence time of the broadband source is estimated to be about 5-10 fs.

  3. Deep Brain Electrical Stimulation in Epilepsy

    Science.gov (United States)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  4. Complex networks in brain electrical activity

    CERN Document Server

    Ruffini, G; Grau, C; Marco, J; Ray, C

    2005-01-01

    We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activation between voxel pairs is computed to produce a voxel cross-correlation coefficient matrix. Using several correlation thresholds, the cross-correlation matrix is then transformed into a network connectivity matrix and analyzed. To study a specific example, we selected data from an earlier experiment focusing on the MMN brain wave. The resulting analysis highlights significant differences between the spatial activations associated with Standard and Deviant tones, with interesting physiological implications. When compared to random data networks, physiological networks are more connected, with longer links and shorter path lengths. Furthermore, as compared to the Deviant case, Standard data networks are more connected, with longer links and shorter path lengths--i....

  5. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... high-quality head models from magnetic resonance images and their usage in subsequent field calculations based on the FEM. The pipeline starts by extracting the borders between skin, skull, cerebrospinal fluid, gray and white matter. The quality of the resulting surfaces is subsequently improved...... the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh...

  6. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    Science.gov (United States)

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  7. Corrosion Protection of Electrically Conductive Surfaces

    OpenAIRE

    Jian Song; Liangliang Wang; Andre Zibart; Christian Koch

    2012-01-01

    The basic function of the electrically conductive surface of electrical contacts is electrical conduction. The electrical conductivity of contact materials can be largely reduced by corrosion and in order to avoid corrosion, protective coatings must be used. Another phenomenon that leads to increasing contact resistance is fretting corrosion. Fretting corrosion is the degradation mechanism of surface material, which causes increasing contact resistance. Fretting corrosion occurs when there is...

  8. Corrosion Protection of Electrically Conductive Surfaces

    Directory of Open Access Journals (Sweden)

    Jian Song

    2012-11-01

    Full Text Available The basic function of the electrically conductive surface of electrical contacts is electrical conduction. The electrical conductivity of contact materials can be largely reduced by corrosion and in order to avoid corrosion, protective coatings must be used. Another phenomenon that leads to increasing contact resistance is fretting corrosion. Fretting corrosion is the degradation mechanism of surface material, which causes increasing contact resistance. Fretting corrosion occurs when there is a relative movement between electrical contacts with surfaces of ignoble metal. Avoiding fretting corrosion is therefore extremely challenging in electronic devices with pluggable electrical connections. Gold is one of the most commonly used noble plating materials for high performance electrical contacts because of its high corrosion resistance and its good and stable electrical behavior. The authors have investigated different ways to minimize the consumption of gold for electrical contacts and to improve the performance of gold plating. Other plating materials often used for corrosion protection of electrically conductive surfaces are tin, nickel, silver and palladium. This paper will deal with properties and new research results of different plating materials in addition to other means used for corrosion protection of electrically conductive surfaces and the testing of corrosion resistance of electrically conductive surfaces.

  9. Nanoparticle Near-Surface Electric Field

    OpenAIRE

    Chkhartishvili, Levan

    2016-01-01

    Theoretical studies show that surface reconstruction in some crystals involves splitting the surface atomic layer into two—upper and lower—sublayers consisting of atoms with only positive or only negative effective electric charges, respectively. In a macroscopic crystal with an almost infinite surface, the electric field induced by such a surface-dipole is practically totally concentrated between the sublayers. However, when the material is powdered and its particles are of sufficiently smal...

  10. Look at Epilepsy: Electrical Outbursts in the Brain

    Science.gov (United States)

    ... our exit disclaimer . Subscribe A Look at Epilepsy Electrical Outbursts in the Brain When you hear the ... epilepsy. Prevent head injuries by wearing seatbelts and bicycle helmets, and make sure kids are properly secured ...

  11. Brain Mapping using Topology Graphs Obtained by Surface Segmentation

    OpenAIRE

    Vivodtzev, Fabien; Linsen, Lars; Hamann, Bernd; Joy, Kenneth I.; Olshausen, Bruno A.

    2005-01-01

    Brain mapping is a technique used to alleviate the tedious and time-consuming process of annotating brains by mapping existing annotations from brain atlases to individual brains. We introduce an automated surface-based brain mapping approach. After reconstructing a volume data set (trivariate scalar field) from raw imaging data, an isosurface is extracted approximating the brain cortex. The cortical surface can be segmented into gyral and sulcal regions by exploiting geometrical properties. ...

  12. Electric Field Encephalography as a tool for functional brain research: a modeling study.

    Directory of Open Access Journals (Sweden)

    Yury Petrov

    Full Text Available We introduce the notion of Electric Field Encephalography (EFEG based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2-3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.

  13. 3D segmented model of head for modelling electrical activity of brain

    Directory of Open Access Journals (Sweden)

    Egill A. Friðgeirsson

    2012-03-01

    Full Text Available Computer simulation and modelling of the human body and its behaviour are very useful tools in situations where it is either too risky to perform an invasive procedure or too costly for in vivo experiments or simply impossible for ethical reasons. In this paper we describe a method to model the electrical behaviour of human brain from segmented MR images. The aim of the work is to use these models to predict the electrical activity of human brain under normal and pathological conditions. The image processing software package MIMICS is used for 3D volume segmentation of MR images. These models have detailed 3D representation of major tissue surfaces within the head, with over 12 different tissues segmented. In addition, computational tools in Matlab were developed for calculating normal vectors on the brain surface and for associating this information to the equivalent electrical dipole sources as an input into the model.

  14. Nanoparticle Near-Surface Electric Field.

    Science.gov (United States)

    Chkhartishvili, Levan

    2016-12-01

    Theoretical studies show that surface reconstruction in some crystals involves splitting the surface atomic layer into two-upper and lower-sublayers consisting of atoms with only positive or only negative effective electric charges, respectively. In a macroscopic crystal with an almost infinite surface, the electric field induced by such a surface-dipole is practically totally concentrated between the sublayers. However, when the material is powdered and its particles are of sufficiently small sizes, an electric field of a significant magnitude can be induced outside the sublayers as well. We have calculated the distribution of the electric field and its potential induced at the surface of a disc-shaped particle. The suggested novel nanoscale effect explains the increase in physical reactivity of nanopowders with decreasing particle sizes. PMID:26831686

  15. Broadband transverse electric surface wave in silicene

    Science.gov (United States)

    Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro

    2016-08-01

    Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.

  16. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    Science.gov (United States)

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  17. Economic substitutability of electrical brain stimulation, food, and water.

    OpenAIRE

    Green, L.; Rachlin, H

    1991-01-01

    Concurrent variable-ratio schedules of electrical brain stimulation, food, and water were paired in various combinations as reinforcement of rats' lever presses. Relative prices of the concurrent reinforcers were varied by changing the ratio of the response requirements on the two levers. Economic substitutability, measured by the sensitivity of response ratio to changes in relative price, was highest with brain stimulation reinforcement of presses on both levers and lowest with food reinforc...

  18. Measuring the local electrical conductivity of human brain tissue

    Science.gov (United States)

    Akhtari, M.; Emin, D.; Ellingson, B. M.; Woodworth, D.; Frew, A.; Mathern, G. W.

    2016-02-01

    The electrical conductivities of freshly excised brain tissues from 24 patients were measured. The diffusion-MRI of the hydrogen nuclei of water molecules from regions that were subsequently excised was also measured. Analysis of these measurements indicates that differences between samples' conductivities are primarily due to differences of their densities of solvated sodium cations. Concomitantly, the sample-to-sample variations of their diffusion constants are relatively small. This finding suggests that non-invasive in-vivo measurements of brain tissues' local sodium-cation density can be utilized to estimate its local electrical conductivity.

  19. Electrically Responsive Surfaces: Experimental and Theoretical Investigations

    Science.gov (United States)

    2016-01-01

    Conspectus Stimuli-responsive surfaces have sparked considerable interest in recent years, especially in view of their biomimetic nature and widespread biomedical applications. Significant efforts are continuously being directed at developing functional surfaces exhibiting specific property changes triggered by variations in electrical potential, temperature, pH and concentration, irradiation with light, or exposure to a magnetic field. In this respect, electrical stimulus offers several attractive features, including a high level of spatial and temporal controllability, rapid and reverse inducement, and noninvasiveness. In this Account, we discuss how surfaces can be designed and methodologies developed to produce electrically switchable systems, based on research by our groups. We aim to provide fundamental mechanistic and structural features of these dynamic systems, while highlighting their capabilities and potential applications. We begin by briefly describing the current state-of-the-art in integrating electroactive species on surfaces to control the immobilization of diverse biological entities. This premise leads us to portray our electrically switchable surfaces, capable of controlling nonspecific and specific biological interactions by exploiting molecular motions of surface-bound electroswitchable molecules. We demonstrate that our self-assembled monolayer-based electrically switchable surfaces can modulate the interactions of surfaces with proteins, mammalian and bacterial cells. We emphasize how these systems are ubiquitous in both switching biomolecular interactions in highly complex biological conditions while still offering antifouling properties. We also introduce how novel characterization techniques, such as surface sensitive vibrational sum-frequency generation (SFG) spectroscopy, can be used for probing the electrically switchable molecular surfaces in situ. SFG spectroscopy is a technique that not only allowed determining the structural

  20. Electrically Responsive Surfaces: Experimental and Theoretical Investigations.

    Science.gov (United States)

    Cantini, Eleonora; Wang, Xingyong; Koelsch, Patrick; Preece, Jon A; Ma, Jing; Mendes, Paula M

    2016-06-21

    Stimuli-responsive surfaces have sparked considerable interest in recent years, especially in view of their biomimetic nature and widespread biomedical applications. Significant efforts are continuously being directed at developing functional surfaces exhibiting specific property changes triggered by variations in electrical potential, temperature, pH and concentration, irradiation with light, or exposure to a magnetic field. In this respect, electrical stimulus offers several attractive features, including a high level of spatial and temporal controllability, rapid and reverse inducement, and noninvasiveness. In this Account, we discuss how surfaces can be designed and methodologies developed to produce electrically switchable systems, based on research by our groups. We aim to provide fundamental mechanistic and structural features of these dynamic systems, while highlighting their capabilities and potential applications. We begin by briefly describing the current state-of-the-art in integrating electroactive species on surfaces to control the immobilization of diverse biological entities. This premise leads us to portray our electrically switchable surfaces, capable of controlling nonspecific and specific biological interactions by exploiting molecular motions of surface-bound electroswitchable molecules. We demonstrate that our self-assembled monolayer-based electrically switchable surfaces can modulate the interactions of surfaces with proteins, mammalian and bacterial cells. We emphasize how these systems are ubiquitous in both switching biomolecular interactions in highly complex biological conditions while still offering antifouling properties. We also introduce how novel characterization techniques, such as surface sensitive vibrational sum-frequency generation (SFG) spectroscopy, can be used for probing the electrically switchable molecular surfaces in situ. SFG spectroscopy is a technique that not only allowed determining the structural orientation of

  1. Quantitative Brain Electrical Activity in the Initial Screening of Mild Traumatic Brain Injuries

    OpenAIRE

    O'Neil, Brian; Prichep, Leslie S.; Naunheim, Roseanne; Chabot, Robert

    2012-01-01

    Introduction: The incidence of emergency department (ED) visits for Traumatic Brain Injury (TBI) in the United States exceeds 1,000,000 cases/year with the vast majority classified as mild (mTBI). Using existing computed tomography (CT) decision rules for selecting patients to be referred for CT, such as the New Orleans Criteria (NOC), approximately 70% of those scanned are found to have a negative CT. This study investigates the use of quantified brain electrical activity to assess its possi...

  2. Surface superconductivity controlled by electric field

    International Nuclear Information System (INIS)

    We discuss an effect of the electrostatic field on superconductivity near the surface. First, we use the microscopic theory of de Gennes to show that the electric field changes the boundary condition for the Ginzburg-Landau function. Second, the effect of the electric field is evaluated in the vicinity of Hc3, where the boundary condition plays a crucial role.We predict that the field effect on the surface superconductivity leads to a discontinuity of the magnetocapacitance. We estimate that the predicted discontinuity is accessible for nowadays experimental tools and materials. It is shown that the magnitude of this discontinuity can be used to predict the dependence of the critical temperature on the charge carrier density which can be tailored by doping.

  3. Multidimensional Plasma Sheaths over Electrically Inhomogeneous Surfaces

    Science.gov (United States)

    Economou, Demetre

    2004-09-01

    Multidimensional plasma sheaths are encountered in a number of applications including plasma immersion ion implantation, extraction of ions (or plasma) through grids, MEMS fabrication, neutral beam sources, and plasma in contact with internal reactor parts (e.g., wafer chuck edge). The sheath may be multidimensional when: (a) plasma is in contact with surface topography, and the size of the topographical features is comparable to or larger than the plasma sheath thickness, or (b) the surface is flat but inhomogeneous, i.e., a conducting surface next to an insulating surface. In either case, the flux, energy and angular distributions of energetic species incident on the substrate are of primary importance. These quantities depend critically on the shape of the meniscus (plasma-sheath boundary) formed over the surface. A two-dimensional fluid/Monte Carlo simulation model was developed to study multidimensional sheaths. The radio frequency (RF) sheath potential evolution, and ion density and flux profiles over the surface were predicted with a self-consistent fluid simulation. The trajectories of ions and energetic neutrals (resulting by ion neutralization on surfaces or charge exchange collisions in the gas phase) were then followed with a Monte Carlo simulation. Ion flow and energy and angular distributions of ions bombarding a flat but electrically inhomogeneous surface will be reported in detail. Ion flow over trenches and holes will also be reported. Work supported by the NSF, Sandia National Laboratories and NIST.

  4. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    Science.gov (United States)

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. PMID:25487054

  5. Brain-Computer Interface Based on Motor Imagery: the Most Relevant Sources of Electrical Brain Activity

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Snášel, V.; Bobrov, P.; Mokienko, O.; Tintěra, J.; Rydlo, J.

    Cham: Springer, 2014 - (Snášel, V.; Krömer, P.; Köppen, M.; Schaefer, G.), s. 153-163. (Advances in Intelligent Systems and Computing. 223). ISBN 978-3-319-00929-2. ISSN 2194-5357. [Online World Conference on Soft Computing in Industrial Applications /17./. Anywhere on Earth, 10.12.2012-21.12.2012)] Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Institutional support: RVO:67985807 Keywords : Image and Signal Processing * Brain-Computer Interface * Independent Component Analysis * EEG Pattern Classification * fMRI * Motor Image ry * Pattern Recognition Subject RIV: IN - Informatics, Computer Science http://dap.vsb.cz/wsc17conf/brain-computer-interface-based-on-motor- image ry---the-most-relevant-sources-of-electrical-brain-activity

  6. Relationships between parameters of gallbladder motility and brain electrical activity

    OpenAIRE

    Marfiyan, Olena M; Zukow, Walery; Popovych, Milentyna V; Ganyk, Lyubov M; Kit, Yevgen I; Ivanyts’ka, Oksana M; Kyjenko, Valeriy M

    2016-01-01

    Marfiyan Olena M, Zukow Walery, Popovych Milentyna V, Ganyk Lyubov M, Kit Yevgen I, Ivanyts’ka Oksana M, Kyjenko Valeriy M. Relationships between parameters of gallbladder motility and brain electrical activity. Journal of Education, Health and Sport. 2016;6(8):11-20. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.59271 http://ojs.ukw.edu.pl/index.php/johs/article/view/3728 https://pbn.nauka.gov.pl/sedno-webapp/works/740334     The journal has had 7 ...

  7. Cortical surface-based statistical analysis of brain PET images

    International Nuclear Information System (INIS)

    Precise and focal analysis of brain PET using voxel-based statistical mapping is limited due to the innate low spatial resolution of PET images which causes partial volume effect as well as due to the low precision of the image registration. In this study, we propose a cortical surface-based method for the precise analysis of brain PET images in combination with MRI. 18F-FDG brain PET images were acquired using GE ADVANCE PET scanner in 3D mode. 3D T1-weighted axial MR images were acquired from Philips Intera 1.5T scanner with slice thickness 1.5 mm and FOV=22 cm. The first step of analysis, we segmented gray and white matter from the structural T1 images using Freesurfer (MGH, Harvard Medical School) which extract the white matter surface using a deformable surface model. The cortical surface was further parcellated automatically into 85 anatomically relevant brain sub-regions. The second step, we developed a method for registering PET images to MRI in combination with a mutual information algorithm to maximize total metabolic activity within the gray matter band. Partial volume correction of PET image was conducted utilizing the extracted gray matter. The third step, we calculated mean cortical activity along the path from the white matter surface to the gray matter surface. The cortical activity was represented on the spatially normalized surface which statistical evaluation of cortical activity was conducted with. We evaluated the surface-based representation of PET images and the registration of PET images and the registration of PET and MRI utilizing cortical parcellation. The preliminary results showed that our method is very promising in the analysis of subtle cortical activity difference. We proposed a novel surface-based approach of brain PET analysis using high resolution MRI. Cortical Surface-based method was very efficient in the precise representation of brain activity, correction of partial volume effect as well as better spatial normalization

  8. Cortical surface-based statistical analysis of brain PET images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Jeong; Kim, Jae Jin; Yoon, Mi Jin; Yoo, Young Hoon; Lee, Jong Doo [School of Medicine, Yonsei University, Seoul (Korea, Republic of)

    2004-07-01

    Precise and focal analysis of brain PET using voxel-based statistical mapping is limited due to the innate low spatial resolution of PET images which causes partial volume effect as well as due to the low precision of the image registration. In this study, we propose a cortical surface-based method for the precise analysis of brain PET images in combination with MRI. {sup 18}F-FDG brain PET images were acquired using GE ADVANCE PET scanner in 3D mode. 3D T1-weighted axial MR images were acquired from Philips Intera 1.5T scanner with slice thickness 1.5 mm and FOV=22 cm. The first step of analysis, we segmented gray and white matter from the structural T1 images using Freesurfer (MGH, Harvard Medical School) which extract the white matter surface using a deformable surface model. The cortical surface was further parcellated automatically into 85 anatomically relevant brain sub-regions. The second step, we developed a method for registering PET images to MRI in combination with a mutual information algorithm to maximize total metabolic activity within the gray matter band. Partial volume correction of PET image was conducted utilizing the extracted gray matter. The third step, we calculated mean cortical activity along the path from the white matter surface to the gray matter surface. The cortical activity was represented on the spatially normalized surface which statistical evaluation of cortical activity was conducted with. We evaluated the surface-based representation of PET images and the registration of PET images and the registration of PET and MRI utilizing cortical parcellation. The preliminary results showed that our method is very promising in the analysis of subtle cortical activity difference. We proposed a novel surface-based approach of brain PET analysis using high resolution MRI. Cortical Surface-based method was very efficient in the precise representation of brain activity, correction of partial volume effect as well as better spatial normalization.

  9. Electrical properties of surface functionalized silicon nanoparticles

    International Nuclear Information System (INIS)

    The present study relates to the applicability of silicon nanoparticles as basic component in printing inks for the fabrication of printable electronic devices. It is systematically investigated, how the surface functionalization of silicon nanoparticles with 1-alkenes affects the electrical properties of thin films made of them. Therefore, films of as-prepared silicon nanoparticles with a size of 42 nm as well as freshly etched ones, both terminated with hydrogen, are compared with films of silicon nanoparticles functionalized with n-octene, n-dodecene, allylmercaptan, and allylamine, respectively. It is found, that the activation energy of the electron transport through the films is in the range of 0.5 eV and scales with the polarity of the functionalization.

  10. Electrical stunning and exsanguination decrease the extracellular volume in the broiler brain as studied with brain impendance recordings.

    Science.gov (United States)

    Savenije, B; Lambooij, E; Pieterse, C; Korf, J

    2000-07-01

    Electrical stunning in the process of slaughtering poultry is used to induce unconsciousness and immobilize the animal for easier processing. Unconsciousness is a function of brain damage. Brain damage has been studied with brain impedance recordings under ischemic conditions. This experiment studies brain impedance as a response to a general epileptiform insult caused by electrical stunning and ischemia caused by exsanguination. Brain impedance was recorded in 10 broiler chickens for each of three killing methods: whole body electrical stunning, which induces cardiac arrest; head only electrical stunning followed by exsanguination; and exsanguination without stunning. Brain impedance was converted into relative extracellular volume (ECV) values. Results showed that, immediately after electrical stunning, the ECV decreased 5.5% from base ECV. With exsanguination only, the ECV decreased from base ECV only after 4 min after neck cutting. The ECV decrease after 10 min did not differ between treatments. With a time of 228 s to reach one-half of the ECV decrease found at 10 min, electrical stunning resulted in a much faster change in ECV than exsanguination only (373 s). Within the head only stunning group, six animals showed a response similar to that found with whole body stunning; the other four animals responded similarly to the animals that were exsanguinated only. It was concluded that brain impedance recordings used with electrical stunning reflect brain damage. This damage was both epileptic and ischemic in nature. Whole body stunning induced immediate brain damage, suggesting that an adequate stun was delivered. The dual response found with head only stunning might indicate that this stunning method does not always produce an adequate stun. PMID:10901211

  11. Repeatable change in electrical resistance of Si surface by mechanical and electrical nanoprocessing

    OpenAIRE

    Miyake, Shojiro; Suzuki, Shota

    2014-01-01

    The properties of mechanically and electrically processed silicon surfaces were evaluated by atomic force microscopy (AFM). Silicon specimens were processed using an electrically conductive diamond tip with and without vibration. After the electrical processing, protuberances were generated and the electric current through the silicon surface decreased because of local anodic oxidation. Grooves were formed by mechanical processing without vibration, and the electric current increased. In cont...

  12. Surface electrical stimulation to evoke referred sensation.

    Science.gov (United States)

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space. PMID:26348194

  13. Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study.

    Science.gov (United States)

    Laakso, Ilkka; Tanaka, Satoshi; Mikkonen, Marko; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-08-15

    The electric field produced in the brain is the main physical agent of transcranial direct current stimulation (tDCS). Inter-subject variations in the electric fields may help to explain the variability in the effects of tDCS. Here, we use multiple-subject analysis to study the strength and variability of the group-level electric fields in the standard brain space. Personalized anatomically-accurate models of 62 subjects were constructed from T1- and T2-weighted MRI. The finite-element method was used to computationally estimate the individual electric fields, which were registered to the standard space using surface based registration. Motor cortical and frontal tDCS were modelled for 16 electrode montages. For each electrode montage, the group-level electric fields had a consistent strength and direction in several brain regions, which could also be located at some distance from the electrodes. In other regions, the electric fields were more variable, and thus more likely to produce variable effects in each individual. Both the anode and cathode locations affected the group-level electric fields, both directly under the electrodes and elsewhere. For motor cortical tDCS, the electric fields could be controlled at the group level by moving the electrodes. However, for frontal tDCS, the group-level electric fields were more variable, and the electrode locations had only minor effects on the group average fields. Our results reveal the electric fields and their variability at the group level in the standard brain space, providing insights into the mechanisms of tDCS for plasticity induction. The data are useful for planning, analysing and interpreting tDCS studies. PMID:27188218

  14. Clinical application of synthesized brain surface imaging for preoperative simulation of brain biopsy under local anesthesia

    International Nuclear Information System (INIS)

    Surface anatomy scanning (SAS) is the technique which permits the direct visualization of brain surface structures, including cortical sulci, guri, subcortical lesions as well as skin markings for craniotomy. A synthesized brain surface image is a technique that combines MR angiography (MRA) with SAS, and it proposed by us for detecting cerebral superficial veins with these surface structures on the same image. The purpose of this report is to present the result of applying the synthesized brain surface image to the preoperative simulation of biopsy under local anesthesia in 2 cases of multiple metastatic brain tumors. The parameters for SAS were TR/TE=50/40 msec, flip angle=60deg by the fast T2 technique using refocused FID in steady-state (STERF technique). SAS images were processed by gray scale reversal. The MRA data were acquired with two-dimensional time of flight (TOF) sequence after intravenous administration of Gd-DTPA. Before imaging, the water-filled plastic tubes were placed on the patients scalp as markings for craniotomy. Their positions were planned by the neurosurgeons. On SAS, the markings for burr-hole appeared located above the tumors. However on the synthesized brain surface images, the positions of burr-hole were considered to be inadequate, since superficial cerebral vein and sinus were also visualized in the area of the markings. From these results, the positions of burr-hole were reset to avoid the venous structures, and so as to include the lesions in operations. The biopsies were performed successfully and safely because the venous structure could be excluded from the operative field. By this technique it was easy to confirm the relationships among lesions, skin markings and venous structures. The technique described appears to be a useful method for preoperative simulation of biopsies for multiple metastatic brain tumors under local anesthesia. (author)

  15. On electric field measurements in surface dielectric barrier discharge

    OpenAIRE

    Starikovskaia, S M; Allegraud, K; Guaitella, O; Rousseau, A.

    2010-01-01

    Abstract Analysis of available data on electric field measurements in surface dielectric barrier discharges (DBDs) was carried out. Experimental measurements of emission spectra in triggered and non?triggered sinusoidal surface DBD were performed. The obtained results were used for the calculation of electric field value. The comparison of data obtained and the results published by other authors is presented.

  16. On electric field measurements in surface dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Starikovskaia, S M; Allegraud, K; Guaitella, O; Rousseau, A, E-mail: svetlana.starikovskaya@lpp.polytechnique.f [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France)

    2010-03-31

    Analysis of available data on electric field measurements in surface dielectric barrier discharges (DBDs) was carried out. Experimental measurements of emission spectra in triggered and non-triggered sinusoidal surface DBD were performed. The results obtained were used for the calculation of electric field value. The comparison of data obtained and the results published by other authors is presented.

  17. Electric currents and fields induced in cells in the human brain by radiation from hand-held cellular telephones

    Science.gov (United States)

    King, Ronold W. P.

    2000-01-01

    After a review of recent work on the interaction of electromagnetic fields from cellular telephones with the human head, the structural and radiating properties of two common types of transceivers are determined. These include the impedance and current amplitude distribution of the antennas. The tangential electric field maintained by the antennas on the adjacent surface of the head is next determined. From this, the electric field propagating through the skull into the brain is analyzed and, from it, the electric field in spherical and long cylindrical cells is determined. It ranges from 27 to 13.5 V/m in the first 3 cm inside the skull. Of interest is the fact that the induced field in the interior of all cells, regardless of their shape, is the same as the incident field in the brain. It is hoped that biomedical scientists will review these results and determine possible biological effects.

  18. Lunar Surface Solar Electric Power System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a concentrated photovoltaic electric power system for lunar operations called C-Lite Lunar. The novel technology produces a near-term solar array system...

  19. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  20. Electrical Stimulation of the Suprahyoid Muscles in Brain-injured Patients with Dysphagia: A Pilot Study

    OpenAIRE

    Beom, Jaewon; Kim, Sang Jun; Han, Tai Ryoon

    2011-01-01

    Objective To investigate the therapeutic effects of repetitive electrical stimulation of the suprahyoid muscles in brain-injured patients with dysphagia. Method Twenty-eight brain-injured patients who showed reduced laryngeal elevation and supraglottic penetration or subglottic aspiration during a videofluoroscopic swallowing study (VFSS) were selected. The patients received either conventional dysphagia management (CDM) or CDM with repetitive electrical stimulation of the suprahyoid muscles ...

  1. Effect of electric potential and heating on surface of KCI

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The purpose of the work is research of morphology of structural changes of a surface { 100} crystals KCl under action of heating and electric field potential enclosed to one of fasets of a crystal.

  2. Effect of electric potential and heating on surface of KCI

    Institute of Scientific and Technical Information of China (English)

    Feodorov; Victor; A.; Sterelukhin; Andrey; A.; Karyev; Leonid; G.

    2005-01-01

    The purpose of the work is research of morphology of structural changes of a surface { 100} crystals KCl under action of heating and electric field potential enclosed to one of fasets of a crystal.……

  3. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  4. Electrodes for transcutaneous (surface) electrical stimulation

    OpenAIRE

    Keller Thierry; Kuhn Andreas

    2008-01-01

    In therapeutic and functional applications transcutaneous electrical stimulation (TES) is still the most frequently applied technique for muscle and nerve activation despite the huge efforts made to improve implantable technologies. Stimulation electrodes play the important role in interfacing the tissue with the stimulation unit. Between the electrode and the excitable tissue there are a number of obstacles in form of tissue resistivities and permittivities that can only be circumvented by m...

  5. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  6. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  7. Electrodes for transcutaneous (surface electrical stimulation

    Directory of Open Access Journals (Sweden)

    Keller Thierry

    2008-01-01

    Full Text Available In therapeutic and functional applications transcutaneous electrical stimulation (TES is still the most frequently applied technique for muscle and nerve activation despite the huge efforts made to improve implantable technologies. Stimulation electrodes play the important role in interfacing the tissue with the stimulation unit. Between the electrode and the excitable tissue there are a number of obstacles in form of tissue resistivities and permittivities that can only be circumvented by magnetic fields but not by electric fields and currents. However, the generation of magnetic fields needed for the activation of excitable tissues in the human body requires large and bulky equipment. TES devices on the other hand can be built cheap, small and light weight. The weak part in TES is the electrode that cannot be brought close enough to the excitable tissue and has to fulfill a number of requirements to be able to act as efficient as possible. The present review article summarizes the most important factors that influence efficient TES, presents and discusses currently used electrode materials, designs and configurations, and points out findings that have been obtained through modeling, simulation and testing.

  8. Electric fields associated with transient surface currents

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    The boundary condition to be fulfilled by the potential functions associated with a transient surface current is derived and expressed in terms of generalized orthogonal coordinates. From the analysis, it can be deduced that the use of the method of separation of variables is restricted to three ...

  9. Electrical Excitation of Surface Plasmon Polaritons

    OpenAIRE

    Loon, R.V.A. van

    2009-01-01

    A surface plasmon polariton (SPP) is an electromagnetic wave propagating at the interface between a metal and a dielectric material. The two-dimensional confinement of SPPs and the tunability of their dispersion enable optical functionality that cannot be achieved with regular dielectrics. Several novel concepts for sensing and opto-electronic integration based on SPPs have been proposed. In nearly all applications, as well as experiments based on SPPs, far-field excitation of SPPs is used, l...

  10. In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system

    International Nuclear Information System (INIS)

    Magnetic resonance electrical impedance tomography (MREIT) aims at producing high-resolution cross-sectional conductivity images of an electrically conducting object such as the human body. Following numerous phantom imaging experiments, the most recent study demonstrated successful conductivity image reconstructions of postmortem canine brains using a 3 T MREIT system with 40 mA imaging currents. Here, we report the results of in vivo animal imaging experiments using 5 mA imaging currents. To investigate any change of electrical conductivity due to brain ischemia, canine brains having a regional ischemic model were scanned along with separate scans of canine brains having no disease model. Reconstructed multi-slice conductivity images of in vivo canine brains with a pixel size of 1.4 mm showed a clear contrast between white and gray matter and also between normal and ischemic regions. We found that the conductivity value of an ischemic region decreased by about 10–14%. In a postmortem brain, conductivity values of white and gray matter decreased by about 4–8% compared to those in a live brain. Accumulating more experience of in vivo animal imaging experiments, we plan to move to human experiments. One of the important goals of our future work is the reduction of the imaging current to a level that a human subject can tolerate. The ability to acquire high-resolution conductivity images will find numerous clinical applications not supported by other medical imaging modalities. Potential applications in biology, chemistry and material science are also expected

  11. Solar Electric Power System Analyses for Mars Surface Missions

    Science.gov (United States)

    Kerslake, Thomas W.; Kohout, Lisa L.

    1999-01-01

    The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.

  12. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain

    OpenAIRE

    Jeffrey, Melanie; Lang, Min; Gane, Jonathan; Wu, Chiping; Burnham, W McIntyre; Zhang, Liang

    2013-01-01

    Background Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skul...

  13. Hybrid Optical–Electrical Brain Computer Interfaces, Practices and Possibilities

    OpenAIRE

    Ward, Tomas

    2013-01-01

    In this chapter we present an overview of the area of electroencephalographyfunctional near infrared spectroscopy (EEG-fNIRS) measurement as an activity monitoring technology for brain computer interfacing applications. Our interest in this compound neural interfacing technology is motivated by a need for a motor cortical conditioning technology suitable for use in a neurorehabilitation setting [15, 50]. Specifically we seek BCI technology that allows a patient with a paretic ...

  14. [Interest of EEG recording during direct electrical stimulation for brain mapping function in surgery].

    Science.gov (United States)

    Trebuchon, A; Guye, M; Tcherniack, V; Tramoni, E; Bruder, N; Metellus, P

    2012-06-01

    Brain tumor surgery is at risk when lesions are located in eloquent areas. The interindividual anatomo-functional variability of the central nervous system implies that brain surgery within eloquent regions may induce neurological sequelae. Brain mapping using intraoperative direct electrical stimulation in awake patients has been for long validated as the standard for functional brain mapping. Direct electrical stimulation inducing a local transient electrical and functional disorganization is considered positive if the task performed by the patient is disturbed. The brain area stimulated is then considered as essential for the function tested. However, the exactitude of the information provided by this technique is cautious because the actual impact of cortical direct electrical stimulation is not known. Indeed, the possibility of false negative (insufficient intensity of the stimulation due to the heterogeneity of excitability threshold of different cortical areas) or false positive (current spread, interregional signal propagation responsible for remote effects, which make difficult the interpretation of positive or negative behavioural effects) constitute a limitation of this technique. To improve the sensitivity and specificity of this technique, we used an electrocorticographic recording system allowing a real time visualization of the local. We provide here evidence that direct cortical stimulation combined with electrocorticographic recording could be useful to detect remote after discharge and to adjust stimulation parameters. In addition this technique offers new perspective to better assess connectivity of cerebral networks. PMID:22683402

  15. Invasive and transcranial photoacoustic imaging of the vascular response to brain electrical stimulation

    Science.gov (United States)

    Tsytsarev, Vassiliy; Yao, Junjie; Hu, Song; Li, Li; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2010-02-01

    Advances in the brain functional imaging greatly facilitated the understanding of neurovascular coupling. For monitoring of the microvascular response to the brain electrical stimulation in vivo we used optical-resolution photoacoustic microscopy (OR-PAM) through the cranial openings as well as transcranially. Both types of the vascular response, vasoconstriction and vasodilatation, were clearly observed with good spatial and temporal resolution. Obtained results confirm one of the primary points of the neurovascular coupling theory that blood vessels could present vasoconstriction or vasodilatation in response to electrical stimulation, depending on the balance between inhibition and excitation of the different parts of the elements of the neurovascular coupling system.

  16. Investigation of Brain Arterial Circle Malformations Using Electrical Modelling and Simulation

    Directory of Open Access Journals (Sweden)

    Klara Capova

    2006-01-01

    Full Text Available The paper deals with the cerebral arterial system investigation by means of electrical modelling and simulations. The main attention is paid to the brain arterial circle malformations (stenoses and aneurysms and their determination and evaluation by computer-aided methods as tools of a non-invasive diagnostics. The compensation possibilities of brain arterial circle in case of presence of concrete arterial malformations are modelled and simulated. The simulation results of brain arteries blood pressures and volume flow velocities time dependences are presented and discussed under various health conditions.

  17. Predicting the electric field distribution in the brain for the treatment of glioblastoma

    International Nuclear Information System (INIS)

    The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a ‘virtual lesion’ in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm − 1 and exceeded 1.0 V cm − 1 in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor’s necrotic core and in some parts of the gray matter–white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning. (paper)

  18. Surface electrical charge of bloodstream trypomastigotes of Trypanosoma cruzi strains.

    Science.gov (United States)

    de Sousa, M A

    1983-01-01

    Bloodstream trypomastigotes of some Trypanosoma cruzi strains were processed through DEAE-cellulose columns under standardized conditions. The results obtained suggest mainly that these strains present different surface charges, that there are subpopulations of bloodstream trypomastigotes as regards electrical charges and that the broad forms are less negative than the slender ones. PMID:6443631

  19. Manganese-enhanced MR imaging of brain activation evoked by noxious peripheral electrical stimulation.

    Science.gov (United States)

    Cha, Myeounghoon; Lee, Kyuhong; Lee, Chulhyun; Cho, Jee-Hyun; Cheong, Chaejoon; Sohn, Jin-Hun; Lee, Bae Hwan

    2016-02-01

    As imaging technology develops, magnetic resonance imaging (MRI) has furthered our understanding of brain function by clarifying the anatomical structure and generating functional imaging data related to information processing in pain conditions. Recent studies have reported that manganese (Mn(2+))-enhanced MRI (MEMRI) provides valuable information about the functions of the central nervous system. The aim of this study was to identify specific brain regions activated during noxious electric stimulation using high-resolution MEMRI. Male Sprague Dawley rats were divided into three groups: naïve, sham electrical stimulation, and noxious electric stimulation. Under urethane with α-chloralose mixture anesthesia, a catheter was placed in the external carotid artery to administrate 20% mannitol and manganese chloride (25mM MnCl2). Noxious electric stimulation (2Hz, 10V) was applied to the hind paw with a needle electrode. Stimulation-induced neuronal activation was detected using 4.7-T MRI. In response to noxious electrical stimulation, remarkable Mn(2+)-enhanced signals were observed in the agranular insular cortex, auditory cortex, primary somatosensory cortex of the hind limb, and granular and dysgranular insular cortex, which correspond to sensory tactile electric stimulus to the hindpaws. These results indicate that the combination of MEMRI with activity-induced Mn(2+)-dependent contrast can delineate functional areas in the rat brain. PMID:26733299

  20. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  1. Proteins in the electric field near the surface of mica

    Science.gov (United States)

    Starzyk, Anna; Cieplak, Marek

    2013-07-01

    We elucidate the nature of the electric field produced by a model mica surface and show that above some 0.4 nm it is nearly uniform and of order 12 V/nm. The presence of ions in the solvent above the surface, up to the concentration of about 300 mM, does not modify the nature of the field much. We study the conformational changes of a small protein, the tryptophan cage, as induced by (a) uniform electric field and (b) the electric field near mica. We use all-atom molecular dynamics simulations and provide evidence for the existence of unfolded and deformed conformations in each of these cases. The two behaviors are characterized by distinct properties of the radius of gyration and of the distortion parameter that distinguishes between elongated and globular shapes. The overall geometry of the conformations shifts with the strengths of the uniform field in a manner that depends on the nature of the simulation box — whether it is bounded by neutral walls or not — and on the ionic concentration. Near the mica surface, on the other hand, the fraction of unfolded conformations is close to 1/6 at the ionic strength of 350 mM compared to 1/2 at 20 mM. When the electric charge on the mica is fully neutralized by bringing more ions of the opposite charge then unfolded conformations stay unfolded but an evolution from the native state does not lead to any unfolding.

  2. Glasgow Coma Scale, brain electric activity mapping and Glasgow Outcome Scale after hyperbaric oxygen treatment of severe brain injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study the effect of hyperbaric oxygen (HBO) treatment of severe brain injury.Methods: Fifty-five patients were divided into a treatment group (n = 35 receiving HBO therapy ) and a control group (n = 20 receiving dehydrating, cortical steroid and antibiotic therapy) to observe the alteration of clinic GCS (Glasgow Coma Scale), brain electric activity mapping (BEAM), prognosis and GOS (Glasgow Outcome Scale) before and after hyperbaric oxygen treatment.Results: In the treatment group GCS, BEAM and GOS were improved obviously after 3 courses of treatment,GCS increased from 5.1 to 14.6 ( P < 0.01-0.001 ), the BEAM abnormal rate reduced from 94.3% to 38% (P <0.01-0.001 ), the GOS good-mild disability rate was 83.7%, and the middle-severe disability rate was 26.3%compared with the control group. There was a statistic significant difference between the two groups (P < 0.01-0.001).Conclusions: Hyperbaric oxygen treatment could improve obviously GCS, BEAM and GOS of severe brain injury patients, and effectively reduce the mortality and morbidity. It is an effective method to treat severe brain injury. two g

  3. Transverse electric surface mode in atomically thin Boron-Nitride.

    Science.gov (United States)

    Merano, Michele

    2016-06-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analyzed in terms of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic nonradiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric nonradiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 μm and an intensity-propagation distance greater than 2 cm. PMID:27244441

  4. Transverse electric surface mode in atomically thin Boron–Nitride

    Science.gov (United States)

    Merano, Michele

    2016-06-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analysed in term of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic non-radiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric non-radiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 microns and an intensity-propagation distance greater than 2 cm.

  5. Transverse electric surface mode in atomically thin Boron-Nitride

    CERN Document Server

    Merano, Michele

    2016-01-01

    The spatial confinement and the propagation length of surface waves in a single-layer two-dimensional atomic crystal are analysed in term of its surface susceptibility and its surface conductivity. Based on the values of these macroscopic parameters, extracted from experimental observations, it is confirmed that graphene supports a transverse magnetic non-radiating surface mode in the ultraviolet spectral region while a single-layer hexagonal Boron-Nitride is predicted to support a transverse electric non-radiating surface mode in the visible spectrum. This last mode, at a vacuum wavelength of 633 nm, has a spatial confinement of 15 microns and an intensity-propagation distance greater than 2 cm.

  6. Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus

    Science.gov (United States)

    Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru

    This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.

  7. Superior electric storage on an amorphous perfluorinated polymer surface

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-02-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the -90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system.

  8. Superior electric storage on an amorphous perfluorinated polymer surface.

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-01-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the -90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system. PMID:26902953

  9. Surface electrical charge of bloodstream trypomastigotes of Trypanosoma cruzi strains

    OpenAIRE

    Maria Auxiliadora de Sousa

    1983-01-01

    Bloodstream trypomastigotes of some Trypanosoma cruzi strains were processed through DEAE-cellulose columns under standardized conditions. The results obtained suggest mainly that these strains present different surface charges, that there are subpopulations of bloodstream trypomastigotes as regards electrical charges and that the broad forms are less negative than the slender ones.Tripomastigotas sanguíneos de algumas cepas de Trypanosoma cruzi foram processadas em colunas de DEAE-celulose s...

  10. Electric Field Influence on the Processes Near Metal Surfaces

    OpenAIRE

    Ivanov, Alexey Yu.; Nedolugov, Vladimir I.; Vasiliev, Sergey V.

    2011-01-01

    A two-wavelength high-speed holographic cinematography, integral and time-resolved spectroscopy and splite unfolding methods were used in an investigation of a laser plasma initiated at the surfaces of metal samples by laser pulses in the external electric field. The temporal evolution of the electron densities and heavy particle concentrations was determined and a study was made of the nature of motion of shock wave and plasma fronts. A weak dependence of the evolution of the shock wave velo...

  11. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis.

    Science.gov (United States)

    Dunlap, Kent D; Tran, Alex; Ragazzi, Michael A; Krahe, Rüdiger; Salazar, Vielka L

    2016-02-10

    Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate. PMID:26842566

  12. Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect.

    Directory of Open Access Journals (Sweden)

    Ross E Vanderwert

    Full Text Available BACKGROUND: Early psychosocial deprivation has profound effects on brain activity in the young child. Previous reports have shown increased power in slow frequencies of the electroencephalogram (EEG, primarily in the theta band, and decreased power in higher alpha and beta band frequencies in infants and children who have experienced institutional care. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the consequences of removing infants from institutions and placing them into a foster care intervention on brain electrical activity when children were 8 years of age. We found the intervention was successful for increasing high frequency EEG alpha power, with effects being most pronounced for children placed into foster care before 24 months of age. CONCLUSIONS/SIGNIFICANCE: The dependence on age of placement for the effects observed on high frequency EEG alpha power suggests a sensitive period after which brain activity in the face of severe psychosocial deprivation is less amenable to recovery.

  13. Brain electric fields, belief in the paranormal, and reading of emotion words

    OpenAIRE

    Gianotti, Lorena R R

    2008-01-01

    The present work reports two experiments on brain electric correlates of cognitive and emotional functions. (1) Studying paranormal belief, 35-channel resting EEG (10 believers and 13 skeptics) was analyzed with "Low Resolution Electromagnetic Tomography" (LORETA) in seven frequency bands. LORETA gravity centers of all bands shifted to the left in believers vs. sceptics, and showed that believers had stronger left fronto-temporo-parietal activity than skeptics. Self-rating of affective attitu...

  14. Empathy is associated with dynamic change in prefrontal brain electrical activity during positive emotion in children

    OpenAIRE

    Light, Sharee N.; James A Coan; Zahn-Waxler, Carolyn; Frye, Corrina; Goldsmith, H. Hill; Davidson, Richard J.

