WorldWideScience

Sample records for brain structure evolution

  1. Spectral properties of the temporal evolution of brain network structure

    Science.gov (United States)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  2. Brain structure evolution in a basal vertebrate clade: evidence from phylogenetic comparative analysis of cichlid fishes

    Directory of Open Access Journals (Sweden)

    Kolm Niclas

    2009-09-01

    Full Text Available Abstract Background The vertebrate brain is composed of several interconnected, functionally distinct structures and much debate has surrounded the basic question of how these structures evolve. On the one hand, according to the 'mosaic evolution hypothesis', because of the elevated metabolic cost of brain tissue, selection is expected to target specific structures mediating the cognitive abilities which are being favored. On the other hand, the 'concerted evolution hypothesis' argues that developmental constraints limit such mosaic evolution and instead the size of the entire brain varies in response to selection on any of its constituent parts. To date, analyses of these hypotheses of brain evolution have been limited to mammals and birds; excluding Actinopterygii, the basal and most diverse class of vertebrates. Using a combination of recently developed phylogenetic multivariate allometry analyses and comparative methods that can identify distinct rates of evolution, even in highly correlated traits, we studied brain structure evolution in a highly variable clade of ray-finned fishes; the Tanganyikan cichlids. Results Total brain size explained 86% of the variance in brain structure volume in cichlids, a lower proportion than what has previously been reported for mammals. Brain structures showed variation in pair-wise allometry suggesting some degree of independence in evolutionary changes in size. This result is supported by variation among structures on the strength of their loadings on the principal size axis of the allometric analysis. The rate of evolution analyses generally supported the results of the multivariate allometry analyses, showing variation among several structures in their evolutionary patterns. The olfactory bulbs and hypothalamus were found to evolve faster than other structures while the dorsal medulla presented the slowest evolutionary rate. Conclusion Our results favor a mosaic model of brain evolution, as certain

  3. Plausible mechanisms for brain structural and size changes in human evolution.

    Science.gov (United States)

    Blazek, Vladimir; Brùzek, Jaroslav; Casanova, Manuel F

    2011-09-01

    Encephalization has many contexts and implications. On one hand, it is concerned with the transformation of eating habits, social relationships and communication, cognitive skills and the mind. Along with the increase in brain size on the other hand, encephalization is connected with the creation of more complex brain structures, namely in the cerebral cortex. It is imperative to inquire into the mechanisms which are linked with brain growth and to find out which of these mechanisms allow it and determine it. There exist a number of theories for understanding human brain evolution which originate from neurological sciences. These theories are the concept of radial units, minicolumns, mirror neurons, and neurocognitive networks. Over the course of evolution, it is evident that a whole range of changes have taken place in regards to heredity. These changes include new mutations of genes in the microcephalin complex, gene duplications, gene co-expression, and genomic imprinting. This complex study of the growth and reorganization of the brain and the functioning of hereditary factors and their external influences creates an opportunity to consider the implications of cultural evolution and cognitive faculties.

  4. Evolution of human brain functions: the functional structure of human consciousness.

    Science.gov (United States)

    Cloninger, C Robert

    2009-11-01

    The functional structure of self-aware consciousness in human beings is described based on the evolution of human brain functions. Prior work on heritable temperament and character traits is extended to account for the quantum-like and holographic properties (i.e. parts elicit wholes) of self-aware consciousness. Cladistic analysis is used to identify the succession of ancestors leading to human beings. The functional capacities that emerge along this lineage of ancestors are described. The ecological context in which each cladogenesis occurred is described to illustrate the shifting balance of evolution as a complex adaptive system. Comparative neuroanatomy is reviewed to identify the brain structures and networks that emerged coincident with the emergent brain functions. Individual differences in human temperament traits were well developed in the common ancestor shared by reptiles and humans. Neocortical development in mammals proceeded in five major transitions: from early reptiles to early mammals, early primates, simians, early Homo, and modern Homo sapiens. These transitions provide the foundation for human self-awareness related to sexuality, materiality, emotionality, intellectuality, and spirituality, respectively. The functional structure of human self-aware consciousness is concerned with the regulation of five planes of being: sexuality, materiality, emotionality, intellectuality, and spirituality. Each plane elaborates neocortical functions organized around one of the five special senses. The interactions among these five planes gives rise to a 5 x 5 matrix of subplanes, which are functions that coarsely describe the focus of neocortical regulation. Each of these 25 neocortical functions regulates each of five basic motives or drives that can be measured as temperaments or basic emotions related to fear, anger, disgust, surprise, and happiness/sadness. The resulting 5 x 5 x 5 matrix of human characteristics provides a general and testable model of the

  5. Binocularity and brain evolution in primates

    OpenAIRE

    Barton, R. A.

    2004-01-01

    Primates are distinguished by frontally directed, highly convergent orbits, which are associated with stereoscopic vision. Although stereoscopic vision requires specialized neural mechanisms, its implications for brain evolution are unknown. Using phylogenetic comparative analysis, I show that evolutionary increases among primate taxa in the degree of orbital convergence correlate with expansion of visual brain structures and, as a consequence, with the overall size of the brain. This pattern...

  6. Task-Based Cohesive Evolution of Dynamic Brain Networks

    Science.gov (United States)

    Davison, Elizabeth

    2014-03-01

    Applications of graph theory to neuroscience have resulted in significant progress towards a mechanistic understanding of the brain. Functional network representation of the brain has linked efficient network structure to psychometric intelligence and altered configurations with disease. Dynamic graphs provide us with tools to further study integral properties of the brain; specifically, the mathematical convention of hyperedges has allowed us to study the brain's cross-linked structure. Hyperedges capture the changes in network structure by identifying groups of brain regions with correlation patterns that change cohesively through time. We performed a hyperedge analysis on functional MRI data from 86 subjects and explored the cohesive evolution properties of their functional brain networks as they performed a series of tasks. Our results establish the hypergraph as a useful measure in understanding functional brain dynamics over tasks and reveal characteristic differences in the co-evolution structure of task-specific networks.

  7. Genetic variability, individuality and the evolution of the mammalian brain.

    Science.gov (United States)

    Lipp, H P

    1995-12-01

    The neo-Darwinian theory of evolution has difficulty in explaining the rapid evolution of mammalian brain and behavior. I shall argue that the plasticity mechanisms of the brain (i.e., system homeostasis, developmental reorganization, structural adult plasticity, and cognition and learning) have evolved primarily as genetic buffer systems which protect subtle mutations influencing brain structures from natural selection. These buffer systems permit accumulation of genetic variation in the higher system levels of the brain (simply defined as structures with late differentiation), while low-level systems are kept constant by natural selection. The organization of this intrinsic genetic buffering system provides several features facilitating neo-Darwinian evolution: In conclusion, the evolutionary appearance of cognition and intelligence is an ordinary biological mechanism compensating evolutionary drags such as long lifespans and fewer offspring. The concept has heuristic value for identifying gene-brain-behavior relationships and for explaining behavioral consequences of artifical gene deletions.

  8. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  9. [Evolution of human brain and intelligence].

    Science.gov (United States)

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are

  10. Comparative primate neuroimaging: insights into human brain evolution.

    Science.gov (United States)

    Rilling, James K

    2014-01-01

    Comparative neuroimaging can identify unique features of the human brain and teach us about human brain evolution. Comparisons with chimpanzees, our closest living primate relative, are critical in this endeavor. Structural magnetic resonance imaging (MRI) has been used to compare brain size development, brain structure proportions and brain aging. Positron emission tomography (PET) imaging has been used to compare resting brain glucose metabolism. Functional MRI (fMRI) has been used to compare auditory and visual system pathways, as well as resting-state networks of connectivity. Finally, diffusion-weighted imaging (DWI) has been used to compare structural connectivity. Collectively, these methods have revealed human brain specializations with respect to development, cortical organization, connectivity, and aging. These findings inform our knowledge of the evolutionary changes responsible for the special features of the modern human mind.

  11. Brain evolution and human neuropsychology: the inferential brain hypothesis.

    Science.gov (United States)

    Koscik, Timothy R; Tranel, Daniel

    2012-05-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. (JINS, 2012, 18, 394-401).

  12. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    Science.gov (United States)

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  13. Stellar Structure and Evolution

    CERN Document Server

    Kippenhahn, Rudolf; Weiss, Achim

    2013-01-01

    This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained. The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its...

  14. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution.

    Science.gov (United States)

    Cunnane, Stephen C; Crawford, Michael A

    2014-12-01

    The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Molecular Basis of Human Brain Evolution.

    Science.gov (United States)

    Enard, Wolfgang

    2016-10-24

    Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. On the Evolution of the Mammalian Brain.

    Science.gov (United States)

    Torday, John S; Miller, William B

    2016-01-01

    Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Hobson et al., 2014). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment, that is felt by many to correspond to evolution per se. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being the functional homolog for brain heat dissipation and conscious/mindful information processing. The skin and brain similarly share molecular homologies through the "skin-brain" hypothesis, giving insight to the cellular-molecular "arc" of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the predictive capabilities of the brain and self-organizational processes.

  17. Functional craniology and brain evolution: from paleontology to biomedicine

    Directory of Open Access Journals (Sweden)

    Emiliano eBruner

    2014-04-01

    Full Text Available Anatomical systems are organized through a network of structural and functional relationships among their elements. This network of relationships is the result of evolution, it represents the actual target of selection, and it generates the set of rules orienting and constraining the morphogenetic processes. Understanding the relationship among cranial and cerebral components is necessary to investigate the factors that have influenced and characterized our neuroanatomy, and possible drawbacks associated with the evolution of large brains. The study of the spatial relationships between skull and brain in the human genus has direct relevance in cranial surgery. Geometrical modelling can provide functional perspectives in evolution and brain physiology, like in simulations to investigate metabolic heat production and dissipation in the endocranial form. Analysis of the evolutionary constraints between facial and neural blocks can provide new information on visual impairment. The study of brain form variation in fossil humans can supply a different perspective for interpreting the processes behind neurodegeneration and Alzheimer’s disease. Following these examples, it is apparent that paleontology and biomedicine can exchange relevant information and contribute at the same time to the development of robust evolutionary hypotheses on brain evolution, while offering more comprehensive biological perspectives with regard to the interpretation of pathological processes.

  18. A Hypothesis for the Composition of the Tardigrade Brain and its Implications for Panarthropod Brain Evolution.

    Science.gov (United States)

    Smith, Frank W; Bartels, Paul J; Goldstein, Bob

    2017-09-01

    Incredibly disparate brain types are found in Metazoa, which raises the question of how this disparity evolved. Ecdysozoa includes representatives that exhibit ring-like brains-the Cycloneuralia-and representatives that exhibit ganglionic brains-the Panarthropoda (Euarthropoda, Onychophora, and Tardigrada). The evolutionary steps leading to these distinct brain types are unclear. Phylogenomic analyses suggest that the enigmatic Tardigrada is a closely related outgroup of a Euarthropoda + Onychophora clade; as such, the brains of tardigrades may provide insight into the evolution of ecdysozoan brains. Recently, evolutionarily salient questions have arisen regarding the composition of the tardigrade brain. To address these questions, we investigated brain anatomy in four tardigrade species-Hypsibius dujardini, Milnesium n. sp., Echiniscus n. sp., and Batillipes n. sp.-that together span Tardigrada. Our results suggest that general brain morphology is conserved across Tardigrada. Based on our results we present a hypothesis that proposes direct parallels between the tardigrade brain and the segmental trunk ganglia of the tardigrade ventral nervous system. In this hypothesis, brain neuropil nearly circumscribes the tardigrade foregut. We suggest that the tardigrade brain retains aspects of an ancestral cycloneuralian brain, while exhibiting ganglionic structure characteristic of euarthropods and onychophorans. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.All rights reserved. For permissions please email: journals.permissions@oup.com.

  19. On the evolution of the mammalian brain

    Directory of Open Access Journals (Sweden)

    John Steven Torday

    2016-04-01

    Full Text Available Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Virtual reality and consciousness inference in dreaming. Front Psychol. 2014 Oct 9;5:1133.. This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation, circumventing the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment (= evolution. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday JS. A Central Theory of Biology. Med Hypotheses. 2015 Jul;85(1:49-57, perhaps being the functional homolog for brain heat dissipation and consciousness/mind. The skin and brain similarly share molecular homologies through the ‘skin-brain’ hypothesis, giving insight to the cellular-molecular ‘arc’ of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the

  20. Human brain evolution: harnessing the genomics (r)evolution to link genes, cognition, and behavior.

    Science.gov (United States)

    Konopka, Genevieve; Geschwind, Daniel H

    2010-10-21

    The evolution of the human brain has resulted in numerous specialized features including higher cognitive processes such as language. Knowledge of whole-genome sequence and structural variation via high-throughput sequencing technology provides an unprecedented opportunity to view human evolution at high resolution. However, phenotype discovery is a critical component of these endeavors and the use of nontraditional model organisms will also be critical for piecing together a complete picture. Ultimately, the union of developmental studies of the brain with studies of unique phenotypes in a myriad of species will result in a more thorough model of the groundwork the human brain was built upon. Furthermore, these integrative approaches should provide important insights into human diseases. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Ruminant brain ribonucleases: expression and evolution.

    Science.gov (United States)

    Zhao, W; Confalone, E; Breukelman, H J; Sasso, M P; Jekel, P A; Hodge, E; Furia, A; Beintema, J J

    2001-05-05

    Molecular evolutionary analyses of mammalian ribonucleases have shown that gene duplication events giving rise to three paralogous genes occurred in ruminant ancestors. One of these genes encodes a ribonuclease identified in bovine brain. A peculiar feature of this enzyme and orthologous sequences in other ruminants are C-terminal extensions consisting of 17-27 amino acid residues. Evidence was obtained by Western blot analysis for the presence of brain-type ribonucleases in brain tissue not only of ox, but also of sheep, roe deer and chevrotain (Tragulus javanicus), a member of the earliest diverged taxon of the ruminants. The C-terminal extension of brain-type ribonuclease from giraffe deviates much in sequence from orthologues in other ruminants, due to a change of reading frame. However, the gene encodes a functional enzyme, which could be expressed in heterologous systems. The messenger RNA of bovine brain ribonuclease is not only expressed at a high level in brain tissue but also in lactating mammary gland. The enzyme was isolated and identified from this latter tissue, but was not present in bovine milk, although pancreatic ribonucleases A and B could be isolated from both sources. This suggests different ways of secretion of the two enzyme types, possibly related to structural differences. The sequence of the brain-type RNase from chevrotain suggests that the C-terminal extensions of ruminant brain-type ribonucleases originate from deletions in the ancestral DNA (including a region with stop codons), followed by insertion of a 5-8-fold repeated hexanucleotide sequence, coding for a proline-rich polypeptide.

  2. The evolution of the brain in Canidae (Mammalia: Carnivora)

    NARCIS (Netherlands)

    Lyras, G.A.

    2009-01-01

    Canid brain evolution followed three independent, yet convergent paths. Each of the three canid subfamilies (Hesperocyoninae, Borophaginae and Caninae) started with a simple brain, which gradually became more complicated as the cerebral cortex became larger and more fissured, the cerebellar

  3. Brain structure in sagittal craniosynostosis

    Science.gov (United States)

    Paniagua, Beatriz; Kim, Sunghyung; Moustapha, Mahmoud; Styner, Martin; Cody-Hazlett, Heather; Gimple-Smith, Rachel; Rumple, Ashley; Piven, Joseph; Gilmore, John; Skolnick, Gary; Patel, Kamlesh

    2017-03-01

    Craniosynostosis, the premature fusion of one or more cranial sutures, leads to grossly abnormal head shapes and pressure elevations within the brain caused by these deformities. To date, accepted treatments for craniosynostosis involve improving surgical skull shape aesthetics. However, the relationship between improved head shape and brain structure after surgery has not been yet established. Typically, clinical standard care involves the collection of diagnostic medical computed tomography (CT) imaging to evaluate the fused sutures and plan the surgical treatment. CT is known to provide very good reconstructions of the hard tissues in the skull but it fails to acquire good soft brain tissue contrast. This study intends to use magnetic resonance imaging to evaluate brain structure in a small dataset of sagittal craniosynostosis patients and thus quantify the effects of surgical intervention in overall brain structure. Very importantly, these effects are to be contrasted with normative shape, volume and brain structure databases. The work presented here wants to address gaps in clinical knowledge in craniosynostosis focusing on understanding the changes in brain volume and shape secondary to surgery, and compare those with normally developing children. This initial pilot study has the potential to add significant quality to the surgical care of a vulnerable patient population in whom we currently have limited understanding of brain developmental outcomes.

  4. Musical Training Shapes Structural Brain Development

    OpenAIRE

    Krista L. Hyde; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C.; Schlaug, Gottfried

    2009-01-01

    The human brain has the remarkable capacity to alter in response to environmental demands. Training-induced structural brain changes have been demonstrated in the healthy adult human brain. However, no study has yet directly related structural brain changes to behavioral changes in the developing brain, addressing the question of whether structural brain differences seen in adults (comparing experts with matched controls) are a product of “nature” (via biological brain predispositions) or “nu...

  5. Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution.

    Science.gov (United States)

    Shi, Lei; Hu, Enzhi; Wang, Zhenbo; Liu, Jiewei; Li, Jin; Li, Ming; Chen, Hua; Yu, Chunshui; Jiang, Tianzi; Su, Bing

    2017-02-01

    Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.

  6. Evolution of energy structures; Evolution des structures energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    2005-07-01

    Because of the big inertia and long time constants of energy systems, their long-time behaviour is mainly determined by their present day state and by the trends of their recent evolution. For this reason, it is of prime importance to foresee the evolution of the different energy production sources which may play an important role in the future. A status of the world energy consumption and production is made first using the energy statistics of the IEA. Then, using the trends observed since 1973, the consequences of a simple extrapolation of these trends is examined. Finally, the scenarios of forecasting of energy structures, like those supplied by the International institute for applied systems analysis (IIASA) are discussed. (J.S.)

  7. Evolution of the human brain: changing brain size and the fossil record.

    Science.gov (United States)

    Park, Min S; Nguyen, Andrew D; Aryan, Henry E; U, Hoi Sang; Levy, Michael L; Semendeferi, Katerina

    2007-03-01

    Although the study of the human brain is a rapidly developing and expanding science, we must take pause to examine the historical and evolutionary events that helped shape the brain of Homo sapiens. From an examination of the human lineage to a discussion of evolutionary principles, we describe the basic principles and theories behind the evolution of the human brain. Specifically, we examine several theories concerning changes in overall brain size during hominid evolution and relate them to the fossil record. This overview is intended to provide a broad understanding of some of the controversial issues that are currently being debated in the multidisciplinary field of brain evolution research.

  8. The Evolution of Lateralized Brain Circuits

    Directory of Open Access Journals (Sweden)

    Michael C. Corballis

    2017-06-01

    Full Text Available In the vast clade of animals known as the bilateria, cerebral and behavioral asymmetries emerge against the backdrop of bilateral symmetry, with a functional trade-off between the two. Asymmetries can lead to more efficient processing and packaging of internal structures, but at the expense of efficient adaptation to a natural world without systematic left-right bias. Asymmetries may arise through the fissioning of ancestral structures that are largely symmetrical, creating new circuits. In humans these may include asymmetrical adaptations to language and manufacture, and as one or other hemisphere gains dominance for functions that were previously represented bilaterally. This is best illustrated in the evolution of such functions as language and tool manufacture in humans, which may derive from the mirror-neuron system in primates, but similar principles probably apply to the many other asymmetries now evident in a wide range of animals. Asymmetries arise in largely independent manner with multi-genetic sources, rather than as a single over-riding principle.

  9. Evolution of the human brain: design without a designer.

    NARCIS (Netherlands)

    Hofman, M.A.; Kaas, John

    2017-01-01

    The evolutionary expansion of the brain is among the most distinctive morphological features of mammals. During the past decades, considerable progress has been made in explaining brain evolution in terms of physical and adaptive principles. The objective of this chapter is to present current

  10. Mind, Brain and Education: A Decade of Evolution

    Science.gov (United States)

    Schwartz, Marc

    2015-01-01

    This article examines the evolution of Mind, Brain, and Education (MBE), the field, alongside that of the International Mind, Brain and Education Society (IMBES). The reflections stem mostly from my observations while serving as vice president, president-elect, and president of IMBES during the past 10 years. The article highlights the evolution…

  11. Brain evolution triggers increased diversification of electric fishes.

    Science.gov (United States)

    Carlson, Bruce A; Hasan, Saad M; Hollmann, Michael; Miller, Derek B; Harmon, Luke J; Arnegard, Matthew E

    2011-04-29

    Communication can contribute to the evolution of biodiversity by promoting speciation and reinforcing reproductive isolation between existing species. The evolution of species-specific signals depends on the ability of individuals to detect signal variation, which in turn relies on the capability of the brain to process signal information. Here, we show that evolutionary change in a region of the brain devoted to the analysis of communication signals in mormyrid electric fishes improved detection of subtle signal variation and resulted in enhanced rates of signal evolution and species diversification. These results show that neural innovations can drive the diversification of signals and promote speciation.

  12. Modern human brain growth and development. Contribution to brain evolution in hominids

    OpenAIRE

    Ventrice, F

    2011-01-01

    Human phylogenetic history is directly related to brain evolution. But many biologic processes related to the appearance of this complex organ are unknown, mainly due to the fact that it is an organ composed of soft tissue, which is not sensitive to the fossilization processes. Hence, to infer human brain evolution it is essential to study the indirect evidences it leaves in the cranial bones, such as the endocranial size (cranial capacity) and shape. In this sense, the hominid fossil record ...

  13. Evolution of brain-body allometry in Lake Tanganyika cichlids.

    Science.gov (United States)

    Tsuboi, Masahito; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine Denise; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas

    2016-07-01

    Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain-body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain-body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain-body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain-body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids. © 2016 The Author(s).

  14. Brain-size evolution and sociality in Carnivora

    OpenAIRE

    Finarelli, John A.; Flynn, John J.

    2009-01-01

    Increased encephalization, or larger brain volume relative to body mass, is a repeated theme in vertebrate evolution. Here we present an extensive sampling of relative brain sizes in fossil and extant taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, and their relatives). By using Akaike Information Criterion model selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific evolutionary transformations in encepha...

  15. Ruminant brain ribonucleases : expression and evolution

    NARCIS (Netherlands)

    Zhao, W; Confalone, E; Breukelman, HJ; Sasso, MP; Jekel, PA; Hodge, E; Furia, A; Beintema, JJ

    2001-01-01

    Molecular evolutionary analyses of mammalian ribonucleases have shown that gene duplication events giving rise to three paralogous genes occurred in ruminant ancestors. One of these genes encodes a ribonuclease identified in bovine brain. A peculiar feature of this enzyme and orthologous sequences

  16. Topology Optimization of Structure Using Differential Evolution

    Directory of Open Access Journals (Sweden)

    Chun-Yin Wu

    2008-02-01

    Full Text Available The population-based evolutionary algorithms have emerged as powerful mechanism for finding optimum solutions of complex optimization problems. A promising new evolutionary algorithm, differential evolution, has garnered significant attention in the engineering optimization research. Differential evolution has the advantage of incorporating a relatively simple and efficient form of mutation and crossover. This paper aims at introducing differential evolution as an alternative approach for topology optimization of truss and continuous structure with stress and displacement constraints. In comparison the results with other studies, it shows that differential evolution algorithms are very effective and efficient in solving topology optimization problem of structure.

  17. [Survival of the fattest: the key to human brain evolution].

    Science.gov (United States)

    Cunnane, Stephen C

    2006-01-01

    The circumstances of human brain evolution are of central importance to accounting for human origins, yet are still poorly understood. Human evolution is usually portrayed as having occurred in a hot, dry climate in East Africa where the earliest human ancestors became bipedal and evolved tool-making skills and language while struggling to survive in a wooded or savannah environment. At least three points need to be recognised when constructing concepts of human brain evolution : (1) The human brain cannot develop normally without a reliable supply of several nutrients, notably docosahexaenoic acid, iodine and iron. (2) At term, the human fetus has about 13 % of body weight as fat, a key form of energy insurance supporting brain development that is not found in other primates. (3) The genome of humans and chimpanzees is human brain become so much larger, and how was its present-day nutritional vulnerability circumvented during 5-6 million years of hominid evolution ? The abundant presence of fish bones and shellfish remains in many African hominid fossil sites dating to 2 million years ago implies human ancestors commonly inhabited the shores, but this point is usually overlooked in conceptualizing how the human brain evolved. Shellfish, fish and shore-based animals and plants are the richest dietary sources of the key nutrients needed by the brain. Whether on the shores of lakes, marshes, rivers or the sea, the consumption of most shore-based foods requires no specialized skills or tools. The presence of key brain nutrients and a rich energy supply in shore-based foods would have provided the essential metabolic and nutritional support needed to gradually expand the hominid brain. Abundant availability of these foods also provided the time needed to develop and refine proto-human attributes that subsequently formed the basis of language, culture, tool making and hunting. The presence of body fat in human babies appears to be the product of a long period of

  18. Comparative Analysis of the Macroscale Structural Connectivity in the Macaque and Human Brain

    NARCIS (Netherlands)

    Goulas, A.; Bastiani, M.; Bezgin, G.; Uylings, H.B.M.; Roebroeck, A.; Stiers, P.

    2014-01-01

    The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity

  19. Evolution of the human brain : when bigger is better

    NARCIS (Netherlands)

    Hofman, Michel A

    2014-01-01

    Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the

  20. MCPH1: a window into brain development and evolution

    Directory of Open Access Journals (Sweden)

    Jeannette eNardelli

    2015-03-01

    Full Text Available The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.

  1. Human brain evolution, theories of innovation, and lessons from the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 29; Issue 3. Human brain evolution, theories of innovation, and lessons from the history of technology. Alfred Gierer. Perspectives Volume 29 Issue 3 September 2004 pp 235-244. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Phylogeny and evolution of RNA structure.

    Science.gov (United States)

    Gesell, Tanja; Schuster, Peter

    2014-01-01

    Darwin's conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially confirmed by phylogenetic reconstruction first from morphology and later from data obtained by molecular sequencing. Limitations of the phylogenetic tree concept were recognized as more and more sequence information became available. The other path-breaking idea of Darwin, natural selection of fitter variants in populations, is cast into simple mathematical form and extended to mutation-selection dynamics. In this form the theory is directly applicable to RNA evolution in vitro and to virus evolution. Phylogeny and population dynamics of RNA provide complementary insights into evolution and the interplay between the two concepts will be pursued throughout this chapter. The two strategies for understanding evolution are ultimately related through the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling both phylogeny and evolution of RNA driven by reproduction and mutation. Thereby the focus will be laid on models for phylogenetic sequence evolution as well as evolution and design of RNA structures with selected examples and notes on simulation methods. In the perspectives an attempt is made to combine molecular structure, population dynamics, and phylogeny in modeling evolution.

  3. Comparative Methylome Analyses Identify Epigenetic Regulatory Loci of Human Brain Evolution.

    Science.gov (United States)

    Mendizabal, Isabel; Shi, Lei; Keller, Thomas E; Konopka, Genevieve; Preuss, Todd M; Hsieh, Tzung-Fu; Hu, Enzhi; Zhang, Zhe; Su, Bing; Yi, Soojin V

    2016-11-01

    How do epigenetic modifications change across species and how do these modifications affect evolution? These are fundamental questions at the forefront of our evolutionary epigenomic understanding. Our previous work investigated human and chimpanzee brain methylomes, but it was limited by the lack of outgroup data which is critical for comparative (epi)genomic studies. Here, we compared whole genome DNA methylation maps from brains of humans, chimpanzees and also rhesus macaques (outgroup) to elucidate DNA methylation changes during human brain evolution. Moreover, we validated that our approach is highly robust by further examining 38 human-specific DMRs using targeted deep genomic and bisulfite sequencing in an independent panel of 37 individuals from five primate species. Our unbiased genome-scan identified human brain differentially methylated regions (DMRs), irrespective of their associations with annotated genes. Remarkably, over half of the newly identified DMRs locate in intergenic regions or gene bodies. Nevertheless, their regulatory potential is on par with those of promoter DMRs. An intriguing observation is that DMRs are enriched in active chromatin loops, suggesting human-specific evolutionary remodeling at a higher-order chromatin structure. These findings indicate that there is substantial reprogramming of epigenomic landscapes during human brain evolution involving noncoding regions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. THE DEVELOPMENT OF BRAIN STRUCTURE AND CONNECTIVITY

    NARCIS (Netherlands)

    Wierenga, LM

    2016-01-01

    The human brain undergoes profound structural changes with development. It does not mature by simply growing, rather the transition to adulthood is a dynamic process with regionally specific patterns. However, there is no consensus on the timing and shape of growth trajectories of brain structures.

  5. Stellar Structure and Evolution: An Introduction

    Science.gov (United States)

    Jeffery, C. Simon

    The synthesis of new elements takes place inside stars. How do stars evolve and distribute this creation to the universe at large? This article starts with the observables that the theory of stellar evolution aims to reproduce, and gives a quick overview of what that theory predicts (Sects. 2-3). It presents the equations governing stellar structure and evolution (Sects. 4-6) and the physics of stellar interiors (Sects. 7-9). Approximate and numerical methods for their solution are outlined (Sects. 10-11) and the general results of stellar structure and evolution are discussed (Sects. 12-13). The structure and evolution of horizontal-branch stars, hydrogen-deficient stars and other stellar remnants are also considered (Sects. 14-15).

  6. Evolution of oxytocin pathways in the brain of vertebrates

    Directory of Open Access Journals (Sweden)

    H. Sophie Knobloch

    2014-02-01

    Full Text Available The central oxytocin system transformed tremendously during the evolution, thereby adapting to the expanding properties of species. In more basal vertebrates (paraphyletic taxon Anamnia, which includes agnathans, fish and amphibians, magnocellular neurosecretory neurons producing oxytocin, vasopressin and their homologs reside in the wall of the third ventricle of the hypothalamus composing a single hypothalamic structure, the preoptic nucleus. This nucleus further diverged in advanced vertebrates (monophyletic taxon Amniota, which includes reptiles, birds and mammals into the paraventricular and supraoptic nuclei with accessory nuclei between them. The individual magnocellular neurons underwent a process of transformation from primitive uni- or bipolar neurons into highly differentiated neurons. Due to these microanatomical and cytological changes, the ancient release modes of oxytocin into the cerebrospinal fluid were largely replaced by vascular release. However, the most fascinating feature of the progressive transformations of the oxytocin system has been the expansion of oxytocin axonal projections to forebrain regions. In the present review we provide a background on these evolutionary advancements. Furthermore, we draw attention to the non-synaptic axonal release in small and defined brain regions with the aim to clearly distinguish this way of oxytocin action from the classical synaptic transmission on one side and from dendritic release followed by a global diffusion on the other side. Finally, we will summarize the effects of oxytocin and its homologs on pro-social reproductive behaviors in representatives of the phylogenetic tree and will propose anatomically plausible pathways of oxytocin release contributing to these behaviors in basal vertebrates and amniots.

  7. Structure and Evolution of the Lunar Interior

    Science.gov (United States)

    Andrews-Hanna, J. C.; Weber, R. C.; Ishihara, Y.; Kamata, S.; Keane, J.; Kiefer, W. S.; Matsuyama, I.; Siegler, M.; Warren, P.

    2017-01-01

    Early in its evolution, the Moon underwent a magma ocean phase leading to its differentiation into a feldspathic crust, cumulate mantle, and iron core. However, far from the simplest view of a uniform plagioclase flotation crust, the present-day crust of the Moon varies greatly in thickness, composition, and physical properties. Recent significant improvements in both data and analysis techniques have yielded fundamental advances in our understanding of the structure and evolution of the lunar interior. The structure of the crust is revealed by gravity, topography, magnetics, seismic, radar, electromagnetic, and VNIR remote sensing data. The mantle structure of the Moon is revealed primarily by seismic and laser ranging data. Together, this data paints a picture of a Moon that is heterogeneous in all directions and across all scales, whose structure is a result of its unique formation, differentiation, and subsequent evolution. This brief review highlights a small number of recent advances in our understanding of lunar structure.

  8. Role of brain maturation and reproductive history in the evolution of the primate brain

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, G.A.

    1980-01-01

    All primates conform to a 12% ratio of brain weight to body weight throughout fetal life. This pattern evolved at the beginning of primate evolution, initially as an adaptation to the low energy density of the insect food resource in a strictly arboreal habitat. However, when a wider range of food resources became available, the higher primates retained the 12% trajectory and made it the basis for rapid evolution toward large brain size, which would not have been possible within the restrictions imposed by the 6% brain growth trajectory. The 12% trajectory originally evolved to reduce maternal investment in an energy-poor environment, but became a preadaptation to brain expansion once the energy limitation was overcome by the development of herbivory and frugivory by the higher primates.

  9. Evolution of Brain Tumor and Stability of Geometric Invariants

    Directory of Open Access Journals (Sweden)

    K. Tawbe

    2008-01-01

    Full Text Available This paper presents a method to reconstruct and to calculate geometric invariants on brain tumors. The geometric invariants considered in the paper are the volume, the area, the discrete Gauss curvature, and the discrete mean curvature. The volume of a tumor is an important aspect that helps doctors to make a medical diagnosis. And as doctors seek a stable calculation, we propose to prove the stability of some invariants. Finally, we study the evolution of brain tumor as a function of time in two or three years depending on patients with MR images every three or six months.

  10. Segmentation and Visualisation of Human Brain Structures

    OpenAIRE

    Hult, Roger

    2003-01-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradigraphy) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomograpy (SPECT)). When working with anatomical images, the structures segmented are visible as d...

  11. Fossils and the Evolution of the Arthropod Brain.

    Science.gov (United States)

    Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D

    2016-10-24

    The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Brain evolution and development: adaptation, allometry and constraint.

    Science.gov (United States)

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. © 2016 The Author(s).

  13. Evolution of dinosaur epidermal structures.

    Science.gov (United States)

    Barrett, Paul M; Evans, David C; Campione, Nicolás E

    2015-06-01

    Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Geodynamic evolution and mantle structure

    NARCIS (Netherlands)

    de Jonge, M.R.

    1995-01-01

    With the advent of plate tectonic theory a framework has become available in which many observed features of the structure of the Earth can be understood. The theory can explain the geological processes that have resulted in terranes as diverse as oceans, mid-oceanic ridges, mountain belts, and

  15. Plasticity of brain wave network interactions and evolution across physiologic states

    Science.gov (United States)

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  16. Plasticity of brain wave network interactions and evolution across physiologic states.

    Science.gov (United States)

    Liu, Kang K L; Bartsch, Ronny P; Lin, Aijing; Mantegna, Rosario N; Ivanov, Plamen Ch

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  17. Evolution of Coextruded Structures in Static Mixers

    Science.gov (United States)

    Sollogoub, C.; Guinault, A.; Pedros, M.

    2007-04-01

    Coextrusion allows to combine two thermoplastics in different ways, creating structures with different cross-sectional geometries (side-by-side structure or concentric ring structure). We use static mixers after the feedblock, in order to homogenise these initial structures and obtain different blend morphologies. The control of these morphologies is of prime importance in order to predict the final properties of the polymer blends. The aim of this paper is to study the evolution of some initial coextruded structures in different static mixers. Different static mixers, with adjustable number of mixing elements, are tested. The experimental observations are confronted with numerical simulation results.

  18. Evolution, development, and plasticity of the human brain: from molecules to bones

    Directory of Open Access Journals (Sweden)

    Branka eHrvoj-Mihic

    2013-10-01

    Full Text Available Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species.The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research.

  19. Comparative analysis of the macroscale structural connectivity in the macaque and human brain.

    Directory of Open Access Journals (Sweden)

    Alexandros Goulas

    2014-03-01

    Full Text Available The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity of the two species. Our findings suggest that the human and macaque brain as a whole are similarly wired. A region-wise analysis reveals many interspecies similarities of connectivity patterns, but also lack thereof, primarily involving cingulate regions. We unravel a common structural backbone in both species involving a highly overlapping set of regions. This structural backbone, important for mediating information across the brain, seems to constitute a feature of the primate brain persevering evolution. Our findings illustrate novel evolutionary aspects at the macroscale connectivity level and offer a quantitative translational bridge between macaque and human research.

  20. The extraordinary structural evolution of massive galaxies

    NARCIS (Netherlands)

    Szomoru, Daniel

    2013-01-01

    Galaxies have changed drastically over the past 10 billion years. This thesis deals with these changes, focusing on evolution in the structure of very massive galaxies with a range of stellar population properties. The main subjects addressed are the rapid changes in the sizes of old galaxies, the

  1. (AJST) STRUCTURAL EVOLUTION OF BODE SAADU AREA ...

    African Journals Online (AJOL)

    opiyo

    2, pp. 17-24. STRUCTURAL EVOLUTION OF BODE SAADU AREA,. SOUTHWESTERN NIGERIA. C. T. Okonkwo. Department of Geology, University of Ilorin P.M.B. 1515, Ilorin, Nigeria. E-mail cokonkwo@unilorin.edu.ng. ABSTRACT: The Bode Saadu area comprises metasedimentary and metaigneous rocks which have.

  2. Structures and Interactions of Proteins in the Brain

    DEFF Research Database (Denmark)

    Nielsen, Lau Dalby

    coding for Arc protein has been domesticated from the same branch of genes that has given rise to retroviruses. We show that even despite the large evolutional distance between Arc and retroviruses. Despite large evolutionary distance Arc still self-assemble into higher order structures that resembles......The protein low density lipoprotein receptor related protein 1 (LRP1) plays multiple roles in the biology of amyloid β peptide (Aβ) and Alzheimer’s disease. LRP1 is very important for clearance of Aβ both in the brain and by facilitating Aβ export over the blood brain barrier. In spite...... the primary nucleation is increased. The data furthermore indicates that there is an interaction with Aβ oligomer state and possible also the fibrils. Another brain protein is the neuronal protein Activity-regulated cytoskeletonassociated protein (Arc) which is important for learning and memory. The gene...

  3. Migraine and structural abnormalities in the brain

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Ashina, Messoud

    2014-01-01

    PURPOSE OF REVIEW: The aim is to provide an overview of recent studies of structural brain abnormalities in migraine and to discuss the potential clinical significance of their findings. RECENT FINDINGS: Brain structure continues to be a topic of extensive research in migraine. Despite advances...... in neuroimaging techniques, it is not yet clear if migraine is associated with grey matter changes. Recent large population-based studies sustain the notion of increased prevalence of white matter abnormalities in migraine, and possibly of silent infarct-like lesions. The clinical relevance of this association...... is not clear. Structural changes are not related to cognitive decline, but a link to an increased risk of stroke, especially in patients with aura, cannot be ruled out. SUMMARY: Migraine may be a risk factor for structural changes in the brain. It is not yet clear how factors such as migraine sub-type, attack...

  4. Evolution of ASPM is associated with both increases and decreases in brain size in primates.

    Science.gov (United States)

    Montgomery, Stephen H; Mundy, Nicholas I

    2012-03-01

    A fundamental trend during primate evolution has been the expansion of brain size. However, this trend was reversed in the Callitrichidae (marmosets and tamarins), which have secondarily evolved smaller brains associated with a reduction in body size. The recent pursuit of the genetic basis of brain size evolution has largely focused on episodes of brain expansion, but new insights may be gained by investigating episodes of brain size reduction. Previous results suggest two genes (ASPM and CDK5RAP2) associated with microcephaly, a human neurodevelopmental disorder, may have an evolutionary function in primate brain expansion. Here we use new sequences encoding key functional domains from 12 species of callitrichids to show that positive selection has acted on ASPM across callitrichid evolution and the rate of ASPM evolution is significantly negatively correlated with callitrichid brain size, whereas the evolution of CDK5RAP2 shows no correlation with brain size. Our findings strongly suggest that ASPM has a previously unsuspected role in the evolution of small brains in primates. ASPM is therefore intimately linked to both evolutionary increases and decreases in brain size in anthropoids and is a key target for natural selection acting on brain size. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  5. Food Web Structure Shapes the Morphology of Teleost Fish Brains.

    Science.gov (United States)

    Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric

    2016-01-01

    Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology. © 2016 S. Karger AG, Basel.

  6. Integrating Brain, Behaviour and Phylogeny to understand the Evolution of Sensory Systems in Birds

    Directory of Open Access Journals (Sweden)

    Douglas Richard Wylie

    2015-08-01

    Full Text Available The comparative anatomy of sensory systems has played a major role in developing theories and principles central to evolutionary neuroscience. This includes the central tenet of many comparative studies, the principle of proper mass, which states that the size of a neural structure reflects its processing capacity. The size of structures within the sensory system is not, however, the only salient variable in sensory evolution. Further, the evolution of the brain and behaviour are intimately tied to phylogenetic history, requiring studies to integrate neuroanatomy with behaviour and phylogeny to gain a more holistic view of brain evolution. Birds have proven to be a useful group for these studies because of widespread interest in their phylogenetic relationships and a wealth of information on the functional organization of most of their sensory pathways. In this review, we examine the principle of proper mass in relation differences in the sensory capabilities among birds. We discuss how neuroanatomy, behaviour and phylogeny can be integrated to understand the evolution of sensory systems in birds providing evidence from visual, auditory and somatosensory systems. We also consider the concept of a trade-off, whereby one sensory system (or subpathway within a sensory system, may be expanded in size, at the expense of others, which are reduced in size.

  7. Developmental modes and developmental mechanisms can channel brain evolution

    Directory of Open Access Journals (Sweden)

    Christine J Charvet

    2011-02-01

    Full Text Available Anseriform birds (ducks and geese as well as parrots and songbirds have evolved a disproportionately enlarged telencephalon compared with many other birds. However, parrots and songbirds differ from anseriform birds in their mode of development. Whereas ducks and geese are precocial (e.g., hatchlings feed on their own, parrots and songbirds are altricial (e.g., hatchlings are fed by their parents. We here consider how developmental modes may limit and facilitate specific changes in the mechanisms of brain development. We suggest that altriciality facilitates the evolution of telencephalic expansion by delaying telencephalic neurogenesis. We further hypothesize that delays in telencephalic neurogenesis generate delays in telencephalic maturation, which in turn foster neural adaptations that facilitate learning. Specifically, we propose that delaying telencephalic neurogenesis was a prerequisite for the evolution of neural circuits that allow parrots and songbirds to produce learned vocalizations. Overall, we argue that developmental modes have influenced how some lineages of birds increased the size of their telencephalon and that this, in turn, has influenced subsequent changes in brain circuits and behavior.

  8. Neurolinguistics: structural plasticity in the bilingual brain.

    Science.gov (United States)

    Mechelli, Andrea; Crinion, Jenny T; Noppeney, Uta; O'Doherty, John; Ashburner, John; Frackowiak, Richard S; Price, Cathy J

    2004-10-14

    Humans have a unique ability to learn more than one language--a skill that is thought to be mediated by functional (rather than structural) plastic changes in the brain. Here we show that learning a second language increases the density of grey matter in the left inferior parietal cortex and that the degree of structural reorganization in this region is modulated by the proficiency attained and the age at acquisition. This relation between grey-matter density and performance may represent a general principle of brain organization.

  9. Brain-size evolution and sociality in Carnivora.

    Science.gov (United States)

    Finarelli, John A; Flynn, John J

    2009-06-09

    Increased encephalization, or larger brain volume relative to body mass, is a repeated theme in vertebrate evolution. Here we present an extensive sampling of relative brain sizes in fossil and extant taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, and their relatives). By using Akaike Information Criterion model selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific evolutionary transformations in encephalization allometries. These evolutionary transformations include multiple independent encephalization increases and decreases in addition to a remarkably static basal Carnivora allometry that characterizes much of the suborder Feliformia and some taxa in the suborder Caniformia across much of their evolutionary history, emphasizing that complex processes shaped the modern distribution of encephalization across Carnivora. This analysis also permits critical evaluation of the social brain hypothesis (SBH), which predicts a close association between sociality and increased encephalization. Previous analyses based on living species alone appeared to support the SBH with respect to Carnivora, but those results are entirely dependent on data from modern Canidae (dogs). Incorporation of fossil data further reveals that no association exists between sociality and encephalization across Carnivora and that support for sociality as a causal agent of encephalization increase disappears for this clade.

  10. Sexual selection predicts brain structure in dragon lizards.

    Science.gov (United States)

    Hoops, D; Ullmann, J F P; Janke, A L; Vidal-Garcia, M; Stait-Gardner, T; Dwihapsari, Y; Merkling, T; Price, W S; Endler, J A; Whiting, M J; Keogh, J S

    2017-02-01

    Phenotypic traits such as ornaments and armaments are generally shaped by sexual selection, which often favours larger and more elaborate males compared to females. But can sexual selection also influence the brain? Previous studies in vertebrates report contradictory results with no consistent pattern between variation in brain structure and the strength of sexual selection. We hypothesize that sexual selection will act in a consistent way on two vertebrate brain regions that directly regulate sexual behaviour: the medial preoptic nucleus (MPON) and the ventromedial hypothalamic nucleus (VMN). The MPON regulates male reproductive behaviour whereas the VMN regulates female reproductive behaviour and is also involved in male aggression. To test our hypothesis, we used high-resolution magnetic resonance imaging combined with traditional histology of brains in 14 dragon lizard species of the genus Ctenophorus that vary in the strength of precopulatory sexual selection. Males belonging to species that experience greater sexual selection had a larger MPON and a smaller VMN. Conversely, females did not show any patterns of variation in these brain regions. As the volumes of both these regions also correlated with brain volume (BV) in our models, we tested whether they show the same pattern of evolution in response to changes in BV and found that the do. Therefore, we show that the primary brain nuclei underlying reproductive behaviour in vertebrates can evolve in a mosaic fashion, differently between males and females, likely in response to sexual selection, and that these same regions are simultaneously evolving in concert in relation to overall brain size. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  11. Segmentation and Visualisation of Human Brain Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Roger

    2003-10-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give.

