WorldWideScience

Sample records for brain stimulation reveals

  1. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex

    DEFF Research Database (Denmark)

    Gjedde, Albert; Geday, Jacob

    2009-01-01

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin......-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact of...... emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated and...

  2. Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation

    Science.gov (United States)

    Abe, Mitsunari; Fukuyama, Hidenao; Mima, Tatsuya

    2014-01-01

    Repetitive brain stimulation protocols induce plasticity in the stimulated site in brain slice models. Recent evidence from network models has indicated that additional plasticity-related changes occur in nonstimulated remote regions. Despite increasing use of brain stimulation protocols in experimental and clinical settings, the neural substrates underlying the additional effects in remote regions are unknown. Diffusion-weighted MRI (DWI) probes water diffusion and can be used to estimate morphological changes in cortical tissue that occur with the induction of plasticity. Using DWI techniques, we estimated morphological changes induced by application of repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1). We found that rTMS altered water diffusion in multiple regions including the left M1. Notably, the change in water diffusion was retained longest in the left M1 and remote regions that had a correlation of baseline fluctuations in water diffusion before rTMS. We conclude that synchronization of water diffusion at rest between stimulated and remote regions ensures retention of rTMS-induced changes in water diffusion in remote regions. Synchronized fluctuations in the morphology of cortical microstructures between stimulated and remote regions might identify networks that allow retention of plasticity-related morphological changes in multiple regions after brain stimulation protocols. These results increase our understanding of the effects of brain stimulation-induced plasticity on multiregional brain networks. DWI techniques could provide a tool to evaluate treatment effects of brain stimulation protocols in patients with brain disorders. PMID:24619090

  3. Deep Brain Stimulation

    OpenAIRE

    Perlmutter, Joel. S.; Mink, Jonathan W.

    2006-01-01

    Deep brain stimulation (DBS) has provided remarkable benefits for people with a variety of neurologic conditions. Stimulation of the ventral intermediate nucleus of the thalamus can dramatically relieve tremor associated with essential tremor or Parkinson disease (PD). Similarly, stimulation of the subthalamic nucleus or the internal segment of the globus pallidus can substantially reduce bradykinesia, rigidity, tremor, and gait difficulties in people with PD. Multiple groups are attempting t...

  4. Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy.

    Science.gov (United States)

    Liang, Wei-Kuang; Lo, Men-Tzung; Yang, Albert C; Peng, Chung-Kang; Cheng, Shih-Kuen; Tseng, Philip; Juan, Chi-Hung

    2014-04-15

    The abilities to inhibit impulses and withdraw certain responses are critical for human's survival in a fast-changing environment. These processes happen fast, in a complex manner, and sometimes are difficult to capture with fMRI or mean electrophysiological brain signal alone. Therefore, an alternative measure that can reveal the efficiency of the neural mechanism across multiple timescales is needed for the investigation of these brain functions. The present study employs a new approach to analyzing electroencephalography (EEG) signal: the multiscale entropy (MSE), which groups data points with different timescales to reveal any occurrence of repeated patterns, in order to theoretically quantify the complexity (indicating adaptability and efficiency) of neural systems during the process of inhibitory control. From this MSE perspective, EEG signals of successful stop trials are more complex and information rich than that of unsuccessful stop trials. We further applied transcranial direct current stimulation (tDCS), with anodal electrode over presupplementary motor area (preSMA), to test the relationship between behavioral modification with the complexity of EEG signals. We found that tDCS can further increase the EEG complexity of the frontal lobe. Furthermore, the MSE pattern was found to be different between high and low performers (divided by their stop-signal reaction time), where the high-performing group had higher complexity in smaller scales and less complexity in larger scales in comparison to the low-performing group. In addition, this between-group MSE difference was found to interact with the anodal tDCS, where the increase of MSE in low performers benefitted more from the anodal tDCS. Together, the current study demonstrates that participants who suffer from poor inhibitory control can efficiently improve their performance with 10min of electrical stimulation, and such cognitive improvement can be effectively traced back to the complexity within the

  5. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain.