    2009-01-01

    Empathy is the combined ability to interpret the emotional states of others and experience resultant, related emotions. The relation between prefrontal electroencephalographic asymmetry and emotion in infants and children is well known. The relationship between positive emotion (assessed via parent-report), empathy (measured via observation) and second-by-second brain electrical activity (recorded during a pleasurable task) was investigated using a sample of 128 six to ten year olds. Contentm...

  15. Improving Electrical Impedance Tomography of brain function with a novel servo-controlled electrode helmet

    OpenAIRE

    Avery, J. P.

    2015-01-01

    Electrical Impedance Tomography (EIT) is a medical imaging technique which reconstructs the internal conductivity of an object from boundary measurements. EIT has the potential to provide a novel means of imaging in acute stroke, epilepsy or traumatic brain injury. Previous studies, whilst demonstrating the potential of the technique, have not been successful clinically.The work in this thesis aims to address fundamental limitations including measurement drift in electronic hardware, lack of ...

  16. Brain electric activity during the preattentive perception of speech sounds in tonal languages

    OpenAIRE

    Naiphinich Kotchabhakdi; Chittin Chindaduangratn; Wichian Sittiprapaporn

    2004-01-01

    The present study was intended to make electrophysiological investigations into the preattentive perception of native and non-native speech sounds. We recorded the mismatch negativity, elicited by single syllable change of both native and non-native speech-sound contrasts in tonal languages. EEGs were recorded and low-resolution brain electromagnetic tomography (LORETA) was utilized to explore the neural electrical activity. Our results suggested that the left hemisphere was predominant in th...

  17. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease

    OpenAIRE

    Mannu P; Rinaldi S; Fontani V; Castagna A

    2011-01-01

    Piero Mannu1, Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyPurpose: Behavioral and psychiatric symptoms of dementia (BPSD) are common in Alzheimer's disease (AD) and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC) i...

  18. Electrical stimulation of cerebellar fastigial nucleus protects rat brain, in vitro, from staurosporine-induced apoptosis.

    Science.gov (United States)

    Zhou, P; Qian, L; Glickstein, S B; Golanov, E V; Pickel, V M; Reis, D J

    2001-10-01

    Electrical stimulation of the cerebellar fastigial nucleus (FN) elicits a prolonged ( approximately 10 days) and substantial (50-80%) protection against ischemic and excitotoxic injuries. The mechanism(s) of protection are unknown. We investigated whether FN stimulation directly protects brain cells against apoptotic cell death in an in vitro rat brain slice culture model. Rats were electrically stimulated in FN or, as control, the cerebellar dentate nucleus (DN). Coronal slices through the forebrain were explanted, exposed to staurosporine, harvested, and analyzed for caspase-3 activity by a fluorescence assay. FN, but not DN, stimulation significantly reduced staurosporine-induced caspase-3 activity by 39 +/- 7% at 3 h, 31 +/- 3% at 6 h and 26 +/- 4% at 10 h of incubation. Immunocytochemistry revealed FN-specific reductions in activated caspase-3 mainly in glial-like cells throughout the forebrain. FN stimulation also results in a 56.5% reduction in cytochrome c release upon staurosporine incubation. We conclude that neuroprotection elicited from FN stimulation can directly modify the sensitivity of brain cells to apoptotic stimuli and thereby suppress staurosporine induced apoptosis in adult rat brain slices. This model indicates that neuroprotection can be studied in vitro and provides new insight into the potential role of glial cells in ischemic protection of neurons induced by FN stimulation. PMID:11677261

  19. Effect of metallic and hyperbolic metamaterial surface on electric and magnetic dipole emission

    DEFF Research Database (Denmark)

    Ni, Xingjie; Naik, Gururaj V.; Kildishev, Alexander V.;

    2010-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces.......Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces....

  20. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  1. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    Science.gov (United States)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  2. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain

    International Nuclear Information System (INIS)

    The subject of Ultraweak Photon Emission (UPE) by biological systems is very fascinating, and both evidence of its effects and applications are growing rapidly due to improvements in experimental techniques. Since the relevant equipment should be ultrasensitive with high quantum efficiencies and very low noise levels, the subject of UPE is still hotly debated and some of the interpretations need stronger empirical evidence to be accepted at face value. In this paper we first review different types of interactions between light and living systems based on recent publications. We then discuss the feasibility of UPE production in the human brain. The subject of UPE in the brain is still in early stages of development and needs more accurate experimental methods for proper analysis. In this work we also discuss a possible role of mitochondria in the production of UPE in the neurons of the brain and the plausibility of their effects on microtubules (MTs). MTs have been implicated as playing an important role in the signal and information processing taking place in the mammalian (especially human) brain. Finally, we provide a short discussion about the feasible effects of MTs on electric neural activity in the human brain.

  3. Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging

    International Nuclear Information System (INIS)

    We review the state of the art of surface magnetic property control with non-magnetic means, concentrating on metallic surfaces and techniques such as charge-doping or external electric field (EEF) application. Magneto-electric coupling via EEF-based charge manipulation is discussed as a way to tailor single adatom spins, exchange interaction between adsorbates or anisotropies of layered systems. The mechanisms of paramagnetic and spin-dependent electric field screening and the effect thereof on surface magnetism are discussed in the framework of theoretical and experimental studies. The possibility to enhance the effect of EEF by immersing the target system into an electrolyte or ionic liquid is discussed by the example of substitutional impurities and metallic alloy multilayers. A similar physics is pointed out for the case of charge traps, metallic systems decoupled from a bulk electron bath. In that case the charging provides the charge carrier density changes necessary to affect the magnetic moments and anisotropies in the system. Finally, the option of using quasi-free electrons rather than localized atomic spins for surface magnetism control is discussed with the example of Shockley-type metallic surface states confined to magnetic nanoislands. (topical review)

  4. Decay of Electrical Charges on Polyethylene Terephthalate Surface

    Directory of Open Access Journals (Sweden)

    M. Nemamcha

    2009-01-01

    Full Text Available Surface potential decay (SPD characteristics of a corona charged polyethylene terephtalate (PET are investigated experimentally.A negative corona discharge produced in a needle – grid – plate electrode system was employed to charge the surfaceof the film samples (thickness: 0.5 mm; surface: 50 mm x 50 mm. The temperature effect, initial potential and relativehumidity are presented. The variation domains for the three factors were respectively: 20 to 60°C; -1000 to -1800 V; 20 to80%. All surface potential decay measurements were carried out in a commercial climatic chamber, where relative humidityRH and temperature T were rigorously controlled. The aim of the present work is to demonstrate the effectiveness of the Experimentalmethodology for evaluating the effects of these factors. This investigation has showed that the surface potentialdecay is highly conditioned by temperature, relative humidity and charge density initially lay down on the material. Chargeinjection mechanism in material bulk seems to be the more probable hypothesis to explain charge flow in PET. More over,the experiment results confirm the influence and the role of thermal activation and electrical field on the potential decay

  5. Magnetic and electrical responses of the human brain to texture-defined form and to textons.

    Science.gov (United States)

    Regan, D; He, P

    1995-09-01

    1. We searched for a neurophysical correlate of preattentive texture discrimination by recording magnetic and electric evoked responses from the human brain during the first few hundred milliseconds following the presentation of texture-defined (TD) checkerboard form. The only two textons that changed when the TD checkerboard appeared or disappeared were the local orientation and line termination textons. (Textons are conspicuous local features within a texture pattern). 2. Our evidence that the magnetic response to TD form cannot be explained in terms of responses to the two associated textons is as follows: 1) by dissociating the two responses we showed that the magnetic response to TD form is almost entirely independent of the magnetic response to the local orientation texton; 2) a further distinction between the two responses is that their distributions over the head are different; and 3) the magnetic response to TD form differs from the magnetic response to the line termination texton in both distribution over the head and waveform. We conclude that this evidence identifies the existence of a brain response correlate of preattentive texture discrimination. 3. We also recorded brain responses to luminance-defined (LD) checkerboard form. Our grounds for concluding that magnetic brain responses to the onset of checkerboard form are generated by different and independent neural systems for TD and LD form are as follows: 1) magnetic responses to the onset of TD form and LD form had different distributions over the skull, had different waveforms, and depended differently on check size; and 2) the waveform of the response to superimposed TD and LD checks closely approximated the linear sum of responses to TD checks and LD checks alone. 4. One possible explanation for the observed differences between the magnetic and electric evoked responses is that responses to both onset and offset of TD form predominantly involve neurons aligned parallel to the skull, whereas that

  6. Surface electrical charge of bloodstream trypomastigotes of Trypanosoma cruzi strains

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora de Sousa

    1983-12-01

    Full Text Available Bloodstream trypomastigotes of some Trypanosoma cruzi strains were processed through DEAE-cellulose columns under standardized conditions. The results obtained suggest mainly that these strains present different surface charges, that there are subpopulations of bloodstream trypomastigotes as regards electrical charges and that the broad forms are less negative than the slender ones.Tripomastigotas sanguíneos de algumas cepas de Trypanosoma cruzi foram processadas em colunas de DEAE-celulose sob condições padronizadas. Os resultados obtidos sugerem principalmente que estas cepas possuem cargas superficiais diferentes, que em relação a este aspecto existem subpopulações de tripomastigotas e que as formas largas são menos negativas do que as finas.

  7. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    International Nuclear Information System (INIS)

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm

  8. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Tong In; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kim, Hyung Joong, E-mail: bmekim@khu.ac.kr; Woo, Eung Je [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Hyun Bum [Department of East-West Medical Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kyung, Eun Jung [Department of Pharmacology, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kwon, Oh In [Department of Mathematics, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2015-07-13

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  9. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    Science.gov (United States)

    Oh, Tong In; Kim, Hyun Bum; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kyung, Eun Jung; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-07-01

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  10. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    OpenAIRE

    Zhen Feng; Ying-jun Zhong; Liang Wang; Tian-qi Wei

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In additio...

  11. Measuring and comparing brain cortical surface area and other areal quantities

    OpenAIRE

    Winkler, Anderson M.; Sabuncu, Mert R.; Yeo, B.T. Thomas; Fischl, Bruce; Greve, Douglas N.; Kochunov, Peter; Nichols, Thomas E.; Blangero, John; Glahn, David C

    2012-01-01

    Structural analysis of MRI data on the cortical surface usually focuses on cortical thickness. Cortical surface area, when considered, has been measured only over gross regions or approached indirectly via comparisons with a standard brain. Here we demonstrate that direct measurement and comparison of the surface area of the cerebral cortex at a fine scale is possible using mass conservative interpolation methods. We present a framework for analyses of the cortical surface area, as well as fo...

  12. Ion doping of surface layers in conducting electrical materials

    International Nuclear Information System (INIS)

    The presented article gives basic component elements of an implanter MKPCz-99, its parameters and methods for doping surface layers of conducting electrical materials. The discussed device makes possible to dope the materials with ions of gaseous elements. At the application of cones made of solid-element sheets it is possible to perform doping with atoms that do not chemically react with the modified material. By performing voltage drop measurements with a specialized circuit between a movable testing electrode and the modified sample the dependence of transition resistance on pressure force of the testing electrode on the sample can be determined. The testing can be performed at the current passage of a determined value for surfaces modified with ions of gaseous elements or atoms of solid elements. A computer stand for switch testing makes possible to measure temperature of switch contacts and voltage drop at the contact and thereby to determine contact resistance of a switch depending on the number of switch cycles (ON-OFF). Pattern recording of current and voltage at the switch contacts and the application of an adequate computer software makes possible to determined the value of energy between fixed and moving contacts at their getting apart. In order to eliminate action of the environment onto the switch operation measurements can be performed at placing the tested switch together with the driving system in an atmosphere of noble gas like argon. (authors)

  13. Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis.

    Science.gov (United States)

    Lehmann, Dietrich; Pascual-Marqui, Roberto D; Strik, Werner K; Koenig, Thomas

    2010-01-01

    Commonality of activation of spontaneously forming and stimulus-induced mental representations is an often made but rarely tested assumption in neuroscience. In a conjunction analysis of two earlier studies, brain electric activity during visual-concrete and abstract thoughts was studied. The conditions were: in study 1, spontaneous stimulus-independent thinking (post-hoc, visual imagery or abstract thought were identified); in study 2, reading of single nouns ranking high or low on a visual imagery scale. In both studies, subjects' tasks were similar: when prompted, they had to recall the last thought (study 1) or the last word (study 2). In both studies, subjects had no instruction to classify or to visually imagine their thoughts, and accordingly were not aware of the studies' aim. Brain electric data were analyzed into functional topographic brain images (using LORETA) of the last microstate before the prompt (study 1) and of the word-type discriminating event-related microstate after word onset (study 2). Conjunction analysis across the two studies yielded commonality of activation of core networks for abstract thought content in left anterior superior regions, and for visual-concrete thought content in right temporal-posterior inferior regions. The results suggest that two different core networks are automatedly activated when abstract or visual-concrete information, respectively, enters working memory, without a subject task or instruction about the two classes of information, and regardless of internal or external origin, and of input modality. These core machineries of working memory thus are invariant to source or modality of input when treating the two types of information. PMID:19646538

  14. Photodetachment of H- in a Static Electric Field near a Surface

    Institute of Scientific and Technical Information of China (English)

    YANG Guang-Can; LIU Yong; CHI Xian-Xing

    2005-01-01

    @@ The photodetachment of H- in a static electric field near a surface is investigated based on the closed orbit theory. It is found the distance between the ion and the surface modulates the cross section of photodetachment.For an elastic surface perpendicular to electric field, the detachment spectrum displays a staircase structure, in contrast with the smooth oscillation when only the electric field exists.

  15. Using electrical resistivity imaging to understand surface coal mine hydrogeology

    Science.gov (United States)

    Hester, E. T.; Greer, B. M.; Burbey, T. J.; Zipper, C. E.

    2015-12-01

    Understanding the hydrology of disturbed lands is important given the increasing human footprint on earth. Surface coal mining has caused significant land-use change in central Appalachia in the past few decades. The mining process breaks up overburden rock above coal seams, and then replaces that material at the mine location and in adjacent unmined valleys (valley fills). The freshly exposed rock surfaces undergo weathering which often alters water quality and ultimately aquatic communities in effluent streams. One of the most common water quality effects is increased total dissolved solids (TDS), which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent is a function of fill construction methods, materials, and age. Yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of implementing traditional hydrologic measurements in fill material. We tested the effectiveness of electrical resistivity imaging (ERI) to monitor subsurface geologic patterns and hydrologic flow paths in a test-case valley fill. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill material. Results indicate that ERI can be used to identify the subsurface geologic structure and track advancing wetting fronts or preferential flow paths. We observed that the upper portion of the fill profile contains significant fines, while the deeper profile is primarily composed of large rocks and void spaces. The artificial rainfall experiments revealed that water ponded on the surface of compacted areas until it reached preferential flow paths, where it infiltrated quickly and deeply. We observed water moving from the surface down to >10 m depth within 75 minutes. In sum, vertical and lateral preferential flow paths were evident at both shallow (through compacted layers) and deep (among boulders) locations. Such extensive preferential flow suggests that a

  16. NeuroGrid: recording action potentials from the surface of the brain

    OpenAIRE

    Khodagholy, Dion; Gelinas, Jennifer N.; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G.; Buzsáki, György

    2014-01-01

    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultra-conformable, biocompatible and scalable neural interface array (the ‘NeuroGrid’) that can record both LFP and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneous...

  17. Breast cancer surface receptors predict risk for developing brain metastasis and subsequent prognosis

    OpenAIRE

    Grewal, Jai; Kesari, Santosh

    2008-01-01

    Determining the status of breast cancer surface receptors (estrogen receptor, progesterone receptor, HER2/neu) has become routine in the care of patients with this disease and has proven to be helpful in guiding treatment. For this reason, breast cancer has become a model for molecularly guided therapy in solid tumors. Emerging data support that these receptors are associated with risk for developing brain metastases. Additionally, once brain metastases have occurred these receptors may also ...

  18. Zinc uptake by brain cells: `surface' versus `bulk'

    Science.gov (United States)

    DeStasio, Gelsomina; Pochon, S.; Lorusso, G. F.; Tonner, B. P.; Mercanti, Delio; Ciotti, M. Teresa; Oddo, Nino; Galli, Paolo; Perfetti, P.; Margaritondo, G.

    1996-08-01

    The uptake of zinc by cerebellar rat cultures upon exposure to 0022-3727/29/8/023/img12 solutions was comparatively investigated using two well known condensed matter physics techniques: synchrotron photoelectron spectromicroscopy and inductively coupled plasma atomic emission spectroscopy. The objective was to apply a strategy - well known in surface physics - to distinguish between `surface' and `bulk' phenomena. The results clearly demonstrate that exposure significantly enhances the bulk (cell cytoplasm) Zn concentration with respect to the physiological level, whereas the effect on the surface (cell membrane) is negligible.

  19. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    OpenAIRE

    Dowrick, T.; Blochet, C.; Holder, D

    2015-01-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spect...

  20. Resuscitation therapy for traumatic brain injury-induced coma in rats:mechanisms of median nerve electrical stimulation

    Institute of Scientific and Technical Information of China (English)

    Zhen Feng; Ying-jun Zhong; Liang Wang; Tian-qi Wei

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually in-creased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our ifndings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the pre-frontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  1. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  2. Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant.

    Science.gov (United States)

    Ramachandran, Rahul; Nosonovsky, Michael

    2015-10-14

    We study the correlation of wetting properties and corrosion rates on hydrophobized cast iron. Samples of different surface roughnesses (abraded by sandpaper) are studied without coating and with two types of hydrophobic coatings (stearic acid and a liquid repelling spray). The contact angles and contact angle hysteresis are measured using a goniometer while corrosion rates are measured by a potentiodynamic polarization test. The data show a decrease in corrosion current density and an increase in corrosion potential after superhydrophobization. A similar trend is also found in the recent literature data. We conclude that a decrease in the corrosion rate can be attributed to the changing open circuit potential of a coated surface and increased surface area making the non-homogeneous (Cassie-Baxter) state possible. We interpret these results in light of the idea that the inherent surface energy is coupled with the electric potential in accordance with the Lippmann law of electrowetting and Le Châtelier's principle and, therefore, hydrophobization leads to a decrease in the corrosion potential. This approach can be used for novel anti-corrosive coatings. PMID:26344151

  3. Electric field cancellation on quartz: a Rb adsorbate induced negative electron affinity surface

    CERN Document Server

    Sedlacek, J A; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2015-01-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

  4. Brain electric activity during the preattentive perception of speech sounds in tonal languages

    Directory of Open Access Journals (Sweden)

    Naiphinich Kotchabhakdi

    2004-05-01

    Full Text Available The present study was intended to make electrophysiological investigations into the preattentive perception of native and non-native speech sounds. We recorded the mismatch negativity, elicited by single syllable change of both native and non-native speech-sound contrasts in tonal languages. EEGs were recorded and low-resolution brain electromagnetic tomography (LORETA was utilized to explore the neural electrical activity. Our results suggested that the left hemisphere was predominant in the perception of native speech sounds, whereas the non-native speech sound was perceived predominantly by the right hemisphere, which may be explained by the specialization in processing the prosodic and emotional components of speech formed in this hemisphere.

  5. Multichannel biomagnetic system for study of electrical activity in the brain and heart.

    Science.gov (United States)

    Schneider, S; Hoenig, E; Reichenberger, H; Abraham-Fuchs, K; Moshage, W; Oppelt, A; Stefan, H; Weikl, A; Wirth, A

    1990-09-01

    The authors designed a multichannel system for noninvasive measurement of the extremely weak magnetic fields generated by the brain and the heart. It uses a flat array of 37 superconducting magnetic field-sensing coils connected to sophisticated superconducting quantum interference devices. To prevent interference from external electromagnetic fields, the system is operated inside a shielded room. Complete sets of coherent data, even from spontaneous events, can be recorded. System performance was evaluated with phantom measurements and evoked-response studies. A spatial resolution of a few millimeters and a temporal resolution of a millisecond were obtained. First results in patients with partial epilepsy and investigations of the cardiac conductive pathway indicate that biomagnetism is now ready for a systematic clinical evaluation. Interpretation of measurements was facilitated by highlighting biomagnetically localized electrical activity in three-dimensional digital magnetic resonance images. PMID:2389043

  6. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    Science.gov (United States)

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. PMID:26348986

  7. Differential binding of Nocardia asteroides in the murine lung and brain suggests multiple ligands on the nocardial surface.

    OpenAIRE

    Beaman, B L

    1996-01-01

    The adherence of Nocardia asteroides in the murine brain and lungs was determined. Virulent strains had increased adherence in the brain and lungs, whereas less virulent strains bound in either the brain or lungs. Nocardiae that attached apically penetrated host cells. Multiple receptors on the nocardial surface may be involved in this differential attachment and penetration.

  8. Gender difference in electrical brain activity during presentation of various film excerpts with different emotional content.

    Science.gov (United States)

    Dimpfel, W; Wedekind, W; Keplinger, I

    2003-05-30

    Electrical activity of the human brain has been monitored using socalled charge mode (Laplacian estimates) during the exposure with short video film excerpts of 7 min duration. Eighty subjects (50% male and female) watched 5 different film excerpts (disney, animal, comedy, erotic and sex scenes) separated by 3 min pause. Comparison to a reference period of 7 min without video exposure revealed strong decreases in alpha and beta power starting from the electrode position T6 (right temporal) and spread to other brain areas with stronger attentional stimuli e.g. during the erotic and sex films. Highly statistically significant differences were observed between male and female in temporal areas, who in general developed stronger decreases than males. Females on the other hand produced significant increases in fronto-central delta and theta power which could be interpreted as expression of higher appreciation, whereas the decreases in alpha power in general are understood as signs of higher attention. The data are further proof that recording the computer aided quantitative EEG is a very fruitful and promising approach in psychophysiology. PMID:12844473

  9. Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images.

    Science.gov (United States)

    Du, Jia; Younes, Laurent; Qiu, Anqi

    2011-05-01

    This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler-Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation. PMID:21281722

  10. Electrical actuation-induced droplet transport on smooth and superhydrophobic surfaces

    OpenAIRE

    Bahadur, Vaibhav; Garimella, Suresh

    2010-01-01

    Electrical control of liquid droplet motion and wettability has wide-ranging applications in the field of MEMS, lab-on-a-chip devices and surface engineering, in view of the resulting enhanced flow control opportunities, low power consumption and the absence of mechanical moving parts. This article summarizes recent progress towards understanding of the fundamentals underlying electrical actuation of droplets on smooth and superhydrophobic surfaces. Electrical actuation of liquid droplets wit...

  11. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Science.gov (United States)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Kyung, Eun Jung; Kim, Hyun Bum; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2016-06-01

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  12. Inhibitory effects of matrine on electrical signals and amino acid neurotransmitters in hippocampal brain slices

    Institute of Scientific and Technical Information of China (English)

    Xuping Wang; Jiping Chen; Guizhi Zhao; Dan Shou; Xuezhi Hong; Jianmin Zhang

    2009-01-01

    BACKGROUND: Studies on electrical signals of hippocampal brain slices in vivo have shown that matrine inhibits benzylpenicillin sodium-induced activation of neuronal signal transduction.OBJECTIVE: To verify the inhibition effect of matrine on activation of electrical signals in rat brain slices and the role matrine plays in hippocampal amino acid transmitter release.DESIGN, TIME AND SETTING: The in vitro, neurophysiological, controlled experiment was performed in the Zhejiang Province Key Laboratory of Cardio-cerebrovascular Disease and Nerve System Drugs Appraisement and Chinese Traditional Medicine Screening and Research between July 2003 and May 2004. The in vivo, neuronal, biochemical experiment was performed in the Zhejiang Province Key Laboratory of Chinese Traditional Medicine Quality Standardization from July 2005 to December 2006.MATERIALS: Forty healthy, Sprague Dawley rats, 7-8 weeks old, and 120 healthy, ICR mice, 5-6weeks old, were included in this study, irrespective of gender. Matrine powder was provided by the National Institute for the Control of Pharmaceutical and Biological Products, China. Matrine injection was purchased from Zhuhai Biochemical Pharmaceutical Factory, China. Penicillin was bought from Shijiazhuang Pharmaceutical Group Co., Ltd., China.METHODS: (1) Rats were randomly assigned to four groups: control, penicillin model, and matrine high-dose and low-dose, with 10 rats in each group. The control group was perfused with artificial cerebrospinal fluid, in the remaining three groups, hippocampal brain slices were perfused with normal artificial cerebrospinal fluid containing 1x106 U/L penicillin for the first 10 minutes. The penicillin model group received artificial cerebrospinal fluid for an additional 30 minutes, while the matrine high-dose and low-dose groups received 0.1 g/L and 0.05 g/L matdne, respectively, for an additional 30 minutes. (2) Mice were randomly assigned to four groups (n=30). The matrine high-,medium-, and low

  13. Brain electric stimulation in treatment of epilepsy%神经电刺激技术在癫痫治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    杨辉

    2012-01-01

    The treatment of patients with refractory epilepsy has always been challenging. Despite the availability of multiple antiepileptic drugs, approximately 20% - 30% of patients continue to have seizures, and many are not candidates for epilepsy surgery. Currently available treatment options for these unfortunate patients are limited. Brain electric stimulation provides a nondestructive treatment for these patients. Studies of electrical stimulation of the brain in epilepsy treatment begin with the research on cerebellar stimulation. Until now, the potential targets have increased over the years, including cortex, cranial nerve and multiple brain nuclei. With the development of therapeutic brain devices for epilepsy, it is convinced that the brain electric stimulation will become more widely applied in treatment of epilepsy. This overview, combining with literatures and our experiences, briefly summarizes the application of brain electric stimulation in the treatment of epilepsy.

  14. Social anxiety disorder: radio electric asymmetric conveyor brain stimulation versus sertraline

    Directory of Open Access Journals (Sweden)

    Fontani V

    2011-11-01

    Full Text Available Vania Fontani1, Piero Mannu1,2, Alessandro Castagna1, Salvatore Rinaldi11Department of Neuro Psycho Physio Pathology, Rinaldi Fontani Institute, Florence; 2Psychic Studies Center, Cagliari, ItalyPurpose: Social anxiety disorder (SAD is a disabling condition that affects almost 5% of the general population. Many types of drugs have shown their efficacy in the treatment of SAD. There are also some data regarding psychotherapies, but no data are available today about the efficacy of brain stimulation techniques. The aim of the study is to compare the efficacy of noninvasive brain stimulation neuro psycho physical optimization (NPPO protocol performed by radio electric asymmetric conveyor (REAC with that of sertraline in adults with SAD.Patients and methods: Twenty SAD patients on sertraline were compared with 23 SAD patients who refused any drug treatment and who chose to be treated with NPPO-REAC brain stimulation. This was a 6-month, open-label, naturalistic study. Patients on sertraline received flexible doses, whereas NPPO-REAC patients received two 18-session cycles of treatment. Clinical Global Improvement scale items "much improved" or "very much improved" and Liebowitz Social Anxiety Scale total score variation on fear and avoidance components were used to detect the results. The statistical analysis was performed with t-test. All measures <0.05 have been considered statistically significant.Results: Ten of 23 subjects on NPPO-REAC and six of the 20 taking sertraline were much improved or very much improved 1 month after the first NPPO-REAC cycle (t1. Sixteen of the subjects on NPPO-REAC and ten of the subjects taking sertraline were much improved or very much improved 1 month after the second NPPO-REAC cycle (t2. In respect of the Liebowitz Social Anxiety Scale, at t1 NPPO-REAC resulted in statistically more efficacy for sertraline on both fear and avoidance total scores. At t2, NPPO-REAC resulted in statistically more efficacy for

  15. In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    Science.gov (United States)

    Dowrick, T; Blochet, C; Holder, D

    2015-06-01

    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage. PMID:26006171

  16. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions

    DEFF Research Database (Denmark)

    Ni, X.; Naik, G. V.; Kildishev, A. V.;

    2011-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data....

  17. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions

    Directory of Open Access Journals (Sweden)

    Alexander Opitz

    2014-01-01

    Full Text Available The spatial extent of transcranial magnetic stimulation (TMS is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES is a local brain stimulation method generally considered the gold standard to map structure–function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP mapping experiment for both TMS and DES with realistic individual finite element method (FEM simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  18. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  19. Surface displacement based shape analysis of central brain structures in preterm-born children

    Science.gov (United States)

    Garg, Amanmeet; Grunau, Ruth E.; Popuri, Karteek; Miller, Steven; Bjornson, Bruce; Poskitt, Kenneth J.; Beg, Mirza Faisal

    2016-03-01

    Many studies using T1 magnetic resonance imaging (MRI) data have found associations between changes in global metrics (e.g. volume) of brain structures and preterm birth. In this work, we use the surface displacement feature extracted from the deformations of the surface models of the third ventricle, fourth ventricle and brainstem to capture the variation in shape in these structures at 8 years of age that may be due to differences in the trajectory of brain development as a result of very preterm birth (24-32 weeks gestation). Understanding the spatial patterns of shape alterations in these structures in children who were born very preterm as compared to those who were born at full term may lead to better insights into mechanisms of differing brain development between these two groups. The T1 MRI data for the brain was acquired from children born full term (FT, n=14, 8 males) and preterm (PT, n=51, 22 males) at age 8-years. Accurate segmentation labels for these structures were obtained via a multi-template fusion based segmentation method. A high dimensional non-rigid registration algorithm was utilized to register the target segmentation labels to a set of segmentation labels defined on an average-template. The surface displacement data for the brainstem and the third ventricle were found to be significantly different (p MRI data and reveal shape changes that may be due to preterm birth.

  20. Brain electrical activity and subjective experience during altered states of consciousness: ganzfeld and hypnagogic states.

    Science.gov (United States)

    Wackermann, Jiri; Pütz, Peter; Büchi, Simone; Strauch, Inge; Lehmann, Dietrich

    2002-11-01

    Manifestations of experimentally induced altered states of consciousness in the brain's electrical activity as well as in subjective experience were explored via the hypnagogic state at sleep onset, and the state induced by exposure to an unstructured perceptual field (ganzfeld). Twelve female paid volunteers participated in sessions involving sleep onset, ganzfeld, and eyes-closed relaxed waking, and were repeatedly prompted for recall of their momentary mentation, according to a predefined schedule. Nineteen channel EEG, two channels EOG and EMG were recorded simultaneously. The mentation reports were followed by the subjects' ratings of their experience on a number of ordinal scales. Two-hundred and forty-one mentation reports were collected. EEG epochs immediately preceding the mentation reports were FFT-analysed and the spectra compared between states. The ganzfeld EEG spectrum, showing no signs of decreased vigilance, was very similar to the EEG spectrum of waking states, even showed a minor acceleration of alpha activity. The subjective experience data were reduced to four principal components: Factor I represented the subjective vigilance dimension, as confirmed by correlations with EEG spectral indices. Only Factor IV, the 'absorption' dimension, differentiated between the ganzfeld state (more absorption) and other states. In waking states and in ganzfeld, the subjects estimated elapsed time periods significantly shorter than in states at sleep onset. The results did not support the assumption of a hypnagogic nature of the ganzfeld imagery. Dream-like imagery can occur in various global functional states of the brain; hypnagogic and ganzfeld-induced states should be conceived as special cases of a broader class of 'hypnagoid' phenomena. PMID:12433389

  1. Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    Directory of Open Access Journals (Sweden)

    King Christine E

    2011-08-01

    Full Text Available Abstract Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG-based BCI with a noninvasive functional electrical stimulation (FES system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77 with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions, and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower

  2. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  3. The behaviour of water droplets on the silicone rubber surface in an electric field

    Science.gov (United States)

    Bretuj, W.; Pelesz, A.

    2016-02-01

    This paper describes the influence of a water droplet placed on flat samples of silicone rubber for enhancement the local electric field and generate electrical discharges. Studies have shown a significant influence of the droplet geometry on the electric strength of the samples. For non-symmetrical arrangement of the three droplets in the inter-electrode space electrohydrodynamic phenomena was observed: a stable change in the droplets shape placed near the electrodes and stretching and tearing down of the water droplets placed far from the electrodes. Captured photos and films of the water droplets behavior placed on the surface of the samples provided data to perform the simulation of the distribution of electric field and an estimate the value of the electric field, which was followed by the development of electric surface discharges.

  4. Contactless electrical characterization of surface and interface of SOI materials

    International Nuclear Information System (INIS)

    Electronic properties of the surface as well as the interface of silicon-on-insulator (SOI) materials have been characterized by the Kelvin method combined with surface photovoltage (SPV) measurements. In order to separate the interface properties from the surface ones, we used the data for the bulk Si surface, which was treated in the same manner, i.e. dipping in a diluted HF solution, as for the SOI surface. From the temperature dependence of the SPV for the bulk Si, the values of the built-in potential, the surface state density and the surface recombination velocity were determined to be about 0.60 eV, 6x1011 cm-2 and 6x103 cm/s, respectively, for the HF-treated Si surface. By taking these values into account, we analyzed the SPV data for separation by implanted oxygen (SIMOX) wafer. The values of the interface state density and the interface recombination velocity at the buried-oxide/SIMOX interface were estimated to be about 3x1012 cm-2 and 3x104 cm/s, respectively

  5. Gold colloidal nanoparticle electrodeposition on a silicon surface in a uniform electric field

    OpenAIRE

    Buttard, D; Oelher, F; David, T

    2011-01-01

    The electrodeposition of gold colloidal nanoparticles on a silicon wafer in a uniform electric field is investigated using scanning electron microscopy and homemade electrochemical cells. Dense and uniform distributions of particles are obtained with no aggregation. The evolution of surface particle density is analyzed in relation to several parameters: applied voltage, electric field, exchanged charge. Electrical, chemical, and electrohydrodynamical parameters are taken into account in descr...

  6. CLINICAL STUDY OF ISCHEMIC PENUMBRA REGION IN BRAIN ELECTRICAL ACTIVITY MAPPING

    Institute of Scientific and Technical Information of China (English)

    Liu Qingrui; Liu Mingshun; Gu Lanjie; Mei Fengjun

    2000-01-01

    Department of Neurology, Fourth Affiliated Hospital. Hebei Medical University, Shijiazhuang ABSTRACT OBJETIVE To study features and clinical usage of ischemic penumbra region(IPR) in brain electrical activity mapping(BEAM).BACKGROUND To explore the functional improvement index of IPR untraumaticly. METH0DS 69 patients with acute cerebral infarction were divided into two groups according to different therapeutic time window--early treatment group( 32 cases, treatment in 12 hours)and contral group (37 cases, treatment in 12-72 hours).They were analysed in BEAM pre-and post-treatment Results: BEAM showed that the power of infarcted core was decreased and IPR became smaller in slow waves significantly after treatment in early treatment group and this change was in good agreement with improvement of clinical functions and SPECT DISCUSSION The key to treat acute cerebral infarction was to improve functions of IPR as 8oos as possible, BEAM could show the location and size of IPR. CONCLUSION BEAM was one of important index in evaluating the function of IPR.

  7. Carbon nanotube (CNT) composite surfaces for electrical contact interfaces

    OpenAIRE

    Lewis, Adam P.; Down, Michael; McBride, John W.; Jiang, Liudi; Spearing, S.M.

    2015-01-01

    MEMS relays boast numerous advantages over PIN diode and FET devices, for example: lower on-resistance, higher isolation and cut-off frequency. There are two common implementations of MEMS switches: capacitively coupled and metal-contacting. Whilst the use of capacitive switches at low frequencies is limited, they tend to be capable of surviving high numbers (>500,000,000) of switching cycles without showing any signs of mechanical failure. For metal-contacting switches, the electrical contac...

  8. Graphene transverse electric surface plasmon detection using nonreciprocity modal discrimination

    Science.gov (United States)

    Chamanara, Nima; Caloz, Christophe

    2016-08-01

    We present a magnetically biased graphene-ferrite structure discriminating the transverse electric (TE) and transverse magnetic (TM) plasmonic modes of graphene. In this structure, the graphene TM plasmons interact reciprocally with the structure. In contrast, the graphene TE plasmons exhibit nonreciprocity. This nonreciprocity is manifested in unidirectional TE propagation in a frequency band close to the interband threshold frequency. The proposed structure provides a unique platform for the experimental demonstration of the unusual existence of the TE plasmonic mode in graphene.

  9. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    Science.gov (United States)

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  10. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury.

    Science.gov (United States)

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  11. Nanoantenna for Electrical Generation of Surface Plasmon Polaritons.

    Science.gov (United States)

    Bigourdan, Florian; Hugonin, Jean-Paul; Marquier, Francois; Sauvan, Christophe; Greffet, Jean-Jacques

    2016-03-11

    Light emission by inelastic tunneling has been known for many years. Recently, this technique has been used to generate surface plasmons using a scanning tunneling microscope tip. The emission process suffers from a very low efficiency lower than a photon in 10^{4} electrons. We introduce a resonant plasmonic nanoantenna that allows both enhancing the power conversion to surface plasmon polaritons by more than 2 orders of magnitude and narrowing the emission spectrum. The physics of the emission process is analyzed in terms of local density of states and the efficiency of the nanoantenna to radiate surface plasmon polaritons. PMID:27015503

  12. Global surface temperatures and the atmospheric electrical circuit

    Science.gov (United States)

    Price, Colin

    1993-01-01

    To monitor future global temperature trends, it would be extremely useful if parameters nonlinearly related to surface temperature could be found, thereby amplifying any warming signal that may exist. Evidence that global thunderstorm activity is nonlinearly related to diurnal, seasonal and interannual temperature variations is presented. Since global thunderstorm activity is also well correlated with the earth's ionospheric potential, it appears that variations of ionospheric potential, that can be measured at a single location, may be able to supply valuable information regarding global surface temperature fluctuations. The observations presented enable a prediction that a 1 percent increase in global surface temperatures may result in a 20 percent increase in ionospheric potential.

  13. Measuring and comparing brain cortical surface area and other areal quantities.

    Science.gov (United States)

    Winkler, Anderson M; Sabuncu, Mert R; Yeo, B T Thomas; Fischl, Bruce; Greve, Douglas N; Kochunov, Peter; Nichols, Thomas E; Blangero, John; Glahn, David C

    2012-07-16

    Structural analysis of MRI data on the cortical surface usually focuses on cortical thickness. Cortical surface area, when considered, has been measured only over gross regions or approached indirectly via comparisons with a standard brain. Here we demonstrate that direct measurement and comparison of the surface area of the cerebral cortex at a fine scale is possible using mass conservative interpolation methods. We present a framework for analyses of the cortical surface area, as well as for any other measurement distributed across the cortex that is areal by nature. The method consists of the construction of a mesh representation of the cortex, registration to a common coordinate system and, crucially, interpolation using a pycnophylactic method. Statistical analysis of surface area is done with power-transformed data to address lognormality, and inference is done with permutation methods. We introduce the concept of facewise analysis, discuss its interpretation and potential applications. PMID:22446492

  14. Multiple-gap structure in electric-field-induced surface superconductivity

    OpenAIRE

    Mizohata, Yousuke; Ichioka, Masanori; Machida, Kazushige

    2013-01-01

    Local superconducting gap structure is studied as a function of nanoscale depth in electric-field-induced surface superconductivity such as in SrTiO3. We examine solutions of Bogoliubov-de Gennes equation in two limiting confinement potential cases of electric field with and without screening effects. As unique properties different from bulk superconductivity, there appear in-gap states even for isotropic s-wave pairing, due to multiple gap structure of sub-band dependent surface superconduct...

  15. Surface Modification Process by Electrical Discharge Machining with Ti Powder Green Compact Electrode

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the wo...

  16. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    Science.gov (United States)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  17. Decay of Electrical Charges on Polyethylene Terephthalate Surface

    OpenAIRE

    M. Nemamcha; M. Kachi; M. Remadnia; L. Herous

    2009-01-01

    Surface potential decay (SPD) characteristics of a corona charged polyethylene terephtalate (PET) are investigated experimentally.A negative corona discharge produced in a needle – grid – plate electrode system was employed to charge the surfaceof the film samples (thickness: 0.5 mm; surface: 50 mm x 50 mm). The temperature effect, initial potential and relativehumidity are presented. The variation domains for the three factors were respectively: 20 to 60°C; -1000 to -1800 V; 20 to80%. All su...

  18. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

    Science.gov (United States)

    Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2015-10-01

    Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI. PMID:26350423

  19. Combined effect of electric field and surface modification on pool boiling of R-123

    OpenAIRE

    Ahmad, Syed Waqas

    2012-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The effect of surface modification and high intensity electric field (uniform and non – uniform) acting separately or in combination on pool boiling of R-123 is presented in this thesis. The effect of surface modification was investigated on saturated pool boiling of R-123 for five horizontal copper surfaces modified by different treatments, namely: an emery polished surface, a fine sandblast...

  20. Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain.

    Science.gov (United States)

    Haas, Julie S; Greenwald, Corey M; Pereda, Alberto E

    2016-01-01

    Gap junctions mediate electrical synaptic transmission between neurons. While the actions of neurotransmitter modulators on the conductance of gap junctions have been extensively documented, increasing evidence indicates they can also be influenced by the ongoing activity of neural networks, in most cases via local interactions with nearby glutamatergic synapses. We review here early evidence for the existence of activity-dependent regulatory mechanisms as well recent examples reported in mammalian brain. The ubiquitous distribution of both neuronal connexins and the molecules involved suggest this phenomenon is widespread and represents a property of electrical transmission in general. PMID:27230776

  1. A Three Spatial Dimension Wave Latent Force Model for Describing Excitation Sources and Electric Potentials Produced by Deep Brain Stimulation

    OpenAIRE

    Alvarado, Pablo A.; Álvarez, Mauricio A.; Orozco, Álvaro A.

    2016-01-01

    Deep brain stimulation (DBS) is a surgical treatment for Parkinson's Disease. Static models based on quasi-static approximation are common approaches for DBS modeling. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate, as DBS therapeutic results depend on stimulus parameters such as frequency and pulse width, which are related to time variations of the electric fiel...

  2. Surface modification of austenitic stainless steel on the surface of electric contact during low frequency current circulation

    Energy Technology Data Exchange (ETDEWEB)

    Nachez, L. [Instituto de Fisica Rosario (CONICET-UNR), Bvrd. 27 de Febrero 210 Bis., 2000 Rosario (Argentina)]. E-mail: nachez@ifir.edu.ar; Gomez, B.J. [Instituto de Fisica Rosario (CONICET-UNR), Bvrd. 27 de Febrero 210 Bis., 2000 Rosario (Argentina); Ferron, J. [Instituto de Fisica Rosario (CONICET-UNR), Bvrd. 27 de Febrero 210 Bis., 2000 Rosario (Argentina); Feugeas, J. [Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina)

    2006-08-14

    During process of surface treatment of steels using plasmas (ion nitriding, physical vapor deposition and chemical vapor deposition, plasma immersion ion implantation, etc.), normally, one of the surfaces of the pieces has to be in electrical contact with one of the electrodes. In this work, we investigate the surface modification of the SAE EV12 stainless steel after being in electrical contact with the cathode during a normal process of ion nitriding. The physical conditions used were of a square wave electrical current of 10, 100 and 1000 Hz with an amplitude between 40 A m{sup -2} and 80 A m{sup -2} passing during 40 min. The treated surface was studied under Auger emission spectroscopy and grazing angle X-ray diffraction. The results have shown that a surface layer of 60 nm is strongly altered, and that the results depend on the frequency of the applied voltage and the pressure of contact between the surface and the cathode. In this surface layer, we could see the Fe-Cr, MnO and a carbide of the type (Fe,Ni){sub 23}C{sub 6} called haxonite, only reported in meteorites.

  3. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke; Kopylov, Oleksii; Ou, Haiyan

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  4. Sources of Electrical Brain Activity Most Relevant to Performance of Brain-Computer Interface Based on Motor Imagery

    Czech Academy of Sciences Publication Activity Database

    Frolov, A.; Húsek, Dušan; Bobrov, P.; Mokienko, O.; Tintěra, J.