  12. Endocranial morphology of Microchoerus erinaceus (Euprimates, Tarsiiformes) and early evolution of the Euprimates brain.

    Science.gov (United States)

    Ramdarshan, Anusha; Orliac, Maeva J

    2016-01-01

    Innovations in brain structure and increase in brain size relative to body mass are key features of Primates evolutionary history. Surprisingly, the endocranial morphology of early Euprimates is still rather poorly known, and our understanding of early euprimate brain evolution (Eocene epoch) relies on a handful of specimens. In this article, we describe the endocranial cast of the tarsiiform Microchoerus erinaceus from the late Early Eocene of Perrière (Quercy fissure filling, France) based on a virtual reconstruction extracted from CT scan data of the endocranial cavity of the complete, undeformed specimen UM-PRR1771. The endocast of M. erinaceus shows the derived features observed in other Euprimates (e.g. sylvian fissure and temporal lobe), with limited neocortical folding, and a telencephalic flexure comparable to that of extant primates. Comparison with the endocasts of other available late Eocene primates shows that they already exhibited a variety of brain morphologies, highlighting the complex history of the external features of the primate brain, as early as the Eocene. M. erinaceus was a fruit and gum eater considered as nocturnal based on its orbit size. However, its brain showed small olfactory bulbs--smaller than in the coeval diurnal taxa Adapis parisiensis--and a neocorticalization similar to folivorous taxa. These observations contrast with patterns observed in primates today where nocturnal taxa have larger olfactory bulbs than diurnal taxa, and call into question a direct correlation between frugivory and neocorticalization increase in primates. © 2015 Wiley Periodicals, Inc.

  13. Development and evolution of brain allometry in wasps (Vespidae): size, ecology and sociality.

    Science.gov (United States)

    O'Donnell, Sean; Bulova, Susan

    2017-08-01

    We review research on brain development and brain evolution in the wasp family Vespidae. Basic vespid neuroanatomy and some aspects of functional neural circuitry are well-characterized, and genomic tools for exploring brain plasticity are being developed. Although relatively modest in terms of species richness, the Vespidae include species spanning much of the known range of animal social complexity, from solitary nesters to highly eusocial species with some of the largest known colonies and multiple reproductives. Eusocial species differ in behavior and ecology including variation in queen/worker caste differentiation and in diurnal/nocturnal activity. Species differences in overall brain size are strongly associated with brain allometry; relative sizes of visual processing tissues increase at faster rates than antennal processing tissues. The lower relative size of the central-processing mushroom bodies (MB) in eusocial species compared to solitary relatives suggests sociality may relax demands on individual cognitive abilities. However, queens have greater relative MB volumes than their workers, and MB development is positively associated with social dominance status in some species. Fruitful areas for future investigations of adaptive brain investment in the clade include sampling of key overlooked taxa with diverse social structures, and the analysis of neural correlations with ecological divergence in foraging resources and diel activity patterns. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Migraine and structural changes in the brain

    DEFF Research Database (Denmark)

    Bashir, Asma; Lipton, Richard B; Ashina, Sait

    2013-01-01

    To evaluate the association between migraine without aura (MO) and migraine with aura (MA) and 3 types of structural brain abnormalities detected by MRI: white matter abnormalities (WMAs), infarct-like lesions (ILLs), and volumetric changes in gray and white matter (GM, WM) regions....

  15. Reading skill and structural brain development.

    Science.gov (United States)

    Houston, Suzanne M; Lebel, Catherine; Katzir, Tami; Manis, Franklin R; Kan, Eric; Rodriguez, Genevieve G; Sowell, Elizabeth R

    2014-03-26

    Reading is a learned skill that is likely influenced by both brain maturation and experience. Functional imaging studies have identified brain regions important for skilled reading, but the structural brain changes that co-occur with reading acquisition remain largely unknown. We investigated maturational volume changes in brain reading regions and their association with performance on reading measures. Sixteen typically developing children (5-15 years old, eight boys, mean age of sample=10.06 ± 3.29) received two MRI scans (mean interscan interval=2.19 years), and were administered a battery of cognitive measures. Volume changes between time points in five bilateral cortical regions of interest were measured, and assessed for relationships to three measures of reading. Better baseline performances on measures of word reading, fluency, and rapid naming, independent of age and total cortical gray matter volume change, were associated with volume decrease in the left inferior parietal cortex. Better baseline performance on a rapid naming measure was associated with volume decrease in the left inferior frontal region. These results suggest that children who are better readers, and who perhaps read more than less skilled readers, exhibit different development trajectories in brain reading regions. Understanding relationships between reading performance, reading experience, and brain maturation trajectories may help with the development and evaluation of targeted interventions.

  16. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  17. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Science.gov (United States)

    Kouprina, Natalay; Pavlicek, Adam; Mochida, Ganeshwaran H; Solomon, Gregory; Gersch, William; Yoon, Young-Ho; Collura, Randall; Ruvolo, Maryellen; Barrett, J Carl; Woods, C Geoffrey; Walsh, Christopher A; Jurka, Jerzy; Larionov, Vladimir

    2004-05-01

    Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes) consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  18. Crystallography, evolution, and the structure of viruses.

    Science.gov (United States)

    Rossmann, Michael G

    2012-03-16

    My undergraduate education in mathematics and physics was a good grounding for graduate studies in crystallographic studies of small organic molecules. As a postdoctoral fellow in Minnesota, I learned how to program an early electronic computer for crystallographic calculations. I then joined Max Perutz, excited to use my skills in the determination of the first protein structures. The results were even more fascinating than the development of techniques and provided inspiration for starting my own laboratory at Purdue University. My first studies on dehydrogenases established the conservation of nucleotide-binding structures. Having thus established myself as an independent scientist, I could start on my most cherished ambition of studying the structure of viruses. About a decade later, my laboratory had produced the structure of a small RNA plant virus and then, in another six years, the first structure of a human common cold virus. Many more virus structures followed, but soon it became essential to supplement crystallography with electron microscopy to investigate viral assembly, viral infection of cells, and neutralization of viruses by antibodies. A major guide in all these studies was the discovery of evolution at the molecular level. The conservation of three-dimensional structure has been a recurring theme, from my experiences with Max Perutz in the study of hemoglobin to the recognition of the conserved nucleotide-binding fold and to the recognition of the jelly roll fold in the capsid protein of a large variety of viruses.

  19. Structure and function of complex brain networks

    Science.gov (United States)

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  20. Structure and Evolution of Magnetic Cataclysmic Variables

    Science.gov (United States)

    Andronov, I. L.

    2007-06-01

    Theoretical models and observational results are reviewed. The general picture of the structure and evolution of cataclysmic variables (CV) is presented, together with a brief discussion of additional mechanisms of intrinsic variability of the components and magnetic activity of secondaries. Special attention is paid to the accretion structures - flow, disk, column - which are affected by the magnetic field of the white dwarf. The mass and angular momentum transfer in asynchronous MCVs leads to a "propeller" stage of rapid synchronization, after which the "idlings" of the white dwarf are altered to "swingings" with a characteristic time of century(ies). The disk- magnetic field interaction leads to precession of the white dwarf, which causes quasi-periodic changes of the equilibrium rotational period. "Shot noise" in cataclysmic variables is discussed based on one-bandpass and multi-color observations.

  1. The structure and evolution of the Sun

    CERN Document Server

    Severino, Giuseppe

    2017-01-01

    This book equips the reader with a coherent understanding of the structure of the Sun and its evolution and provides all the knowledge required to construct a simplified model of the Sun. The early chapters cover key aspects of basic physics and describe the Sun’s size, mass, luminosity, and temperature. Using a semi-empirical approach, the structure of the present Sun is then modeled in detail, layer by layer, proceeding from the photosphere to the convection zone, radiation zone, and core. Finally, all stages of the Sun’s evolution, from its formation to the end of its life, are carefully explained. The book is primarily intended for university students taking the initial steps in moving from physics to astrophysics. It includes worked exercises and problems to illustrate the concepts discussed, as well as additional problems for independent study. With the aim of helping the reader as much as possible, most of the mathematics required to use the book are provided in the text.

  2. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  3. Structural brain correlates of adolescent resilience.

    Science.gov (United States)

    Burt, Keith B; Whelan, Robert; Conrod, Patricia J; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Fauth-Bühler, Mira; Flor, Herta; Galinowski, André; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Mann, Karl; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Paus, Tomas; Pausova, Zdenka; Poustka, Luise; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Ströhle, Andreas; Schumann, Gunter; Garavan, Hugh

    2016-11-01

    Despite calls for integration of neurobiological methods into research on youth resilience (high competence despite high adversity), we know little about structural brain correlates of resilient functioning. The aim of the current study was to test for brain regions uniquely associated with positive functioning in the context of adversity, using detailed phenotypic classification. 1,870 European adolescents (Mage  = 14.56 years, SDage  = 0.44 years, 51.5% female) underwent MRI scanning and completed behavioral and psychological measures of stressful life events, academic competence, social competence, rule-abiding conduct, personality, and alcohol use. The interaction of competence and adversity identified two regions centered on the right middle and superior frontal gyri; grey matter volumes in these regions were larger in adolescents experiencing adversity who showed positive adaptation. Differences in these regions among competence/adversity subgroups were maintained after controlling for several covariates and were robust to alternative operationalization decisions for key constructs. We demonstrate structural brain correlates of adolescent resilience, and suggest that right prefrontal structures are implicated in adaptive functioning for youth who have experienced adversity. © 2016 Association for Child and Adolescent Mental Health.

  4. Structural brain correlates of human sleep oscillations.

    Science.gov (United States)

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Puberty and structural brain development in humans.

    Science.gov (United States)

    Herting, Megan M; Sowell, Elizabeth R

    2017-01-01

    Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual- based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. Copyright © 2016. Published by Elsevier Inc.

  6. Brain structure in pediatric Tourette syndrome.

    Science.gov (United States)

    Greene, D J; Williams Iii, A C; Koller, J M; Schlaggar, B L; Black, K J

    2017-07-01

    Previous studies of brain structure in Tourette syndrome (TS) have produced mixed results, and most had modest sample sizes. In the present multicenter study, we used structural magnetic resonance imaging (MRI) to compare 103 children and adolescents with TS to a well-matched group of 103 children without tics. We applied voxel-based morphometry methods to test gray matter (GM) and white matter (WM) volume differences between diagnostic groups, accounting for MRI scanner and sequence, age, sex and total GM+WM volume. The TS group demonstrated lower WM volume bilaterally in orbital and medial prefrontal cortex, and greater GM volume in posterior thalamus, hypothalamus and midbrain. These results demonstrate evidence for abnormal brain structure in children and youth with TS, consistent with and extending previous findings, and they point to new target regions and avenues of study in TS. For example, as orbital cortex is reciprocally connected with hypothalamus, structural abnormalities in these regions may relate to abnormal decision making, reinforcement learning or somatic processing in TS.

  7. Evidence for the unique function of DHA during the evolution of the modern hominid brain

    Directory of Open Access Journals (Sweden)

    Crawford M.A.

    2004-01-01

    Full Text Available The African savanna ecosystem of the large mammals and primates was associated with a dramatic decline in relative brain capacity. This reduction happened to be associated with a decline in docosahexaenoic acid (DHA from the food chain. DHA is required for brain structures and growth. The biochemistry implies that the expansion of the human brain required a plentiful source of preformed DHA. The richest source of DHA is the marine food chain while the savannah environment offers very little of it. Consequently H. sapiens could not have evolved on the savannahs. Recent fossil evidence indicates that the lacustrine and marine food chain was being extensively exploited at the time cerebral expansion took place and suggests the alternative that the transition from the archaic to modern humans took place at the land\\\\water interface. Contemporary data on tropical lake shore dwellers reaffirms the above view. Lacustrine habitats provide nutritional support for the vascular system, the development of which would have been a prerequisite for cerebral expansion. Both arachidonic acid (AA and DHA would have been freely available from such habitats providing the double stimulus of preformed acyl components for the developing blood vessels and brain. The w3 docosapentaenoic acid precursor (w3DPA was the major w3 metabolite in the savanna mammals. Despite this abundance, neither it or the corresponding w6DPA were used for the photoreceptor nor the synapse. A substantial difference between DHA and other fatty acids is required to explain this high specificity. Studies on fluidity and other mechanical features of cell membranes have not revealed a difference of such magnitude between even a-linolenic acid (LNA and DHA sufficient to explain the exclusive use of DHA. We suggest that the evolution of the large human brain depended on a rich source of DHA from the land\\\\water interface. We review a number of proposals for the possible influence of DHA on

  8. Structure related phylogenetic variations in brain gangliosides of vertebrates.

    Science.gov (United States)

    Hilbig, R

    1984-01-01

    The concentration and composition of brain gangliosides from five brain structures of vertebrate species belonging to the classes of Chondrichthyes, Osteichthyes, Reptilia, Aves and Mammalia were investigated. The complexity of brain ganglioside composition is strikingly reduced over phyletic lines. In lower vertebrates there is only little variation in the ganglioside pattern between the different brain structures, whereas in higher vertebrates differences distinctly occurred. A similarity over phyletic lines of ganglioside pattern was only noted in phylogenetically old brain structures as for instance in the medulla oblongata and the brain stem.

  9. Brain structures in the sciences and humanities.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  10. Effects of hormone therapy on brain structure

    OpenAIRE

    Kantarci, Kejal; Tosakulwong, Nirubol; Lesnick, Timothy G.; Zuk, Samantha M.; Gunter, Jeffrey L.; Gleason, Carey E.; Wharton, Whitney; Dowling, N. Maritza; Vemuri, Prashanthi; Senjem, Matthew L.; Shuster, Lynne T.; Bailey, Kent R.; Rocca, Walter A.; Jack, Clifford R.; Asthana, Sanjay

    2016-01-01

    Objective: To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Methods: Participants (aged 42?56 years, within 5?36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 ?g/d transdermal 17?-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active ...

  11. Statistical analysis of minimum cost path based structural brain connectivity

    NARCIS (Netherlands)

    De Boer, R.; Schaap, M.; Van der Lijn, F.; Vrooman, H.A.; De Groot, M.; Van der Lugt, A.; Ikram, M.A.; Vernooij, M.W.; Breteler, M.M.B.; Niessen, W.J.

    2010-01-01

    Diffusion MRI can be used to study the structural connectivity within the brain. Brain connectivity is often represented by a binary network whose topology can be studied using graph theory. We present a framework for the construction of weighted structural brain networks, containing information

  12. Topological structure of the solution set for evolution inclusions

    CERN Document Server

    Zhou, Yong; Peng, Li

    2017-01-01

    This book systematically presents the topological structure of solution sets and attractability for nonlinear evolution inclusions, together with its relevant applications in control problems and partial differential equations. It provides readers the background material needed to delve deeper into the subject and explore the rich research literature.  In addition, the book addresses many of the basic techniques and results recently developed in connection with this theory, including the structure of solution sets for evolution inclusions with m-dissipative operators; quasi-autonomous and non-autonomous evolution inclusions and control systems;evolution inclusions with the Hille-Yosida operator; functional evolution inclusions; impulsive evolution inclusions; and stochastic evolution inclusions. Several applications of evolution inclusions and control systems are also discussed in detail.  Based on extensive research work conducted by the authors and other experts over the past four years, the information p...

  13. Gender Differences in Postresuscitative Brain Structural Changes

    Directory of Open Access Journals (Sweden)

    I. V. Ostrova

    2009-01-01

    Full Text Available Objective: to reveal gender differences in brain structural changes after clinical death and to assess the neuroprotective properties of the hormonal agent Gynodian Depot. Materials and methods. The brain neuronal populations were morphometrical-ly studied in adult albino rats of both sexes which had sustained 10-minute cardiac arrest. At minute 30 after resuscitation, oil solution of estradiol with dehydroepiandrosterone was intramuscularly injected into the study group animals in doses of 0.1 and 5 mg/100 g. The comparison group of animals received the equivalent volumes of saline. Gender- and age-matched intact rats served as a control. An image analysis system of cresyl violet-stained paraffin brain sections was used to determine the density and composition of highly ischemia-perfusion-sensitive populations of pyramidal neurons of Layer V of the sensomo-tor cortex, the CA1 and CA4 hippocampal sectors, and Purkinje cells in the lateral cerebellum. Results. It has been established that there are gender differences in brain morphology in health, which are detectable in the postresuscitative period. The site of lesions has been found to be different in resuscitated rats of different gender. At the same time, male brain lesions are more extensive, i.e. these involve to this or that extent all the examined regions: the cerebellum and CA4 hippocamplal sector exhibit neuronal death; the cortex and CA1 hippocampal sector show dystrophic changes in the nerve cells. In the females, neuronal shedding processes were observed in the CA1 hippocampal sector only. Estradiol + dehydroepiandrosterone treatment has been ascertained to prevent nerve cell death only in the males and to fail to affect the density and composition of the neuronal populations under study in the females. Conclusion. The findings suggest that it is important to identify the structural bases of sexual dimorphism in the body’s reaction to ischemic exposure and that it is necessary to

  14. Effects of hormone therapy on brain structure

    Science.gov (United States)

    Tosakulwong, Nirubol; Lesnick, Timothy G.; Zuk, Samantha M.; Gunter, Jeffrey L.; Gleason, Carey E.; Wharton, Whitney; Dowling, N. Maritza; Vemuri, Prashanthi; Senjem, Matthew L.; Shuster, Lynne T.; Bailey, Kent R.; Rocca, Walter A.; Jack, Clifford R.; Asthana, Sanjay; Miller, Virginia M.

    2016-01-01

    Objective: To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Methods: Participants (aged 42–56 years, within 5–36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 μg/d transdermal 17β-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active treatment groups for 12 days each month. MRI and cognitive testing were performed in a subset of participants at baseline, and at 18, 36, and 48 months of randomization (n = 95). Changes in whole brain, ventricular, and white matter hyperintensity volumes, and in global cognitive function, were measured. Results: Higher rates of ventricular expansion were observed in both the CEE and the 17β-estradiol groups compared to placebo; however, the difference was significant only in the CEE group (p = 0.01). Rates of ventricular expansion correlated with rates of decrease in brain volume (r = −0.58; p ≤ 0.001) and with rates of increase in white matter hyperintensity volume (r = 0.27; p = 0.01) after adjusting for age. The changes were not different between the CEE and 17β-estradiol groups for any of the MRI measures. The change in global cognitive function was not different across the groups. Conclusions: Ventricular volumes increased to a greater extent in recently menopausal women who received CEE compared to placebo but without changes in cognitive performance. Because the sample size was small and the follow-up limited to 4 years, the findings should be interpreted with caution and need confirmation. Classification of evidence: This study provides Class I evidence that brain ventricular volume increased to a greater extent in recently menopausal women who received oral CEE compared to placebo. PMID:27473135

  15. Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens.

    Science.gov (United States)

    Mekel-Bobrov, Nitzan; Gilbert, Sandra L; Evans, Patrick D; Vallender, Eric J; Anderson, Jeffrey R; Hudson, Richard R; Tishkoff, Sarah A; Lahn, Bruce T

    2005-09-09

    The gene ASPM (abnormal spindle-like microcephaly associated) is a specific regulator of brain size, and its evolution in the lineage leading to Homo sapiens was driven by strong positive selection. Here, we show that one genetic variant of ASPM in humans arose merely about 5800 years ago and has since swept to high frequency under strong positive selection. These findings, especially the remarkably young age of the positively selected variant, suggest that the human brain is still undergoing rapid adaptive evolution.

  16. A discrete structure of the brain waves.

    Science.gov (United States)

    Dabaghian, Yuri; Perotti, Luca; oscillons in biological rhythms Collaboration; physics of biological rhythms Team

    A physiological interpretation of the biological rhythms, e.g., of the local field potentials (LFP) depends on the mathematical approaches used for the analysis. Most existing mathematical methods are based on decomposing the signal into a set of ``primitives,'' e.g., sinusoidal harmonics, and correlating them with different cognitive and behavioral phenomena. A common feature of all these methods is that the decomposition semantics is presumed from the onset, and the goal of the subsequent analysis reduces merely to identifying the combination that best reproduces the original signal. We propose a fundamentally new method in which the decomposition components are discovered empirically, and demonstrate that it is more flexible and more sensitive to the signal's structure than the standard Fourier method. Applying this method to the rodent LFP signals reveals a fundamentally new structure of these ``brain waves.'' In particular, our results suggest that the LFP oscillations consist of a superposition of a small, discrete set of frequency modulated oscillatory processes, which we call ``oscillons''. Since these structures are discovered empirically, we hypothesize that they may capture the signal's actual physical structure, i.e., the pattern of synchronous activity in neuronal ensembles. Proving this hypothesis will help to advance our principal understanding of the neuronal synchronization mechanisms and reveal new structure within the LFPs and other biological oscillations. NSF 1422438 Grant, Houston Bioinformatics Endowment Fund.

  17. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1 in cetaceans

    Directory of Open Access Journals (Sweden)

    Montgomery Stephen H

    2011-04-01

    Full Text Available Abstract Background Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans. Results We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1 in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea. Conclusion In conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.

  18. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution.

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    Full Text Available It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans. The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum. These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

  19. Evolution and structure of sustainability science.

    Science.gov (United States)

    Bettencourt, Luís M A; Kaur, Jasleen

    2011-12-06

    The concepts of sustainable development have experienced extraordinary success since their advent in the 1980s. They are now an integral part of the agenda of governments and corporations, and their goals have become central to the mission of research laboratories and universities worldwide. However, it remains unclear how far the field has progressed as a scientific discipline, especially given its ambitious agenda of integrating theory, applied science, and policy, making it relevant for development globally and generating a new interdisciplinary synthesis across fields. To address these questions, we assembled a corpus of scholarly publications in the field and analyzed its temporal evolution, geographic distribution, disciplinary composition, and collaboration structure. We show that sustainability science has been growing explosively since the late 1980s when foundational publications in the field increased its pull on new authors and intensified their interactions. The field has an unusual geographic footprint combining contributions and connecting through collaboration cities and nations at very different levels of development. Its decomposition into traditional disciplines reveals its emphasis on the management of human, social, and ecological systems seen primarily from an engineering and policy perspective. Finally, we show that the integration of these perspectives has created a new field only in recent years as judged by the emergence of a giant component of scientific collaboration. These developments demonstrate the existence of a growing scientific field of sustainability science as an unusual, inclusive and ubiquitous scientific practice and bode well for its continued impact and longevity.

  20. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    Science.gov (United States)

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  1. Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain

    Science.gov (United States)

    Grove, Matt

    2012-01-01

    Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…

  2. Drug-Resistant Brain Metastases: A Role for Pharmacology, Tumor Evolution, and Too-Late Therapy.

    Science.gov (United States)

    Stricker, Thomas; Arteaga, Carlos L

    2015-11-01

    Two recent studies report deep molecular profiling of matched brain metastases and primary tumors. In both studies, somatic alterations in the brain metastases were frequently discordant with those in the primary tumor, suggesting divergent evolution at metastatic sites and raising questions about the use of biomarkers in patients in clinical trials with targeted therapies. ©2015 American Association for Cancer Research.

  3. Genetic architecture supports mosaic brain evolution and independent brain-body size regulation

    National Research Council Canada - National Science Library

    Hager, Reinmar; Lu, Lu; Rosen, Glenn D; Williams, Robert W

    2012-01-01

    ... to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental constraints...

  4. Comparative primate neurobiology and the evolution of brain language systems.

    Science.gov (United States)

    Rilling, James K

    2014-10-01

    Human brain specializations supporting language can be identified by comparing human with non-human primate brains. Comparisons with chimpanzees are critical in this endeavor. Human brains are much larger than non-human primate brains, but human language capabilities cannot be entirely explained by brain size. Human brain specializations that potentially support our capacity for language include firstly, wider cortical minicolumns in both Broca's and Wernicke's areas compared with great apes; secondly, leftward asymmetries in Broca's area volume and Wernicke's area minicolumn width that are not found in great apes; and thirdly, arcuate fasciculus projections beyond Wernicke's area to a region of expanded association cortex in the middle and inferior temporal cortex involved in processing word meaning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The evolution of the brain, the human nature of cortical circuits and intellectual creativity

    Directory of Open Access Journals (Sweden)

    Javier eDeFelipe

    2011-05-01

    Full Text Available The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of archetypical microcircuits, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective.

  6. Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients.

    Science.gov (United States)

    Beck, Anne; Wüstenberg, Torsten; Genauck, Alexander; Wrase, Jana; Schlagenhauf, Florian; Smolka, Michael N; Mann, Karl; Heinz, Andreas

    2012-08-01

    In alcohol-dependent patients, brain atrophy and functional brain activation elicited by alcohol-associated stimuli may predict relapse. However, to date, the interaction between both factors has not been studied. To determine whether results from structural and functional magnetic resonance imaging are associated with relapse in detoxified alcohol-dependent patients. A cue-reactivity functional magnetic resonance experiment with alcohol-associated and neutral stimuli. After a follow-up period of 3 months, the group of 46 detoxified alcohol-dependent patients was subdivided into 16 abstainers and 30 relapsers. Faculty for Clinical Medicine Mannheim at the University of Heidelberg, Germany. A total of 46 detoxified alcohol-dependent patients and 46 age- and sex-matched healthy control subjects Local gray matter volume, local stimulus-related functional magnetic resonance imaging activation, joint analyses of structural and functional data with Biological Parametric Mapping, and connectivity analyses adopting the psychophysiological interaction approach. Subsequent relapsers showed pronounced atrophy in the bilateral orbitofrontal cortex and in the right medial prefrontal and anterior cingulate cortex, compared with healthy controls and patients who remained abstinent. The local gray matter volume-corrected brain response elicited by alcohol-associated vs neutral stimuli in the left medial prefrontal cortex was enhanced for subsequent relapsers, whereas abstainers displayed an increased neural response in the midbrain (the ventral tegmental area extending into the subthalamic nucleus) and ventral striatum. For alcohol-associated vs neutral stimuli in abstainers compared with relapsers, the analyses of the psychophysiological interaction showed a stronger functional connectivity between the midbrain and the left amygdala and between the midbrain and the left orbitofrontal cortex. Subsequent relapsers displayed increased brain atrophy in brain areas associated with

  7. Brain size and thermoregulation during the evolution of the genus Homo.

    Science.gov (United States)

    Naya, Daniel E; Naya, Hugo; Lessa, Enrique P

    2016-01-01

    Several hypotheses have been proposed to explain the evolution of an energetically costly brain in the genus Homo. Some of these hypotheses are based on the correlation between climatic factors and brain size recorded for this genus during the last millions of years. In this study, we propose a complementary climatic hypothesis that is based on the mechanistic connection between temperature, thermoregulation, and size of internal organs in endothermic species. We hypothesized that global cooling during the last 3.2 my may have imposed an increased energy expenditure for thermoregulation, which in the case of hominids could represent a driver for the evolution of an expanded brain, or at least, it could imply the relaxation of a negative selection pressure acting upon this costly organ. To test this idea, here we (1) assess variation in the energetic costs of thermoregulation and brain maintenance for the last 3.2 my, and (2) evaluate the relationship between Earth temperature and brain maintenance cost for the same period, taking into account the effects of body mass and fossil age. We found that: (1) the energetic cost associated with brain enlargement represents an important fraction (between 47.5% and 82.5%) of the increase in energy needed for thermoregulation; (2) fossil age is a better predictor of brain maintenance cost than Earth temperature, suggesting that (at least) another factor correlated with time was more relevant than ambient temperature in brain size evolution; and (3) there is a significant negative correlation between the energetic cost of brain and Earth temperature, even after accounting for the effect of body mass and fossil age. Thus, our results expand the current energetic framework for the study of brain size evolution in our lineage by suggesting that a fall in Earth temperature during the last millions of years may have facilitated brain enlargement. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Mapping behavioural evolution onto brain evolution: the strategic roles of conserved organization in individuals and species.

    Science.gov (United States)

    Finlay, Barbara L; Hinz, Flora; Darlington, Richard B

    2011-07-27

    The pattern of individual variation in brain component structure in pigs, minks and laboratory mice is very similar to variation across species in the same components, at a reduced scale. This conserved pattern of allometric scaling resembles robotic architectures designed to be robust to changes in computing power and task demands, and may reflect the mechanism by which both growing and evolving brains defend basic sensory, motor and homeostatic functions at multiple scales. Conserved scaling rules also have implications for species-specific sensory and social communication systems, motor competencies and cognitive abilities. The role of relative changes in neuron number in the central nervous system in producing species-specific behaviour is thus highly constrained, while changes in the sensory and motor periphery, and in motivational and attentional systems increase in probability as the principal loci producing important changes in functional neuroanatomy between species. By their nature, these loci require renewed attention to development and life history in the initial organization and production of species-specific behavioural abilities.

  9. Reconsidering the evolution of brain, cognition and behaviour in birds and mammals

    Directory of Open Access Journals (Sweden)

    Romain eWillemet

    2013-07-01

    Full Text Available Despite decades of research, some of the most basic issues concerning the extraordinarily complex brains and behaviour of birds and mammals, such as the factors responsible for the diversity of brain size and composition, are still unclear. This is partly due to a number of conceptual and methodological issues. Determining species and group differences in brain composition requires accounting for the presence of taxon-cerebrotypes and the use of precise statistical methods. The role of allometry in determining brain variables should be revised. In particular, bird and mammalian brains appear to have evolved in response to a variety of selective pressures influencing both brain size and composition. Brain and cognition are indeed meta-variables, made up of the variables that are ecologically relevant and evolutionarily selected. External indicators of species differences in cognition and behaviour are limited by the complexity of these differences. Indeed, behavioural differences between species and individuals are caused by cognitive and affective components. Although intra-species variability forms the basis of species evolution, some of the mechanisms underlying individual differences in brain and behaviour appear to differ from those between species. While many issues have persisted over the years because of a lack of appropriate data or methods to test them; several fallacies, particularly those related to the human brain, reflect scientists’ preconceptions. The theoretical framework on the evolution of brain, cognition and behaviour in birds and mammals should be reconsidered with these biases in mind.

  10. Temporal and spatial evolution of brain network topology during the first two years of life.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available The mature brain features high wiring efficiency for information transfer. However, the emerging process of such an efficient topology remains elusive. With resting state functional MRI and a large cohort of normal pediatric subjects (n = 147 imaged during a critical time period of brain development, 3 wk- to 2 yr-old, the temporal and spatial evolution of brain network topology is revealed. The brain possesses the small world topology immediately after birth, followed by a remarkable improvement in whole brain wiring efficiency in 1 yr olds and becomes more stable in 2 yr olds. Regional developments of brain wiring efficiency and the evolution of functional hubs suggest differential development trend for primary and higher order cognitive functions during the first two years of life. Simulations of random errors and targeted attacks reveal an age-dependent improvement of resilience. The lower resilience to targeted attack observed in 3 wk old group is likely due to the fact that there are fewer well-established long-distance functional connections at this age whose elimination might have more profound implications in the overall efficiency of information transfer. Overall, our results offer new insights into the temporal and spatial evolution of brain topology during early brain development.

  11. A simulation model for analysing brain structure deformations

    Science.gov (United States)

    Di Bona, Sergio; Lutzemberger, Ludovico; Salvetti, Ovidio

    2003-12-01

    Recent developments of medical software applications—from the simulation to the planning of surgical operations—have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  12. A simulation model for analysing brain structure deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Sergio Di [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy); Lutzemberger, Ludovico [Department of Neuroscience, Institute of Neurosurgery, University of Pisa, Via Roma, 67-56100 Pisa (Italy); Salvetti, Ovidio [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy)

    2003-12-21

    Recent developments of medical software applications from the simulation to the planning of surgical operations have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  13. Structural brain plasticity in adult learning and development.

    Science.gov (United States)

    Lövdén, Martin; Wenger, Elisabeth; Mårtensson, Johan; Lindenberger, Ulman; Bäckman, Lars

    2013-11-01

    Recent research using magnetic resonance imaging has documented changes in the adult human brain's grey matter structure induced by alterations in experiential demands. We review this research and relate it to models of brain plasticity from related strands of research, such as work on animal models. This allows us to generate recommendations and predictions for future research that may advance the understanding of the function, sequential progression, and microstructural nature of experience-dependent changes in regional brain volumes. Informed by recent evidence on adult age differences in structural brain plasticity, we show how understanding learning-related changes in human brain structure can expand our knowledge about adult development and aging. We hope that this review will promote research on the mechanisms regulating experience-dependent structural plasticity of the adult human brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Toward the Language-Ready Brain: Biological Evolution and Primate Comparisons.

    Science.gov (United States)

    Arbib, Michael A

    2017-02-01

    The approach to language evolution suggested here focuses on three questions: How did the human brain evolve so that humans can develop, use, and acquire languages? How can the evolutionary quest be informed by studying brain, behavior, and social interaction in monkeys, apes, and humans? How can computational modeling advance these studies? I hypothesize that the brain is language ready in that the earliest humans had protolanguages but not languages (i.e., communication systems endowed with rich and open-ended lexicons and grammars supporting a compositional semantics), and that it took cultural evolution to yield societies (a cultural constructed niche) in which language-ready brains could become language-using brains. The mirror system hypothesis is a well-developed example of this approach, but I offer it here not as a closed theory but as an evolving framework for the development and analysis of conflicting subhypotheses in the hope of their eventual integration. I also stress that computational modeling helps us understand the evolving role of mirror neurons, not in and of themselves, but only in their interaction with systems "beyond the mirror." Because a theory of evolution needs a clear characterization of what it is that evolved, I also outline ideas for research in neurolinguistics to complement studies of the evolution of the language-ready brain. A clear challenge is to go beyond models of speech comprehension to include sign language and models of production, and to link language to visuomotor interaction with the physical and social world.

  15. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magn...

  16. Art and brain: insights from neuropsychology, biology and evolution.

    Science.gov (United States)

    Zaidel, Dahlia W

    2010-02-01

    Art is a uniquely human activity associated fundamentally with symbolic and abstract cognition. Its practice in human societies throughout the world, coupled with seeming non-functionality, has led to three major brain theories of art. (1) The localized brain regions and pathways theory links art to multiple neural regions. (2) The display of art and its aesthetics theory is tied to the biological motivation of courtship signals and mate selection strategies in animals. (3) The evolutionary theory links the symbolic nature of art to critical pivotal brain changes in Homo sapiens supporting increased development of language and hierarchical social grouping. Collectively, these theories point to art as a multi-process cognition dependent on diverse brain regions and on redundancy in art-related functional representation.

  17. A Mind of Three Minds: Evolution of the Human Brain

    Science.gov (United States)

    MacLean, Paul D.

    1978-01-01

    The author examines the evolutionary and neural roots of a triune intelligence comprised of a primal mind, an emotional mind, and a rational mind. A simple brain model and some definitions of unfamiliar behavioral terms are included. (Author/MA)

  18. Our Brains are Wired for Morality: Evolution, Development, and Neuroscience

    OpenAIRE

    Decety, Jean; Cowell, Jason M.

    2016-01-01

    Psychological and neuroscience research both tell us that morality, our mental ability to tell right from wrong in our behaviors and the behaviors of others, is a product of evolution. Morality has been passed on through the course of evolution because it helps us to live in large social groups by enhancing our ability to get along and interact with others. “Building blocks” of morality, such as sensing fairness, experiencing empathy, and judging others’ harmful and helpful actions, can be ob...

  19. Brain Structure-function Couplings (FY11)

    Science.gov (United States)

    2012-01-01

    technologies provide potentially useful, yet different, indices of brain activity. fNIR provides a measure of changes in blood oxygen concentrations and blood ...characteristics of complex brain-generated network activity (which we leave for future efforts). Third, the windowing to compute the WPLI smears the signal...periods of significance and on a trial-by-trial basis, the WPLI values of the channel data do not precisely coincide with the brain-related alpha

  20. Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae) Tetraspanins

    NARCIS (Netherlands)

    Murungi, E.K.; Kariithi, H.M.; Adunga, V.; Obonyo, M.; Christoffels, A.

    2014-01-01

    Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major

  1. Plant glutathione S-transferase classification, structure and evolution ...

    African Journals Online (AJOL)

    Glutathione S-transferases are multifunctional proteins involved in diverse intracellular events such as primary and secondary metabolisms, stress metabolism, herbicide detoxification and plant protection ... Key words: Glutathione S-transferases (GST), classification, structure, evolution, phylogenetic analysis, xenobiotics.

  2. Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution

    Science.gov (United States)

    Herculano-Houzel, Suzana; Kaas, Jon H.

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they

  3. Evolution of brain functions in mammals and LTR retrotransposon-derived genes.

    Science.gov (United States)

    Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2016-01-01

    In the human genome, there are approximately 30 LTR retrotransposon-derived genes, such as the sushi-ichi retrotransposon homologues (SIRH) and the paraneoplastic Ma antigen (PNMA) family genes. They are derivatives from the original LTR retrotransposons and each gene seems to have its own unique function. PEG10/SIRH1 as well as PEG11/RTL1/SIRH2 and SIRH7/LDOC1 play essential roles in placenta formation, maintenance of fetal capillaries and the differentiation/maturation of a variety of placental cells, respectively. All of this evidence provides strong support for their contribution to the evolution of viviparity in mammals via their eutherian-specific functions. SIRH11/ZCCHC16 is an X-linked gene that encodes a CCHC type of zinc-finger protein that exhibits high sequence identity to the LTR retrotransposon Gag protein and its deletion causes abnormal behavior related to cognition, including attention, impulsivity and working memory, possibly via the locus coeruleus noradrenaergic system in mice. Therefore, we have suggested that the acquisition of SIRH11/ZCCHC16 was involved in eutherian brain evolution. Interestingly, SIRH11/ZCCHC16 displays lineage-specific structural and putative species-specific functional variations in eutherians, suggesting that it contributed to the diversification of eutherians via increasing evolutionary fitness by these changes.

  4. Evolution and structure of agricultural farms during 2002-2013

    OpenAIRE

    ROŞU, Elisabeta

    2015-01-01

    The agriculture's evolution and restructuring process was rather a slow one and the phenomenon of structural coexistence of the two types of agricultural farms, with or without juridical personality was maintained. The large number of agricultural farms shows how ample is their fragmentation phenomenon, having negative consequences upon economic performance, general state of evolution and development. The agricultural farms' structure as regards the utilized agricultural area is one of contra...

  5. Brain structure links loneliness to social perception.

    Science.gov (United States)

    Kanai, Ryota; Bahrami, Bahador; Duchaine, Brad; Janik, Agnieszka; Banissy, Michael J; Rees, Geraint

    2012-10-23

    Loneliness is the distressing feeling associated with the perceived absence of satisfying social relationships. Loneliness is increasingly prevalent in modern societies and has detrimental effects on health and happiness. Although situational threats to social relationships can transiently induce the emotion of loneliness, susceptibility to loneliness is a stable trait that varies across individuals [6-8] and is to some extent heritable. However, little is known about the neural processes associated with loneliness (but see [12-14]). Here, we hypothesized that individual differences in loneliness might be reflected in the structure of the brain regions associated with social processes. To test this hypothesis, we used voxel-based morphometry and showed that lonely individuals have less gray matter in the left posterior superior temporal sulcus (pSTS)--an area implicated in basic social perception. As this finding predicted, we further confirmed that loneliness was associated with difficulty in processing social cues. Although other sociopsychological factors such as social network size, anxiety, and empathy independently contributed to loneliness, only basic social perception skills mediated the association between the pSTS volume and loneliness. Taken together, our results suggest that basic social perceptual abilities play an important role in shaping an individual's loneliness. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Structural evolution of the Kilombero rift basin in central Tanzania ...

    African Journals Online (AJOL)

    Detailed geological and structural investigations at the northwestern scarp of the Cenozoic Kilombero Rift allow the drawing of its structural evolution and establishment of stress conditions that prevailed at the different deformational episodes at this rift zone. The structure, where the northwestern scarp of the Cenozoic ...

  7. The evolution of the human mind and logic--mathematics structures.

    Science.gov (United States)

    Yunes, Rosendo A

    2005-09-07

    The evolution of the human mind is discussed based on: (i) the fact that living beings interchange matter, energy and information with their environment, (ii) an ontological interpretation of the "reality" of the quantum world, of which logic-mathematics structures are considered constitutive parts, (iii) recent theories according to which living beings are considered as dynamic complex systems organized by information, and (iv) the fact that the evolution of living beings is guided by information about the environment and by intrinsic information on living systems (auto-organization). Assuming the evolution of vision as a model we observe that the driving forces that directed the evolution of the eyes, as dynamic complex systems, are the information about the environment supplied by sunlight and the intrinsic information-gaining mechanism of living organisms. Thus, there exists a convergence toward a visual system with the greatest ability to obtain light information, like the human eye, and also a divergence that leads to the development of specific qualities in some species. As in the case of vision the evolution of the human mind-brain cannot be a consequence of factors unrelated to the object of its own functioning. The human mind was structured for the acquisition from reality of the logic-mathematics structures that underlie the whole universe and consequently of an internal representation of the external world and of its own self. Thus, these structures are, together with the intrinsic capacity for auto-organization of the human brain, the predominant driving force of the human mind evolution. Both factors are complementary.

  8. Evolution of the brain and intelligence in primates.

    Science.gov (United States)

    Roth, Gerhard; Dicke, Ursula

    2012-01-01

    Primates are, on average, more intelligent than other mammals, with great apes and finally humans on top. They generally have larger brains and cortices, and because of higher relative cortex volume and neuron packing density (NPD), they have much more cortical neurons than other mammalian taxa with the same brain size. Likewise, information processing capacity is generally higher in primates due to short interneuronal distance and high axonal conduction velocity. Across primate taxa, differences in intelligence correlate best with differences in number of cortical neurons and synapses plus information processing speed. The human brain stands out by having a large cortical volume with relatively high NPD, high conduction velocity, and high cortical parcellation. All aspects of human intelligence are present at least in rudimentary form in nonhuman primates or some mammals or vertebrates except syntactical language. The latter can be regarded as a very potent "intelligence amplifier." Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Modeling Temporal Evolution and Multiscale Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2013-01-01

    -point model to account for the temporal evolution of each vertex. We demonstrate that our model is able to infer time-varying multiscale structure in synthetic as well as three real world time-evolving complex networks. Our modeling of the temporal evolution of hierarchies brings new insights......Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change...

  10. Genetic basis of brain size evolution in cetaceans: insights from adaptive evolution of seven primary microcephaly (MCPH) genes.

    Science.gov (United States)

    Xu, Shixia; Sun, Xiaohui; Niu, Xu; Zhang, Zepeng; Tian, Ran; Ren, Wenhua; Zhou, Kaiya; Yang, Guang

    2017-08-29

    Cetacean brain size expansion is an enigmatic event in mammalian evolution, yet its genetic basis remains poorly explored. Here, all exons of the seven primary microcephaly (MCPH) genes that play key roles in size regulation during brain development were investigated in representative cetacean lineages. Sequences of MCPH2-7 genes were intact in cetaceans but frameshift mutations and stop codons was identified in MCPH1. Extensive positive selection was identified in four of six intact MCPH genes: WDR62, CDK5RAP2, CEP152, and ASPM. Specially, positive selection at CDK5RAP2 and ASPM were examined along lineages of odontocetes with increased encephalization quotients (EQ) and mysticetes with reduced EQ but at WDR62 only found along odontocete lineages. Interestingly, a positive association between evolutionary rate (ω) and EQ was identified for CDK5RAP2 and ASPM. Furthermore, we tested the binding affinities between Calmodulin (CaM) and ASPM IQ motif in cetaceans because only CaM combined with IQ, can ASPM perform the function in determining brain size. Preliminary function assay showed binding affinities between CaM and IQ motif of the odontocetes with increased EQ was stronger than for the mysticetes with decreased EQ. In addition, evolution rate of ASPM and CDK5RAP2 were significantly related to mean group size (as one measure of social complexity). Our study investigated the genetic basis of cetacean brain size evolution. Significant positive selection was examined along lineages with both increased and decreased EQ at CDK5RAP2 and ASPM, which is well matched with cetacean complex brain size evolution. Evolutionary rate of CDK5RAP2 and ASPM were significantly related to EQ, suggesting that these two genes may have contributed to EQ expansion in cetaceans. This suggestion was further indicated by our preliminary function test that ASPM might be mainly linked to evolutionary increases in EQ. Most strikingly, our results suggested that cetaceans evolved large brains

  11. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Science.gov (United States)

    Herculano-Houzel, Suzana; Manger, Paul R.; Kaas, Jon H.

    2014-01-01

    Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution. PMID:25157220

  12. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2014-08-01

    Full Text Available Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution.

  13. Methamphetamine Alters Brain Structures, Impairs Mental Flexibility

    Science.gov (United States)

    ... Therefore, Dr. Jentsch says, to answer this question, future studies should track primate brains through longer abstinence. “Methamphetamine ... Tracks Reward's Value and Steps to Obtain It Study shows e-cigarettes affect brain similarly to other nicotine sources ... PDF documents require the free Adobe Reader . Microsoft PowerPoint ...