    Science.gov (United States)

    Monai, Hiromu; Ohkura, Masamichi; Tanaka, Mika; Oe, Yuki; Konno, Ayumu; Hirai, Hirokazu; Mikoshiba, Katsuhiko; Itohara, Shigeyoshi; Nakai, Junichi; Iwai, Youichi; Hirase, Hajime

    2016-01-01

    Transcranical direct current stimulation (tDCS) is a treatment known to ameliorate various neurological conditions and enhance memory and cognition in humans. tDCS has gained traction for its potential therapeutic value; however, little is known about its mechanism of action. Using a transgenic mouse expressing G-CaMP7 in astrocytes and a subpopulation of excitatory neurons, we find that tDCS induces large-amplitude astrocytic Ca(2+) surges across the entire cortex with no obvious changes in the local field potential. Moreover, sensory evoked cortical responses are enhanced after tDCS. These enhancements are dependent on the alpha-1 adrenergic receptor and are not observed in IP3R2 (inositol trisphosphate receptor type 2) knockout mice, in which astrocytic Ca(2+) surges are absent. Together, we propose that tDCS changes the metaplasticity of the cortex through astrocytic Ca(2+)/IP3 signalling. PMID:27000523

  6. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    OpenAIRE

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain s...

  7. Transcranial brain stimulation: closing the loop between brain and stimulation

    DEFF Research Database (Denmark)

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    PURPOSE OF REVIEW: To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS: Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain...... transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to ‘standardize’ the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait......-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified...

  8. Deep Brain Stimulation for Parkinson's Disease

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Deep Brain Stimulation for Parkinson's Disease Information Page Condensed from ... and Information Publicaciones en Español What is Deep Brain Stimulation for Parkinson's Disease? Deep brain stimulation (DBS) ...

  9. Deep brain stimulation: new techniques.

    Science.gov (United States)

    Hariz, Marwan

    2014-01-01

    The technology of the hardware used in deep brain stimulation (DBS), and the mode of delivering the stimulation have not significantly evolved since the start of the modern era of DBS 25 years ago. However, new technology is now being developed along several avenues. New features of the implantable pulse generator (IPG) allow fractionation of the electric current into variable proportions between different contacts of the multi-polar lead. Another design consists in leads that allow selective current steering from directionally placed electrode contacts that would deliver the stimulation in a specific direction or even create a directional shaped electric field that would conform to the anatomy of the brain target aimed at, avoiding adjacent structures, and thus avoiding side effects. Closed loop adaptive stimulation technologies are being developed, allowing a tracking of the pathological local field potential of the brain target, and delivering automatically the stimulation to suppress the pathological activity as soon as it is detected and for as long as needed. This feature may contribute to a DBS therapy "on demand", instead of continuously. Finally, advances in imaging technology are providing "new" brain targets, and increasingly allowing DBS to be performed accurately while avoiding the risks of microelectrode recording. PMID:24262179

  10. Deep brain stimulation in psychiatry

    Directory of Open Access Journals (Sweden)

    Poznić-Ješić Milana

    2014-01-01

    Full Text Available Introduction. Deep brain stimulation is a stereotactic neurosurgical method used in the treatment of Parkinson’s disease and some other movement disorders. The application of deep brain stimulation in the treatment of certain psychiatric disorders has been intensively investigated taking into account the current knowledge of neurobiological basis of mood regulation, cognition, and behaviour. This paper has been aimed at presenting the available data on experience in the application of deep brain stimulation in the treatment of psychiatric disorders. It gives an overview of scientific and professional literature, bearing in mind all the contemporary approaches in the treatment of certain psychiatric disorders. Research results available so far in the treatment of treatment-resistant depression, obsessive-compulsive disorder, Gilles de la Tourette syndrome, addiction and Alzheimer’s dementia, are affirmative concerning the efficacy of the method and low risk of adverse effects. Deep brain stimulation, as a relatively new neurosurgical method in the treatment of psychiatric disorders, is being intensively developed, and it is certainly going to be one of the treatments of choice, primarily of treatment-resistant disorders.

  11. Deep Brain Stimulation Tested for Early Alzheimer's

    Science.gov (United States)

    ... 160137.html Deep Brain Stimulation Tested for Early Alzheimer's Although treatment seems safe, benefit isn't yet ... brain stimulation appears safe for people with early Alzheimer's disease -- and might even slow down memory loss ...