    Rijeka: InTech, 2013 - (Fazel-Rezai, R.), s. 175-193 ISBN 978-953-51-1134-4 R&D Projects: GA ČR GAP202/10/0262 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070 Institutional support: RVO:67985807 Keywords : brain computer interface * BCI * EEG * fMRI * signal separation * inverse EEG task Subject RIV: IN - Informatics, Computer Science

  5. Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Joa Kyung-Lim

    2012-07-01

    Full Text Available Abstract Background To observe brain activation induced by functional electrical stimulation, voluntary contraction, and the combination of both using functional magnetic resonance imaging (fMRI. Methods Nineteen healthy young men were enrolled in the study. We employed a typical block design that consisted of three sessions: voluntary contraction only, functional electrical stimulation (FES-induced wrist extension, and finally simultaneous voluntary and FES-induced movement. MRI acquisition was performed on a 3.0 T MR system. To investigate activation in each session, one-sample t-tests were performed after correcting for false discovery rate (FDR; p t-test was performed using a contrast map (p  Results In the voluntary contraction alone condition, brain activation was observed in the contralateral primary motor cortex (MI, thalamus, bilateral supplementary motor area (SMA, primary sensory cortex (SI, secondary somatosensory motor cortex (SII, caudate, and cerebellum (mainly ipsilateral. During FES-induced wrist movement, brain activation was observed in the contralateral MI, SI, SMA, thalamus, ipsilateral SII, and cerebellum. During FES-induced movement combined with voluntary contraction, brain activation was found in the contralateral MI, anterior cingulate cortex (ACC, SMA, ipsilateral cerebellum, bilateral SII, and SI. The activated brain regions (number of voxels of the MI, SI, cerebellum, and SMA were largest during voluntary contraction alone and smallest during FES alone. SII-activated brain regions were largest during voluntary contraction combined with FES and smallest during FES contraction alone. The brain activation extent (maximum t score of the MI, SI, and SII was largest during voluntary contraction alone and smallest during FES alone. The brain activation extent of the cerebellum and SMA during voluntary contraction alone was similar during FES combined with voluntary contraction; however, cerebellum and SMA activation

  6. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Shashwath A Meda

    Full Text Available Williams syndrome (WS is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and

  7. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Mannu P

    2011-07-01

    Full Text Available Piero Mannu1, Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyPurpose: Behavioral and psychiatric symptoms of dementia (BPSD are common in Alzheimer's disease (AD and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC in patients who have had a poor response to pharmacological treatment.Patients and methods: Eight patients (five females and three males; mean [±standard deviation] age at study baseline: 69.9 ± 3.0 years diagnosed with AD according to the DSM-IV-TR criteria (mean onset age of AD: 65.4 ± 3.5 years were cognitively and psychometrically assessed with the Mini-Mental State Examination (MMSE, the Activity of Daily Living (ADL, the Instrumental Activity of Daily Living (IADL, and the Neuropsychiatric Inventory (NPI, prior to and after each of 2 REAC treatment cycles.Results: Scores on the MMSE and all subscales of the NPI (frequency, severity, and distress, the ADL, and the IADL were significantly improved following the initial REAC treatment. There was further significant improvement in all measurements (with a tendency for improvement in the IADL after the second REAC treatment cycle.Conclusion: The improvement of cognitive and behavioral/psychiatric functioning following REAC treatment suggests that this innovative approach may be an effective, safe, and tolerable alternative to pharmacological treatment of AD patients, especially in the area of BPSD. Elderly patients suffering from other types of dementia may also benefit from REAC treatment.Keywords: anxiety, depression, insomnia, behavioral and psychiatric symptoms of dementia (BPSD

  8. The Development of control system via Brain Computer Interface (BCI - Functional Electrical Stimulation (FES for paraplegic subject

    Directory of Open Access Journals (Sweden)

    K. A. A. Rahman

    2012-12-01

    Full Text Available Brain is known to be one of the powerful systems in human body because of its ability to give command and communicate throughout the body. The spinal cord is the pathway for impulses from the brain to the body as well as from the body to the brain. However, the bounty of this pathway could be lost due to spinal cord injury (SCI and that results in a loss of function especially mobility. A combination of Brain Computer Interface (BCI and Functional Electrical Stimulation (FES is among one of the technique to regain the mobility function of human body which will be the focused area of this research. In this study, Electroencephalography (EEG system will be used to capture the brain signal which will then drive the FES. A paraplegic subject will be involved in this study. The subject will be required to move the knee joint with involvement few muscle contraction. Overall, in this paper the combination of BCI-FES methods for development of rehabilitation system will be proposed. From this preliminary study, it can be summarized that the combination between BCI and FES potentially would provide a better rehabilitation system for SCI patient in comparison to the conventional FES system.

  9. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms

    OpenAIRE

    Lim, L.W.; Prickaerts, J.; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Y. Temel

    2015-01-01

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and v...

  10. Effect of Anti-Sticking Nanostructured Surface Coating on Minimally Invasive Electrosurgical Device in Brain.

    Science.gov (United States)

    Cheng, Han-Yi; Ou, Keng-Liang; Chiang, Hsi-Jen; Lin, Li-Hsiang

    2015-10-01

    The purpose of the present study was to examine the extent of thermal injury in the brain after the use of a minimally invasive electrosurgical device with a nanostructured copper-doped diamond-like carbon (DLC-Cu) surface coating. To effectively utilize an electrosurgical device in clinical surgery, it is important to decrease the thermal injury to the adjacent tissues. The surface characteristics and morphology of DLC-Cu thin film was evaluated using a contact angle goniometer, scanning electron microscopy, and atomic force microscopy. Three-dimensional biomedical brain models were reconstructed using magnetic resonance images to simulate the electrosurgical procedure. Results indicated that the temperature was reduced significantly when a minimally invasive electrosurgical device with a DLC-Cu thin film coating (DLC-Cu-SS) was used. Temperatures decreased with the use of devices with increasing film thickness. Thermographic data revealed that surgical temperatures in an animal model were significantly lower with the DLC-Cu-SS electrosurgical device compared to an untreated device. Furthermore, the DLC-Cu-SS device created a relatively small region of injury and lateral thermal range. As described above, the biomedical nanostructured film reduced excessive thermal injury with the use of a minimally invasive electrosurgical device in the brain. PMID:25851468

  11. The Electric Field of a Uniformly Charged Non-Conducting Cubic Surface

    CERN Document Server

    McCreery, Kaitlin

    2016-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's Law, superposition, Gauss's law, and visualization to understand the electric field produced by a non-conducting cubic surface that is covered with a uniform surface charge density. We first discuss how to deduce qualitatively, using only elementary physics, the surprising fact that the electric field inside the cubic surface is nonzero and has a complex structure, pointing inwards towards the cube center from the midface of each cube and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces. This example would be a good choice for group problem solving in a recitation or flipped classroom.

  12. Topographic mapping of spontaneous and induced electrical activity of brain for people exposed to ionizing radiation as a result of ChNPP accident

    International Nuclear Information System (INIS)

    80 patients have been examined to study neurophysiological manifestations of the functional state of brain. Some features of the functional state of brain in the remote-in-time period (3 to 5 years since the accident) caused by ionizing radiation influence have been disclosed. For examined persons as compared to reference prevailing paroxysmal and spontaneous electrical activity of brain has been observed. 9 refs

  13. Process for depositing strong adherend polymer coating onto an electrically conductive surface

    OpenAIRE

    Bertrand, Olivier; Jérôme, Robert; Gautier, Sandrine; Maquet, Véronique; Detrembleur, Christophe; Jérôme, Christine; Voccia, Samuel; Claes, Michaël; Lou, Xudong; Labaye, David-Emmanuel

    2002-01-01

    Process for depositing by electrografting a strong adherent polymer coating onto an electrically conductive surface comprising an electrochemical grafting at the surface of an active monomer for forming a primer coating P onto said surface and having as general formula: X0 (meth)acrylate wherein X is either part of a preformed polymer or is an intermediate agent for polyaddition reaction or is an anchoring group for attachment of a molecule having at least one complementary reactive group. Su...

  14. Investigation of CVD graphene topography and surface electrical properties

    International Nuclear Information System (INIS)

    Combining scanning probe microscopy techniques to characterize samples of graphene, a selfsupporting, single atomic layer hexagonal lattice of carbon atoms, provides far more information than a single technique can. Here we focus on graphene grown by chemical vapour deposition (CVD), grown by passing carbon containing gas over heated copper, which catalyses single atomic layer growth of graphene on its surface. To be useful for applications the graphene must be transferred onto other substrates. Following transfer it is important to characterize the CVD graphene. We combine atomic force microscopy (AFM) and scanning Kelvin probe microscopy (SKPM) to reveal several properties of the transferred film. AFM alone provides topographic information, showing ‘wrinkles’ where the transfer provided incomplete substrate attachment. SKPM measures the surface potential indicating regions with different electronic properties for example graphene layer number. By combining AFM and SKPM local defects and impurities can also be observed. Finally, Raman spectroscopy can confirm the structural properties of the graphene films, such as the number of layers and level of disorder, by observing the peaks present. We report example data on a number of CVD samples from different sources. (paper)

  15. Brain Basics

    Medline Plus

    Full Text Available ... mainly involved in controlling movement and aiding the flow of information to the front of the brain, ... the neuron will fire. This enhances the electrical flow among brain cells required for normal function and ...

  16. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Richard, M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France) and Laboratoires ANIOS, 59 260 Lille-Hellemmes (France)]. E-mail: marlene.richard@ec-lyon.fr; Le Mogne, Th. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Perret-Liaudet, A. [Hopital Neurologique de Lyon et INSERM U512, 69 394 Lyon (France); Rauwel, G. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); Criquelion, J. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); De Barros, M.I. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Cetre, J.C. [Unite d' Hygiene et d' Epidemiologie, Hopital de la Croix Rousse, 69 317 Lyon (France); Martin, J.M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France)

    2005-02-15

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed.

  17. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    International Nuclear Information System (INIS)

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed

  18. Automated parcellation of the brain surface generated from magnetic resonance images

    Directory of Open Access Journals (Sweden)

    Wen Li

    2013-10-01

    Full Text Available We have developed a fast and reliable pipeline to automatically parcellate the cortical surface into sub-regions. The pipeline can be used to study brain changes associated with psychiatric and neurological disorders. First, a genus zero cortical surface for one hemisphere is generated from the magnetic resonance images at the parametric boundary of the white matter and the gray matter. Second, a hemisphere-specific surface atlas is registered to the cortical surface using geometry features mapped in the spherical domain. The deformation field is used to warp statistic labels from the atlas to the subject surface. The Dice index of the labeled surface area is used to evaluate the similarity between the automated labels with the manual labels on the subject. The average Dice across twenty-four regions on fourteen testing subjects is 0.86. Alternative evaluations have also chosen to show the accuracy and flexibility of the present method. The point-wise accuracy of fourteen testing subjects is above 86% in average. The experiment shows that the present method is highly consistent with FreeSurfer (>99% of the surface area, using the same set of labels.

  19. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    Science.gov (United States)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  20. A geomagnetic storm decreases coherence of oscillations of electric potentials of a human brain

    International Nuclear Information System (INIS)

    Complete text of publication follows. Plenty of technological processes are known to be damaged by magnetic storms. But technology is controlled by men and their functional systems may be damages as well. We are going to consider the electro-neurophysiological aspect of the general problem formulated and investigated at first by V.I. Vernadsky and A.L. Schizevsky: men surrounded by geophysical fields including ones of cosmic origination. The effect formulated in the title was observed for a group of 13 students (practically healthy girls and boys from 18 to 23 years old). To control the main functional systems of the men under investigation, their electroencephalograms (EEG) were being registered along with electrocardiograms, respiratory rhythms, arterial blood pressure and other characteristics during a year. According to the EEG investigations during implementation of the proof-reading test in absence of magnetic storms, the values of the coherence function of time series of the theta-rhythm oscillations (f = 4 - 7.9 Hz, A = 20 μV) of electric potentials of the frontal and occipital parts of the head belong to the interval [0.3, 0.6] for nearly all of the students under investigation. (As the proof-reading test, it was necessary to choose given symbols from a random sequence of ones demonstrated at a monitor and to enter the number of the symbols discovered in a computer. Everyone was known that the time for determination of symbols is unlimited. On the other hand, nobody was known that the EEG and other registrations mentioned are connected with geophysical events). Let us formulate the main result: by implementation of the same test during a magnetic storm, 5 ≤ K ≤ 6, or no later then 24 hours after its beginning (different types of moderate magnetic storms occurred, the data of the IZMIRAN were used), the values of the theta-rhythm coherence function of all of the students of the group under consideration occurred to be decreased up to 0.1 or less

  1. Influence of Process Parameters on Electrical Discharge Machined Job Surface Integrity

    Directory of Open Access Journals (Sweden)

    A. K.M.A. Iqbal

    2010-01-01

    Full Text Available Problem statement: Electrical Discharge Machining (EDM is the most widely used non conventional machining process for removing material from workpiece by means of a series of repeated electric discharges. Electrical Discharge milling (ED-milling is an emerging technology where a cylindrical tool electrode follows a programmed path in order to obtain the desired shape of a part. During machining of metals by EDM process, a large amount of heat is generated for which the surface characteristics of the metals are affected. This phenomenon is unavoidable but this can be controlled by suitable selection of the process parameters. Though in most of the cases only electrical parameters are chosen but non electrical parameters also play significant role in the area of surface integrity of the machined surface. The present study emphasized to establish a comprehensive analysis of surface integrity, including the micro cracks, recast layer thickness and material migration by combining both electrical and non electrical process parameters under a wide range of machining condition. Approach: In this research, experiment was designed by using design expert software (DOE. Response Surface Methodology (RSM was used for designing the experiment. The process parameters varied in the present study were the rotational speed of the electrode (N, Voltage (V and feed rate (f. Stainless steel AISI 304 was chosen as work material while a copper electrode was used for EDM milling operation. The EDM milling operations were performed on EDM machine mikrotools integrated multi process machine tools DT 110. In this research, Scanning Electron Microscope (SEM was used to investigate the effect of machining parameters on recast layer thickness, micro cracks on the machined surface as well as the percentage of material migration on the workpiece surface. Results: Electrode rotation reduces recast layer thickness of about 16.58% than that of stationary electrode with same

  2. Nanoscale Electric Phenomena at Oxide Surfaces and Interfaces by Scanning Probe Microscopy

    OpenAIRE

    Kalinin, Sergei V.

    2002-01-01

    Scanning Probe Microscopy is used to study and quantify the nanoscale electric phenomena in the two classes of oxide systems, namely transport at electroactive grain boundaries and surface behavior of ferroelectric materials. Scanning Impedance Microscopy is developed to study the capacitance and local C-V characteristic of the interfaces combining the spatial resolution of traditional SPMs with the precision of conventional electrical measurements. SPM of SrTiO3 grain boundaries in conjuncti...

  3. The Hydrogen Abstraction from A Diamond(111) Surface in A Uniform Electric Field

    Science.gov (United States)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Kang, Jeung Ku.; Musgrave, Charles B.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Bond breaking in a strong electric field is shown to arise from a crossing of the ionic and covalent asymptotes. The specific example of hydrogen abstraction from a diamond(111) surface is studied using a cluster model. The addition of nearby atoms in both the parallel and perpendicular direction to the electric field are found to have an effect. It is also shown that the barrier is not only related to the position of the ionic and covalent asymptotes.

  4. Reconstruction and cooperative phenomena on the metal surfaces in strong electric fields

    International Nuclear Information System (INIS)

    The formation of ordered structures in thin dielectric films on the surface of metallic point-samples has been found and studied by means of field-ion microscope. The critical value of the electric field voltage, corresponding to stability of the formed structures has been estimated and measured. It is supposed that the considered system, placed into a strong inhomogeneous electric field (108-109 W/m) is a suitable object to study synergetic regularities

  5. Photodetachment of H- near Elastic Surface in Parallel Electric and Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2007-01-01

    The photodetachment cross section of H- in parallel electric and magnetic fields near an elastic surface is derived and calculated by using the closed orbit theory. It is found that the elastic surface can produce some interesting effects. Besides the closed orbits previously found by Peters et al. for the H- in parallel electric and magnetic fields, some additional closed orbits are produced due to the effect of the elastic surface. The results show that the cross section oscillation is much more complicated in comparison with the cross section of H- in parallel external fields without surface. Each peak in the Fourier transformed cross section corresponds to the period of one detached electron closed orbit. This study provides a new understanding of the photodetachment of negative ions in the presence of external fields and surface.

  6. Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring

    Science.gov (United States)

    Hayley, Kevin; Bentley, L. R.; Gharibi, M.; Nightingale, M.

    2007-09-01

    Electrical resistivity imaging surveys are used to monitor variations in pore fluid chemistry and saturation as well as time-lapse changes. Temperature variations in the near surface can produce larger magnitude changes in electrical conductivity than changes due to slow moving solute plumes or spatial variations in chemistry and soil moisture. Relationships between temperature and electrical conductivity based on previous studies conducted over 25-200°C do not explain 0-25°C laboratory data. A modification to the temperature dependence within a petrophysical model is proposed that may allow general application over this temperature range. An empirical linear approximation of 1.8 to 2.2 percent change in bulk electrical conductivity per degree C is consistent with low temperature electrical conductivity studies and the predictions of the petrophysical model used. This relationship can be used to account for the effect of temperature variations within individual images or time-lapse difference images.

  7. Changes in electric properties of semimetal and semiconductor films during metals deposition on their surfaces

    International Nuclear Information System (INIS)

    Investigation into electrical properties of deposited films of lead and bismuth tellurides, bismuth, tellurium and antimony in the course of copper deposition on their surface is conducted to decorate crystallite boundaries. A sharp drop of electric resistance, then its stabilization and again a drop are observed from the moment of copper deposition beginning. Electric resistance of bismuth, antimony and tellurium films drops monotonously. Electric resistance drop may be explained by removal of barriers at the crystallite boundaries resulting from decoration with copper. The maximum coefficient of thermoelectric capacity is achieved when electric resistance enters its stabilization stage, which testifies to the fact that the film thermoelectrical properties may be improved through decorating the crystallite boundaries

  8. Nanoscale roughness and morphology affect the IsoElectric Point of titania surfaces.

    Directory of Open Access Journals (Sweden)

    Francesca Borghi

    Full Text Available We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2 surfaces in aqueous solutions. IsoElectric Points (IEPs of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces.

  9. Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurements

    KAUST Repository

    Almuhammadi, Khaled

    2015-10-19

    Electrical impedance tomography (EIT) is a low-cost, fast and effective structural health monitoring technique that can be used on carbon fiber reinforced polymers (CFRP). Electrodes are a key component of any EIT system and as such they should feature low resistivity as well as high robustness and reproducibility. Surface preparation is required prior to bonding of electrodes. Currently this task is mostly carried out by traditional sanding. However this is a time consuming procedure which can also induce damage to surface fibers and lead to spurious electrode properties. Here we propose an alternative processing technique based on the use of pulsed laser irradiation. The processing parameters that result in selective removal of the electrically insulating resin with minimum surface fiber damage are identified. A quantitative analysis of the electrical contact resistance is presented and the results are compared with those obtained using sanding.

  10. Surface-roughness contributions to the electrical resistivity of polycrystalline metal films

    Science.gov (United States)

    Jacob, U.; Vancea, J.; Hoffmann, H.

    1990-06-01

    The influence of surface roughness on the electrical conductivity of polycrystalline metal films has to be considered at two different length scales. The large-scale surface roughness due to the granular arrangement of these films gives rise to a fluctuating film cross section. One-dimensional models of these fluctuations lead to roughness values consistent with scanning-tunneling-microscopy images of film surfaces. The microscopic surface roughness, mainly given by atomic steps on the crystallite surfaces, represents centers for surface scattering of conduction electrons. With this concept we were able to describe not only the thickness-dependent conductivity of films with natural (as-deposited) surface roughness, but also the increase in the resistance during subsequent coating with adatoms at 80 K owing to an artificial microscopic roughening of their surfaces.

  11. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Skoglund, Karl; Ryberg, Charlotte

    2005-01-01

    This paper describes methods for automatic localization of the mid-sagittal plane (MSP) and mid-sagittal surface (MSS). The data used is a subset of the Leukoaraiosis And DISability (LADIS) study consisting of three-dimensional magnetic resonance brain data from 62 elderly subjects (age 66 to 84...... years). Traditionally, the mid-sagittal plane is localized by global measures. However, this approach fails when the partitioning plane between the brain hemispheres does not coincide with the symmetry plane of the head. We instead propose to use a sparse set of profiles in the plane normal direction...... the name, the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of...

  12. Differential responsiveness of the right parahippocampal region to electrical stimulation in fixed human brains: Implications for historical surgical stimulation studies?

    Science.gov (United States)

    Rouleau, Nicolas; Persinger, Michael A

    2016-07-01

    If structure dictates function within the living human brain, then the persistence of specific responses to weak electric currents in fixed, deceased brains could reflect "hardwired" properties. Different key structures from the left and right hemispheres of brains that had been fixed for over 20years with ethanol-formalin-acetic acid were stimulated with either 1-Hz, 7-Hz, 10-Hz, 20-Hz, or 30-Hz, sine-wave, square-wave, or pulsed currents while needle-recorded quantitative electroencephalographic responses were obtained. Differential responses occurred only within the right hippocampus and parahippocampal gyrus. The right hippocampus displayed frequency-independent increases in gamma power relative to the left hemispheric homologue. The parahippocampal region responded exclusively to 7-Hz pulsed currents with wideband (8-30Hz) power. These profiles are consistent with dynamic connections associated with memory and consciousness and may partially explain the interactions resultant of pulse type and hemisphere for experiential elicitations during the golden age of surgical stimulations. The results also indicate that there may be an essential "hardwiring" within the human brain that is maintained for decades when it is fixed appropriately. PMID:27208828

  13. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature

    Directory of Open Access Journals (Sweden)

    Aslihan Selimbeyoglu

    2010-05-01

    Full Text Available In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis, and the anatomy of seizure signs and symptoms in patients with epilepsy. In addition to a comprehensive overview of published reports in the last hundred years, we discuss some of the fundamental concepts, issues, and remaining questions that have defined the field of EBS. We also review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain.

  14. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R;

    2015-01-01

    whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation...... of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up...

  15. Surface reconstructions of foetal brain abnormalities using ultrafast steady state 3D acquisitions

    International Nuclear Information System (INIS)

    MRI of the foetal brain in utero is performed in routine clinical practice using sequences that produce two-dimensional (2D) images. Recent developments in image post-processing have allowed the construction of three-dimensional (3D) volume data sets from 2D images acquired in different anatomical planes, but these have limitations due to the unpredictable nature of foetal movement. These limitations have been overcome by development of several different advanced computer techniques, which require specialist knowledge, software, and processing methods, which are rarely available in routine clinical settings. Our aim was to develop a technique that can be used in routine clinical situations without the need for custom-developed or expensive software by utilizing MRI sequences that can produce a 3D data set in “ultrafast” timescales. The 3D dataset, combined with versatile image post-processing and visualization techniques, has resulted in the production of high-resolution images of foetal brain surfaces in utero. The aim of this paper is to demonstrate our methods and early results by way of a pictorial review illustrating a range of developmental brain disease in utero

  16. Development of a system to generate electricity on the Moon's surface during the lunar night

    OpenAIRE

    Torroba Moreno, Oscar

    2010-01-01

    One of the biggest challenges of the exploration of the Moon is the survival of the crew and the lunar assets during periods of darkness (known as lunar night). The environmental conditions on the lunar surface and its cycle, with long periods of darkness, make any long mission in need of heat and electricity to be successful. This report presents two different systems to produce heat and electricity on the Moon’s surface. The first system is composed by Thermal Wadis, sources of thermal p...

  17. Study of a system to generate electricity on the Moon's surface during the lunar night

    OpenAIRE

    Torroba, Oscar; Climent, Blai; González Cinca, Ricardo; Ramachandran, Narayanan; Griffin, Michael D.

    2012-01-01

    One of the biggest challenges of the exploration of the Moon is the survival of the crew and the lunar assets during the lunar night. The environmental conditions on the lunar surface and its cycle, with long periods of darkness, make any long mission in need of specific amounts of heat and electricity to be successful. We have analyzed two different systems to produce heat and electricity on the Moon’s surface. The first system consists of the Thermal Wadis, sources of thermal power that can...

  18. Mapping of electrical potentials from the chest surface - preprocessing and visualization

    Directory of Open Access Journals (Sweden)

    Vaclav Chudacek

    2005-01-01

    Full Text Available The aim of the paper is to present current research activity in the area of computer supported ECG processing. Analysis of heart electric field based on standard 12lead system is at present the most frequently used method of heart diseasediagnostics. However body surface potential mapping (BSPM that measures electric potentials from several tens to hundreds of electrodes placed on thorax surface has in certain cases higher diagnostic value given by data collection in areas that are inaccessible for standard 12lead ECG. For preprocessing, wavelet transform is used; it allows detect significant values on the ECG signal. Several types of maps, namely immediate potential, integral, isochronous, and differential.

  19. Resonant phase jump with enhanced electric field caused by surface phonon polariton in terahertz region.

    Science.gov (United States)

    Okada, Takanori; Nagai, Masaya; Tanaka, Koichiro

    2008-04-14

    We investigated surface phonon polariton in cesium iodide with terahertz time-domain attenuated total reflection method in Otto configuration, which gives us both information on amplitude and phase of surface electromagnetic mode directly. Systematic experiments with precise control of the distance between a prism and an active material show that the abrupt change of pi-phase jump appears sensitively under polariton picture satisfied when the local electric field at the interface becomes a maximum. This demonstration will open the novel phase-detection terahertz sensor using the active medium causing the strong enhancement of terahertz electric field. PMID:18542668

  20. Effect of electric spark pulses on surface layer structure of chromium monocrystals

    International Nuclear Information System (INIS)

    Effect of electric spark pulses on the character of fracture of surface layers of chromium monocrystals during cutting in crystallographic planes (100), (110) and (111) is established. Crystallographical anisotropy of defect formation is determined and the value of defective layers during cutting in the above planes is found. A conclusion is made that cracks in chromium monocrystals of commercial grade during electric-spark cutting are formed in planes (100) and more seldom in (111) ones. A high-temperature annealing for the reduction of initial properties of chromium surface layers is suggested

  1. THE FORMATION SURFACE OF THE ELECTRIC DISCHARGE OF THE SPARK PLUG "CASSINI"

    OpenAIRE

    Мельник, Вікторія Миколаївна; Карачун, Володимир Володимирович

    2015-01-01

    The paper examines the possibility of increasing the surface of the electric discharge in the ignition devices of the working mixture of internal combustion engines. It is shown that the change of shape of the lower end of the Central electrode of the spark plug with a flat conductive "CASSINI ovals allows you to create the enhanced surface electric discharge in the form of a column volt with the cross-section in the shape of ovals of CASSINI", which creates the opportunity to increase spark ...

  2. Analysis of the time-domain spectrum of hydrogen in electric field near helium surface

    Institute of Scientific and Technical Information of China (English)

    Xiaoqing Gong; Guangcan Yang

    2011-01-01

    The Ryderberg electronic wave packet dynamics of hydrogen atom near helium surface in an electric field is investigated using the semiclassical method. The autocorrelation function is calculated when the photoionized electron is excited by a short laser pulse for different atom-surface separations. The results show that new recurrences appear because of the helium surface, and the number of recurrent peaks increases with the decrease in atom-surface distance. The new feature is ascribed to the bifurcation of new closed orbits in the classical dynamics of the photoionized electron. Therefore, surface properties have a significant effect on the spectrum of nearby atoms or ions.%@@ The Ryderberg electronic wave packet dynamics of hydrogen atom near helium surface in an electric field is investigated using the semiclassical method.The autocorrelation function is calculated when the photoionized electron is excited by a short laser pulse for different atom-surface separations.The results show that new recurrences appear because of the helium surface, and the number of recurrent peaks increases with the decrease in atom-surface distance.The new feature is ascribed to the bifurcation of new closed orbits in the classical dynamics of the photoionized electron.Therefore, surface properties have a significant effect on the spectrum of nearby atoms or ions.

  3. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  4. Amplification of surface acoustic waves by transverse electric current in piezoelectric semiconductors

    DEFF Research Database (Denmark)

    Gulyaev, Yuri V.

    1974-01-01

    It is shown that the principal characteristic feature of the surface acoustic waves in piezoelectrics—the presence of an alternating electric field transverse to the surface, which can be of the same order of magnitude as the longitudinal field—may not only give rise to the known transverse...... acoustoelectric effect but also lead to amplification of surface acoustic waves by electron drift perpendicular to the surface. For Love waves in a piezoelectric semiconductor film on a highly conducting substrate, the amplification coefficient is found and the conditions necessary for amplification...

  5. Hardness and structure changes at surface in electrical discharge machined steel C 3840

    International Nuclear Information System (INIS)

    The electrical discharge machining (EDM) of both hard and soft materials became an important technique in industrial applications. This technique has an advantage in producing of structural/tool parts of complex geometry. The EDM is based on electrical phenomena, when the treated surface undergoes to erosion. The first step in EDM, the melting of thin surface layer, frequently is neglected. In this paper the changes of hardness and structure at surface layer, after EDM is applied on steel C 3840, will be discussed. The steel C- 3840 was quenched and tempered to hardness of 63 HRC, at surface, and than machined by electrical discharging. The changed, white, layer is just a product of melting and decarburization processes. The white layer is registered at surface by using a metallographic investigation. Hardness profile is measured from surface to the interior of material. The achievement of local high temperatures during EDM is resulting on melt and erosion of material. Besides of these effects, during EDM were happened some minor but not a neglectible effects, primary on structure changes on treated surface. It would be expected that melting, even an evaporation of melted metal, and further the phase transformation have an important influence on the starting structure. (Original)

  6. Bulk metallic glassy surface native oxide: Its atomic structure, growth rate and electrical properties

    International Nuclear Information System (INIS)

    Formation of a native oxide layer on the surface of bulk metallic glasses (BMGs) influences significantly the nanoscale tribological properties and mechanical behavior of the BMGs used in nanodevices. However, our knowledge of the native oxidation process on the BMG surface and structure of the corresponding oxides remains limited because the oxide layer is very thin. Here we conducted a combined state-of-the-art experimental technique study of the atomic structure, oxidations states and electrical conductivity of the native surface oxides on a Cu−Zr−Al BMG formed at ambient conditions by aberration-corrected scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (AFM). This allowed shedding light on the atomic structure, metal oxidation state, growth behavior and nanoscale electrical properties of the surface oxide. The conductive AFM measurements reveal that the electrical conductivity of the native oxide layer transits from the initially metallic to a nonlinear one after some air exposure, and finally changes to insulative state. These findings represent a significant step forward in the knowledge of surface oxides and open up the possibility of fabricating nanoscale electrical devices based on BMGs with controllable conductivity

  7. Surface assisted electric transport in Ag{sub 2}S thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karashanova, D. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria)]. E-mail: adi@clf.bas.bg; Starbov, N. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria)

    2006-02-15

    Electric transport measurements of thickness-dependent electronic and ionic conductivity of epitaxial Ag{sub 2}S films are used to split both kinds of conductivity into bulk and surface components. The established considerable electronic and ionic surface conductances demonstrate unambiguously the co-existance of electronic and ionic space charge regions in the vicinity of silver sulfide free surface oriented along the zone axes [1-bar 01-bar ]. The parameters of both space charge layers - surface potential, thickness of the space charge region and concentration of the surface compensating charges, are calculated. It is estimated that for intrinsic silver sulfide, the effective surface potential of (1-bar 01-bar ) Ag{sub 2}S surface is negative, its value being about -610mV at 400K.

  8. SU-E-J-171: Surface Imaging Based Intrafraction Motion Assessments for Whole Brain Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To quantify and characterize intrafraction motion for whole brain radiotherapy treatments in open face masks using 3D surface imaging. Methods: Fifteen whole brain patients were monitored with 3D surface imaging over a total of 202 monitoring sessions. Mean translations and rotations were calculated over each minute, each session, and over all sessions combined. The percentage of each session that the root mean square (RMS) of the linear translations were outside of 2 mm, 3 mm, 4 mm, and 5 mm were determined for each patient. Correlations between mean translations per minute and time and between standard deviation per minute and time were evaluated using Pearson's r value. Results: The mean RMS translation averaged over all patients was 1.45 mm +/− 1.52 mm. The patients spent an average of 18%, 10%, 6%, and 3% of the monitoring time outside of 2 mm, 3 mm, 4 mm, and 5 mm RMS tolerances, respectively. The RMS values averaged over all patients were 1.31 mm +/− 0.98 mm, 1.52 +/- 1.04, and 1.30 mm +/− 0.71 mm over the 1th, 5th, and 10th minutes of monitoring, respectively. Neither, the RMS values (p = 0.15) or the standard deviations of the RMS values (p = 0.16) showed significant correlations with time. Conclusion: The patients were positioned within 2 mm of isocenter, which was the initial set-up tolerance, for the majority of their treatments. The average position changed by < 0.3 mm over 10 minutes of monitoring. Short term movements, reflected by the standard deviations, where on the order of 1 mm. This immobilization system provides adequate immobilization over a course of treatment for whole brain radiotherapy. This system may also be suitable for head and neck or stereotactic radiosurgery treatments as well

  9. Carbon nanotubes dispersed polymer nanocomposites: mechanical, electrical, thermal properties and surface morphology

    Indian Academy of Sciences (India)

    Nitin Sankar; Mamilla Nagarjun Reddy; R Krishna Prasad

    2016-02-01

    The various properties and surface morphology of the carbon nanotubes (CNTs) dispersed polydimethyl siloxane (PDMS) matrix were studied to determine their usefulness in various applications. The tensile strength, Young's modulus and electrical breakdown strength of CNT/polymer composites were 0.35MPa, 1.2MPa and 8.1 kV, respectively. The thermal conductivity and dielectric constant for the material having 4.28 wt% CNT were 0.225 W m−1 K−1 and 2.329, respectively. The CNT/polymer composites are promising functional composites with improved mechanical and electrical properties. The scanning electron microscope analysis of surface morphology of PDMS/CNT composite showed that the rough surface texture on nanocomposite has large surface area with circular pores. The Fourier transform infrared spectroscopy showed the functional groups present in polymer nanocomposite.

  10. A fast way to visualize the brain surface with volume rendering of MRI data.

    Science.gov (United States)

    Matsumoto, S; Asato, R; Konishi, J

    1999-11-01

    The preprocessing of 3-dimensional (3D) MRI data constitutes a bottleneck in the process of visualizing the brain surface with volume rendering. As a fast way to achieve this preprocessing, the authors propose a simple pipeline based on an algorithm of seed-growing type, for approximate segmentation of the intradural space in T1-weighted 3D MRI data. Except for the setting of a seed and four parameters, this pipeline proceeds in an unsupervised manner; no interactive intermediate step is involved. It was tested with 15 datasets from normal adults. The result was reproducible in that as long as the seed was located within the cerebral white matter, identical segmentation was achieved for each dataset. Although the pipeline ran with gross segmentation error along the floor of the cranial cavity, it performed well along the cranial vault so that subsequent volume rendering permitted the observation of the sulco-gyral pattern over cerebral convexities. Use of this pipeline followed by volume rendering is a handy approach to the visualization of the brain surface from 3D MRI data. PMID:10587913

  11. Brain Basics

    Medline Plus

    Full Text Available ... illnesses, such as depression, can occur when this process does not work correctly. Communication between neurons can also be electrical, such as in areas of the brain that control movement. When electrical signals are abnormal, they can ...

  12. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    Science.gov (United States)

    Xiu, Yonghao

    In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect of hierarchical roughness, i.e., two scale roughness effect on roughness is investigated using systems of (1) monodisperse colloidal silica sphere (submicron) arrays and Au nanoparticle on top and (2) Si micrometer pyramids and Si nanostructures on top from KOH etching and metal assisted etching of Si. The relation between the contact area fraction and water droplet contact angles are derived based on Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained regarding the synergistic combination of two scales. Previously the microscopic three-phase-contact line is thought to be the key factor in determining contact angles and hystereses. In our study, Laplace pressure was brought up and related to the three-phase-contact line and taken as a key figure of merit in determining superhydrophobicity. In addition, we are one of the first to study the effect of tapered structures (wall inclination). Combining with a second scale roughness on the tapered structures, stable Cassie state for both water and low surface energy oil may be achieved. This is of great significance for designing both superhydrophobicity and superoleophobicity. Regarding the origin of contact angle hysteresis, study of superhydrophobicity on micrometer Si pillars was performed. The relation between the interface work of function and contact angle hysteresis was proposed and derived mathematically based on the Young-Dupre equation. The three-phase-contact line was further related to a secondary scale roughness induced. Based on

  13. Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension

    Energy Technology Data Exchange (ETDEWEB)

    Janmanee, Pichai, E-mail: pichai.j@rmutk.ac.th [Department of Industrial Engineering, Thammasat University, Klongluang, Pathumhtani (Thailand); Muttamara, Apiwat [Department of Industrial Engineering, Thammasat University, Klongluang, Pathumhtani (Thailand)

    2012-07-15

    Surface modification by a titanium coating layer onto a tungsten carbide surface by electrical discharge coating (EDC) was studied by considering a titanium coating modification as well as the completeness of the tungsten carbide surface. This was carried out by electrical discharge machining (EDM). The tungsten carbide material was produced using a fluid dielectric oil, which was mixed with titanium powder. The current and duty cycles were varied resulting in a change in the titanium coating layer thickness. Also, an analysis of the chemical composition using energy dispersive spectroscopy (EDS) revealed that a titanium coating layer was formed causing the hardness of the titanium surface to be close to that of tungsten carbide. The completeness of the surface was evaluated using scanning electron microscopy (SEM) and a small number of microcracks were found on the surface since the microcracks were filled and substituted by titanium powder and carbon (a hydrocarbon) that decomposed from the dielectric that acted as a combiner (TiC). Also, the high concentration of carbon increased the amount of Ti and C combination and TiC was formed, which enhanced the surface hardness of the coated layer to 1750 HV. The surface roughness of the coated layer decreased and this reduced the formation of microcracks on the surface workpiece.

  14. Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension

    International Nuclear Information System (INIS)

    Surface modification by a titanium coating layer onto a tungsten carbide surface by electrical discharge coating (EDC) was studied by considering a titanium coating modification as well as the completeness of the tungsten carbide surface. This was carried out by electrical discharge machining (EDM). The tungsten carbide material was produced using a fluid dielectric oil, which was mixed with titanium powder. The current and duty cycles were varied resulting in a change in the titanium coating layer thickness. Also, an analysis of the chemical composition using energy dispersive spectroscopy (EDS) revealed that a titanium coating layer was formed causing the hardness of the titanium surface to be close to that of tungsten carbide. The completeness of the surface was evaluated using scanning electron microscopy (SEM) and a small number of microcracks were found on the surface since the microcracks were filled and substituted by titanium powder and carbon (a hydrocarbon) that decomposed from the dielectric that acted as a combiner (TiC). Also, the high concentration of carbon increased the amount of Ti and C combination and TiC was formed, which enhanced the surface hardness of the coated layer to 1750 HV. The surface roughness of the coated layer decreased and this reduced the formation of microcracks on the surface workpiece.

  15. Surface performance of workpieces processed by electrical discharge machining in gas

    Institute of Scientific and Technical Information of China (English)

    LI Li-qing; BAI Ji-cheng; GUO Yong-feng; WANG Zhen-long

    2009-01-01

    The surface performance of workpieces processed by electrical discharge machining in gas (dry EDM) was studied in this paper. Firstly, the composition, micro hardness and recast layer of electrical discharge machined (EDMed) surface of 45 carbon steels in air were investigated through different test analysis methods. The results show that the workpiece surface EDMed in air contains a certain quantity of oxide, and oxidation occurs on the workpiece surface. Compared with the surface of workpieces processed in kerosene, fewer cracks exist on the dry EDMed workpiece surface, and the surface recast layer is thinner than that obtained by conventional EDM. The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene, and higher than that of the matrix. In addition, experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved, and it is related with tool material and dielectric.

  16. Electric fields induce reversible changes in the surface to volume ratio of micropipette-aspirated erythrocytes.

    OpenAIRE

    Katnik, C; Waugh, R

    1990-01-01

    Micropipette-aspirated erythrocytes exhibit reversible changes in sphericity (surface-to-volume ratio) in response to applied electric fields. The potentials were applied between the shaft of the pipette and the bathing medium using Ag-AgCl electrodes and current clamping electronics. The change in surface-to-volume ratio is evidenced as a reversible change in the length of the cell projection in the pipette at constant aspiration pressure and changing voltage. The magnitude of the changes de...

  17. Surface-downhole electrical resistivity tomography applied to monitoring of the CO2 storage Ketzin (Germany)

    OpenAIRE

    Peter Bergmann; Cornelia Schmidt-Hattenberger; Kiessling, D.; Rücker, C.; Tim Labitzke; Jan Henninges; Gunther Baumann; Schütt, H.;  

    2012-01-01

    Surface-downhole electrical resistivity tomography (SDERT) surveys were repeatedly carried out to image CO2 injected at the pilot storage Ketzin, Germany. The experimental setup combines surface with downhole measurements by using a permanent electrode array that has been deployed in three wells. We performed one baseline and three repeat experiments; the first survey was performed during the site startup and the subsequent surveys during the first year of CO2 injection. By the time of the th...

  18. Assessment of Electrically Evoked Auditory Brain Stem Response of 30 Implanted Patients With Nucleus Multichannel Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Dr. Soqrat Faghihzadeh

    2001-05-01

    Full Text Available Methods and Materials: Investigation of electrically evoked auditory brain stem response (EABR is a new issue, especially in implanted patients. Experiments were performed in C.I Center of Iranian Institute for Science and research expansion,1996 on 30 implanted patients with 22 spectra and MSP cochlear implant system and 30 normal subjects with the range of 3-33 years. Findings: I- EABR was obtained in the implanted patients. 2- Absolute latency of EABR waves is 1-1.5 ms shorter than ABR waves ‘P<0.05. 3-Absolute latency of wave V decreases as a function of electric stimulus magnitude (P<0.05. 4- No significant difference was observed in IPL Ill-V between ABR and EABR.

  19. Nanoscale Lubrication of Ionic Surfaces Controlled via a Strong Electric Field

    Science.gov (United States)

    Strelcov, Evgheni; Kumar, Rajeev; Bocharova, Vera; Sumpter, Bobby G.; Tselev, Alexander; Kalinin, Sergei V.

    2015-01-01

    Frictional forces arise whenever objects around us are set in motion. Controlling them in a rational manner means gaining leverage over mechanical energy losses and wear. This paper presents a way of manipulating nanoscale friction by means of in situ lubrication and interfacial electrochemistry. Water lubricant is directionally condensed from the vapor phase at a moving metal-ionic crystal interface by a strong confined electric field, thereby allowing friction to be tuned up or down via an applied bias. The electric potential polarity and ionic solid solubility are shown to strongly influence friction between the atomic force microscope (AFM) tip and salt surface. An increase in friction is associated with the AFM tip digging into the surface, whereas reducing friction does not influence its topography. No current flows during friction variation, which excludes Joule heating and associated electrical energy losses. The demonstrated novel effect can be of significant technological importance for controlling friction in nano- and micro-electromechanical systems.

  20. Nucleation of Gold in the Electric Field on the Surface of Template

    Directory of Open Access Journals (Sweden)

    M.Yu. Barabash

    2014-04-01

    Full Text Available The comparative study of gold nanoclusters phase formation processes in the matrix of poly-N-vinil-carbazole ( PVCa at co-condensation from the gas phase in local electric field near the surface of the template and on the surface of neutral substrates is investigated. TEM studies have directly observed the golden critical nuclei in the PVCa matrix and determine their size. Experimentally proved that the size of the gold critical nuclei is 1.9 nm, whereas in the non-uniform electric field of the template is reduced it to 1.2 nm. Modelling the influence of polarization component on Au nucleation within the thermodynamic approach to electrically charged and neutral gold nanoclusters showed the possibility of the existence of the measured changes in the critical nucleus size in the field 108-1010 V/m.

  1. Impedance operator description of a meta–surface with electric and magnetic dipoles

    OpenAIRE

    Felbacq, Didier

    2015-01-01

    Article invité pour Mathematical Problems in Engineering A meta-surface made of a collection of nano-resonators characterized an electric dipole and a magnetic dipole was studied in the regime where the wavelength is large with respect to the size of the resonators. An effective description in terms of an impedance operator was derived.

  2. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper; Tolker-Nielsen, Tim; Møller, Per

    2008-01-01

    used for the evaluation of inhibiting effects and the inhibiting mechanism. For silver-palladium surfaces combined with bacteria in media, the inhibiting effect was a result of electrochemical interactions and/or electrical field, and in some specific media, such as ammonium containing, undesired...

  3. Electrical conduction through surface superstructures measured by microscopic four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanabe, F.;

    2003-01-01

    For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultra-high vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope...

  4. A New Strategy of Drug Delivery: Electric Field Distribution in Brain Tumor Due to Electroporation

    OpenAIRE

    Shi, Junxing

    2014-01-01

    As the second leading cause of cancer-related deaths in children under 20, and the second leading cause of cancer-related deaths in males aged 20–39, there is a need to seek an effective treatment for brain tumors. While there may be various drugs for brain tumors, the problem is the lack of effective methods of delivery through cell membranes at a very specified and confined region. In order to tackle this specific problem of drug delivery, electroporation is introduced. Electroporation, the...