  14. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    Science.gov (United States)

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. © 2016 Anatomical Society.

  15. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  16. Brain Evolution: The Origins of Social and Cognitive Behaviors.

    Science.gov (United States)

    MacLean, Paul

    1983-01-01

    Argues that common anatomical and functional characteristics exist among the brains of reptiles, mammals, and man--the most significant commonality for educators being social behavior. Illustrates inherited behavior, including behavior observed in classroom and believed to be learned by placing it in context of a model "triune"…

  17. Whole-brain functional connectivity predicted by indirect structural connections

    DEFF Research Database (Denmark)

    Røge, Rasmus; Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon

    2017-01-01

    Modern functional and diffusion magnetic resonance imaging (fMRI and dMRI) provide data from which macro-scale networks of functional and structural whole brain connectivity can be estimated. Although networks derived from these two modalities describe different properties of the human brain......, they emerge from the same underlying brain organization, and functional communication is presumably mediated by structural connections. In this paper, we assess the structure-function relationship by evaluating how well functional connectivity can be predicted from structural graphs. Using high......-resolution whole brain networks generated with varying density, we contrast the performance of several non-parametric link predictors that measure structural communication flow. While functional connectivity is not well predicted directly by structural connections, we show that superior predictions can be achieved...

  18. [Structural Brain Development in Healthy Children and Adolescents].

    Science.gov (United States)

    Matsudaira, Izumi; Kawashima, Ryuta; Taki, Yasuyuki

    2017-05-01

    Brain maturation progresses throughout childhood into adolescence. Investigating the mechanism of brain development during these periods in healthy people is necessary for some clinical purposes. For example, these mechanisms are needed to investigate the mechanism of impaired brain maturation in neurodevelopmental disorders-such as autism spectrum disorders or attention-deficit hyper disorder-and improve early prevention of psychiatric or neurodegenerative diseases like depression or Alzheimer's disease. Voxel-based morphometry (VBM) is an effective way to analyze brain magnetic resonance images (MRI) of children and adolescents, as the brain structures of children and adolescents vary widely depending on their age, sex, and several other factors. In this article, information from studies using VBM about the relationship between structural brain development in healthy children and adolescents and age, life style, parenting, and genetic variations is discussed.

  19. Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis

    Directory of Open Access Journals (Sweden)

    Barton Robert A

    2010-01-01

    Full Text Available Abstract Background Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question. Results We performed ancestral state reconstructions of three traits (absolute brain mass, absolute body mass, relative brain mass using 37 extant and 23 extinct primate species and three approaches to ancestral state reconstruction: parsimony, maximum likelihood and Bayesian Markov-chain Monte Carlo. Both absolute and relative brain mass generally increased over evolutionary time, but body mass did not. Nevertheless both absolute and relative brain mass decreased along several branches. Applying these results to the contentious case of Homo floresiensis, we find a number of scenarios under which the proposed evolution of Homo floresiensis' small brain appears to be consistent with patterns observed along other lineages, dependent on body mass and phylogenetic position. Conclusions Our results confirm that brain expansion began early in primate evolution and show that increases occurred in all major clades. Only in terms of an increase in absolute mass does the human lineage appear particularly striking, with both the rate of proportional change in mass and relative brain size having episodes of greater expansion elsewhere on the primate phylogeny. However, decreases in brain mass also occurred along branches in all major clades, and we conclude that, while selection has acted to enlarge primate brains, in some lineages this trend has been reversed. Further analyses of the phylogenetic position of Homo floresiensis and better body mass estimates are required to confirm the plausibility of the evolution of its small brain

  20. Structural evolution of small ruthenium cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Waldt, Eugen [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Hehn, Anna-Sophia; Ahlrichs, Reinhart [Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany); Kappes, Manfred M.; Schooss, Detlef, E-mail: detlef.schooss@kit.edu [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany)

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  1. Structural Graphical Lasso for Learning Mouse Brain Connectivity

    KAUST Repository

    Yang, Sen

    2015-01-01

    Investigations into brain connectivity aim to recover networks of brain regions connected by anatomical tracts or by functional associations. The inference of brain networks has recently attracted much interest due to the increasing availability of high-resolution brain imaging data. Sparse inverse covariance estimation with lasso and group lasso penalty has been demonstrated to be a powerful approach to discover brain networks. Motivated by the hierarchical structure of the brain networks, we consider the problem of estimating a graphical model with tree-structural regularization in this paper. The regularization encourages the graphical model to exhibit a brain-like structure. Specifically, in this hierarchical structure, hundreds of thousands of voxels serve as the leaf nodes of the tree. A node in the intermediate layer represents a region formed by voxels in the subtree rooted at that node. The whole brain is considered as the root of the tree. We propose to apply the tree-structural regularized graphical model to estimate the mouse brain network. However, the dimensionality of whole-brain data, usually on the order of hundreds of thousands, poses significant computational challenges. Efficient algorithms that are capable of estimating networks from high-dimensional data are highly desired. To address the computational challenge, we develop a screening rule which can quickly identify many zero blocks in the estimated graphical model, thereby dramatically reducing the computational cost of solving the proposed model. It is based on a novel insight on the relationship between screening and the so-called proximal operator that we first establish in this paper. We perform experiments on both synthetic data and real data from the Allen Developing Mouse Brain Atlas; results demonstrate the effectiveness and efficiency of the proposed approach.

  2. Structural similarities between brain and linguistic data provide evidence of semantic relations in the brain.

    Directory of Open Access Journals (Sweden)

    Colleen E Crangle

    Full Text Available This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA, which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model.

  3. History and evolution of brain tumor imaging: insights through radiology.

    Science.gov (United States)

    Castillo, Mauricio

    2014-11-01

    This review recounts the history of brain tumor diagnosis from antiquity to the present and, indirectly, the history of neuroradiology. Imaging of the brain has from the beginning held an enormous interest because of the inherent difficulty of this endeavor due to the presence of the skull. Because of this, most techniques when newly developed have always been used in neuroradiology and, although some have proved to be inappropriate for this purpose, many were easily incorporated into the specialty. The first major advance in modern neuroimaging was contrast agent-enhanced computed tomography, which permitted accurate anatomic localization of brain tumors and, by virtue of contrast enhancement, malignant ones. The most important advances in neuroimaging occurred with the development of magnetic resonance imaging and diffusion-weighted sequences that allowed an indirect estimation of tumor cellularity; this was further refined by the development of perfusion and permeability mapping. From its beginnings with indirect and purely anatomic imaging techniques, neuroradiology now uses a combination of anatomic and physiologic techniques that will play a critical role in biologic tumor imaging and radiologic genomics.

  4. Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein.

    Science.gov (United States)

    Falk, Dean

    2016-06-20

    Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become

  5. Theoretical investigation on structural evolution, energetic stability ...

    Indian Academy of Sciences (India)

    chemical hardness of AunCd (n=1–12) clusters based on the framework of the density functional theory using relativistic all-electron methods. Low-lying energy structures include two-dimensional and three-dimensional geometries. Especially, all the lowest-energy structures of AunCd (n=1−12) clusters are inclined to be ...

  6. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  7. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  8. Comparing Structural Brain Connectivity by the Infinite Relational Model

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø; Herlau, Tue; Dyrby, Tim

    2013-01-01

    The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from...

  9. Intelligence and Giftedness: Changes in the Structure of the Brain.

    Science.gov (United States)

    Sabatella, Maria Lucia Prado

    1999-01-01

    Explores research on the concepts of intelligences and giftedness. Considers the importance of the brain, its organization and functions, different theories about intelligence and the possibility of boosting it, and changes that occur in brain structure as a consequence of the interactions between genetic traits and experiences. (Author/CR)

  10. Evolution of extortion in structured populations

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2014-02-01

    Extortion strategies can dominate any opponent in an iterated prisoner's dilemma game. But if players are able to adopt the strategies performing better, extortion becomes widespread and evolutionary unstable. It may sometimes act as a catalyst for the evolution of cooperation, and it can also emerge in interactions between two populations, yet it is not the evolutionarily stable outcome. Here we revisit these results in the realm of spatial games. We find that pairwise imitation and birth-death dynamics return known evolutionary outcomes. Myopic best response strategy updating, on the other hand, reveals counterintuitive solutions. Defectors and extortioners coarsen spontaneously, which allows cooperators to prevail even at prohibitively high temptations to defect. Here extortion strategies play the role of a Trojan horse. They may emerge among defectors by chance, and once they do, cooperators become viable as well. These results are independent of the interaction topology, and they highlight the importance of coarsening, checkerboard ordering, and best response updating in evolutionary games.

  11. Evolution of extortion in structured populations

    CERN Document Server

    Szolnoki, Attila

    2014-01-01

    Extortion strategies can dominate any opponent in an iterated prisoner's dilemma game. But if players are able to adopt the strategies performing better, extortion becomes widespread and evolutionary unstable. It may sometimes act as a catalyst for the evolution of cooperation, and it can also emerge in interactions between two populations, yet it is not the evolutionary stable outcome. Here we revisit these results in the realm of spatial games. We find that pairwise imitation and birth-death dynamics return known evolutionary outcomes. Myopic best response strategy updating, on the other hand, reveals new counterintuitive solutions. Defectors and extortioners coarsen spontaneously, which allows cooperators to prevail even at prohibitively high temptations to defect. Here extortion strategies play the role of a Trojan horse. They may emerge among defectors by chance, and once they do, cooperators become viable as well. These results are independent of the interaction topology, and they highlight the importan...

  12. Mixing biases: Structural changes in the as topology evolution

    NARCIS (Netherlands)

    Haddadi, H.; Fay, D.; Uhlig, S.; Moore, A.; Mortier, R.; Jamakovic, A.

    2010-01-01

    In this paper we study the structural evolution of the AS topology as inferred from two different datasets over a period of seven years. We use a variety of topological metrics to analyze the structural differences revealed in the AS topologies inferred from the two different datasets. In

  13. Epigenomic annotation of gene regulatory alterations during evolution of the primate brain

    NARCIS (Netherlands)

    Vermunt, Marit W; Tan, Sander C; Castelijns, Bas; Geeven, Geert; Reinink, Peter; de Bruijn, Ewart; Kondova, Ivanela; Persengiev, Stephan; Bontrop, Ronald; Cuppen, Edwin; de Laat, Wouter; Creyghton, Menno P

    Although genome sequencing has identified numerous noncoding alterations between primate species, which of those are regulatory and potentially relevant to the evolution of the human brain is unclear. Here we annotated cis-regulatory elements (CREs) in the human, rhesus macaque and chimpanzee

  14. From mice to men: the evolution of the large, complex human brain

    Indian Academy of Sciences (India)

    2004-12-15

    Dec 15, 2004 ... Home; Journals; Journal of Biosciences; Volume 30; Issue 2. Perspectives: From mice to men: the evolution of the large, complex human brain. Jon H Kaas. Volume 30 Issue 2 March 2005 pp 155-165. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. A Video Game for Learning Brain Evolution: A Resource or a Strategy?

    Science.gov (United States)

    Barbosa Gomez, Luisa Fernanda; Bohorquez Sotelo, Maria Cristina; Roja Higuera, Naydu Shirley; Rodriguez Mendoza, Brigitte Julieth

    2016-01-01

    Learning resources are part of the educational process of students. However, how video games act as learning resources in a population that has not selected the virtual formation as their main methodology? The aim of this study was to identify the influence of a video game in the learning process of brain evolution. For this purpose, the opinions…

  16. Structure and Evolution of Thermohaline Staircases in Tropical North Atlantic

    Science.gov (United States)

    2007-12-01

    series of mixed layers separated by sharp interfaces. The discovery of these ‘ thermohaline staircases’ by Tait and Howe (1968) further stimulated...EVOLUTION OF THERMOHALINE STAIRCASES IN TROPICAL NORTH ATLANTIC by Steven Wall December 2007 Thesis Advisor: Timour Radko Second Reader...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Structure and Evolution of Thermohaline Staircases in Tropical North Atlantic 6. AUTHOR(S

  17. Sensitivity to musical structure in the human brain

    Science.gov (United States)

    McDermott, Josh H.; Norman-Haignere, Sam; Kanwisher, Nancy

    2012-01-01

    Evidence from brain-damaged patients suggests that regions in the temporal lobes, distinct from those engaged in lower-level auditory analysis, process the pitch and rhythmic structure in music. In contrast, neuroimaging studies targeting the representation of music structure have primarily implicated regions in the inferior frontal cortices. Combining individual-subject fMRI analyses with a scrambling method that manipulated musical structure, we provide evidence of brain regions sensitive to musical structure bilaterally in the temporal lobes, thus reconciling the neuroimaging and patient findings. We further show that these regions are sensitive to the scrambling of both pitch and rhythmic structure but are insensitive to high-level linguistic structure. Our results suggest the existence of brain regions with representations of musical structure that are distinct from high-level linguistic representations and lower-level acoustic representations. These regions provide targets for future research investigating possible neural specialization for music or its associated mental processes. PMID:23019005

  18. Accelerated probabilistic inference of RNA structure evolution

    Directory of Open Access Journals (Sweden)

    Holmes Ian

    2005-03-01

    Full Text Available Abstract Background Pairwise stochastic context-free grammars (Pair SCFGs are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. Results We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. Conclusion A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License.

  19. Accelerated probabilistic inference of RNA structure evolution.

    Science.gov (United States)

    Holmes, Ian

    2005-03-24

    Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License.

  20. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  1. [The effect of several psychotropic substances on brain structure].

    Science.gov (United States)

    Popova, E N; Krivitskaia, G N

    1975-01-01

    The authors have shown similarities of structural changes in the neuron and interneuronal relations found in the brains of rats under indopan and LSD stimulation of the CNS with certain differences in the localization of the changes in the functionally different brain systems. A high sensitivity of the sensory-motor cortex and the subcortical formations of the brain, rich in dopamine and serotonin, to indopan has been marked. LSD central effects were conditioned by the influence of the drug not only on the synapsis, but on the cell body components of the different brain systems, especially in the visual. The observed changes were allocated to categories of functional disturbances.

  2. Evolution of the aging brain transcriptome and synaptic regulation.

    Directory of Open Access Journals (Sweden)

    Patrick M Loerch

    Full Text Available Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4. However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

  3. Population Structure and Evolution of Rhinoviruses

    Science.gov (United States)

    Waman, Vaishali P.; Kolekar, Pandurang S.; Kale, Mohan M.; Kulkarni-Kale, Urmila

    2014-01-01

    Rhinoviruses, formerly known as Human rhinoviruses, are the most common cause of air-borne upper respiratory tract infections in humans. Rhinoviruses belong to the family Picornaviridae and are divided into three species namely, Rhinovirus A, -B and -C, which are antigenically diverse. Genetic recombination is found to be one of the important causes for diversification of Rhinovirus species. Although emerging lineages within Rhinoviruses have been reported, their population structure has not been studied yet. The availability of complete genome sequences facilitates study of population structure, genetic diversity and underlying evolutionary forces, such as mutation, recombination and selection pressure. Analysis of complete genomes of Rhinoviruses using a model-based population genetics approach provided a strong evidence for existence of seven genetically distinct subpopulations. As a result of diversification, Rhinovirus A and -C populations are divided into four and two subpopulations, respectively. Genetically, the Rhinovirus B population was found to be homogeneous. Intra-species recombination was observed to be prominent in Rhinovirus A and -C species. Significant evidence of episodic positive selection was obtained for several sites within coding sequences of structural and non-structural proteins. This corroborates well with known phenotypic properties such as antigenicity of structural proteins. Episodic positive selection appears to be responsible for emergence of new lineages especially in Rhinovirus A. In summary, the Rhinovirus population is an ensemble of seven distinct lineages. In case of Rhinovirus A, intra-species recombination and episodic positive selection contribute to its further diversification. In case of Rhinovirus C, intra- and inter-species recombinations are responsible for observed diversity. Population genetics approach was further useful to analyze phylogenetic tree topologies pertaining to recombinant strains, especially when trees

  4. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  5. The skull roof tracks the brain during the evolution and development of reptiles including birds.

    Science.gov (United States)

    Fabbri, Matteo; Mongiardino Koch, Nicolás; Pritchard, Adam C; Hanson, Michael; Hoffman, Eva; Bever, Gabriel S; Balanoff, Amy M; Morris, Zachary S; Field, Daniel J; Camacho, Jasmin; Rowe, Timothy B; Norell, Mark A; Smith, Roger M; Abzhanov, Arhat; Bhullar, Bhart-Anjan S

    2017-10-01

    Major transformations in brain size and proportions, such as the enlargement of the brain during the evolution of birds, are accompanied by profound modifications to the skull roof. However, the hypothesis of concerted evolution of shape between brain and skull roof over major phylogenetic transitions, and in particular of an ontogenetic relationship between specific regions of the brain and the skull roof, has never been formally tested. We performed 3D morphometric analyses to examine the deep history of brain and skull-roof morphology in Reptilia, focusing on changes during the well-documented transition from early reptiles through archosauromorphs, including nonavian dinosaurs, to birds. Non-avialan taxa cluster tightly together in morphospace, whereas Archaeopteryx and crown birds occupy a separate region. There is a one-to-one correspondence between the forebrain and frontal bone and the midbrain and parietal bone. Furthermore, the position of the forebrain-midbrain boundary correlates significantly with the position of the frontoparietal suture across the phylogenetic breadth of Reptilia and during the ontogeny of individual taxa. Conservation of position and identity in the skull roof is apparent, and there is no support for previous hypotheses that the avian parietal is a transformed postparietal. The correlation and apparent developmental link between regions of the brain and bony skull elements are likely to be ancestral to Tetrapoda and may be fundamental to all of Osteichthyes, coeval with the origin of the dermatocranium.

  6. Structural and Functional Plasticity in the Maternal Brain Circuitry

    Science.gov (United States)

    Pereira, Mariana

    2016-01-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…

  7. Structural Approaches to Sequence Evolution Molecules, Networks, Populations

    CERN Document Server

    Bastolla, Ugo; Roman, H. Eduardo; Vendruscolo, Michele

    2007-01-01

    Structural requirements constrain the evolution of biological entities at all levels, from macromolecules to their networks, right up to populations of biological organisms. Classical models of molecular evolution, however, are focused at the level of the symbols - the biological sequence - rather than that of their resulting structure. Now recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists specializing in the different fields involved.

  8. The evolution of distributed association networks in the human brain.

    Science.gov (United States)

    Buckner, Randy L; Krienen, Fenna M

    2013-12-01

    The human cerebral cortex is vastly expanded relative to other primates and disproportionately occupied by distributed association regions. Here we offer a hypothesis about how association networks evolved their prominence and came to possess circuit properties vital to human cognition. The rapid expansion of the cortical mantle may have untethered large portions of the cortex from strong constraints of molecular gradients and early activity cascades that lead to sensory hierarchies. What fill the gaps between these hierarchies are densely interconnected networks that widely span the cortex and mature late into development. Limitations of the tethering hypothesis are discussed as well as its broad implications for understanding critical features of the human brain as a byproduct of size scaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Convergent evolution of complex brains and high intelligence.

    Science.gov (United States)

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. © 2015 The Author(s).

  10. The Physical Brain: New Approaches to Brain Structure, Activity, and Function

    Science.gov (United States)

    Robinson, P. A.

    By viewing the brain as a multiscale physical system it is possible to circumvent the shortcomings of abstract signal-based and statistical approaches to analysis of brain structure, activity, and function. Eigenmode approaches enable the key elements of brain structure to be isolated systematically, along with their effects on brain activity and functional measures. Physiologically-based neural field theory permits tractable analysis from sub-mm scales to the whole brain, demonstrating the near-critical state of normal brain operation, relationships between structure and function, nonlinear dynamics, and phase transitions. Results in normal and abnormal states include experimentally verified predictions of electrical and hemodynamic signals, and the successful inversion of functional correlation measures to infer underlying brain structure, including connectivities that cannot be measured directly. These results illustrate the power of physically based modeling to predict, explain, and unify multiple observations across scales. Furthermore, they open up ways to expand the field of biological physics and apply it to a host of new phenomena. Australian Research Council, Grants FL1401000225 and CE140100007.

  11. International Workshop on Cosmic Structure and Evolution

    Science.gov (United States)

    The workshop will focus on recent advances in the fields of the cosmic microwave background, anomalies, and topology, large scale structure, baryon acoustic oscillations, dark matter, the intergalactic medium, Hydrogen 21cm cosmology, and other topics. We will have invited talks, contributed talks, and discussion sessions. The proceedings of the workshop will be published by the Proceedings of Science. Conference website: http://www.physik.uni-bielefeld.de/igs/cosmology2009/cosmic-ws09.html

  12. Adolescent brain development : A longitudinal twin study into structural brain development and its relation to hormone levels and intelligence

    NARCIS (Netherlands)

    Koenis, M.M.G.

    2017-01-01

    Puberty is a period characterized by major changes in hormone levels, physical appearance, cognition, brain structure and function. The teenage brain undergoes considerable reorganization on a structural and functional level. These changes may be associated with cognitive and social development.

  13. Modelling the Evolution of Social Structure.

    Science.gov (United States)

    Sutcliffe, A G; Dunbar, R I M; Wang, D

    2016-01-01

    Although simple social structures are more common in animal societies, some taxa (mainly mammals) have complex, multi-level social systems, in which the levels reflect differential association. We develop a simulation model to explore the conditions under which multi-level social systems of this kind evolve. Our model focuses on the evolutionary trade-offs between foraging and social interaction, and explores the impact of alternative strategies for distributing social interaction, with fitness criteria for wellbeing, alliance formation, risk, stress and access to food resources that reward social strategies differentially. The results suggest that multi-level social structures characterised by a few strong relationships, more medium ties and large numbers of weak ties emerge only in a small part of the overall fitness landscape, namely where there are significant fitness benefits from wellbeing and alliance formation and there are high levels of social interaction. In contrast, 'favour-the-few' strategies are more competitive under a wide range of fitness conditions, including those producing homogeneous, single-level societies of the kind found in many birds and mammals. The simulations suggest that the development of complex, multi-level social structures of the kind found in many primates (including humans) depends on a capacity for high investment in social time, preferential social interaction strategies, high mortality risk and/or differential reproduction. These conditions are characteristic of only a few mammalian taxa.

  14. Cultural Transmission and Evolution of Melodic Structures in Multi-generational Signaling Games

    DEFF Research Database (Denmark)

    Lumaca, Massimo; Baggio, G.

    2017-01-01

    and cognitive constraints similarly affect the evolution of musical systems? We conducted an experiment on the cultural evolution of artificial melodic systems, using multi-generational signaling games as a laboratory model of cultural transmission. Signaling systems, using five-tone sequences as signals......It has been proposed that languages evolve by adapting to the perceptual and cognitive constraints of the human brain, developing, in the course of cultural transmission, structural regularities that maximize or optimize learnability and ease of processing. To what extent would perceptual......, and basic and compound emotions as meanings, were transmitted from senders to receivers along diffusion chains in which the receiver in each game became the sender in the next game. During transmission, structural regularities accumulated in the signaling systems, following principles of proximity, symmetry...

  15. The effects of physical activity on brain structure

    Directory of Open Access Journals (Sweden)

    Adam eThomas

    2012-03-01

    Full Text Available Aerobic activity is a powerful stimulus for improving mental health and for generating structural changes in the brain. We review the literature documenting these structural changes and explore exactly where in the brain these changes occur as well as the underlying substrates of the changes including neural, glial, and vasculature components. Aerobic activity has been shown to produce different types of changes in the brain. The presence of novel experiences or learning is an especially important component in how these changes are manifest. We also discuss the distinct time courses of structural brain changes with both aerobic activity and learning as well as how these effects might differ in diseased and elderly groups.

  16. Physical fitness and shapes of subcortical brain structures in children.

    Science.gov (United States)

    Ortega, Francisco B; Campos, Daniel; Cadenas-Sanchez, Cristina; Altmäe, Signe; Martínez-Zaldívar, Cristina; Martín-Matillas, Miguel; Catena, Andrés; Campoy, Cristina

    2017-03-27

    A few studies have recently reported that higher cardiorespiratory fitness is associated with higher volumes of subcortical brain structures in children. It is, however, unknown how different fitness measures relate to shapes of subcortical brain nuclei. We aimed to examine the association of the main health-related physical fitness components with shapes of subcortical brain structures in a sample of forty-four Spanish children aged 9·7 (sd 0·2) years from the NUtraceuticals for a HEALthier life project. Cardiorespiratory fitness, muscular strength and speed agility were assessed using valid and reliable tests (ALPHA-fitness test battery). Shape of the subcortical brain structures was assessed by MRI, and its relationship with fitness was examined after controlling for a set of potential confounders using a partial correlation permutation approach. Our results showed that all physical fitness components studied were significantly related to the shapes of subcortical brain nuclei. These associations were both positive and negative, indicating that a higher level of fitness in childhood is related to both expansions and contractions in certain regions of the accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus. Cardiorespiratory fitness was mainly associated with expansions, whereas handgrip was mostly associated with contractions in the structures studied. Future randomised-controlled trials will confirm or contrast our findings, demonstrating whether changes in fitness modify the shapes of brain structures and the extent to which those changes influence cognitive function.

  17. Structure, diversity and evolution of myriapod hemocyanins.

    Science.gov (United States)

    Pick, Christian; Scherbaum, Samantha; Hegedüs, Elöd; Meyer, Andreas; Saur, Michael; Neumann, Ruben; Markl, Jürgen; Burmester, Thorsten

    2014-04-01

    Oxygen transport in the hemolymph of many arthropods is mediated by hemocyanins, large copper-containing proteins that are well-studied in Chelicerata and Crustacea, but had long been considered unnecessary in the subphylum of Myriapoda. Only recently has it become evident that hemocyanins are present in Scutigeromorpha (Chilopoda) and Spirostreptida (Diplopoda). Here we present evidence for a more widespread occurrence of hemocyanin in the myriapods. By means of RT-PCR, western blotting and database searches, hemocyanins were identified in the symphylans Hanseniella audax and Symphylella vulgaris, the chilopod Scolopendra subspinipes dehaani and the diplopod Polydesmus angustus. No hemocyanins were found in the diplopods Polyxenus lagurus, Cylindroiulus punctatus, Glomeris marginata, Glomeris pustulata and Arthrosphaera brandtii, or the chilopods Lithobius forficatus, Geophilus flavus and Strigamia maritima. This suggests multiple independent losses in myriapod taxa. Two independent hemocyanin subunits were found that were already present in the myriapod stem line. We specifically investigated the structure of the hemocyanin of P. angustus, which consists of three distinct subunits that occur in an approximately equimolar ratio. As deduced by 3D electron microscopy, the quaternary structure is a 3 × 6-mer that resembles the half structure of the 6 × 6-mer hemocyanin from Scutigera coleoptrata. It was analyzed more closely by homology modeling of 1 × 6-mers and their rigid-body fitting to the electron density map of the 3 × 6-mer. In addition, we obtained the cDNA sequence of a putative myriapod phenoloxidase. Phenoloxidases are related to the arthropod hemocyanins, but diverged before radiation of the arthropod subphyla. © 2014 FEBS.

  18. Friends with Social Benefits: Host-Microbe Interactions as a Driver of Brain Evolution and Development?

    Directory of Open Access Journals (Sweden)

    Roman M Stilling

    2014-10-01

    Full Text Available The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behaviour. Here in this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a ‘social triangle’ that drives human social behaviour and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.

  19. Human Brain Stem Structures Respond Differentially to Noxious Heat

    Directory of Open Access Journals (Sweden)

    Alexander eRitter

    2013-09-01

    Full Text Available Concerning the physiological correlates of pain, the brain stem is considered to be one core region that is activated by noxious input. In animal studies, different slopes of skin heating (SSH with noxious heat led to activation in different columns of the midbrain periaqueductal grey (PAG. The present study aimed at finding a method for differentiating structures in PAG and other brain stem structures, which are associated with different qualities of pain in humans according to the structures that were associated with different behavioral significances to noxious thermal stimulation in animals. Brain activity was studied by fMRI in healthy subjects in response to steep and shallow SSH with noxious heat. We found differential activation to different SSH in the PAG and the rostral ventromedial medulla (RVM. In a second experiment we demonstrate that the different SSH were associated with different pain qualities. Our experiments provide evidence that brainstem structures, i.e. the PAG and the RVM, become differentially activated by different SSH. Therefore, different SSH can be utilized when brain stem structures are investigated and when it is aimed to activate these structures differentially. Moreover, percepts of first pain were elicited by shallow SSH whereas percepts of second pain were elicited by steep SSH. The stronger activation of these brain stem structures to SSH, eliciting percepts of second vs. first pain, might be of relevance for activating different coping strategies in response to the noxious input with the two types of SSH.

  20. Joint Modelling of Structural and Functional Brain Networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Herlau, Tue; Mørup, Morten

    Functional and structural magnetic resonance imaging have become the most important noninvasive windows to the human brain. A major challenge in the analysis of brain networks is to establish the similarities and dissimilarities between functional and structural connectivity. We formulate a non......-parametric Bayesian network model which allows for joint modelling and integration of multiple networks. We demonstrate the model’s ability to detect vertices that share structure across networks jointly in functional MRI (fMRI) and diffusion MRI (dMRI) data. Using two fMRI and dMRI scans per subject, we establish...... significant structures that are consistently shared across subjects and data splits. This provides an unsupervised approach for modeling of structure-function relations in the brain and provides a general framework for multimodal integration....

  1. Baikal rift basement: structure and tectonic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, A.I.; Mazukabzov, A.M.; Sklyarov, E.V.; Vasiljev, E.P. (AN SSSR, Irkutsk (Russian Federation). Sibirskij Ehnergeticheskij Inst.)

    1994-06-30

    The Baikal rift zone in East Siberia has, due to its very long history, starting in the Early Precambrian and continuing into the Cenozoic, an heterogeneous structure. Two major structural elements are distinguished: the Siberian craton and the Sayan-Baikal fold system, which is part of the Central Asian Fold Belt. Within the craton, the following units are recognized: the Early Precambrian metamorphic rocks of the basement, the Vendian-Paleozoic sedimentary cover with superimposed Paleozoic and Mesozoic basins and a reworked margin which is transitional between the craton and the fold belt. The Sayan-Baikal fold system comprises the Barguzin, Tuva-Mongolian and Dzhida terranes. The Barguzin and Tuva-Mongolian terranes are composite, consisting of separate Early Precambrian massifs, volcanic-sedimentary and carbonate Phanerozoic terranes, impregnated by granites. They are thus super-terranes. The oldest units are ophiolites, dated around 1.1 - 1.3 Gy in the Barguzin terrane and 0.9 - 1.1 Gy in the Tuva-Mongolian terrane. They associate with complexes of immature island-arc accretionary wedges of mainly terrigenous or terrigeno-volcanic composition with occasional slices of ophiolite and glaucophane schists. (authors). 68 refs., 12 figs., 2 tabs.

  2. Brain networks that track musical structure.

    Science.gov (United States)

    Janata, Petr

    2005-12-01

    As the functional neuroimaging literature grows, it becomes increasingly apparent that music and musical activities engage diverse regions of the brain. In this paper I discuss two studies to illustrate that exactly which brain areas are observed to be responsive to musical stimuli and tasks depends on the tasks and the methods used to describe the tasks and the stimuli. In one study, subjects listened to polyphonic music and were asked to either orient their attention selectively to individual instruments or in a divided or holistic manner across multiple instruments. The network of brain areas that was recruited changed subtly with changes in the task instructions. The focus of the second study was to identify brain regions that follow the pattern of movement of a continuous melody through the tonal space defined by the major and minor keys of Western tonal music. Such an area was identified in the rostral medial prefrontal cortex. This observation is discussed in the context of other neuroimaging studies that implicate this region in inwardly directed mental states involving decisions about the self, autobiographical memory, the cognitive regulation of emotion, affective responses to musical stimuli, and familiarity judgments about musical stimuli. Together with observations that these regions are among the last to atrophy in Alzheimer disease, and that these patients appear to remain responsive to autobiographically salient musical stimuli, very early evidence is emerging from the literature for the hypothesis that the rostral medial prefrontal cortex is a node that is important for binding music with memories within a broader music-responsive network.

  3. Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains

    OpenAIRE

    Collins, C. E.; Leitch, D. B.; Wong, P.; Kaas, J. H.; Herculano-Houzel, Suzana

    2012-01-01

    Cortical expansion, both in absolute terms and in relation to subcortical structures, is considered a major trend in mammalian brain evolution with important functional implications, given that cortical computations should add complexity and flexibility to information processing. Here, we investigate the numbers of neurons that compose 4 structures in the visual pathway across 11 non-human primate species to determine the scaling relationships that apply to these structures and among them. We...

  4. Structural brain changes in aging: courses, causes and cognitive consequences.

    Science.gov (United States)

    Fjell, Anders M; Walhovd, Kristine B

    2010-01-01

    The structure of the brain is constantly changing from birth throughout the lifetime, meaning that normal aging, free from dementia, is associated with structural brain changes. This paper reviews recent evidence from magnetic resonance imaging (MRI) studies about age-related changes in the brain. The main conclusions are that (1) the brain shrinks in volume and the ventricular system expands in healthy aging. However, the pattern of changes is highly heterogeneous, with the largest changes seen in the frontal and temporal cortex, and in the putamen, thalamus, and accumbens. With modern approaches to analysis of MRI data, changes in cortical thickness and subcortical volume can be tracked over periods as short as one year, with annual reductions of between 0.5% and 1.0% in most brain areas. (2) The volumetric brain reductions in healthy aging are likely only to a minor extent related to neuronal loss. Rather, shrinkage of neurons, reductions of synaptic spines, and lower numbers of synapses probably account for the reductions in grey matter. In addition, the length of myelinated axons is greatly reduced, up to almost 50%. (3) Reductions in specific cognitive abilities--for instance processing speed, executive functions, and episodic memory--are seen in healthy aging. Such reductions are to a substantial degree mediated by neuroanatomical changes, meaning that between 25% and 100% of the differences between young and old participants in selected cognitive functions can be explained by group differences in structural brain characteristics.

  5. Sialylation regulates brain structure and function.

    Science.gov (United States)

    Yoo, Seung-Wan; Motari, Mary G; Susuki, Keiichiro; Prendergast, Jillian; Mountney, Andrea; Hurtado, Andres; Schnaar, Ronald L

    2015-07-01

    Every cell expresses a molecularly diverse surface glycan coat (glycocalyx) comprising its interface with its cellular environment. In vertebrates, the terminal sugars of the glycocalyx are often sialic acids, 9-carbon backbone anionic sugars implicated in intermolecular and intercellular interactions. The vertebrate brain is particularly enriched in sialic acid-containing glycolipids termed gangliosides. Human congenital disorders of ganglioside biosynthesis result in paraplegia, epilepsy, and intellectual disability. To better understand sialoglycan functions in the nervous system, we studied brain anatomy, histology, biochemistry, and behavior in mice with engineered mutations in St3gal2 and St3gal3, sialyltransferase genes responsible for terminal sialylation of gangliosides and some glycoproteins. St3gal2/3 double-null mice displayed dysmyelination marked by a 40% reduction in major myelin proteins, 30% fewer myelinated axons, a 33% decrease in myelin thickness, and molecular disruptions at nodes of Ranvier. In part, these changes may be due to dysregulation of ganglioside-mediated oligodendroglial precursor cell proliferation. Neuronal markers were also reduced up to 40%, and hippocampal neurons had smaller dendritic arbors. Young adult St3gal2/3 double-null mice displayed impaired motor coordination, disturbed gait, and profound cognitive disability. Comparisons among sialyltransferase mutant mice provide insights into the functional roles of brain gangliosides and sialoglycoproteins consistent with related human congenital disorders. © FASEB.

  6. Individual brain structure and modelling predict seizure propagation.

    Science.gov (United States)

    Proix, Timothée; Bartolomei, Fabrice; Guye, Maxime; Jirsa, Viktor K

    2017-03-01

    See Lytton (doi:10.1093/awx018) for a scientific commentary on this article.Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  7. The Bilingual Brain: Human Evolution and Second Language Acquisition

    Directory of Open Access Journals (Sweden)

    L. Kirk Hagen

    2008-01-01

    Full Text Available For the past half-century, psycholinguistic research has concerned itself with two mysteries of human cognition: (1 that children universally acquire a highly abstract, computationally complex set of linguistic rules rapidly and effortlessly, and (2 that second language acquisition (SLA among adults is, conversely, slow, laborious, highly variable, and virtually never results in native fluency. We now have a decent, if approximate, understanding of the biological foundations of first language acquisition, thanks in large part to Lenneberg's (1964, 1984 seminal work on the critical period hypothesis. More recently, the elements of a promising theory of language and evolution have emerged as well (see e.g. Bickerton, 1981, 1990; Leiberman, 1984, 1987. I argue here that the empirical foundations of an evolutionary theory of language are now solid enough to support an account of bilingualism and adult SLA as well. Specifically, I will show that evidence from the environment of evolutionary adaptation of paleolithic humans suggests that for our nomadic ancestors, the ability to master a language early in life was an eminently useful adaptation. However, the ability to acquire another language in adulthood was not, and consequently was not selected for propagation.

  8. THE SIGNIFICANCE OF THE SUBPLATE FOR EVOLUTION AND DEVELOPMENTAL PLASTICITY OF THE HUMAN BRAIN

    Directory of Open Access Journals (Sweden)

    MILOS eJUDAS

    2013-08-01

    Full Text Available The human life-history is characterized by long development and introduction of new developmental stages, such as childhood and adolescence. The developing brain had important role in these life-history changes because it is expensive tissue which uses up to 80% of resting metabolic rate in the newborn and continues to use almost 50% of it during the first 5 postnatal years. Our hominid ancestors managed to lift-up metabolic constraints to increase in brain size by several interrelated ecological, behavioral and social adaptations, such as dietary change, invention of cooking, creation of family-bonded reproductive units, and life-history changes. This opened new vistas for the developing brain, because it became possible to metabolically support transient patterns of brain organization as well as developmental brain plasticity for much longer period and with much greater number of neurons and connectivity combinations in comparison to apes. This included the shaping of cortical connections through the interaction with infant's social environment, which probably enhanced typically human evolution of language, cognition and self-awareness. In this review, we propose that the transient subplate zone and its postnatal remnant (interstitial neurons of the gyral white matter probably served as the main playground for evolution of these developmental shifts, and describe various features that makes human subplate uniquely positioned to have such a role in comparison with other primates.

  9. Linking brains and brawn: exercise and the evolution of human neurobiology.

    Science.gov (United States)

    Raichlen, David A; Polk, John D

    2013-01-07

    The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.

  10. Linking brains and brawn: exercise and the evolution of human neurobiology

    Science.gov (United States)

    Raichlen, David A.; Polk, John D.

    2013-01-01

    The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance. PMID:23173208

  11. Dynamic brain structural changes after left hemisphere subcortical stroke.

    Science.gov (United States)

    Fan, Fengmei; Zhu, Chaozhe; Chen, Hai; Qin, Wen; Ji, Xunming; Wang, Liang; Zhang, Yujin; Zhu, Litao; Yu, Chunshui

    2013-08-01

    This study aimed to quantify dynamic structural changes in the brain after subcortical stroke and identify brain areas that contribute to motor recovery of affected limbs. High-resolution structural MRI and neurological examinations were conducted at five consecutive time points during the year following stroke in 10 patients with left hemisphere subcortical infarctions involving motor pathways. Gray matter volume (GMV) was calculated using an optimized voxel-based morphometry technique, and dynamic changes in GMV were evaluated using a mixed-effects model. After stroke, GMV was decreased bilaterally in brain areas that directly or indirectly connected with lesions, which suggests the presence of regional damage in these "healthy" brain tissues in stroke patients. Moreover, the GMVs of these brain areas were not correlated with the Motricity Index (MI) scores when controlling for time intervals after stroke, which indicates that these structural changes may reflect an independent process (such as axonal degeneration) but cannot affect the improvement of motor function. In contrast, the GMV was increased in several brain areas associated with motor and cognitive functions after stroke. When controlling for time intervals after stroke, only the GMVs in the cognitive-related brain areas (hippocampus and precuneus) were positively correlated with MI scores, which suggests that the structural reorganization in cognitive-related brain areas may facilitate the recovery of motor function. However, considering the small sample size of this study, further studies are needed to clarify the exact relationships between structural changes and recovery of motor function in stroke patients. Copyright © 2012 Wiley Periodicals, Inc.

  12. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  13. Structure, Function, and Evolution of Rice Centromeres

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiming

    2010-02-04

    The centromere is the most characteristic landmark of eukaryotic chromosomes. Centromeres function as the site for kinetochore assembly and spindle attachment, allowing for the faithful pairing and segregation of sister chromatids during cell division. Characterization of centromeric DNA is not only essential to understand the structure and organization of plant genomes, but it is also a critical step in the development of plant artificial chromosomes. The centromeres of most model eukaryotic species, consist predominantly of long arrays of satellite DNA. Determining the precise DNA boundary of a centromere has proven to be a difficult task in multicellular eukaryotes. We have successfully cloned and sequenced the centromere of rice chromosome 8 (Cen8), representing the first fully sequenced centromere from any multicellular eukaryotes. The functional core of Cen8 spans ~800 kb of DNA, which was determined by chromatin immunoprecipitation (ChIP) using an antibody against the rice centromere-specific H3 histone. We discovered 16 actively transcribed genes distributed throughout the Cen8 region. In addition to Cen8, we have characterized eight additional rice centromeres using the next generation sequencing technology. We discovered four subfamilies of the CRR retrotransposon that is highly enriched in rice centromeres. CRR elements are constitutively transcribed and different CRR subfamilies are differentially processed by RNAi. These results suggest that different CRR subfamilies may play different roles in the RNAi-mediated pathway for formation and maintenance of centromeric chromatin.

  14. Plant retroviruses: structure, evolution and future applications | Zaki ...

    African Journals Online (AJOL)

    Until recently, retroviruses were thought to be restricted to vertebrates. Plant sequencing projects revealed that plant genomes contain retroviral-like sequences. This review aims to address the structure and evolution of plant retroviruses. In addition, it proposes future applications for these important key components of plant ...

  15. Nonlocalized clustering and evolution of cluster structure in nuclei

    Science.gov (United States)

    Horiuchi, H.

    2017-06-01

    It is shown that the THSR (Tohsaki-Horiuchi-Schuck-Roepke) wave function describe well not only cluster-gas like structures but also ordinary cluster structures with spatial localization of clusters. Based on this fact, the container model has been proposed as a new model of cluster dynamics. For better description of cluster dynamics, extended version of container model has been introduced. The container model of cluster dynamics teaches us how is the evolution of cluster structure which starts from the ground state having shell-model structure to many kinds of cluster states up to the cluster-gas states.

  16. Structural evolution of silica sols modified with formamide

    Directory of Open Access Journals (Sweden)

    Lenza R.F.S.

    2001-01-01

    Full Text Available In this work we investigated the influence of formamide on the acid-catalyzed sol-gel process by Fourier transform infrared spectroscopy (FTIR. Three silica sols were studied: Sol catalyzed with nitric acid without formamide, sol catalyzed with nitric acid containing formamide and sol catalyzed with a mixture of nitric acid and hydrofluoric acid and modified with formamide. Following the time evolution of both the Si-(OH stretching vibration at around 950 cm-1 and the Si-O-(Si vibration between 1040 cm-1 and 1200 cm-1 we were able to describe the structural evolution of each sol. The curve of evolution of Si-(OH stretching vibration corresponding to sol A has a simple asymptotic evolution. In the case of formamide containing sol, we observed a two-step structural evolution indicating that for the system containing formamide the polymerization goes through a temporary stabilization of oligomers, which can explain the non-variation of the Si-O(H bond wavenumber for a certain time. Gelation times were of several days for gels without formamide and few hours for gels containing additive. The presence of additive resulted in a highly interconnected gel.

  17. Childhood adversity impacts on brain subcortical structures relevant to depression

    NARCIS (Netherlands)

    Frodl, Thomas; Janowitz, Deborah; Schmaal, Lianne; Tozzi, Leonardo; Dobrowolny, Henrik; Stein, Dan J.; Veltman, Dick. J.; Wittfeld, Katharina; van Erp, Theo G. M.; Jahanshad, Neda; Block, Andrea; Hegenscheid, Katrin; Voelzke, Henry; Lagopoulos, Jim; Hatton, Sean N.; Hickie, Ian B.; Frey, Eva Maria; Carballedo, Angela; Brooks, Samantha J; Vuletic, Daniella; Uhlmann, Anne; Veer, Ilya M.; Walter, Henrik; Schnell, Knut; Grotegerd, Dominik; Arolt, Volker; Kugel, Harald; Schramm, Elisabeth; Konrad, Carsten; Zurowski, Bartosz; Baune, Bernhard T; van der Wee, Nic J. A.; van Tol, Marie-Jose; Penninx, Brenda W. J. H.; Thompson, Paul M.; Hibar, Derrek P.; Dannlowski, Udo; Grabe, Hans J.

    Childhood adversity plays an important role for development of major depressive disorder (MDD). There are differences in subcortical brain structures between patients with MDD and healthy controls, but the specific impact of childhood adversity on such structures in MDD remains unclear. Thus, aim of

  18. ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION

    OpenAIRE

    Silvestri, L.; A. L. ALLEGRA MASCARO; Lotti, J.; Sacconi, L.; Pavone, F.S.

    2013-01-01

    Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brain...

  19. ECT: its brain enabling effects: a review of electroconvulsive therapy-induced structural brain plasticity.

    Science.gov (United States)

    Bouckaert, Filip; Sienaert, Pascal; Obbels, Jasmien; Dols, Annemieke; Vandenbulcke, Mathieu; Stek, Max; Bolwig, Tom

    2014-06-01

    Since the past 2 decades, new evidence for brain plasticity has caused a shift in both preclinical and clinical ECT research from falsifying the "brain damage hypothesis" toward exploring ECT's enabling brain (neuro)plasticity effects. By reviewing the available animal and human literature, we examined the theory that seizure-induced structural changes are crucial for the therapeutic efficacy of ECT. Both animal and human studies suggest electroconvulsive stimulation/electroconvulsive therapy (ECT)-related neuroplasticity (neurogenesis, synaptogenesis, angiogenesis, or gliogenesis). It remains unclear whether structural changes might explain the therapeutic efficacy and/or be related to the (transient) learning and memory impairment after ECT. Methods to assess in vivo brain plasticity of patients treated with ECT will be of particular importance for future longitudinal studies to give support to the currently available correlational data.

  20. Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates.

    Science.gov (United States)

    Shi, Lei; Lin, Qiang; Su, Bing

    2015-06-30

    Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.

  1. Protein Evolution along Phylogenetic Histories under Structurally Constrained Substitution Models

    Science.gov (United States)

    Arenas, Miguel; Dos Santos, Helena G.; Posada, David; Bastolla, Ugo

    2017-01-01

    Motivation Models of molecular evolution aim at describing the evolutionary processes at the molecular level. However, current models rarely incorporate information from protein structure. Conversely, structure-based models of protein evolution have not been commonly applied to simulate sequence evolution in a phylogenetic framework and they often ignore relevant evolutionary processes such as recombination. A simulation evolutionary framework that integrates substitution models that account for protein structure stability should be able to generate more realistic in silico evolved proteins for a variety of purposes. Results We developed a method to simulate protein evolution that combines models of protein folding stability, such that the fitness depends on the stability of the native state both with respect to unfolding and misfolding, with phylogenetic histories that can be either specified by the user or simulated with the coalescent under complex evolutionary scenarios including recombination, demographics and migration. We have implemented this framework in a computer program called ProteinEvolver. Remarkably, comparing these models with empirical amino acid replacement models, we found that the former produce amino acid distributions closer to distributions observed in real protein families, and proteins that are predicted to be more stable. Therefore, we conclude that evolutionary models that consider protein stability and realistic evolutionary histories constitute a better approximation of the real evolutionary process. Availability ProteinEvolver is written in C, can run in parallel, and is freely available from http://code.google.com/p/proteinevolver/. PMID:24037213

  2. INVESTMENT STRUCTURE AND EVOLUTION IN THE CONTEXT OF ECONOMIC CRISIS

    Directory of Open Access Journals (Sweden)

    CODAU CIPRIAN-CRACIUN

    2011-12-01

    Full Text Available The scope of this article is the evolution analysis of net investment in Romania between economic growth and international economic crisis. The analysis captures both the evolution of net investment by structure elements (buildings, outfits, other investments and the structure and evolution of investments by sources of financing. Also there is an analysis of the foreign direct investment (FDI share in the total net investment and the impact of the economic crisis on this share. The article aims to identify the main factors for the evolution of investments in Romania before the financial crisis and determine how the financial crisis influenced the structure and volume of investments in the national economy. Most previous studies have focused either on a small part of the investments made in Romania (in most cases the FDI have been analyzed or on the period of economic expansion without capturing the evolution of investment during the economic crisis. Previous research has highlighted especially the FDI influence on macroeconomic indicators of high importance for the economy (unemployment rate, GDP growth rate, etc. with less focus on the factors influencing these investments and the close connection between the economic context (economy status and the volume of these investments. For the analysis of the investment evolution during the mentioned period statistical data was used that captured both the investment evolution trend and the changes occurred by the national economy stepping into recession amid the global financial crisis established. To get an overview of the situation it was considered a time internal that captured both the economic growth and the period after the onset of the economic crisis. Thereby information was obtained on the volume of net investment during 2000-2010, on foreign direct investment in the period 2003-2010 and their share in total net investment and also on the main sources of investment financing during the

  3. Structure and Evolution of the Foreign Exchange Networks

    Science.gov (United States)

    Kwapień, J.; Gworek, S.; Drożdż, S.

    2009-01-01

    We investigate topology and temporal evolution of the foreign currency exchange market viewed from a weighted network perspective. Based on exchange rates for a set of 46 currencies (including precious metals), we construct different representations of the FX network depending on a choice of the base currency. Our results show that the network structure is not stable in time, but there are main clusters of currencies, which persist for a long period of time despite the fact that their size and content are variable. We find a long-term trend in the network's evolution which affects the USD and EUR nodes. In all the network representations, the USD node gradually loses its centrality, while, on contrary, the EUR node has become slightly more central than it used to be in its early years. Despite this directional trend, the overall evolution of the network is noisy.

  4. Evolution of specialization in resource utilization in structured metapopulations.

    Science.gov (United States)

    Nurmi, Tuomas; Geritz, Stefan; Parvinen, Kalle; Gyllenberg, Mats

    2008-07-01

    We study the evolution of resource utilization in a structured discrete-time metapopulation model with an infinite number of patches, prone to local catastrophes. The consumer faces a trade-off in the abilities to consume two resources available in different amounts in each patch. We analyse how the evolution of specialization in the utilization of the resources is affected by different ecological factors: migration, local growth, local catastrophes, forms of the trade-off and distribution of the resources in the patches. Our modelling approach offers a natural way to include more than two patch types into the models. This has not been usually possible in the previous spatially heterogeneous models focusing on the evolution of specialization.

  5. Modeling the mesozoic-cenozoic structural evolution of east texas

    Science.gov (United States)

    Pearson, Ofori N.; Rowan, Elisabeth L.; Miller, John J.

    2012-01-01

    The U.S. Geological Survey (USGS) recently assessed the undiscovered technically recoverable oil and gas resources within Jurassic and Cretaceous strata of the onshore coastal plain and State waters of the U.S. Gulf Coast. Regional 2D seismic lines for key parts of the Gulf Coast basin were interpreted in order to examine the evolution of structural traps and the burial history of petroleum source rocks. Interpretation and structural modeling of seismic lines from eastern Texas provide insights into the structural evolution of this part of the Gulf of Mexico basin. Since completing the assessment, the USGS has acquired additional regional seismic lines in east Texas; interpretation of these new lines, which extend from the Texas-Oklahoma state line to the Gulf Coast shoreline, show how some of the region's prominent structural elements (e.g., the Talco and Mount Enterprise fault zones, the East Texas salt basin, and the Houston diapir province) vary along strike. The interpretations also indicate that unexplored structures may lie beneath the current drilling floor. Structural restorations based upon interpretation of these lines illustrate the evolution of key structures and show the genetic relation between structural growth and movement of the Jurassic Louann Salt. 1D thermal models that integrate kinetics and burial histories were also created for the region's two primary petroleum source rocks, the Oxfordian Smackover Formation and the Cenomanian-Turonian Eagle Ford Shale. Integrating results from the thermal models with the structural restorations provides insights into the distribution and timing of petroleum expulsion from the Smackover Formation and Eagle Ford Shale in eastern Texas.

  6. Altered structural brain changes and neurocognitive performance in pediatric HIV

    Directory of Open Access Journals (Sweden)

    Santosh K. Yadav

    2017-01-01

    Full Text Available Pediatric HIV patients often suffer with neurodevelopmental delay and subsequently cognitive impairment. While tissue injury in cortical and subcortical regions in the brain of adult HIV patients has been well reported there is sparse knowledge about these changes in perinatally HIV infected pediatric patients. We analyzed cortical thickness, subcortical volume, structural connectivity, and neurocognitive functions in pediatric HIV patients and compared with those of pediatric healthy controls. With informed consent, 34 perinatally infected pediatric HIV patients and 32 age and gender matched pediatric healthy controls underwent neurocognitive assessment and brain magnetic resonance imaging (MRI on a 3 T clinical scanner. Altered cortical thickness, subcortical volumes, and abnormal neuropsychological test scores were observed in pediatric HIV patients. The structural network connectivity analysis depicted lower connection strengths, lower clustering coefficients, and higher path length in pediatric HIV patients than healthy controls. The network betweenness and network hubs in cortico-limbic regions were distorted in pediatric HIV patients. The findings suggest that altered cortical and subcortical structures and regional brain connectivity in pediatric HIV patients may contribute to deficits in their neurocognitive functions. Further, longitudinal studies are required for better understanding of the effect of HIV pathogenesis on brain structural changes throughout the brain development process under standard ART treatment.

  7. Evolution of the human ASPM gene, a major determinant of brain size.

    Science.gov (United States)

    Zhang, Jianzhi

    2003-12-01

    The size of human brain tripled over a period of approximately 2 million years (MY) that ended 0.2-0.4 MY ago. This evolutionary expansion is believed to be important to the emergence of human language and other high-order cognitive functions, yet its genetic basis remains unknown. An evolutionary analysis of genes controlling brain development may shed light on it. ASPM (abnormal spindle-like microcephaly associated) is one of such genes, as nonsense mutations lead to primary microcephaly, a human disease characterized by a 70% reduction in brain size. Here I provide evidence suggesting that human ASPM went through an episode of accelerated sequence evolution by positive Darwinian selection after the split of humans and chimpanzees but before the separation of modern non-Africans from Africans. Because positive selection acts on a gene only when the gene function is altered and the organismal fitness is increased, my results suggest that adaptive functional modifications occurred in human ASPM and that it may be a major genetic component underlying the evolution of the human brain.

  8. Effects of Soccer Heading on Brain Structure and Function

    Science.gov (United States)

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  9. Effects of soccer heading on brain structure and function

    Directory of Open Access Journals (Sweden)

    Ana Carolina Oliveira Rodrigues

    2016-03-01

    Full Text Available Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of six to twelve incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the

  10. Structural evolution of Mesozoic complexes in Western Chukotka

    Science.gov (United States)

    Golionko, B. G.; Vatrushkina, E. V.; Verzhbitsky, V. E.; Degtiarev, K. E.

    2017-07-01

    Detailed structural investigations were carried out in the Pevek area in order to verify the tectonic evolution of the Mesozoic thrust and fold belt in Chukotka. South-vergent F1 folds in Triassic rocks were proved to be the earliest structures formed during the first deformation stage DI. These structures were deformed by north-vergent folds F2 that were formed during the second deformation stage DII. North-vergent folds are the main structures of the Jurassic-Lower Cretaceous complex. The fold structures of the first two stages are deformed by shear folds F3 finishing the stage DII. All these structures are deformed by submeridionally trending normal faults referred to the deformation stage DIII.

  11. Evolution of fractal structures in dislocation ensembles during plastic deformation.

    Science.gov (United States)

    Vinogradov, A; Yasnikov, I S; Estrin, Y

    2012-05-18

    Based on the irreversible thermodynamics approach to dislocation plasticity of metals, a simple description of the dislocation density evolution and strain hardening was suggested. An analytical expression for the fractal dimension (FD) of a cellular (or tangled) dislocation structure evolving in the course of plastic deformation was obtained on the basis of the dislocation model proposed. This makes it possible to trace the variation of FD of the dislocation cell structure with strain by just measuring the macroscopic stress-strain curve. The FD behavior predicted in this way showed good agreement with the experimentally measured FD evolution at different stages of deformation of a Ni single crystal and a Cu polycrystal. One new result following from the present model is that the FD of the bulk dislocation structure in a deforming metal peaks at a certain strain close to the onset of necking. The significance of fractal analysis as an informative index to follow the spatial evolution of dislocation structures approaching the critical state is highlighted.

  12. Evolution of spatially structured host-parasite interactions.

    Science.gov (United States)

    Lion, S; Gandon, S

    2015-01-01

    Spatial structure has dramatic effects on the demography and the evolution of species. A large variety of theoretical models have attempted to understand how local dispersal may shape the coevolution of interacting species such as host-parasite interactions. The lack of a unifying framework is a serious impediment for anyone willing to understand current theory. Here, we review previous theoretical studies in the light of a single epidemiological model that allows us to explore the effects of both host and parasite migration rates on the evolution and coevolution of various life-history traits. We discuss the impact of local dispersal on parasite virulence, various host defence strategies and local adaptation. Our analysis shows that evolutionary and coevolutionary outcomes crucially depend on the details of the host-parasite life cycle and on which life-history trait is involved in the interaction. We also discuss experimental studies that support the effects of spatial structure on the evolution of host-parasite interactions. This review highlights major similarities between some theoretical results, but it also reveals an important gap between evolutionary and coevolutionary models. We discuss possible ways to bridge this gap within a more unified framework that would reconcile spatial epidemiology, evolution and coevolution. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  13. Sleep habits, academic performance, and the adolescent brain structure.

    Science.gov (United States)

    Urrila, Anna S; Artiges, Eric; Massicotte, Jessica; Miranda, Ruben; Vulser, Hélène; Bézivin-Frere, Pauline; Lapidaire, Winok; Lemaître, Hervé; Penttilä, Jani; Conrod, Patricia J; Garavan, Hugh; Paillère Martinot, Marie-Laure; Martinot, Jean-Luc

    2017-02-09

    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefrontal - anterior cingulate cortex appears most tightly related to the adolescents' variations in sleep habits, as its volume correlates inversely with both weekend bedtime and wake up time, and also with poor school performance. These findings suggest that sleep habits, notably during the weekends, have an alarming link with both the structure of the adolescent brain and school performance, and thus highlight the need for informed interventions.

  14. Structural brain abnormalities in 12 persons with aniridia

    Science.gov (United States)

    Grant, Madison K.; Bobilev, Anastasia M.; Pierce, Jordan E.; DeWitte, Jon; Lauderdale, James D.

    2017-01-01

    Background: Aniridia is a disorder predominately caused by heterozygous loss-of-function mutations of the PAX6 gene, which is a transcriptional regulator necessary for normal eye and brain development.  The ocular abnormalities of aniridia have been well characterized, but mounting evidence has implicated brain-related phenotypes as a prominent feature of this disorder as well.  Investigations using neuroimaging in aniridia patients have shown reductions in discrete brain structures and changes in global grey and white matter.  However, limited sample sizes and substantive heterogeneity of structural phenotypes in the brain remain a challenge.  Methods: Here, we examined brain structure in a new population sample in an effort to add to the collective understanding of anatomical abnormalities in aniridia.  The current study used 3T magnetic resonance imaging to acquire high-resolution structural data in 12 persons with aniridia and 12 healthy demographically matched comparison subjects.  Results: We examined five major structures: the anterior commissure, the posterior commissure, the pineal gland, the corpus callosum, and the optic chiasm.  The most consistent reductions were found in the anterior commissure and the pineal gland; however, abnormalities in all of the other structures examined were present in at least one individual.  Conclusions: Our results indicate that the anatomical abnormalities in aniridia are variable and largely individual-specific.  These findings suggest that future studies investigate this heterogeneity further, and that normal population variation should be considered when evaluating structural abnormalities. PMID:29034075

  15. Structure and evolution of 3D Rossby Vortices

    Science.gov (United States)

    Richard, S.; Barge, P.

    2013-04-01

    Three dimensional compressible simulations of the Rossby Wave Instability are presented in a non-homentropic model of protoplanetary disk. The instability develops like in the two dimensional case, gradually coming to the formation of a single big vortex. This 3D vortex has a quasi-2D structure which looks like a vorticity column with only tiny vertical motions. The vortex survives hundred of rotations in a quasi-steady evolution and slowly migrates inward toward the star.

  16. Evolution of integrated causal structures in animats exposed to environments of increasing complexity.

    Directory of Open Access Journals (Sweden)

    Larissa Albantakis

    2014-12-01

    Full Text Available Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment's causal structure. We investigated the evolution of small, adaptive logic-gate networks ("animats" in task environments where falling blocks of different sizes have to be caught or avoided in a 'Tetris-like' game. Solving these tasks requires the integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration, including the number of evolved concepts and the total amount of integrated conceptual information. The results show that, over the course of the animats' adaptation, i the number of concepts grows; ii integrated conceptual information increases; iii this increase depends on the complexity of the environment, especially on the requirement for sequential memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors and internal mechanisms, is an important driving force for organisms to develop highly integrated networks ("brains" with many concepts, leading to an increase in their internal complexity.

  17. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    Science.gov (United States)

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  18. Coordinate-based versus structural approaches to brain image analysis.

    Science.gov (United States)

    Mangin, J-F; Rivière, D; Coulon, O; Poupon, C; Cachia, A; Cointepas, Y; Poline, J-B; Le Bihan, D; Régis, J; Papadopoulos-Orfanos, D

    2004-02-01

    A basic issue in neurosciences is to look for possible relationships between brain architecture and cognitive models. The lack of architectural information in magnetic resonance images, however, has led the neuroimaging community to develop brain mapping strategies based on various coordinate systems without accurate architectural content. Therefore, the relationships between architectural and functional brain organizations are difficult to study when analyzing neuroimaging experiments. This paper advocates that the design of new brain image analysis methods inspired by the structural strategies often used in computer vision may provide better ways to address these relationships. The key point underlying this new framework is the conversion of the raw images into structural representations before analysis. These representations are made up of data-driven elementary features like activated clusters, cortical folds or fiber bundles. Two classes of methods are introduced. Inference of structural models via matching across a set of individuals is described first. This inference problem is illustrated by the group analysis of functional statistical parametric maps (SPMs). Then, the matching of new individual data with a priori known structural models is described, using the recognition of the cortical sulci as a prototypical example.

  19. Structure scalars and evolution equations in f( G) cosmology

    Science.gov (United States)

    Sharif, M.; Fatima, H. Ismat

    2017-01-01

    In this paper, we study the dynamics of self-gravitating fluid using structure scalars for spherical geometry in the context of f( G) cosmology. We construct structure scalars through orthogonal splitting of the Riemann tensor and deduce a complete set of equations governing the evolution of dissipative anisotropic fluid in terms of these scalars. We explore different causes of density inhomogeneity which turns out to be a necessary condition for viable models. It is explicitly shown that anisotropic inhomogeneous static spherically symmetric solutions can be expressed in terms of these scalar functions.

  20. STRUCTURE ANALYSIS OF THE EVOLUTION OF PRIVATE CONSUMPTION IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Raluca M. BĂLĂ

    2014-06-01

    Full Text Available This paper aims to analyze the evolution of the private consumption structure in Romania in the last twenty years surprising three main periods that influenced the composition of economic welfare of romanian citizens: the transition period to the market economy after the fall of communist regime, the period of economic stabilization and sustained growth and the period of financial and economic crisis. The analysis reveals the modifications in the structure of private consumption throughout the three main phases surprised in the Romanian economy and shows the influence of these changes on the economic welfare of the population.

  1. Structural Measures to Track the Evolution of SNOMED CT Hierarchies

    Science.gov (United States)

    Wei, Duo; Gu, Huanying (Helen); Perl, Yehoshua; Halper, Michael; Ochs, Christopher; Elhanan, Gai; Chen, Yan

    2015-01-01

    The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is an extensive reference terminology with an attendant amount of complexity. It has been updated continuously and revisions have been released semi-annually to meet users’ needs and to reflect the results of quality assurance (QA) activities. Two measures based on structural features are proposed to track the effects of both natural terminology growth and QA activities based on aspects of the complexity of SNOMED CT. These two measures, called the structural density measure and accumulated structural measure, are derived based on two abstraction networks, the area taxonomy and the partial-area taxonomy. The measures derive from attribute relationship distributions and various concept groupings that are associated with the abstraction networks. They are used to track the trends in the complexity of structures as SNOMED CT changes over time. The measures were calculated for consecutive releases of five SNOMED CT hierarchies, including the Specimen hierarchy. The structural density measure shows that natural growth tends to move a hierarchy’s structure toward a more complex state, whereas the accumulated structural measure shows that QA processes tend to move a hierarchy’s structure toward a less complex state. It is also observed that both the structural density and accumulated structural measures are useful tools to track the evolution of an entire SNOMED CT hierarchy and reveal internal concept migration within it. PMID:26260003

  2. Structural and magmatic evolution in the Loimaa area, southwestern Finland

    Directory of Open Access Journals (Sweden)

    Nironen, M.

    1999-06-01

    Full Text Available Within the Loimaa area there is a junction of the general E-W structural trend of southern Finland and a NW-N-NE curving trend. The structure of the area is dominated by ductile D, and D4 deformations with E-W and N-S axial traces, respectively. The typical semicircular structures in the study area are interpreted as F3-F4 fold interference structures. The predominant plutonic rocks in the Loimaa area are penetratively foliated tonalites and granodiorites which probably intruded during D2 deformation. Peak regional metamorphism at upper amphibolite facies and emplacement of the Pöytyä Granodiorite ca. 1870 Ma ago occurred during D, deformation. The ductile style of D4 deformation in the Loimaa area is probably related to the high-grade metamorphism at 1850-1810 Ma in the late Svecofennian granite-migmatite (LSGM zone immediately south of the study area. The Oripää Granite was emplaced during D4 deformation. The structural evolution in the Loimaa area may be correlated with the evolution further to the northwest (Pori area and north (Tampere-Vammala area whereas correlation to the south and west is problematic. A transpressional model presented for the LSGM zone is not applicable to the Loimaa area.

  3. Brain size evolution in pipefishes and seahorses: the role of feeding ecology, life history and sexual selection.

    Science.gov (United States)

    Tsuboi, M; Lim, A C O; Ooi, B L; Yip, M Y; Chong, V C; Ahnesjö, I; Kolm, N

    2017-01-01

    Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  4. Ultrasonic influence on evolution of disordered dislocation structures

    Science.gov (United States)

    Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.

    2017-12-01

    Evolution of disordered dislocation structures under ultrasonic influence is studied in a model two-dimensional grain within the discrete-dislocation approach. Non-equilibrium grain boundary state is mimicked by a mesodefect located at the corners of the grain, stress field of which is described by that of a wedge junction disclination quadrupole. Significant rearrangement related to gliding of lattice dislocations towards the grain boundaries is found, which results in a noticeable reduction of internal stress fields and cancel of disclination quadrupole. The process of dislocation structure evolution passes through two stages: rapid and slow. The main dislocation rearrangement occurs during the first stage. Reduction of internal stress fields is associated with the number of dislocations entered into the grain boundaries. The change of misorientation angle due to lattice dislocations absorbed by the grain boundaries is evaluated. Amplitude of ultrasonic treatment significantly influences the relaxation of dislocation structure. Preliminary elastic relaxation of dislocation structure does not affect substantially the results of the following ultrasonic treatment. Substantial grain size dependence of relaxation of disordered dislocation systems is found. Simulation results are consistent with experimental data.

  5. Structural evolution in the crystallization of rapid cooling silver melt

    Science.gov (United States)

    Tian, Z. A.; Dong, K. J.; Yu, A. B.

    2015-03-01

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald's rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid-solid phase transition.

  6. Picture free recall performance linked to the brain's structural connectome.

    Science.gov (United States)

    Coynel, David; Gschwind, Leo; Fastenrath, Matthias; Freytag, Virginie; Milnik, Annette; Spalek, Klara; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2017-07-01

    Memory functions are highly variable between healthy humans. The neural correlates of this variability remain largely unknown. Here, we investigated how differences in free recall performance are associated with DTI-based properties of the brain's structural connectome and with grey matter volumes in 664 healthy young individuals tested in the same MR scanner. Global structural connectivity, but not overall or regional grey matter volumes, positively correlated with recall performance. Moreover, a set of 22 inter-regional connections, including some with no previously reported relation to human memory, such as the connection between the temporal pole and the nucleus accumbens, explained 7.8% of phenotypic variance. In conclusion, this large-scale study indicates that individual memory performance is associated with the level of structural brain connectivity.

  7. Mapping Language Networks Using the Structural and Dynamic Brain Connectomes.

    Science.gov (United States)

    Del Gaizo, John; Fridriksson, Julius; Yourganov, Grigori; Hillis, Argye E; Hickok, Gregory; Misic, Bratislav; Rorden, Chris; Bonilha, Leonardo

    2017-01-01

    Lesion-symptom mapping is often employed to define brain structures that are crucial for human behavior. Even though poststroke deficits result from gray matter damage as well as secondary white matter loss, the impact of structural disconnection is overlooked by conventional lesion-symptom mapping because it does not measure loss of connectivity beyond the stroke lesion. This study describes how traditional lesion mapping can be combined with structural connectome lesion symptom mapping (CLSM) and connectome dynamics lesion symptom mapping (CDLSM) to relate residual white matter networks to behavior. Using data from a large cohort of stroke survivors with aphasia, we observed improved prediction of aphasia severity when traditional lesion symptom mapping was combined with CLSM and CDLSM. Moreover, only CLSM and CDLSM disclosed the importance of temporal-parietal junction connections in aphasia severity. In summary, connectome measures can uniquely reveal brain networks that are necessary for function, improving the traditional lesion symptom mapping approach.

  8. Decoding post-stroke motor function from structural brain imaging

    Directory of Open Access Journals (Sweden)

    Jane M. Rondina

    2016-01-01

    Full Text Available Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged. However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature. In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes

  9. Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex.

    Science.gov (United States)

    Silver, Debra L

    2016-02-01

    The cerebral cortex controls our most distinguishing higher cognitive functions. Human-specific gene expression differences are abundant in the cerebral cortex, yet we have only begun to understand how these variations impact brain function. This review discusses the current evidence linking non-coding regulatory DNA changes, including enhancers, with neocortical evolution. Functional interrogation using animal models reveals converging roles for our genome in key aspects of cortical development including progenitor cell cycle and neuronal signaling. New technologies, including iPS cells and organoids, offer potential alternatives to modeling evolutionary modifications in a relevant species context. Several diseases rooted in the cerebral cortex uniquely manifest in humans compared to other primates, thus highlighting the importance of understanding human brain differences. Future studies of regulatory loci, including those implicated in disease, will collectively help elucidate key cellular and genetic mechanisms underlying our distinguishing cognitive traits. © 2015 WILEY Periodicals, Inc.

  10. Evolution of brain-computer interfaces: going beyond classic motor physiology

    Science.gov (United States)

    Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.

    2010-01-01

    The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892

  11. Glutamate Metabolism in Brain Structures in Experimental Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    V. N. Jakovlev

    2017-01-01

    Full Text Available Purpose. To study glutamate metabolism characteristics in phylogenetically different parts of the mammalian brain in experimentally induced hemorrhagic shock (HS in cats.Material and methods. Experiments were performed on 76 cats. HS was induced by intermittent bloodletting from femoral artery at a rate of 10ml/kg•10 minutes, with the average volume of 24±0.8 ml/kg. The bloodletting was discontinued after arterial pressure (BP drop to 60.0±1.5 mmHg. We studied ammonia, glutamate (Gt, and α-ketoglutarate (α-KG levels and glutaminase (GS and glutamate dehydrogenase (GDG activity in specimens harvested from phylogenetically different parts of the brain (cortex, limbic system, diencephalon, and medulla oblongata.Results. In intact animals, the peak GDG activity was found in the medulla oblongata (phylogenetically the oldest part of the brain and the peak GS activity was registered in the sensorimotor cortex (phylogenetically the youngest part of the brain; the glutaminase activity did not depend on the phylogenetic age of brain structures.In the case of HS, Gt metabolism changes began in the sensorimotor cortex manifested by decreased GS activity, which progresses by the 70th minute of the post%hemorrhagic period (PHP accompanied by delayed increase in the GDG and glutaminase activity, as well as Gt accumulation. In the limbic system and diencephalon the Gt metabolism was changing (impaired glutamine synthesis, stimuled Gt synthesis with glutamine desamidization and α%KG amination when developed by the 70th minute of the PHP. Similarly to sensorimotor cortex, changes were associated with Gt accumulation. During the agony, α%KG deficiency developed in all parts of the brain as a result of its increased contribution to Gt synthesis. At the same period of time, in the sensorimotor cortex, limbic system and diencephalon the Gt synthesis from glutamine was stimulated, however, the Gt contribution tothe formation of glutamine was decreased. The

  12. Predicting aphasia type from brain damage measured with structural MRI.

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  14. Brain connectivity dynamics during social interaction reflect social network structure.

    Science.gov (United States)

    Schmälzle, Ralf; Brook O'Donnell, Matthew; Garcia, Javier O; Cascio, Christopher N; Bayer, Joseph; Bassett, Danielle S; Vettel, Jean M; Falk, Emily B

    2017-05-16

    Social ties are crucial for humans. Disruption of ties through social exclusion has a marked effect on our thoughts and feelings; however, such effects can be tempered by broader social network resources. Here, we use fMRI data acquired from 80 male adolescents to investigate how social exclusion modulates functional connectivity within and across brain networks involved in social pain and understanding the mental states of others (i.e., mentalizing). Furthermore, using objectively logged friendship network data, we examine how individual variability in brain reactivity to social exclusion relates to the density of participants' friendship networks, an important aspect of social network structure. We find increased connectivity within a set of regions previously identified as a mentalizing system during exclusion relative to inclusion. These results are consistent across the regions of interest as well as a whole-brain analysis. Next, examining how social network characteristics are associated with task-based connectivity dynamics, we find that participants who showed greater changes in connectivity within the mentalizing system when socially excluded by peers had less dense friendship networks. This work provides insight to understand how distributed brain systems respond to social and emotional challenges and how such brain dynamics might vary based on broader social network characteristics.

  15. Temperature-dependent structure evolution in liquid gallium

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, L. H.; Wang, X. D.; Yu, Q.; Zhang, H.; Zhang, F.; Sun, Y.; Cao, Q. P.; Xie, H. L.; Xiao, T. Q.; Zhang, D. X.; Wang, C. Z.; Ho, K. M.; Ren, Y.; Jiang, J. Z.

    2017-04-01

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for selfdiffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studies on the liquid-to-liquid crossover in metallic melts.

  16. Structural evolution of carbon during oxidation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, A.F.

    1998-04-01

    The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs in the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and microporosity of carbons during kinetic controlled oxidation using SAXS, CO{sub 2} and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be {open_quotes}hidden{close_quotes} or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and CO{sub 2} surface areas, fractal analysis and TEM. Studies has confirmed that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

  17. Brain structural and functional correlates of resilience to Bipolar Disorder.

    Science.gov (United States)

    Frangou, Sophia

    2011-12-06

    Resilient adaptation can be construed in different ways, but as used here it refers to adaptive brain responses associated with avoidance of psychopathology despite expressed genetic predisposition to Bipolar Disorder (BD). Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives remain free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive responses that pre-empt disease expression. Data presented here are derived from the Vulnerability to Bipolar Disorders Study (VIBES) which includes BD patients, asymptomatic relatives and controls. Participants underwent extensive investigations including brain structural (sMRI) and functional magnetic resonance imaging (fMRI). We present results from sMRI voxel-based-morphometry and from conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT), a task of cognitive control during conflict resolution. All analyses were implemented using Statistical Parametric Mapping software version 5 (SPM5). Resilience in relatives was operationalized as the lifetime absence of clinical-range symptoms. Resilient relatives of BD patients expressed structural, functional, and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity. Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex during the SCWT. Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a bipolar genotype.

  18. Brain structural and functional correlates of resilience to Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Sophia eFrangou

    2012-01-01

    Full Text Available Background: Resilient adaptation can be construed in different ways, but as used here it refers to the adaptive brain changes associated with avoidance of psychopathology despite familiar risk for Bipolar Disorder (BD. Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives of BD patients remains free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive changes that may pre-empt disease expression. Methods: Data presented here are derived from the Vulnerability to Bipolar Disorders (VIBES study which includes patients with BD, asymptomatic relatives and healthy controls. Participants underwent extensive investigations including brain structural (sMRI and functional magnetic resonance imaging (fMRI. The data presented here focus on sMRI voxel-based-morphometry and on conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT, a task of cognitive control during conflict resolution. All analyses were implemented in SPM (www.fil.ion.ucl.ac.uk/spm. Resilience in relatives was operationalized as the absence of clinical-range symptoms.Results: Resilient relatives of BD patients expressed structural, functional and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity.Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex. Conclusions: Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a particular

  19. Altered resting brain function and structure in professional badminton players.

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  20. Triadic conceptual structure of the maximum entropy approach to evolution.

    Science.gov (United States)

    Herrmann-Pillath, Carsten; Salthe, Stanley N

    2011-03-01

    Many problems in evolutionary theory are cast in dyadic terms, such as the polar oppositions of organism and environment. We argue that a triadic conceptual structure offers an alternative perspective under which the information generating role of evolution as a physical process can be analyzed, and propose a new diagrammatic approach. Peirce's natural philosophy was deeply influenced by his reception of both Darwin's theory and thermodynamics. Thus, we elaborate on a new synthesis which puts together his theory of signs and modern Maximum Entropy approaches to evolution in a process discourse. Following recent contributions to the naturalization of Peircean semiosis, pointing towards 'physiosemiosis' or 'pansemiosis', we show that triadic structures involve the conjunction of three different kinds of causality, efficient, formal and final. In this, we accommodate the state-centered thermodynamic framework to a process approach. We apply this on Ulanowicz's analysis of autocatalytic cycles as primordial patterns of life. This paves the way for a semiotic view of thermodynamics which is built on the idea that Peircean interpretants are systems of physical inference devices evolving under natural selection. In this view, the principles of Maximum Entropy, Maximum Power, and Maximum Entropy Production work together to drive the emergence of information carrying structures, which at the same time maximize information capacity as well as the gradients of energy flows, such that ultimately, contrary to Schrödinger's seminal contribution, the evolutionary process is seen to be a physical expression of the Second Law. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. The Evolution and Structure of Atypical T Cell Receptors.

    Science.gov (United States)

    Hansen, Victoria L; Miller, Robert D

    2015-01-01

    The T cell receptor structure and genetic organization have been thought to have been stable in vertebrate evolution relative to the immunoglobulins. For the most part, this has been true and the content and organization of T cell receptor genes has been fairly conserved over the past 400 million years of gnathostome evolution. Analyses of TCRδ chains in a broad range of vertebrate lineages over the past decade have revealed a remarkable and previously unrealized degree of plasticity. This plasticity can generally be described in two forms. The first is broad use of antibody heavy chain variable genes in place of the conventional Vδ. The second form containing an unusual three extracellular domain structures has evolved independently in both cartilaginous fishes and mammals. Two well-studied vertebrate lineages, the eutherian mammals such as mice and humans and teleost fishes, lack any of these alternative TCR forms, contributing to why they went undiscovered for so long after the initial description of the conventional TCR chains three decades ago. This chapter describes the state of knowledge of these unusual TCR forms, both their structure and genetics, and current ideas on their function.

  2. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  3. Learning structural bioinformatics and evolution with a snake puzzle

    Directory of Open Access Journals (Sweden)

    Gonzalo S. Nido

    2016-12-01

    Full Text Available We propose here a working unit for teaching basic concepts of structural bioinformatics and evolution through the example of a wooden snake puzzle, strikingly similar to toy models widely used in the literature of protein folding. In our experience, developed at a Master’s course at the Universidad Autónoma de Madrid (Spain, the concreteness of this example helps to overcome difficulties caused by the interdisciplinary nature of this field and its high level of abstraction, in particular for students coming from traditional disciplines. The puzzle will allow us discussing a simple algorithm for finding folded solutions, through which we will introduce the concept of the configuration space and the contact matrix representation. This is a central tool for comparing protein structures, for studying simple models of protein energetics, and even for a qualitative discussion of folding kinetics, through the concept of the Contact Order. It also allows a simple representation of misfolded conformations and their free energy. These concepts will motivate evolutionary questions, which we will address by simulating a structurally constrained model of protein evolution, again modelled on the snake puzzle. In this way, we can discuss the analogy between evolutionary concepts and statistical mechanics that facilitates the understanding of both concepts. The proposed examples and literature are accessible, and we provide supplementary material (see ‘Data Availability’ to reproduce the numerical experiments. We also suggest possible directions to expand the unit. We hope that this work will further stimulate the adoption of games in teaching practice.

  4. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    Science.gov (United States)

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  5. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    Directory of Open Access Journals (Sweden)

    Becky Wong

    2016-01-01

    Full Text Available Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1 whether the language neural network is different for first (dominant versus second (nondominant language processing; (2 the effects of bilinguals’ executive functioning on the structure and function of the “universal” language neural network; (3 the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4 the effects of age of acquisition and proficiency of the user’s second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  6. Segmentation of Striatal Brain Structures from High Resolution PET Images

    Directory of Open Access Journals (Sweden)

    Ricardo J. P. C. Farinha

    2009-01-01

    Full Text Available We propose and evaluate an automatic segmentation method for extracting striatal brain structures (caudate, putamen, and ventral striatum from parametric C11-raclopride positron emission tomography (PET brain images. We focus on the images acquired using a novel brain dedicated high-resolution (HRRT PET scanner. The segmentation method first extracts the striatum using a deformable surface model and then divides the striatum into its substructures based on a graph partitioning algorithm. The weighted kernel k-means algorithm is used to partition the graph describing the voxel affinities within the striatum into the desired number of clusters. The method was experimentally validated with synthetic and real image data. The experiments showed that our method was able to automatically extract caudate, ventral striatum, and putamen from the images. Moreover, the putamen could be subdivided into anterior and posterior parts. An automatic method for the extraction of striatal structures from high-resolution PET images allows for inexpensive and reproducible extraction of the quantitative information from these images necessary in brain research and drug development.

  7. A lithospheric perspective on structure and evolution of Precambrian cratons

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2012-01-01

    The purpose of this chapter is to provide a summary of geophysical data on the structure of the stable continental lithosphere and its evolution since the Archean. Here, the term lithosphere is used to define the outer layer of the Earth which includes the crust and uppermost mantle, forms...... the roots of the continents, and moves together with continental plates. Depending on geophysical techniques (and physical properties measured), the lithosphere has different practical definitions. Most of them (i.e., seismic, electrical) are on the basis of a sharp change in temperature-dependent physical...

  8. Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass

    DEFF Research Database (Denmark)

    Carstensen, Jesper Vejlø

    planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This empha-sizes brass as being a convenient model...... further developed to account for the ob-served intergranular damage evolution on Cu-30%Zn. With these modifications the model pre-dicts the fatigue life curve of Cu-30%Zn and 316L....

  9. Analysis of ribosomal protein gene structures: implications for intron evolution.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs and mitochondrial ribosomal proteins (MRPs, which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.

  10. Environmental and genetic control of brain and song structure in the zebra finch.

    Science.gov (United States)

    Woodgate, Joseph L; Buchanan, Katherine L; Bennett, Andrew T D; Catchpole, Clive K; Brighton, Roswitha; Leitner, Stefan

    2014-01-01

    Birdsong is a classic example of a learned trait with cultural inheritance, with selection acting on trait expression. To understand how song responds to selection, it is vital to determine the extent to which variation in song learning and neuroanatomy is attributable to genetic variation, environmental conditions, or their interactions. Using a partial cross fostering design with an experimental stressor, we quantified the heritability of song structure and key brain nuclei in the song control system of the zebra finch and the genotype-by-environment (G × E) interactions. Neuroanatomy and song structure both showed low levels of heritability and are unlikely to be under selection as indicators of genetic quality. HVC, in particular, was almost entirely under environmental control. G × E interaction was important for brain development and may provide a mechanism by which additive genetic variation is maintained, which in turn may promote sexual selection through female choice. Our study suggests that selection may act on the genes determining vocal learning, rather than directly on the underlying neuroanatomy, and emphasizes the fundamental importance of environmental conditions for vocal learning and neural development in songbirds. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  11. Structural evolution in the crystallization of rapid cooling silver melt

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z.A., E-mail: ze.tian@gmail.com [School of Physics and Electronics, Hunan University, Changsha 410082 (China); Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Dong, K.J.; Yu, A.B. [Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  12. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder

    Science.gov (United States)

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies. PMID:26412064

  13. Network-level structural covariance in the developing brain.

    Science.gov (United States)

    Zielinski, Brandon A; Gennatas, Efstathios D; Zhou, Juan; Seeley, William W

    2010-10-19

    Intrinsic or resting state functional connectivity MRI and structural covariance MRI have begun to reveal the adult human brain's multiple network architectures. How and when these networks emerge during development remains unclear, but understanding ontogeny could shed light on network function and dysfunction. In this study, we applied structural covariance MRI techniques to 300 children in four age categories (early childhood, 5-8 y; late childhood, 8.5-11 y; early adolescence, 12-14 y; late adolescence, 16-18 y) to characterize gray matter structural relationships between cortical nodes that make up large-scale functional networks. Network nodes identified from eight widely replicated functional intrinsic connectivity networks served as seed regions to map whole-brain structural covariance patterns in each age group. In general, structural covariance in the youngest age group was limited to seed and contralateral homologous regions. Networks derived using primary sensory and motor cortex seeds were already well-developed in early childhood but expanded in early adolescence before pruning to a more restricted topology resembling adult intrinsic connectivity network patterns. In contrast, language, social-emotional, and other cognitive networks were relatively undeveloped in younger age groups and showed increasingly distributed topology in older children. The so-called default-mode network provided a notable exception, following a developmental trajectory more similar to the primary sensorimotor systems. Relationships between functional maturation and structural covariance networks topology warrant future exploration.

  14. Brain structural changes and neuropsychological impairments in male polydipsic schizophrenia

    Directory of Open Access Journals (Sweden)

    Nagashima Tomohisa

    2012-11-01

    Full Text Available Abstract Background Polydipsia frequently occurs in schizophrenia patients. The excessive water loading in polydipsia occasionally induces a hyponatremic state and leads to water intoxication. Whether polydipsia in schizophrenic patients correlates with neuropsychological impairments or structural brain changes is not clear and remains controversial. Methods Eight polydipsic schizophrenia patients, eight nonpolydipsic schizophrenia patients, and eight healthy controls were recruited. All subjects underwent magnetic resonance imaging (MRI and neuropsychological testing. Structural abnormalities were analyzed using a voxel-based morphometry (VBM approach, and patients’ neuropsychological function was assessed using the Brief Assessment of Cognition in Schizophrenia, Japanese version (BACS-J. Results No significant differences were found between the two patient groups with respect to the clinical characteristics. Compared with healthy controls, polydipsic patients showed widespread brain volume reduction and neuropsychological impairment. Furthermore, the left insula was significantly reduced in polydipsic patients compared with nonpolydipsic patients. These nonpolydipsic patients performed intermediate to the other two groups in the neuropsychological function test. Conclusions It is possible that polydipsia or the secondary hyponatremia might induce left insula volume reduction. Furthermore, this structural brain change may indirectly induce more severe neuropsychological impairments in polydipsic patients. Thus, we suggest that insula abnormalities might contribute to the pathophysiology of polydipsic patients.

  15. Structural brain plasticity in Parkinson's disease induced by balance training.

    Science.gov (United States)

    Sehm, Bernhard; Taubert, Marco; Conde, Virginia; Weise, David; Classen, Joseph; Dukart, Juergen; Draganski, Bogdan; Villringer, Arno; Ragert, Patrick

    2014-01-01

    We investigated morphometric brain changes in patients with Parkinson's disease (PD) that are associated with balance training. A total of 20 patients and 16 healthy matched controls learned a balance task over a period of 6 weeks. Balance testing and structural magnetic resonance imaging were performed before and after 2, 4, and 6 training weeks. Balance performance was re-evaluated after ∼20 months. Balance training resulted in performance improvements in both groups. Voxel-based morphometry revealed learning-dependent gray matter changes in the left hippocampus in healthy controls. In PD patients, performance improvements were correlated with gray matter changes in the right anterior precuneus, left inferior parietal cortex, left ventral premotor cortex, bilateral anterior cingulate cortex, and left middle temporal gyrus. Furthermore, a TIME × GROUP interaction analysis revealed time-dependent gray matter changes in the right cerebellum. Our results highlight training-induced balance improvements in PD patients that may be associated with specific patterns of structural brain plasticity. In summary, we provide novel evidence for the capacity of the human brain to undergo learning-related structural plasticity even in a pathophysiological disease state such as in PD. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Brain structural correlates of complex sentence comprehension in children.

    Science.gov (United States)

    Fengler, Anja; Meyer, Lars; Friederici, Angela D

    2015-10-01

    Prior structural imaging studies found initial evidence for the link between structural gray matter changes and the development of language performance in children. However, previous studies generally only focused on sentence comprehension. Therefore, little is known about the relationship between structural properties of brain regions relevant to sentence processing and more specific cognitive abilities underlying complex sentence comprehension. In this study, whole-brain magnetic resonance images from 59 children between 5 and 8 years were assessed. Scores on a standardized sentence comprehension test determined grammatical proficiency of our participants. A confirmatory factory analysis corroborated a grammar-relevant and a verbal working memory-relevant factor underlying the measured performance. Voxel-based morphometry of gray matter revealed that while children's ability to assign thematic roles is positively correlated with gray matter probability (GMP) in the left inferior temporal gyrus and the left inferior frontal gyrus, verbal working memory-related performance is positively correlated with GMP in the left parietal operculum extending into the posterior superior temporal gyrus. Since these areas are known to be differentially engaged in adults' complex sentence processing, our data suggest a specific correspondence between children's GMP in language-relevant brain regions and differential cognitive abilities that guide their sentence comprehension. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Brain structural correlates of complex sentence comprehension in children

    Directory of Open Access Journals (Sweden)

    Anja Fengler

    2015-10-01

    Full Text Available Prior structural imaging studies found initial evidence for the link between structural gray matter changes and the development of language performance in children. However, previous studies generally only focused on sentence comprehension. Therefore, little is known about the relationship between structural properties of brain regions relevant to sentence processing and more specific cognitive abilities underlying complex sentence comprehension. In this study, whole-brain magnetic resonance images from 59 children between 5 and 8 years were assessed. Scores on a standardized sentence comprehension test determined grammatical proficiency of our participants. A confirmatory factory analysis corroborated a grammar-relevant and a verbal working memory-relevant factor underlying the measured performance. Voxel-based morphometry of gray matter revealed that while children's ability to assign thematic roles is positively correlated with gray matter probability (GMP in the left inferior temporal gyrus and the left inferior frontal gyrus, verbal working memory-related performance is positively correlated with GMP in the left parietal operculum extending into the posterior superior temporal gyrus. Since these areas are known to be differentially engaged in adults’ complex sentence processing, our data suggest a specific correspondence between children's GMP in language-relevant brain regions and differential cognitive abilities that guide their sentence comprehension.