  5. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    International Nuclear Information System (INIS)

    Graphical abstract: The adsorption of Cyt c on phosphorylcholine self-assembled monolayers (N atoms of the choline groups are colored in blue while the P atoms of the phosphate groups in orange). - Highlights: • PC-SAM could sensitively adjust its charge distribution to applied electric fields. • Adsorption of Cyt c on the PC-SAM is promoted or retarded as the charge distribution of the SAM changes. • Orientations of Cyt c on the PC-SAM are regulated by the structural changes of the SAM. • The structural changes of the SAM cause little deformation in Cyt c. - Abstract: Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the

  6. Modulating protein behaviors on responsive surface by external electric fields: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yun, E-mail: xieyunxx@gdpu.edu.cn; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao

    2015-01-30

    Graphical abstract: The adsorption of Cyt c on phosphorylcholine self-assembled monolayers (N atoms of the choline groups are colored in blue while the P atoms of the phosphate groups in orange). - Highlights: • PC-SAM could sensitively adjust its charge distribution to applied electric fields. • Adsorption of Cyt c on the PC-SAM is promoted or retarded as the charge distribution of the SAM changes. • Orientations of Cyt c on the PC-SAM are regulated by the structural changes of the SAM. • The structural changes of the SAM cause little deformation in Cyt c. - Abstract: Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the

  7. Thirty minute transcutaneous electric acupoint stimulation modulates resting state brain activities: a perfusion and BOLD fMRI study.

    Science.gov (United States)

    Jiang, Yin; Hao, Ying; Zhang, Yue; Liu, Jing; Wang, Xiaoying; Han, Jisheng; Fang, Jing; Zhang, Jue; Cui, Cailian

    2012-05-31

    Increasing neuroimaging studies have focused on the sustained after effects of acupuncture, especially for the changes of brain activities in rest. However, short-period stimuli have mostly been chosen in these works. The present study aimed to investigate how the resting state brain activities in healthy subjects were modulated by relatively long-period (30 min) acupuncture, a widely used modality in clinical practice. Transcutaneous electric acupoint stimulation (TEAS) or intermittent minimal TEAS (MTEAS) were given for 30 min to 40 subjects. Functional MRI (fMRI) data were collected including the pre-stimulation resting state and the post-stimulation resting state, using dual-echo arterial spin labeling (ASL) techniques, representing both cerebral blood flow (CBF) signals and blood oxygen-dependent level (BOLD) signals simultaneously. Following 30 min TEAS, but not MTEAS, the mean global CBF decreased, and a significant decrease of regional CBF was observed in SI, insula, STG, MOG and IFG. Functional connectivity analysis showed more secure and spatially extended connectivity of both the DMN and SMN after 30 min TEAS. Our results implied that modulation of the regional brain activities and network connectivity induced by thirty minute TEAS may associate with the acupuncture-related therapeutic effects. Furthermore, the resting state regional CBF quantified by ASL perfusion fMRI may serve as a potential biomarker in future acupuncture studies. PMID:22541167

  8. TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions.

    Science.gov (United States)

    Hill, Aron T; Rogasch, Nigel C; Fitzgerald, Paul B; Hoy, Kate E

    2016-05-01

    Transcranial electrical stimulation (tES) techniques are able to induce changes in cortical excitability and plasticity through the administration of weak currents to the brain and are currently being used to manipulate a vast array of cognitive processes. Despite the widespread use of tES technologies within both research and remedial settings, their precise neurophysiological mechanisms of action are not well established outside of the motor cortex. The expanding use of tES within non-motor brain regions highlights the growing need for a more comprehensive understanding of the effects of stimulation across a diversity of cortical locations. The combination of transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a method of directly probing both local and widespread changes in brain neurophysiology, through the recording of TMS-evoked potentials and cortical oscillations. In this review we explore TMS-EEG as a tool for examining the impact of tES on cortical function and argue that multimodal approaches which combine tES with TMS-EEG could lead to a deeper understanding of the mechanisms which underlie tES-induced cognitive modulation. PMID:26959337

  9. Magnetic field effect in photodetachment from negative ion in electric field near metal surface

    Institute of Scientific and Technical Information of China (English)

    Tang Tian-Tian; Wang De-Hua; Huang Kai-Yun; Wang Shan-Shan

    2011-01-01

    Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Du et al. for the H-in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion-surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.

  10. Magnetic field effect in photodetachment from negative ion in electric field near metal surface

    International Nuclear Information System (INIS)

    Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Du et al. for the H− in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion—surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces. (atomic and molecular physics)

  11. Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pons, Jerome; Moreau, Eric; Touchard, Gerard [LEA, University of Poitiers/CNRS/ENSMA, Bd. Curie, Teleport 2, BP 30179, 86962 Futuroscope Cedex (France)

    2005-10-07

    The electrical properties of an asymmetric surface dielectric barrier discharge in atmospheric air have been investigated experimentally. The discharge is used for airflow production close to the dielectric surface, and the time-averaged flow velocity spatial profiles have been measured. Velocities of up to 3.5 m s{sup -1} at heights of 1-2 mm are reached when filamentary discharges with current peaks up to 20 mA are produced along the surface. In terms of powers, mechanical powers (output) of a few milliwatts are obtained for electrical powers (input) up to 10 W. Variation laws or behaviour with several discharge parameters (applied voltage waveform, distance between electrodes, dielectric thickness and permittivity) have been experimentally determined.

  12. PROBABILISTIC STATISTICAL ASSESSMENT OF SURFACE ROUGHNESS OF PARTS BEING POLISHED WHILE USING ELECTRIC PULSE METHOD

    Directory of Open Access Journals (Sweden)

    Y. V. Sinkevich

    2011-01-01

    Full Text Available The paper presents methodology and results of investigations pertaining to profilograms of specimen surfaces being polished using electric pulse method and being made of steel 10 и 20Х13 with the help of correlative transformation. It has been established that in the process of polishing topography formation is initiated due to simultaneous surfacing of micro- and sub-micro-irregularities with equal probability and equal intensity. The obtained mechanism for topography formation is justified by the fact that break-down of gas-vapor shell takes place with equal probability as on the micro-profile top so in its cavities on the polished surface in the zones of accidental  non-homogeneity of electric field.

  13. Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath

    Science.gov (United States)

    Sun, Qinghe; Liu, Hongtao; Chen, Tianchi; Wei, Yan; Wei, Zhu

    2016-04-01

    Superhydrophobic surface is of wide application in the field of catalysis, lubrication, waterproof, biomedical materials, etc. The superhydrophobic surface based on hard metal is worth further study due to its advantages of high strength and wear resistance. This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion and studies the properties of as-prepared superhydrophobic surface. The hydrophobic properties were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the structure of the corrosion surface. The surface compositions were characterized by an Energy Dispersive Spectrum. The Electrochemical workstation was used to measure its anti-corrosion property. The anti-icing performance was characterized by a steam-freezing test in Environmental testing chamber. The SiC sandpaper and 500 g weight were used to test the friction property. The research result shows that the superhydrophobic surface can be successfully fabricated by electrocorrosion on carbon steel substrate under appropriate process; the contact angle of the as-prepared superhydrophobic surface can be up to 152 ± 0.5°, and the sliding angle is 1-2°; its anti-corrosion property, anti-icing performance and the friction property all show an excellent level. This method provides the possibility of industrialization of superhydrophobic surface based on iron substrate as it can prepare massive superhydrophobic surface quickly.

  14. Three-dimensional brain-surface MR images of brain anomalies in Fukuyama congenital muscular dystrophy and its differentiation from Duchenne muscular dystrophy with severe mental retardation

    International Nuclear Information System (INIS)

    Fukuyama congenital muscular dystrophy (FCMD) is the second most common form of muscular dystrophy in Japan and is peculiarly associated with brain anomalies such as micropolygyria. Since these anomalies are preferentially observed on the brain surface, it is difficult to identify them by either X-ray CT or conventional MRI. In addition, FCMD has an atypical (mild) form in which the patients are capable of walking. In such cases, clinical differential diagnosis from Duchenne muscular dystrophy with severe mental retardation (DMD-MR) is not necessarily easy. We analyzed the brain-surface structures of 4 typical FCMD cases. 1 atypical FCMD case, 4 DMD-MR cases, and 1 undiagnosed case using a method of 3-dimensional (3-D) brain-surface MR imaging; we then compared the results with dystrophin immuno-stainings of the biopsied skeletal muscles. In both typical and atypical FCMD cases, micropolygyria could be clearly demonstrated, with individual variations. The 3-D images were verified by neuropathology. Of the 4 DMD-MR cases, 3 cases showed no gyral abnormality. However, in 1 DMD-MR case the diagnosis was corrected to atypical FCMD because of micropolygyria found on 3-D MRI. The one undiangosed case was diagnosed as DMD-MR on the basis of 3-D MRI. There was a good correspondence between the results of the 3-D imaging and the dystrophin test. Recently, some FCMD cases with a complete deficiency of dystrophin have been reported. Therefore, the detection of brain anomalies is important for the precise diagnosis of FCMD; the present method is considered effective for this purpose. (author)

  15. Hunger dependence of electrical brain self-stimulation in the pigeon

    OpenAIRE

    Delius, Juan; Pellander, Kirsti

    1982-01-01

    Contrary to recent evidence, further data showing that intracranial self-stimulation behaviour in the pigeon is frequently hunger-dependent is reported. A compilation of reinforcing brain loci in the pigeon suggests an association with two dopaminergic systems, the paleostriatal complex and the nucleus basalis system, the latter being known to be involved in the control of feeding.

  16. Electric Signals on and under the Ground Surface Induced by Seismic Waves

    Directory of Open Access Journals (Sweden)

    Akihiro Takeuchi

    2012-01-01

    Full Text Available We constructed three observation sites in northeastern Japan (Honjo, Kyowa, and Sennan with condenser-type large plate electrodes (4 × 4 m2 as sensors supported 4 m above the ground and with pairs of reference electrodes buried vertically at 0.5 m and 2.5 m depth (with a ground velocity sensor at Sennan only. Electrical signals of an earthquake (M6.3 in northeastern Japan were detected simultaneously with seismic waves. Their waveforms were damped oscillations, with greatly differing signal amplitudes among sites. Good positive correlation was found between the amplitudes of signals detected by all electrodes. We propose a signal generation model: seismic acceleration vertically shook pore water in the topsoil, generating the vertical streaming potential between the upper unsaturated water zone and the lower saturated water zone. Maximum electric earth potential difference was observed when one electrode was in the saturated water zone, and the other was within the unsaturated water zone, but not when the electrodes were in the saturated water zone. The streaming potential formed a charge on the ground surface, generating a vertical atmospheric electric field. The large plate electrode detected electric signals related to electric potential differences between the electrode and the ground surface.

  17. The microbial cell surface electric field: life in an ion cloud

    Science.gov (United States)

    Yee, N.

    2005-05-01

    Electrical charge on microbial cell surfaces arises from the ionization of proton-active functional groups attached to cell wall polymers. In Gram-positive cell walls, ionizable functional groups are associated with peptidoglycan and secondary polymers such as teichoic or teichuronic acids. Carboxyl functional groups attached to the unlinked peptide crosslinks of peptidoglycan and phosphoryl groups associated with the teichoic acids can deprotonate to form negatively charged surface sites. These anionic functional groups generate charge in the cell wall which results in the formation of an electric field that surrounds the entire cell. The cell surface electric field controls the concentration and spatial distribution of ions and counterions at the cell-water interface, and strongly affects microbe-fluid and microbe-mineral interactions. Recently, we have used potentiometric titration, infrared spectroscopy, electrophoretic mobility, metal sorption experiments to characterize the surface electrical potential properties of the various Gram-positive and Gram-negative bacterial species. Potentiometric titration experiments show that the deprotonation of acidic cell wall functional groups generate surface charge density values typically ranging from 1.1 to 2.2 mol sites/g of bacteria. Spectroscopic measurements have confirmed that the dominant proton-active sites in the cell wall are carboxyl functional groups. Electrophoretic mobility experiments show that the magnitude of the electrostatic surface potential increases with increasing pH, and decreases with increasing ionic strength. Metal sorption experiments conducted with Ca(II), Sr(II) and Ba(II) exhibit strong ionic strength dependence, suggesting that high concentrations of metal ions are electrostatically bound to bacterial cell walls via outer-sphere complexation. We demonstrate that the electrostatic potential effects on ion sorption at the cell-water interface can be quantified using the Donnan model.

  18. Influence of machining parameters on the surface integrity in electrical discharge machining

    Directory of Open Access Journals (Sweden)

    M. Boujelbene

    2009-06-01

    Full Text Available Purpose: The aim of this research is to make a study of the influence of machining parameters on the surface integrity in electrical discharge machining. The material used for this study is the X200Cr15 and 50CrV4 steel for dies and moulds, dies castings, forging dies etc.Design/methodology/approach: The methodology consists of the analysis and determination of the white layer thickness WLT, the material removal rate MRR, the electrode wear ratio EWR and the micro hardness of each pulse discharge energy and parameters of electrical discharge machining.Findings: The Results of the tests undertaken in this study show that increasing energy discharge increase instability and therefore, the quality of the workpiece surface becomes rougher and the white layer thickness increases. This is due to more melting and recasting of material.With the increase of the discharge energy, the amount of particles in the gap becomes too large and can form electrically conducting paths between the tool electrode and the workpiece, causing unwanted discharges, which become electric arcs (arcing. these electric arcs damage the electrodes surfaces (tool and workpiece surfaces and can occur microcracks.Research limitations/implications: A possible future work would be the development of a general the phenomenal of the residual stress of the wire electrical discharge machining in titanium alloys. The behavior is of the residual stress studies are planed in the future.Practical implications: The relationship found between the total energy of discharge pulses, composition of the steels and the type of machining on the surface integrity (the surface texture, the metallurgical surface aspect, the microhardness in the heat affected zone, HAZ of different workpiece materials has an important practical implication since it allows selecting the best cutting condition combination from the points of view both the security and the economy for the established requirements in each

  19. Electric field effects on the dynamics of bubble detachment from an inclined surface

    Science.gov (United States)

    Di Marco, P.; Morganti, N.; Saccone, G.

    2015-11-01

    An experimental apparatus to study bubble detachment from an inclined surface under the action of electric forces is described. It consists of a container filled with FC72 at room temperature and pressure where a train of gas bubbles is injected from an orifice. An electrostatic field can be imposed around the bubble, while the cell can be tilted from 0 to 90°. It is possible to study interface growth with the aid of high-speed cinematography. Since the interface is asymmetrical, a mirror system allowed to acquire, in the same frame, two images at 90° of the bubble. Different inclinations, injection rates and voltages were tested in order to couple the effects of shear gravity and electric field. Curvature and contact angles have been derived with appropriate interpolation methods of the profile. Force balances on the bubble were checked, finding an electric force, which, at first pulls the bubbles from the orifice, then pushes it against the surface. The motion of the center of gravity confirms this behaviour. A power balance has been developed to determine the energy contributions, revealing that surface growth incorporates both the effects of inlet power and electric field.

  20. On the photonic cellular interaction and the electric activity of neurons in the human brain

    Czech Academy of Sciences Publication Activity Database

    Salari, V.; Tuszynski, J. A.; Bokkon, I.; Rahnama, M.; Cifra, Michal

    Vol. 329. Bristol: IOP, 2011 - (Cifra, M.; Pokorny, J.; Kučera, O.), 012006 ISSN 1742-6588. [9th International Frohlich's Symposium on Electrodynamic Activity of Living Cells - Including Microtubule Coherent Modes and Cancer Cell Physics. Praha (CZ), 01.07.2011-03.07.2011] Institutional support: RVO:67985882 Keywords : Electric activity * Cellular interaction * Empirical evidence Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle-aged woman ... new memories. hypothalmic-pituitary-adrenal (HPA) axis —A brain-body ... stress. impulse —An electrical communication signal sent between neurons ...

  2. Neuronal activation by electrical neuromuscular stimulation in hemiplegic patients demonstrated with 99m-Tc-ECD brain SPECT

    International Nuclear Information System (INIS)

    Electrical neuromuscular stimulation (ENS) has been shown to improve volitional movement of upper limbs and decrease muscle hypertonia in hemiplegic patients. Aim: The purpose of this study was to demonstrate regional cerebral perfusion changes secondary to neuronal activation after ENS using 99mTc-ECD SPECT and to correlate these findings with clinical improvement. Materials and Methods: Nine hemiplegic and 3 paraparetic patients, with 14 to 59 years of age, 10 males and 2 females, were studied. ENS was performed for 14 weeks in 45-minute sessions on the muscles involved in hand opening and closing. Each patient was submitted to neurological examination before and after treatment and underwent three 99mTc-ECD SPECT studies: a pre-treatment study; a study performed during the first ENS session; and the third study during the last ENS session (after 14 weeks of treatment). Visual analysis of brain SPECT images was performed by two experienced nuclear physicians. Region-to-pons ratio (R/PO) was obtained for 15 brain regions. An asymmetry index (AI) was also calculated for all regions using the equation: AI=2X(R-L)/(R+L), where R is right and L is left. The visual and semi-quantitative results were compared in the three studies. Results: Visual analysis revealed perfusion improvement mainly in areas adjacent to the brain lesion (penumbra) but also in the contra-lateral cerebral hemisphere. Perfusion improvement was found in the frontal lobe (5 patients), fronto-parietal (1), fronto-temporal (1), temporal (2), basal ganglia (5) and in the thalami (1). In the pre-treatment study, 8 patients showed cerebellar diaschisis, which decreased during treatment in 2 patients and increased in 2. The asymmetry index showed significant variability among the three studies in 8 regions. The R/PO ratio did not correlate with the visual analysis. Neurological examination showed significant improvement in 10 patients, 9 of which showed perilesional brain perfusion improvement

  3. Electric field sensing near the surface microstructure of an atom chip using cold Rydberg atoms

    CERN Document Server

    Carter, J D; Martin, J D D

    2012-01-01

    The electric fields near the heterogeneous metal/dielectric surface of an atom chip were measured using cold atoms. The atomic sensitivity to electric fields was enhanced by exciting the atoms to Rydberg states that are 10^8 times more polarizable than the ground state. We attribute the measured fields to charging of the insulators between the atom chip wires. Surprisingly, it is observed that these fields may be dramatically lowered with appropriate voltage biasing, suggesting configurations for the future development of hybrid quantum systems.

  4. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data

    DEFF Research Database (Denmark)

    Greve, Douglas N; Svarer, Claus; Fisher, Patrick M;

    2014-01-01

    Exploratory (i.e., voxelwise) spatial methods are commonly used in neuroimaging to identify areas that show an effect when a region-of-interest (ROI) analysis cannot be performed because no strong a priori anatomical hypothesis exists. However, noise at a single voxel is much higher than noise in a...... ROI making noise management critical to successful exploratory analysis. This work explores how preprocessing choices affect the bias and variability of voxelwise kinetic modeling analysis of brain positron emission tomography (PET) data. These choices include the use of volume- or cortical surface......-based smoothing, level of smoothing, use of voxelwise partial volume correction (PVC), and PVC masking threshold. PVC was implemented using the Muller-Gartner method with the masking out of voxels with low gray matter (GM) partial volume fraction. Dynamic PET scans of an antagonist serotonin-4 receptor...

  5. Kinetical faceting of the low index W surfaces under electrical current

    Science.gov (United States)

    Zhao, Jiong; Yu, Rong; Dai, Sheng; Zhu, Jing

    2014-07-01

    It's widely accepted that when the scale goes down deeply into nanometer, the surfaces of materials will play a crucial role. In equilibrium, the as-fabricated surfaces are usually determined by Wulff construction. However, the technique to rebuild the surface in the scale of as fine as 1 nm, especially to build the off-equilibrium high energy facets is still rare. Here we provide a simple but effective solution for rebuilding the surfaces on the basis of kinetics over thermodynamics. Our in situ transmission electron microscopy (TEM) experiments demonstrate that the flat surfaces of W naturally decompose into off-equilibrium faceted surfaces when electrical current passes in certain directions. The experiments and simulations confirmed that, by using a polar plot and the data of surface diffusivities, the stability of any kind of surfaces as well as the exact post-treatment structures (surface type and periodical length) can be determined. This technique can be generally extended to most conductive solid surfaces.

  6. Medical station for image processing and visualization of the brain electrical activity on a three-dimensional reconstruction of the patient's head

    Directory of Open Access Journals (Sweden)

    Manuel Guillermo Forero

    2010-04-01

    Full Text Available This paper presents a review of some researchs in the computer graphics field conducted by OHWAHA to solve medical problems. Particulary, a frame work to generate a three-dimensional human head model from a stack of brain images obtained by magnetic resonance is introduced. The envisaged system is suitable to display on the 3D head model the brain electrical activity obtained from electroencephalografy.

  7. Photodetachment microscopy of a hydrogen negative ion in an electric field near a metal surface

    Institute of Scientific and Technical Information of China (English)

    Tang Tian-Tian; Wang De-Hua; Wang Shan-Shan

    2012-01-01

    According to the semi-classical theory,we study the photodetachment microscopy of H- in the electric field near a metal surface.During the photodetachment,the electron is photo-detached by a laser and the electron is drawn toward a position-sensitive detector.The electron flux distribution is measured as a function of position.Two classical paths lead the ion to any point in the classically allowed region on the detector,and waves traveling along these paths produce an interference pattern.If the metal surface perpendicular to the electric field is added,we find that the interference pattern is related not only to the electron energy and the electric-field strength,but also to the ion-surface distance.In addition,the laser polarization also has a great influence on the electron flux distribution.We present calculations predicting the interference pattern that may be seen in experiment.We hope that our study can provide a new nnderstanding of the electron flux distribution of negative ions in an external field and surface,and can guide future experimental research on negative ion photo-detachment microscopy.

  8. Photodetachment microscopy of a hydrogen negative ion in an electric field near a metal surface

    International Nuclear Information System (INIS)

    According to the semi-classical theory, we study the photodetachment microscopy of H− in the electric field near a metal surface. During the photodetachment, the electron is photo-detached by a laser and the electron is drawn toward a position-sensitive detector. The electron flux distribution is measured as a function of position. Two classical paths lead the ion to any point in the classically allowed region on the detector, and waves traveling along these paths produce an interference pattern. If the metal surface perpendicular to the electric field is added, we find that the interference pattern is related not only to the electron energy and the electric-field strength, but also to the ion-surface distance. In addition, the laser polarization also has a great influence on the electron flux distribution. We present calculations predicting the interference pattern that may be seen in experiment. We hope that our study can provide a new understanding of the electron flux distribution of negative ions in an external field and surface, and can guide future experimental research on negative ion photo-detachment microscopy. (atomic and molecular physics)

  9. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    Science.gov (United States)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  10. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms.

    Science.gov (United States)

    Lim, L W; Prickaerts, J; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Temel, Y

    2015-01-01

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and ventral tegmental area) on a variety of depressive-like behaviors using rat models. In the naive animal study, we found that HFS of the Cg, vmPFC, NAc core and LHb reduced anxiety levels and increased motivation for food. In the chronic unpredictable stress model, there was a robust depressive-like behavioral phenotype. Moreover, vmPFC HFS, in a comparison of all stimulated targets, produced the most profound antidepressant effects with enhanced hedonia, reduced anxiety and decreased forced-swim immobility. In the following set of electrophysiological and histochemical experiments designed to unravel some of the underlying mechanisms, we found that vmPFC HFS evoked a specific modulation of the serotonergic neurons in the dorsal raphe nucleus (DRN), which have long been linked to mood. Finally, using a neuronal mapping approach by means of c-Fos expression, we found that vmPFC HFS modulated a brain circuit linked to the DRN and known to be involved in affect. In conclusion, HFS of the vmPFC produced the most potent antidepressant effects in naive rats and rats subjected to stress by mechanisms also including the DRN. PMID:25826110

  11. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways

    OpenAIRE

    Liang, M.; Lee, M. C.; O'Neill, J.; Dickenson, A.H.; Iannetti, G.D.

    2016-01-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronisation of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptor...

  12. Localization of Brain Electrical Activity Sources and Hemodynamic Activity Foci during Motor Imagery

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Mokienko, O.; Bobrov, P.; Chernikova, L.; Konovalov, R.

    2014-01-01

    Roč. 40, č. 3 (2014), s. 273-283. ISSN 0362-1197 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Institutional support: RVO:67985807 Keywords : brain computer interface * independent component analysis * EEG pattern classification * motor imagery * inverse EEG problem Subject RIV: IN - Informatics, Computer Science

  13. Brain mapping

    Directory of Open Access Journals (Sweden)

    Blaž Koritnik

    2004-08-01

    Full Text Available Cartography of the brain ("brain mapping" aims to represent the complexities of the working brain in an understandable and usable way. There are four crucial steps in brain mapping: (1 acquiring data about brain structure and function, (2 transformation of data into a common reference, (3 visualization and interpretation of results, and (4 databasing and archiving. Electrophysiological and functional imaging methods provide information about function of the human brain. A prerequisite for multisubject, multidimensional and multimodal mapping is transformation of individual images to match a standard brain template. To produce brain maps, color, contours, and other visual cues are used to differentiate metabolic rates, electrical field potentials, receptor densities, and other attributes of structure or function. Databases are used to organize and archive data records. By relating the maps to cognitive functions and psychological models, brain mapping offers a prerequisite for the understanding of organizational principles of the human brain.

  14. Tacit Knowledge Capture and the Brain-Drain at Electrical Utilities

    Science.gov (United States)

    Perjanik, Nicholas Steven

    As a consequence of an aging workforce, electric utilities are at risk of losing their most experienced and knowledgeable electrical engineers. In this research, the problem was a lack of understanding of what electric utilities were doing to capture the tacit knowledge or know-how of these engineers. The purpose of this qualitative research study was to explore the tacit knowledge capture strategies currently used in the industry by conducting a case study of 7 U.S. electrical utilities that have demonstrated an industry commitment to improving operational standards. The research question addressed the implemented strategies to capture the tacit knowledge of retiring electrical engineers and technical personnel. The research methodology involved a qualitative embedded case study. The theories used in this study included knowledge creation theory, resource-based theory, and organizational learning theory. Data were collected through one time interviews of a senior electrical engineer or technician within each utility and a workforce planning or training professional within 2 of the 7 utilities. The analysis included the use of triangulation and content analysis strategies. Ten tacit knowledge capture strategies were identified: (a) formal and informal on-boarding mentorship and apprenticeship programs, (b) formal and informal off-boarding mentorship programs, (c) formal and informal training programs, (d) using lessons learned during training sessions, (e) communities of practice, (f) technology enabled tools, (g) storytelling, (h) exit interviews, (i) rehiring of retirees as consultants, and (j) knowledge risk assessments. This research contributes to social change by offering strategies to capture the know-how needed to ensure operational continuity in the delivery of safe, reliable, and sustainable power.

  15. Variation of surface electric field during geomagnetic disturbed period at Maitri, Antarctica

    Indian Academy of Sciences (India)

    N Jeni Victor; C Panneerselvam; C P Anil Kumar

    2015-12-01

    The paper discusses on the variations of the atmospheric vertical electric field measured at sub-auroral station Maitri (70°75′S, 11°75′E), and polar station Vostok (78.5°S, 107°E) during the geomagnetic disturbances on 25–26 January 2006. Diurnal variation of surface electric field measured at Maitri shows a similar variation with worldwide thunderstorm activity, whereas the departure of the field is observed during disturbed periods. This part of the field corresponds to the magnetospheric/ionospheric (an additional generator in the polar regions) voltage generators. Solar wind parameters and planetary indices represent the temporal variation of the disturbances, and digital fluxgate magnetometer variation continuously monitored to trace the auroral movement at Maitri. We have observed that the electrojet movement leaves its signature on vertical and horizontal components of the DFM in addition; the study infers the position of auroral current wedge with respect to Maitri. To exhibit the auroral oval, OVATION model is obtained with the aid of DMSP satellite and UV measurements. It is noted that the Maitri is almost within the auroral oval during the periods of disturbances. To examine the simultaneous changes in the vertical electric field associated with this magnetic disturbance, the dawn–dusk potential is studied for every UT hours; the potential was obtained from Weimer model and SuperDARN radar. The comparison reveals the plausible situation for the superposition of dawn–dusk potential on surface electric field over Maitri. This observation also shows that the superposition may not be consistent with the phase of the electrojet. Comparison of surface electric field at Maitri and Vostok shows that the parallel variation exhibits with each other, but during the period of geomagnetic disturbances, the influence is not much discerned at Vostok.

  16. New experimental method of visualizing the electric field due to surface charges on circuit elements

    Science.gov (United States)

    Jacobs, Rebecca; de Salazar, Alex; Nassar, Antonio

    2010-12-01

    Although static surface charges on circuit elements are of enormous interest, recent papers and textbooks have only discussed the problem theoretically using analytical or numerical approaches. The only well-known experimental method to visualize the structure of electric fields around circuit elements was reported by Jefimenko almost half a century ago. In our paper, we report on a simple method to visualize the electric field produced by static surface charges on current-carrying circuit elements. Our method uses a mixture of PTFE (Teflon) sealant and mineral oil, a copper wire placed in the mixture's container, and two 6 kV power supplies. We believe that our new method can be used directly in the classroom.

  17. Acoustic Plate Mode sensing in liquids based on free and electrically shorted plate surfaces.

    Science.gov (United States)

    Anisimkin, V I; Caliendo, C; Verona, E

    2016-05-01

    The sensing behavior to liquids for Acoustic Plate Modes (APMs) propagating along 64°Y, 90°X LiNbO3 plate was investigated vs. two electric boundary conditions. The changes in the APMs phase velocity and attenuation were measured upon exposure to different liquids wetting one of the surfaces of the plate, either free or electrically shorted by a thin conductive Al layer. The experimental data confirm that the presence of a metallic layer covering one of the plate surfaces affects the viscosity and temperature sensitivity of the device. The differences between the sensor response for various liquids, with free or metalized faces, are interpreted in terms of the APM polarization. PMID:26901669

  18. An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    Rob Remis

    2013-02-01

    Full Text Available In this paper we present an electric field volume integral equation approach to simulate surface plasmon propagation along metal/dielectric interfaces. Metallic objects embedded in homogeneous dielectric media are considered. Starting point is a so-called weak-form of the electric field integral equation. This form is discretized on a uniform tensor-product grid resulting in a system matrix whose action on a vector can be computed via the fast Fourier transform. The GMRES iterative solver is used to solve the discretized set of equations and numerical examples, illustrating surface plasmon propagation, are presented. The convergence rate of GMRES is discussed in terms of the spectrum of the system matrix and through numerical experiments we show how the eigenvalues of the discretized volume scattering operator are related to plasmon propagation and the medium parameters of a metallic object.

  19. Impacts of Hematite Nanoparticle Exposure on Biomechanical, Adhesive, and Surface Electrical Properties of Escherichia coli Cells

    OpenAIRE

    Zhang, Wen; Hughes, Joseph; Chen, Yongsheng

    2012-01-01

    Despite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties of Escherichia coli cells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomater...

  20. Dispersion and excitation of surface waves in crossed electrical and magnetic fields

    International Nuclear Information System (INIS)

    The dispersion properties and excitation mechanism of the surface-type waves (SW), propagating at the interface between a magnetoactive plasma-like media and a metal in crossed electrical and magnetic fields are studied. The plasma is assumed homogeneous and cold (the wave phase velocity greatly exceeds the electron thermal velocity). The nonresonant Doppler excitation of the studied SW is shown to be possible. (author). 7 refs

  1. The Behaviour of Water Drops on Insulating Surfaces Stressed by Electric Field

    OpenAIRE

    Feier-Iova, Simona

    2009-01-01

    The insulating materials of high voltage equipment are stressed in service over years by several environmental factors. One ageing factor is the humidity, which in combination with the electrical stress causes changes of the conditions on the insulating surface. Polymeric insulators are widely used because of their high contamination resistance and high tensile strength-to-weight ratio, while constituting an unattractive target for vandals. Especially with silicone rubber housings, polymeric ...

  2. Obtaining Near-surface Parameters for Seismic Statics by Using Differential Electric Sounding and Land Sonar

    Institute of Scientific and Technical Information of China (English)

    ZhongShihang

    2003-01-01

    The differential electric sounding and land sonar method was a new technique used in recent years. Good results from shallow engineering surveys have been obtained. Tests on obtaining thicknesses and velocities of near-surface Myers were conducted by combining the two approaches. With hammersources, satisfactory results were obtained at depth of about 60min surveying the Quaternary layers in the Shengli oilfield and at depth of about 120 m in the mountainous areas of southern Guizhou.

  3. Surface, electrical and mechanical modifications of PMMA after implantation with laser produced iron plasma ions

    Science.gov (United States)

    Ahmed, Qazi Salman; Bashir, Shazia; Jalil, Sohail Abdul; Shabbir, Muhammad Kaif; Mahmood, Khaliq; Akram, Mahreen; Khalid, Ayesha; Yaseen, Nazish; Arshad, Atiqa

    2016-07-01

    Laser Produced Plasma (LPP) was employed as an ion source for the modifications in surface, electrical and mechanical properties of poly methyl (methacrylate) PMMA. For this purpose Nd:YAG laser (532 nm, 6 ns, 10 Hz) at a fluence of 12.7 J/cm2 was employed to generate Fe plasma. The fluence and energy measurements of laser produced Fe plasma ions were carried out by employing Thomson Parabola Technique in the presence of magnetic field strength of 0.5 T, using CR-39 as Solid State Nuclear Track Detector (SSNTD). It has been observed that ion fluence ejecting from ablated plasma was maximum at an angle of 5° with respect to the normal to the Fe target surface. PMMA substrates were irradiated with Fe ions of constant energy of 0.85 MeV at various ion fluences ranging from 3.8 × 106 ions/cm2 to 1.8 × 108 ions/cm2 controlled by varying laser pulses from 3000 to 7000. Optical microscope and Scanning Electron Microscope (SEM) were utilized for the analysis of surface features of irradiated PMMA. Results depicted the formation of chain scission, crosslinking, dendrites and star like structures. To explore the electrical behavior, four probe method was employed. The electrical conductivity of ion irradiated PMMA was increased with increasing ion fluence. The surface hardness was measured by shore D hardness tester and results showed the monotonous increment in surface hardness with increasing ion fluence. The increasing trend of surface hardness and electrical conductivity with increasing Fe ion fluence has been well correlated with the surface morphology of ion implanted PMMA. The temperature rise of PMMA surface due to Fe ion irradiation is evaluated analytically and comes out to be in the range of 1.72 × 104 to 1.82 × 104 K. The values of total Linear Energy Transfer (LET) or stopping power of 0.8 MeV Fe ions in PMMA is 61.8 eV/Å and their range is 1.34 μm evaluated by SRIM simulation.

  4. Electrical conductivity of reconstructed Si(111) surface with sodium-doped C60 layers

    International Nuclear Information System (INIS)

    Electrical conductance of sodium-doped C60 ultra-thin layers (1–6 monolayers) grown on the Na-adsorbed Si(111)√3 × √3-Au surface has been studied in situ by four-point probe technique, combined with low-energy electron diffraction observations. Evidence of conductance channel formation through the C60 ultrathin layer is demonstrated as a result of Na dosing of 3 and 6 monolayers thick C60 layers. The observed changes in surface conductivity can be attributed to the formation of fulleride-like NaC60 and Na2C60 compound layers

  5. Shaping of steel mold surface of lens array by electrical discharge machining with single rod electrode.

    Science.gov (United States)

    Takino, Hideo; Hosaka, Takahiro

    2014-11-20

    We propose a method for fabricating a lens array mold by electrical discharge machining (EDM). In this method, the tips of rods are machined individually to form a specific surface, and then a number of the machined rods are arranged to construct an electrode for EDM. The repetition of the EDM process using the electrode enables a number of lens elements to be produced on the mold surface. The effectiveness of our proposed method is demonstrated by shaping a lens array mold made of stainless steel with 16 spherical elements, in which the EDM process with a single rod electrode is repeatedly conducted. PMID:25607880

  6. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    International Nuclear Information System (INIS)

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells. (semiconductor technology)

  7. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Ou Weiying; Zhao Lei; Diao Hongwei; Zhang Jun; Wang Wenjing, E-mail: wjwangwj@126.com [Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-05-15

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells. (semiconductor technology)

  8. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    Science.gov (United States)

    Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang

    2011-05-01

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.

  9. Micro-scale fabrication and characterization of a silver-polymer-based electrically activated antibacterial surface

    International Nuclear Information System (INIS)

    This paper reports the fabrication methodology and characterization results for an electrically activated silver-polymer-based antibacterial surface with primary applications in preventing indirect contact transmission of infections. The surface consists of a micro-scale grating pattern of alternate silver electrodes and SU-8 partitions with a minimum feature size of 20 μm, and activated by an external voltage. In this study, prototype coupons (15 mm x 15 mm) of the antibacterial surface were fabricated on silicon substrates using two sets of lithographies, and analyzed for their physical characteristics using microscopy and surface profilometry. The prototypes were also electrically analyzed to determine their current-voltage characteristics, and hence silver ion (Ag+) release concentrations. Finally, they were tested for their antibacterial efficacy against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) using a newly engineered microbiological testing procedure. The antibacterial efficacy testing results show significant reductions in the number of viable organisms of both the species after 45 min of testing with 15 μA system current. Due to the growing incidences of hospital-acquired infections and rising treatment costs, study and application of such alternative antibacterial systems in critical touch-contact and work surfaces (e.g., door push plates, countertops, medical instrument trays) for healthcare environments has become essential.

  10. Imaging electric fields in the vicinity of cryogenic surfaces using Rydberg atoms

    CERN Document Server

    Thiele, T; Stammeier, M; Agner, J -A; Schmutz, H; Merkt, F; Wallraff, A

    2015-01-01

    The ability to characterize static and time-dependent electric fields in situ is an important prerequisite for quantum-optics experiments with atoms close to surfaces. Especially in experiments which aim at coupling Rydberg atoms to the near field of superconducting circuits, the identification and subsequent elimination of sources of stray fields is crucial. We present a technique that allows the determination of stray-electric-field distributions $(F^\\text{str}_\\text{x}(\\vec{r}),F^\\text{str}_\\text{y}(\\vec{r}),F^\\text{str}_\\text{z}(\\vec{r}))$ at distances of less than $2~\\text{mm}$ from (cryogenic) surfaces using coherent Rydberg-Stark spectroscopy in a pulsed supersonic beam of metastable $1\\text{s}^12\\text{s}^1~{}^{1}S_{0}$ helium atoms. We demonstrate the capabilities of this technique by characterizing the electric stray field emanating from a structured superconducting surface. Exploiting coherent population transfer with microwave radiation from a coplanar waveguide, the same technique allows the chara...

  11. Electrical brain responses in language-impaired children reveal grammar-specific deficits.

    Directory of Open Access Journals (Sweden)

    Elisabeth Fonteneau

    Full Text Available BACKGROUND: Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI, which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone. METHODS AND FINDINGS: We presented participants with Grammatical(G-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal. CONCLUSIONS: The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain.

  12. Brain regions involved in processing facial identity and expression are differentially selective for surface and edge information

    OpenAIRE

    Harris, Richard J; Young, Andrew W; Andrews, Timothy J.

    2014-01-01

    Although different brain regions are widely considered to be involved in the recognition of facial identity and expression, it remains unclear how these regions process different properties of the visual image. Here, we ask how surface-based reflectance information and edge-based shape cues contribute to the perception and neural representation of facial identity and expression. Contrast-reversal was used to generate images in which normal contrast relationships across the surface of the imag...

  13. Learned EEG-based regulation of motor-related brain oscillations during application of transcranial electric currents: feasibility and limitations

    Directory of Open Access Journals (Sweden)

    Surjo R Soekadar

    2014-03-01

    Full Text Available Objective: Transcranial direct current stimulation (tDCS improves motor learning and can influence emotional processing or attention. However, it remained unclear whether learned electroencephalography (EEG-based brain-machine interface (BMI control during tDCS is feasible and how application of transcranial electric currents during BMI control would interfere with feature-extraction of physiological brain signals. Here we tested this combination and evaluated stimulation-dependent artifacts across different EEG frequencies and stability of motor imagery-based BMI control. Approach: Ten healthy volunteers were invited to two BMI-sessions, each comprising two 60-trial blocks. During the trials, modulation of mu-rhythms (8-15Hz associated with motor imagery recorded over C4 was translated into online cursor movements on a computer screen. During block 2, either sham (session A or anodal tDCS (session B was applied at 1mA with the stimulation electrode placed 1cm anterior of C4. Main results: tDCS was associated with a significant signal power increase in the lower frequencies most evident in the signal spectrum of the EEG channel closest to the stimulation electrode. Stimulation-dependent signal power increase exhibited a decay of 12dB per decade, leaving frequencies above 9Hz unaffected. Analysis of BMI control performance did not indicate a difference between blocks and tDCS conditions. Conclusion: Application of tDCS during learned EEG-based self-regulation of brain oscillations above 9Hz is feasible and safe, and might improve applicability of BMI systems in patient populations.

  14. Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function

    International Nuclear Information System (INIS)

    Electrical impedance tomography has the potential to provide a portable non-invasive method for imaging brain function. Clinical data collection has largely been undertaken with time difference data and linear image reconstruction methods. The purpose of this work was to determine the best method for selecting the regularization parameter of the inverse procedure, using the specific application of evoked brain activity in neonatal babies as an exemplar. The solution error norm and image SNR for the L-curve (LC), discrepancy principle (DP), generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) selection methods were evaluated in simulated data using an anatomically accurate finite element method (FEM) of the neonatal head and impedance changes due to blood flow in the visual cortex recorded in vivo. For simulated data, LC, GCV and UPRE were equally best. In human data in four neonatal infants, no significant differences were found among selection methods. We recommend that GCV or LC be employed for reconstruction of human neonatal images, as UPRE requires an empirical estimate of the noise variance

  15. A brain electrical signature of left-lateralized semantic activation from single words.

    Science.gov (United States)

    Koppehele-Gossel, Judith; Schnuerch, Robert; Gibbons, Henning

    2016-01-01

    Lesion and imaging studies consistently indicate a left-lateralization of semantic language processing in human temporo-parietal cortex. Surprisingly, electrocortical measures, which allow a direct assessment of brain activity and the tracking of cognitive functions with millisecond precision, have not yet been used to capture this hemispheric lateralization, at least with respect to posterior portions of this effect. Using event-related potentials, we employed a simple single-word reading paradigm to compare neural activity during three tasks requiring different degrees of semantic processing. As expected, we were able to derive a simple temporo-parietal left-right asymmetry index peaking around 300ms into word processing that neatly tracks the degree of semantic activation. The validity of this measure in specifically capturing verbal semantic activation was further supported by a significant relation to verbal intelligence. We thus posit that it represents a promising tool to monitor verbal semantic processing in the brain with little technological effort and in a minimal experimental setup. PMID:27156035

  16. Can Electrical Vestibular Noise Be Used for the Treatment of Brain Diseases?

    Science.gov (United States)

    Yamamoto, Yoshiharu; Soma, Rika; Struzik, Zbigniew R.; Kwak, Shin

    2005-11-01

    The therapy currently available for the treatment of degenerative neurological diseases is far from satisfactory, and a novel therapeutic strategy, especially for pharmacologically unresponsive patients, would be welcomed. The vestibular nerves are known to influence neuronal circuits in the medullary cardiovascular areas and, through the cerebellar vermis, the basal ganglia and the limbic system. By means of noisy galvanic vestibular stimulation (GVS), it may now be possible to ameliorate blunted responsiveness of degenerated neuronal circuits in the brains of multiple system atrophy (MSA) and/or Parkinson's disease (PD) patients, through a mechanism known as stochastic resonance. We evaluate the effect of 24-hour noisy GVS on long-term heart rate dynamics in seven MSA patients, and on daytime locomotor activity dynamics in twelve patients with either PD or levodopa unresponsive parkinsonism. Short-range heart rate variability and long-range anti-correlation of trunk activity are significantly increased by the noisy GVS compared with sham stimulation, suggestive of improved autonomic and motor responsiveness. The noisy GVS is effective in boosting the neuro-degenerative brains of MSA and/or PD patients, including those unresponsive to standard levodopa therapy.

  17. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    Science.gov (United States)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are

  18. Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    OpenAIRE

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) o...