  18. The structural and property evolution of cellulose during carbonization

    Science.gov (United States)

    Rhim, Yo-Rhin

    The understanding of the structure and related property evolution during carbonization is imperative in engineering carbon materials for specific functionalities. High purity cellulose was used as a model precursor to help understand the conversion of organic compounds to hard carbons. Several characterization techniques were employed to follow the structural, compositional and property changes during the thermal transformation of microcrystalline cellulose to carbon over the temperature range of 250°C to 2000°C. These studies revealed several stages of composition and microstructure evolution during carbonization supported by the observation of five distinct regions of electrical and thermal properties. In Region I, from 250°C to 400°C, depolymerisation of cellulose molecules caused the evolution of volatile gases and decrease in dipole polarization. This also led to the reduction of overall AC electrical conductivity and specific heat. In Region II, from 450°C to 500°C, the formation and growth of conducting sp 2 carbon clusters resulted in increases in overall AC electrical conductivity and thermal diffusivity with rising temperature. For heat treatment temperatures of 550°C and 600°C, Region III, carbon clusters grew into aggregates of curved carbon layers leading to interfacial polarization and onset of percolation. AC electrical and thermal conductivities are enhanced due to electron hopping and improved phonon transport among carbon clusters. With temperatures rising from 650°C to 1000°C, Region IV, DC conductivity began to emerge and increased sharply along with thermal conductivity with further percolation of carbon clusters as lateral growth of carbon layers continued. Lastly, from 1200°C to 2000°C, Region V, DC electrical conductivity remained constant due to a fully percolated system.

  19. Structure, Function, and Evolution of Coronavirus Spike Proteins.

    Science.gov (United States)

    Li, Fang

    2016-09-29

    The coronavirus spike protein is a multifunctional molecular machine that mediates coronavirus entry into host cells. It first binds to a receptor on the host cell surface through its S1 subunit and then fuses viral and host membranes through its S2 subunit. Two domains in S1 from different coronaviruses recognize a variety of host receptors, leading to viral attachment. The spike protein exists in two structurally distinct conformations, prefusion and postfusion. The transition from prefusion to postfusion conformation of the spike protein must be triggered, leading to membrane fusion. This article reviews current knowledge about the structures and functions of coronavirus spike proteins, illustrating how the two S1 domains recognize different receptors and how the spike proteins are regulated to undergo conformational transitions. I further discuss the evolution of these two critical functions of coronavirus spike proteins, receptor recognition and membrane fusion, in the context of the corresponding functions from other viruses and host cells.

  20. Structural brain correlates associated with professional handball playing.

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing

  1. Structural brain correlates associated with professional handball playing.

    Directory of Open Access Journals (Sweden)

    Jürgen Hänggi

    Full Text Available There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands.We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM of the primary/secondary motor (MI/supplementary motor area, SMA and somatosensory cortex (SI/SII, basal ganglia, thalamus, and cerebellum and in the white matter (WM of the corticospinal tract (CST and corpus callosum, stronger in brain regions controlling the non-dominant left hand.Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women.Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a

  2. Structural Brain Correlates Associated with Professional Handball Playing

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic

  3. SYNAPTOSOMAL LACTATE DEHYDROGENASE ISOENZYME COMPOSITION IS SHIFTED TOWARD AEROBIC FORMS IN PRIMATE BRAIN EVOLUTION

    Science.gov (United States)

    Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  4. Structural plasticity of the brain to psychostimulant use.

    Science.gov (United States)

    Nyberg, Fred

    2014-12-01

    Over the past years it has become evident that repeated exposure to a variety of psychoactive stimulants, like amphetamine, cocaine, MDMA (3,4-methylenedioxy-N-methylamphetamine), methylphenidate and nicotine may produce profound behavioral changes as well as structural and neurochemical alterations in the brain that may persist long after drug administration has ceased. These stimulants have been shown to produce long-lasting enhanced embranchments of dendrites and increasing spine density in brain regions linked to behavioral sensitization and compulsive patterns characteristic of drug seeking and drug addiction. In this regard, addiction to stimulant drugs represents a compulsory behavior that includes drug seeking, drug use and drug craving, but is also characterized as a cognitive disorder. In this article, recent findings regarding the impact of central stimulants on plasticity in brain regions of relevance for addictive behavior will be highlighted. A particular focus will be given to changes in neuroplasticity that occur in areas related to memory and cognition. Possible routes for the reversal of altered brain plasticity will also be discussed. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  6. Locomotion without a brain: physical reservoir computing in tensegrity structures.

    Science.gov (United States)

    Caluwaerts, K; D'Haene, M; Verstraeten, D; Schrauwen, B

    2013-01-01

    Embodiment has led to a revolution in robotics by not thinking of the robot body and its controller as two separate units, but taking into account the interaction of the body with its environment. By investigating the effect of the body on the overall control computation, it has been suggested that the body is effectively performing computations, leading to the term morphological computation. Recent work has linked this to the field of reservoir computing, allowing one to endow morphologies with a theory of universal computation. In this work, we study a family of highly dynamic body structures, called tensegrity structures, controlled by one of the simplest kinds of "brains." These structures can be used to model biomechanical systems at different scales. By analyzing this extreme instantiation of compliant structures, we demonstrate the existence of a spectrum of choices of how to implement control in the body-brain composite. We show that tensegrity structures can maintain complex gaits with linear feedback control and that external feedback can intrinsically be integrated in the control loop. The various linear learning rules we consider differ in biological plausibility, and no specific assumptions are made on how to implement the feedback in a physical system.

  7. The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement.

    Science.gov (United States)

    Weigand, Michael R; Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Bowden, Katherine E; Burroughs, Mark; Cassiday, Pamela K; Davis, Jamie K; Johnson, Taccara; Juieng, Phalasy; Knipe, Kristen; Mathis, Marsenia H; Pruitt, Andrea M; Rowe, Lori; Sheth, Mili; Tondella, M Lucia; Williams, Margaret M

    2017-04-15

    Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology.IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a large number of repetitive mobile genetic

  8. Brain Structure Linking Delay Discounting and Academic Performance.

    Science.gov (United States)

    Wang, Song; Kong, Feng; Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Gong, Qiyong

    2017-08-01

    As a component of self-discipline, delay discounting refers to the ability to wait longer for preferred rewards and plays a pivotal role in shaping students' academic performance. However, the neural basis of the association between delay discounting and academic performance remains largely unknown. Here, we examined the neuroanatomical substrates underlying delay discounting and academic performance in 214 adolescents via voxel-based morphometry (VBM) by performing structural magnetic resonance imaging (S-MRI). Behaviorally, we confirmed the significant correlation between delay discounting and academic performance. Neurally, whole-brain regression analyses indicated that regional gray matter volume (rGMV) of the left dorsolateral prefrontal cortex (DLPFC) was associated with both delay discounting and academic performance. Furthermore, delay discounting partly accounted for the association between academic performance and brain structure. Differences in the rGMV of the left DLPFC related to academic performance explained over one-third of the impact of delay discounting on academic performance. Overall, these results provide the first evidence for the common neural basis linking delay discounting and academic performance. Hum Brain Mapp 38:3917-3926, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Directed Evolution and Structural Characterization of a Simvastatin Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xue; Xie, Xinkai; Pashkov, Inna; Sawaya, Michael R.; Laidman, Janel; Zhang, Wenjun; Cacho, Ralph; Yeates, Todd O.; Tang, Yi; UCLA

    2010-02-02

    Enzymes from natural product biosynthetic pathways are attractive candidates for creating tailored biocatalysts to produce semisynthetic pharmaceutical compounds. LovD is an acyltransferase that converts the inactive monacolin J acid (MJA) into the cholesterol-lowering lovastatin. LovD can also synthesize the blockbuster drug simvastatin using MJA and a synthetic {alpha}-dimethylbutyryl thioester, albeit with suboptimal properties as a biocatalyst. Here we used directed evolution to improve the properties of LovD toward semisynthesis of simvastatin. Mutants with improved catalytic efficiency, solubility, and thermal stability were obtained, with the best mutant displaying an {approx}11-fold increase in an Escherichia coli-based biocatalytic platform. To understand the structural basis of LovD enzymology, seven X-ray crystal structures were determined, including the parent LovD, an improved mutant G5, and G5 cocrystallized with ligands. Comparisons between the structures reveal that beneficial mutations stabilize the structure of G5 in a more compact conformation that is favorable for catalysis.

  10. Evolution of Integrated Causal Structures in Animats Exposed to Environments of Increasing Complexity

    Science.gov (United States)

    Albantakis, Larissa; Hintze, Arend; Koch, Christof; Adami, Christoph; Tononi, Giulio

    2014-01-01

    Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment's causal structure. We investigated the evolution of small, adaptive logic-gate networks (“animats”) in task environments where falling blocks of different sizes have to be caught or avoided in a ‘Tetris-like’ game. Solving these tasks requires the integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration, including the number of evolved concepts and the total amount of integrated conceptual information. The results show that, over the course of the animats' adaptation, i) the number of concepts grows; ii) integrated conceptual information increases; iii) this increase depends on the complexity of the environment, especially on the requirement for sequential memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors and internal mechanisms, is an important driving force for organisms to develop highly integrated networks (“brains”) with many concepts, leading to an increase in their internal complexity. PMID:25521484

  11. Structural Evolution of the Protein Kinase-Like Superfamily.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  12. Aerobic Exercise Intervention, Cognitive Performance, and Brain Structure

    DEFF Research Database (Denmark)

    Jonasson, Lars S; Nyberg, Lars; Kramer, Arthur F

    2017-01-01

    Studies have shown that aerobic exercise has the potential to improve cognition and reduce brain atrophy in older adults. However, the literature is equivocal with regards to the specificity or generality of these effects. To this end, we report results on cognitive function and brain structure...... from a 6-month training intervention with 60 sedentary adults (64-78 years) randomized to either aerobic training or stretching and toning control training. Cognitive functions were assessed with a neuropsychological test battery in which cognitive constructs were measured using several different tests....... Freesurfer was used to estimate cortical thickness in frontal regions and hippocampus volume. Results showed that aerobic exercisers, compared to controls, exhibited a broad, rather than specific, improvement in cognition as indexed by a higher "Cognitive score," a composite including episodic memory...

  13. Imaging structural and functional brain networks in temporal lobe epilepsy

    Science.gov (United States)

    Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

    2013-01-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

  14. Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds.

    Science.gov (United States)

    Vincze, Orsolya

    2016-09-01

    Brain size relative to body size is smaller in migratory than in nonmigratory birds. Two mutually nonexclusive hypotheses had been proposed to explain this association. On the one hand, the "energetic trade-off hypothesis" claims that migratory species were selected to have smaller brains because of the interplay between neural tissue volume and migratory flight. On the other hand, the "behavioral flexibility hypothesis" argues that resident species are selected to have higher cognitive capacities, and therefore larger brains, to enable survival in harsh winters, or to deal with environmental seasonality. Here, I test the validity and setting of these two hypotheses using 1466 globally distributed bird species. First, I show that the negative association between migration distance and relative brain size is very robust across species and phylogeny. Second, I provide strong support for the energetic trade-off hypothesis, by showing the validity of the trade-off among long-distance migratory species alone. Third, using resident and short-distance migratory species, I demonstrate that environmental harshness is associated with enlarged relative brain size, therefore arguably better cognition. My study provides the strongest comparative support to date for both the energetic trade-off and the behavioral flexibility hypotheses, and highlights that both mechanisms contribute to brain size evolution, but on different ends of the migratory spectrum. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  15. A Technique for the Deidentification of Structural Brain MR Images

    Science.gov (United States)

    Bischoff-Grethe, Amanda; Ozyurt, I. Burak; Busa, Evelina; Quinn, Brian T.; Fennema-Notestine, Christine; Clark, Camellia P.; Morris, Shaunna; Bondi, Mark W.; Jernigan, Terry L.; Dale, Anders M.; Brown, Gregory G.; Fischl, Bruce

    2008-01-01

    Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image is presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron 33:341–355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69–S84). A brain mask is constructed by forming the union of all voxels with nonzero probability of being brain and then morphologically dilated. All voxels outside the mask with a nonzero probability of being a facial feature are set to 0. The algorithm was applied to 342 datasets that included two different T1-weighted pulse sequences and four different diagnoses (depressed, Alzheimer’s, and elderly and young control groups). Visual inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing on skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med Imaging 17:87–97), defaced, and then skull-stripped using either a hybrid watershed algorithm (Ségonne et al. [2004]: Neuroimage 22:1060–1075, in FreeSurfer) or Brain Surface Extractor (Sandor and Leahy [1997]: IEEE Trans Med Imaging 16:41–54; Shattuck et al. [2001]: Neuroimage 13:856–876); defacing did not appreciably influence the outcome of skull-stripping. Results suggested that the automatic defacing algorithm is robust, efficiently removes nonbrain tissue, and does not unduly influence the outcome of the processing methods utilized; in some cases, skull-stripping was improved. Analyses support this algorithm as a viable method to allow data sharing with minimal data alteration within large-scale multisite projects. PMID:17295313

  16. Structural evolution of a granular medium during simultaneous penetration

    Science.gov (United States)

    González-Gutiérrez, Jorge; Carreón, Yojana J. P.; Moctezuma, R. E.

    2018-01-01

    Typically, fluidized beds are granular systems composed of solid particles through which a fluid flows. They are relevant to a wide variety of disciplines such as physics, chemistry, engineering, among others. Generally, the fluidized beds are characterized by different flow regimes such as particulate, bubbling, slugging, turbulent, fast fluidization, and pneumatic conveying. Here, we report the experimental study of the structural evolution of a granular system due to simultaneous penetration of intruders in the presence of an upward airflow. We found that the granular medium evolves from the static state to the turbulent regime showing the coexistence of three regions in different flow regimes. Interestingly, the cooperative dynamic of intruders correlate with the formation of such regions. As a non-invasive method, we use lacunarity and fractal dimension to quantitatively describe the patterns arising within the system during the different stages of the penetration process. Finally, we found that our results would allow us to relate the evolution of the visual patterns appearing in the process with different physical properties of the system.

  17. Non-Dissipative Structural Evolutions in Granular Materials

    Science.gov (United States)

    Pouragha, Mehdi; Wan, Richard

    2017-06-01

    The structure of the contact network in granular assemblies can evolve due to either dissipative mechanisms such as sliding at contact points, or non-dissipative mechanisms through the phenomenon of contact gain and loss. Being associated with negligible deformations, non-dissipative mechanisms is actually active even in the small strain range of 10-3, especially in the case of densely packed assemblies. Hence, from a constitutive modelling point of view, it is crucial to be able to estimate such non-dissipative evolutions since both elastic and plastic properties of granular assemblies highly depend on contact network characteristics. The current study proposes an analytical scheme that allows us to estimate the non-dissipative contact gain/loss regime in terms of directional changes in the average contact force. The probability distribution of contact forces is used to compute the number of lost contact for each direction. Similarly, the number of newly formed contacts is estimated by considering the probability distribution of the gap between neighbouring particles. Based on the directional contact gain/loss computed, the changes in coordination number and fabric anisotropy can be found which, together with statistical treatments of Love-Weber stress expression, form a complete system of equations describing the evolution of other controlling microvariables. Finally, the results of the calculations have been compared with DEM simulations which verify the accuracy of the proposed scheme.

  18. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    Directory of Open Access Journals (Sweden)

    Fei Shi

    2011-01-01

    Full Text Available Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions.

  19. A teaching module about stellar structure and evolution

    Science.gov (United States)

    Colantonio, Arturo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella; Testa, Italo

    2017-01-01

    In this paper, we present a teaching module about stellar structure, functioning and evolution. Drawing from literature in astronomy education, we designed the activities around three key ideas: spectral analysis, mechanical and thermal equilibrium, energy and nuclear reactions. The module is divided into four phases, in which the key ideas for describing stars' functioning and physical mechanisms are gradually introduced. The activities (20 hours) build on previously learned laws in mechanics, thermodynamics, and electromagnetism and help students combine them meaningfully in order to get a complete picture of processes that happens in stars. The module was piloted with two intact classes of secondary school students (N = 59 students, 17-18 years old), using a ten-question multiple-choice questionnaire as research instrument. Results support the effectiveness of the proposed activities. Implications for the teaching of advanced physics topics using stars as fruitful context are briefly discussed.

  20. Biophysical and structural considerations for protein sequence evolution

    Directory of Open Access Journals (Sweden)

    Grahnen Johan A

    2011-12-01

    Full Text Available Abstract Background Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. Results Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS Conclusions Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model.

  1. The influence of halo evolution on galaxy structure

    Science.gov (United States)

    White, Simon

    2015-03-01

    If Einstein-Newton gravity holds on galactic and larger scales, then current observations demonstrate that the stars and interstellar gas of a typical bright galaxy account for only a few percent of its total nonlinear mass. Dark matter makes up the rest and cannot be faint stars or any other baryonic form because it was already present and decoupled from the radiation plasma at z = 1000, long before any nonlinear object formed. The weak gravito-sonic waves so precisely measured by CMB observations are detected again at z = 4 as order unity fluctuations in intergalactic matter. These subsequently collapse to form today's galaxy/halo systems, whose mean mass profiles can be accurately determined through gravitational lensing. High-resolution simulations link the observed dark matter structures seen at all these epochs, demonstrating that they are consistent and providing detailed predictions for all aspects of halo structure and growth. Requiring consistency with the abundance and clustering of real galaxies strongly constrains the galaxy-halo relation, both today and at high redshift. This results in detailed predictions for galaxy assembly histories and for the gravitational arena in which galaxies live. Dark halos are not expected to be passive or symmetric but to have a rich and continually evolving structure which will drive evolution in the central galaxy over its full life, exciting warps, spiral patterns and tidal arms, thickening disks, producing rings, bars and bulges. Their growth is closely related to the provision of new gas for galaxy building.

  2. Protein Flexibility Facilitates Quaternary Structure Assembly and Evolution

    Science.gov (United States)

    Marsh, Joseph A.; Teichmann, Sarah A.

    2014-01-01

    The intrinsic flexibility of proteins allows them to undergo large conformational fluctuations in solution or upon interaction with other molecules. Proteins also commonly assemble into complexes with diverse quaternary structure arrangements. Here we investigate how the flexibility of individual protein chains influences the assembly and evolution of protein complexes. We find that flexibility appears to be particularly conducive to the formation of heterologous (i.e., asymmetric) intersubunit interfaces. This leads to a strong association between subunit flexibility and homomeric complexes with cyclic and asymmetric quaternary structure topologies. Similarly, we also observe that the more nonhomologous subunits that assemble together within a complex, the more flexible those subunits tend to be. Importantly, these findings suggest that subunit flexibility should be closely related to the evolutionary history of a complex. We confirm this by showing that evolutionarily more recent subunits are generally more flexible than evolutionarily older subunits. Finally, we investigate the very different explorations of quaternary structure space that have occurred in different evolutionary lineages. In particular, the increased flexibility of eukaryotic proteins appears to enable the assembly of heteromeric complexes with more unique components. PMID:24866000

  3. Structural evolution, growth and stability of metal titanium clusters

    Science.gov (United States)

    Chauke, Hasani; Phaahla, Tshegofatso; Ngoepe, Phuti; Catlow, Richard

    The transition metals clusters such as titanium have received a significant attention due to their excellent physical and chemical properties and great technological application in many fields. A survey of small Ti clusters was performed using interatomic potentials and computational methods based on density functional theory; and the knowledge led master code with a genetic algorithm to generate the lowest energy geometries of Tin (n = 2-32) clusters. The all electron spin-unpolarized generalized gradient approximation is used to determine the ground state structures, binding energy and electronic properties. The structural evolution of titanium clusters, which favors the icosahedron structure growth pattern is observed. The energy for the ground state configurations is found to increase monotonically with the clusters size. Their relative stability results predict clusters with 5 and 7 as more stable. The energy difference for clusters n >=24 is very small, suggesting that the larger clusters could be stable at moderate temperatures. In addition to the magic numbers that are often reported i.e. Ti7 and Ti13; clusters 5, 9, 14, 17 and 26 have extra stability.

  4. Structural and Maturational Covariance in Early Childhood Brain Development.

    Science.gov (United States)

    Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H

    2017-03-01

    Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Evolution, immunity and the emergence of brain superautoantigens [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Serge Nataf

    2017-02-01

    Full Text Available While some autoimmune disorders remain extremely rare, others largely predominate the epidemiology of human autoimmunity. Notably, these include psoriasis, diabetes, vitiligo, thyroiditis, rheumatoid arthritis and multiple sclerosis. Thus, despite the quasi-infinite number of "self" antigens that could theoretically trigger autoimmune responses, only a limited set of antigens, referred here as superautoantigens, induce pathogenic adaptive responses. Several lines of evidence reviewed in this paper indicate that, irrespective of the targeted organ (e.g. thyroid, pancreas, joints, brain or skin, a significant proportion of superautoantigens are highly expressed in the synaptic compartment of the central nervous system (CNS. Such an observation applies notably for GAD65, AchR, ribonucleoproteins, heat shock proteins, collagen IV, laminin, tyrosine hydroxylase and the acetylcholinesterase domain of thyroglobulin. It is also argued that cognitive alterations have been described in a number of autoimmune disorders, including psoriasis, rheumatoid arthritis, lupus, Crohn's disease and autoimmune thyroiditis. Finally, the present paper points out that a great majority of the "incidental" autoimmune conditions notably triggered by neoplasms, vaccinations or microbial infections are targeting the synaptic or myelin compartments. On this basis, the concept of an immunological homunculus, proposed by Irun Cohen more than 25 years ago, is extended here in a model where physiological autoimmunity against brain superautoantigens confers both: i a crucial evolutionary-determined advantage via cognition-promoting autoimmunity; and ii a major evolutionary-determined vulnerability, leading to the emergence of autoimmune disorders in Homo sapiens. Moreover, in this theoretical framework, the so called co-development/co-evolution model, both the development (at the scale of an individual and evolution (at the scale of species of the antibody and T-cell repertoires

  6. Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution.

    Science.gov (United States)

    Falk, Dean; Zollikofer, Christoph P E; Morimoto, Naoki; Ponce de León, Marcia S

    2012-05-29

    The type specimen for Australopithecus africanus (Taung) includes a natural endocast that reproduces most of the external morphology of the right cerebral hemisphere and a fragment of fossilized face that articulates with the endocast. Despite the fact that Taung died between 3 and 4 y of age, the endocast reproduces a small triangular-shaped remnant of the anterior fontanelle, from which a clear metopic suture (MS) courses rostrally along the midline [Hrdlička A (1925) Am J Phys Anthropol 8:379-392]. Here we describe and interpret this feature of Taung in light of comparative fossil and actualistic data on the timing of MS closure. In great apes, the MS normally fuses shortly after birth, such that unfused MS similar to Taung's are rare. In humans, however, MS fuses well after birth, and partially or unfused MS are frequent. In gracile fossil adult hominins that lived between ∼3.0 and 1.5 million y ago, MS are also relatively frequent, indicating that the modern human-like pattern of late MS fusion may have become adaptive during early hominin evolution. Selective pressures favoring delayed fusion might have resulted from three aspects of perinatal ontogeny: (i) the difficulty of giving birth to large-headed neonates through birth canals that were reconfigured for bipedalism (the "obstetric dilemma"), (ii) high early postnatal brain growth rates, and (iii) reorganization and expansion of the frontal neocortex. Overall, our data indicate that hominin brain evolution occurred within a complex network of fetopelvic constraints, which required modification of frontal neurocranial ossification patterns.

  7. Cognition and Brain Structure Following Early Childhood Surgery With Anesthesia.

    Science.gov (United States)

    Backeljauw, Barynia; Holland, Scott K; Altaye, Mekibib; Loepke, Andreas W

    2015-07-01

    Anesthetics induce widespread cell death, permanent neuronal deletion, and neurocognitive impairment in immature animals, raising substantial concerns about similar effects occurring in young children. Epidemiologic studies have been unable to sufficiently address this concern, in part due to reliance on group-administered achievement tests, inability to assess brain structure, and limited control for confounders. We compared healthy participants of a language development study at age 5 to 18 years who had undergone surgery with anesthesia before 4 years of age (n = 53) with unexposed peers (n = 53) who were matched for age, gender, handedness, and socioeconomic status. Neurocognitive assessments included the Oral and Written Language Scales and the Wechsler Intelligence Scales (WAIS) or WISC, as appropriate for age. Brain structural comparisons were conducted by using T1-weighted MRI scans. Average test scores were within population norms, regardless of surgical history. However, compared with control subjects, previously exposed children scored significantly lower in listening comprehension and performance IQ. Exposure did not lead to gross elimination of gray matter in regions previously identified as vulnerable in animals. Decreased performance IQ and language comprehension, however, were associated with lower gray matter density in the occipital cortex and cerebellum. The present findings suggest that general anesthesia for a surgical procedure in early childhood may be associated with long-term diminution of language abilities and cognition, as well as regional volumetric alterations in brain structure. Although causation remains unresolved, these findings nonetheless warrant additional research into the phenomenon's mechanism and mitigating strategies. Copyright © 2015 by the American Academy of Pediatrics.

  8. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    Directory of Open Access Journals (Sweden)

    Catherine S Hubbard

    Full Text Available Irritable bowel syndrome (IBS is a functional gastrointestinal (GI disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL. Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC, whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC. In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI, whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease

  9. Postnatal brain development: Structural imaging of dynamic neurodevelopmental processes

    Science.gov (United States)

    Jernigan, Terry L.; Baaré, William F. C.; Stiles, Joan; Madsen, Kathrine Skak

    2013-01-01

    After birth, there is striking biological and functional development of the brain’s fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain–behavior associations in children, including genetic variation, behavioral interventions, and hormonal variation associated with puberty. At present longitudinal studies are few, and we do not yet know how variability in individual trajectories of biological development in specific neural systems map onto similar variability in behavioral trajectories. PMID:21489384

  10. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    Science.gov (United States)

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  11. Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas

    Directory of Open Access Journals (Sweden)

    Levasseur Anthony

    2007-10-01

    Full Text Available Abstract Background The X-linked SRPX2 gene encodes a Sushi Repeat-containing Protein of unknown function and is mutated in two disorders of the Rolandic/Sylvian speech areas. Since it is linked to defects in the functioning and the development of brain areas for speech production, SRPX2 may thus have participated in the adaptive organization of such brain regions. To address this issue, we have examined the recent molecular evolution of the SRPX2 gene. Results The complete coding region was sequenced in 24 human X chromosomes from worldwide populations and in six representative nonhuman primate species. One single, fixed amino acid change (R75K has been specifically incorporated in human SRPX2 since the human-chimpanzee split. The R75K substitution occurred in the first sushi domain of SRPX2, only three amino acid residues away from a previously reported disease-causing mutation (Y72S. Three-dimensional structural modeling of the first sushi domain revealed that Y72 and K75 are both situated in the hypervariable loop that is usually implicated in protein-protein interactions. The side-chain of residue 75 is exposed, and is located within an unusual and SRPX-specific protruding extension to the hypervariable loop. The analysis of non-synonymous/synonymous substitution rate (Ka/Ks ratio in primates was performed in order to test for positive selection during recent evolution. Using the branch models, the Ka/Ks ratio for the human branch was significantly different (p = 0.027 from that of the other branches. In contrast, the branch-site tests did not reach significance. Genetic analysis was also performed by sequencing 9,908 kilobases (kb of intronic SRPX2 sequences. Despite low nucleotide diversity, neither the HKA (Hudson-Kreitman-Aguadé test nor the Tajima's D test reached significance. Conclusion The R75K human-specific variation occurred in an important functional loop of the first sushi domain of SRPX2, indicating that this evolutionary

  12. The Co-evolution of Language and the Brain: A Review of Two Contrastive Views (Pinker & Deacon)

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj

    2001-01-01

    in a larger symbolic computational chain controlled by regions in the frontal parts of the brain. To Deacon, a symbolic learning algorithm drives language acquisition. The increase in size of the human brain in relation to the body may be due to a “cognitive arms race”. Both Pinker and Deacon agree......This article is a review of two contrastive views on the co-evolution of language and the brain – The Language Instinct by Steven Pinker (1994) and The Symbolic Species by Terrence Deacon (1997). As language is a trait unique to mankind it can not be equated with nonlinguistic communication – human...... or nonhuman. This points to a special human brain architecture. Pinker’s claim is that certain areas on the left side of the brain constitute a language organ and that language acquisition is instinctual. To Deacon, however, those areas are non-language-specific computational centers. Moreover, they are parts...

  13. Halo formation and evolution: unifying physical properties with structure

    Science.gov (United States)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    The assembly of matter in the universe proliferates a variety of structures with diverse properties. For example, massive halos of clusters of galaxies have temperatures often an order of magnitude or more higher than the individual galaxy halos within the cluster, or the temperatures of isolated galaxy halos. Giant spiral galaxies contain large quantities of both dark matter and hot gas while other structures like globular clusters appear to have little or no dark matter or gas. Still others, like the dwarf spheroidal galaxies have low gravity and little hot gas, but ironically contain some of the largest fractions of dark matter in the universe. Star forming rates (SFRs) also vary: compare for example the SFRs of giant elliptical galaxies, globular clusters, spiral and starburst galaxies. Furthermore there is evidence that the various structure types have existed over a large fraction of cosmic history. How can this array of variation in properties be reconciled with galaxy halo formation and evolution?We propose a model of halo formation [1] and evolution [2] that is consistent with both primordial nucleosynthesis (BBN) and the isotropies in the cosmic microwave background (CMB). The model uses two simple parameters, the total mass and size of a structure, to (1) explain why galaxies have the fractions of dark matter that they do (including why dwarf spheroidals are so dark matter dominated despite their weak gravity), (2) enable an understanding of the black hole-bulge/black hole-dark halo relations, (3) explain how fully formed massive galaxies can occur so early in cosmic history, (4) understand the connection between spiral and elliptical galaxies (5) unify the nature of globular clusters, dwarf spheroidal galaxies and bulges and (6) predict the temperatures of hot gas halos and understand how cool galaxy halos can remain stable in the hot environments of cluster-galaxy halos.[1] Ernest, A. D., 2012, in Prof. Ion Cotaescu (Ed) Advances in Quantum Theory, pp

  14. Diffusion MRI at 25: exploring brain tissue structure and function.

    Science.gov (United States)

    Le Bihan, Denis; Johansen-Berg, Heidi

    2012-06-01

    Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Association between structural brain network efficiency and intelligence increases during adolescence

    NARCIS (Netherlands)

    Koenis, Marinka M G; Brouwer, Rachel M; Swagerman, Suzanne C; van Soelen, Inge L C; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2017-01-01

    Adolescence represents an important period during which considerable changes in the brain take place, including increases in integrity of white matter bundles, and increasing efficiency of the structural brain network. A more efficient structural brain network has been associated with higher

  16. Brain Structure and Executive Functions in Children with Cerebral Palsy: A Systematic Review

    Science.gov (United States)

    Weierink, Lonneke; Vermeulen, R. Jeroen; Boyd, Roslyn N.

    2013-01-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using…

  17. Obesity and Aging: Consequences for Cognition, Brain Structure, and Brain Function.

    Science.gov (United States)

    Bischof, Gérard N; Park, Denise C

    2015-01-01

    This review focuses on the relationship between obesity and aging and how these interact to affect cognitive function. The topics covered are guided by the Scaffolding Theory of Aging and Cognition (STAC [Park and Reuter-Lorenz. Annu Rev Psychol 2009;60:173-96]-a conceptual model designed to relate brain structure and function to one's level of cognitive ability. The initial literature search was focused on normal aging and was guided by the key words, "aging, cognition, and obesity" in PubMed. In a second search, we added key words related to neuropathology including words "Alzheimer's disease," "vascular dementia," and "mild cognitive impairment." The data suggest that being overweight or obese in midlife may be more detrimental to subsequent age-related cognitive decline than being overweight or obese at later stages of the life span. These effects are likely mediated by the accelerated effects obesity has on the integrity of neural structures, including both gray and white matter. Further epidemiological studies have provided evidence that obesity in midlife is linked to an increased risk for Alzheimer's disease and vascular dementia, most likely via an increased accumulation of Alzheimer's disease pathology. Although it is clear that obesity negatively affects cognition, more work is needed to better understand how aging plays a role and how brain structure and brain function might mediate the relationship of obesity and age on cognition. Guided by the STAC and the STAC-R models, we provide a roadmap for future investigations of the role of obesity on cognition across the life span.

  18. Evolution of the brain: from behavior to consciousness in 3.4 billion years.

    Science.gov (United States)

    Oró, John J

    2004-06-01

    Once life began as single-cell organisms, evolution favored those able to seek nutrients and avoid risks. Receptors sensed the environment, memory traces were laid, and adaptive responses were made. Environmental stress, at times as dramatic as the collision of an asteroid, resulted in extinctions that favored small predators with dorsal nerve cords and cranially positioned brains. Myelination, and later thermoregulation, led to increasingly efficient neural processing. As somatosensory, visual, and auditory input increased, a neocortex developed containing both sensory and motor neural maps. Hominids, with their free hands, pushed cortical development further and began to make simple stone tools. Tools and increasing cognition allowed procurement of a richer diet that led to a smaller gut, thus freeing more energy for brain expansion. Multimodal association areas, initially developed for processing incoming sensory information, blossomed and began to provide the organism with an awareness of self and environment. Advancements in memory storage and retrieval gave the organism a sense of continuity through time. This developing consciousness eventually left visible traces, which today are dramatically evident on cave walls in France and Spain. We will take this journey from the single cell to human consciousness.

  19. Positive selection in ASPM is correlated with cerebral cortex evolution across primates but not with whole-brain size.

    Science.gov (United States)

    Ali, Farhan; Meier, Rudolf

    2008-11-01

    The rapid increase of brain size is a key event in human evolution. Abnormal spindle-like microcephaly associated (ASPM) is discussed as a major candidate gene for explaining the exceptionally large brain in humans but ASPM's role remains controversial. Here we use codon-specific models and a comparative approach to test this candidate gene that was initially identified in Homo-chimp comparisons. We demonstrate that accelerated evolution of ASPM (omega = 4.7) at 16 amino acid sites occurred in 9 primate lineages with major changes in relative cerebral cortex size. However, ASPM's evolution is not correlated with major changes in relative whole-brain or cerebellum sizes. Our results suggest that a single candidate gene such as ASPM can influence a specific component of the brain across large clades through changes in a few amino acid sites. We furthermore illustrate the power of using continuous phenotypic variability across primates to rigorously test candidate genes that have been implicated in the evolution of key human traits.

  20. Structural brain network: What is the effect of LiFE optimization of whole brain tractography?

    Directory of Open Access Journals (Sweden)

    Shouliang eQi

    2016-02-01

    Full Text Available Structural brain networks constructed based on diffusion-weighted MRI (dMRI have provided a systems perspective to explore the organization of the human brain. Some redundant and nonexistent fibers, however, are inevitably generated in whole brain tractography. We propose to add one critical step while constructing the networks to remove these fibers using the linear fascicle evaluation (LiFE method, and study the differences between the networks with and without LiFE optimization. For a cohort of 9 healthy adults and for 9 out of the 35 subjects from Human Connectome Project, the T1-weighted images and dMRI data are analyzed. Each brain is parcellated into 90 regions-of-interest, whilst a probabilistic tractography algorithm is applied to generate the original connectome. The elimination of redundant and nonexistent fibers from the original connectome by LiFE creates the optimized connectome, and the random selection of the same number of fibers as the optimized connectome creates the non-optimized connectome. The combination of parcellations and these connectomes leads to the optimized and non-optimized networks, respectively. The optimized networks are constructed with six weighting schemes, and the correlations of different weighting methods are analyzed. The fiber length distributions of the non-optimized and optimized connectomes are compared. The optimized and non-optimized networks are compared with regard to edges, nodes and networks, within a sparsity range of 0.75-0.95. It has been found that relatively more short fibers exist in the optimized connectome. About 24.0% edges of the optimized network are significantly different from those in the non-optimized network at a sparsity of 0.75. About 13.2% of edges are classified as false positives or the possible missing edges. The strength and betweenness centrality of some nodes are significantly different for the non-optimized and optimized networks, but not the node efficiency. The

  1. Structure and Evolution of Kuiper Belt Objects and Dwarf Planets

    Science.gov (United States)

    McKinnon, W. B.; Prialnik, D.; Stern, S. A.; Coradini, A.

    Kuiper belt objects (KBOs) accreted from a mélange of volatile ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of heating due to radioactive decay, the most important potential source being 26Al, whereas long-term evolution of large bodies is controlled by the decay of U, Th, and 40K. Several studies are reviewed dealing with the evolution of KBO models, calculated by means of one-dimensional numerical codes that solve the heat and mass balance equations. It is shown that, depending on parameters (principally rock content and porous conductivity), KBO interiors may have reached relatively high temperatures. The models suggest that KBOs likely lost ices of very volatile species during early evolution, whereas ices of less-volatile species should be retained in cold, less-altered subsurface layers. Initially amorphous ice may have crystallized in KBO interiors, releasing volatiles trapped in the amorphous ice, and some objects may have lost part of these volatiles as well. Generally, the outer layers are far less affected by internal evolution than the inner part, which in the absence of other effects (such as collisions) predicts a stratified composition and altered porosity distribution. Kuiper belt objects are thus unlikely to be "the most pristine objects in the solar system," but they do contain key information as to how the early solar system accreted and dynamically evolved. For large (dwarf planet) KBOs, long-term radiogenic heating alone may lead to differentiated structures -- rock cores, ice mantles, volatile-ice-rich "crusts," and even oceans. Persistence of oceans and (potential) volcanism to the present day depends strongly on body size and

  2. Structural Magnetic Resonance Imaging of the Adolescent Brain

    National Research Council Canada - National Science Library

    GIEDD, JAY N

    2004-01-01

    A bstract : Magnetic resonance imaging (MRI) provides accurate anatomical brain images without the use of ionizing radiation, allowing longitudinal studies of brain morphometry during adolescent development...

  3. Functional divergence of the brain-size regulating gene MCPH1 during primate evolution and the origin of humans

    Science.gov (United States)

    2013-01-01

    Background One of the key genes that regulate human brain size, MCPH1 has evolved under strong Darwinian positive selection during the evolution of primates. During this evolution, the divergence of MCPH1 protein sequences among primates may have caused functional changes that contribute to brain enlargement. Results To test this hypothesis, we used co-immunoprecipitation and reporter gene assays to examine the activating and repressing effects of MCPH1 on a set of its down-stream genes and then compared the functional outcomes of a series of mutant MCPH1 proteins that carry mutations at the human- and great-ape-specific sites. The results demonstrate that the regulatory effects of human MCPH1 and rhesus macaque MCPH1 are different in three of eight down-stream genes tested (p73, cyclinE1 and p14ARF), suggesting a functional divergence of MCPH1 between human and non-human primates. Further analyses of the mutant MCPH1 proteins indicated that most of the human-specific mutations could change the regulatory effects on the down-stream genes. A similar result was also observed for one of the four great-ape-specific mutations. Conclusions Collectively, we propose that during primate evolution in general and human evolution in particular, the divergence of MCPH1 protein sequences under Darwinian positive selection led to functional modifications, providing a possible molecular mechanism of how MCPH1 contributed to brain enlargement during primate evolution and human origin. PMID:23697381

  4. Structure, development, and evolution of insect auditory systems.

    Science.gov (United States)

    Yager, D D

    1999-12-15

    This paper provides an overview of insect peripheral auditory systems focusing on tympanate ears (pressure detectors) and emphasizing research during the last 15 years. The theme throughout is the evolution of hearing in insects. Ears have appeared independently no fewer than 19 times in the class Insecta and are located on various thoracic and abdominal body segments, on legs, on wings, and on mouth parts. All have fundamentally similar structures-a tympanum backed by a tracheal sac and a tympanal chordotonal organ-though they vary widely in size, ancillary structures, and number of chordotonal sensilla. Novel ears have recently been discovered in praying mantids, two families of beetles, and two families of flies. The tachinid flies are especially notable because they use a previously unknown mechanism for sound localization. Developmental and comparative studies have identified the evolutionary precursors of the tympanal chordotonal organs in several insects; they are uniformly chordotonal proprioceptors. Tympanate species fall into clusters determined by which of the embryologically defined chordotonal organ groups in each body segment served as precursor for the tympanal organ. This suggests that the many appearances of hearing could arise from changes in a small number of developmental modules. The nature of those developmental changes that lead to a functional insect ear is not yet known. Copyright 1999 Wiley-Liss, Inc.

  5. Structural Evolution of Household Energy Consumption: A China Study

    Directory of Open Access Journals (Sweden)

    Qingsong Wang

    2015-04-01

    Full Text Available Sustainable energy production and consumption is one of the issues for the sustainable development strategy in China. As China’s economic development paradigm shifts, household energy consumption (HEC has become a focus of achieving national goals of energy efficiency and greenhouse gas reduction. The information entropy model and LMDI model were employed in this study in order to analyse the structural evolution of HEC, as well as its associated critical factors. The results indicate that the information entropy of HEC increased gradually, and coal will be reduced by clean energies, such as natural gas and liquefied petroleum gas. The information entropy tends to stabilize and converge due to rapid urbanization. Therefore, from the perspective of environmental protection and natural resource conservation, the structure of household energy consumption will be optimized. This study revealed that residents’ income level is one of the most critical factors for the increase of energy consumption, while the energy intensity is the only driving force for the reduction of HEC. The accumulated contribution of these two factors to the HEC is 240.53% and −161.75%, respectively. It is imperative to improve the energy efficiency in the residential sector. Recommendations are provided to improve the energy efficiency-related technologies, as well as the standards for the sustainable energy strategy.

  6. The Evolution of Genome Structure by Natural and Sexual Selection.

    Science.gov (United States)

    Kirkpatrick, Mark

    2017-01-01

    Progress on understanding how genome structure evolves is accelerating with the arrival of new genomic, comparative, and theoretical approaches. This article reviews progress in understanding how chromosome inversions and sex chromosomes evolve, and how their evolution affects species' ecology. Analyses of clines in inversion frequencies in flies and mosquitoes imply strong local adaptation, and roles for both over- and under dominant selection. Those results are consistent with the hypothesis that inversions become established when they capture locally adapted alleles. Inversions can carry alleles that are beneficial to closely related species, causing them to introgress following hybridization. Models show that this "adaptive cassette" scenario can trigger large range expansions, as recently happened in malaria mosquitoes. Sex chromosomes are the most rapidly evolving genome regions of some taxa. Sexually antagonistic selection may be the key force driving transitions of sex determination between different pairs of chromosomes and between XY and ZW systems. Fusions between sex-chromosomes and autosomes most often involve the Y chromosome, a pattern that can be explained if fusions are mildly deleterious and fix by drift. Sexually antagonistic selection is one of several hypotheses to explain the recent discovery that the sex determination system has strong effects on the adult sex ratios of tetrapods. The emerging view of how genome structure evolves invokes a much richer constellation of forces than was envisioned during the Golden Age of research on Drosophila karyotypes. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae Tetraspanins

    Directory of Open Access Journals (Sweden)

    Edwin K. Murungi

    2014-11-01

    Full Text Available Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major roles in membrane biology, visual processing, memory, olfactory signal processing, and mechanosensory antennal inputs. Thus, these proteins are potential targets for control of insect pests. Here, we report that the genome of the tsetse fly, Glossina morsitans (Diptera: Glossinidae encodes at least seventeen tetraspanins (GmTsps, all containing the signature features found in the tetraspanin superfamily members. Whereas six of the GmTsps have been previously reported, eleven could be classified as novel because their amino acid sequences do not map to characterized tetraspanins in the available protein data bases. We present a model of the GmTsps by using GmTsp42Ed, whose presence and expression has been recently detected by transcriptomics and proteomics analyses of G. morsitans. Phylogenetically, the identified GmTsps segregate into three major clusters. Structurally, the GmTsps are largely similar to vertebrate tetraspanins. In view of the exploitation of tetraspanins by organisms for survival, these proteins could be targeted using specific antibodies, recombinant large extracellular loop (LEL domains, small-molecule mimetics and siRNAs as potential novel and efficacious putative targets to combat African trypanosomiasis by killing the tsetse fly vector.

  8. Asymmetry of the structural brain connectome in healthy older adults.

    Directory of Open Access Journals (Sweden)

    Leonardo eBonilha

    2014-01-01

    Full Text Available Background: It is now possible to map neural connections in vivo across the whole brain (i.e., the brain connectome. This is a promising development in neuroscience since many health and disease processes are believed to arise from the architecture of neural networks.Objective: To describe the normal range of hemispheric asymmetry in structural connectivity in healthy older adults.Methods: We obtained high-resolution structural magnetic resonance images (MRI from 17 healthy older adults. For each subject, the brain connectome was reconstructed by parcelating the probabilistic map of gray matter into anatomically defined regions of interested (ROIs. White matter fiber tractography was reconstructed from diffusion tensor imaging and streamlines connecting gray matter ROIs were computed. Asymmetry indices were calculated regarding ROI connectivity (representing the sum of connectivity weight of each cortical ROI and for regional white matter links. All asymmetry measures were compared to a normal distribution with mean=0 through one sample t-tests.Results: Leftward cortical ROI asymmetry was observed in medial temporal, dorsolateral frontal and occipital regions. Rightward cortical ROI asymmetry was observed in middle temporal and orbito-frontal regions. Link-wise asymmetry revealed stronger connections in the left hemisphere between the medial temporal, anterior and posterior peri-Sylvian and occipito-temporal regions. Rightward link asymmetry was observed in lateral temporal, parietal and dorsolateral frontal connections.Conclusions: We postulate that asymmetry of specific connections may be related to functional hemispheric organization. This study may provide reference for future studies evaluating the architecture of the connectome in health and disease processes in senior individuals.

  9. BRAIN STRUCTURAL AND FUNCTIONAL CHANGES IN ADOLESCENTS WITH PSYCHIATRIC DISORDERS

    Science.gov (United States)

    Miguel-Hidalgo, José Javier

    2013-01-01

    During adolescence hormonal and neurodevelopmental changes geared to ensure reproduction and achieve independence are very likely mediated by growth of neural processes, remodeling of synaptic connections, increased myelination in prefrontal areas, and maturation of connecting subcortical regions. These processes, greatly accelerated in adolescence, follow an asynchronous pattern in different brain areas. Neuroimaging research using functional and structural magnetic resonance imaging has produced most of the insights regarding brain structural and functional neuropathology in adolescent psychiatric disorders. In schizophrenia, first episodes during adolescence are linked to greater-than-normal losses in gray matter density and white matter integrity, and show a divergence of maturational trajectories from normative neural development, in a progression similar to that of adult-onset schizophrenia. Anxiety and mood disorders in adolescence have been linked to abnormally increased activity in the amygdala and ventral prefrontal cortical areas, although some data suggest that neural abnormalities in the amygdala and anxiety maybe particularly more frequent in adolescents than in adults. Alcohol misuse in adolescence results in reduced integrity in the white matter and reduced gray matter density that, given the high intensity of adolescent synaptic and myelin remodeling, may result in persistent and profound changes in circuits supporting memory, emotional and appetitive control. Interaction of persistent changes due to prenatal exposure with contemporaneous expression of genetic factors and disturbing environmental exposure may be an important factor in the appearance of psychiatric disorders in adolescence. Further progress in understanding adolescent psychopathology will require postmortem research of molecular and cellular determinants in the adolescent brain. PMID:23828425

  10. Brain structure links everyday creativity to creative achievement.

    Science.gov (United States)

    Zhu, Wenfeng; Chen, Qunlin; Tang, Chaoying; Cao, Guikang; Hou, Yuling; Qiu, Jiang

    2016-03-01

    Although creativity is commonly considered to be a cornerstone of human progress and vital to all realms of our lives, its neural basis remains elusive, partly due to the different tasks and measurement methods applied in research. In particular, the neural correlates of everyday creativity that can be experienced by everyone, to some extent, are still unexplored. The present study was designed to investigate the brain structure underlying individual differences in everyday creativity, as measured by the Creative Behavioral Inventory (CBI) (N=163). The results revealed that more creative activities were significantly and positively associated with larger gray matter volume (GMV) in the regional premotor cortex (PMC), which is a motor planning area involved in the creation and selection of novel actions and inhibition. In addition, the gray volume of the PMC had a significant positive relationship with creative achievement and Art scores, which supports the notion that training and practice may induce changes in brain structures. These results indicate that everyday creativity is linked to the PMC and that PMC volume can predict creative achievement, supporting the view that motor planning may play a crucial role in creative behavior. Published by Elsevier Inc.

  11. Frequency-based similarity detection of structures in human brain

    Science.gov (United States)

    Sims, Dave I.; Siadat, Mohammad-Reza

    2017-03-01

    Advancements in 3D scanning and volumetric imaging methods have motivated researchers to tackle new challenges related to storing, retrieving and comparing 3D models, especially in medical domain. Comparing natural rigid shapes and detecting subtle changes in 3D models of brain structures is of great importance. Precision in capturing surface details and insensitivity to shape orientation are highly desirable properties of good shape descriptors. In this paper, we propose a new method, Spherical Harmonics Distance (SHD), which leverages the power of spherical harmonics to provide more accurate representation of surface details. At the same time, the proposed method incorporates the features of a shape distribution method (D2) and inherits its insensitivity to shape orientation. Comparing SHD to a spherical harmonics based method (SPHARM) shows that the performance of the proposed method is less sensitive to rotation. Also, comparing SHD to D2 shows that the proposed method is more accurate in detecting subtle changes. The performance of the proposed method is verified by calculating the Fisher measure (FM) of extracted feature vectors. The FM of the vectors generated by SHD on average shows 27 times higher values than that of D2. Our preliminary results show that SHD successfully combines desired features from two different methods and paves the way towards better detection of subtle dissimilarities among natural rigid shapes (e.g. structures of interest in human brain). Detecting these subtle changes can be instrumental in more accurate diagnosis, prognosis and treatment planning.

  12. Segmentation of Brain Structures in Presence of a Space-Occupying Lesion

    OpenAIRE

    Pollo, C.; M. Bach Cuadra; Cuisenaire, O.; Villemure, J.; Thiran, J.

    2005-01-01

    Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the a...

  13. Assessing brain structural associations with working memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis

    Directory of Open Access Journals (Sweden)

    Christine Lycke Brandt

    2015-01-01

    Full Text Available Schizophrenia (SZ is a psychotic disorder with significant cognitive dysfunction. Abnormal brain activation during cognitive processing has been reported, both in task-positive and task-negative networks. Further, structural cortical and subcortical brain abnormalities have been documented, but little is known about how task-related brain activation is associated with brain anatomy in SZ compared to healthy controls (HC. Utilizing linked independent component analysis (LICA, a data-driven multimodal analysis approach, we investigated structure–function associations in a large sample of SZ (n = 96 and HC (n = 142. We tested for associations between task-positive (fronto-parietal and task-negative (default-mode brain networks derived from fMRI activation during an n-back working memory task, and brain structural measures of surface area, cortical thickness, and gray matter volume, and to what extent these associations differed in SZ compared to HC. A significant association (p < .05, corrected for multiple comparisons was found between a component reflecting the task-positive fronto-parietal network and another component reflecting cortical thickness in fronto-temporal brain regions in SZ, indicating increased activation with increased thickness. Other structure–function associations across, between and within groups were generally moderate and significant at a nominal p-level only, with more numerous and stronger associations in SZ compared to HC. These results indicate a complex pattern of moderate associations between brain activation during cognitive processing and brain morphometry, and extend previous findings of fronto-temporal brain abnormalities in SZ by suggesting a coupling between cortical thickness of these brain regions and working memory-related brain activation.

  14. Brain correlates of constituent structure in sign language comprehension.

    Science.gov (United States)

    Moreno, Antonio; Limousin, Fanny; Dehaene, Stanislas; Pallier, Christophe

    2017-11-21

    During sentence processing, areas of the left superior temporal sulcus, inferior frontal gyrus and left basal ganglia exhibit a systematic increase in brain activity as a function of constituent size, suggesting their involvement in the computation of syntactic and semantic structures. Here, we asked whether these areas play a universal role in language and therefore contribute to the processing of non-spoken sign language. Congenitally deaf adults who acquired French sign language as a first language and written French as a second language were scanned while watching sequences of signs in which the size of syntactic constituents was manipulated. An effect of constituent size was found in the basal ganglia, including the head of the caudate and the putamen. A smaller effect was also detected in temporal and frontal regions previously shown to be sensitive to constituent size in written language in hearing French subjects (Pallier et al., 2011). When the deaf participants read sentences versus word lists, the same network of language areas was observed. While reading and sign language processing yielded identical effects of linguistic structure in the basal ganglia, the effect of structure was stronger in all cortical language areas for written language relative to sign language. Furthermore, cortical activity was partially modulated by age of acquisition and reading proficiency. Our results stress the important role of the basal ganglia, within the language network, in the representation of the constituent structure of language, regardless of the input modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Autobiographical memory and structural brain changes in chronic phase TBI.

    Science.gov (United States)

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    Science.gov (United States)

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  17. The structure and evolution of buyer-supplier networks.

    Science.gov (United States)

    Mizuno, Takayuki; Souma, Wataru; Watanabe, Tsutomu

    2014-01-01

    In this paper, we investigate the structure and evolution of customer-supplier networks in Japan using a unique dataset that contains information on customer and supplier linkages for more than 500,000 incorporated non-financial firms for the five years from 2008 to 2012. We find, first, that the number of customer links is unequal across firms; the customer link distribution has a power-law tail with an exponent of unity (i.e., it follows Zipf's law). We interpret this as implying that competition among firms to acquire new customers yields winners with a large number of customers, as well as losers with fewer customers. We also show that the shortest path length for any pair of firms is, on average, 4.3 links. Second, we find that link switching is relatively rare. Our estimates indicate that the survival rate per year for customer links is 92 percent and for supplier links 93 percent. Third and finally, we find that firm growth rates tend to be more highly correlated the closer two firms are to each other in a customer-supplier network (i.e., the smaller is the shortest path length for the two firms). This suggests that a non-negligible portion of fluctuations in firm growth stems from the propagation of microeconomic shocks - shocks affecting only a particular firm - through customer-supplier chains.

  18. Structure Shape Evolution in Lanthanide and Actinide Nuclei

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.

    2013-04-01

    Full Text Available To give the characteristics of the evolution of the collectivity in even-even nuclei, we studied the behavior of the energy ratios R(4 / 2 and R(6 / 4. All chains of lanthanides begins as vibrational with R(4 / 2 near 2.0 and move towards rotational (R(4 / 2 3.33 as neutron number increases. A rabid jump in R(4 / 2 near N = 90 was seen. The plot of R(4 / 2 against Z shows not only the existence of a shape transitions but also the change in curvature in the data for N = 88 and 90, concave to convex. For intermedi- ate structure the slopes in E-GOS ( E over spin plots range between the vibrator and rotor extremes. The abnormal behavior of the two-neutron separation energies of our lanthanide nuclei as a function of neutron number around neutron number 90 is cal- culated. Nonlinear behavior is observed which indicate that shape phase transition is occurred in this region. The calculated reduced B(E2 transition probabilities of the low states of the ground state band in the nuclei 150 Nd / 152 Sm / 154 Gd / 156 Dy are analyzed and compared to the prediction of vibrational U(5 and rotational SU(3 limits of interacting boson model calculations.

  19. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Chiar, J. E.; Ricca, A. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Adamson, A. J., E-mail: jchiar@seti.org, E-mail: Alessandra.Ricca@1.nasa.gov, E-mail: tielens@strw.leidenuniv.nl, E-mail: aadamson@gemini.edu [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96729 (United States)

    2013-06-10

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 {mu}m) and aliphatic (3.4 {mu}m) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp {sup 2} bonds can be measured in astronomical spectra using the 6.2 {mu}m CC aromatic stretch feature, whereas the 3.4 {mu}m aliphatic feature can be used to quantify the fraction of sp {sup 3} bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp {sup 3} content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  20. A probabilistic model for the evolution of RNA structure

    Directory of Open Access Journals (Sweden)

    Holmes Ian

    2004-10-01

    Full Text Available Abstract Background For the purposes of finding and aligning noncoding RNA gene- and cis-regulatory elements in multiple-genome datasets, it is useful to be able to derive multi-sequence stochastic grammars (and hence multiple alignment algorithms systematically, starting from hypotheses about the various kinds of random mutation event and their rates. Results Here, we consider a highly simplified evolutionary model for RNA, called "The TKF91 Structure Tree" (following Thorne, Kishino and Felsenstein's 1991 model of sequence evolution with indels, which we have implemented for pairwise alignment as proof of principle for such an approach. The model, its strengths and its weaknesses are discussed with reference to four examples of functional ncRNA sequences: a riboswitch (guanine, a zipcode (nanos, a splicing factor (U4 and a ribozyme (RNase P. As shown by our visualisations of posterior probability matrices, the selected examples illustrate three different signatures of natural selection that are highly characteristic of ncRNA: (i co-ordinated basepair substitutions, (ii co-ordinated basepair indels and (iii whole-stem indels. Conclusions Although all three types of mutation "event" are built into our model, events of type (i and (ii are found to be better modeled than events of type (iii. Nevertheless, we hypothesise from the model's performance on pairwise alignments that it would form an adequate basis for a prototype multiple alignment and genefinding tool.

  1. The structure and evolution of buyer-supplier networks.

    Directory of Open Access Journals (Sweden)

    Takayuki Mizuno

    Full Text Available In this paper, we investigate the structure and evolution of customer-supplier networks in Japan using a unique dataset that contains information on customer and supplier linkages for more than 500,000 incorporated non-financial firms for the five years from 2008 to 2012. We find, first, that the number of customer links is unequal across firms; the customer link distribution has a power-law tail with an exponent of unity (i.e., it follows Zipf's law. We interpret this as implying that competition among firms to acquire new customers yields winners with a large number of customers, as well as losers with fewer customers. We also show that the shortest path length for any pair of firms is, on average, 4.3 links. Second, we find that link switching is relatively rare. Our estimates indicate that the survival rate per year for customer links is 92 percent and for supplier links 93 percent. Third and finally, we find that firm growth rates tend to be more highly correlated the closer two firms are to each other in a customer-supplier network (i.e., the smaller is the shortest path length for the two firms. This suggests that a non-negligible portion of fluctuations in firm growth stems from the propagation of microeconomic shocks - shocks affecting only a particular firm - through customer-supplier chains.

  2. Review: Evolution of GnIH structure and function

    Directory of Open Access Journals (Sweden)

    Tomohiro eOsugi

    2014-08-01

    Full Text Available Discovery of gonadotropin-inhibitory hormone (GnIH in the Japanese quail in 2000 was the first to demonstrate the existence of a hypothalamic neuropeptide inhibiting gonadotropin release. We now know that GnIH regulates reproduction by inhibiting gonadotropin synthesis and release via action on the gonadotropin-releasing hormone (GnRH system and the gonadotrope in various vertebrates. GnIH peptides identified in birds and mammals have a common LPXRF-amide (X = L or Q motif at the C-terminus and inhibits pituitary gonadotropin secretion. However, the function and structure of GnIH peptides were diverse in fish. Goldfish GnIHs possessing a C-terminal LPXRF-amide motif had both stimulatory and inhibitory effects on gonadotropin synthesis or release. The C-terminal sequence of grass puffer and medaka GnIHs were MPQRF-amide. To investigate the evolutionary origin of GnIH and its ancestral structure and function, we searched for GnIH in agnathans, the most ancient lineage of vertebrates. We identified GnIH precursor gene and mature GnIH peptides with C-terminal QPQRF-amide or RPQRF-amide from the brain of sea lamprey. Lamprey GnIH fibers were in close proximity to GnRH-III neurons. Further, one of lamprey GnIHs stimulated the expression of lamprey GnRH-III peptide in the hypothalamus and gonadotropic hormone β mRNA expression in the pituitary. We further identified the ancestral form of GnIH, which had a C-terminal RPQRF-amide, and its receptors in amphioxus, the most basal chordate species. The amphioxus GnIH inhibited cAMP signaling in vitro. In sum, the original forms of GnIH may date back to the time of the emergence of early chordates. GnIH peptides may have had various C-terminal structures slightly different from LPXRF-amide in basal chordates, which had stimulatory and/or inhibitory functions on reproduction. The C-terminal LPXRF-amide structure and its inhibitory function on reproduction may be selected in later-evolved vertebrates, such as

  3. Structure and evolution of the global seafood trade network

    Science.gov (United States)

    Gephart, Jessica A.; Pace, Michael L.

    2015-12-01

    The food production system is increasingly global and seafood is among the most highly traded commodities. Global trade can improve food security by providing access to a greater variety of foods, increasing wealth, buffering against local supply shocks, and benefit the environment by increasing overall use efficiency for some resources. However, global trade can also expose countries to external supply shocks and degrade the environment by increasing resource demand and loosening feedbacks between consumers and the impacts of food production. As a result, changes in global food trade can have important implications for both food security and the environmental impacts of production. Measurements of globalization and the environmental impacts of food production require data on both total trade and the origin and destination of traded goods (the network structure). While the global trade network of agricultural and livestock products has previously been studied, seafood products have been excluded. This study describes the structure and evolution of the global seafood trade network, including metrics quantifying the globalization of seafood, shifts in bilateral trade flows, changes in centrality and comparisons of seafood to agricultural and industrial trade networks. From 1994 to 2012 the number of countries trading in the network remained relatively constant, while the number of trade partnerships increased by over 65%. Over this same period, the total quantity of seafood traded increased by 58% and the value increased 85% in real terms. These changes signify the increasing globalization of seafood products. Additionally, the trade patterns in the network indicate: increased influence of Thailand and China, strengthened intraregional trade, and increased exports from South America and Asia. In addition to characterizing these network changes, this study identifies data needs in order to connect seafood trade with environmental impacts and food security outcomes.

  4. Discovering structure and evolution within the coronae of Seyfert galaxies

    Science.gov (United States)

    Wilkins, Daniel; Gallo, Luigi C.; Silva, Catia; Costantini, Elisa

    2017-08-01

    Detailed analysis of the reflection and reverberation of X-rays from the innermost regions of AGN accretion discs reveals the structure and processes that produce the intense continuum emission and the extreme variability we see, right down to the innermost stable orbit and event horizon of the black hole. Observations of Seyfert galaxies spanning more than a decade have enabled measurement of the geometry of the corona and how it evolves, leading to orders of magnitude in variability. They reveal processes the corona undergoes during transient events, notably the collimation and ejection of the corona during X-ray flares, reminiscent of the aborted launching of a jet.Recent reverberation studies, of the Seyfert galaxy I Zwicky 1 with XMM-Newton, are revealing structures within the corona for the very first time. A persistent collimated core is discovered, akin to the base of a jet embedded in the innermost regions alongside an extended corona related to the accretion disc. The detection of the flare in the X-ray emission enables the evolution of both the collimated and extended portions of the corona to be tracked. The flare is seen originating as an increase in activity above the accretion disc before propagating inwards, energising the collimated core at a later time, leading to a second sharp increase in the X-ray luminosity.This gives us important constraints on the processes by which energy is liberated from black hole accretion flows, how they are governed over time and how jets are launched, giving us the deepest insight to date of how these extreme objects are powered.

  5. Abnormal brain structure in youth who commit homicide.

    Science.gov (United States)

    Cope, L M; Ermer, E; Gaudet, L M; Steele, V R; Eckhardt, A L; Arbabshirani, M R; Caldwell, M F; Calhoun, V D; Kiehl, K A

    2014-01-01

    Violence that leads to homicide results in an extreme financial and emotional burden on society. Juveniles who commit homicide are often tried in adult court and typically spend the majority of their lives in prison. Despite the enormous costs associated with homicidal behavior, there have been no serious neuroscientific studies examining youth who commit homicide. Here we use neuroimaging and voxel-based morphometry to examine brain gray matter in incarcerated male adolescents who committed homicide (n = 20) compared with incarcerated offenders who did not commit homicide (n = 135). Two additional control groups were used to understand further the nature of gray matter differences: incarcerated offenders who did not commit homicide matched on important demographic and psychometric variables (n = 20) and healthy participants from the community (n = 21). Compared with incarcerated adolescents who did not commit homicide (n = 135), incarcerated homicide offenders had reduced gray matter volumes in the medial and lateral temporal lobes, including the hippocampus and posterior insula. Feature selection and support vector machine learning classified offenders into the homicide and non-homicide groups with 81% overall accuracy. Our results indicate that brain structural differences may help identify those at the highest risk for committing serious violent offenses.

  6. Online social network size is reflected in human brain structure.

    Science.gov (United States)

    Kanai, R; Bahrami, B; Roylance, R; Rees, G

    2012-04-07

    The increasing ubiquity of web-based social networking services is a striking feature of modern human society. The degree to which individuals participate in these networks varies substantially for reasons that are unclear. Here, we show a biological basis for such variability by demonstrating that quantitative variation in the number of friends an individual declares on a web-based social networking service reliably predicted grey matter density in the right superior temporal sulcus, left middle temporal gyrus and entorhinal cortex. Such regions have been previously implicated in social perception and associative memory, respectively. We further show that variability in the size of such online friendship networks was significantly correlated with the size of more intimate real-world social groups. However, the brain regions we identified were specifically associated with online social network size, whereas the grey matter density of the amygdala was correlated both with online and real-world social network sizes. Taken together, our findings demonstrate that the size of an individual's online social network is closely linked to focal brain structure implicated in social cognition.

  7. Diagnosis and temporal evolution of signs of intracranial hypotension on MRI of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Forghani, R. [McGill University Health Center, Department of Radiology, Montreal, Que (Canada); Massachusetts General Hospital, Division of Neuroradiology, Boston, MA (United States); Farb, R.I. [University of Toronto, Department of Medical Imaging, Division of Neuroradiology, Toronto Western Hospital, Toronto, Ontario (Canada)

    2008-12-15

    A comprehensive evaluation of cranial magnetic resonance imagings (MRIs) of 23 patients with intracranial hypotension (IH) was performed, and the evolution of the abnormalities on follow-up MRIs was correlated with the clinical outcome. The MRI report database at the University Health Network in Toronto was searched, and 23 cases of IH were identified between 2001 and 2007. A retrospective review of the MRIs of the brain and the electronic patient chart was performed. A control group of 40 subjects was also selected to complement the analysis of the pituitary gland. A positive venous distention sign (VDS) was observed in 23 out of 23 patients and was the first sign to disappear on early follow-up scans following successful treatment. Pachymeningeal enhancement was seen in 23 out of 23 patients, and pachymeningeal thickening was detectable on unenhanced fluid attenuation inversion recovery (FLAIR) sequences in 17 out of 23 patients (74%). An increase in pituitary size in IH was also demonstrated based on the measured pituitary height and was qualitatively detectable in 12 out of 21 (57%) patients as the protrusion of the pituitary gland above the sella turica (two postpartum patients were excluded from this analysis). Overall, there was good correlation between the imaging findings and clinical outcome following treatment. Accurate diagnosis and follow-up of IH should be possible is some patients on unenhanced MRI of the brain by combining the signs on FLAIR and sagittal T1W images, enabling timely diagnosis in unsuspected cases and avoiding unnecessary administration of gadolinium compounds. In addition, VDS might be useful for early assessment of response to treatment. (orig.)

  8. HIV-1 nef protein structures associated with brain infection and dementia pathogenesis.

    Directory of Open Access Journals (Sweden)

    Susanna L Lamers

    2011-02-01

    Full Text Available The difference between regional rates of HIV-associated dementia (HAD in patients infected with different subtypes of HIV suggests that genetic determinants exist within HIV that influence the ability of the virus to replicate in the central nervous system (in Uganda, Africa, subtype D HAD rate is 89%, while subtype A HAD rate is 24%. HIV-1 nef is a multifunctional protein with known toxic effects in the brain compartment. The goal of the current study was to identify if specific three-dimensional nef structures may be linked to patients who developed HAD. HIV-1 nef structures were computationally derived for consensus brain and non-brain sequences from a panel of patients infected with subtype B who died due to varied disease pathologies and consensus subtype A and subtype D sequences from Uganda. Site directed mutation analysis identified signatures in brain structures that appear to change binding potentials and could affect folding conformations of brain-associated structures. Despite the large sequence variation between HIV subtypes, structural alignments confirmed that viral structures derived from patients with HAD were more similar to subtype D structures than to structures derived from patient sequences without HAD. Furthermore, structures derived from brain sequences of patients with HAD were more similar to subtype D structures than they were to their own non-brain structures. The potential finding of a brain-specific nef structure indicates that HAD may result from genetic alterations that alter the folding or binding potential of the protein.

  9. HIV-1 nef protein structures associated with brain infection and dementia pathogenesis.

    Science.gov (United States)

    Lamers, Susanna L; Poon, Art F Y; McGrath, Michael S

    2011-02-09

    The difference between regional rates of HIV-associated dementia (HAD) in patients infected with different subtypes of HIV suggests that genetic determinants exist within HIV that influence the ability of the virus to replicate in the central nervous system (in Uganda, Africa, subtype D HAD rate is 89%, while subtype A HAD rate is 24%). HIV-1 nef is a multifunctional protein with known toxic effects in the brain compartment. The goal of the current study was to identify if specific three-dimensional nef structures may be linked to patients who developed HAD. HIV-1 nef structures were computationally derived for consensus brain and non-brain sequences from a panel of patients infected with subtype B who died due to varied disease pathologies and consensus subtype A and subtype D sequences from Uganda. Site directed mutation analysis identified signatures in brain structures that appear to change binding potentials and could affect folding conformations of brain-associated structures. Despite the large sequence variation between HIV subtypes, structural alignments confirmed that viral structures derived from patients with HAD were more similar to subtype D structures than to structures derived from patient sequences without HAD. Furthermore, structures derived from brain sequences of patients with HAD were more similar to subtype D structures than they were to their own non-brain structures. The potential finding of a brain-specific nef structure indicates that HAD may result from genetic alterations that alter the folding or binding potential of the protein.

  10. Brain structural and functional dissociated patterns in schizophrenia.

    Science.gov (United States)

    Zhuo, Chuanjun; Zhu, Jiajia; Wang, Chunli; Qu, Hongru; Ma, Xiaolei; Tian, Hongjun; Liu, Mei; Qin, Wen

    2017-01-31

    Although previous studies found that aberrations in gray matter volume (GMV) and global functional connectivity density (gFCD) are important characteristics of schizophrenia, to the best of our knowledge no study to date has investigated the associations between the spatial distribution patterns of GMV and gFCD alterations. We investigated pattern changes in gFCD and GMV among patients with schizophrenia and their associated spatial distributions. Ninety-five patients with schizophrenia and 93 matched healthy controls underwent structural and resting-state functional MRI scanning to assess gFCD and GMV. We found that gFCD increased in the subcortical regions (caudate, pallidum, putamen, and thalami) and limbic system (left hippocampus and parahippocampus), and decreased in the posterior parieto-occipito-temporal cortices (postcentral gyri, occipital cortex, temporo-occipital conjunction, and inferior parietal lobule), in patients with schizophrenia. By contrast, we found decreased GMV in brain regions including the frontal, parietal, temporal, occipital, cingulate cortices, and the insular, striatum, thalamus in these patients. Increased gFCD primarily occurred in subcortical regions including the basal ganglia and some regions of the limbic system. Decreased gFCD appeared primarily in the cortical regions. There were no statistically significant correlations between changes in gFCD and GMV, and their spatial distribution patterns, in different regions. Our findings indicate that gFCD and GMV are both perturbed in multiple brain regions in schizophrenia. gFCD and GMV consistently decreased in the cortical regions, with the exception of the Supplementary Motor Area (SMA). However, in the sub-cortical regions, the alterations of gFCD and GMV showed the opposite pattern, with increased gFCD and decreased GMV simultaneously observed in these regions. Overall, our findings suggest that structural and functional alterations appear to contribute independently to the

  11. Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution.

    Science.gov (United States)

    Kolb, E M; Rezende, E L; Holness, L; Radtke, A; Lee, S K; Obenaus, A; Garland, T

    2013-02-01

    Increased brain size, relative to body mass, is a primary characteristic distinguishing the mammalian lineage. This greater encephalization has come with increased behavioral complexity and, accordingly, it has been suggested that selection on behavioral traits has been a significant factor leading to the evolution of larger whole-brain mass. In addition, brains may evolve in a mosaic fashion, with functional components having some freedom to evolve independently from other components, irrespective of, or in addition to, changes in size of the whole brain. We tested whether long-term selective breeding for high voluntary wheel running in laboratory house mice results in changes in brain size, and whether those changes have occurred in a concerted or mosaic fashion. We measured wet and dry brain mass via dissections and brain volume with ex vivo magnetic resonance imaging of brains that distinguished the caudate-putamen, hippocampus, midbrain, cerebellum and forebrain. Adjusting for body mass as a covariate, mice from the four replicate high-runner (HR) lines had statistically larger non-cerebellar wet and dry brain masses than those from four non-selected control lines, with no differences in cerebellum wet or dry mass or volume. Moreover, the midbrain volume in HR mice was ~13% larger (PHR and control lines. We hypothesize that the enlarged midbrain of HR mice is related to altered neurophysiological function in their dopaminergic system. To our knowledge, this is the first example in which selection for a particular mammalian behavior has been shown to result in a change in size of a specific brain region.

  12. Monitoring brain development of chick embryos in vivo using 3.0 T MRI: subdivision volume change and preliminary structural quantification using DTI.

    Science.gov (United States)

    Zhou, Zien; Chen, Zengai; Shan, Jiehui; Ma, Weiwei; Li, Lei; Zu, Jinyan; Xu, Jianrong

    2015-07-25

    Magnetic resonance imaging (MRI) has many advantages in the research of in vivo embryonic brain development, specifically its noninvasive aspects and ability to avoid skeletal interference. However, few studies have focused on brain development in chick, which is a traditional animal model in developmental biology. We aimed to serially monitor chick embryo brain development in vivo using 3.0 T MRI. Ten fertile Hy-line white eggs were incubated and seven chick embryo brains were monitored in vivo and analyzed serially from 5 to 20 days during incubation using 3.0 T MRI. A fast positioning sequence was pre-scanned to obtain sagittal and coronal brain planes corresponding to the established atlas. T2-weighted imaging (T2WI) was performed for volume estimation of the whole brain and subdivision (telencephalon, cerebellum, brainstem, and lateral ventricle [LV]); diffusion tensor imaging (DTI) was used to reflect the evolution of neural bundle structures. The chick embryos' whole brain and subdivision grew non-linearly over time; the DTI fractional anisotropy (FA) value within the telencephalon increased non-linearly as well. All seven scanned eggs hatched successfully. MRI avoids embryonic sacrifice in a way that allows serial monitoring of longitudinal developmental processes of a single embryo. Feasibility for analyzing subdivision of the brain during development, and adding structural information related to neural bundles, makes MRI a powerful tool for exploring brain development.

  13. Brain structures differ between musicians and non-musicians.

    Science.gov (United States)

    Gaser, Christian; Schlaug, Gottfried

    2003-10-08

    From an early age, musicians learn complex motor and auditory skills (e.g., the translation of visually perceived musical symbols into motor commands with simultaneous auditory monitoring of output), which they practice extensively from childhood throughout their entire careers. Using a voxel-by-voxel morphometric technique, we found gray matter volume differences in motor, auditory, and visual-spatial brain regions when comparing professional musicians (keyboard players) with a matched group of amateur musicians and non-musicians. Although some of these multiregional differences could be attributable to innate predisposition, we believe they may represent structural adaptations in response to long-term skill acquisition and the repetitive rehearsal of those skills. This hypothesis is supported by the strong association we found between structural differences, musician status, and practice intensity, as well as the wealth of supporting animal data showing structural changes in response to long-term motor training. However, only future experiments can determine the relative contribution of predisposition and practice.

  14. Studies of the structure and evolution of the intracluster medium

    Science.gov (United States)

    O'Hara, Timothy Brian

    The intracluster medium (ICM) in galaxy clusters is influenced by multiple processes, such as mergers and radiative cooling. In this dissertation we examine how these processes affect the structure and formation history of the ICM via both detailed individual cluster study and by study of bulk properties in large cluster data sets. This work provides important constraints on the evolution of the ICM, and in particular on the effects of mergers and cool core formation on ICM structure. We use high-resolution X-ray data to identify merger features in the cluster A2319, and propose a dynamical model for the merger. Remarkably, the bulk properties of this merging cluster are not significantly perturbed relative to the values predicted by scaling relations. This question of merger effects on bulk properties is pursued further in a study of 45 nearby clusters. We show that cool core-related phenomena, and not mergers, are the primary source of scatter in scaling relations among bulk properties. This surprising result, with greater scatter in the cool core population than in non-cool core clusters, may support cluster formation scenarios in which the presence of a cool core is primarily determined by factors beyond simply the time since the last major merger. We show that the central X-ray surface brightness can be used to significantly decrease the scatter in sealing relations by acting as a proxy for cool core "strength", a finding beneficial for duster cosmology surveys that use X-ray luminosity as a proxy for mass. Finally, we examine how scaling relations evolve with redshift using a 70 cluster sample over the redshift range 0.18 z < 1.24. We show that X-ray luminosity and ICM mass evolve more slowly toward higher redshifts than is predicted by self-similar models of cluster formation. Effects of core structure are again apparent in this work, as scaling relations constructed from core subtracted quantities evolve differently from those using non-core subtracted

  15. Structure and evolution of high-mass stellar mergers

    Science.gov (United States)

    Glebbeek, Evert; Gaburov, Evghenii; Portegies Zwart, Simon; Pols, Onno R.

    2013-10-01

    In young dense clusters repeated collisions between massive stars may lead to the formation of a very massive star (above 100 M⊙). In the past, the study of the long-term evolution of merger remnants has mostly focused on collisions between low-mass stars (up to about 2 M⊙) in the context of blue-straggler formation. The evolution of collision products of more massive stars has not been as thoroughly investigated. In this paper, we study the long-term evolution of a number of stellar mergers formed by the head-on collision of a primary star with a mass of 5-40 M⊙ with a lower mass star at three points in its evolution in order to better understand their evolution. We use smooth particle hydrodynamics calculations to model the collision between the stars. The outcome of this calculation is reduced to one dimension and imported into a stellar evolution code. We follow the subsequent evolution of the collision product through the main sequence at least until the onset of helium burning. We find that little hydrogen is mixed into the core of the collision products, in agreement with previous studies of collisions between low-mass stars. For collisions involving evolved stars, we find that during the merger the surface nitrogen abundance can be strongly enhanced. The evolution of most of the collision products proceeds analogously to that of normal stars with the same mass, but with a larger radius and luminosity. However, the evolution of collision products that form with a hydrogen-depleted core is markedly different from that of normal stars with the same mass. They undergo a long-lived period of hydrogen-shell burning close to the main-sequence band in the Hertzsprung-Russell diagram and spend the initial part of core-helium burning as compact blue supergiants.

  16. The evolution of the Piedemonte Llanero petroleum system, Cordillera Oriental, Colombia: (1) Structural evolution and play definition

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.; Howe, S.; O`Leary, J. [BP Exploration, Bogota (Colombia)] [and others

    1996-08-01

    The Piedemonte Llanero petroleum trend of the Cordillera Oriental in Colombia has proven to be one of the most prolific hydrocarbon provinces discovered in recent years. The Piedemonte Llanero is a fold and thrust belt of complex, multi-phase structuration and hydrocarbon generation. Following the discovery of the Cusiana and Cupiagua fields in the southern part of the trend, BP and its partners began exploration further to the northeast. Early seismic data showed the existence of two structural trends: the frontal (or basal) thrust trend, with structures similar to Cusiana; and the overthrust (or duplex) trend, with multiple imbricated structures. Improved quality seismic data defined the gross structures and allowed them to be successfully drilled, but did not give a constrained model for the kinematic evolution of the fold and thrust belt nor the petroleum play. This resulted in no clear predictive models for reservoir quality and hydrocarbon phase distribution in the undrilled parts of the trend. A wide variety of geological and geochemical analytical techniques including biostratigraphy, reservoir petrology, petroleum geochemistry, thermal maturity data, basin modelling and fluid inclusion studies were undertaken. These were iteratively integrated into the seismo-structural model to develop a constrained interpretation for the evolution of the Piedemonte Llanero petroleum system. This paper summarizes the current understanding of the structural evolution of the trend and the development of a major petroleum system. A companion paper details the reservoir petrography and petroleum geochemistry studies.

  17. Human Development XII: A Theory for the Structure and Function of the Human Brain

    OpenAIRE

    Søren Ventegodt; Tyge Dahl Hermansen; Isack Kandel; Joav Merrick

    2008-01-01

    The human brain is probably the most complicated single structure in the biological universe. The cerebral cortex that is traditionally connected with consciousness is extremely complex. The brain contains approximately 1,000,000 km of nerve fibers, indicating its enormous complexity and which makes it difficult for scientists to reveal the function of the brain. In this paper, we propose a new model for brain functions, i.e., information-guided self-organization of neural patterns, where inf...

  18. Food web structure and the evolution of ecological communities

    Science.gov (United States)

    Quince, Christopher; Higgs, Paul G.; McKane, Alan J.

    Simulations of the coevolution of many interacting species are performed using the Webworld model. The model has a realistic set of predator-prey equations that describe the population dynamics of the species for any structure of the food web. The equations account for competition between species for the same resources, and for the diet choice of predators between alternative prey according to an evolutionarily stable strategy. The set of species present undergoes long-term evolution d ue to speciation and extinction events. We summarize results obtained on the macro-evolutionary dynamics of speciations and extinctions, and on the statistical properties of the food webs that are generated by the model. Simulations begin from small numbers of species and build up to larger webs with relatively constant species number on average. The rate of origination and extinction of species are relatively high, but remain roughly balanced throughout the simulations. When a 'parent' species undergoes sp eciation, the 'child' species usually adds to the same trophic level as the parent. The chance of the child species surviving is significantly higher if the parent is on the second or third trophic level than if it is on the first level, most likely due to a wider choice of possible prey for species on higher levels. Addition of a new species sometimes causes extinction of existing species. The parent species has a high probability of extinction because it has strong competition with the new species. Non-pa rental competitors of the new species also have a significantly higher extinction probability than average, as do prey of the new species. Predators of the new species are less likely than average to become extinct.

  19. The influence of strain rate dependency on the structure-property relations of porcine brain.

    Science.gov (United States)

    Begonia, Mark T; Prabhu, Raj; Liao, Jun; Horstemeyer, Mark F; Williams, Lakiesha N

    2010-10-01

    This study examines the internal microstructure evolution of porcine brain during mechanical deformation. Strain rate dependency of porcine brain was investigated under quasi-static compression for strain rates of 0.00625, 0.025, and 0.10 s(-1). Confocal microscopy was employed at 15, 30, and 40% strain to quantify microstructural changes, and image analysis was implemented to calculate the area fraction of neurons and glial cells. The nonlinear stress-strain behavior exhibited a viscoelastic response from the strain rate sensitivity observed, and image analysis revealed that the mean area fraction of neurons and glial cells increased according to the applied strain level and strain rate. The area fraction for the undamaged state was 7.85 ± 0.07%, but at 40% strain the values were 11.55 ± 0.35%, 13.30 ± 0.28%, and 19.50 ± 0.14% for respective strain rates of 0.00625, 0.025, and 0.10 s(-1). The increased area fractions were a function of the applied strain rate and were attributed to the compaction of neural constituents and the stiffening tissue response. The microstructural variations in the tissue were linked to mechanical properties at progressive levels of compression in order to generate structure-property relationships useful for refining current FE material models.

  20. ECT: its brain enabling effects. A review of electroconvulsive therapy-induced structural brain plasticity

    NARCIS (Netherlands)

    Bouckaert, F.; Sienaert, P.; Obbels, J.; Dols, A.; Vandenbulcke, M.; Stek, M.L.; Bolwig, T.

    2014-01-01

    BACKGROUND: Since the past 2 decades, new evidence for brain plasticity has caused a shift in both preclinical and clinical ECT research from falsifying the "brain damage hypothesis" toward exploring ECT's enabling brain (neuro)plasticity effects. METHODS: By reviewing the available animal and human

  1. The Consilient Epistemology: Structuring Evolution of Our Logical Thinking

    Science.gov (United States)

    Roychoudhuri, Chandrasekhar

    It is argued that the current principles of modern culture are not congruent with the demands for long-term sustainable evolution. Even our modern democracy is run by the "Golden Rule" favoring "Gold" owners. To assure our peaceful and sustainable evolution, we need to replace this "Golden Rule" by the true democratic rule, or "Knowledge & Debate Rule" through the development of an over-arching consilient epistemology, now enabled by the global internet system. Inseparable connection between the consilient epistemology and our successful evolution is justified from an understanding that, for many millennia, the rapid evolution of human minds is being driven dominantly by the cultural-selection (intra-cultural and inter-cultural conflicts and pressures) rather than by the Darwinian natural-selection.

  2. How structure sculpts function: Unveiling the contribution of anatomical connectivity to the brain's spontaneous correlation structure

    Science.gov (United States)

    Bettinardi, R. G.; Deco, G.; Karlaftis, V. M.; Van Hartevelt, T. J.; Fernandes, H. M.; Kourtzi, Z.; Kringelbach, M. L.; Zamora-López, G.

    2017-04-01

    Intrinsic brain activity is characterized by highly organized co-activations between different regions, forming clustered spatial patterns referred to as resting-state networks. The observed co-activation patterns are sustained by the intricate fabric of millions of interconnected neurons constituting the brain's wiring diagram. However, as for other real networks, the relationship between the connectional structure and the emergent collective dynamics still evades complete understanding. Here, we show that it is possible to estimate the expected pair-wise correlations that a network tends to generate thanks to the underlying path structure. We start from the assumption that in order for two nodes to exhibit correlated activity, they must be exposed to similar input patterns from the entire network. We then acknowledge that information rarely spreads only along a unique route but rather travels along all possible paths. In real networks, the strength of local perturbations tends to decay as they propagate away from the sources, leading to a progressive attenuation of the original information content and, thus, of their influence. Accordingly, we define a novel graph measure, topological similarity, which quantifies the propensity of two nodes to dynamically correlate as a function of the resemblance of the overall influences they are expected to receive due to the underlying structure of the network. Applied to the human brain, we find that the similarity of whole-network inputs, estimated from the topology of the anatomical connectome, plays an important role in sculpting the backbone pattern of time-average correlations observed at rest.

  3. Structure of the Scientific Community Modelling the Evolution of Resistance

    OpenAIRE

    2007-01-01

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expec...

  4. Preterm birth and structural brain alterations in early adulthood

    Directory of Open Access Journals (Sweden)

    Chiara Nosarti

    2014-01-01

    Full Text Available Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM and white matter (WM maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks and 43 term-born controls aged 19–20 years, and their association with cognitive outcomes (Hayling Sentence Completion Test, Controlled Oral Word Association Test, Visual Reproduction test of the Wechsler Memory Scale-Revised and gestational age. Structural MRI data were obtained with a 1.5 Tesla system and analysed using the VBM8 toolbox in SPM8 with a customized study-specific template. Similarly to results obtained at adolescent assessment, VPT young adults compared to controls demonstrated reduced GM volume in temporal, frontal, insular and occipital areas, thalamus, caudate nucleus and putamen. Increases in GM volume were noted in medial/anterior frontal gyrus. Smaller subcortical WM volume in the VPT group was observed in temporal, parietal and frontal regions, and in a cluster centred on posterior corpus callosum/thalamus/fornix. Larger subcortical WM volume was found predominantly in posterior brain regions, in areas beneath the parahippocampal and occipital gyri and in cerebellum. Gestational age was associated with GM and WM volumes in areas where VPT individuals demonstrated GM and WM volumetric alterations, especially in temporal, parietal and occipital regions. VPT participants scored lower than controls on measures of IQ, executive function and non-verbal memory. When investigating GM and WM alterations and cognitive outcome scores, subcortical WM volume in an area beneath the left inferior frontal gyrus accounted for 14% of the variance of full-scale IQ (F = 12.9, p < 0.0001. WM volume in posterior corpus

  5. Structural brain correlates of delay of gratification in the elderly.

    Science.gov (United States)

    Drobetz, Reinhard; Hänggi, Jürgen; Maercker, Andreas; Kaufmann, Karin; Jäncke, Lutz; Forstmeier, Simon

    2014-04-01

    Delay of gratification (DoG) refers to the ability to postpone immediate rewards in favor of later and better rewards. A successful DoG in children/adolescents is subject to the maturation of the lateral and medial prefrontal cortex, which is more prone to normal age-related atrophy compared with other brain regions. Therefore, we investigated morphological brain correlates of DoG using structural MRI surface-based morphometry as well as determined whether dorsolateral prefrontal cortex (DLPFC) atrophy is related to DoG in the elderly. We used the behavioral Delay of Gratification Test for Adults to measure DoG in 40 healthy older adults aged between 63 and 93 years. When simultaneously controlling for age and intracranial volume, high DoG significantly positively correlated with cortical surface area of the left DLPFC. At a more liberal statistical threshold, we found positive correlations between DoG and cortical thickness of the left and right DLPFC, left and right ventrolateral prefrontal cortex, and left midanterior cingulate cortex. Additionally, cortical surface area in the left DLPFC correlated positively with DoG as well as with the volume of the left caudate nucleus. The results suggest that the DLPFC, medial prefrontal cortex, and the caudate nucleus play a crucial role in DoG in the elderly supporting studies in related constructs such as delay discounting and impulsivity. Further, the study shows that age-related prefrontal atrophy is associated with DoG performance. The findings are in line with concepts of "willpower" that postulate a central role of frontostriatal connectivity in self-regulation and self-control.