  19. Visualisation of multi-dimensional medical images with application to brain electrical impedance tomography

    OpenAIRE

    Zhang, Yan

    2007-01-01

    Medical imaging plays an important role in modem medicine. With the increasing complexity and information presented by medical images, visualisation is vital for medical research and clinical applications to interpret the information presented in these images. The aim of this research is to investigate improvements to medical image visualisation, particularly for multi-dimensional medical image datasets. A recently developed medical imaging technique known as Electrical Impedance Tomograp...

  20. Electrical injection to contactless near-surface InGaN quantum well

    International Nuclear Information System (INIS)

    Charge injection to the prevailing and emerging light-emitting devices is almost exclusively based on the double heterojunction (DHJ) structures that have remained essentially unchanged for decades. In this letter, we report the excitation of a near surface indium gallium nitride (InGaN) quantum well (QW) by bipolar carrier diffusion from a nearby electrically excited pn-homojunction. The demonstrated near surface QW emitter is covered only by a 10 nm GaN capping leaving the light-emitting mesa perfectly free of metals, other contact, or current spreading structures. The presented proof-of-principle structure, operating approximately with a quantum efficiency of one fifth of a conventional single QW reference structure, provides conclusive evidence of the feasibility of using diffusion injection to excite near surface light-emitting structures needed, e.g., for developing light emitters or photo-voltaic devices based on nanoplasmonics or free-standing nanowires. In contrast to the existing DHJ solutions or optical pumping, our approach allows exciting nanostructures without the need of forming a DHJ, absorbing layers or even electrical contacts on the device surface

  1. Nanoindentation characterization of surface layers of electrical discharge machined WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Qu Jun; Riester, Laura; Shih, Albert J.; Scattergood, Ronald O.; Lara-Curzio, Edgar; Watkins, Thomas R

    2003-03-15

    This study applies nanoindentation and other analysis techniques to investigate the influence of wire electrical discharge machining (EDM) process on the structure and properties of machined surface layers of WC-Co composites. Multiple indents were conducted on the cross-section of the surface recast layer, sub-surface heat-affected zone, and bulk material. The energy disperse X-ray spectrometry and X-ray diffraction were used to analyze the material compositions in the heat-affected zone and recast layer and to study the electrical spark eroded surface. The indents were inspected by scanning electron microscopy to distinguish between regular and irregular indents in these three regions. Irregular indents were caused by the porosity, soft matrix material, separation of grain boundaries, and thermal cracks caused by EDM process. The hardness and modulus of elasticity obtained from regular indents in bulk material and heat-affected zone were comparable to those of WC. It was found that the recast layer had lower hardness and modulus of elasticity than the bulk material and heat-affected zone.

  2. Effects of on-board storage and electrical stunning of wild cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) on brain and heart activity

    NARCIS (Netherlands)

    Lambooij, E.; Digre, H.; Reimert, H.G.M.; Aursand, I.G.; Grimso, L.; Vis, van de J.W.

    2012-01-01

    Cod and haddock captured with commercial trawling gear were taken immediately after landing on deck to on-board storage in dry bins for measuring brain and heart activity, and behaviour. Other groups were first stored in holding tanks and then electrically stunned with a prototype "dry stunner". For

  3. Significance probability mapping: an aid in the topographic analysis of brain electrical activity.

    Science.gov (United States)

    Duffy, F H; Bartels, P H; Burchfiel, J L

    1981-05-01

    We illustrate the application of significance probability mapping (SPM) to the analysis of topographic maps of spectral analyzed EEG and visual evoked potential (VEP) activity from patients with brain tumors, boys with dyslexia, and control subjects. When the VEP topographic plots of tumor patients were displayed as number of standard deviations from a reference mean, more subjects were correctly identified than by inspection of the underlying raw data. When topographic plots of EEG alpha activity obtained while listening to speech or music were compared by t statistic to plots of resting alpha activity, regions of cortex presumably activated by speech or music were delineated. DIfferent regions were defined in dyslexic boys and controls. We propose that SPM will prove valuable in the regional localization of normal and abnormal functions in other clinical situations. PMID:6165544

  4. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R;

    2009-01-01

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...... typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted...... in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory...

  5. Effects of the roughness characteristics on the wire tool surface for the electrical discharge machining properties

    International Nuclear Information System (INIS)

    Wire electrical discharge machining (WEDM) has been investigated to obtain the better discharge machining properties of the removal rate and the surface roughness in a few decades. Recently, it revealed that the rough tool electrodes can improve the WEDM properties for some sort of materials. In this study, the rough wire electrodes using a wet blasting method was developed and evaluated the machining performance for the insulated Si3N4 in the WEDM processes. As the results, it could not recognize the advantage of roughness wire electrode under the high-energy condition, but it found that the electro-conductive layer thickness became thinner in comparison with those of normal wires. On the contrary, it could be obtained the better surface roughness in the low energy condition. It was supposed that the roughed wire surface generates the homogeneous dispersion discharges on the workpiece.

  6. Comparison of two treatments for coxarthrosis: local hyperthermia versus radio electric asymmetrical brain stimulation

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-07-01

    Full Text Available Alessandro Castagna1, Salvatore Rinaldi1,2, Vania Fontani1, Piero Mannu1, Matteo Lotti Margotti11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyBackground: It is well known that psychological components are very important in the aging process and may also manifest in psychogenic movement disorders, such as coxarthrosis. This study analyzed the medical records of two similar groups of patients with coxarthrosis (n = 15 in each who were treated in two different clinics for rehabilitation therapy.Methods: Patients in Group A were treated with a course of traditional physiotherapy, including sessions of local hyperthermia. Group B patients were treated with only a course of radioelectric asymmetrical brain stimulation (REAC to improve their motor behavior.Results: Group A showed a significant decrease in symptoms of pain and stiffness, and an insignificant improvement in range of motion and muscle bulk. A single patient in this group developed worsened symptoms, and pain did not resolve completely in any patient. The patients in Group B had significantly decreased levels of pain and stiffness, and a significant improvement in range of motion and muscle bulk. No patients worsened in Group B, and the pain resolved completely in one patient.Conclusion: Both treatments were shown to be tolerable and safe. Patients who underwent REAC treatment appeared to have slightly better outcomes, with an appreciable improvement in both their physical and mental states. These aspects are particularly important in the elderly, in whom functional limitation is often associated with or exacerbated by a psychogenic component.Keywords: coxarthrosis, anti-aging, motor behavior, radioelectric asymmetric brain stimulation

  7. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    Science.gov (United States)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-01

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. PMID:25916491

  8. The influence of noble-gas ion bombardment on the electrical and optical properties of clean silicon surfaces

    International Nuclear Information System (INIS)

    A study of the effect of argon and helium ion bombardment on the electrical and optical properties of the clean silicon (211) surface is described. The objective of the study was to determine the effect of noble gas ions on the density of surface states at the clean silicon surface. (Auth.)

  9. A simple tool for estimating city-wide annual electrical energy savings from cooler surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, Melvin; Rosado, Pablo J.; Levinson, Ronnen M.

    2015-06-27

    We present a simple method to estimate the maximum possible electrical energy saving that might be achieved by increasing the albedo of surfaces in a large city. We restrict this to the “indirect effect”, the cooling of outside air that lessens the demand for air conditioning (AC). Given the power demand of the electric utilities and data about the city, we can use a single linear equation to estimate the maximum savings. For example, the result for an albedo change of 0.2 of pavements in a typical warm city in California, such as Sacramento, is that the saving is less than about 2 kWh per m2 per year. This may help decision makers choose which heat island mitigation techniques are economical from an energy-saving perspective.

  10. Low-frequency electrical stimulation improves neurite outgrowth of dorsal root ganglion neurons in vitro via upregulating Ca2+-mediated brain-derived neurotrophic factor expression

    Institute of Scientific and Technical Information of China (English)

    Lidan Wan; Rong Xia; Wenlong Ding

    2010-01-01

    Short-term,low-frequency electrical stimulation of neural tissues significantly enhances axonal regeneration of peripheral nerves following injury.However,little is known about the mechanisms of electrical stimulation to induce neurite outgrowth.In the present study,short-term,low-frequency electrical stimulation,using identical stimulation parameters of in vivo experiments,was administered to in vitro dorsal root ganglion(DRG)neurons.Enhanced neurite outgrowth,as well as synthesis and release of brain-derived neurotrophic factor(BDNF),were examined in electrical stimulation-treated DRG neuronal cultures.Because the effects of electrical stimulation on neuronal intracellular signaling molecules are less reported,classic calcium intracellular signals are directly or indirectly involved in electrical stimulation effects on neurons.Cultured DRG neurons were pretreated with the calcium channel blocker nifedipine,followed by electrical stimulation.Results suggested that electrical stimulation not only promoted in vitro neurite outgrowth,but also enhanced BDNF expression.However,nifedipine reduced electrical stimulation-enhanced neurite outgrowth and BDNF biosynthesis.These results suggest that the promoting effects of electrical stimulation on DRG neurite outgrowth could be associated with altered calcium influx,which is involved induction of neuronal BDNF expression and secretion.

  11. Advances in electric field and atomic surface derived properties from experimental electron densities.

    Science.gov (United States)

    Bouhmaida, Nouzha; Ghermani, Nour Eddine

    2008-07-14

    The present study is devoted to a general use of the Gauss law. This is applied to the atomic surfaces derived from the topological analysis of the electron density. The method proposed here is entirely numerical, robust and does not necessitate any specific parametrization of the atomic surfaces. We focus on two fundamental properties: the atomic charges and the electrostatic forces acting on atoms in molecules. Application is made on experimental electron densities modelized by the Hansen-Coppens model from which the electric field is derived for a heterogenic set of compounds: water molecule, NO(3) anion, bis-triazine molecule and MgO cluster. Charges and electrostatic forces are estimated by the atomic surface flux of the electric field and the Maxwell stress tensor, respectively. The charges obtained from the present method are in good agreement with those issued from the conventional volume integration. Both Feynman and Ehrenfest forces as well as the electrostatic potential at the nuclei (EPN) are here estimated from the experimental electron densities. The values found for the molecular compounds are presented and discussed in the scope of the mechanics of atomic interactions. PMID:18688393

  12. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.

    Science.gov (United States)

    Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad

    2015-07-21

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms

  13. Tuning and disrupting the brain – modulating the McGurk illusion with electrical stimulation

    Directory of Open Access Journals (Sweden)

    Lotfi B Merabet

    2014-08-01

    Full Text Available In the so-called McGurk illusion, when the synchronized presentation of the visual stimulus /ga/ is paired with the auditory stimulus /ba/, people in general hear it as /da/. Multisensory integration processing underlying this illusion seems to occur within the Superior Temporal Sulcus (STS. Herein, we present evidence demonstrating that bilateral cathodal transcranial direct current stimulation (tDCS of this area can decrease the McGurk illusion-type responses. Additionally, we show that the manipulation of this audio-visual integrated output occurs irrespective of the number of eye-fixations on the mouth of the speaker. Bilateral anodal tDCS of the Parietal Cortex also modulates the illusion, but in the opposite manner, inducing more illusion-type responses. This is the first demonstration of using non-invasive brain stimulation to modulate multisensory speech perception in an illusory context (i.e., both increasing and decreasing illusion-type responses to a verbal audio-visual integration task. These findings provide clear evidence that both the superior temporal and parietal areas contribute to multisensory integration processing related to speech perception. Specifically, STS seems fundamental for the temporal synchronization and integration of auditory and visual inputs. For its part, PPC may adjust the arrival of incoming audio and visual information to STS thereby enhancing their interaction in this latter area.

  14. Semantic brain areas are involved in gesture comprehension: An electrical neuroimaging study.

    Science.gov (United States)

    Proverbio, Alice Mado; Gabaro, Veronica; Orlandi, Andrea; Zani, Alberto

    2015-08-01

    While the mechanism of sign language comprehension in deaf people has been widely investigated, little is known about the neural underpinnings of spontaneous gesture comprehension in healthy speakers. Bioelectrical responses to 800 pictures of actors showing common Italian gestures (e.g., emblems, deictic or iconic gestures) were recorded in 14 persons. Stimuli were selected from a wider corpus of 1122 gestures. Half of the pictures were preceded by an incongruent description. ERPs were recorded from 128 sites while participants decided whether the stimulus was congruent. Congruent pictures elicited a posterior P300 followed by late positivity, while incongruent gestures elicited an anterior N400 response. N400 generators were investigated with swLORETA reconstruction. Processing of congruent gestures activated face- and body-related visual areas (e.g., BA19, BA37, BA22), the left angular gyrus, mirror fronto/parietal areas. The incongruent-congruent contrast particularly stimulated linguistic and semantic brain areas, such as the left medial and the superior temporal lobe. PMID:26011745

  15. Theoretical study of the potential energy surface and electric dipole moment of aniline

    Science.gov (United States)

    Farasat, Mahshid; Shojaei, S. H. Reza; Golzan, M. Maqsood; Farhadi, Khalil

    2016-03-01

    The potential energy surface (PES) of aniline was comprehensively investigated at different levels in this paper. The stable conformer of aniline has CS point group while the transition states possess CS and C2V symmetries. The computed transition states of aniline are highly dependent on the level of the computations including Hartree-Fock, Density functional and Moller-Plesset perturbation theories. The electric dipole moment of the molecule varies by the rotation of the amino group with respect to the phenyl plane, while in the range of 60-120 degrees, the changes of the dipole moment is not noticeable.

  16. Surface Modification of Nano Porous Materials for Electric Double Layer Capacitors Application

    OpenAIRE

    Tashima, Daisuke; Kurosawatsu, Kenji; Sung, Youl-Moon; Otsubo, Masahisa; Honda, Chikahisa

    2007-01-01

    In this work, carbonaceous materials were modified in order to improve capacitance and charge density in electric double layer capacitors (EDLCs). Optimal conditions for plasma surface treatment of activated carbon have been examined for times from 10 min to 1 h at 150 ℃. The plasma is a high-frequency glow discharge in N2. The pressure of the gas is 13.3 Pa. The electrode is set up so that the EDLC sample is covered with the glow discharge. Space charge density can be improved by plasma surf...

  17. Functional Changes in the Care-needing Elderly after Surface Electrical Stimulation to the Abdomen

    OpenAIRE

    Miura, Misa; Seki, Kazunori; Ito, Osamu; Handa, Yasunobu; Kohzuki, Masahiro

    2012-01-01

    Background: Strength of the trunk muscles is a key component of motor control, but it declines easily with the process of aging and/or disuse. Objectives: To investigate the effects of surface electrical stimulation (ES) to the abdominal muscles and the motor performance for care-needing elderly. Design: Controlled trial. Participants: Twenty-one elderly people (60–90 years) with care-needing, who were admitted to a nursing home or hospital for daily care and their score of Barthel Index had ...

  18. Plasma-surface interactions associated with electrical breakdown of water using porous ceramic-coated electrodes

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    Vol. I-01. Matsuyama, Ehime : Ehime Yoko Co.Ltd, 2010, s. 9-10. ISBN N. [International Workshop on Plasmas with Liquids (IWPL 2010). Matsuyama (JP), 22.03.2010-24.03.2010] R&D Projects: GA AV ČR IAAX00430802 Institutional research plan: CEZ:AV0Z20430508 Keywords : corona discharge * water * ceramic * electric breakdown * surface charge Subject RIV: BL - Plasma and Gas Discharge Physics http://plasma.eng.ehime-u.ac.jp/IWPL_2010/IWPL2010_ProceedingsV3.pdf

  19. Influence of machining parameters on the surface integrity in electrical discharge machining

    OpenAIRE

    M. Boujelbene; E. Bayraktar; W. Tebni; Ben Salem, S.

    2009-01-01

    Purpose: The aim of this research is to make a study of the influence of machining parameters on the surface integrity in electrical discharge machining. The material used for this study is the X200Cr15 and 50CrV4 steel for dies and moulds, dies castings, forging dies etc.Design/methodology/approach: The methodology consists of the analysis and determination of the white layer thickness WLT, the material removal rate MRR, the electrode wear ratio EWR and the micro hardness of each pulse disch...

  20. Spatio-temporal dynamics of kind versus hostile intentions in the human brain: An electrical neuroimaging study.

    Science.gov (United States)

    Wang, Yiwen; Huang, Liang; Zhang, Wei; Zhang, Zhen; Cacioppo, Stephanie

    2015-01-01

    Neuroscience research suggests that inferring neutral intentions of other people recruits a specific brain network within the inferior fronto-parietal action observation network as well as a putative social network including brain areas subserving theory of mind, such as the posterior superior temporal sulcus (pSTS), the temporo-parietal junction (TPJ), and also the anterior cingulate cortex (ACC). Recent studies on harmful intentions have refined this network by showing the specific involvement of the ACC, amygdala, and ventromedial prefrontal cortex (vmPFC) in early stages (within 200 ms) of information processing. However, the functional dynamics for kind intentions within and among these networks remains unclear. To address this question, we measured electrical brain activity from 18 healthy adult participants while they were performing an intention inference task with three different types of intentions: kind, hostile and non-interactive. Electrophysiological results revealed that kind intentions were characterized by significantly larger peak amplitudes of N2 over the frontal sites than those for hostile and non-interactive intentions. On the other hand, there were no significant differences between hostile and non-interactive intentions at N2. The source analysis suggested that the vicinity of the left cingulate gyrus contributed to the N2 effect by subtracting the kindness condition from the non-interactive condition within 250-350 ms. At a later stage (i.e., during the 270-500 ms epoch), the peak amplitude of the P3 over the parietal sites and the right hemisphere was significantly larger for hostile intentions compared to the kind and non-interactive intentions. No significant differences were observed at P3 between kind and non-interactive intentions. The source analysis showed that the vicinity of the left anterior cingulate cortex contributed to the P3 effect by subtracting the hostility condition from the non-interactive condition within 450-550 ms

  1. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan

    2010-08-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.

  2. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  3. Morphological features of the copper surface layer under sliding with high density electric current

    International Nuclear Information System (INIS)

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm2 are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance

  4. Shaping of steel mold surface of lens array by electrical discharge machining with spherical ball electrode.

    Science.gov (United States)

    Takino, Hideo; Hosaka, Takahiro

    2016-06-20

    We propose a method for fabricating a spherical lens array mold by electrical discharge machining (EDM) with a ball-type electrode. The electrode is constructed by arranging conductive spherical balls in an array. To fundamentally examine the applicability of the proposed EDM method to the fabrication of lens array molds, we use an electrode having a single ball to shape a lens array mold made of stainless steel with 16 spherical elements, each having a maximum depth of 0.5 mm. As a result, a mold surface is successfully shaped with a peak-to-valley shape accuracy of approximately 10 μm, and an average surface roughness of 0.85 μm. PMID:27409126

  5. Effects of the March 2015 solar eclipse on near-surface atmospheric electricity.

    Science.gov (United States)

    Bennett, A J

    2016-09-28

    Measurements of atmospheric electrical and standard meteorological parameters were made at coastal and inland sites in southern England during the 20 March 2015 partial solar eclipse. Clear evidence of a reduction in air temperature resulting from the eclipse was found at both locations, despite one of them being overcast during the entire eclipse. The reduction in temperature was expected to affect the near-surface electric field (potential gradient (PG)) through a reduction in turbulent transfer of space charge. No such effect could be unambiguously confirmed, however, with variability in PG and air-Earth current during the eclipse being comparable to pre- and post-eclipse conditions. The already low solar radiation for this latitude, season and time of day was likely to have contributed to the reduced effect of the eclipse on atmospheric electricity through boundary layer stability. The absence of a reduction in mean PG shortly after time of maximum solar obscuration, as observed during eclipses at lower geomagnetic latitude, implied that there was no significant change in atmospheric ionization from cosmic rays above background variability. This finding was suggested to be due to the relative importance of cosmic rays of solar and galactic origin at geomagnetic mid-latitudes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. PMID:27550771

  6. Geometry and surface damage in micro electrical discharge machining of micro-holes

    International Nuclear Information System (INIS)

    Geometry and subsurface damage of blind micro-holes produced by micro electrical discharge machining (micro-EDM) is investigated experimentally to explore the relational dependence with respect to pulse energy. For this purpose, micro-holes are machined with various pulse energies on plastic mold steel samples using a tungsten carbide tool electrode and a hydrocarbon-based dielectric liquid. Variations in the micro-hole geometry, micro-hole depth and over-cut in micro-hole diameter are measured. Then, unconventional etching agents are applied on the cross sections to examine micro structural alterations within the substrate. It is observed that the heat-damaged segment is composed of three distinctive layers, which have relatively high thicknesses and vary noticeably with respect to the drilling depth. Crack formation is identified on some sections of the micro-holes even by utilizing low pulse energies during machining. It is concluded that the cracking mechanism is different from cracks encountered on the surfaces when machining is performed by using the conventional EDM process. Moreover, an electrically conductive bridge between work material and debris particles is possible at the end tip during machining which leads to electric discharges between the piled segments of debris particles and the tool electrode during discharging

  7. Brain Basics

    Medline Plus

    Full Text Available ... as in areas of the brain that control movement. When electrical signals are abnormal, they can cause ... normal mood functioning. Dopamine —mainly involved in controlling movement and aiding the flow of information to the ...

  8. Brain Basics

    Medline Plus

    Full Text Available ... treatments, and possibly prevention of such illnesses. The Working Brain Neurotransmitters Everything we do relies on neurons ... depression, can occur when this process does not work correctly. Communication between neurons can also be electrical, ...

  9. Brain Basics

    Medline Plus

    Full Text Available ... Offices and Divisions Careers@NIMH Advisory Boards and Groups Staff Directories Getting to NIMH National Institutes of ... electrical signals. The brain begins as a small group of cells in the outer layer of a ...

  10. Surface evolution in bare bamboo-type metal lines under diffusion and electric field effects

    International Nuclear Information System (INIS)

    Irregularities such as voids and cracks often occur in bamboo-type metal lines of microelectronic interconnects. They increase the resistance of the circuits, and may even lead to a fatal failure. In this work, we analyze numerically the electromigration of an unpassivated bamboo-type line with pre-existing irregularities in its top surface (also called a grain-void interface). The bamboo line is subjected to surface diffusion forces and external electric fields. Under these forces, initial defects may either heal or become worse. The grain-void interface is considered to be one-dimensional, and the physical formulation of an electromigration and diffusion model results in two coupled, fourth order, one-dimensional time-dependent PDEs, with the boundary conditions imposed at the electrode points and at the triple point, which belongs to two neighboring grains and the void. These equations are discretized by finite differences on a regular grid in space, and by a Runge-Kutta integration scheme in time, and solved simultaneously with a static Laplace equation describing the voltage distribution throughout each grain, when the substrate conductivity is neglected. Since the voltage distribution is required only along an interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the interface line is studied for different ratios between diffusion and electric field forces, and for different initial configurations of the grain-void interface. We study plain and tilted contour lines, considering positive and negative tilts with respect to the external electric field, a stepped contour with field lines entering or exiting the 'step', and a number of modifications of the classical Mullins problem of thermal grooving. We also consider a two-grain Mullins problem with a normal and tilted boundary between the grains, examining positive and negative

  11. Three dimensional modeling and inversion of Borehole-surface Electrical Resistivity Data

    Science.gov (United States)

    Zhang, Y.; Liu, D.; Liu, Y.; Qin, M.

    2013-12-01

    After a long time of exploration, many oil fields have stepped into the high water-cut period. It is sorely needed to determining the oil-water distribution and water flooding front. Borehole-surface electrical resistivity tomography (BSERT) system is a low-cost measurement with wide measuring scope and small influence on the reservoir. So it is gaining more and more application in detecting water flooding areas and evaluating residual oil distribution in oil fields. In BSERT system, current is connected with the steel casing of the observation well. The current flows along the long casing and transmits to the surface through inhomogeneous layers. Then received electric potential difference data on the surface can be used to inverse the deep subsurface resistivity distribution. This study presents the 3D modeling and inversion method of electrical resistivity data. In an extensive literature, the steel casing is treated as a transmission line current source with infinite small radius and constant current density. However, in practical multi-layered formations with different resistivity, the current density along the casing is not constant. In this study, the steel casing is modeled by a 2.5e-7 ohm-m physical volume that the casing occupies in the finite element mesh. Radius of the casing can be set to a little bigger than the true radius, and this helps reduce the element number and computation time. The current supply point is set on the center of the top surface of the physical volume. The homogeneous formation modeling result shows the same precision as the transmission line current source model. The multi-layered formation modeling result shows that the current density along the casing is high in the low-resistivity layer, and low in the high-resistivity layer. These results are more reasonable. Moreover, the deviated and horizontal well can be simulated as simple as the vertical well using this modeling method. Based on this forward modeling method, the

  12. Brain Basics

    Medline Plus

    Full Text Available ... will fire. This enhances the electrical flow among brain cells required for normal function and plays an important ... of neurons and their interconnections. neuron —A nerve cell that is the basic, working unit of the brain and nervous system, which processes and transmits information. ...

  13. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    Science.gov (United States)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  14. Possible Time-Dependent Effect of Ions and Hydrophilic Surfaces on the Electrical Conductivity of Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Marija Zupancic

    2012-03-01

    Full Text Available The purpose of this work was to determine the influence of mechanical and electrical treatment on the electrical conductivity of aqueous solutions. Solutions were treated mechanically by iteration of two steps: 1:100 dilution and vigorous shaking. These two processes were repeated until extremely dilute solutions were obtained. For electrical treatment the solutions were exposed to strong electrical impulses. Effects of mechanical (as well as electrical treatment could not be demonstrated using electrical conductivity measurements. However, significantly higher conductivity than those of the freshly prepared chemically analogous solutions was found in all aged solutions except for those samples stored frozen. The results surprisingly resemble a previously observed weak gel-like behavior in water stored in closed flasks. We suggest that ions and contact with hydrophilic glass surfaces could be the determinative conditions for the occurrence of this phenomenon.

  15. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    Science.gov (United States)

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. PMID:20535812

  16. Effects of electric field on a copper-dioxolene complex adsorbed on a gold surface

    Science.gov (United States)

    Kostyrko, T.; Ślusarski, T.

    2016-06-01

    A model of a copper-dioxolene complex linked to Au(1 1 1) surface with butanethiol linker is investigated using first-principles methods. It is shown that the complex adsorbed at the surface may appear in various locally stable structural forms differing in electron charge and spin density distribution, the symmetric high spin (HS) one and the twisted low spin (LS) structure. The electric field directed perpendicular to the surface controls the amount of the charge transfer between the complex and the substrate, starting from the zero-field value of Q = +0.18 |e| up to the value of Q = +0.94 |e| for the field strength of E = 0.5 V/Å. The field modifies also the mutual stability of the two structural forms, reducing the energy gap between the more energetically stable LS twisted form and the symmetrical HS one, from a value of Δ ∼ 0.29 eV in absence of the field to Δ ∼ 0.11 eV for the field strength of E = 0.35 V/Å.

  17. Estimation of the electrical potential distribution along metallic casing from surface self-potential profile

    Science.gov (United States)

    Maineult, Alexis

    2016-06-01

    Corroding casings of wells generate negative self-potential (SP) anomalies, increasing from about - 10 to - 500 mV in the vicinity of the well to 0 mV at large distances. As reported in previous laboratory experiment, SP can be used to retrieve the distribution of electrical potential along the casing, which is somehow a proxy for the corrosion state of the casing. These studies used 3D (whole space) or surface 2D (whole surface) measurements of SP distribution; here we reported a field example, for which only a 1D surface SP profile is available. In order to retrieve the most probable associated potential distribution (defined by a spline) along the 11.1-m long metallic casing, we develop a direct model based on geometrical and geoelectrical properties of the medium, which was then used in a (non-deterministic) optimization procedure by simulated annealing, including some physical constrains. Tests carried out on a synthetic case allowed the initial source to be correctly retrieved, provided that the number of nodes used for the spline defining the potential distribution along the casing is large enough. The inversion of real field data provided a dipolar anomaly, with minimal negative amplitude of around - 600 mV at 5 m, and maximal positive amplitude of about 1100 mV at 9 m (close to the level of the water table), this shape being in agreement with the results of previous laboratory studies.

  18. First stages of surface steel nitriding: X-ray photoelectron spectroscopy and electrical measurements

    Science.gov (United States)

    Flori, M.; Gruzza, B.; Bideux, L.; Monier, G.; Robert-Goumet, C.; Benamara, Z.

    2009-08-01

    Quantitative and qualitative analysis techniques were employed to study the first stages of ultra-high vacuum plasma nitriding of the 42CrMo4 steel. At constant treatment temperature, maintained for all samples at about 360 °C, we have established the influence of treatment time on the chemical composition, thickness and electrical properties of the nitrided layer. In this purpose it was used a stacking atomic layer model describing the sample surface, which takes into account the attenuation depth of photoelectrons by the atomic monolayers. So, we have found that after 2 h of nitriding in laboratory conditions, 70% of the nitrided layer was composed of iron oxide. Also, I- V measurements indicate an influence of the nitride overlayer with increasing treatment time.

  19. First stages of surface steel nitriding: X-ray photoelectron spectroscopy and electrical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Flori, M., E-mail: flori.mihaela@fih.upt.ro [' Politehnica' University of Timisoara, Faculty of Engineering of Hunedoara, 331128 Hunedoara (Romania); Gruzza, B.; Bideux, L.; Monier, G.; Robert-Goumet, C. [LASMEA, UMR CNRS 6602, Blaise Pascal University, 63177 Aubiere Cedex (France); Benamara, Z. [Laboratoire de Microelectronique Appliquee, Sidi Bel Abbes University, 22000 Sidi Bel Abbes (Algeria)

    2009-08-30

    Quantitative and qualitative analysis techniques were employed to study the first stages of ultra-high vacuum plasma nitriding of the 42CrMo4 steel. At constant treatment temperature, maintained for all samples at about 360 deg. C, we have established the influence of treatment time on the chemical composition, thickness and electrical properties of the nitrided layer. In this purpose it was used a stacking atomic layer model describing the sample surface, which takes into account the attenuation depth of photoelectrons by the atomic monolayers. So, we have found that after 2 h of nitriding in laboratory conditions, 70% of the nitrided layer was composed of iron oxide. Also, I-V measurements indicate an influence of the nitride overlayer with increasing treatment time.

  20. The influence of partial surface discharging on the electrical characterization of DBDs

    International Nuclear Information System (INIS)

    The determination of internal electrical discharge parameters, such as plasma current and burning voltage, in dielectric barrier discharges (DBDs) relies on an equivalent circuit based on series capacitances for the discharge gap and dielectric material. An effective dielectric capacitance for the discharge can be obtained from Q–V diagrams, also called Lissajous figures, during discharging, which may not be a constant for a given DBD geometry. It has been shown experimentally that microdischarges, which can consist of narrow channels in either diffuse or filamentary form, may not fully cover the available discharge area. Here, we report measurements of the effective dielectric capacitance as a function of applied voltage amplitude in a DBD plasma jet system operating in N2 and derive equations to determine the conductively transferred charge, burning voltage and the proportion of the electrode surface over which discharging occurs when the effective dielectric capacitance is not equal to the dielectric capacitance of the complete electrode area. (paper)

  1. First stages of surface steel nitriding: X-ray photoelectron spectroscopy and electrical measurements

    International Nuclear Information System (INIS)

    Quantitative and qualitative analysis techniques were employed to study the first stages of ultra-high vacuum plasma nitriding of the 42CrMo4 steel. At constant treatment temperature, maintained for all samples at about 360 deg. C, we have established the influence of treatment time on the chemical composition, thickness and electrical properties of the nitrided layer. In this purpose it was used a stacking atomic layer model describing the sample surface, which takes into account the attenuation depth of photoelectrons by the atomic monolayers. So, we have found that after 2 h of nitriding in laboratory conditions, 70% of the nitrided layer was composed of iron oxide. Also, I-V measurements indicate an influence of the nitride overlayer with increasing treatment time.

  2. Numerical Studies of Friction Between Metallic Surfaces and of its Dependence on Electric Currents

    Science.gov (United States)

    Meintanis, Evangelos; Marder, Michael

    2009-03-01

    We will present molecular dynamics simulations that explore the frictional mechanisms between clean metallic surfaces. We employ the HOLA molecular dynamics code to run slider-on-block experiments. Both objects are allowed to evolve freely. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. We also find that plastic deformations can significantly affect both objects, despite a difference in hardness. Metallic contacts have significant technological applications in the transmission of electric currents. To explore the effects of the latter to sliding, we had to integrate an electrodynamics solver into the molecular dynamics code. The disparate time scales involved posed a challenge, but we have developed an efficient scheme for such an integration. A limited electrodynamic solver has been implemented and we are currently exploring the effects of currents in the friction and wear of metallic contacts.

  3. Brain Basics

    Medline Plus

    Full Text Available ... occur when this process does not work correctly. Communication between neurons can also be electrical, such as in areas of the brain that control movement. When electrical signals are abnormal, they can cause tremors or symptoms found in Parkinson's disease. Serotonin — ...

  4. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study

    International Nuclear Information System (INIS)

    Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1–3 V cm−1. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model.A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays.The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability.This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm−1, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields. (paper)

  5. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: a computational study

    Science.gov (United States)

    Wenger, Cornelia; Salvador, Ricardo; Basser, Peter J.; Miranda, Pedro C.

    2015-09-01

    Tumor treating fields (TTFields) are a non-invasive, anti-mitotic and approved treatment for recurrent glioblastoma multiforme (GBM) patients. In vitro studies have shown that inhibition of cell division in glioma is achieved when the applied alternating electric field has a frequency in the range of 200 kHz and an amplitude of 1-3 V cm-1. Our aim is to calculate the electric field distribution in the brain during TTFields therapy and to investigate the dependence of these predictions on the heterogeneous, anisotropic dielectric properties used in the computational model. A realistic head model was developed by segmenting MR images and by incorporating anisotropic conductivity values for the brain tissues. The finite element method (FEM) was used to solve for the electric potential within a volume mesh that consisted of the head tissues, a virtual lesion with an active tumour shell surrounding a necrotic core, and the transducer arrays. The induced electric field distribution is highly non-uniform. Average field strength values are slightly higher in the tumour when incorporating anisotropy, by about 10% or less. A sensitivity analysis with respect to the conductivity and permittivity of head tissues shows a variation in field strength of less than 42% in brain parenchyma and in the tumour, for values within the ranges reported in the literature. Comparing results to a previously developed head model suggests significant inter-subject variability. This modelling study predicts that during treatment with TTFields the electric field in the tumour exceeds 1 V cm-1, independent of modelling assumptions. In the future, computational models may be useful to optimize delivery of TTFields.

  6. Toward the restoration of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles.

    Directory of Open Access Journals (Sweden)

    Eric A Pohlmeyer

    Full Text Available Loss of hand use is considered by many spinal cord injury survivors to be the most devastating consequence of their injury. Functional electrical stimulation (FES of forearm and hand muscles has been used to provide basic, voluntary hand grasp to hundreds of human patients. Current approaches typically grade pre-programmed patterns of muscle activation using simple control signals, such as those derived from residual movement or muscle activity. However, the use of such fixed stimulation patterns limits hand function to the few tasks programmed into the controller. In contrast, we are developing a system that uses neural signals recorded from a multi-electrode array implanted in the motor cortex; this system has the potential to provide independent control of multiple muscles over a broad range of functional tasks. Two monkeys were able to use this cortically controlled FES system to control the contraction of four forearm muscles despite temporary limb paralysis. The amount of wrist force the monkeys were able to produce in a one-dimensional force tracking task was significantly increased. Furthermore, the monkeys were able to control the magnitude and time course of the force with sufficient accuracy to track visually displayed force targets at speeds reduced by only one-third to one-half of normal. Although these results were achieved by controlling only four muscles, there is no fundamental reason why the same methods could not be scaled up to control a larger number of muscles. We believe these results provide an important proof of concept that brain-controlled FES prostheses could ultimately be of great benefit to paralyzed patients with injuries in the mid-cervical spinal cord.

  7. SURFACE ELECTRICAL PROPERTIES AND STRUCTURE OF YTTRIA-PARTIALLY-STABILIZED ZIRCONIA IMPLANTED WITH 57Fe IONS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Sintered plates of 5mol% yttria-partially-stabilized zirconia have been implanted at room temperature with 5×1015to 2×1017 Fe+ ions/cm2 at 140 KeV.Electrical measurement,Rutherford backscattering spectroscopy(RBS),Raman spectroscopy and X-ray photoelectron spectroscopy(XPS) have been used to study the surface electrical properties and the structure of the implanted layer before and after thermal annealing treatment in N2.

  8. Project Financial Summary Report Concerning Financing Surface Facilities for a 50 Megawatt Geothermal Electric Power Plant Facility in Utah

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-23

    This report summarizes the economic and financial conditions pertaining to geothermal electric power plant utilization of geothermal fluids produced from the Roosevelt Hot springs area of Utah. The first year of electric power generation is scheduled to be 1982. The non-resource facilities will be called ''surface facilities'' and include the gathering system, the power plant, the substation, and the injection system.

  9. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    International Nuclear Information System (INIS)

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms

  10. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    Science.gov (United States)

    Stráský, Josef; Havlíková, Jana; Bačáková, Lucie; Harcuba, Petr; Mhaede, Mansour; Janeček, Miloš

    2013-09-01

    Presented work aims at multi-method characterization of combined surface treatment of Ti-6Al-4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  11. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    International Nuclear Information System (INIS)

    Presented work aims at multi-method characterization of combined surface treatment of Ti–6Al–4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  12. Influence of a single lightning on the intensity of an air electric field and acoustic emission of near surface rocks

    Directory of Open Access Journals (Sweden)

    S. E. Smirnov

    2012-06-01

    Full Text Available The effect of a single lightning discharge on electric field intensity in the near ground atmosphere was investigated. The effect appeared as a sharp fall of electric field potential gradient from 80 V m−1 up to −21 V m−1. The process of intensity recovery is described by flat capacitor model with characteristic time of recovery of 17 c. Simultaneously with electric field, the acoustic emission response in the near surface rocks on lightning discharge was registered in the frequency range of 6.5–11 kHz.

  13. Influence of a single lightning on the intensity of an air electric field and acoustic emission of near surface rocks

    OpenAIRE

    Smirnov, S. E.; Marapulets, Y. V.

    2012-01-01

    The effect of a single lightning discharge on electric field intensity in the near ground atmosphere was investigated. The effect appeared as a sharp fall of electric field potential gradient from 80 V m−1 up to −21 V m−1. The process of intensity recovery is described by flat capacitor model with characteristic time of recovery of 17 c. Simultaneously with electric field, the acoustic emission response in the near surface rocks on lightning disch...

  14. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Shrestha, Shankar Prasad [Tribhuvan Univ., Kathmandu (Nepal)

    2014-03-15

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O{sub 2} flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O{sub 2} flow rate. Resistance changes only slightly with different O{sub 2} flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O{sub 2} or N{sub 2} plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

  15. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso

    2014-04-01

    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.

  16. Role of the surface in the electrical and optical properties of GaN

    International Nuclear Information System (INIS)

    We have studied the effect of ambient environment and temperature on the electrical and optical properties of n-type GaN in a setup combining a Kelvin probe with an optical cryostat. Specifically, the value of band bending at the surface and its change due to illumination (photovoltage) were studied. Complementary information about the depletion region was also obtained from photoluminescence (PL) data. We measured the surface photovoltage (SPV) signal at photon energies between 1.2 and 4.0 eV and found a maximum SPV value of ∼0.6 eV for band-to-band photon energies, indicating that the initial (dark) upward band bending decreased by at least this amount under ultraviolet illumination with an intensity of about 0.03 W/cm2. Illumination was performed with intensities ranging from 10-9 to 3x10-2 W/cm2, where the SPV signal increased as a logarithm of light intensity. In air ambient the SPV signal for high-intensity, band-to-band illumination increased quickly to a maximum and then gradually decreased during illumination. This decrease is explained by the photo-induced adsorption of negatively charged oxygen species in air.

  17. Electrically tunable surface plasmon for THz emission, detection, and other applications

    Science.gov (United States)

    Khoury, Jed; Haji-Saeed, Bahareh; Buchwald, Walter; Woods, Charles

    2010-08-01

    In this paper, we present a design for a widely tunable solid-state optically and electrically pumped THz laser based on the Smith-Purcell free-electron laser. In the free-electron laser, an energetic electron beam pumps a metallic grating to generate surface plasmons. Our solid-state optically pumped design consists of a thin layer of dielectic, such as SiNx, sandwiched between a corrugated structure and a thin metal or semiconductor layer. The lower layer is for current streaming, and replaces the electron beam in the original design. The upper layer consists of one micro-grating for coupling the electromagnetic field in, another for coupling out, and a nano-grating for coupling with the current in the lower layer for electromagnetic field generation. The surface plasmon waves generated from the upper layer by an external electromagnetic field, and the lower layer by the applied current, are coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  18. Single-Voxel Short-Echo Time Proton Spectroscopy of Human Brain with Standard Surface Coils

    Czech Academy of Sciences Publication Activity Database

    Mlynárik, V.; Gruber, S.; Starčuk, Zenon; Starčuk jr., Zenon; Roden, M.; Moser, E.

    Denver : ISMRM, 2000, s. 1857. [ISMRM /8./ - Scientific Meeting and Exhibition. Denver (US), 01.04.2000-07.04.2000] Institutional research plan: CEZ:AV0Z2065902 Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. A new analytical model for the surface electric field distribution and breakdown voltage of the SOI trench LDMOS

    Institute of Scientific and Technical Information of China (English)

    Hu Xia-Rong; Zhang Bo; Luo Xiao-Rong; Wang Yuan-Gang; Lei Tian-Fei; Li Zhao-Ji

    2012-01-01

    A new analytical model for the surface electric field distribution and breakdown voltage of the silicon on insulator (SOI) trench lateral double-diffused metal-oxide-semiconductor (LDMOS) is presented.Based on the two-dimensional Laplace solution and Poisson solution,the model considers the influence of structure parameters such as the doping concentration of the drift region,and the depth and width of the trench on the surface electric field.Further,a simple analytical expression of the breakdown voltage is obtained,which offers an effective way to gain an optimal high voltage.All the analytical results are in good agreement with the simulation resuits.

  20. Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells.

    Science.gov (United States)

    Zhang, Wen; Hughes, Joseph; Chen, Yongsheng

    2012-06-01

    Despite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties of Escherichia coli cells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomaterials. Both scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that E. coli cells had noticeable deformation with hematite treatment for 45 min with a statistical significance. The hematite-treated cells became significantly harder or stiffer than untreated ones, as evidenced by indentation and spring constant measurements. The average indentation of the hematite-treated E. coli cells was 120 nm, which is significantly lower (P hematite-treated E. coli cells (0.28 ± 0.11 nN/nm) was about 20 times higher than that of untreated ones (0.01 ± 0.01 nN/nm). The zeta potential of E. coli cells, measured by dynamic light scattering (DLS), was shown to shift from -4 ± 2 mV to -27 ± 8 mV with progressive surface adsorption of hematite NPs, a finding which is consistent with the local surface potential measured by Kelvin probe force microscopy (KPFM). Overall, the reported findings quantitatively revealed the adverse impacts of nanomaterial exposure on physical properties of bacterial cells and should provide insight into the toxicity mechanisms of nanomaterials. PMID:22467500

  1. Diffusion of hydrogen interstitials in the near-surface region of Pd(111) under the influence of surface coverage and external static electric fields

    Science.gov (United States)

    Blanco-Rey, M.; Tremblay, J. C.

    2015-04-01

    Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emerge from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ-1 are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.

  2. Diffusion of hydrogen interstitials in the near-surface region of Pd(111) under the influence of surface coverage and external static electric fields

    International Nuclear Information System (INIS)

    Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emerge from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ−1 are insufficient to invert the stabilities of the surface and subsurface equilibrium sites

  3. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers

    OpenAIRE

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-01-01

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layers in electrolyte solutions with divalent counter-ions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three dist...

  4. Measurement of induced surface charges, contact potentials, and surface states in GaN by electric force microscopy

    OpenAIRE

    Bridger, P. M.; Bandić, Z. Z.; Piquette, E. C.; T. C. Mcgill

    1999-01-01

    We have studied molecular beam epitaxy grown GaN films of both polarities using electric force microscopy to detect sub 1 µm regions of charge density variations associated with GaN extended defects. The large piezoelectric coefficients of GaN together with strain introduced by crystalline imperfections produce variations in piezoelectrically induced electric fields around these defects. The consequent spatial rearrangement of charges can be detected by electrostatic force microscopy and was ...