  6. BrainSegNet: a convolutional neural network architecture for automated segmentation of human brain structures.

    Science.gov (United States)

    Mehta, Raghav; Majumdar, Aabhas; Sivaswamy, Jayanthi

    2017-04-01

    Automated segmentation of cortical and noncortical human brain structures has been hitherto approached using nonrigid registration followed by label fusion. We propose an alternative approach for this using a convolutional neural network (CNN) which classifies a voxel into one of many structures. Four different kinds of two-dimensional and three-dimensional intensity patches are extracted for each voxel, providing local and global (context) information to the CNN. The proposed approach is evaluated on five different publicly available datasets which differ in the number of labels per volume. The obtained mean Dice coefficient varied according to the number of labels, for example, it is [Formula: see text] and [Formula: see text] for datasets with the least (32) and the most (134) number of labels, respectively. These figures are marginally better or on par with those obtained with the current state-of-the-art methods on nearly all datasets, at a reduced computational time. The consistently good performance of the proposed method across datasets and no requirement for registration make it attractive for many applications where reduced computational time is necessary.

  7. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    Science.gov (United States)

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-05

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    Science.gov (United States)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long

  9. Beyond sex differences: new approaches for thinking about variation in brain structure and function

    Science.gov (United States)

    Joel, Daphna; Fausto-Sterling, Anne

    2016-01-01

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. PMID:26833844

  10. Sleep habits, academic performance, and the adolescent brain structure

    OpenAIRE

    Urrila, Anna S.; Eric Artiges; Jessica Massicotte; Ruben Miranda; Hélène Vulser; Pauline Bézivin-Frere; Winok Lapidaire; Hervé Lemaître; Jani Penttilä; Conrod, Patricia J.; Hugh Garavan; Marie-Laure Paillère Martinot; Jean-Luc Martinot

    2017-01-01

    Here we report the first and most robust evidence about how sleep habits are associated with regional brain grey matter volumes and school grade average in early adolescence. Shorter time in bed during weekdays, and later weekend sleeping hours correlate with smaller brain grey matter volumes in frontal, anterior cingulate, and precuneus cortex regions. Poor school grade average associates with later weekend bedtime and smaller grey matter volumes in medial brain regions. The medial prefronta...

  11. Structure of the scientific community modelling the evolution of resistance.

    Science.gov (United States)

    2007-12-05

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expected. We tested this by analysing co-authorship and co-citation networks using a database of 187 articles published from 1977 to 2006 concerning models of resistance evolution to all major classes of pesticides and drugs. These analyses identified two main groups. One group, led by ecologists or agronomists, is interested in agricultural crop or stock pests and diseases. It mainly uses a population genetics approach to model the evolution of resistance to insecticidal proteins, insecticides, herbicides, antihelminthic drugs and miticides. By contrast, the other group, led by medical scientists, is interested in human parasites and mostly uses epidemiological models to study the evolution of resistance to antibiotic and antiviral drugs. Our analyses suggested that there is also a small scientific group focusing on resistance to antimalaria drugs, and which is only poorly connected with the two larger groups. The analysis of cited references indicates that each of the two large communities publishes its research in a different set of literature and has its own keystone references: citations with a large impact in one group are almost never cited by the other. We fear the lack of exchange between the two communities might slow progress concerning resistance evolution which is currently a major issue for society.

  12. Structure and evolution of the Y-chromosomal and mitochondrial DNA of cattle

    NARCIS (Netherlands)

    Verkaar, Edward Louis Christian

    2003-01-01

    The research described in this thesis is focused on the structure and evolution of the bovine Y-chromosome and the use of paternal markers in molecular diagnostics. The Y-chromosome has emerged together with the X-chromosome early during the evolution of the mammals by differentiation of a pair of

  13. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  14. Brain structure correlates of emotion-based rash impulsivity.

    Science.gov (United States)

    Muhlert, N; Lawrence, A D

    2015-07-15

    Negative urgency (the tendency to engage in rash, ill-considered action in response to intense negative emotions), is a personality trait that has been linked to problematic involvement in several risky and impulsive behaviours, and to various forms of disinhibitory psychopathology, but its neurobiological correlates are poorly understood. Here, we explored whether inter-individual variation in levels of trait negative urgency was associated with inter-individual variation in regional grey matter volumes. Using voxel-based morphometry (VBM) in a sample (n=152) of healthy participants, we found that smaller volumes of the dorsomedial prefrontal cortex and right temporal pole, regions previously linked to emotion appraisal, emotion regulation and emotion-based decision-making, were associated with higher levels of trait negative urgency. When controlling for other impulsivity linked personality traits (sensation seeking, lack of planning/perseverance) and negative emotionality per se (neuroticism), these associations remained, and an additional relationship was found between higher levels of trait negative urgency and smaller volumes of the left ventral striatum. This latter finding mirrors recent VBM findings in an animal model of impulsivity. Our findings offer novel insight into the brain structure correlates of one key source of inter-individual differences in impulsivity. Copyright © 2015. Published by Elsevier Inc.

  15. Code Flows : Visualizing Structural Evolution of Source Code

    NARCIS (Netherlands)

    Telea, Alexandru; Auber, David

    2008-01-01

    Understanding detailed changes done to source code is of great importance in software maintenance. We present Code Flows, a method to visualize the evolution of source code geared to the understanding of fine and mid-level scale changes across several file versions. We enhance an existing visual

  16. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    In the recent past, Rosenau and Hyman [2] introduced a family of non-linear partial differential equations with non-linear dispersive terms. For brevity, we refer to these equations as fully non-linear evolution (FNE) equa- tions. It was hoped that these might be useful to study formation of patterns in liquids. The solitary wave ...

  17. Structure and tectonic evolution of the northeastern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Krishna, K.S.; Ramprasad, T.; Desa, M.; Subrahmanyam, V.; Sarma, K.V.L.N.S.

    ) the morphotectonic evolution of new fracture zone along 75 degrees 45'E, and the southern extension of the Indrani Fracture Zone (79 degrees E FZ) up to 15 degrees S, (2) Identification of Mesozoic anomaly sequence M11 to M0 of 133.5 to 118Ma age in the Bay of Bengal...

  18. The Evolution of Altruism in Spatially Structured Populations

    NARCIS (Netherlands)

    Németh, András; Takács, Károly

    2007-01-01

    The evolution of altruism in humans is still an unresolved puzzle. Helping other individuals is often kinship-based or reciprocal. Several examples show, however, that altruism goes beyond kinship and reciprocity and people are willing to support unrelated others even when this is at a cost and they

  19. Code flows : Visualizing structural evolution of source code

    NARCIS (Netherlands)

    Telea, Alexandru; Auber, David

    Understanding detailed changes done to source code is of great importance in software maintenance. We present Code Flows, a method to visualize the evolution of source code geared to the understanding of fine and mid-level scale changes across several file versions. We enhance an existing visual

  20. Small-angle neutron scattering study of structural evolution of ...

    Indian Academy of Sciences (India)

    evolution of different phases in protein solution leading to crystallization, denaturation and gelation. The protein solution under ... which regulate and control the functionality and stability of these molecules. Pro- teins in aqueous solution are .... by the protein–surfactant complex [10]. The fractal dimension of the complex de-.

  1. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    OpenAIRE

    Yu Sun; Junhua Li; John Suckling; Lei Feng

    2017-01-01

    Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between struct...

  2. Temporal evolution of brain reorganization under cross-modal training: insights into the functional architecture of encoding and retrieval networks

    Science.gov (United States)

    Likova, Lora T.

    2015-03-01

    This study is based on the recent discovery of massive and well-structured cross-modal memory activation generated in the primary visual cortex (V1) of totally blind people as a result of novel training in drawing without any vision (Likova, 2012). This unexpected functional reorganization of primary visual cortex was obtained after undergoing only a week of training by the novel Cognitive-Kinesthetic Method, and was consistent across pilot groups of different categories of visual deprivation: congenitally blind, late-onset blind and blindfolded (Likova, 2014). These findings led us to implicate V1 as the implementation of the theoretical visuo-spatial 'sketchpad' for working memory in the human brain. Since neither the source nor the subsequent 'recipient' of this non-visual memory information in V1 is known, these results raise a number of important questions about the underlying functional organization of the respective encoding and retrieval networks in the brain. To address these questions, an individual totally blind from birth was given a week of Cognitive-Kinesthetic training, accompanied by functional magnetic resonance imaging (fMRI) both before and just after training, and again after a two-month consolidation period. The results revealed a remarkable temporal sequence of training-based response reorganization in both the hippocampal complex and the temporal-lobe object processing hierarchy over the prolonged consolidation period. In particular, a pattern of profound learning-based transformations in the hippocampus was strongly reflected in V1, with the retrieval function showing massive growth as result of the Cognitive-Kinesthetic memory training and consolidation, while the initially strong hippocampal response during tactile exploration and encoding became non-existent. Furthermore, after training, an alternating patch structure in the form of a cascade of discrete ventral regions underwent radical transformations to reach complete functional

  3. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, William Frans Christian; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder...

  4. A technique for the deidentification of structural brain MR images

    DEFF Research Database (Denmark)

    Bischoff-Grethe, Amanda; Ozyurt, I Burak; Busa, Evelina

    2007-01-01

    is presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron 33:341-355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69-S84). A brain mask is constructed by forming the union of all voxels with nonzero probability of being brain and then morphologically dilated...

  5. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and

  6. AfricaArray seismological studies of the structure and evolution of the African continent

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2013-10-01

    Full Text Available The AfricaArray programme seeks to build geoscience capacity and conduct research that supports development in Africa. This paper reports on investigations of the structure and evolution of the African continent that have been concluded since...

  7. The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability.

    Science.gov (United States)

    Crawford, Michael A; Broadhurst, C Leigh

    2012-01-01

    Life originated on this planet about 3 billion years ago. For the first 2.5 billion years of life there was ample opportunity for DNA modification. Yet there is no evidence of significant change in life forms during that time. It was not until about 600 million years ago, when the oxygen tension rose to a point where air-breathing life forms became thermodynamically possible, that a major change can be abruptly seen in the fossil record. The sudden appearance of the 32 phyla in the Cambrian fossil record was also associated with the appearance of intracellular detail not seen in previous life forms. That detail was provided by cell membranes made with lipids (membrane fats) as structural essentials. Lipids thus played a major, as yet unrecognised, role as determinants in evolution. The compartmentalisation of intracellular, specialist functions as in the nucleus, mitochondria, reticulo-endothelial system and plasma membrane led to cellular specialisation and then speciation. Thus, not only oxygen but also the marine lipids were drivers in the Cambrian explosion. Docosahexaenoic acid (DHA) (all-cis-docosa-4,7,10,13,16,19-hexaenoic acid, C22:6ω3 or C22:6, n-3, DHA) is a major feature of marine lipids. It requires six oxygen atoms to insert its six double bonds, so it would not have been abundant before oxidative metabolism became plentiful. DHA provided the membrane backbone for the emergence of new photoreceptors that converted photons into electricity, laying the foundation for the evolution of other signalling systems, the nervous system and the brain. Hence, the ω3 DHA from the marine food web must have played a critical role in human evolution. There is also clear evidence from molecular biology that DHA is a determinant of neuronal migration, neurogenesis and the expression of several genes involved in brain growth and function. That same process was essential to the ultimate cerebral expansion in human evolution. There is now incontrovertible support of this

  8. The Effect of Time to International Normalized Ratio Reversal on Intracranial Hemorrhage Evolution in Patients With Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Hans; Rittenhouse, Katelyn; Gross, Brian; Rogers, Frederick B

    The incidence of geriatric traumatic brain injury (TBI) is increasing throughout the United States, with many of these patients taking anticoagulation (AC) medication. The purpose of this investigation was to determine the effect of time to international normalized ratio (INR) reversal on intracranial hemorrhage evolution in TBI patients taking prehospital AC medication. We hypothesized that rapid reversal of INR improves outcomes of head-injured patients taking AC medication. Admissions to a Level II trauma center between February 2011 and December 2013 were reviewed. Patients presenting with an initial INR of 2.0 or more, computed tomographic scan positive for intracranial hemorrhage, and INR reversal to less than 1.5 in hospital were included. Patients with nontraumatic intracranial hemorrhage were excluded. Reversal of INR was achieved using some combination of fresh frozen plasma, prothrombin complex concentrate, and vitamin K. A binary logistic regression model assessed the adjusted impact of rapid INR reversal on intracranial hemorrhage evolution. Significance was defined as p hr was not associated with intracranial hemorrhage evolution; however, reversal of less than 10 hr was found to be associated with a decreased odds ratio for intracranial hemorrhage evolution (p = .043). Rapid reversal of elevated INR levels (hr) may decrease intracranial hemorrhage evolution in TBI patients taking prehospital AC medication.

  9. Segmentation of brain structures in presence of a space-occupying lesion.

    Science.gov (United States)

    Pollo, Claudio; Cuadra, Meritxell Bach; Cuisenaire, Olivier; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2005-02-15

    Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.

  10. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    Science.gov (United States)

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals

  11. Structural brain alterations associated with dyslexia predate reading onset.

    Science.gov (United States)

    Raschle, Nora Maria; Chang, Maria; Gaab, Nadine

    2011-08-01

    Functional magnetic resonance imaging studies have reported reduced activation in parietotemporal and occipitotemporal areas in adults and children with developmental dyslexia compared to controls during reading and reading related tasks. These patterns of regionally reduced activation have been linked to behavioral impairments of reading-related processes (e.g., phonological skills and rapid automatized naming). The observed functional and behavioral differences in individuals with developmental dyslexia have been complemented by reports of reduced gray matter in left parietotemporal, occipitotemporal areas, fusiform and lingual gyrus and the cerebellum. An important question for education is whether these neural differences are present before reading is taught. Developmental dyslexia can only be diagnosed after formal reading education starts. However, here we investigate whether the previously detected gray matter alterations in adults and children with developmental dyslexia can already be observed in a small group of pre-reading children with a family-history of developmental dyslexia compared to age and IQ-matched children without a family-history (N = 20/mean age: 5:9 years; age range 5:1-6:5 years). Voxel-based morphometry revealed significantly reduced gray matter volume indices for pre-reading children with, compared to children without, a family-history of developmental dyslexia in left occipitotemporal, bilateral parietotemporal regions, left fusiform gyrus and right lingual gyrus. Gray matter volume indices in left hemispheric occipitotemporal and parietotemporal regions of interest also correlated positively with rapid automatized naming. No differences between the two groups were observed in frontal and cerebellar regions. This discovery in a small group of children suggests that previously described functional and structural alterations in developmental dyslexia may not be due to experience-dependent brain changes but may be present at birth or

  12. Impaired topological architecture of brain structural networks in idiopathic Parkinson's disease: a DTI study.

    Science.gov (United States)

    Li, Changhong; Huang, Biao; Zhang, Ruibin; Ma, Qing; Yang, Wanqun; Wang, Lijuan; Wang, Limin; Xu, Qin; Feng, Jieying; Liu, Liqing; Zhang, Yuhu; Huang, Ruiwang

    2017-02-01

    Parkinson's disease (PD) is considered as a neurodegenerative disorder of the brain central nervous system. But, to date, few studies adopted the network model to reveal topological changes in brain structural networks in PD patients. Additionally, although the concept of rich club organization has been widely used to study brain networks in various brain disorders, there is no study to report the changed rich club organization of brain networks in PD patients. Thus, we collected diffusion tensor imaging (DTI) data from 35 PD patients and 26 healthy controls and adopted deterministic tractography to construct brain structural networks. During the network analysis, we calculated their topological properties, and built the rich club organization of brain structural networks for both subject groups. By comparing the between-group differences in topological properties and rich club organizations, we found that the connectivity strength of the feeder and local connections are lower in PD patients compared to those of the healthy controls. Furthermore, using a network-based statistic (NBS) approach, we identified uniformly significantly decreased connections in two modules, the limbic/paralimbic/subcortical module and the cognitive control/attention module, in patients compared to controls. In addition, for the topological properties of brain network topology in the PD patients, we found statistically increased shortest path length and decreased global efficiency. Statistical comparisons of nodal properties were also widespread in the frontal and parietal regions for the PD patients. These findings may provide useful information to better understand the abnormalities of brain structural networks in PD patients.

  13. Molecular Evidence for Convergence and Parallelism in Evolution of Complex Brains of Cephalopod Molluscs: Insights from Visual Systems.

    Science.gov (United States)

    Yoshida, M A; Ogura, A; Ikeo, K; Shigeno, S; Moritaki, T; Winters, G C; Kohn, A B; Moroz, L L

    2015-12-01

    Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Evolution of collective action in adaptive social structures.

    Science.gov (United States)

    Moreira, João A; Pacheco, Jorge M; Santos, Francisco C

    2013-01-01

    Many problems in nature can be conveniently framed as a problem of evolution of collective cooperative behaviour, often modelled resorting to the tools of evolutionary game theory in well-mixed populations, combined with an appropriate N-person dilemma. Yet, the well-mixed assumption fails to describe the population dynamics whenever individuals have a say in deciding which groups they will participate. Here we propose a simple model in which dynamical group formation is described as a result of a topological evolution of a social network of interactions. We show analytically how evolutionary dynamics under public goods games in finite adaptive networks can be effectively transformed into a N-Person dilemma involving both coordination and co-existence. Such dynamics would be impossible to foresee from more conventional 2-person interactions as well as from descriptions based on infinite, well-mixed populations. Finally, we show how stochastic effects help rendering cooperation viable, promoting polymorphic configurations in which cooperators prevail.

  15. Convergent evolution of insect hearing organs from a preadaptive structure

    OpenAIRE

    Lakes-Harlan, R.; lting, H. St; Stumpner, A.

    1999-01-01

    Flies of the taxon Emblemasomatini (Sarcophagidae: Diptera) independently evolved an ear with the same anatomy and location as the Ormiini (Tachinidae: Diptera). Both ears represent a first case of convergent evolution of homologous insect ears, which raises the question for a preadaptation. Physiological and anatomical data indicate a preadaptive-sound-insensitive, but vibration-sensitive scolopidial chordotonal organ in non-hearing flies. As selective pressure for the evolutionary transform...

  16. The structure of mutations and the evolution of cooperation.

    Directory of Open Access Journals (Sweden)

    Julián García

    Full Text Available Evolutionary game dynamics in finite populations assumes that all mutations are equally likely, i.e., if there are n strategies a single mutation can result in any strategy with probability 1/n. However, in biological systems it seems natural that not all mutations can arise from a given state. Certain mutations may be far away, or even be unreachable given the current composition of an evolving population. These distances between strategies (or genotypes define a topology of mutations that so far has been neglected in evolutionary game theory. In this paper we re-evaluate classic results in the evolution of cooperation departing from the assumption of uniform mutations. We examine two cases: the evolution of reciprocal strategies in a repeated prisoner's dilemma, and the evolution of altruistic punishment in a public goods game. In both cases, alternative but reasonable mutation kernels shift known results in the direction of less cooperation. We therefore show that assuming uniform mutations has a substantial impact on the fate of an evolving population. Our results call for a reassessment of the "model-less" approach to mutations in evolutionary dynamics.

  17. Microstructural evolution of the LENS manufactured TiAl structure

    CSIR Research Space (South Africa)

    Lengopeng, T

    2016-11-01

    Full Text Available and agglomerated lamellar or colonies of lath TiAl structures. The beta and alpha phases of the lamellar structures can be identified were a defined spacing between the lamellae can be identified. The bottom, right corner in Figure 4(b), shows a refined lamellar... structure that can be identified as γ-TiAl. Similar structures can be seen in Figure 4(b), but here the lath formed structure seems to be form thinner stripes compared to the lath structures present in Figure 4(a). In fact, this image reveals that three...

  18. Automatic Evolution of Multimodal Behavior with Multi-Brain HyperNEAT

    DEFF Research Database (Denmark)

    Schrum, Jacob; Lehman, Joel; Risi, Sebastian

    2016-01-01

    An important challenge in neuroevolution is to evolve multimodal behavior. Indirect network encodings can potentially answer this challenge. Yet in practice, indirect encodings do not yield effective multimodal controllers. This paper introduces novel multimodal extensions to HyperNEAT, a popular...... indirect encoding. A previous multimodal approach called situational policy geometry assumes that multiple brains benefit from being embedded within an explicit geometric space. However, this paper introduces HyperNEAT extensions for evolving many brains without assuming geometric relationships between...... them. The resulting Multi-Brain HyperNEAT can exploit human-specified task divisions, or can automatically discover when brains should be used, and how many to use. Experiments show that multi-brain approaches are more effective than HyperNEAT without multimodal extensions, and that brains without...

  19. Effects of alcohol intake on brain structure and function in non-alcohol-dependent drinkers

    OpenAIRE

    Bruin, Eveline Astrid de

    2005-01-01

    About 85% of the adult population in the Netherlands regularly drinks alcohol. Chronic excessive alcohol intake in alcohol-dependent individuals is known to have damaging effects on brain structure and function. Relatives of alcohol-dependent individuals display differences in brain function that are similar to those found in alcoholics, even if they have never been drinking alcohol. This suggests that brain damage in alcohol-dependent individuals is at least partly related to genetic factors...

  20. A Review of the Status of Brain Structure Research in Transsexualism

    OpenAIRE

    Guillamon, Antonio; Junque, Carme; G?mez-Gil, Esther

    2016-01-01

    The present review focuses on the brain structure of male-to-female (MtF) and female-to-male (FtM) homosexual transsexuals before and after cross-sex hormone treatment as shown by in vivo neuroimaging techniques. Cortical thickness and diffusion tensor imaging studies suggest that the brain of MtFs presents complex mixtures of masculine, feminine, and demasculinized regions, while FtMs show feminine, masculine, and defeminized regions. Consequently, the specific brain phenotypes proposed for ...

  1. Small-angle neutron scattering study of structural evolution of ...

    Indian Academy of Sciences (India)

    ... complex is found to be independent of the size of the micelles in their pure surfactant solutions. The structure of temperature-induced protein gels shows a fractal structure. Rheology of these gels shows a strong dependence on varying pH or protein concentration, whereas the structure of such gels is found to be similar.

  2. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution

    OpenAIRE

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-01-01

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foo...

  3. Ultra-deep sequencing reveals the subclonal structure and genomic evolution of oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin Jakob

    complex subclonal architectures comprising distinct subclones only found in geographically distinct regions of the tumors. The metastatic potential of the tumor is acquired early in the tumor evolution, as indicated by the lymph node sharing the majority of the mutations with the tumor biopsies, while...... rarely acquiring novel mutations that are specific for the metastasis. Conclusion: Ultra-deep sequencing of multiple biopsies from OSCC and metastasis enables detection of subclonal structure and genomic evolution. The metastatic potential of OSCC is acquired early in the tumor evolution, and our results...... structure remains unexplored due to lack of sampling multiple tumor biopsies from each patient. Materials and methods: To examine the clonal structure and describe the genomic cancer evolution we applied whole-exome sequencing combined with targeted ultra-deep targeted sequencing on biopsies from 5stage IV...

  4. Brain structure and functional connectivity associated with pornography consumption: the brain on porn.

    Science.gov (United States)

    Kühn, Simone; Gallinat, Jürgen

    2014-07-01

    Since pornography appeared on the Internet, the accessibility, affordability, and anonymity of consuming visual sexual stimuli have increased and attracted millions of users. Based on the assumption that pornography consumption bears resemblance with reward-seeking behavior, novelty-seeking behavior, and addictive behavior, we hypothesized alterations of the frontostriatal network in frequent users. To determine whether frequent pornography consumption is associated with the frontostriatal network. In a study conducted at the Max Planck Institute for Human Development in Berlin, Germany, 64 healthy male adults covering a wide range of pornography consumption reported hours of pornography consumption per week. Pornography consumption was associated with neural structure, task-related activation, and functional resting-state connectivity. Gray matter volume of the brain was measured by voxel-based morphometry and resting state functional connectivity was measured on 3-T magnetic resonance imaging scans. We found a significant negative association between reported pornography hours per week and gray matter volume in the right caudate (P < .001, corrected for multiple comparisons) as well as with functional activity during a sexual cue-reactivity paradigm in the left putamen (P < .001). Functional connectivity of the right caudate to the left dorsolateral prefrontal cortex was negatively associated with hours of pornography consumption. The negative association of self-reported pornography consumption with the right striatum (caudate) volume, left striatum (putamen) activation during cue reactivity, and lower functional connectivity of the right caudate to the left dorsolateral prefrontal cortex could reflect change in neural plasticity as a consequence of an intense stimulation of the reward system, together with a lower top-down modulation of prefrontal cortical areas. Alternatively, it could be a precondition that makes pornography consumption more rewarding.

  5. Drosophila as a Developmental Paradigm of Regressive Brain Evolution: Proof of Principle in the Visual System

    National Research Council Canada - National Science Library

    Friedrich, Markus

    2011-01-01

    Evolutionary developmental biology focuses heavily on the constructive evolution of body plan components, but there are many instances such as parasitism, cave adaptation, or postembryonic growth rate...

  6. Gene Expression Divergence is Coupled to Evolution of DNA Structure in Coding Regions

    Science.gov (United States)

    Dai, Zhiming; Dai, Xianhua

    2011-01-01

    Sequence changes in coding region and regulatory region of the gene itself (cis) determine most of gene expression divergence between closely related species. But gene expression divergence between yeast species is not correlated with evolution of primary nucleotide sequence. This indicates that other factors in cis direct gene expression divergence. Here, we studied the contribution of DNA three-dimensional structural evolution as cis to gene expression divergence. We found that the evolution of DNA structure in coding regions and gene expression divergence are correlated in yeast. Similar result was also observed between Drosophila species. DNA structure is associated with the binding of chromatin remodelers and histone modifiers to DNA sequences in coding regions, which influence RNA polymerase II occupancy that controls gene expression level. We also found that genes with similar DNA structures are involved in the same biological process and function. These results reveal the previously unappreciated roles of DNA structure as cis-effects in gene expression. PMID:22125484

  7. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    Science.gov (United States)

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  8. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup

    DEFF Research Database (Denmark)

    Yu, Xiao-Jing; Zheng, Hong-Kun; Wang, Jun

    2006-01-01

    Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during human evolution. However, without a closely...... related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47...... candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more...

  9. The influence of sex steroids on structural brain maturation in adolescence

    NARCIS (Netherlands)

    Koolschijn, P.C.M.P.; Peper, J.S.; Crone, E.A.

    2014-01-01

    Puberty reflects a period of hormonal changes, physical maturation and structural brain reorganization. However, little attention has been paid to what extent sex steroids and pituitary hormones are associated with the refinement of brain maturation across adolescent development. Here we used

  10. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  11. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    Science.gov (United States)

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  12. Large-scale structural alteration of brain in epileptic children with SCN1A mutation

    Directory of Open Access Journals (Sweden)

    Yun-Jeong Lee

    2017-01-01

    Significance: This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  13. Effects of alcohol intake on brain structure and function in non-alcohol-dependent drinkers

    NARCIS (Netherlands)

    Bruin, Eveline Astrid de

    2005-01-01

    About 85% of the adult population in the Netherlands regularly drinks alcohol. Chronic excessive alcohol intake in alcohol-dependent individuals is known to have damaging effects on brain structure and function. Relatives of alcohol-dependent individuals display differences in brain function that

  14. Correlations between personality and brain structure: A crucial role of gender

    NARCIS (Netherlands)

    Nostro, A.; Müller, V.I.; Reid, A.T.; Eickhoff, S.B.

    2017-01-01

    Previous studies have shown that males and females differ in personality and gender differences have also been reported in brain structure. However, effects of gender on this "personality-brain" relationship are yet unknown. We therefore investigated if the neural correlates of personality differ

  15. Male and female brain evolution is subject to contrasting selection pressures in primates

    Science.gov (United States)

    Dunbar, Robin IM

    2007-01-01

    The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis) is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20) add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative) is related most closely to neocortex volume, but male sociality (which is more competitive and combative) is more closely related to subcortical units (notably those associated with emotional responses). Thus different brain units have responded to different selection pressures. PMID:17493267

  16. Male and female brain evolution is subject to contrasting selection pressures in primates

    Directory of Open Access Journals (Sweden)

    Dunbar Robin IM

    2007-05-01

    Full Text Available Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20 add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative is related most closely to neocortex volume, but male sociality (which is more competitive and combative is more closely related to subcortical units (notably those associated with emotional responses. Thus different brain units have responded to different selection pressures.

  17. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  18. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  19. Evolution

    Science.gov (United States)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  20. Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth.

    Science.gov (United States)

    Song, Limei; Mishra, Virendra; Ouyang, Minhui; Peng, Qinmu; Slinger, Michelle; Liu, Shuwei; Huang, Hao

    2017-01-01

    Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20-40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20-35 PMW than during 35-40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural

  1. Structural and Functional MRI Differences in Master Sommeliers: A Pilot Study on Expertise in the Brain

    National Research Council Canada - National Science Library

    Banks, Sarah J; Sreenivasan, Karthik R; Weintraub, David M; Baldock, Deanna; Noback, Michael; Pierce, Meghan E; Frasnelli, Johannes; James, Jay; Beall, Erik; Zhuang, Xiaowei; Cordes, Dietmar; Leger, Gabriel C

    2016-01-01

    .... Sommeliers are experts in wine and thus in olfaction. We assessed differences in Master Sommeliers' brains, compared with controls, in structure and also in functional response to olfactory and visual judgment tasks...

  2. Evolution and Structure of Neuromuscular Systems in Spiralian Meiofauna

    DEFF Research Database (Denmark)

    Bekkouche, Nicolas Tarik

    Spiralia is a vast clade of Metazoa comprising large and well-known organisms, e.g., Annelida and Mollusca, but also many microscopic animals such as Gastrotricha or Gnathifera (including, Rotifera) of the often overlooked meiofauna. To date, the phylogeny and morphology of Spiralia have been...... representatives, that Gnathifera is the sister group of remaining Spiralia, that Gastrotricha+Platyhelminthes branches off next and that Lobatocerebrum is an Annelida. The morphological surveys of the musculature, nervous system, glands, and ciliation on three phylogenetically distinct taxa yield more insight...... into their evolution: Lobatocerebrum is an aberrant annelid showing only few common traits with Annelida, yet, our detailed studies unravel putative resemblances of muscular, nervous and glandular system to previous findings in annelids. Micrognathozoa shows more resemblances with Rotifera than Gnathostomulida (these...

  3. Magnetic structure evolution in mechanically milled nanostructured ZnFe2O4 particles

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Wynn, P.; Mørup, Steen

    1999-01-01

    Nanostructured partially-inverted ZnFe2O4 particles have been prepared from bulk ZnFe2O4 by high-energy ball milling in an open container. The grain size reduction, cation site distributions, and the evolution of magnetic structures have been studied by x-ray diffraction with Rietveld structure...

  4. Structural Evolution of Human Recombinant alfaB-Crystallin under UV Irradiation

    DEFF Research Database (Denmark)

    Sugiyama, Masaaki; Fujii, Noriko; Morimoto, Yukio

    2008-01-01

    External stresses cause certain proteins to lose their regular structure and aggregate. In order to clarify this abnormal aggregation process, a structural evolution of human recombinant aB-crystallin under UV irradiation was observed with in situ small-angle neutron scattering. The abnormal...

  5. On modeling micro-structural evolution using a higher order strain gradient continuum theory

    DEFF Research Database (Denmark)

    El-Naaman, S. A.; Nielsen, K. L.; Niordson, C. F.

    2016-01-01

    the experimentally observed micro-structural behavior, within a framework based on continuous field quantities, poses obvious challenges, since the evolution of dislocation structures is inherently a discrete and discontinuous process. This challenge, in particular, motivates the present study, and the aim...

  6. Evolution of Organic Agriculture within Theoretical Frameworks of Structural Change and Transformation

    DEFF Research Database (Denmark)

    Rasmussen, Ole Horn

    Summary   This dissertation, "Evolution of Organic Agriculture within Frameworks of Structural Change and Transformation", represents a search for an understanding of the phenomenon of "Organic Agriculture". It is structured in six parts. In the first part, we investigate the agricultural economic...

  7. Shifting the Starspot Paradigm through Imaging Magnetic Structures and Evolution

    Science.gov (United States)

    Roettenbacher, Rachael M.

    2016-08-01

    Magnetism is present in stars across all masses and evolutionary states. For cool stars with a convective outer envelope, stellar magnetic fields are generated through complex interactions between the convective layer and radiative core due to rotation. Magnetism in cool stars fuels stellar activity, in particular as starspots. Using starspots as a proxy, this work concentrates on imaging stellar magnetism. With state-of-the-art observations and imaging techniques, I investigate shifting the spot paradigm of localized starspots blemishing an otherwise bright surface (analogous to the solar photosphere) to a surface hosting a widespread network of magnetically-suppressed convection. This network is capable of affecting measurements of fundamental stellar parameters, such as radius and temperature, leading to inaccurate mass and age estimates. To accomplish this shift, I use precision Kepler data and a light-curve inversion algorithm for studies of stellar differential rotation and starspot evolution. Additionally, with long-baseline interferometric data collected with the Michigan Infrared Combiner (MIRC) at Georgia State University's Center for High Angular Resolution Astronomy (CHARA) Array, I target the bright, spotted, giant primary stars of close binary (RS CVn) systems. For these stars, I combine interferometric detections with radial velocity data to measure orbital and stellar parameters, which are used in concert with long-term photometric light curves to observe ellipsoidal variations, measure gravity darkening, and isolate the starspot signatures. In direct imaging using the interferometric data, I observe a spotted RS CVn star through an entire rotation period to detect canonical starspots, a polar starspot, and globally-suppressed convection. The regions of magnetically-suppressed convection cover a large fraction of the surface, potentially impacting estimates of stellar parameters. The combination of these efforts provides a start to a new era of

  8. What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric and volumetric perspectives

    Directory of Open Access Journals (Sweden)

    Alexandra A de Sousa

    2014-06-01

    Full Text Available An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area of a cortical region (such as the primary visual cortex, V1 is related to the microstructure of discrete brain regions. The hypothesis developed here is that a larger absolute V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function.

  9. Comment on "Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens" and "Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans".

    Science.gov (United States)

    Currat, Mathias; Excoffier, Laurent; Maddison, Wayne; Otto, Sarah P; Ray, Nicolas; Whitlock, Michael C; Yeaman, Sam

    2006-07-14

    Mekel-Bobrov et al. and Evans et al. (Reports, 9 Sept. 2005, p. 1720 and p. 1717, respectively) examined sequence data from modern humans within two gene regions associated with brain development, ASPM and microcephalin, and concluded that selection of these genes must be ongoing. We show that models of human history that include both population growth and spatial structure can generate the observed patterns without selection.

  10. Body mass index, but not FTO genotype or major depressive disorder, influences brain structure.

    Science.gov (United States)

    Cole, J H; Boyle, C P; Simmons, A; Cohen-Woods, S; Rivera, M; McGuffin, P; Thompson, P M; Fu, C H Y

    2013-11-12

    Obesity and major depressive disorder (MDD) are highly prevalent and often comorbid health conditions. Both are associated with differences in brain structure and are genetically influenced. Yet, little is known about how obesity, MDD, and known risk genotypes might interact in the brain. Subjects were 81 patients with MDD (mean age 48.6 years) and 69 matched healthy controls (mean age 51.2 years). Subjects underwent 1.5T magnetic resonance imaging, genotyping for the fat mass and obesity associated (FTO) gene rs3751812 polymorphism, and measurements for body mass index (BMI). We conducted a whole brain voxelwise analysis using tensor-based morphometry (TBM) to examine the main and interaction effects of diagnosis, BMI and FTO genotype. Significant effects of BMI were observed across widespread brain regions, indicating reductions in predominantly subcortical and white matter areas associated with increased BMI, but there was no influence of MDD or FTO rs3751812 genotype. There were no significant interaction effects. Within MDD patients, there was no effect of current depressive symptoms; however the use of antidepressant medication was associated with reductions in brain volume in the frontal lobe and cerebellum. Obesity affects brain structure in both healthy participants and MDD patients; this influence may account for some of the brain changes previously associated with MDD. BMI and the use of medication should ideally be measured and controlled for when conducting structural brain imaging research in MDD. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Focus on: Structural and Functional Brain Abnormalities in Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Nuñez, S. Christopher; Roussotte, Florence; Sowell, Elizabeth R.

    2011-01-01

    Children exposed to alcohol prenatally can experience significant deficits in cognitive and psychosocial functioning as well as alterations in brain structure and function related to alcohol’s teratogenic effects. These impairments are present both in children with fetal alcohol syndrome (FAS) and in children with heavy in utero alcohol exposure who do not have facial dysmorphology required for the FAS diagnosis. Neuropsychological and behavioral studies have revealed deficits in most cognitive domains measured, including overall intellectual functioning, attention/working memory, executive skills, speed of processing, and academic skills in children and adolescents across the range of fetal alcohol spectrum disorders (FASD). As with neuropsychological studies, brain-imaging studies have detected differences in brain structure related to alcohol exposure in multiple brain systems and abnormalities in the white matter that connects these brain regions. Several studies have found relationships between these morphological differences and cognitive function, suggesting some clinical significance to the structural brain abnormalities. Concentrations of neurotransmitter metabolites within the brains of prenatally exposed children also appear to be altered, and functional imaging studies have identified significant differences in brain activation related to working memory, learning, and inhibitory control in children and adolescents with FASD. PMID:23580049

  12. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet...... annotation. The modelling of evolution by the existing comparative gene finders leaves room for improvement. Results: A probabilistic model of both genome structure and evolution is designed. This type of model is called an Evolutionary Hidden Markov Model (EHMM), being composed of an HMM and a set of region...

  13. The Evolution of Post-Traumatic Stress Disorder following Moderate-to-Severe Traumatic Brain Injury.

    Science.gov (United States)

    Alway, Yvette; Gould, Kate Rachel; McKay, Adam; Johnston, Lisa; Ponsford, Jennie

    2016-05-01

    Increasing evidence indicates that post-traumatic stress disorder (PTSD) may develop following traumatic brain injury (TBI), despite most patients having no conscious memory of their accident. This prospective study examined the frequency, timing of onset, symptom profile, and trajectory of PTSD and its psychiatric comorbidities during the first 4 years following moderate-to-severe TBI. Participants were 85 individuals (78.8% male) with moderate or severe TBI recruited following admission to acute rehabilitation between 2005 and 2010. Using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Disorders (SCID-I), participants were evaluated for pre- and post-injury PTSD soon after injury and reassessed at 6 months, 12 months, 2 years, 3 years, and 4 years post-injury. Over the first 4 years post-injury, 17.6% developed injury-related PTSD, none of whom had PTSD prior to injury. PTSD onset peaked between 6 and 12 months post-injury. The majority of PTSD cases (66.7%) had a delayed-onset, which for a third was preceded by subsyndromal symptoms in the first 6 months post-injury. PTSD frequency increased over the first year post-injury, remained stable during the second year, and gradually declined thereafter. The majority of subjects with PTSD experienced a chronic symptom course and all developed one or more than one comorbid psychiatric disorder, with mood, other anxiety, and substance-use disorders being the most common. Despite event-related amnesia, post-traumatic stress symptoms, including vivid re-experiencing phenomena, may develop following moderate-to-severe TBI. Onset is typically delayed and symptoms may persist for several years post-injury.

  14. The timing of language learning shapes brain structure associated with articulation.

    Science.gov (United States)

    Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Klein, Denise

    2016-09-01

    We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech-motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired.

  15. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, W F C; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder, delusi...... already at illness onset in young schizophrenia spectrum patients, suggests aberrant neurodevelopmental processes in the pathogenesis of these disorders. Gray matter volume changes, however, appear not to be a key feature in early onset first-episode psychosis.......BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder......, delusional disorder or other non-organic psychosis), aged 10-18 to those of 29 matched controls, using optimized voxel-based morphometry. RESULTS: Psychotic patients had frontal white matter abnormalities, but expected (regional) gray matter reductions were not observed. Post hoc analyses revealed...

  16. Impact of fatty acids on brain circulation, structure and function

    NARCIS (Netherlands)

    Haast, R.A.M.; Kiliaan, A.J.

    2015-01-01

    The use of dietary intervention has evolved into a promising approach to prevent the onset and progression of brain diseases. The positive relationship between intake of omega-3 long chain polyunsaturated fatty acids (omega3-LCPUFAs) and decreased onset of disease- and aging-related deterioration of

  17. Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    NARCIS (Netherlands)

    R. de Boer (Renske)

    2011-01-01

    textabstractStudies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by

  18. Imaging structural and functional connectivity: towards a unified definition of human brain organization?

    Science.gov (United States)

    Guye, Maxime; Bartolomei, Fabrice; Ranjeva, Jean-Philippe

    2008-08-01

    Diffusion tractography and functional/effective connectivity MRI provide a better understanding of the structural and functional human brain connectivity. This review will underline the major recent methodological developments and their exceptional respective contributions to physiological and pathophysiological studies in vivo. We will also emphasize the benefits provided by computational models of complex networks such as graph theory. Imaging structural and functional brain connectivity has revealed the complex brain organization into large-scale networks. Such an organization not only permits the complex information segregation and integration during high cognitive processes but also determines the clinical consequences of alterations encountered in development, ageing, or neurological diseases. Recently, it has also been demonstrated that human brain networks shared topological properties with the so-called 'small-world' mathematical model, allowing a maximal efficiency with a minimal energy and wiring cost. Separately, magnetic resonance tractography and functional MRI connectivity have both brought new insights into brain organization and the impact of injuries. The small-world topology of structural and functional human brain networks offers a common framework to merge structural and functional imaging as well as dynamical data from electrophysiology that might allow a comprehensive definition of the brain organization and plasticity.

  19. Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory

    Directory of Open Access Journals (Sweden)

    T. K. Das

    2014-01-01

    Full Text Available With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model or global dynamics (e.g., the Ising model have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions.

  20. Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory

    Science.gov (United States)

    Das, T. K.; Abeyasinghe, P. M.; Crone, J. S.; Sosnowski, A.; Laureys, S.; Owen, A. M.; Soddu, A.

    2014-01-01

    With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model) or global dynamics (e.g., the Ising model) have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions. PMID:25276772

  1. Can fat explain the human brain's big bang evolution?-Horrobin's leads for comparative and functional genomics.

    Science.gov (United States)

    Erren, T C; Erren, M

    2004-04-01

    When David Horrobin suggested that phospholipid and fatty acid metabolism played a major role in human evolution, his 'fat utilization hypothesis' unified intriguing work from paleoanthropology, evolutionary biology, genetic and nervous system research in a novel and coherent lipid-related context. Interestingly, unlike most other evolutionary concepts, the hypothesis allows specific predictions which can be empirically tested in the near future. This paper summarizes some of Horrobin's intriguing propositions and suggests as to how approaches of comparative genomics published in Cell, Nature, Science and elsewhere since 1997 may be used to examine his evolutionary hypothesis. Indeed, systematic investigations of the genomic clock in the species' mitochondrial DNA, the Y and autosomal chromosomes as evidence of evolutionary relationships and distinctions can help to scrutinize associated predictions for their validity, namely that key mutations which differentiate us from Neanderthals and from great apes are in the genes coding for proteins which regulate fat metabolism, and particularly the phospholipid metabolism of the synapses of the brain. It is concluded that beyond clues to humans' relationships with living primates and to the Neanderthals' cognitive performance and their disappearance, the suggested molecular clock analyses may provide crucial insights into the biochemical evolution-and means of possible manipulation-of our brain.

  2. A biological cosmos of parallel universes: does protein structural plasticity facilitate evolution?

    Science.gov (United States)

    Meier, Sebastian; Ozbek, Suat

    2007-11-01

    While Darwin pictured organismal evolution as "descent with modification" more than 150 years ago, a detailed reconstruction of the basic evolutionary transitions at the molecular level is only emerging now. In particular, the evolution of today's protein structures and their concurrent functions has remained largely mysterious, as the destruction of these structures by mutation seems far easier than their construction. While the accumulation of genomic and structural data has indicated that proteins are related via common ancestors, naturally occurring protein structures are often considered to be evolutionarily robust, thus leaving open the question of how protein structures can be remodelled while selective pressure forces them to function. New information on the proteome, however, increasingly explains the nature of local and global conformational diversity in protein evolution, which allows the acquisition of novel functions via molecular transition forms containing ancestral and novel structures in dynamic equilibrium. Such structural plasticity may permit the evolution of new protein folds and help account for both the origins of new biological functions and the nature of molecular defects. (c) 2007 Wiley Periodicals, Inc.

  3. The tRNA Elbow in Structure, Recognition and Evolution

    Directory of Open Access Journals (Sweden)

    Jinwei Zhang

    2016-01-01

    Full Text Available Prominent in the L-shaped three-dimensional structure of tRNAs is the “elbow” where their two orthogonal helical stacks meet. It has a conserved structure arising from the interaction of the terminal loops of the D- and T-stem-loops, and presents to solution a flat face of a tertiary base pair between the D- and T-loops. In addition to the ribosome, which interacts with the elbow in all three of its tRNA binding sites, several cellular RNAs and many proteins are known to recognize the elbow. At least three classes of non-coding RNAs, namely 23S rRNA, ribonuclease P, and the T-box riboswitches, recognize the tRNA elbow employing an identical structural motif consisting of two interdigitated T-loops. In contrast, structural solutions to tRNA-elbow recognition by proteins are varied. Some enzymes responsible for post-transcriptional tRNA modification even disrupt the elbow structure in order to access their substrate nucleotides. The evolutionary origin of the elbow is mysterious, but, because it does not explicitly participate in the flow of genetic information, it has been proposed to be a late innovation. Regardless, it is biologically essential. Even some viruses that hijack the cellular machinery using tRNA decoys have convergently evolved near-perfect mimics of the tRNA elbow.

  4. Association of structural global brain network properties with intelligence in normal aging.

    Science.gov (United States)

    Fischer, Florian U; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  5. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  6. Brain networks, structural realism, and local approaches to the scientific realism debate.

    Science.gov (United States)

    Yan, Karen; Hricko, Jonathon

    2017-08-01

    We examine recent work in cognitive neuroscience that investigates brain networks. Brain networks are characterized by the ways in which brain regions are functionally and anatomically connected to one another. Cognitive neuroscientists use various noninvasive techniques (e.g., fMRI) to investigate these networks. They represent them formally as graphs. And they use various graph theoretic techniques to analyze them further. We distinguish between knowledge of the graph theoretic structure of such networks (structural knowledge) and knowledge of what instantiates that structure (nonstructural knowledge). And we argue that this work provides structural knowledge of brain networks. We explore the significance of this conclusion for the scientific realism debate. We argue that our conclusion should not be understood as an instance of a global structural realist claim regarding the structure of the unobservable part of the world, but instead, as a local structural realist attitude towards brain networks in particular. And we argue that various local approaches to the realism debate, i.e., approaches that restrict realist commitments to particular theories and/or entities, are problematic insofar as they don't allow for the possibility of such a local structural realist attitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Recombination in circulating Human enterovirus B: independent evolution of structural and non-structural genome regions.

    Science.gov (United States)

    Lukashev, Alexander N; Lashkevich, Vasilii A; Ivanova, Olga E; Koroleva, Galina A; Hinkkanen, Ari E; Ilonen, Jorma

    2005-12-01

    The complete nucleotide sequences of eight Human enterovirus B (HEV-B) strains were determined, representing five serotypes, E6, E7, E11, CVB3 and CVB5, which were isolated in the former Soviet Union between 1998 and 2002. All strains were mosaic recombinants and only the VP2-VP3-VP1 genome region was similar to that of the corresponding prototype HEV-B strains. In seven of the eight strains studied, the 2C-3D genome region was most similar to the prototype E30, EV74 and EV75 strains, whilst the remaining strain was most similar to the prototype E1 and E9 strains in the non-structural protein genome region. Most viruses also bore marks of additional recombination events in this part of the genome. In the 5' non-translated region, all strains were more similar to the prototype E9 than to other enteroviruses. In most cases, recombination mapped to the VP4 and 2ABC genome regions. This, together with the star-like topology of the phylogenetic trees for these genome regions, identified these genome parts as recombination hot spots. These findings further support the concept of independent evolution of enterovirus genome fragments and indicate a requirement for more advanced typing approaches. A range of available phylogenetic methods was also compared for efficient detection of recombination in enteroviruses.

  8. NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles.

    Science.gov (United States)

    Gopinathan, Navin; Yang, Bin; Lowe, John P; Edler, Karen J; Rigby, Sean P

    2014-07-20

    PLGA/PLA polymeric nanoparticles could potentially enhance the effectiveness of convective delivery of drugs, such as carboplatin, to the brain, by enabling a more sustained dosage over a longer time than otherwise possible. However, the link between the controlled release nanoparticle synthesis route, and the subsequent drug release profile obtained, is not well-understood, which hinders design of synthesis routes and availability of suitable nanoparticles. In particular, despite pore structure evolution often forming a key aspect of past theories of the physical mechanism by which a particular drug release profile is obtained, these theories have not been independently tested and validated against pore structural information. Such validation is required for intelligent synthesis design, and NMR cryoporometry can supply the requisite information. Unlike conventional pore characterisation techniques, NMR cryoporometry permits the investigation of porous particles in the wet state. NMR cryoporometry has thus enabled the detailed study of the evolving, nanoscale structure of nanoparticles during drug release, and thus related pore structure to drug release profile in a way not done previously for nanoparticles. Nanoparticles with different types of carboplatin drug release profiles were compared, including burst release, and various forms of delayed release. ESEM and TEM images of these nanoparticles also provided supporting data showing the rapid initial evolution of some nanoparticles. Different stages, within a complex, varying drug release profile, were found to be associated with particular types of changes in the nanostructure which could be distinguished by NMR. For a core-coat nanoparticle formulation, the development of smaller nanopores, following an extended induction period with no structural change, was associated with the onset of substantial drug release. This information could be used to independently validate the rationale for a particular synthesis

  9. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure.

    Science.gov (United States)

    Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar

    2017-08-22

    The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic headache and migraine and to determine their specificity for each of the headache types.

  10. Evolution of full phononic band gaps in periodic cellular structures

    Science.gov (United States)

    Wormser, Maximilian; Warmuth, Franziska; Körner, Carolin

    2017-10-01

    Cellular materials not only show interesting static properties, but can also be used to manipulate dynamic mechanical waves. In this contribution, the existence of phononic band gaps in periodic cellular structures is experimentally shown via sonic transmission experiment. Cellular structures with varying numbers of cells are excited by piezoceramic actuators and the transmitted waves are measured by piezoceramic sensors. The minimum number of cells necessary to form a clear band gap is determined. A rotation of the cells does not have an influence on the formation of the gap, indicating a complete phononic band gap. The experimental results are in good agreement with the numerically obtained dispersion relation.

  11. Red Giants as Probes of the Structure and Evolution of the Milky Way

    CERN Document Server

    Montalbán, Josefina; Noels, Arlette

    2012-01-01

    Exciting results are blooming, thanks to a convergence between unprecedented asteroseismic data obtained by the satellites CoRoT and KEPLER, and state-of-the-art models of the internal structure of red giants and of galactic evolution. The pulsation properties now available for thousands of red giants promise to add valuable and independent constraints to current models of structure and evolution of our galaxy. Such a close connection between these domains opens a new very promising gate in our understanding of stars and galaxies. In this book international leaders in the field offer a wide perspective of the recent advancements in: Asteroseismology of red giants Models of the atmosphere, internal structure, and evolution of red giants Stellar population synthesis and models of the Milky Way

  12. Morphotectonic analysis, structural evolution/pattern of a ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 3. Morphotectonic ... The present study focusses on the structural pattern and development of Giouchtas Mountain. ... Geomorphic indices, used in the present study, are the mountain front sinuosity index (Smf) and the valley floor/width ratio index (Vf).

  13. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  14. Methods and considerations for longitudinal structural brain imaging analysis across development

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills

    2014-07-01

    Full Text Available Magnetic resonance imaging (MRI has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns, as well as measurements derived from diffusion tensor imaging (DTI. By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.

  15. The evolution of structure and feedback with Arcus

    Science.gov (United States)

    Brenneman, Laura W.; Smith, Randall K.; Bregman, J.; Kaastra, J.; Brickhouse, N.; Allured, R.; Foster, A.; Wolk, S.; Wilms, J.; Valencic, L.; Willingale, R.; Grant, C.; Bautz, M.; Heilmann, R.; Huenemoerder, D.; Miller, E.; Nowak, M.; Schattenburg, M.; Schulz, N.; Burwitz, V.; Nandra, K.; Sanders, J.; Bookbinder, J.; Petre, R.; Ptak, A.; Smale, A.; Burrows, D.; Poppenhaeger, K.; Costantini, E.; DeRoo, C.; McEntaffer, R.; Mushotzky, R.; Miller, J. M.; Temi, P.

    2016-07-01

    Arcus is a NASA/MIDEX mission under development in response to the anticipated 2016 call for proposals. It is a freeflying, soft X-ray grating spectrometer with the highest-ever spectral resolution in the 8-51 Å (0.24 - 1.55 keV) energy range. The Arcus bandpass includes the most sensitive tracers of diffuse million-degree gas: spectral lines from O VII and O VIII, H- and He-like lines of C, N, Ne and Mg, and unique density- and temperature-sensitive lines from Si and Fe ions. These capabilities enable an advance in our understanding of the formation and evolution of baryons in the Universe that is unachievable with any other present or planned observatory. The mission will address multiple key questions posed in the Decadal Survey1 and NASA's 2013 Roadmap2: How do baryons cycle in and out of galaxies? How do black holes and stars influence their surroundings and the cosmic web via feedback? How do stars, circumstellar disks and exoplanet atmospheres form and evolve? Arcus data will answer these questions by leveraging recent developments in off-plane gratings and silicon pore optics to measure X-ray spectra at high resolution from a wide range of sources within and beyond the Milky Way. CCDs with strong Suzaku heritage combined with electronics based on the Swift mission will detect the dispersed X-rays. Arcus will support a broad astrophysical research program, and its superior resolution and sensitivity in soft X-rays will complement the forthcoming Athena calorimeter, which will have comparably high resolution above 2 keV.

  16. The pig X and Y Chromosomes: structure, sequence, and evolution.

    Science.gov (United States)

    Skinner, Benjamin M; Sargent, Carole A; Churcher, Carol; Hunt, Toby; Herrero, Javier; Loveland, Jane E; Dunn, Matt; Louzada, Sandra; Fu, Beiyuan; Chow, William; Gilbert, James; Austin-Guest, Siobhan; Beal, Kathryn; Carvalho-Silva, Denise; Cheng, William; Gordon, Daria; Grafham, Darren; Hardy, Matt; Harley, Jo; Hauser, Heidi; Howden, Philip; Howe, Kerstin; Lachani, Kim; Ellis, Peter J I; Kelly, Daniel; Kerry, Giselle; Kerwin, James; Ng, Bee Ling; Threadgold, Glen; Wileman, Thomas; Wood, Jonathan M D; Yang, Fengtang; Harrow, Jen; Affara, Nabeel A; Tyler-Smith, Chris

    2016-01-01

    We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution. © 2016 Skinner et al.; Published by Cold Spring Harbor Laboratory Press.

  17. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    OpenAIRE

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s,...

  18. Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    OpenAIRE

    Boer, Renske

    2011-01-01

    textabstractStudies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by human observers. Moreover, analysis by human observers can hamper the reproducibility by both inter- and intra-observer variability. These studies do, therefore, require accurate and reproducible quantitati...

  19. Poorer physical fitness is associated with reduced structural brain integrity in heart failure.

    Science.gov (United States)

    Alosco, Michael L; Brickman, Adam M; Spitznagel, Mary Beth; Griffith, Erica Y; Narkhede, Atul; Raz, Naftali; Cohen, Ronald; Sweet, Lawrence H; Colbert, Lisa H; Josephson, Richard; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2013-05-15

    Physical fitness is an important correlate of structural and functional integrity of the brain in healthy adults. In heart failure (HF) patients, poor physical fitness may contribute to cognitive dysfunction and we examined the unique contribution of physical fitness to brain structural integrity among patients with HF. Sixty-nine HF patients performed the Modified Mini Mental State examination (3MS) and underwent brain magnetic resonance imaging. All participants completed the 2-minute step test (2MST), a brief measure of physical fitness. We examined the associations between cognitive performance, physical fitness, and three indices of global brain integrity: total cortical gray matter volume, total white matter volume, and whole brain cortical thickness. Regression analyses adjusting for demographic characteristics, medical variables (e.g., left ventricular ejection fraction), and intracranial volume revealed reduced performance on the 2MST were associated with decreased gray matter volume and thinner cortex (passociated with poorer 3MS scores (pphysical fitness is common in HF and associated with reduced structural brain integrity. Prospective studies are needed to elucidate underlying mechanisms for the influence of physical fitness on brain health in HF. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Associations between education and brain structure at age 73 years, adjusted for age 11 IQ.

    Science.gov (United States)

    Cox, Simon R; Dickie, David Alexander; Ritchie, Stuart J; Karama, Sherif; Pattie, Alison; Royle, Natalie A; Corley, Janie; Aribisala, Benjamin S; Valdés Hernández, Maria; Muñoz Maniega, Susana; Starr, John M; Bastin, Mark E; Evans, Alan C; Wardlaw, Joanna M; Deary, Ian J

    2016-10-25

    To investigate how associations between education and brain structure in older age were affected by adjusting for IQ measured at age 11. We analyzed years of full-time education and measures from an MRI brain scan at age 73 in 617 community-dwelling adults born in 1936. In addition to average and vertex-wise cortical thickness, we measured total brain atrophy and white matter tract fractional anisotropy. Associations between brain structure and education were tested, covarying for sex and vascular health; a second model also covaried for age 11 IQ. The significant relationship between education and average cortical thickness (β = 0.124, p = 0.004) was reduced by 23% when age 11 IQ was included (β = 0.096, p = 0.041). Initial associations between longer education and greater vertex-wise cortical thickness were significant in bilateral temporal, medial-frontal, parietal, sensory, and motor cortices. Accounting for childhood intelligence reduced the number of significant vertices by >90%; only bilateral anterior temporal associations remained. Neither education nor age 11 IQ was significantly associated with total brain atrophy or tract-averaged fractional anisotropy. The association between years of education and brain structure ≈60 years later was restricted to cortical thickness in this sample; however, the previously reported associations between longer education and a thicker cortex are likely to be overestimates in terms of both magnitude and distribution. This finding has implications for understanding, and possibly ameliorating, life-course brain health. © 2016 American Academy of Neurology.

  1. Multimodal neuroimaging of male and female brain structure in health and disease across the life span.

    Science.gov (United States)

    Jahanshad, Neda; Thompson, Paul M

    2017-01-02

    Sex differences in brain development and aging are important to identify, as they may help to understand risk factors and outcomes in brain disorders that are more prevalent in one sex compared with the other. Brain imaging techniques have advanced rapidly in recent years, yielding detailed structural and functional maps of the living brain. Even so, studies are often limited in sample size, and inconsistent findings emerge, one example being varying findings regarding sex differences in the size of the corpus callosum. More recently, large-scale neuroimaging consortia such as the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium have formed, pooling together expertise, data, and resources from hundreds of institutions around the world to ensure adequate power and reproducibility. These initiatives are helping us to better understand how brain structure is affected by development, disease, and potential modulators of these effects, including sex. This review highlights some established and disputed sex differences in brain structure across the life span, as well as pitfalls related to interpreting sex differences in health and disease. We also describe sex-related findings from the ENIGMA consortium, and ongoing efforts to better understand sex differences in brain circuitry. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  2. Structural evolution and diversity of the caterpillar trunk

    DEFF Research Database (Denmark)

    Dupont, Steen Thorleif

    : the myrmecophilous ‘blue butterflies’ (Lycaenidae). The thesis includes four manuscript/chapters (MS 1-4). The four main objectives of the thesis are 1), to describe the larval morphology, including secondary locomotory structures, trunk chaetotaxy, and trunk musculature in the nonneolepidopterans, and in doing so...... feeding and climbing behavior (MS1), 3) describe the micropterigid and agathiphagid trunk morphology, including secondary locomotory structures, chaetotaxy, trunk musculature, and in the case of the former also the unique cuticle. The purpose of these descriptions is to focus on the seemingly aberrant...... morphology in an attempt to link form and function (MS2-3). 4) to re-evaluate the previously indicated correlation between the cuticle thickness of lycaenid larvae and the degree of myrmecophily in a selection of species in this family, and through a comparative study to better understand the link between...

  3. The Evolution of Meaning-Space Structure through Iterated Learning

    Science.gov (United States)

    Kirby, Simon

    One of the most striking aspects of human linguistic communication is its extensive use of compositionality to convey meaning. When expressing a complex meaning, we tend to use signals whose structure reflects the structure of the meaning to some degree. This property is the foundation upon which the syntax of language is built. It is natural, therefore, that an evolutionary account of human language should contrast compositional communication with a non-compositional, holistic alternative where whole signals map onto whole meanings in an arbitrary, unstructured way. Indeed, Wray (1998) has argued that holistic communication (which is still in evidence in particular contexts today) can be seen as a living fossil of an earlier completely non-compositional protolanguage.

  4. Floral glands in asclepiads: structure, diversity and evolution

    Directory of Open Access Journals (Sweden)

    Diego Demarco

    Full Text Available ABSTRACT Species of Apocynaceae stand out among angiosperms in having very complex flowers, especially those of asclepiads, which belong to the most derived subfamily (Asclepiadoideae. These flowers are known to represent the highest degree of floral synorganization of the eudicots, and are comparable only to orchids. This morphological complexity may also be understood by observing their glands. Asclepiads have several protective and nuptial secretory structures. Their highly specific and specialized pollination systems are associated with the great diversity of glands found in their flowers. This review gathers data regarding all types of floral glands described for asclepiads and adds three new types (glandular trichome, secretory idioblast and obturator, for a total of 13 types of glands. Some of the species reported here may have dozens of glands of up to 11 types on a single flower, corresponding to the largest diversity of glands recorded to date for a single structure.

  5. The venus kinase receptor (VKR) family: structure and evolution.

    OpenAIRE

    Vanderstraete, Mathieu; Gouignard, Nadège; Ahier, Arnaud; Morel, Marion; Vicogne, Jérôme; Dissous, Colette

    2013-01-01

    International audience; BACKGROUND: Receptor tyrosine kinases (RTK) form a family of transmembrane proteins widely conserved in Metazoa, with key functions in cell-to-cell communication and control of multiple cellular processes. A new family of RTK named Venus Kinase Receptor (VKR) has been described in invertebrates. The VKR receptor possesses a Venus Fly Trap (VFT) extracellular module, a bilobate structure that binds small ligands to induce receptor kinase activity. VKR was shown to be hi...

  6. Topological bifurcations in the evolution of coherent structures in a convection model

    DEFF Research Database (Denmark)

    Dam, Magnus; Rasmussen, Jens Juul; Naulin, Volker

    2017-01-01

    Blob filaments are coherent structures in a turbulent plasma flow. Understanding the evolution of these structures is important to improve magnetic plasma confinement. Three state variables describe blob filaments in a plasma convection model. A dynamical systems approach analyzes the evolution...... of these three variables. A critical point of a variable defines a feature point for a region where that variable is significant. For a range of Rayleigh and Prandtl numbers, the bifurcations of the critical points of the three variables are investigated with time as the primary bifurcation parameter...

  7. Evolution of polymer photovoltaic performances from subtle chemical structure variations.

    Science.gov (United States)

    Yan, Han; Li, Denghua; Lu, Kun; Zhu, Xiangwei; Zhang, Yajie; Yang, Yanlian; Wei, Zhixiang

    2012-11-21

    Conjugated polymers are promising replacements for their inorganic counterparts in photovoltaics due to their low cost, ease of processing, and straightforward thin film formation. New materials have been able to improve the power conversion efficiency of photovoltaic cells up to 8%. However, rules for rational material design are still lacking, and subtle chemical structure variations usually result in large performance discrepancies. The present paper reports a detailed study on the crystalline structure, morphology, and in situ optoelectronic properties of blend films of polythiophene derivatives and [6,6]-phenyl C61-butyric acid methyl ester by changing the alkyl side chain length and position of polythiophene. The correlation among the molecular structure, mesoscopic morphology, mesoscopic optoelectronic property and macroscopic device performance (highest efficiency above 4%) was directly established. Both solubility and intermolecular interactions should be considered in rational molecular design. Knowledge obtained from this study can aid the selection of appropriate processing conditions that improve blend film morphology, charge transport property, and overall solar cell efficiency.

  8. Structural evolution of an alkali sulfate activated slag cement

    Energy Technology Data Exchange (ETDEWEB)

    Mobasher, Neda; Bernal, Susan A.; Provis, John L., E-mail: j.provis@sheffield.ac.uk

    2016-01-15

    In this study, the effect of sodium sulfate content and curing duration (from fresh paste up to 18 months) on the binder structure of sodium sulfate activated slag cements was evaluated. Isothermal calorimetry results showed an induction period spanning the first three days after mixing, followed by an acceleration-deceleration peak corresponding to the formation of bulk reaction products. Ettringite, a calcium aluminium silicate hydrate (C-A-S-H) phase, and a hydrotalcite-like Mg–Al layered double hydroxide have been identified as the main reaction products, independent of the Na{sub 2}SO{sub 4} dose. No changes in the phase assemblage were detected in the samples with curing from 1 month up to 18 months, indicating a stable binder structure. The most significant changes upon curing at advanced ages observed were growth of the AFt phase and an increase in silicate chain length in the C-A-S-H, resulting in higher strength. - Highlights: • Na{sub 2}SO{sub 4}-slag cement proposed for the encapsulation of nuclear waste. • Activator content and curing (up to 18 months) control binder structure. • Ettringite, C-A-S-H, and a hydrotalcite-like LDH are the main reaction products. • Phase assemblage stable from 1 to 18 months, desirable for waste encapsulation.

  9. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  10. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee

    2014-04-11

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  11. "Old friends in new guise": exploiting privileged structures for scaffold re-evolution/refining.

    Science.gov (United States)

    Song, Yu'ning; Chen, Wenmin; Kang, Dongwei; Zhang, Qingzhu; Zhan, Peng; Liu, Xinyong

    2014-01-01

    The attempts to increase novel drug productivity through creative discovery technologies have fallen short of producing the satisfactory results. For these reasons, evolved from the concept of drug repositioning, "privileged structure"-guided scaffold re-evolution/refining is a primary strategy to identify structurally novel chemotypes by modifying the central core structure and the side-chain of the existing active compounds, or to exploit undescribed bioactivites by making full use of readily derivatized motifs with well-established synthetic protocols. Herein, we review the basic tricks of exploiting privileged structures for scaffold re-evolution/refining. The power of this strategy is exemplified in the discovery of other new therapeutic applications by refining privileged structures in anti-viral agents.

  12. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    Science.gov (United States)

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  13. Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training.

    Science.gov (United States)

    Sun, Jiangzhou; Chen, Qunlin; Zhang, Qinglin; Li, Yadan; Li, Haijiang; Wei, Dongtao; Yang, Wenjing; Qiu, Jiang

    2016-10-01

    Creativity is commonly defined as the ability to produce something both novel and useful. Stimulating creativity has great significance for both individual success and social improvement. Although increasing creative capacity has been confirmed to be possible and effective at the behavioral level, few longitudinal studies have examined the extent to which the brain function and structure underlying creativity are plastic. A cognitive stimulation (20 sessions) method was used in the present study to train subjects and to explore the neuroplasticity induced by training. The behavioral results revealed that both the originality and the fluency of divergent thinking were significantly improved by training. Furthermore, functional changes induced by training were observed in the dorsal anterior cingulate cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and posterior brain regions. Moreover, the gray matter volume (GMV) was significantly increased in the dACC after divergent thinking training. These results suggest that the enhancement of creativity may rely not only on the posterior brain regions that are related to the fundamental cognitive processes of creativity (e.g., semantic processing, generating novel associations), but also on areas that are involved in top-down cognitive control, such as the dACC and DLPFC. Hum Brain Mapp 37:3375-3387, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Brain intersections of aesthetics and morals: perspectives from biology, neuroscience, and evolution.

    Science.gov (United States)

    Zaidel, D W; Nadal, M

    2011-01-01

    For centuries, only philosophers debated the relationship between aesthetics and morality. Recently, with advances in neuroscience, the debate has moved to include the brain and an evolved neural underpinning linking aesthetic reactions and moral judgment. Biological survival emphasizes mate selection strategies, and the ritual displays have been linked to human aesthetics in the arts, in faces, and in various daily decision making. In parallel, cultural human practices have evolved to emphasize altruism and morality. This article explores the biological background and discusses the neuroscientific evidence for shared brain pathways for aesthetics and morals.

  15. Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification.

    Directory of Open Access Journals (Sweden)

    Javier U Chicote

    Full Text Available Subtype R3 phosphotyrosine phosphatase receptors (R3 RPTPs are single-spanning membrane proteins characterized by a unique modular composition of extracellular fibronectin repeats and a single cytoplasmatic protein tyrosine phosphatase (PTP domain. Vertebrate R3 RPTPs consist of five members: PTPRB, PTPRJ, PTPRH and PTPRO, which dephosphorylate tyrosine residues, and PTPRQ, which dephosphorylates phophoinositides. R3 RPTPs are considered novel therapeutic targets in several pathologies such as ear diseases, nephrotic syndromes and cancer. R3 RPTP vertebrate receptors, as well as their known invertebrate counterparts from animal models: PTP52F, PTP10D and PTP4e from the fruitfly Drosophila melanogaster and F44G4.8/DEP-1 from the nematode Caenorhabditis elegans, participate in the regulation of cellular activities including cell growth and differentiation. Despite sharing structural and functional properties, the evolutionary relationships between vertebrate and invertebrate R3 RPTPs are not fully understood. Here we gathered R3 RPTPs from organisms covering a broad evolutionary distance, annotated their structure and analyzed their phylogenetic relationships. We show that R3 RPTPs (i have probably originated in the common ancestor of animals (metazoans, (ii are variants of a single ancestral gene in protostomes (arthropods, annelids and nematodes; (iii a likely duplication of this ancestral gene in invertebrate deuterostomes (echinodermes, hemichordates and tunicates generated the precursors of PTPRQ and PTPRB genes, and (iv R3 RPTP groups are monophyletic in vertebrates and have specific conserved structural characteristics. These findings could have implications for the interpretation of past studies and provide a framework for future studies and functional analysis of this important family of proteins.

  16. The venus kinase receptor (VKR) family: structure and evolution

    Science.gov (United States)

    2013-01-01

    Background Receptor tyrosine kinases (RTK) form a family of transmembrane proteins widely conserved in Metazoa, with key functions in cell-to-cell communication and control of multiple cellular processes. A new family of RTK named Venus Kinase Receptor (VKR) has been described in invertebrates. The VKR receptor possesses a Venus Fly Trap (VFT) extracellular module, a bilobate structure that binds small ligands to induce receptor kinase activity. VKR was shown to be highly expressed in the larval stages and gonads of several invertebrates, suggesting that it could have functions in development and/or reproduction. Results Analysis of recent genomic data has allowed us to extend the presence of VKR to five bilaterian phyla (Platyhelminthes, Arthropoda, Annelida, Mollusca, Echinodermata) as well as to the Cnidaria phylum. The presence of NveVKR in the early-branching metazoan Nematostella vectensis suggested that VKR arose before the bilaterian radiation. Phylogenetic and gene structure analyses showed that the 40 receptors identified in 36 animal species grouped monophyletically, and likely evolved from a common ancestor. Multiple alignments of tyrosine kinase (TK) and VFT domains indicated their important level of conservation in all VKRs identified up to date. We showed that VKRs had inducible activity upon binding of extracellular amino-acids and molecular modeling of the VFT domain confirmed the structure of the conserved amino-acid binding site. Conclusions This study highlights the presence of VKR in a large number of invertebrates, including primitive metazoans like cnidarians, but also its absence from nematodes and chordates. This little-known RTK family deserves to be further explored in order to determine its evolutionary origin, its possible interest for the emergence and specialization of Metazoa, and to understand its function in invertebrate development and/or reproductive biology. PMID:23721482

  17. Evolution of Nucleotide Punctuation Marks: From Structural to Linear Signals

    Science.gov (United States)

    El Houmami, Nawal; Seligmann, Hervé

    2017-01-01

    We present an evolutionary hypothesis assuming that signals marking nucleotide synthesis (DNA replication and RNA transcription) evolved from multi- to unidimensional structures, and were carried over from transcription to translation. This evolutionary scenario presumes that signals combining secondary and primary nucleotide structures are evolutionary transitions. Mitochondrial replication initiation fits this scenario. Some observations reported in the literature corroborate that several signals for nucleotide synthesis function in translation, and vice versa. (a) Polymerase-induced frameshift mutations occur preferentially at translational termination signals (nucleotide deletion is interpreted as termination of nucleotide polymerization, paralleling the role of stop codons in translation). (b) Stem-loop hairpin presence/absence modulates codon-amino acid assignments, showing that translational signals sometimes combine primary and secondary nucleotide structures (here codon and stem-loop). (c) Homopolymer nucleotide triplets (AAA, CCC, GGG, TTT) cause transcriptional and ribosomal frameshifts. Here we find in recently described human mitochondrial RNAs that systematically lack mono-, dinucleotides after each trinucleotide (delRNAs) that delRNA triplets include 2x more homopolymers than mitogenome regions not covered by delRNA. Further analyses of delRNAs show that the natural circular code X (a little-known group of 20 translational signals enabling ribosomal frame retrieval consisting of 20 codons {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC} universally overrepresented in coding versus other frames of gene sequences), regulates frameshift in transcription and translation. This dual transcription and translation role confirms for X the hypothesis that translational signals were carried over from transcriptional signals. PMID:28396681

  18. 3D printing of layered brain-like structures using peptide modified gellan gum substrates.

    Science.gov (United States)

    Lozano, Rodrigo; Stevens, Leo; Thompson, Brianna C; Gilmore, Kerry J; Gorkin, Robert; Stewart, Elise M; in het Panhuis, Marc; Romero-Ortega, Mario; Wallace, Gordon G

    2015-10-01

    The brain is an enormously complex organ structured into various regions of layered tissue. Researchers have attempted to study the brain by modeling the architecture using two dimensional (2D) in vitro cell culturing methods. While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to our understanding of the functioning of the brain at the tissue or organ level. To address these obstacles, we demonstrate a new method to bioprint 3D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels. Brain-like structures were constructed using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. The neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix. The facile ability to form discrete cell-containing layers validates the application of this novel printing technique to form complex, layered and viable 3D cell structures. These brain-like structures offer the opportunity to reproduce more accurate 3D in vitro microstructures with applications ranging from cell behavior studies to improving our understanding of brain injuries and neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A longitudinal study of structural brain network changes with normal aging

    Directory of Open Access Journals (Sweden)

    Kai eWu

    2013-04-01

    Full Text Available The aim of this study was to investigate age-related changes in the topological organization of structural brain networks by applying a longitudinal design over 6 years. Structural brain networks were derived from measurements of regional gray matter volume and were constructed in age-specific groups from baseline and follow-up scans. The structural brain networks showed economical small-world properties, providing high global and local efficiency for parallel information processing at low connection costs. In the analysis of the global network properties, the local and global efficiency of the baseline scan were significantly lower compared to the follow-up scan. Moreover, the annual rate of changes in local and global efficiency showed a positive and negative quadratic correlation with the baseline age, respectively; both curvilinear correlations peaked at approximately the age of 50. In the analysis of the regional nodal properties, significant negative correlations between the annual rate of changes in nodal strength and the baseline age were found in the brain regions primarily involved in the visual and motor/ control systems, whereas significant positive quadratic correlations were found in the brain regions predominately associated with the default-mode, attention, and memory systems. The results of the longitudinal study are consistent with the findings of our previous cross-sectional study: the structural brain networks develop into a fast distribution from young to middle age (approximately 50 years old and eventually became a fast localization in the old age. Our findings elucidate the network topology of structural brain networks and its longitudinal changes, thus enhancing the understanding of the underlying physiology of normal aging in the human brain.

  20. Predicting brain structure in population-based samples with biologically informed genetic scores for schizophrenia.

    Science.gov (United States)

    Van der Auwera, Sandra; Wittfeld, Katharina; Shumskaya, Elena; Bralten, Janita; Zwiers, Marcel P; Onnink, A Marten H; Usberti, Niccolo; Hertel, Johannes; Völzke, Henry; Völker, Uwe; Hosten, Norbert; Franke, Barbara; Grabe, Hans J

    2017-04-01

    Schizophrenia is associated with brain structural abnormalities including gray and white matter volume reductions. Whether these alterations are caused by genetic risk variants for schizophrenia is unclear. Previous attempts to detect associations between polygenic factors for schizophrenia and structural brain phenotypes in healthy subjects have been negative or remain non-replicated. In this study, we used genetic risk scores that were based on the accumulated effect of selected risk variants for schizophrenia belonging to specific biological systems like synaptic function, neurodevelopment, calcium signaling, and glutamatergic neurotransmission. We hypothesized that this "biologically informed" approach would provide the missing link between genetic risk for schizophrenia and brain structural phenotypes. We applied whole-brain voxel-based morphometry (VBM) analyses in two population-based target samples and subsequent regions of interest (ROIs) analyses in an independent replication sample (total N = 2725). No consistent association between the genetic scores and brain volumes were observed in the investigated samples. These results suggest that in healthy subjects with a higher genetic risk for schizophrenia additional factors apart from common genetic variants (e.g., infection, trauma, rare genetic variants, or gene-gene interactions) are required to induce structural abnormalities of the brain. Further studies are recommended to test for possible gene-gene or gene-environment effects. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Genetic susceptibility to multiple sclerosis: Brain structure and cognitive function in the general population.

    Science.gov (United States)

    Ikram, Mohammad Arfan; Vernooij, Meike W; Roshchupkin, Gennady V; Hofman, Albert; van Duijn, Cornelia M; Uitterlinden, André G; Niessen, Wiro J; Hintzen, Rogier Q; Adams, Hieab Hh

    2017-11-01

    Multiple sclerosis (MS) affects brain structure and cognitive function and has a heritable component. Over a 100 common genetic risk variants have been identified, but most carriers do not develop MS. For other neurodegenerative diseases, risk variants have effects outside patient populations, but this remains uninvestigated for MS. To study the effect of MS-associated genetic variants on brain structure and cognitive function in the general population. We studied middle-aged and elderly individuals (mean age = 65.7 years) from the population-based Rotterdam Study. We determined 107 MS variants and additionally created a risk score combining all variants. Magnetic resonance imaging ( N = 4710) was performed to obtain measures of brain macrostructure, white matter microstructure, and gray matter voxel-based morphometry. A cognitive test battery ( N = 7556) was used to test a variety of cognitive domains. The MS risk score was associated with smaller gray matter volume over the whole brain (βstandardized = -0.016; p = 0.044), but region-specific analyses did not survive multiple testing correction. Similarly, no significant associations with brain structure were observed for individual variants. For cognition, rs2283792 was significantly associated with poorer memory (β = -0.064; p = 3.4 × 10-5). Increased genetic susceptibility to MS may affect brain structure and cognition in persons without disease, pointing to a "hidden burden" of MS.

  2. Interactive 3D visualization of structural changes in the brain of a person with corticobasal syndrome.

    Science.gov (United States)

    Hänel, Claudia; Pieperhoff, Peter; Hentschel, Bernd; Amunts, Katrin; Kuhlen, Torsten

    2014-01-01

    The visualization of the progression of brain tissue loss in neurodegenerative diseases like corticobasal syndrome (CBS) can provide not only information about the localization and distribution of the volume loss, but also helps to understand the course and the causes of this neurodegenerative disorder. The visualization of such medical imaging data is often based on 2D sections, because they show both internal and external structures in one image. Spatial information, however, is lost. 3D visualization of imaging data is capable to solve this problem, but it faces the difficulty that more internally located structures may be occluded by structures near the surface. Here, we present an application with two designs for the 3D visualization of the human brain to address these challenges. In the first design, brain anatomy is displayed semi-transparently; it is supplemented by an anatomical section and cortical areas for spatial orientation, and the volumetric data of volume loss. The second design is guided by the principle of importance-driven volume rendering: A direct line-of-sight to the relevant structures in the deeper parts of the brain is provided by cutting out a frustum-like piece of brain tissue. The application was developed to run in both, standard desktop environments and in immersive virtual reality environments with stereoscopic viewing for improving the depth perception. We conclude, that the presented application facilitates the perception of the extent of brain degeneration with respect to its localization and affected regions.

  3. Monogamy, strongly bonded groups, and the evolution of human social structure.

    Science.gov (United States)

    Chapais, Bernard

    2013-01-01

    Human social evolution has most often been treated in a piecemeal fashion, with studies focusing on the evolution of specific components of human society such as pair-bonding, cooperative hunting, male provisioning, grandmothering, cooperative breeding, food sharing, male competition, male violence, sexual coercion, territoriality, and between-group conflicts. Evolutionary models about any one of those components are usually concerned with two categories of questions, one relating to the origins of the component and the other to its impact on the evolution of human cognition and social life. Remarkably few studies have been concerned with the evolution of the entity that integrates all components, the human social system itself. That social system has as its core feature human social structure, which I define here as the common denominator of all human societies in terms of group composition, mating system, residence patterns, and kinship structures. The paucity of information on the evolution of human social structure poses substantial problems because that information is useful, if not essential, to assess both the origins and impact of any particular aspect of human society. Copyright © 2013 Wiley Periodicals, Inc.

  4. Local appearance features for robust MRI brain structure segmentation across scanning protocols

    DEFF Research Database (Denmark)

    Achterberg, H.C.; Poot, Dirk H. J.; van der Lijn, Fedde

    2013-01-01

    Segmentation of brain structures in magnetic resonance images is an important task in neuro image analysis. Several papers on this topic have shown the benefit of supervised classification based on local appearance features, often combined with atlas-based approaches. These methods require...... a representative annotated training set and therefore often do not perform well if the target image is acquired on a different scanner or with a different acquisition protocol than the training images. Assuming that the appearance of the brain is determined by the underlying brain tissue distribution...... and that brain tissue classification can be performed robustly for images obtained with different protocols, we propose to derive appearance features from brain-tissue density maps instead of directly from the MR images. We evaluated this approach on hippocampus segmentation in two sets of images acquired...

  5. Resolving Anatomical and Functional Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S.; Lim, Kelvin O.; Carlson, Jean M.

    2014-01-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease. PMID:25275860

  6. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Directory of Open Access Journals (Sweden)

    Christian Lohse

    2014-10-01

    Full Text Available Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  7. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  8. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

    Science.gov (United States)

    Han, Binghong; Stoerzinger, Kelsey A.; Tileli, Vasiliki; Gamalski, Andrew D.; Stach, Eric A.; Shao-Horn, Yang

    2017-01-01

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. Here, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3-δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3-δ and LaCoO3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.

  9. Structure and Function Evolution of Thiolate Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Grant Alvin [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (inbred reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  10. Structure and function evolution of thiolate monolayers on gold

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Grant Alvin [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (infrared reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  11. Impact origin of the Sudbury structure: Evolution of a theory

    Science.gov (United States)

    Lowman, Paul D., Jr.

    1992-01-01

    This paper reviews the origin, development, and present status of the widely accepted theory, proposed by Robert S. Dietz in 1962, that the Sudbury structure was formed by meteoritic or asteroidal impact. The impact theory for the origin of the Sudbury structure seems supported by a nearly conclusive body of evidence. However, even assuming an impact origin to be correct, at least three major questions require further study: (1) the original size and shape of the crater, before tectonic deformation and erosion; (2) the source of the melt now forming the Sudbury Igneous Complex; and (3) the degree, if any, to which the Ni-Cu-platinum group elements are meteoritic. The history of the impact theory illustrates several under-appreciated aspects of scientific research: (1) the importance of cross-fertilization between space research and terrestrial geology; (2) the role of the outsider in stimulating thinking by insiders; (3) the value of small science, at least in the initial stages of an investigation, Dietz's first field work having been at his own expense; and (4) the value of analogies (here, between the Sudbury Igneous Complex and the maria), which although incorrect in major aspects, may trigger research on totally new lines. Finally, the Sudbury story illustrates the totally unpredictable and, by implication, unplannable nature of basic research, in that insight to the origin of the world's then-greatest Ni deposit came from the study of tektites and the Moon.

  12. Metopic suture and RUNX2, a key transcription factor in osseous morphogenesis with possible important implications for human brain evolution.

    Science.gov (United States)

    Magherini, Stefano; Fiore, Maria Giulia; Chiarelli, Brunetto; Serrao, Antonio; Paternostro, Ferdinando; Morucci, Gabriele; Branca, Jacopo J V; Ruggiero, Marco; Pacini, Stefania

    2015-01-01

    Overall, the comparative data available on the timing of metopic suture closure in present-day and fossil members of human lineage, as well as great apes, seem to indicate that human brain evolution occurred within a complex network of fetopelvic constraints, which required modification of frontal neurocranial ossification patterns, involving delayed fusion of the metopic suture. It is very interesting that the recent sequencing of the Neanderthal genome has revealed signs of positive selection in the modern human variant of the RUNX2 gene, which is known to affect metopic suture fusion in addition to being essential for osteoblast development and proper bone formation. It is possible that an evolutionary change in RUNX2, affecting aspects of the morphology of the upper body and cranium, was of importance in the origin of modern humans. Thus, to contribute to a better understanding of the molecular evolution of this gene probably implicated in human evolution, we performed a comparative bioinformatic analysis of the coding sequences of RUNX2 in Homo sapiens and other non-human Primates. We found amino-acid sequence differences between RUNX2 protein isoforms of Homo sapiens and the other Primates examined, that might have important implications for the timing of metopic suture closure. Further studies are needed to clear the potential distinct developmental roles of different species-specific RUNX2 N-terminal isoforms. Meantime, our bioinformatic analysis, regarding expression of the RUNX2 gene in Homo sapiens and other non-human Primates, has provided a contribution to this important issue of human evolution.

  13. Evolution of the Brain Computing Interface (BCI and Proposed Electroencephalography (EEG Signals Based Authentication Model

    Directory of Open Access Journals (Sweden)

    Ramzan Qaseem

    2018-01-01

    Full Text Available With current advancements in the field of Brain Computer interface it is required to study how it will affect the other technologies currently in use. In this paper, the authors motivate the need of Brain Computing Interface in the era of IoT (Internet of Things, and analyze how BCI in the presence of IoT could have serious privacy breach if not protected by new kind of more secure protocols. Security breach and hacking has been around for a long time but now we are sensitive towards data as our lives depend on it. When everything is interconnected through IoT and considering that we control all interconnected things by means of our brain using BCI (Brain Computer Interface, the meaning of security breach becomes much more sensitive than in the past. This paper describes the old security methods being used for authentication and how they can be compromised. Considering the sensitivity of data in the era of IoT, a new form of authentication is required, which should incorporate BCI rather than usual authentication techniques.

  14. Brain Basics

    Medline Plus

    Full Text Available ... imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain ... imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation —A change in ...

  15. Evolution and structural organization of the C proteins of paramyxovirinae.

    Directory of Open Access Journals (Sweden)

    Michael K Lo

    Full Text Available The phosphoprotein (P gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT, and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group and human parainfluenza virus 1 (Sendai group. We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site and a highly constrained region (the C-terminus of C, seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations.

  16. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Manojkumar, P.A., E-mail: manoj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chirayath, V.A.; Balamurugan, A.K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Raj, Baldev [National Institute of Advanced Studies, Bangalore 560 012 (India)

    2016-09-15

    Highlights: • Low energy nitrogen ion implantation in titanium was studied. • Chemical and defect states were analyzed using SIMS, XPS and PAS. • SIMS and depth resolved XPS data showed good agreement. • Depth resolved defect and chemical states information were revealed. • Formation of 3 layers of defect states proposed to fit PAS results. - Abstract: Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  17. Family income, parental education and brain structure in children and adolescents.

    Science.gov (United States)

    Noble, Kimberly G; Houston, Suzanne M; Brito, Natalie H; Bartsch, Hauke; Kan, Eric; Kuperman, Joshua M; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Libiger, Ondrej; Schork, Nicholas J; Murray, Sarah S; Casey, B J; Chang, Linda; Ernst, Thomas M; Frazier, Jean A; Gruen, Jeffrey R; Kennedy, David N; Van Zijl, Peter; Mostofsky, Stewart; Kaufmann, Walter E; Kenet, Tal; Dale, Anders M; Jernigan, Terry L; Sowell, Elizabeth R

    2015-05-01

    Socioeconomic disparities are associated with differences in cognitive development. The extent to which this translates to disparities in brain structure is unclear. We investigated relationships between socioeconomic factors and brain morphometry, independently of genetic ancestry, among a cohort of 1,099 typically developing individuals between 3 and 20 years of age. Income was logarithmically associated with brain surface area. Among children from lower income families, small differences in income were associated with relatively large differences in surface area, whereas, among children from higher income families, similar income increments were associated with smaller differences in surface area. These relationships were most prominent in regions supporting language, reading, executive functions and spatial skills; surface area mediated socioeconomic differences in certain neurocognitive abilities. These data imply that income relates most strongly to brain structure among the most disadvantaged children.

  18. Rapid changes in brain structure predict improvements induced by perceptual learning.

    Science.gov (United States)

    Ditye, Thomas; Kanai, Ryota; Bahrami, Bahador; Muggleton, Neil G; Rees, Geraint; Walsh, Vincent

    2013-11-01

    Practice-dependent changes in brain structure can occur in task relevant brain regions as a result of extensive training in complex motor tasks and long-term cognitive training but little is known about the impact of visual perceptual learning on brain structure. Here we studied the effect of five days of visual perceptual learning in a motion-color conjunction search task using anatomical MRI. We found rapid changes in gray matter volume in the right posterior superior temporal sulcus, an area sensitive to coherently moving stimuli, that predicted the degree to which an individual's performance improved with training. Furthermore, behavioral improvements were also predicted by volumetric changes in an extended white matter region underlying the visual cortex. These findings point towards quick and efficient plastic neural mechanisms that enable the visual brain to deal effectively with changing environmental demands. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    Directory of Open Access Journals (Sweden)

    Karsten eMueller

    2015-07-01

    Full Text Available Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM and white matter (WM that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training three days per week over a period of three months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI, reduced serum leptin concentrations, elevated hig