  5. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    International Nuclear Information System (INIS)

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd2+) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected

  6. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw, Htet Htet [Department of Physics, College of Science, Sultan Qaboos University, P. O. Box 36, Al-Khoud 123 (Oman); Boonruang, Sakoolkan, E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Photonics Technology Laboratory, National Electronics and Computer Technology Center (NECTEC), 112 Thailand Science Park, PathumThani 12120 (Thailand); Mohammed, Waleed S., E-mail: sakoolkan.boonruang@nectec.or.th, E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control Systems (BUCROCCS), School of Engineering, Bangkok University, PathumThani 12120 (Thailand); Dutta, Joydeep [Functional Materials Division, School of Information and Communication Technology, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 Kista, Stockholm (Sweden)

    2015-10-15

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd{sup 2+}) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  7. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    Directory of Open Access Journals (Sweden)

    Htet Htet Kyaw

    2015-10-01

    Full Text Available Surface Plasmon Resonance (SPR sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity. This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd2+ in water from several parts per million (ppm down to a few parts per billion (ppb can be detected.

  8. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    Science.gov (United States)

    Kyaw, Htet Htet; Boonruang, Sakoolkan; Mohammed, Waleed S.; Dutta, Joydeep

    2015-10-01

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as "Electric-Field assisted SPR system". High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd2+) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  9. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Science.gov (United States)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  10. Recovery of electrical stability in the gaps after a sliding discharge on a dielectric surface

    Science.gov (United States)

    Belkov, E. P.; Dashuk, P. N.

    1980-11-01

    Experimental results are presented on the recovery of electrical stability in gaps of air, argon, xenon, SF6, and argon-SF6 mixtures after a sliding discharge on a dielectric surface; pressure was in the range of 2500-9500, discharge current was in the range 2-4000 A, and current pulse duration was in the range 10-20 microsec. It is shown that after the discharge the breakdown voltage of the discharge gaps decreases to 0.1-0.4 U sub 0 (where U sub 0 is the breakdown voltage in the absence of a preliminary discharge) at current pulses of 150-4000 A and 10 microsec, and to 0.2-0.5 U sub 0 at 2-5 A and 10-20 microsec. After a streamer discharge, the breakdown voltage of the gaps decreases to 0.85-0.9 U sub 0; after the leader discharge it decreases to 0.6-0.8 U sub 0 in air, rare gases and the rare gas/SF6 mixture, and to 0.8-0.9 U sub 0 in pure SF6.

  11. Influence of Surface Modified MWCNTs on the Mechanical, Electrical and Thermal Properties of Polyimide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Singh Deepankar

    2008-01-01

    Full Text Available Abstract Polyamic acid, the precursor of polyimide, was used for the preparation of polyimide/multiwalled carbon nanotubes (MWCNTs nanocomposite films by solvent casting technique. In order to enhance the chemical compatibility between polyimide matrix and MWCNTs, the latter was surface modified by incorporating acidic and amide groups by chemical treatment with nitric acid and octadecylamine (C18H39N, respectively. While the amide-MWCNT/polyimide composite shows higher mechanical properties at low loadings (<3 wt%, the acid-MWCNT/polyimide composites perform better at higher loadings (5 wt%. The tensile strength (TS and the Young’s modulus (YM values of the acid-MWCNT/polyimide composites at 5 wt% MWCNT loadings was 151 and 3360 MPa, respectively, an improvement of 54% in TS and 35% in YM over the neat polyimide film (TS = 98 MPa; YM = 2492 MPa. These MWCNT-reinforced composites show remarkable improvement in terms of thermal stability as compared to that for pure polyimide film. The electrical conductivity of 5 wt% acid modified MWCNTs/polyimide nanocomposites improved to 0.94 S cm −1(6.67 × 10 −18 S cm−1for pure polyimide the maximum achieved so far for MWCNT-polyimide composites.

  12. Gum ghatti based novel electrically conductive biomaterials: A study of conductivity and surface morphology

    Directory of Open Access Journals (Sweden)

    S. Kalia

    2014-04-01

    Full Text Available Gum ghatti-cl-poly(acrylamide-aniline interpenetrating network (IPN was synthesized by a two-step aqueous polymerization method, in which aniline monomer was absorbed into the network of gum ghatti-cl-poly(acrylamide and followed by a polymerization reaction between aniline monomers. Initially, semi-IPN based on acrylamide and gum ghatti was prepared by free-radical copolymerization in aqueous media with optimized process parameters, using N,N'-methylenebis-acrylamide, as cross-linker and ammonium persulfate, as an initiator system. Optimum reaction conditions affording maximum percentage swelling were: solvent [mL] =12, Acrylamide (AAm [mol•L–1] = 1.971, Ammonium peroxydisulfate (APS [mol•L–1] = 0.131•10–1, N,N'-methylene-bis-acrylamide (MBA [mol•L–1] = 0.162•10–1, reaction time [min] = 210, temperature [°C] = 100 and pH = 7.0. The resulting IPN was doped with different protonic acids. The effect of the doping has been investigated on the conductivity and surface morphology of the IPN hydrogel. The maximum conductivity was observed with 1.5N HClO4 concentration. The morphological, structural and electrical properties of the candidate polymers were studied using scanning electron micrscopy (SEM, Fourier transform infrared spectroscopy FTIR and two-probe method, respectively.

  13. Space Molten Salt Reactor Concept for Nuclear Electric Propulsion and Surface Power

    Science.gov (United States)

    Eades, M.; Flanders, J.; McMurray, N.; Denning, R.; Sun, X.; Windl, W.; Blue, T.

    Students at The Ohio State University working under the NASA Steckler Grant sought to investigate how molten salt reactors with fissile material dissolved in a liquid fuel medium can be applied to space applications. Molten salt reactors of this kind, built for non-space applications, have demonstrated high power densities, high temperature operation without pressurization, high fuel burn up and other characteristics that are ideal for space fission systems. However, little research has been published on the application of molten salt reactor technology to space fission systems. This paper presents a conceptual design of the Space Molten Salt Reactor (SMSR), which utilizes molten salt reactor technology for Nuclear Electric Propulsion (NEP) and surface power at the 100 kWe to 15 MWe level. Central to the SMSR design is a liquid mixture of LiF, BeF2 and highly enriched U235F4 that acts as both fuel and core coolant. In brief, some of the positive characteristics of the SMSR are compact size, simplified core design, high fuel burn up percentages, proliferation resistant features, passive safety mechanisms, a considerable body of previous research, and the possibility for flexible mission architecture.

  14. Measurement of water level, electrical conductivity, and sediment surface level using time domain reflectometry

    International Nuclear Information System (INIS)

    Time domain reflectometry (TDR) has been drawing a lot more attention as a way to identify the interfaces in between different dielectric media. To monitor water level (hsub(w)) with electrical conductivity (omegasub(w)) and sediment surface level (hsub(sed)) in river by applying TDR, we developed a mathematical model to evaluate these properties and verified its effectiveness by measuring the dielectric constant of conductive fluid media and a soil material (sand) using TDR probes with different lengths. Although the determination of (hsub(w)) in extremely high-conductive media was technically incompleted, we could successfully determine (hsub(w)), (omegasub(w)), and hsub(sed) with a probe in moderate-conductive media. Judging from the relatively good agreement between properties evaluated from the model and observed data, we concluded the TDR measurement could be useful to evaluate hsub(w), omegasub(w), and hsub(sed) with sufficient accuracy for practical use within an appropriate conductive range. In actual application of TDR to a river monitoring, the calibration of the probe used must be required to conduct accurate measurement based of the model

  15. Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel

    Science.gov (United States)

    Marashi, Houriyeh; Sarhan, Ahmed A. D.; Hamdi, Mohd

    2015-12-01

    Manufacturing components with superior surface characteristics is challenging when electrical discharge machining (EDM) is employed for mass production. The aim of this research is to enhance the characteristics of AISI D2 steel surface machined with EDM through adding Ti nano-powder to dielectric under various machining parameters, including discharge duration (Ton) and peak current (I). Surface roughness profilometer, FESEM and AFM analysis were utilized to reveal the machined surface characteristics in terms of surface roughness, surface morphology and surface micro-defects. Moreover, EDX analysis was performed in order to evaluate the atomic deposition of Ti nano-powder on the surface. The concentration of Ti nano-powder in dielectric was also examined using ESEM and EDX. According to the results, the addition of Ti nano-powder to dielectric notably enhanced the surface morphology and surface roughness at all machining parameters except Ton = 340 μs. Of these parameters, maximum enhancement was observed at Ton = 210 μs, where the material removal rate and average surface roughness improved by ∼69 and ∼35% for peak current of 6 and 12 A, respectively. Elemental analysis signified negligible Ti deposition on the machined surface while the atomic concentration of Ti was increased around the crack areas.

  16. Early changes of cortical blood flow, brain temperature and electrical activity after whole-body irradiation of the monkey (Macaca fascicularis) (dose range: 3-20 Gy)

    International Nuclear Information System (INIS)

    A polyparametric investigation was carried out on 31 monkeys chronically wearing bioinstrumentation allowing to get and process simultaneously local brain blood flow, cerebral temperature, and energies in various frequency bands of the brain electrical activity. This method, which supplied data during several consecutive days, made it possible to study both the biological rhythms at the level of the various parameters, and their fast variations. The effects of whole-body gamma or neutron-gamma irradiation were studied in the 3-20 Gy dose range. Immediate changes after exposure demonstrated different radiosensitivities at the level of the rhythms of the various parameters, and/or their recovery, as well as dose-effect relationships

  17. Surface contamination and electrical damage by focused ion beam: conditions applicable to the extraction of TEM lamellae from nanoelectronic devices

    International Nuclear Information System (INIS)

    Focused ion beams (FIBs) are widely applied during manufacturing and for failure analysis, as a preparation tool for cross sectional scanning electron microscopy or for the extraction of lamellae for (scanning) transmission electron microscopy investigation of nanoelectronic devices. The impact of the ion beam milling on surface contamination is investigated by time-of-flight secondary ion mass spectroscopy, while the electrical surface damage is analyzed by a micro four-point probe. It is shown that the redeposition of milled Ga and Cu reaches levels below sensitivity (5 × 1010 at cm−2) at less than 10 mm from FIB structures while the lateral range of electrical surface damage is an order of magnitude smaller. The major source of the redeposition is the resputtering of sputtered material from the sample that was previously deposited on the SEM column. The 2D distribution of the redeposition is asymmetric and is simulated well based on a simplified model of the column and sample configuration. The electrical surface damage mainly relates to the beam tails. Pt deposits for surface protection require much lower Ga+ ion doses, and therefore have less impact on the wafer surface contamination. However, the range of electrical surface damage is larger for Pt deposits due to increased beam scattering in the low vacuum during the Pt deposition. With these contamination and damage levels and ranges, ‘wafer return’, i.e. continuing the wafer processing after the FIB, can be considered feasible for back-end of line processes with the loss of only the analyzed die or, potentially, also its neighbor. For front-end of line processes the acceptable contamination levels are more stringent and the feasibility of wafer return will be more process specific. (paper)

  18. Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel

    International Nuclear Information System (INIS)

    In this work the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. A new damage variable was used to study the EDM damage. The workpiece surface and re-solidified layers were examined by a scanning electron microscopy. Surface roughness was determined with a surface profilometer. The residual stress acting on the EDM specimen was measured by the X-ray diffraction technique. Experimental results indicate that the thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process introduces tensile residual stress on the machined surface. The EDM damage leads to strength degradation

  19. Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Guu, Y.H.; Hocheng, H.; Chou, C.Y.; Deng, C.S

    2003-10-15

    In this work the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. A new damage variable was used to study the EDM damage. The workpiece surface and re-solidified layers were examined by a scanning electron microscopy. Surface roughness was determined with a surface profilometer. The residual stress acting on the EDM specimen was measured by the X-ray diffraction technique. Experimental results indicate that the thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process introduces tensile residual stress on the machined surface. The EDM damage leads to strength degradation.

  20. 3D surface analysis of hippocampal microvasculature in the irradiated brain.

    Science.gov (United States)

    Craver, Brianna M; Acharya, Munjal M; Allen, Barrett D; Benke, Sarah N; Hultgren, Nan W; Baulch, Janet E; Limoli, Charles L

    2016-06-01

    Cranial irradiation used to control CNS malignancies can also disrupt the vasculature and impair neurotransmission and cognition. Here we describe two distinct methodologies for quantifying early and late radiation injury in CNS microvasculature. Intravascular fluorescently labeled lectin was used to visualize microvessels in the brain of the irradiated mouse 2 days post exposure and RECA-1 immunostaining was similarly used to visualize microvessels in the brain of the irradiated rat 1-month post exposure. Confocal microscopy, image deconvolution and 3-dimensional rendering methods were used to define vascular structure in a ∼4 × 10(7) μm(3) defined region of the brain. Quantitative analysis of these 3D images revealed that irradiation caused significant short- and long-term reductions in capillary density, diameter and volume. In mice, irradiation reduced mean vessel volume from 2,250 to 1,470 μm(3) and mean vessel diameter from 5.0 to 4.5 μm, resulting in significant reductions of 34% and 10%, in the hippocampus respectively. The number of vessel branch points and area was also found to also drop significantly in mice 2 days after irradiation. For rats, immunostaining revealed a significant, three-fold drop in capillary density 1 month after exposure compared to controls. Such radiation-induced disruption of the CNS microvasculature may be contributory if not causal to any number of neurocognitive side effects that manifest in cancer patients following cranial radiotherapy. This study demonstrates the utility of two distinct methodologies for quantifying these important adverse effects of radiotherapy. Environ. Mol. Mutagen. 57:341-349, 2016. © 2016 Wiley Periodicals, Inc. PMID:27175611

  1. Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining

    Science.gov (United States)

    Prakash, Chander; Kansal, H. K.; Pabla, B. S.; Puri, Sanjeev

    2015-09-01

    Herein, a β-Ti-based implant was subjected to powder mixed electric discharge machining (PMEDM) for surface modification to produce a novel biomimetic nanoporous bioceramic surface. The microstructure, surface topography, and phase composition of the non-machined and machined (PMEDMed) surfaces were investigated using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction. The microhardness of the surfaces was measured on a Vickers hardness tester. The corrosion resistance of the surfaces was evaluated via potentiodynamic polarization measurements in simulated body fluid. The application of PMEDM not only altered the surface chemistry, but also imparted the surface with a nanoporous topography or a natural bone-like surface structure. The characterization results confirmed that the alloyed layer mainly comprised bioceramic oxides and carbide phases (TiO2, Nb2O5, ZrO2, SiO2, TiC, NbC, SiC). The microhardness of PMEDMed surface was twofold higher than that of the base material (β-Ti alloy), primarily because of the formation of the hard carbide phases on the machined layer. Electrochemical analysis revealed that PMEDMed surface featured insulative and protective properties and thus displayed higher corrosion resistance ability when compared with the non-machined surface. This result was attributed to the formation of the bioceramic oxides on the machined surface. Additionally, the in vitro biocompatibility of the surfaces was evaluated using human osteoblastic cell line MG-63. PMEDMed surface with a micro-, sub-micro-, and nano-structured topography exhibited bioactivity and improved biocompatibility relative to β-Ti surface. Furthermore, PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the non-machined substrate.

  2. Alterations of electrical charge and receptors to lectins mouse lymphoma cells surface in early terms after irradiation

    International Nuclear Information System (INIS)

    Modifications of structural and functional state of OH-1 mouse lymphoma cells surface in early terms after gamma-irradiation with doses from 0.1 Gy to 10 Gy were studied. For this purpose, the methods of cell separation in a two-phase polymer system (dextran-PEG) and cell surface receptors binding with some plant lectins were used. It was revealed the decreased surface electrical charge that reached its maximum deflection 3 hours after gamma-irradiation. At the same time-dose dependent expression of irradiated cells, membrane receptors to the lectins of various specificity was observed

  3. The Dynamics of the Electric Field Distribution in the Surface of Insulating Film Irradiated by Air Ions

    Directory of Open Access Journals (Sweden)

    Julionas KALADE

    2016-05-01

    Full Text Available When deposited on a surface, electric charge usually accumulates near the tips of surface irregularities, from where it can be transferred to nearby objects due to ionization of ambient air. The amount of transferred charge, the rate of charge transfer, the size of the charged spot (e.g., on the surface of an insulator and its tendency to spread will depend on properties of air during electric discharge, on the magnitude of charge accumulated at the tip of an object, on possibilities for replenishing that charge, on the time spent for charge transfer from the tip onto the insulating layer, on properties of the insulating layer, etc. Those properties are discussed in this work by comparing the results of measurements and theoretical analysis.

  4. Symmetrical Curvilinear Cytotoxic Edema Along the Surface of the Brain Stem: A Probable New Magnetic Resonance Imaging Finding of Leptomeningeal Carcinomatosis

    OpenAIRE

    Khil, Eun Kyung; Lee, A. Leum; Chang, Kee-Hyun; Yun, Tae Jin; Hong, Hyun Sook

    2015-01-01

    Abstract Lung cancer is one of the most common neoplasms to appear leptomeningeal metastasis (LM). Contrast-enhanced magnetic resonance imaging (MRI) is better diagnostic choice for LM and usually shows focal nodular or diffuse linear enhancement on the leptomeninges along the sulci and tentorium in the brain. We experienced atypical 2 cases of lung cancer in patients who showed unusual brain MRI finding of symmetrical curvilinear or band-like, nonenhancing cytotoxic edema along the surface o...

  5. Large-scale surface dielectric barrier discharge type reactor : effect of the electric wind on the conversion effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Jolibois, J. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique; Poitiers Univ., Futuroscope Chasseneuil Cedex (France). Centre national de la recherche scientifique, Inst. Pprime; Zouzou, N.; Moreau, E. [Poitiers Univ., Futuroscope Chasseneuil Cedex (France). Centre national de la recherche scientifique, Inst. Pprime; Tatibouet, J.M. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Non-thermal plasma (NTP) techniques offer an innovative approach for air pollution reduction. Most studies in NTP techniques use volumetric discharge reactors with small dimensions and low flow rates at laboratory scale. The objective of this study was to develop an air pollution control plasma reactor at industrial scale with surface discharge. Propene (C{sub 3}H{sub 6}) was oxidized at high flow rates in a large-scale plasma reactor based on surface dielectric barrier discharge (DBD). Three different configurations of surface discharges were tested with 15 ppm of C{sub 3}H{sub 6} in air at ambient temperature for a flow rate of 50 m{sup 3} per hour. The properties of these different surface discharges were analyzed using chemical measurements and 3 component particle image velocimetry (PIV) measurements. PIV measurements were used characterize the effect of the electric wind on the polluted gas airflow inside the reactor and to explain the differences of effectiveness of the three tested plasma generators. For the three plasma generators, a propene oxidation of up to 45 percent was obtained at one J per liter. The electric wind produced by the surface discharge resulted in the formation of vortices inside the plasma reactor. This electric wind can increase gas mixing inside the plasma reactor and therefore plays a key role in conversion efficiency. It was concluded that the electric wind produced by surface discharges enables the use of this type of discharge for VOC elimination at high flow rate, with the same effectiveness of volumetric discharges. 5 refs., 10 figs.

  6. Sensitivity of the near-surface vertical electric field land Controlled-Source Electromagnetic monitoring

    OpenAIRE

    Schaller, A.M.; Hunziker, J.W.; Streich, R.; Drijkoningen, G.G.

    2014-01-01

    We investigate potential benefits of measuring the vertical electric field component in addition to the routinely measured horizontal electric field components in onshore time-lapse controlled-source electromagnetics. Synthetic electromagnetic data based on a model of the Schoonebeek onshore oil field are used. We confirm that the vertical electric field component is more sensitive to small changes in the reservoir than the horizontal components, yet its amplitudes are small. Accordingly, opt...

  7. Modeling and simulation of the free electron laser and railgun on an electric Naval surface platform

    OpenAIRE

    Bowlin, Oscar E.

    2006-01-01

    The Free Electron Laser (FEL) and Rail Gun are electric weapons which will require a significant amount of stored energy for operation. These types of weapons are ideal for use onboard an all-electric ship. An investigation is made of the effects these weapons will have on a proposed electrical system architecture using simulation modeling. Specifically, this thesis identifies possible design weaknesses and shows where further research and modeling is needed in order to ensure the proper inte...

  8. Enhancement of electric field modulation of coercivity in Pt /Co/Al-O structures by tuning Co surface oxidation

    Science.gov (United States)

    Shiogai, Junichi; Ohashi, Tatsuro; Yang, Tim; Kohda, Makoto; Seki, Takeshi; Takanashi, Koki; Nitta, Junsaku

    2016-01-01

    The effect of the oxidation of the Co ferromagnetic layer on gate modulation of its coercivity was experimentally investigated in Pt / Co / Al-O heterostructures. The Co surfaces were naturally oxidized by exposing to atmosphere after Co layer growth, and the degree of oxidation was characterized by x-ray photoelectron spectroscopy (XPS). A comparison between XPS and magneto-transport results suggested that a moderate oxidation of the Co interface enhances the electric-field induced coercivity change, indicating the importance of interface engineering for electrical control of magnetization reversal.

  9. Enhancement of electric field modulation of coercivity in Pt /Co/Al-O structures by tuning Co surface oxidation

    International Nuclear Information System (INIS)

    The effect of the oxidation of the Co ferromagnetic layer on gate modulation of its coercivity was experimentally investigated in Pt / Co / Al-O heterostructures. The Co surfaces were naturally oxidized by exposing to atmosphere after Co layer growth, and the degree of oxidation was characterized by x-ray photoelectron spectroscopy (XPS). A comparison between XPS and magneto-transport results suggested that a moderate oxidation of the Co interface enhances the electric-field induced coercivity change, indicating the importance of interface engineering for electrical control of magnetization reversal. (letter)

  10. Magnetic resonance imaging for radiotherapy planning of brain cancer patients using immobilization and surface coils

    International Nuclear Information System (INIS)

    This study investigated the compatibility of a head and neck immobilization device with magnetic resonance imaging (MRI). The immobilization device is used to position a patient in the same way as when receiving a computed tomography (CT) scan for radiotherapy planning and radiation treatment. The advantage of using immobilization in MR is improved accuracy in CT/MR image registration enabling greater confidence in the delineation of structures. The main practical difficulty in using an immobilization device in MRI is that physical constraints make their use incompatible with head imaging coils. Within this paper we describe a method for MR imaging of the brain which allows the use of head and neck immobilization devices. By a series of image quality tests we obtained the same or better image quality as a multi-channel head coil.

  11. Development and Experimental Study of Surface-Electrical Discharge Diamond Grinding of Al-10 wt%SiC Composite

    Science.gov (United States)

    Agrawal, Shyam Sunder; Yadava, Vinod

    2016-01-01

    As silicon carbide possesses small fracture toughness, it is difficult to grind because it leads to cracking. Metal matrix composites can be machined using electrical discharge machining (EDM) but the process is slow. Electrical discharge diamond grinding (EDDG), which consists of diamond grinding and EDM with a rotating disk which enhanced material removal rate (MRR) and produce better surface finish. This paper describes the machining characteristic of Al-SiC composite using EDDG in surface grinding configuration which is called as surface-electrical discharge diamond grinding (S-EDDG). A chain of experiments were performed on S-EDDG set up by mounting newly self designed and fabricated set up on conventional die sinking EDM machine using the approach of one parameter-at-a-time concept. Surface roughness (Ra) and MRR are taken as output parameters as both are important outcome in the manufacturing process and they materialize a major division in the manufacturing system. The effects of current, wheel speed and depth of cut is analyzed on MRR and Ra. Finally, optimization have been done through weighted principal component analysis.

  12. Application of stereological methods to estimate post-mortem brain surface area using 3T MRI

    DEFF Research Database (Denmark)

    Furlong, Carolyn; García-Fiñana, Marta; Puddephat, Michael;

    2013-01-01

    The Cavalieri and Vertical Sections methods of design based stereology were applied in combination with 3 tesla (i.e. 3T) Magnetic Resonance Imaging (MRI) to estimate cortical and subcortical volume, area of the pial surface, area of the grey-white matter boundary, and thickness of the cerebral...... cortex. The material comprises eight human cadaveric cerebri which had been separated into sixteen cerebral hemisphere specimens prior to embedding in agar gel. The results from MRI were compared with corresponding 'gold standard' values subsequently obtained by application of the same methodology using...... physical sectioning of the specimens. 95% agreement intervals revealed poor agreement between MR imaging and physical sectioning, specially for pial surface and thickness, as well as cerebral cortex and subcortex volumes. On average, pial surface area was estimated to be almost half the extent using MRI...

  13. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    CERN Document Server

    Yamamoto, K; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, T

    2002-01-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient.

  14. Systematization, distribution and territory of the caudal cerebral artery on the brain's surface of the turkey (Meleagris gallopavo

    Directory of Open Access Journals (Sweden)

    Amarílis Díaz de Carvalho

    2014-10-01

    Full Text Available Thirty Meleagris gallopavo heads with their neck segments were used. Animals were contained and euthanized with the association of mebezonium iodide, embutramide and tetracaine hydrochloride (T 61, Intervet by intravenous injection. The arterial system was rinsed with cold saline solution (15°C, with 5000IU heparin and filled with red-colored latex. The samples were fixed in 20% formaldehyde for seven days. The brains were removed with a segment of cervical spinal cord and after, the dura-mater was removed and the arteries dissected. The cerebral carotid arteries, after the intercarotid anastomosis, were projected around the hypophysis, until they reached the tuber cinereum and divided into their terminal branches, the caudal branch and the rostral branch. The rostral branch was projected rostrolateralwards and gave off, in sequence, two collateral branches, the caudal cerebral and the middle cerebral arteries and the terminal branch was as cerebroethmoidal artery. The caudal cerebral artery of one antimere formed the interhemispheric artery, which gave off dorsal hemispheric branches to the convex surface of both antimeres. Its dorsal tectal mesencephalic branch, of only one antimere, originated the dorsal cerebellar artery. In the interior of the cerebral transverse fissure, after the origin of the dorsal tectal mesencephalic artery, the caudal cerebral artery emitted occipital hemispheric branches, pineal branches and medial hemispheric branches, on both antimeres. The caudal cerebral artery's territory comprehended the entire surface of the dorsal hemioptic lobe, the rostral surface of the cerebellum, the diencephalic structures, the caudal pole and the medial surface of the cerebral hemisphere and in the convex surface, the sagittal eminence except for its most rostral third. Due to the asymmetry found in the caudal cerebral arteries' ramifications, the models were classified into three types and their respective subtypes.

  15. Three-dimensional surface display with 123I-IMP brain perfusion imaging in patients with dementia

    International Nuclear Information System (INIS)

    We reconstructed three-dimensional (3D) surface images from SPECT data with N-isopropyl-p [123I]-iodo-amphetamine (123I-IMP) in 27 patients with Parkinson's disease (group 1), 16 patients with Alzheimer's disease (group 2), 9 patients with Binswanger's disease (group 3), and 11 elderly normal subjects (control group). Three-D reconstruction was performed using distance-shaded method at the threshold levels at intervals of 5% from 45% to 80%. In the control group, no perfusion defects were found in any region at threshold values below 60%, although the frontal and temporal cortices occasionally showed perfusion defects at threshold levels from 60% to 80%. In the group 1 of patients with dementia, perfusion defects were diffuse, particularly in the parietal and temporal cortices even at a threshold of 45%. The group 2 also showed diffuse perfusion defects, particularly in parietal and temporal cortices even at threshold levels as low as 45%. The primary visual cortex was less affected in this group. The demented patients in the group 1 demonstrated perfusion defects similar to those of patients in the group 2, although perfusion defects were more prominent in the group 2. In the group 3, patchy perfusion defects were found most frequently in the frontal region. Perfusion defects in the cerebellum and sensory motor cortex were more frequent in the group 3 than the other two groups, as well as the control group. The demented patients in the group 1 showed perfusion defects in the temporal and parietal cortices and demonstrated a perfusion pattern similar to those in the group 2. The patterns of brain perfusion in the group 3 were obviously different from those in the other two groups. In conclusion, 3D surface display of brain perfusion imaging may be useful for evaluating the cortical hypoperfusion regions in patients with dementia. It may also be of value in the differential diagnosis of cognitive disorders. (J.P.N.)

  16. Electric wind produced by surface plasma actuators: a new dielectric barrier discharge based on a three-electrode geometry

    International Nuclear Information System (INIS)

    Active flow control is a rapidly developing topic because the associated industrial applications are of immense importance, particularly for aeronautics. Among all the flow control methods, such as the use of mechanical flaps or wall jets, plasma-based devices are very promising devices. The main advantages of such systems are their robustness, their simplicity, their low-power consumption and that they allow a real-time control at high frequency. This paper deals with an experimental study about the electric wind produced by a surface discharge based on a three-electrode geometry. This new device is composed of a typical two-electrode surface barrier discharge excited by an AC high voltage, plus a third electrode at which a DC high voltage is applied in order to extend the discharge region and to accelerate the ion drift velocity. In the first part the electrical current of these different surface discharges is presented and discussed. This shows that the current behaviour depends on the DC component polarity. The second part is dedicated to analysing the electric wind characteristics through Schlieren visualizations and to measuring its time-averaged velocity with a Pitot tube sensor. The results show that an excitation of the electrodes with an AC voltage plus a positive DC component can significantly modify the topology of the electric wind produced by a single DBD. In practice, this DC component allows us to increase the value of the maximum induced velocity (up to +150% at a few centimetres downstream of the discharge) and the plasma extension, to enhance the depression occurring above the discharge region and to increase the discharge-induced mass flow rate (up to +100%), without increasing the electrical power consumption

  17. An AlGaN/GaN HEMT with a reduced surface electric field and an improved breakdown voltage

    Institute of Scientific and Technical Information of China (English)

    Xie Gang; Edward Xu; Niloufar Hashemi; Zhang Bo; Fred Y. Fu; Wai Tung Ng

    2012-01-01

    A reduced surface electric field in an AlGaN/GaN high electron mobility transistor (HEMT) is investigated by employing a localized Mg-doped layer under the two-dimensional electron gas (2-DEG) channel as an electric field shaping layer.The electric field strength around the gate edge is effectively relieved and the surface electric field is distributed evenly as compared with those of HEMTs with conventional source-connected field plate and double field plate structures with the same device physical dimensions.Compared with the HEMTs with conventional sourceconnected field plates and double field plates,the HEMT with a Mg-doped layer also shows that the breakdown location shifts from the surface of the gate edge to the bulk Mg-doped layer edge.By optimizing both the length of Mg-doped layer,Lm,and the doping concentration,a 5.5 times and 3 times the reduction in the peak electric field near the drain side gate edge is observed as compared with those of the HEMTs with source-connected field plate structure and double field plate structure,respectively.In a device with VGS =-5 V,Lm =1.5 μm,a peak Mg doping concentration of 8×1017 cm-3 and a drift region length of 10 μm,the breakdown voltage is observed to increase from 560 V in a conventional device without field plate structure to over 900 V without any area overhead penalty.

  18. 海洛因依赖者的脑电地形图%MAPS OF BRAIN ELECTRICAL ACTIVITY OF HEROIN ADDICTS

    Institute of Scientific and Technical Information of China (English)

    杨宝元; 张国印; 徐本树; 铁恩贵

    2001-01-01

    目的:了解海洛因依赖者存在戒断症状时的脑电地形图的特征。方法:用脑电图机记录32例有戒断症状的海洛因依赖者及34例正常人的脑电地形图并用计算机进行定量分析。结果:与对照组比较,海洛因依赖者(1)慢波频段(δ、θ)功率值增高;(2)α1、α2功率值减低;(3)快波频段(β1、β2)的枕区(O1、O2)功率值增高。结论:从脑电生理角度观察海洛因对大脑功能的损害是有意义的。%Objective: To study the character of the brain electricalactivity maps(BEAM) of heroin addicts with withdrawal syndromes. Method: The brain electrical activity maps ( BEAM ) of 32 heroin addicts with withdrawal syndromes and 34 normal controls were recorded with electroencephalograph and quantitatively analysed with computer. Result: In the BEAM of heroin addicts with withdrawal syndromes, the power values of slow wave(δ,θ) increased; α1 , α2 decreased; rapid wave frequency sect (β1, β2) in occipital area (O1,O2)increased. Conclusion: Observation of brain electrical physiology has some value in the assessment of the damage of cerebral function caused by heroin.

  19. Analysis of Effects of Cutting Parameters of Wire Electrical Discharge Machining on Material Removal Rate and Surface Integrity

    Science.gov (United States)

    Tonday, H. R.; Tigga, A. M.

    2016-02-01

    As wire electrical discharge machining is pioneered as a vigorous, efficient and precise and complex nontraditional machining technique, research is needed in this area for efficient machining. In this paper, the influence of various input factors of wire electrical discharge machining (WEDM) on output variable has been analyzed by using Taguchi technique and analysis of variance. The design of experiments has been done and by applying L8 orthogonal arrays method and experiments have been conducted and collected required data. The objectives of the research are to maximize the material removal rate and to minimize the surface roughness value (Ra). Surface morphology of machined workpiece has been obtained and examined by employing scanning electron microscopy (SEM) technique.

  20. Topology of surfaces for molecular Stark energy, alignment, and orientation generated by combined permanent and induced electric dipole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Burkhard, E-mail: burkhard.schmidt@fu-berlin.de [Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin (Germany); Friedrich, Bretislav, E-mail: brich@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)

    2014-02-14

    We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables – such as alignment and orientation cosines – in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.

  1. Registration of weak ULF/ELF oscillations of the surface electric field strength

    Science.gov (United States)

    Boldyrev, A. I.; Vyazilov, A. E.; Ivanov, V. N.; Kemaev, R. V.; Korovin, V. Ya.; Melyashinskii, A. V.; Pamukhin, K. V.; Panov, V. N.; Shvyrev, Yu. N.

    2016-07-01

    Measurements of the atmospheric electric field strength made by an electrostatic fluxmeter with a unique threshold sensitivity for such devices (6 × 10-2-10-3 V m-1 Hz-1/2 in the 10-3-25 Hz frequency range) and wide dynamic (120 dB) and spectral (0-25 Hz) ranges, are presented. The device parameters make it possible to observe the electric component of global electromagnetic Schumann resonances and long-period fluctuations in the atmospheric electric field strength.

  2. Hybrid modeling and optimization of hardness of surface produced by electric discharge machining using artificial neural networks and genetic algorithm

    OpenAIRE

    G. Krishna Mohana Rao; D. Hanumantha Rao; Anjaneya Prasad

    2010-01-01

    The present work is aimed at optimizing the hardness of surface produced in die sinking electric discharge machining (EDM) by considering the simultaneous affect of various input parameters. The experiments are carried out on Ti6Al4V, HE15, 15CDV6 and M-250 by varying the peak current and voltage and the corresponding values of hardness were measured. Multiperceptron neural network models were developed using Neuro solutions package. Genetic algorithm concept is used to optimize the weighting...

  3. Detection of Protein Orientation on the Silica Microsphere Surface Using Transverse Electric/Transverse Magnetic Whispering Gallery Modes

    OpenAIRE

    Noto, Mayumi; Keng, David; Teraoka, Iwao; Arnold, Stephen

    2007-01-01

    The state of adsorbed protein molecules can be examined by comparing the shifts in a narrow line resonance wavelength of transverse electric (TE) and transverse magnetic (TM) whispering gallery modes (WGM) when the molecules adsorb onto a transparent microsphere that houses WGM. In adsorption of bovine serum albumin (BSA) onto an aminopropyl-modified silica microsphere, the TM/TE shift ratio indicated highly anisotropic polarizability of BSA in the direction normal to the surface, most likely...

  4. Impact of Sacral Surface Therapeutic Electrical Stimulation on Early Recovery of Urinary Continence after Radical Retropubic Prostatectomy: A Pilot Study

    OpenAIRE

    Yoichi Arai; Seiichi Saito; Shigeto Ishidoya; Shunichi Namiki; Yasuhiro Kaiho; Haruo Nakagawa

    2010-01-01

    Objectives. To investigate whether sacral surface therapeutic electrical stimulation (SSTES) initiated during the early postoperative period would be effective towards early recovery of postprostatectomy urinary continence. Methods. A total of 35 consecutive patients who underwent radical prostatectomy by a single surgeon were enrolled in this study. Twenty early patients began pelvic floor muscle exercise (PME). Fifteen subsequent patients received SSTES postoperatively with no instruction f...

  5. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis

    DEFF Research Database (Denmark)

    Almeida, Reinaldo; Berzina, Zane; Christensen, Eva Arnspang;

    2015-01-01

    extracted directly from tissue sections. PLESA uses a sealed and pressurized sampling probe that enables the use of chloroform-containing extraction solvents for efficient in situ lipid microextraction with a spatial resolution of 400 μm. Quantification of lipid species is achieved by the inclusion of...... internal lipid standards in the extraction solvent. The analysis of lipid microextracts by nanoelectrospray ionization provides long-lasting ion spray which in conjunction with a hybrid ion trap-orbitrap mass spectrometer enables identification and quantification of molecular lipid species using a method......Here we describe a novel surface sampling technique termed pressurized liquid extraction surface analysis (PLESA), which in combination with a dedicated high-resolution shotgun lipidomics routine enables both quantification and in-depth structural characterization of molecular lipid species...

  6. The effect of current intensity during 'head-only' electrical stunning on brain function in force-fed ducks

    OpenAIRE

    Beyssen, Clotilde; Babilé, René; Fernandez, Xavier

    2004-01-01

    A preliminary study was carried out to determine the minimum current required for head-only electrical stunning of force-fed ducks. Forty-five force-fed ducks were implanted with electrocorticogram (ECoG) recording electrodes, and the changes occurring in the ECoG frequencies were quantitatively evaluated with Fast Fourier Transformations (FFT) to determine the effectiveness of a range of electrical stunning currents. A 50 Hz alternating current (AC) was used to apply a constant current of 10...

  7. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Stráský, Josef, E-mail: josef.strasky@gmail.com [Charles University, Department of Physics of Materials (Czech Republic); Havlíková, Jana; Bačáková, Lucie [Institute of Physiology, Academy of Sciences of the Czech Republic (Czech Republic); Harcuba, Petr [Charles University, Department of Physics of Materials (Czech Republic); Mhaede, Mansour [Clausthal University of Technology, Institute of Materials Science and Engineering (Germany); Faculty of Engineering, Zagazig University (Egypt); Janeček, Miloš [Charles University, Department of Physics of Materials (Czech Republic)

    2013-09-15

    Presented work aims at multi-method characterization of combined surface treatment of Ti–6Al–4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  8. Electrical methods of controlling bacterial adhesion and biofilm on device surfaces.

    OpenAIRE

    Freebairn, David; Linton, David; Harkin-Jones, Eileen; Jones, David S; Gilmore, Brendan F.; Gorman, Sean P.

    2013-01-01

    This review will summarize the significant body of research within the field of electrical methods of controlling the growth of microorganisms. We examine the progress from early work using current to kill bacteria in static fluids to more realistic treatment scenarios such as flow-through systems designed to imitate the human urinary tract. Additionally, the electrical enhancement of biocide and antibiotic efficacy will be examined alongside recent innovations including the biological applic...

  9. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  10. Nano-Scale Electrical Transducers of Surface Plasmons for Integrated Biosensing

    OpenAIRE

    Neutens, Pieter; De Vlaminck, Iwijn; Lozenko, Sergii; Lagae, Liesbet; Van Dorpe, Pol

    2012-01-01

    Recent developments in fabrication, characterization, and understanding of local surface plasmon resonances and surface plasmon waveguides have fuelled the development of a new generation of surface plasmon based biosensors, mainly based on local refractive index sensing and surface enhanced Raman scattering [1, 2]. Although the actual sensor has scaled to the nanoscale, the system still requires bulky optical components, such as light sources, lenses, objectives, and detectors. Integrating s...

  11. STUDY OF STATIC ELECTRICITY CHARGE ACCUMULATION ON SURFACE OF FLUOROPOLYMER-4 PRODUCTS USING VIBRATING CAPACITOR METHOD

    Directory of Open Access Journals (Sweden)

    H. Vershina

    2014-10-01

    Full Text Available The paper presents investigations of processes pertaining to surface charge accumulation and running of fluoropolymer-4 products using vibrating capacitor method. Modification of a measurement technique allowing to register distribution of dielectric surface potential without disturbance of the surface charged state has been described in the paper. The paper contains graphics of spatial distribution of surface potential of fluoropolymer-4 products after various treatments. The paper reveals that thermal treatment (tempering reduces static characteristics of fluoropolymer-4.

  12. Use of functional MRI to evaluate correlation between acupoints and brain cortex activites: comparison between conventional and electrical acupuncture

    OpenAIRE

    Wong, KKK; Leung, MCT; Ma, QY; Chan, JHM; Li, R; Yang, ES; Wong, V; Li, G.

    2000-01-01

    The use of acupuncture therapy in various functional disorders goes back several thousand years in China. Recendy, acupuncture becomes a 'hot' topic in the functional Magnetic Resonance (MR) imaging research studies [1-4]. A majority of these research projects is to study die correlation between the acupuncture points (acupoints) and die corresponding brain cortices, either by conventional acupuncture, electro-acupuncture or laser acupuncture. Cho et al reported mat by stimulating die vision-...

  13. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-01

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  14. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    International Nuclear Information System (INIS)

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10−7 mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  15. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    Energy Technology Data Exchange (ETDEWEB)

    Akbi, Mohamed, E-mail: akbi_mohamed@umbb.dz [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France); Department of Physics, Faculty of Sciences, University of Boumerdes (UMBB), Independence Avenue, 35000 Boumerdes (Algeria); Bouchou, Aïssa [Faculty of Physics, University of Algiers (USTHB), B.P. 32, El-Alia, Bab-Ezzouar, 16111 Algiers (Algeria); Zouache, Noureddine [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France)

    2014-06-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10{sup −7} mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  16. Noncontact measurement of liquid-surface properties with knife-edge electric field tweezers technique

    Science.gov (United States)

    Shimokawa, Yuji; Sakai, Keiji

    2013-06-01

    We have developed a technique for the simultaneous measurement of the surface tension and the viscosity of a liquid in a noncontact manner. In this method, a small linear deformation of the liquid surface is induced by a local dielectric force that is brought about by a knife-edge electrode. The surface tension and the viscosity are obtained from the shape of the induced meniscus and from the dynamic response of the surface, respectively. The surface tension obtained was examined in comparison with the values measured by the Wilhelmy plate method. We also measured time constants of the surface deformation for a variety of standard viscosity samples and obtained the relation between the time constant and the viscosity. The demonstrated advantage of the system is the ability to uniquely determine the surface tension and the viscosity.

  17. Three-dimensional surface display of brain perfusion with 123I-IMP in Parkinson's disease

    International Nuclear Information System (INIS)

    We reconstructed three-dimensional (3D) surface images from single-photon emission computed tomography (SPECT) data using N-isopropyl-p[123I]-iodoamphetamine (123I-IMP) in 27 patients with Parkinson's disease and 11 normal control subjects. The 3D reconstruction was performed using distance-shaded methods at threshold levels with an interval of 5% from 45-80%. Any area of decreased perfusion at each threshold level was visualised as a defect area by the algorithm. In nondemented patients with Parkinson's disease, perfusion defects were frequently found in the parietal cortex at a threshold value of 65%. In demented patients, perfusion defects were frequently seen at thresholds of 45-65%, and were more marked in the temporal and parietal cortex bilaterally. This suggests that dementia in Parkinson's disease is related to a reduction of perfusion in the temporoparietal cortex. (orig.)

  18. Radial electric field and transport near the rational surface and the magnetic island in LHD

    International Nuclear Information System (INIS)

    The structure of the radial electric field and heat transport at the magnetic island in the Large Helical Device is investigated by measuring the radial profile of poloidal flow with charge exchange spectroscopy. The convective poloidal flow inside the island is observed when the n/m=1/1 external perturbation field becomes large enough to increase the magnetic island width above a critical value (15-20% of minor radius) in LHD. This convective poloidal flow results in a non-flat space potential inside the magnetic island. The sign of the curvature of the space potential depends on the radial electric field at the boundary of the magnetic island. The heat transport inside the magnetic island is studied with a cold pulse propagation technique. The experimental results show the existence of the radial electric field shear at the boundary of the magnetic island and a reduction of heat transport inside the magnetic island. (author)

  19. Surface and volume three-dimensional displays of Tc-99m HMPAO brain SPECT images in stroke patients with three-head gamma camera

    International Nuclear Information System (INIS)

    This paper evaluates volume and surface 3D displays in Tc-99m HMPAO brain SPECT imaging in stroke patients. Using a triple-head gamma camera interfaced with a 64-bit supercomputer, 20 patients with stroke were studied. Each patient was imaged 30-60 minutes after an intravenous injection of 20 mCi of Tc-99m HMPAO. SPECT images as well as planar images were routinely obtained; volume and surface 3D display then proceeded, with the process requiring 5-10 minutes. Volume and surface 3D displays show the brain from all angles; thus the location and extension of lesion(s) in the brain are much easier to appreciate. While a cerebral lesion(s) was more clearly delineated by surface 3D imaging, crossed cerebellar diaschisis in seven patients was clearly exhibited with volume 3D but not with surface 3D imaging. Volume and surface 3D displays enhance continuity of structures and understanding of spatial relationships

  20. Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study

    Directory of Open Access Journals (Sweden)

    V. Romero

    2012-01-01

    A study of time evolution of the impedance curves measured in the system “IL aqueous solution/Nafion-112 membrane/IL aqueous solution” was also performed. This study allows us monitoring the electrical changes associated to the IL-cation incorporation in both the membrane and the membrane/IL solution interface, and it provides supplementary information on the characteristic of the Nafion/DTA+ hybrid material. Moreover, the results also show the significant effect of water on the electrical resistance of the Nafion-112/IL-cation-modified membrane.

  1. Effects of electrical discharge surface modification of superalloy Haynes 230 with aluminum and molybdenum on oxidation behavior

    International Nuclear Information System (INIS)

    The effects of the electrical discharge alloying (EDA) process on improving the high temperature oxidation resistance of the Ni-based superalloy Haynes 230 have been investigated. The 85 at.% Al and 15 at.% Mo composite electrode provided the surface alloying materials. An Al-rich layer is produced on the surface of the EDA specimen alloyed with positive electrode polarity, whereas, many discontinuous piled layers are attached to the surface of the EDA superalloy when negative electrode polarity is selected. The oxidation resistance of the specimen alloyed with positive electrode polarity is better than that of the unalloyed superalloy, and the effective temperature of oxidation resistance of the alloyed layer can be achieved to 1100 oC. Conversely, the oxidation resistance of the other EDA specimen alloyed with negative electrode polarity is even worse than that of the unalloyed superalloy

  2. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly.

    Science.gov (United States)

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-01-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m(2)) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting. PMID:27324568

  3. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly

    Science.gov (United States)

    Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2016-06-01

    In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m2) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting.

  4. Computer modeling and laboratory experiments of a specific borehole to surface electrical monitoring technique (BSEMT)

    NARCIS (Netherlands)

    Meekes, J.A.C.; Zhang, X.; Abdul Fattah, R.

    2011-01-01

    Geophysical monitoring of the dynamical behavior of subsurface reservoirs (oil, gas, CO2) remains an important issue in geophysical research. A new idea for reservoir monitoring based on electrical resistivity tomography was developed at TNO. The essential element of the so-called BSEMT (Borehole to

  5. Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography.

    Science.gov (United States)

    Riba, Jordi; Anderer, Peter; Jané, Francesc; Saletu, Bernd; Barbanoj, Manel J

    2004-01-01

    Ayahuasca, a South American psychotropic plant tea obtained from Banisteriopsis caapi and Psychotria viridis, combines monoamine oxidase-inhibiting beta-carboline alkaloids with N,N-dimethyltryptamine (DMT), a psychedelic agent showing 5-HT(2A) agonist activity. In a clinical research setting, ayahuasca has demonstrated a combined stimulatory and psychedelic effect profile, as measured by subjective effect self-assessment instruments and dose-dependent changes in spontaneous brain electrical activity, which parallel the time course of subjective effects. In the present study, the spatial distribution of ayahuasca-induced changes in brain electrical activity was investigated by means of low-resolution electromagnetic tomography (LORETA). Electroencephalography recordings were obtained from 18 volunteers after the administration of a dose of encapsulated freeze-dried ayahuasca containing 0.85 mg DMT/kg body weight and placebo. The intracerebral power density distribution was computed with LORETA from spectrally analyzed data, and subjective effects were measured by means of the Hallucinogen Rating Scale (HRS). Statistically significant differences compared to placebo were observed for LORETA power 60 and 90 min after dosing, together with increases in all six scales of the HRS. Ayahuasca decreased power density in the alpha-2, delta, theta and beta-1 frequency bands. Power decreases in the delta, alpha-2 and beta-1 bands were found predominantly over the temporo-parieto-occipital junction, whereas theta power was reduced in the temporomedial cortex and in frontomedial regions. The present results suggest the involvement of unimodal and heteromodal association cortex and limbic structures in the psychological effects elicited by ayahuasca. PMID:15179026

  6. Resting and reactive frontal brain electrical activity (EEG among a non-clinical sample of socially anxious adults: Does concurrent depressive mood matter?

    Directory of Open Access Journals (Sweden)

    Elliott A Beaton

    2008-03-01

    Full Text Available Elliott A Beaton1, Louis A Schmidt2, Andrea R Ashbaugh2,5, Diane L Santesso2, Martin M Antony1,3,4, Randi E McCabe1,31Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; 2Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada; 3Anxiety Treatment and Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada; 4Department of Psychology, Ryerson University, Toronto, Ontario, Canada; 5Concordia University, Montreal, Quebec, CanadaAbstract: A number of studies have noted that the pattern of resting frontal brain electrical activity (EEG is related to individual differences in affective style in healthy infants, children, and adults and some clinical populations when symptoms are reduced or in remission. We measured self-reported trait shyness and sociability, concurrent depressive mood, and frontal brain electrical activity (EEG at rest and in anticipation of a speech task in a non-clinical sample of healthy young adults selected for high and low social anxiety. Although the patterns of resting and reactive frontal EEG asymmetry did not distinguish among individual differences in social anxiety, the pattern of resting frontal EEG asymmetry was related to trait shyness after controlling for concurrent depressive mood. Individuals who reported a higher degree of shyness were likely to exhibit greater relative right frontal EEG activity at rest. However, trait shyness was not related to frontal EEG asymmetry measured during the speech-preparation task, even after controlling for concurrent depressive mood. These findings replicate and extend prior work on resting frontal EEG asymmetry and individual differences in affective style in adults. Findings also highlight the importance of considering concurrent emotional states of participants when examining psychophysiological correlates of personality.Keywords: social anxiety, shyness, sociability

  7. Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies

    Directory of Open Access Journals (Sweden)

    Despina Moschou

    2015-07-01

    Full Text Available Lab-on-Chip is a technology that could potentially revolutionize medical Point-of-Care diagnostics. Considerable research effort is focused towards innovating production technologies that will make commercial upscaling financially viable. Printed circuit board manufacturing techniques offer several prospects in this field. Here, we present a novel approach to manufacturing Printed Circuit Board (PCB-based Ag/AgCl reference electrodes, an essential component of biosensors. Our prototypes were characterized both structurally and electrically. Scanning Electron Microscopy (SEM and X-Ray Photoelectron Spectroscopy (XPS were employed to evaluate the electrode surface characteristics. Electrical characterization was performed to determine stability and pH dependency. Finally, we demonstrate utilization along with PCB pH sensors, as a step towards a fully integrated PCB platform, comparing performance with discrete commercial reference electrodes.

  8. Electrical and chemical passivation of SiC surfaces by halogen termination

    Energy Technology Data Exchange (ETDEWEB)

    Schoell, Sebastian; Hoeb, Marco; Auernhammer, Marianne; Howgate, John; Brandt, Martin S.; Stutzmann, Martin; Sharp, Ian D. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    Despite the technological maturity of SiC, few methods of chemical and electronic passivation of its surfaces are available. Treatment of SiC with HF yields OH-terminated surfaces with high defect densities. Here, we demonstrate plasma processing methods which yield F- and Cl-terminated (0001) 6H-SiC surfaces. X-ray photoelectron spectroscopy (XPS) reveals a significant reduction of oxygen, and corresponding increase of F- or Cl-core level intensities, following halogen termination. XPS core level shifts are consistent with surface photovoltage (SPV) measurements which show approximately flat band surface potentials (<50 meV). Temperature programmed desorption (TPD) was performed and exhibited sharp peaks above 600 C, indicating covalent surface termination rather than sub-surface incorporation of F and Cl. Measurements of both XPS and SPV as a function of ambient exposure time reveal slow oxidation with the magnitude of surface band bending increasing with time constants of approximately 40 hrs. Thus, halogen termination of SiC provides a practical method for both electronic and chemical passivation which has the potential to improve existing technological processes. Furthermore, this work offers the possibility for formation of self-assembled organic monolayers based on fluorine and chlorine chemistry.

  9. Electrical stiffness modulation—confirming the impact of surface excess elasticity on the mechanics of nanomaterials

    International Nuclear Information System (INIS)

    Local variations in the stiffness at surfaces may affect the elastic response of nanostructures, yet experiments disagree on the magnitude and even sign of the surface excess elastic constants. The present study reports the variation in the effective macroscopic stiffness of bulk samples of nanoporous gold when the surface state is modulated under potential control in an electrochemical environment. Using in situ experiments in a dynamic mechanical analyzer to measure the storage and loss moduli, we show that adsorption of ⩽1 atomic monolayer of oxygen species as well as a capacitively controlled excess of electrons at the surface stiffen the material, while oxygen desorption/electron depletion enhance the compliance. Relative changes in the effective stiffness of up to 8% imply the variation of a surface excess elastic constant of the order of 60 N m−1, much larger than the absolute value of that constant deduced from previous atomistic simulation studies of clean surfaces. Since the electrode potential affects exclusively the surface, our observations provide conclusive evidence for the impact of local stiffness variation at surfaces on the effective elastic response of nanostructures

  10. Role of surface-electrical properties on the cell-viability of carbon thin films grown in nanodomain morphology

    Science.gov (United States)

    Javid, Amjed; Kumar, Manish; Yoon, Seokyoung; Lee, Jung Heon; Tajima, Satomi; Hori, Masaru; Geon Han, Jeon

    2016-07-01

    Carbon thin films, having a combination of unique physical and chemical properties, exhibit an interesting biocompatibility and biological response to living entities. Here, the carbon films are developed in the morphology form of nano-domains with nanoscale inter-domain separations, tuned by plasma conditions in the facing target magnetron sputtering process. The wettability and surface energy are found to have a close relation to the inter-domain separations. The chemical structure of carbon films exhibited the relative enhancement of sp3 in comparison to sp2 with the increase of domain separations. The cell-viability of these films shows promising results for L929 mouse fibroblast and Saos-2 bone cells, when inter-domain separation is increased. Electrical conductivity and surface energy are identified to play the key role in different time-scales during the cell-proliferation process. The contribution from electrical conductivity is dominant in the beginning of the cultivation, whereas with the passage of time (~3–5 d) the surface energy takes control over conductivity to enhance the cell proliferation.

  11. Near-surface processing on AlGaN/GaN heterostructures: a nanoscale electrical and structural characterization

    Directory of Open Access Journals (Sweden)

    Greco Giuseppe

    2011-01-01

    Full Text Available Abstract The effects of near-surface processing on the properties of AlGaN/GaN heterostructures were studied, combining conventional electrical characterization on high-electron mobility transistors (HEMTs, with advanced characterization techniques with nanometer scale resolution, i.e., transmission electron microscopy, atomic force microscopy (AFM and conductive atomic force microscopy (C-AFM. In particular, a CHF3-based plasma process in the gate region resulted in a shift of the threshold voltage in HEMT devices towards less negative values. Two-dimensional current maps acquired by C-AFM on the sample surface allowed us to monitor the local electrical modifications induced by the plasma fluorine incorporated in the material. The results are compared with a recently introduced gate control processing: the local rapid thermal oxidation process of the AlGaN layer. By this process, a controlled thin oxide layer on surface of AlGaN can be reliably introduced while the resistance of the layer below increase locally.

  12. The effects of typical and atypical antipsychotics on the electrical activity of the brain in a rat model

    Directory of Open Access Journals (Sweden)

    Oytun Erbaş

    2013-09-01

    Full Text Available Objective: Antipsychotic drugs are known to have strongeffect on the bioelectric activity in the brain. However,some studies addressing the changes on electroencephalography(EEG caused by typical and atypical antipsychoticdrugs are conflicting. We aimed to compare the effectsof typical and atypical antipsychotics on the electricalactivity in the brain via EEG recordings in a rat model.Methods: Thirty-two Sprague Dawley adult male ratswere used in the study. The rats were divided into fivegroups, randomly (n=7, for each group. The first groupwas used as control group and administered 1 ml/kg salineintraperitoneally (IP. Haloperidol (1 mg/kg (group 2,chlorpromazine (5 mg/kg (group 3, olanzapine (1 mg/kg(group 4, ziprasidone (1 mg/ kg (group 5 were injectedIP for five consecutive days. Then, EEG recordings ofeach group were taken for 30 minutes.Results: The percentages of delta and theta waves inhaloperidol, chlorpromazine, olanzapine and ziprasidonegroups were found to have a highly significant differencecompared with the saline administration group (p<0.001.The theta waves in the olanzapine and ziprasidonegroups were increased compared with haloperidol andchlorpromazine groups (p<0.05.Conclusion: The typical and atypical antipsychotic drugsmay be risk factor for EEG abnormalities. This studyshows that antipsychotic drugs should be used with caution.J Clin Exp Invest 2013; 4 (3: 279-284Key words: Haloperidol, chlorpromazine, olanzapine,ziprasidone, EEG, rat

  13. Biophysics: Unfolding the brain

    Science.gov (United States)

    Kuhl, Ellen

    2016-06-01

    The folded surface of the human brain, although striking, continues to evade understanding. Experiments with swelling gels now fuel the notion that brain folding is modulated by physical forces, and not by genetic, biological or chemical events alone.

  14. Potential of electrical resistivity tomography and muon density imaging to study spatio-temporal variations in the sub-surface

    Science.gov (United States)

    Lesparre, Nolwenn; Cabrera, Justo; Courbet, Christelle

    2015-04-01

    We explore the capacity of electrical resistivity tomography and muon density imaging to detect spatio-temporal variations of the medium surrounding a regional fault crossing the underground platform of Tournemire (Aveyron, France). The studied Cernon fault is sub-vertical and intersects perpendicularly the tunnel of Tournemire and extends to surface. The fault separates clay and limestones layers of the Dogger from limestones layers of the Lias. The Cernon fault presents a thickness of a ten of meters and drives water from an aquifer circulating at the top of the Dogger clay layer to the tunnel. An experiment combining electrical resistivity imaging and muon density imaging was setup taking advantage of the tunnel presence. A specific array of electrodes were set up, adapted for the characterization of the fault. Electrodes were placed along the tunnel as well as at the surface above the tunnel on both sides of the fault in order to acquire data in transmission across the massif to better cover the sounded medium. Electrical resistivity is particularly sensitive to water presence in the medium and thus carry information on the main water flow paths and on the pore space saturation. At the same time a muon sensor was placed in the tunnel under the fault region to detect muons coming from the sky after their crossing of the rock medium. Since the muon flux is attenuated as function of the quantity of matter crossed, muons flux measurements supply information on the medium average density along muons paths. The sensor presents 961 angles of view so measurements performed from one station allows a comparison of the muon flux temporal variations along the fault as well as in the medium surrounding the fault. As the water saturation of the porous medium fluctuates through time the medium density might indeed present sensible variations as shown by gravimetric studies. During the experiment important rainfalls occurred leading variations of the medium properties

  15. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles.

    Science.gov (United States)

    Francoeur, Mathieu; Basu, Soumyadipta; Petersen, Spencer J

    2011-09-26

    Near-field radiative heat transfer between isotropic, dielectric-based metamaterials is analyzed. A potassium bromide host medium comprised of silicon carbide (SiC) spheres with a volume filling fraction of 0.4 is considered for the metamaterial. The relative electric permittivity and relative magnetic permeability of the metamaterial are modeled via the Clausius-Mossotti relations linking the macroscopic response of the medium with the polarizabilities of the spheres. We show for the first time that electric and magnetic surface polariton (SP) mediated near-field radiative heat transfer occurs between dielectric-based structures. Magnetic SPs, existing in TE polarization, are physically due to strong magnetic dipole resonances of the spheres. We find that spherical inclusions with radii of 1 μm (or greater) are needed in order to induce SPs in TE polarization. On the other hand, electric SPs existing in TM polarization are generated by surface modes of the spheres, and are thus almost insensitive to the size of the inclusions. We estimate that the total heat flux around SP resonance for the metamaterial comprised of SiC spheres with radii of 1 μm is about 35% greater than the flux predicted between two bulks of SiC, where only surface phonon-polaritons in TM polarization are excited. The results presented in this work show that the near-field thermal spectrum can be engineered via dielectric-based metamaterials, which is crucial in many emerging technologies, such as in nanoscale-gap thermophotovoltaic power generation. PMID:21996819

  16. Nanoscale Lubrication of Ionic Surfaces Controlled via a Strong Electric Field

    OpenAIRE

    Strelcov, Evgheni; Kumar, Rajeev; Bocharova, Vera; Sumpter, Bobby G.; Tselev, Alexander; Sergei V Kalinin

    2015-01-01

    Frictional forces arise whenever objects around us are set in motion. Controlling them in a rational manner means gaining leverage over mechanical energy losses and wear. This paper presents a way of manipulating nanoscale friction by means of in situ lubrication and interfacial electrochemistry. Water lubricant is directionally condensed from the vapor phase at a moving metal-ionic crystal interface by a strong confined electric field, thereby allowing friction to be tuned up or down via an ...

  17. Surface neuromuscular electrical stimulation for quadriceps strengthening pre and post total knee replacement.

    LENUS (Irish Health Repository)

    Monaghan, Brenda

    2010-01-01

    Total knee replacement has been demonstrated to be one of the most successful procedures in the treatment of osteoarthritis. However quadriceps weakness and reductions in function are commonly reported following surgery. Recently Neuromuscular Electrical Stimulation (NMES) has been used as an adjunct to traditional strengthening programmes. This review considers the effectiveness of NMES as a means of increasing quadriceps strength in patients before and after total knee replacement.

  18. Nanoparticles assume electrical potential according to substrate, size and surface termination

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Štěpán; Petit, T.; Girard, H.A.; Arnault, J.-C.; Kromka, Alexander; Rezek, Bohuslav

    2013-01-01

    Roč. 29, č. 5 (2013), s. 1634-1641. ISSN 0743-7463 R&D Projects: GA ČR(CZ) GBP108/12/G108 Grant ostatní: AVČR(CZ) M100100902 Institutional support: RVO:68378271 Keywords : diamond and gold nanoparticles * electrical potential * AFM * KFM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.384, year: 2013

  19. Multiple pole electromagnetic propulsion system with separated ballistic guidance and electrical current contact surfaces

    Science.gov (United States)

    Sims, Jr., James R.

    2008-07-15

    An electromagnetic propulsion system is disclosed having separate rails for ballistic guidance and for carrying current. In this system, one or more pairs of ballistic guidance rails are provided, with each ballistic guidance rail having a pair of current carrying rails joined to it to form a combined rail. Each combined rail is separated electrically from adjacent combined rails by electrically insulating blocks. Each of the current carrying rails in a given combined rail pair have the same electrical polarity, and the polarities alternate between adjacent combined rails. Armatures contact current carrying rails to complete the circuit to generate the accelerating Lorentz force on the armatures. Bore riders on the sabot and/or projectile are in contact with the ballistic guide rails. Separation of the current carrying and ballistic guidance functions increases resistance of the system to rail movement and bending, as well as reduced wear/damage to the rails. In further embodiments, a circumferential over wrap providing compressive force on the rails further increases resistance of the system to rail movement and bending.

  20. Instability of surface electron cyclotron TM-modes influenced by non-monochromatic alternating electric field

    Science.gov (United States)

    Girka, I. O.; Girka, V. O.; Sydora, R. D.; Thumm, M.

    2016-06-01

    The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1. An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.

  1. Electrical detection of surface plasmon resonance phenomena by a photoelectronic device integrated with gold nanoparticle plasmon antenna

    Science.gov (United States)

    Hashimoto, Tatsuya; Fukunishi, Yurie; Zheng, Bin; Uraoka, Yukiharu; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2013-02-01

    We have proposed a concept of a photoelectronic hybrid device utilizing gold nanoparticles (GNPs), which are supposed to function not only as the plasmon antenna but also as the sensing part. The photocurrent in the fabricated device, consisting of a transparent Nb-doped TiO2 channel and Au electrodes, was enhanced more than eight times at a specific wavelength with GNP arrays located between the electrodes, indicating that surface plasmon resonance was electrically detected with the hybrid device. This result will open new doors for ultra-small biosensor chips integrated with multi-functional solid-state devices.

  2. POTENTIAL, ELECTRIC FIELD AND SURFACE CHARGES CLOSE TO THE BATTERY FOR A RESISTIVE CYLINDRICAL SHELL CARRYING A STEADY LONGITUDINAL CURRENT

    OpenAIRE

    Hernandes, J. A.; E. Capelas De Oliveira; Assis, A. K. T.

    2004-01-01

    In this work we consider a long, resistive cylindrical shell carrying a steady current. A battery in the middle of the wire generates the current. We study the behavior of the potential, electric field and surface charges close to the batteryEn este trabajo consideramos una capa resistiva cilíndrica que transporta una corriente constante. Una batería genera la corriente en el centro del conductor. Estudiamos el comportamiento del potencial, campo eléctrico y cargas superficiales cerca de la b...

  3. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation

    Science.gov (United States)

    Feng, Zhen; Du, Qing

    2016-01-01

    Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes) showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway.

  4. Electric spark method cleaning the surface of steel 08G2S

    International Nuclear Information System (INIS)

    The process of spark cleaning the surface of steel 08G2S investigated. As a result of processing the oxide layer removed and contact resistance reduced. The intensity of the crater, which influences the magnitude of the roughness depends on the degree of overheating of the metal by increasing the density of craters. The multipass cleaning cause of cracking surface. Based on the results determined the most rational process settings. (authors)

  5. Optical, electrical and surface properties of annealed CdO:Mg thin films prepared by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Seniye, E-mail: seniyek@ogu.edu.tr, E-mail: oozbas@ogu.edu.tr; Ozbas, Omer, E-mail: seniyek@ogu.edu.tr, E-mail: oozbas@ogu.edu.tr [Eskisehir Osmangazi University, Physics Department, Eskisehir (Turkey)

    2013-12-16

    The use of transparent conducting oxides in optoelectronic and photovoltaic devices has encouraged research on this field in recent years. Especially, cadmium oxide is a promising material for solar cell application but also for photodiodes and gas sensors. Mg doped CdO (CdO:Mg) films have been prepared on glass substrates by the ultrasonic spray pyrolysis (USP) technique. After the production, the films have been annealed in air atmosphere at 475°C and half hour. Results on surface, optical and electrical properties of the films as a function of the thermal annealing have been reported. Thicknesses of the films have been determined by the filmetrics thin film measurement system. Transmission and absorbance spectra have been taken by UV-vis spectrophotometer. Atomic Force Microscopy (AFM) analysis indicates that the roughness of the surface decreases upon increasing Mg concentration. The minimum resistivity value of the films was 2×10{sup −3} Ω cm.

  6. Ecohydrologic Investigations of Shallow Lateral Subsurface Flow in Tropical Soils using Time-Lapse Surface Electrical Resistivity Tomography

    Science.gov (United States)

    Ogden, F. L.; Mojica, A.; Abebe, N. A.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    The hydrologic effects of deforestation and aforestation in the tropics remain an area of active research. Hydrologic predictions of land-use change effects remain elusive. One of the unique features of catchment hydrology in the tropics is the effect of intense, continuous biological activity by insects, shrubs, trees, and small mammals. Sapprolitic soils derived from weathered bedrock cover widespread areas. These soils have low matrix permeabilities on the order of 1 mm/h, are 10 to 20 m in thickness and have relatively low activity because they have been depleted of light cations by annual rainfall over 2000 mm. As part of the Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, we have observed shallow subsurface flow in tropical soils in central Panama using an introduced salinity contrast and surface electrical resistivity tomography (ERT). In 2009 and 2010, experiments were conducted in a 30 year-old secondary succession forest, and in two former pasture sites that were planted with native timber species and teak, respectively, in 2008. At each site, saline water (NaCl tagged with LiBr) was introduced to the soil using two different methods: soil pits and ponded surface applications. Results showed the strongest response in the case of ponded surface applications with observed changes in resistivity between -50% and 50%. In soil pit applications, the change in electrical resistivity varied from -10% to 10%. Results suggest that in the case of surface application, a transient perched water table is created near the bottom of the bioturbation layer that activates the downslope macropore network and results in bulk flow velocities that are significantly higher than observed soil matrix permeabilities. When heavy rainfall occurred during tests, increased mobility of the salinity contrast more clearly showed the active layer where most flow occurred. Time-series ERT observations enabled measurements of downslope bulk

  7. Chronological change of electrical resistance in GeCu2Te3 amorphous film induced by surface oxidation

    International Nuclear Information System (INIS)

    Unusual chronological electrical resistance change behavior was investigated for amorphous GeCu2Te3 phase change material. More than a 1 order decrease of electrical resistance was observed in the air even at room temperature. The resistance of the amorphous film gradually increased with increasing temperature and then showed a drop upon crystallization. Such unusual behavior was attributed to the oxidation of the amorphous GeCu2Te3 film. From the compositional depth profile measurement, the GeCu2Te3 film without any capping layer was oxidized in air at room temperature and the formed oxide was mainly composed of germanium oxide. Consequently, a highly-conductive Cu-rich layer was formed in the vicinity of the surface of the film, which reduced the total resistance of the film. The present results could provide insight into the chronological change of electrical resistance in amorphous chalcogenide materials, indicating that not only relaxation of the amorphous, but also a large atomic diffusion contributes to the chronological resistance change. (paper)

  8. Magnetic resonance imaging of morphological and functional changes of the uterus induced by sacral surface electrical stimulation

    International Nuclear Information System (INIS)

    The purpose of this study is to examine the morphological and kinematical changes of the uterus induced by electrical stimulation applied to the skin just above the second and fourth posterior sacral foramens (sacral surface electrical stimulation [ssES]) in 26 healthy subjects. Out of them, eight subjects who had severe pain subjectively during every menstruation received ssES just in menstruation. Morphological and functional changes of the uterus were examined by using T2-weighted magnetic resonance (MR) imaging and T1-weighted MR cinematography, respectively. Cyclic electrical stimulation for 15 min with 5 sec ON and 5 sec OFF was applied just before MR scanning. A decrease in thickness of the muscular layer of the uterus was observed in every subject after ssES for 15 min and was significant as compared with the thickness before ssES. Periodic uterine movement during menstruation was observed in the subjects with severe menstrual pain in MR cine and the power spectrum analysis of the movement showed a marked decrease in peak power and frequency after ssES treatment. We conclude that ssES causes a reduction of static muscle tension of the uterus in all menstrual cycle periods and suppression of uterine peristalsis during menstruation in the subjects with severe menstrual pain. Possible neural mechanisms for these static and dynamic effects of ssES on the uterus at spinal level are discussed. (author)

  9. A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications

    International Nuclear Information System (INIS)

    In this paper, a staircase plasmonic nano-antenna device is analysed both theoretically and experimentally. The tapered nano-antenna cavity with a grating leads to electric field enhancement factor (EF) as high as 31 close to 830 nm. The integration of a metallic grating aids the coupling of light coming from the vertical direction to the nano-antenna, increasing the electric field in the nano-antenna by a factor of 3. The smallest air gap width between the metallic regions of the fabricated nano-antenna is about 35 nm, fabricated using focused ion beam system. The small air gaps in the nano-antennas can generate very high intensity electric fields which can be used in applications in biological sensing and imaging, nanoparticle manipulations and enhancement of nonlinear effects. In this paper, to experimentally demonstrate that with the integration of a well designed grating and reflectors, the resonance inside the nano-antenna cavity is increased significantly, we exploit one application of this device: the enhancement of surface enhanced Raman scattering (SERS). The present structure can lead to SERS EFs above 1 million. (paper)

  10. Surface-type nonvolatile electric memory elements based on organic-on-organic CuPc-H2 Pc heterojunction

    Institute of Scientific and Technical Information of China (English)

    Khasan S. Karimov; Zubair Ahmad; Farid Touati; M. Mahroof-Tahir; M. Muqeet Rehman; S. Zameer Abbas

    2015-01-01

    A novel surface-type nonvolatile electric memory elements based on organic semiconductors CuPc and H2Pc are fabricated by vacuum deposition of the CuPc and H2Pc films on preliminary deposited metallic (Ag and Cu) electrodes. The gap between Ag and Cu electrodes is 30–40 µm. For the current–voltage (I–V ) characteristics the memory effect, switching effect, and negative differential resistance regions are observed. The switching mechanism is attributed to the electric-field-induced charge transfer. As a result the device switches from a low to a high-conductivity state and then back to a low conductivity state if the opposite polarity voltage is applied. The ratio of resistance at the high resistance state to that at the low resistance state is equal to 120–150. Under the switching condition, the electric current increases∼80–100 times. A comparison between the forward and reverse I–V characteristics shows the presence of rectifying behavior.

  11. Multi-state and non-volatile control of graphene conductivity with surface electric fields

    OpenAIRE

    Iurchuk, V.; Majjad, H.; Chevrier, F.; Kundys, D.; Leconte, B.; Doudin, B.; Kundys, B.

    2015-01-01

    Planar electrodes patterned on a ferroelectric substrate are shown to provide lateral control of the conductive state of a two-terminal graphene stripe. A multi-level and on-demand memory control of the graphene resistance state is demonstrated under low sub-coercive electric fields, with a susceptibility exceeding by more than two orders of magnitude those reported in a vertical gating geometry. Our example of reversible and low-power lateral control over 11 memory states in the graphene con...

  12. Multi-state and non-volatile control of graphene conductivity with surface electric fields

    Science.gov (United States)

    Iurchuk, V.; Majjad, H.; Chevrier, F.; Kundys, D.; Leconte, B.; Doudin, B.; Kundys, B.

    2015-11-01

    Planar electrodes patterned on a ferroelectric substrate are shown to provide lateral control of the conductive state of a two-terminal graphene stripe. A multi-level and on-demand memory control of the graphene resistance state is demonstrated under low sub-coercive electric fields, with a susceptibility exceeding by more than two orders of magnitude those reported in a vertical gating geometry. Our example of reversible and low-power lateral control over 11 memory states in the graphene conductivity illustrates the possibility of multimemory and multifunctional applications, as top and bottom inputs remain accessible.

  13. Influence of an External DC Electric Current on Plasma Cleaning Rate: an Application on the Enlarged Plasma-Surface Theory

    International Nuclear Information System (INIS)

    During the last decades many researchers have been occupied with other plasma applications apart from the big challenge which the thermonuclear fusion poses. Many experiments have been carried out on the plasma behavior in contact with a solid surface; when the surface material consists of chemical compounds (e.g. oxides of metals), then the plasma chemistry takes place. The present paper contains the final experimental and theoretical work of Plasma Laboratory at “Demokritos, which consists of an elaboration of plasma sheath parameters adapted to experimental conditions, a suitable choice of plasma gases (either H2 or N2), and an electric potential current enforcement on objects. Additionally, a brief theory is given to explain the results, with a short reference to both boundary phenomena in thermonuclear reactors and low pressure plasma of glow discharges, so as to reveal the similarities and differences of these two cases. An extensive examination of the treated objects by X-ray diffraction method (XRD) gives results in agreement with the theoretical predictions. Using this improvement on plasma restoration system, (a combination of electric current on metallic object into suitable plasma), it is shown that better results can be achieved on the cleaning and conservation of archaeological objects. (plasma technology)

  14. Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability

    Directory of Open Access Journals (Sweden)

    Isaac Ramalla

    2015-10-01

    Full Text Available This paper proposes a novel technique to enhance the stability of high-voltage insulators, which are affected due to the presence of dust, contamination, electrical stresses in a high moisture content environment. These result in puncture of insulators and heavy loss due to power outages in the transmission lines. To extend its stability, powdered coating is done on the insulators which have insulation property and super hydrophobicity. In this paper, the authors were inspired by the ‘lotus effect', and a nano size powder was developed by sol – gel method and coating is done on the porcelain insulator surface, which passes-out all the electrical testing standards and maintains its insulation property with super hydrophobic nature. The water droplet contact angle of 158.80 and a sliding angle of 80 indicate the super hydrophobic nature on the surface of insulator. The insulator was kept in a highly polluted environment for six months at different locations where no dust was collected on the insulator when compared with an uncoated insulator.

  15. Dependence of electric potentials at trench surfaces on ion angular distribution in plasma etching processes

    Science.gov (United States)

    Palov, A. P.; Mankelevich, Yu A.; Rakhimova, T. V.; Baklanov, M. R.

    2016-03-01

    Ion-stimulated etching of dielectrics in radio frequency plasma results in positive charging of a trench bottom because of the significant difference in the angular distribution functions of ions and electrons. They are anisotropic for ions and quasi-isotropic for electrons. The charging leads to a decrease in the energy of the ions bombarding the trench bottom and to undesirable sputtering of the walls near the trench bottom because of the curving of the ion trajectories. This process is normally investigated by Monte Carlo methods in the absence of experimental data. In this paper the analytical dependence of the ion flux bombarding the trench bottom on a trench aspect ratio and ion angular distribution function is obtained. Numerical calculations of the electric potential on the trench bottom for a set of trench aspect ratios and angles of the ion angular distribution function were performed based on a Monte Carlo method to demonstrate the ion flux and electric potential correlated well with each other. The proposed formula for an ion flux is suggested to be helpful for analyzing charging the trenches with different aspect ratios in plasma with an arbitrary angular ion distribution function.

  16. Structure, surface morphology and electrical properties of evaporated Ni thin films: Effect of substrates, thickness and Cu underlayer

    International Nuclear Information System (INIS)

    Series of Ni thin films have been deposited by thermal evaporation onto glass, Si(111), Cu, mica and Al2O3 substrates with and without a Cu underlayer. The Ni thicknesses, t, are in the 4 to 163 nm range. The Cu underlayer has also been evaporated with a Cu thickness equal to 27, 52 and 90 nm. The effects of substrate, the Ni thickness and the Cu underlayer on the structural and electrical properties of Ni are investigated. Rutherford Backscattering Spectroscopy was used to probe the Ni/Substrate and Ni–Cu underlayer interfaces and to measure both Ni and Cu thicknesses. The texture, the strain and the grain size values were derived from X-ray diffraction experiments. The surface morphology is studied by means of a Scanning Electron Microscope. The electrical resistivity is measured by the four point probe. The Ni films grow with the <111> texture on all substrates. The Ni grain sizes D increase with increasing thickness for the glass, Si and mica substrates and decrease for the Cu one. The strain ε is positive for low thickness, decreases in magnitude and becomes negative as t increases. With the Cu underlayer, the growth mode goes through two phases: first, the stress (grain size) increases (decreases) up to a critical thickness tCr, then stress is relieved and grain size increases. All these results will be discussed and correlated. - Highlights: • The structural and electrical properties of evaporated Ni thin films are studied. • The effect of thickness, substrates and Cu underlayer is investigated. • Texture, grain size, strain and surface morphology are discussed. • Growth modes are described as a function of Ni thickness

  17. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. PMID:27337989

  18. Electrical performance of distribution insulators with chlorella vulgaris growth on its surface

    Directory of Open Access Journals (Sweden)

    H. E. Rojas

    2015-11-01

    Full Text Available This paper presents a study about electrical performance of ceramic and polymeric insulators bio-contaminated with alga Chlorella vulgaris. The performed tests involve ANSI 55-2 and ANSI 52-1 ceramic insulators and ANSI DS-15 polymeric insulators, all of them used in distribution systems of Colombia. Biological contamination of insulators is realized using a controlled environment chamber that adjusts the temperature, humidity and light radiation. The laboratory tests include measurements of flashover voltages and leakage currents and they were performed to determine how insulators are affected by biological contamination. After a series of laboratory tests, it was concluded that the presence of Chlorella vulgaris on the contaminated ceramic insulators reduces the wet flashover voltage up to 12% and increases their leakage currents up to 80%. On the other hand, for polymeric insulators the effect of algae growth on flashover voltages was not to strong, although the leakage currents increase up to 60%.

  19. Electric Switching of Fluorescence Decay in Gold-Silica-Dye Nematic Nanocolloids Mediated by Surface Plasmons.

    Science.gov (United States)

    Jiang, Li; Mundoor, Haridas; Liu, Qingkun; Smalyukh, Ivan I

    2016-07-26

    Tunable composite materials with interesting physical behavior can be designed through integrating unique optical properties of solid nanostructures with facile responses of soft matter to weak external stimuli, but this approach remains challenged by their poorly controlled coassembly at the mesoscale. Using scalable wet chemical synthesis procedures, we fabricated anisotropic gold-silica-dye colloidal nanostructures and then organized them into the device-scale (demonstrated for square-inch cells) electrically tunable composites by simultaneously invoking molecular and colloidal self-assembly. We show that the ensuing ordered colloidal dispersions of shape-anisotropic nanostructures exhibit tunable fluorescence decay rates and intensity. We characterize how these properties depend on low-voltage fields and polarization of both the excitation and emission light, demonstrating a great potential for the practical realization of an interesting breed of nanostructured composite materials. PMID:27391876

  20. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    Science.gov (United States)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  1. Bulk and sub-surface donor bound excitons in silicon under electric fields

    OpenAIRE

    Rahman, Rajib; Verduijn, Jan; Wang, Yu; Yin, Chunming; De Boo, Gabriele; Klimeck, Gerhard; Rogge, Sven

    2015-01-01

    The electronic structure of the three-particle donor bound exciton (D$^0$X) in silicon is computed using a large-scale atomic orbital tight-binding method within the Hartree approximation. The calculations yield a transition energy close to the experimentally measured value of 1150 meV in bulk, and show how the transition energy and transition probability can change with applied fields and proximity to surfaces, mimicking the conditions of realistic devices. The spin-resolved transition energ...

  2. Modeling of the current density distribution under surface posterior-tibial-nerve electric stimulator

    OpenAIRE

    Wong, YW; Leong, JCY; Yu, J.; Luk, KDK; Hu, Y.; Lu, WW

    1998-01-01

    Stimulation of the posterior tibial nerve is commonly used in the measurement of somatosensory evoked potential (SEP). To improve the efficiency of stimulation, the potential field and current density distributions under the surface electrodes were modeled and simulated. In our model, three layers were assumed: (1) the air environment, (2) electrode and paste (3) human body (skin and soft tissues). The mirror method was used to analyze the potential field of point charge. Integration of the f...

  3. Effect of current frequency during electrical stunning in a water bath on somatosensory evoked responses in turkey's brain.

    Science.gov (United States)

    Mouchonière, M; Le Pottier, G; Fernandez, X

    2000-08-01

    Somatosensory evoked responses (SEP) in a turkey's brain were determined after water-bath stunning with a 150-mA (constant current) delivered with 50, 300 or 600 Hz, or with 75 mA, delivered with 50-Hz alternating current (AC) in order to evaluate the effectiveness of stunning. Ninety-four BUT 9 turkey hens 12 weeks of age were surgically implanted with EEG recording and left wing nerve stimulating electrodes 4 hours before stunning. They were individually stunned by immersion of the head and upper part of the neck in a water bath for 4 s. Using a 150-mA current, all birds stunned at 50 Hz showed cardiac arrest and a flat EEG immediately after the stun with no SEP recovery. The incidence of cardiac arrest at stunning decreased with increasing current frequency but SEP were lost in all birds. In birds that survived the stun, the duration of SEP abolition was on average 69 and 34 seconds at 300 and 600 Hz, respectively. Stunning with a 75-mA AC, delivered with 50 Hz, induced cardiac arrest in 32 per cent of turkeys. SEP were abolished in only 71 per cent of the birds that survived the stun, with an average duration of SEP of 66 seconds. The results indicate that increasing the frequency of a 150-mA AC current leads to a decreased stunning efficiency. A current of 75 mA per bird is unacceptable since 29 per cent of the birds do not show SEP abolition. PMID:10924394

  4. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    International Nuclear Information System (INIS)

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  5. Spatial sampling of head electrical fields: the geodesic sensor net.

    Science.gov (United States)

    Tucker, D M

    1993-09-01

    In studying brain electrical activity from scalp sensors (electrodes), the optimal measurement would sample the potential field over the entire surface of the braincase, with a sufficient density to avoid spatial aliasing of the surface electrical fields. The geodesic sensor net organizes an array of sensors, each enclosed in a saline sponge, in a geodesic tension structure comprised of elastic threads. By fixing a sensor pedestal at each geodesic vertex, the geometry of the tension structure insures insures that the sensor array is distributed evenly across the accessible head surface. Furthermore, the tension of the network is translated into compression that is divided equally among the sensor pedestals and directed along head-radial vectors. Various geodesic partitioning frequencies may be selected to provide an even surface distribution of the dense sensor arrays (e.g., 64, 128, or 256) that appear to be necessary to provide adequate spatial sampling of brain electrical events. PMID:7691542

  6. Surface electrical stimulation for foot drop: Control aspects and walking performance

    Directory of Open Access Journals (Sweden)

    Stein Richard B.

    2008-01-01

    Full Text Available Use of electrical stimulation to correct foot drop in hemiplegia was proposed over 40 years ago. Recently, improved control strategies have been developed and implemented in commercially available devices. In this article we review the control methods that have been used and present some results from a multi-center clinical trial. A foot-drop stimulator improves the gait pattern and results in an immediate increase in walking speed. In this sense it acts like an ankle-foot orthosis and this immediate increase will be referred to as an orthotic effect. Prolonged use of a foot drop stimulator over a period of months results in further, large increases in walking speed both with the stimulator on and off. Evidence indicates that a part of this increase results from daily use that strengthens residual cortico-spinal connections. Therefore the improvement over time will be referred to as a therapeutic effect. We found that people with non-progressive and progressive conditions of the central nervous system have an orthotic benefit, as well as a therapeutic up to 3 months of use. In generally non-progressive conditions such as stroke, further therapeutic increases are seen up to at least 11 months of use. In disorders such as multiple sclerosis, the progression of the disease eventually overcomes the early therapeutic effects. In conclusion, many individuals can benefit from commercially available foot-drop stimulators with improved control strategies and cosmetic design.

  7. A new surface-inset, permanent-magnet, brushless dc motor drive for electric vehicles

    OpenAIRE

    J. Gan; Chau, KT; Chan, CC; Jiang, JZ

    2000-01-01

    A new five-phase, surface-inset, permanent-magnet (PM), brushless dc motor drive is proposed in this paper. The motor drive has advantages of both the PM brushless dc motor drive and the dc series motor drive. The originlity is that the air-gap flux of the motor is generated by both the PM excitation and the specially controlled stator currents (two particular phases) under the same PM pole. The motor configuration and principle of operation are so unusual that the magnetic field distribution...

  8. Electrical Property and Surface Morphology of Silver Nanoparticles After Thermal Sintering

    Science.gov (United States)

    Ryu, Kyongtae; Moon, Yoon-Jae; Park, Kyunghoon; Hwang, Jun-Young; Moon, Seung-Jae

    2016-01-01

    In this study, the sintering behavior of silver (Ag) nanoparticle inks was investigated when different particle sizes and sintering methods were employed. Ag nanoparticle inks with two different particle sizes were investigated with average particle diameters of 12 nm and 50 nm. The two kinds of Ag nanoparticle inks were inkjet-printed onto glass substrates. The printed inks were sintered by a furnace and a continuous wave (CW) laser at a wavelength of 532 nm. The specific resistance and surface morphology of the Ag nanoparticle (Ag NP) inks were investigated under various furnace temperatures, laser intensities, and time durations. The ex situ specific resistance of each Ag NP ink was measured by a multimeter to determine the effects of various sintering conditions such as the furnace temperature, laser intensity, and sintering duration. To investigate the correlation between the specific resistance and surface morphology of the Ag NP inks, field emission scanning electron microscopy images were obtained. In addition, the effect of the particle size on the specific resistances of the inks annealed by the furnace and CW laser was evaluated.

  9. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography

    Science.gov (United States)

    Michot, Didier; Benderitter, Yves; Dorigny, Abel; Nicoullaud, Bernard; King, Dominique; Tabbagh, Alain

    2003-05-01

    A nondestructive and spatially integrated multielectrode method for measuring soil electrical resistivity was tested in the Beauce region of France during a period of corn crop irrigation to monitor soil water flow over time and in two-dimensional (2-D) with simultaneous measurements of soil moisture and thermal profiles. The results suggested the potential of surface electrical resistivity tomography (ERT) for improving soil science and agronomy studies. The method was able to produce a 2-D delimitation of soil horizons as well as to monitor soil water movement. Soil drainage through water uptake by the roots, the progression of the infiltration front with preferential flow zones, and the drainage of the plowed horizon were well identified. At the studied stage of corn development (3 months) the soil zones where infiltration and drainage occurred were mainly located under the corn rows. The structural soil characteristics resulting from agricultural practices or the passage of agricultural equipment were also shown. Two-dimensional sections of soil moisture content were calculated using ERT. The estimates were made by using independently established "in situ" calibration relationships between the moisture and electrical resistivity of typical soil horizons. The thermal soil profile was also considered in the modeling. The results showed a reliable linear relationship between the calculated and measured water contents in the crop horizon. The precision of the calculation of the specific soil water content, quantified by the root mean square error (RMSE), was 3.63% with a bias corresponding to an overestimation of 1.45%. The analysis and monitoring of the spatial variability of the soil moisture content with ERT represent two components of a significant tool for better management of soil water reserves and rational irrigation practices.

  10. Enhanced electrical properties of pentacene-based organic thin-film transistors by modifying the gate insulator surface

    Science.gov (United States)

    Tang, J. X.; Lee, C. S.; Chan, M. Y.; Lee, S. T.

    2008-09-01

    A reliable surface treatment for the pentacene/gate dielectric interface was developed to enhance the electrical transport properties of organic thin-film transistors (OTFTs). Plasma-polymerized fluorocarbon (CFx) film was deposited onto the SiO 2 gate dielectric prior to pentacene deposition, resulting in a dramatic increase of the field-effect mobility from 0.015 cm 2/(V s) to 0.22 cm 2/(V s), and a threshold voltage reduction from -14.0 V to -9.9 V. The observed carrier mobility increase by a factor of 10 in the resulting OTFTs is associated with various growth behaviors of polycrystalline pentacene thin films on different substrates, where a pronounced morphological change occurs in the first few molecular layers but the similar morphologies in the upper layers. The accompanying threshold voltage variation suggests that hole accumulation in the conduction channel-induced weak charge transfer between pentacene and CFx.

  11. Nanoscale Probing of Local Electrical Characteristics on MBE-Grown Bi₂Te₃ Surfaces under Ambient Conditions.

    Science.gov (United States)

    Macedo, Rita J; Harrison, Sara E; Dorofeeva, Tatiana S; Harris, James S; Kiehl, Richard A

    2015-07-01

    The local electrical characteristics on the surface of MBE-grown Bi2Te3 are probed under ambient conditions by conductive atomic force microscopy. Nanoscale mapping reveals a 10-100× enhancement in current at step-edges compared to that on terraces. Analysis of the local current-voltage characteristics indicates that the transport mechanism is similar for step-edges and terraces. Comparison of the results with those for control samples shows that the current enhancement is not a measurement artifact but instead is due to local differences in electronic properties. The likelihood of various possible mechanisms is discussed. The absence of enhancement at the step-edges for graphite terraces is consistent with the intriguing possibility that spin-orbit coupling and topological effects play a significant role in the step-edge current enhancement in Bi2Te3. PMID:26030139

  12. Effects of Brain-Computer Interface-controlled Functional Electrical Stimulation Training on Shoulder Subluxation for Patients with Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Jang, Yun Young; Kim, Tae Hoon; Lee, Byoung Hee

    2016-06-01

    The purpose of this study was to investigate the effects of brain-computer interface (BCI)-controlled functional electrical stimulation (FES) training on shoulder subluxation of patients with stroke. Twenty subjects were randomly divided into two groups: the BCI-FES group (n = 10) and the FES group (n = 10). Patients in the BCI-FES group were administered conventional therapy with the BCI-FES on the shoulder subluxation area of the paretic upper extremity, five times per week during 6 weeks, while the FES group received conventional therapy with FES only. All patients were assessed for shoulder subluxation (vertical distance, VD; horizontal distance, HD), pain (visual analogue scale, VAS) and the Manual Function Test (MFT) at the time of recruitment to the study and after 6 weeks of the intervention. The BCI-FES group demonstrated significant improvements in VD, HD, VAS and MFT after the intervention period, while the FES group demonstrated significant improvements in HD, VAS and MFT. There were also significant differences in the VD and two items (shoulder flexion and abduction) of the MFT between the two groups. The results of this study suggest that BCI-FES training may be effective in improving shoulder subluxation of patients with stroke by facilitating motor recovery. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26876690

  13. Electropolymerization of 3-aminophenol on carbon graphite surface: Electric and morphologic properties

    International Nuclear Information System (INIS)

    This paper reports the formation of electropolymerized films derived from 3-aminophenol on graphite electrode by cyclic voltammetry, prepared in different pH conditions. With increase of pH values, a shift of the oxidation potential of 3-aminophenol to more cathodic potentials was observed. 3-Aminophenol electrooxidation, in acid and basic media, yielded polymeric films onto graphite surface. In ferrocyanide/ferricyanide solution, the polymer produced in acid medium showed higher electron transfer efficiency. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and FT-IR were used to investigate some properties of the graphite electrode modified with poly(3-aminophenol). Scanning electron microscopy showed that the morphology of the films is strongly dependent on the pH of the electropolymerization medium. FT-IR spectra of polymer films produced for either acid or basic media suggest that the monomer is polymerized by NH2 group

  14. Electric field effects at the surface of high-temperature superconductors

    International Nuclear Information System (INIS)

    The results of experiments on the influence of electrostatic field (EF) on the electrophysical parameters of high-TC superconductors are presented. It was shown that action of the negative EF leads to an increase of critical temperature for about 6 K in ceramic and about 0.6 K in thin film samples. The action of EF on the fluctuation excess conductivity in YBaCuO thin film was studied. It was shown that EF decreases the amplitude of thermodynamic fluctuations of the order parameter in the domain of 3D fluctuations. The negative EF applied to the film surface has been found to increase the activation energy of flux creep in relatively low magnetic fields. The upper critical magnetic field increases in the vicinity of TC under the influence of the EF. (orig.)

  15. Please Mind the Gap: How To Podcast Your Brain

    OpenAIRE

    Karen Spaceinvaders

    2011-01-01

    Audio. Please click to listen to the mp3 files of deep brain recordings of individual brain cells, the smallest unit of the brain, in a whole, intact living brain. Each brain region’s cells possess an electrical signature. During recordings electrical signals are transformed into sound to facilitate auditory identification of cells during a process called “mapping.”

  16. Electrical tuning of surface plasmon polariton propagation in graphene-nanowire hybrid structure.

    Science.gov (United States)

    Qian, Haoliang; Ma, Yaoguang; Yang, Qing; Chen, Bigeng; Liu, Ying; Guo, Xin; Lin, Shisheng; Ruan, Jili; Liu, Xu; Tong, Limin; Wang, Zhong Lin

    2014-03-25

    We demonstrate a dynamic surface plasmonic modulation based on graphene-nanowire (grapheme-NW) hybrid structures in the visible light range. A static modulation depth of as high as 0.07 dB/μm has been achieved experimentally. Through careful simulation and systematical experimental investigation, we found that the dual-confinement effect of charge density and electromagnetic energy around the vicinity of the NW will dramatically enhance the light-matter interaction and increase the Fermi level shifting, which are the key roles for bringing the optical response of the device to the visible range. The carrier concentration near the vicinity of a Ag NW is estimated to reach 0.921×10(14) cm(-2) after applying more than 25 V voltages, which is enough to shift the Fermi level for visible light. Furthermore, the modulation behaviors near the Dirac point of monolayer graphene and the singularity of gap-induced bilayer graphene are investigated. Calculated optical conductivity as a function of Fermi level predicts a minimum value near the Dirac point, which is consistent with the experimental results. PMID:24484300

  17. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Alarifi

    2015-10-01

    Full Text Available This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN fibers as a sensor material in a structural health monitoring (SHM system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM applications in different industries.

  18. Spoof surface plasmons resonance effect and tunable electric response of improved metamaterial in the terahertz regime

    Science.gov (United States)

    Wang, Yue; Zhang, Li-Ying; Mei, Jin-Shuo; Zhang, Wen-Chao; Tong, Yi-Jing

    2015-12-01

    We propose an improved design and numerical study of an optimized tunable plasmonics artificial material resonator in the terahertz regime. We demonstrate that tunability can be realized with a transmission intensity as much as ˜61% in the lower frequency resonance, which is implemented through the effect of photoconductive switching under photoexcitation. In the higher frequency resonance, we show that spoof surface plasmons along the interface of metal/dielectric provide new types of electromagnetic resonances. Our approach opens up possibilities for the interface of metamaterial and plasmonics to be applied to optically tunable THz switching. Project supported by the National Natural Science Foundation of China (Grant No. 61201075), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F2015039), the Young Scholar Project of Heilongjiang Provincial Education Bureau, China (Grant No. 1254G021), the China Postdoctoral Science Foundation (Grant No. 2012M511507), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201302).

  19. Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated MEPCM layer

    International Nuclear Information System (INIS)

    Highlights: • We made water-surface floating PVs integrated with water-saturated MEPCMs. • PV temperature control capabilities and generation efficiencies were investigated. • A 5 cm thick MEPCM layer (TM 30 °C) improved the electricity generation efficiency. - Abstract: In this study, a water-saturated microencapsulated phase change material (MEPCM) layer was attached to the back of a photovoltaic (PV) panel to form a MEPCM-PV module that floats on the water surface. Subsequently, numerical simulations were used to analyze the capabilities of this module for controlling the PV panel temperature and power generation efficiency during daylight according to the local summer climatic conditions (including air temperature, sky temperature, wind speed, solar irradiation, water temperature, and water flow rate). The melting point (30 and 28 °C) and thickness (5 and 3 cm) of the MEPCM were investigated. The power generation efficiency improved when a 5 cm water-saturated MEPCM with a melting point of 30 °C was attached to the back of the PV panel

  20. Correlation between structural, optical, and electrical properties of self-assembled plasmonic nanostructures on the GaAs surface

    Energy Technology Data Exchange (ETDEWEB)

    Gladskikh, Polina V.; Gladskikh, Igor A.; Toropov, Nikita A., E-mail: nikita.a.toropov@gmail.com; Baranov, Mikhail A.; Vartanyan, Tigran A. [ITMO University (Russian Federation)

    2015-11-15

    Self-assembled silver nanostructures on the industry-grade monocrystalline GaAs (100) wafer surface were obtained via physical vapor deposition and characterized by optical reflection spectroscopy, scanning electron microscopy, and current–voltage curve measurements. Reflection spectra of the samples with Ag equivalent thicknesses of 5, 7.5, and 10 nm demonstrated wide plasmonic bands in the visible range of spectra. Thermal annealing of the nanostructures led to narrowing of the plasmonic bands caused by major transformations of the film morphology. While the As prepared films predominantly had a small-scale labyrinth structure, after annealing well-separated silver nanoislands are formed on the gallium arsenide surface. A clear correlation between films morphology and their optical and electrical properties is elucidated. Annealing of the GaAs substrate with Ag nanostructures at 100 °C under control of the resistivity allowed us to obtain and fix the structure at the percolation threshold. It is established that the samples at the percolation threshold possess the properties of resistance switching and hysteresis.Graphical Abstract.

  1. Characterization of Surface Water/Groundwater Exchange Regulating Uranium Transport Using Electrical Imaging and Distributed Temperature Sensing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee D. Slater; Dimitrios Ntarlagiannis; Fred Day-Lewis; Kisa Mwakanyamale; Roelof J Versteeg; Andy Ward; Christopher Strickland; Carole D. Johnson; John Lane

    2010-10-01

    A critical challenge in advancing prediction of solute transport between contaminated aquifers and rivers is improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along river corridors. Here, we explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) monitoring, to improve the conceptual model for uranium transport within the river corridor at the Hanford 300 Area. We first inverted CWEI (resistivity and induced polarization) datasets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse-grained, high permeability Hanford formation and the underlying finer grained, less permeable Ringold formation, an important contact that limits vertical migration of contaminants, were resolved along ~3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). Spatial variability in the thickness of the Hanford formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. The FO- DTS data recorded along a 1.5 km of cable with a 1-m spatial resolution and 5-minute sampling interval revealed sub-reaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and, (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water/groundwater exchange. The FO-DTS datasets confirm the

  2. Electromagnetic brain imaging

    International Nuclear Information System (INIS)

    Present imaging methods of cerebral neuro-activity like brain functional MRI and positron emission tomography (PET) secondarily measure only average activities within a time of the second-order (low time-resolution). In contrast, the electromagnetic brain imaging (EMBI) directly measures the faint magnetic field (10-12-10-13 T) yielded by the cerebral activity with use of multiple arrayed sensors equipped on the head surface within a time of sub-millisecond order (high time-resolution). The sensor array technology to find the signal source from the measured data is common in wide areas like signal procession for radar, sonar, and epicenter detection by seismic wave. For estimating and reconstructing the active region in the brain in EMBI, the efficient method must be developed and this paper describes the direct and inverse problems concerned in signal and image processions of EMBI. The direct problem involves the cerebral magnetic field/lead field matrix and inverse problem for reconstruction of signal source, the MUSIC (multiple signal classification) algorithm, GLRT (generalized likelihood ratio test) scan, and adaptive beamformer. As an example, given are results of magnetic intensity changes (unit, fT) in the somatosensory cortex vs time (msec) measured by 160 sensors and of images reconstructed from EMBI and MRI during electric muscle afferent input from the hand. The real-time imaging is thus possible with EMBI and extremely, the EMBI image, the real-time cerebral signals, can inversely operate a machine, of which application directs toward the brain/machine interface development. (R.T.)

  3. Brain Basics

    Medline Plus

    Full Text Available ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  4. Brain Basics

    Science.gov (United States)

    ... News About Us Home > Health & Education > Educational Resources Brain Basics Introduction The Growing Brain The Working Brain ... to mental disorders, such as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are ...

  5. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... learning more about how the brain grows and works in healthy people, and how normal brain development ...

  6. Multimodal Brain Visualization

    OpenAIRE

    Nadeem, Saad; Kaufman, Arie

    2016-01-01

    Current connectivity diagrams of human brain image data are either overly complex or overly simplistic. In this work we introduce simple yet accurate interactive visual representations of multiple brain image structures and the connectivity among them. We map cortical surfaces extracted from human brain magnetic resonance imaging (MRI) data onto 2D surfaces that preserve shape (angle), extent (area), and spatial (neighborhood) information for 2D (circular disk) and 3D (spherical) mapping, spl...

  7. A photocatalytic reaction kinetics model based on electrical double layer theory(Ⅰ)--Surface complexation model at TiO2/water interface

    Institute of Scientific and Technical Information of China (English)

    李新军; 李芳柏; 何明兴; 王良焱; 徐悦华; 黄琮

    2002-01-01

    The kinetics of photocatalysis can be us ually described by Langmiur-H inshelwood adsorption expression. The adsorption can be greatly influenced by the surface properties of photocatalyst. Triple layer model (TLM) was chosen to describe the surface adsorption of TiO2 based on electrical double layer (EDL) theory at the TiO2/water interface. And through the potentiometrictit ration the parameters of TLM were determined by the extrapolation method and Fit eql3.1 software. The results show that surface complexation dominates the surfac e charge and the numerical calculation fits the experiment data satisfactorily.

  8. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    International Nuclear Information System (INIS)

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM00 mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiNx and SiO2) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm2 to 1.1 μJ/cm2, respectively

  9. Effects of Action Observational Training Plus Brain-Computer Interface-Based Functional Electrical Stimulation on Paretic Arm Motor Recovery in Patient with Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Kim, TaeHoon; Kim, SeongSik; Lee, ByoungHee

    2016-03-01

    The purpose of this study was to investigate whether action observational training (AOT) plus brain-computer interface-based functional electrical stimulation (BCI-FES) has a positive influence on motor recovery of paretic upper extremity in patients with stroke. This was a hospital-based, randomized controlled trial with a blinded assessor. Thirty patients with a first-time stroke were randomly allocated to one of two groups: the BCI-FES group (n = 15) and the control group (n = 15). The BCI-FES group administered to AOT plus BCI-FES on the paretic upper extremity five times per week during 4 weeks while both groups received conventional therapy. The primary outcomes were the Fugl-Meyer Assessment of the Upper Extremity, Motor Activity Log (MAL), Modified Barthel Index and range of motion of paretic arm. A blinded assessor evaluated the outcomes at baseline and 4 weeks. All baseline outcomes did not differ significantly between the two groups. After 4 weeks, the Fugl-Meyer Assessment of the Upper Extremity sub-items (total, shoulder and wrist), MAL (MAL-Activity of Use and Quality of Movement), Modified Barthel Index and wrist flexion range of motion were significantly higher in the BCI-FES group (p BCI-based FES is effective in paretic arm rehabilitation by improving the upper extremity performance. The motor improvements suggest that AOT plus BCI-based FES can be used as a therapeutic tool for stroke rehabilitation. The limitations of the study are that subjects had a certain limited level of upper arm function, and the sample size was comparatively small; hence, it is recommended that future large-scale trials should consider stratified and lager populations according to upper arm function. PMID:26301519

  10. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    Science.gov (United States)

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  11. Investigation of Surface Roughness and Material Removal Rate (MRR) on Tool Steel Using Brass and Copper Electrode for Electrical Discharge Grinding (EDG) Process

    OpenAIRE

    M. Hafiz Helmi; M. Azuddin; W. Abdullah

    2009-01-01

    This paper presents the investigation on surface roughness and material removal rate (MRR) of tool steel machined with brass and copper electrode for Electrical Discharge Grinding (EDG) process. The machining parameter include pulse ON time, pulse OFF time, peak current and capacitance. Analysis of variance (ANOVA) with Taguchi method is used to investigate the significant effect on the performance characteristic and the optimal cutting parameters of EDG. The result shows that, the surface ro...

  12. The Influence of the Technological Factors of Obtaining on the Surface Morphologyand Electrical Properties of the PbTe Films doped Bi

    Directory of Open Access Journals (Sweden)

    Ya.P. Saliy

    2016-02-01

    Full Text Available The influence of technological factors obtaining: time and temperature of the evaporator and the substrate on the surface morphology and electrical properties of the deposited from the vapor in a vacuum on a substrate of sital films PbTe doped Bi is researched. The atomic force microscopy, image processing methods and Hall research are used. The influence of the shape parameters of surface crystallites on the mobility of free charge carriers is analyzed.

  13. Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant

    OpenAIRE

    Griese Matthias; Hartl Dominik; Weiss Christel; Gassler Nikolaus; Helmke Burkhard M; Renner Marcus; End Caroline; Müller Hanna; Hafner Mathias; Poustka Annemarie; Mollenhauer Jan; Poeschl Johannes

    2007-01-01

    Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with ...

  14. Improvement of optical and electrical properties of indium tin oxide layer of GaN-based light-emitting diode by surface plasmon in silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chu-Young [Applied Device and Material Department, Korea Advanced Nano fab Center, Suwon 443–270 (Korea, Republic of); Hong, Sang-Hyun [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500–712 (Korea, Republic of); Park, Seong-Ju, E-mail: esjpark@gist.ac.kr [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500–712 (Korea, Republic of)

    2015-09-01

    We report on the effect of silver (Ag) nanoparticles on the optical transmittance and electrical conductivity of indium tin oxide (ITO) transparent conducting layer deposited on p-GaN layer of light-emitting diodes (LEDs). The sheet resistance of ITO and the series resistance of LEDs were decreased due to the increased electrical conductivity of ITO by Ag nanoparticles, compared with those of the LEDs with a bare ITO only. The ITO transmittance was also improved by localized surface plasmon resonance between the incident light and the randomly distributed Ag nanoparticles on ITO. The optical output power of LEDs with Ag nanoparticles on ITO was increased by 16% at 20 mA of injection current. - Highlights: • We studied the effect of Ag nanoparticles deposited on ITO on the properties of LED. • The optical power of LED and transmittance of ITO were improved by Ag surface plasmon. • The electrical conductivity of ITO was increased by Ag nanoparticles.

  15. Improvement of optical and electrical properties of indium tin oxide layer of GaN-based light-emitting diode by surface plasmon in silver nanoparticles

    International Nuclear Information System (INIS)

    We report on the effect of silver (Ag) nanoparticles on the optical transmittance and electrical conductivity of indium tin oxide (ITO) transparent conducting layer deposited on p-GaN layer of light-emitting diodes (LEDs). The sheet resistance of ITO and the series resistance of LEDs were decreased due to the increased electrical conductivity of ITO by Ag nanoparticles, compared with those of the LEDs with a bare ITO only. The ITO transmittance was also improved by localized surface plasmon resonance between the incident light and the randomly distributed Ag nanoparticles on ITO. The optical output power of LEDs with Ag nanoparticles on ITO was increased by 16% at 20 mA of injection current. - Highlights: • We studied the effect of Ag nanoparticles deposited on ITO on the properties of LED. • The optical power of LED and transmittance of ITO were improved by Ag surface plasmon. • The electrical conductivity of ITO was increased by Ag nanoparticles

  16. Treating the brain deep down: Brain surgery for anorexia nervosa?

    OpenAIRE

    Nestler, Eric J.

    2013-01-01

    Using brain surgery, specific areas in the brain can be stimulated with electrical impulses to reversibly change their activity and alleviate symptoms related to mental illnesses. This so-called deep brain stimulation and other methodological advances that even more selectively activate specific group of neurons can give us clues as to what neural circuitry is involved in a particular mental disorder and whether therapeutic activation of these brain areas and neurons may be effective. In ‘Bed...

  17. The methods and tools for system analysis of surface heat exchangers of steam-gas turbine and oil-electrical energy installations

    OpenAIRE

    ГАНЖА, А. Н.; Марченко, Н. А.

    2010-01-01

    The methods and tools for system analysis of heat-exchange equipments of steam-gas turbine and oil-electrical energy installations are developed. The methodic and dependences can use for solution of optimization tasks. The apparatus effectiveness depending on surface composition and generalized parameters that reflects of heat-transfer rates, relation of heat carrier expense, operational and technological factors are investigated.

  18. Electric wind produced by a surface dielectric barrier discharge operating in air at different pressures: aeronautical control insights

    Energy Technology Data Exchange (ETDEWEB)

    Benard, N; Balcon, N; Moreau, E [Laboratoire d' Etudes Aerodynamiques (LEA), Universite de Poitiers, ENSMA, CNRS Bld Marie et Pierre Curie, Teleport 2, 86962 Futuroscope Cedex (France)

    2008-02-21

    The effects of the ambient air pressure level on the electric wind produced by a single dielectric barrier discharge (DBD) have been investigated by Pitot velocity measurements. Pressures from 1 down to 0.2 atm were tested with a 32 kV{sub p-p} 1 kHz excitation. This preliminary study confirms the effectiveness of surface DBD at low pressure. Indeed, the induced velocity is strongly dependent on the ambient air pressure level. Quite surprisingly the produced airflow presents a local maximum at 0.6 atm. The measured velocities at 1 atm and 0.2 atm are 2.5 m s{sup -1} and 3 m s{sup -1}, respectively while 3.5 m s{sup -1} is reached at 0.6 atm. The position of the maximal velocity always coincides with the plasma extension. Mass flow rate calculations indicate that the DBD is effective in real flight pressure conditions. (fast track communication)

  19. Comparison Between the Trajectories of Electric Field Resonances and those of Rational Surfaces in TJ-II

    International Nuclear Information System (INIS)

    Both the radial electric field resonance case and the corresponding to rational magnetic surfaces, show a number of similar behaviours: a) Strong sensitivity of the passing particle loss fraction, and mainly of their los times, to lower order rational values of the ratio between the poloidal and toroidal rotation angular velocities. b) In both cases there exist similar simple analytical models that allow qualitative predictions for the phase space regions where resonant effects can be expected. c) Strong similitude of trajectories, as well in the Poincare diagrams as in the angular maps. Near the resonant regions a extreme minimization of the radial excursion appears, and both diagrams present a minimum filling. At both sides of these regions there are wide excursions, directed alternatively towards the inner and the outer parts of the plasma. Far from these resonant zones the diagrams filling comes back to be continuous. d) All these behaviours are more marked, and the topology change more sudden, the lower is the periodicity order of the resonance, and are extremely clear for the 1/3 and 1/2 cases. This wealth of similar behaviour suggests a single origin for all these phenomena, linked with the trajectory topology, that will be the subject of a specific study. (Author) 13 refs

  20. Comparison of modelling and experimental results of anode surface melting by femtosecond laser-stimulated electrical discharges in small gaps

    International Nuclear Information System (INIS)

    Experiments and particle-in-cell simulations of femtosecond laser-stimulated electrical discharges in submicrometre gaps between scanning tunnelling microscope tip cathodes and gold film anodes are described. In experiments at applied potentials of 35 V and less, discharges were detected either as self-terminating low-current pulses with durations less than 10 ns and magnitudes less than 200 mA or as higher-current, longer-duration current waveforms. The probability of occurrence of low-current pulses increased as applied potential was decreased, being certain at low potentials of 20-25 V. Low-current pulse waveforms and surface melting of gold anodes predicted by the simulations were compared with experiments. Laser stimulation was modelled by introducing partially ionized electrode materials into the simulation domain at a controlled rate. Simulation results showed that the duration of low-current pulses was influenced by the time over which material was added to the gap region, establishing the importance of electrode vaporization on discharge duration. Subsequently, partially ionized electrode materials were preloaded into the gap in controlled amounts in subsequent simulations. Peak currents predicted by these simulations were nearly equal to the low-current pulse measurements but simulated pulse durations were shorter than experiments. Thus, the time axis of simulation current profiles was normalized for equality of charge transfer with experiments. Anode temperatures and melt diameters calculated from normalized simulated heat input profiles were well matched to experimental measurements.

  1. Hybrid modeling and optimization of hardness of surface produced by electric discharge machining using artificial neural networks and genetic algorithm

    Directory of Open Access Journals (Sweden)

    G. Krishna Mohana Rao

    2010-05-01

    Full Text Available The present work is aimed at optimizing the hardness of surface produced in die sinking electric discharge machining (EDM by considering the simultaneous affect of various input parameters. The experiments are carried out on Ti6Al4V, HE15, 15CDV6 and M-250 by varying the peak current and voltage and the corresponding values of hardness were measured. Multiperceptron neural network models were developed using Neuro solutions package. Genetic algorithm concept is used to optimize the weighting factors of the network. It is observed that the developed model is within the limits of the agreeable error when experimental and network model results are compared. It is further observed that the error when the network is optimized by genetic algorithm has come down to less than 2% from more than 5%. Sensitivity analysis is also done to find the relative influence of factors on the performance measures. It is observed that type of material effectively influences the performance measures.

  2. Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures

    Science.gov (United States)

    Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon

    2014-03-01

    The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.

  3. Characteristics of lateral electrical surface stimulation (LESS) and its effect on the degree of spinal deformity in idiopathic scoliosis

    Science.gov (United States)

    Kowalski, Ireneusz M.; Palko, Tadeusz; Pasniczek, Roman; Szarek, Jozef

    2009-01-01

    Clinical studies were carried out in the period of 2003-2006 at the Provincial Children's Rehabilitation Hospital in Ameryka near Olsztyn (Poland). The study involved a group of children and youth exhibiting spinal deformity progression in idiopathic scoliosis (IS) of more than 5° per year according to the Cobb scale. Four hundred and fifty patients between 4 and 15 years of age were divided into three groups (n = 150). Group I and group II received 2-hour and 9-hour lateral electrical surface stimulation (LESS), respectively, whereas group III (control) was treated only with corrective exercises for 30 minutes twice a day. LESS was performed with the use of a battery-operated SCOL-2 stimulator manufactured by Elmech, Warsaw, Poland. The effectiveness of this method was confirmed in the treatment of spinal IS in children and youth, especially when the initial spinal deformity did not exceed 20° according to the Cobb scale. A short-duration electrostimulation (2 hours daily) was found to produce results similar to those obtained after overnight (9 h) electrostimulation. Moreover, the analysis of the Harrington prognostic index F confirms the positive effect of LESS in both groups of patients (2 h and 9 h of LESS).

  4. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  5. Application of Functional Electrical Stimulation and Brain Computer Interface in Medicine%功能性电刺激与脑机接口在医学中的应用

    Institute of Scientific and Technical Information of China (English)

    隋宝石; 万柏坤

    2011-01-01

    To review the application of functional electrical stimulation (FES) on treatment of motor dysfunction and dysphagia induced by brain or spinal cord injury, and introduce the application of brain computer interface in modern medicine and the progress of BCI-based FES. The results show that BCI, FES and BCI-based FES are good prospect of new technology in modern rehabilitation engineering area.%本文回顾了功能性电刺激(Functional Electrical Stimulation,FES)在治疗脑损伤和脊髓损伤所造成的运动功能和吞咽障碍方面的应用;总结了脑机接口(Brain Computer Interface,BCI)技术在现代医学中的应用以及基于BCI的FES的研究现状.结果 显示,BCI、FES及二者相结合技术在现代康复工程领域中是极具应用前景的新技术.

  6. Brain Basics

    Medline Plus

    Full Text Available ... Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain growth in children with autism ...

  7. Inside the Brain: Unraveling the Mystery of Alzheimer's Disease

    Medline Plus

    Full Text Available The human brain is a remarkable organ. Complex chemical and electrical processes take place within our brains ... from each other as electrical charges travel down the axon to the end of the neuron. The ...

  8. Inside the Brain: Unraveling the Mystery of Alzheimer's Disease

    Medline Plus

    Full Text Available ... brain is a remarkable organ. Complex chemical and electrical processes take place within our brains that let ... another. They receive messages from each other as electrical charges travel down the axon to the end ...

  9. Inside the Brain: Unraveling the Mystery of Alzheimer's Disease

    Medline Plus

    Full Text Available The human brain is a remarkable organ. Complex chemical and electrical processes take place within our brains ... end of the neuron. The electrical charges release chemical messengers called neurotransmitters. The transmitters move across microscopic ...

  10. Electrical switching effect of a single-unit-cell CrO2 layer on rutile TiO2 surface

    International Nuclear Information System (INIS)

    Rutile CrO2 is the most important half-metallic material with nearly 100% spin polarization at the Fermi level, and rutile TiO2 is a wide-gap semiconductor with many applications. Here, we show through first-principles investigation that a single-unit-cell CrO2 layer on rutile TiO2 (001) surface is ferromagnetic and semiconductive with a gap of 0.54 eV, and its electronic state transits abruptly to a typical metallic state when an electrical field is applied. Consequently, this makes an interesting electrical switching effect which may be useful in designing spintronic devices

  11. Inside the Brain: Unraveling the Mystery of Alzheimer's Disease

    Medline Plus

    Full Text Available The human brain is a remarkable organ. Complex chemical and electrical processes take place within our brains that let ... the disease over time destroys memory and thinking skills. Scientific research has revealed some of the brain ...

  12. Inside the Brain: Unraveling the Mystery of Alzheimer's Disease

    Medline Plus

    Full Text Available The human brain is a remarkable organ. Complex chemical and electrical processes take place within our brains that let ... of the next neuron. This cellular circuitry enables communication within the brain. Healthy neurotransmission is important for ...

  13. Inside the Brain: Unraveling the Mystery of Alzheimer's Disease

    Medline Plus

    Full Text Available The human brain is a remarkable organ. Complex chemical and electrical processes take place within our brains that let ... of developing Alzheimer's disease as the brain and body age? Scientific research is helping to unravel the ...

  14. Applying electrical resistivity tomography and biological methods to assess the surface-groundwater interaction in two Mediterranean rivers (central Spain)

    Science.gov (United States)

    Iepure, Sanda; Gómez Ortiz, David; Lillo Ramos, Javier; Rasines Ladero, Ruben; Persoiu, Aurel

    2014-05-01

    Delineation of the extent of hyporheic zone (HZ) in river ecosystems is problematic due to the scarcity of spatial information about the structure of riverbed sediments and the magnitude and extent of stream interactions with the parafluvial and riparian zones. The several existing methods vary in both quality and quantity of information and imply the use of hydrogeological and biological methods. In the last decades, various non-invasive geophysical techniques were developed to characterise the streambed architecture and also to provide detailed spatial information on its vertical and horizontal continuity. All classes of techniques have their strengths and limitations; therefore, in order to assess their potential in delineating the lateral and vertical spatial extents of alluvial sediments, we have combined the near-surface images obtained by electrical resistivity tomography (ERT) with biological assessment of invertebrates in two Mediterranean lowland rivers from central Spain. We performed in situ imaging of the thickness and continuity of alluvial sediments under the riverbed and parafluvial zone during base-flow conditions (summer 2013 and winter 2014) at two different sites with distinct lithology along the Tajuña and Henares Rivers. ERT was performed by installing the electrodes (1 m spacing) on a 47 m long transect normal to the river channel using a Wener-Schlumberger array, across both the riparian zones and the river bed. Invertebrates were collected in the streambed from a depth of 20-40 cm, using the Bou-Rouch method, and from boreholes drilled to a depth of 1.5 m in the riparian zone. The ERT images obtained at site 1 (medium and coarse sand dominated lithology) shows resistivity values ranging from ~20 to 80 ohm•m for the in-stream sediments, indicating a permeable zone up to ~ 0.5 m thick and extending laterally for ca. 5 m from the channel. These sediments contribute to active surface/hyporheic water exchanges and to low water retention in

  15. Electric field effects on adsorption/desorption of proteins and colloidal particles on a gold film observed using surface plasmon resonance

    International Nuclear Information System (INIS)

    We present results for the enhancement or retardation of the attachment of the protein soybean peroxidase to a gold substrate using electric fields. We detect the influence of the electric fields on the proteins using the surface plasmon resonance phenomenon. The gold surface on which the surface plasmon resonance is generated also acts as one of the electrodes required to apply the electric field. The second electrode has a semi-insulating layer that limits current flow, and limits electrolysis effects. The results show that at pH 7, when the soybean peroxidase is negatively charged, a greatly enhanced deposition of protein is obtained when a positive potential is applied to the gold electrode. A negative potential can inhibit protein attachment, or reduce the amount of protein attached; however, after repeated applications of a positive potential, a negative potential has little effect. Results are presented of experiments using colloidal silica that has negatively charged particles of similar size to soybean peroxidase, showing the attraction and repulsion of negatively charged particles by the gold surface

  16. Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and grey matter volume?

    OpenAIRE

    Lemaitre, H; Goldman, AL; Sambataro, F; Verchinski, BA; Meyer-Lindenberg, A; Weinberger, DR; Mattay, VS

    2010-01-01

    Normal aging is accompanied by global as well as regional structural changes. While these age-related changes in grey matter volume have been extensively studied, less has been done using newer morphological indices such as cortical thickness and surface area. To this end, we analyzed structural images of 216 healthy volunteers, ranging from 18 to 87 years of age, using a surface-based automated parcellation approach. Linear regressions of age revealed a concomitant global age-related reducti...

  17. Transcranial Electric Field Stimulation

    OpenAIRE

    Arfaee, Arash

    2015-01-01

    Nervous stimulation with electric methods not only has a long history in the treatment of many conditions but also in the last two decades has been used increasingly as a powerful functional brain mapping tool alongside other imaging techniques. This technology has been used to record the stimulation-evoked activity of the stimulated location. This research describes work surrounding a novel technique for brain and nervous stimulation using the electric field as the medium; particularly tra...

  18. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain

    Science.gov (United States)

    Alecci, M.; Romanzetti, S.; Kaffanke, J.; Celik, A.; Wegener, H. P.; Shah, N. J.

    2006-08-01

    MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides 1H and 23Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the 1H frequency and a smaller co-planar loop tuned to the 23Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned 23Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the 23Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent 1H and 23Na rat brain images showing good SNR ( 23Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ( 23Na: 1.25 × 1.25 × 5 mm 3) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.

  19. 1D Modeling of a Bifacial Silicon Solar Cell under Frequency Modulation Monochromatic Illumination: Determination of the Equivalent Electrical Circuit Related to the Surface Recombination Velocity

    Directory of Open Access Journals (Sweden)

    H. Ly Diallo

    2012-06-01

    Full Text Available We present in this study the determination of the equivalent electrical circuits associated to the recombination velocities for a bifacial silicon solar cell under frequency modulation and monochromatic illumination. This determination is based on Bode and Nyquist diagrams that is the variations of the phase and the module of the back surface and intrinsic junction recombination velocities. Their dependence on illumination wavelength is also shown.

  20. 1D Modeling of a Bifacial Silicon Solar Cell under Frequency Modulation Monochromatic Illumination: Determination of the Equivalent Electrical Circuit Related to the Surface Recombination Velocity

    OpenAIRE

    H. Ly Diallo; Wade, M.; I. Ly; NDiaye, M; B. Dieng O.H. Lemrabott; A.S. Maïga; G. Sissoko

    2012-01-01

    We present in this study the determination of the equivalent electrical circuits associated to the recombination velocities for a bifacial silicon solar cell under frequency modulation and monochromatic illumination. This determination is based on Bode and Nyquist diagrams that is the variations of the phase and the module of the back surface and intrinsic junction recombination velocities. Their dependence on illumination wavelength is also shown.

  1. A comparative study of surface- and volume-based techniques for the automatic registration between CT and SPECT brain images

    International Nuclear Information System (INIS)

    Image registration of multimodality images is an essential task in numerous applications in three-dimensional medical image processing. Medical diagnosis can benefit from the complementary information in different modality images. Surface-based registration techniques, while still widely used, were succeeded by volume-based registration algorithms that appear to be theoretically advantageous in terms of reliability and accuracy. Several applications of such algorithms for the registration of CT-MRI, CT-PET, MRI-PET, and SPECT-MRI images have emerged in the literature, using local optimization techniques for the matching of images. Our purpose in this work is the development of automatic techniques for the registration of real CT and SPECT images, based on either surface- or volume-based algorithms. Optimization is achieved using genetic algorithms that are known for their robustness. The two techniques are compared against a well-established method, the Iterative Closest Point--ICP. The correlation coefficient was employed as an independent measure of spatial match, to produce unbiased results. The repeated measures ANOVA indicates the significant impact of the choice of registration method on the magnitude of the correlation (F=4.968, p=0.0396). The volume-based method achieves an average correlation coefficient value of 0.454 with a standard deviation of 0.0395, as opposed to an average of 0.380 with a standard deviation of 0.0603 achieved by the surface-based method and an average of 0.396 with a standard deviation equal to 0.0353 achieved by ICP. The volume-based technique performs significantly better compared to both ICP (p<0.05, Neuman Keuls test) and the surface-based technique (p<0.05, Neuman-Keuls test). Surface-based registration and ICP do not differ significantly in performance

  2. Segmentation of planar surfaces in LiDAR point clouds of an electrical substation by exploring the structure of points neighbourhood

    Science.gov (United States)

    Arastounia, M.; Lichti, D. D.

    2014-06-01

    According to the Department of Energy of the USA, today's electrical distribution system is 97.97% reliable. However, power outages and interruptions still impact many people. Many power outages are caused by animals coming into contact with the conductive elements of the electrical substations. This can be prevented by covering the conductive electrical objects with insulating materials. The design of these custom-built insulating covers requires a 3D as-built plan of the substation. This research aims to develop automated methods to create such a 3D as-built plan using terrestrial LiDAR data for which objects first need to be recognized in the LiDAR point clouds. This paper reports on the application of a new algorithm for the segmentation of planar surfaces found at electrical substations. The proposed approach is a region growing method that aggregates points based on their proximity to each other and their neighbourhood dispersion direction. PCA (principal components analysis) is also employed to segment planar surfaces in the electrical substation. In this research two different laser scanners, Leica HDS 6100 and Faro Focus3D, were utilized to scan an electrical substation in Airdrie, a city located in north of Calgary, Canada. In this research, three subsets incorporating one subset of Leica dataset with approximately 1.7 million points and two subsets of the Faro dataset with 587 and 79 thousand points were utilized. The performance of our proposed method is compared with the performance of PCA by performing check point analysis and investigation of computational speed. Both methods managed to detect a great proportion of planar points (about 70%). However, the proposed method slightly outperformed PCA. 95% of the points that were segmented by both methods as planar points did actually lie on a planar surface. This exhibits the high ability of both methods to identify planar points. The results also indicate that the computational speed of our method is

  3. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, or ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are metastatic, ...

  4. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of the brain communicate and work with each other How changes in the brain ...

  5. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  6. Comparison of detection results of hypoxic-ischemic encephalopathy at different degrees in infant patients between brain electrical activity mapping, transcranial Doppler sonography and computer tomography examinations

    Institute of Scientific and Technical Information of China (English)

    Dongruo He; Xiaoying Xu; Yinghui Zhang; Guochao Han

    2006-01-01

    BACKGROUND; It has been proved that brain electrical activity mapping (BEAM) and transcranial Doppler (TCD) detection can reflect the function of brain cell and its diseased degree of infant patients with moderate to severe hypoxic-ischemic encephalopathy (HIE).OBJECTIVE: To observe the abnormal results of HIE at different degrees detected with BEAM and TCD in infant patients, and compare the detection results at the same time point between BEAM, TCD and computer tomography (CT) examinations.DESTGN: Contrast observation.SETTING: Departments of Neuro-electrophysiology and Pediatrics, Second Affiliated Hospital of Qiqihar Medical College.PARTICTPANTS: Totally 416 infant patients with HIE who received treatment in the Department of Newborn Infants, Second Affiliated Hospital of Qiqihar Medical College during January 2001 and December 2005. The infant patients, 278 male and 138 female, were at embryonic 37 to 42 weeks and weighing 2.0 to 4.1 kg, and they were diagnosed with CT and met the diagnostic criteria of HIE of newborn infants compiled by Department of Neonatology, Pediatric Academy, Chinese Medical Association. According to diagnostic criteria, 130patients were mild abnormal, 196 moderate abnormal and 90 severe abnormal. The relatives of all the infant patients were informed of the experiment.METHODS: BEAM and TCD examinations were performed in the involved 416 infant patients with HIE at different degrees with DYD2000 16-channel BEAM instrument and EME-2000 ultrasonograph before preliminary diagnosis treatment (within 1 month after birth) and 1,3,6,12 and 24 months after birth, and detected results were compared between BEAM, TCD and CT examinations.MATN OUTCOME MEASURES: Comparison of detection results of HIE at different time points in infant patients between BEAM, TCD and CT examinations. RESULTS: All the 416 infant patients with HIE participated in the result analysis. ① Comparison of the detected results in infant patients with mild HIE at different

  7. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    OpenAIRE

    Htet Htet Kyaw; Sakoolkan Boonruang; Waleed S. Mohammed; Joydeep Dutta

    2015-01-01

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an extern...

  8. Comparison of single and mixed ion implantation effects on the changes of the surface hardness, light transmittance, and electrical conductivity of polymeric materials

    International Nuclear Information System (INIS)

    Single or mixed ions of N, He, C were implanted onto the transparent PET(Polyethylen Terephtalate) with the ion energies of less than 100 keV and the surface hardness, light transmittance and electrical conductivity were examined. As measured with nanoindentation, mixed ion implantations such as N++He+ or N+ + C+ exhibited more increase in the surface hardness than the single ion implantation. Especially, implantation of C+N ions increased the surface hardness by about three times as compared to the implantation of N ion alone, which means more than 10 times increase than the untreated PET. Surface electrical conductivity was increased along with the hardness increase. The conductivity increase was more proportional to the hardness when used the higher ion energy and ion dose, while it did not show any relationship at as low as 50 keV of ion energy. The light at the 550 nm wavelength (visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet, implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays

  9. Brain Basics

    Medline Plus

    Full Text Available ... The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the ... distant nerve cells (via axons) to form brain circuits. These circuits control specific body functions such as ...

  10. Brain Basics

    Medline Plus

    Full Text Available ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies ...

  11. Brain Basics

    Medline Plus

    Full Text Available ... Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, ... others live with symptoms of mental illness every day. They can be moderate, or serious and cause ...

  12. Brain Basics

    Medline Plus

    Full Text Available ... helps Sarah to better cope with her feelings. Brain Research Modern research tools and techniques are giving scientists ... the treatment for a person's specific conditions. Such brain research help increase the understanding of how the brain ...

  13. Brain Basics

    Medline Plus

    Full Text Available ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  14. Brain Basics

    Medline Plus

    Full Text Available ... as depression. The Growing Brain Inside the Brain: Neurons & Neural Circuits Neurons are the basic working unit of the brain ... specialized for the function of conducting messages. A neuron has three basic parts: Cell body which includes ...

  15. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  16. Brain Basics

    Medline Plus

    Full Text Available ... brain's structure, studies show that brain growth in children with autism appears to peak early. And as ... grow there are differences in brain development in children who develop bipolar disorder than children who do ...

  17. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of ...

  18. Brain Basics

    Medline Plus

    Full Text Available ... understanding of the brain than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures ...

  19. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  20. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...