  12. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Science.gov (United States)

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa. PMID:22428054

  13. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Directory of Open Access Journals (Sweden)

    Geoffrey van der Plasse

    Full Text Available Following the successful application of deep brain stimulation (DBS in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell and medial shell (mShell. Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  14. Deep brain stimulation: Current status

    Directory of Open Access Journals (Sweden)

    Sanjay Pandey

    2015-01-01

    Full Text Available In the last two decades, applications of deep brain stimulation (DBS have expanded rapidly in the field of neurosciences. The most common indications for DBS are Parkinson′s disease, medically refractory seizures, essential tremors, and primary dystonia. This device has also been used as an investigational tool in patients having Tourette′s syndrome, tardive dyskinesia, and refractory seizures. In the field of psychiatry, DBS has been used for the treatment of refractory obsessive compulsive disorder and depression. The complications are mainly related to surgery, the device, and its stimulation. This article provides an overview of the current status and recent advances in the field of DBS.

  15. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat

    OpenAIRE

    Geoffrey van der Plasse; Regina Schrama; van Seters, Sebastiaan P.; Vanderschuren, Louk J. M. J.; Westenberg, Herman G. M.

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders hav...

  16. Deep Brain Stimulation Reveals a Dissociation of Consummatory and Motivated Behaviour in the Medial and Lateral Nucleus Accumbens Shell of the Rat

    OpenAIRE

    van der Plasse, G.; Schrama, R.; van Seters, S.; Vanderschuren, L. J. M. J.; Westenberg, H.G.M.

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders hav...

  17. Network effects of deep brain stimulation.

    Science.gov (United States)

    Alhourani, Ahmad; McDowell, Michael M; Randazzo, Michael J; Wozny, Thomas A; Kondylis, Efstathios D; Lipski, Witold J; Beck, Sarah; Karp, Jordan F; Ghuman, Avniel S; Richardson, R Mark

    2015-10-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  18. Deep brain stimulation: new directions.

    Science.gov (United States)

    Ostergard, T; Miller, J P

    2014-12-01

    The role of deep brain stimulation (DBS) in the treatment of movement disorders is well established, but there has recently been a proliferation of additional indications that have been shown to be amenable to this technology. The combination of innovative approaches to neural interface technology with novel target identification based on previously discovered clinical effects of lesioning procedures has led to a fundamental paradigm for new directions in the application of DBS. The historical use of neurosurgical lesioning procedures in the treatment of psychiatric diseases such as obsessive compulsive disorder provided an initial opportunity to expand the use of DBS. The list is rapidly expanding and now includes major depressive disorder, Tourette's syndrome, addiction disorders, and eating disorders. Keen observations by neurosurgeons using these devices have lead to the incidental discovery of treatments for diseases without previous neurosurgical treatments. These discoveries are breaking new ground in the treatment of disorders of cognition, headache syndromes, disorders of consciousness, and epilepsy. Two features of DBS make it well-suited for treatment of disorders of nervous system function. First, the reversible, non-lesional nature of DBS allows for investigation of new targets without the morbidity of permanent side effects. Second, the programmable nature of DBS allows practitioners to alter stimulation patterns to minimize side effects and potentially improve efficacy through reprogramming. More importantly, proper scientific evaluation of new targets is aided by the ability to turn stimulation on and off with evaluators blinded to the stimulation status. Knowledge of these emerging therapies is important for practitioners, as there are many situations where a single target can effectively treat the symptoms of more than one disease. The intersection of advances in neuromodulation, neurophysiology, neuroimaging, and functional neuroanatomy has

  19. Brain stimulation and inhibitory control.

    Science.gov (United States)

    Juan, Chi-Hung; Muggleton, Neil G

    2012-04-01

    Inhibitory control mechanisms are important in a range of behaviours to prevent execution of motor acts which, having been planned, are no longer necessary or appropriate. Examples of this can be seen in a range of sports, such as cricket and baseball, where the choice between execution and inhibition of a bat swing must be made in a very brief time window. Deficits in inhibitory control have been associated with problems in behavioural regulation in impulsive violence as well as a range of clinical disorders. The roles of various areas, including the frontal eye fields (FEF), the pre-supplementary motor area (pre-SMA) and the inferior frontal gyrus, in inhibitory control have been investigated using an inhibitory control task and both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Typically effects on response inhibition but no effects on response generation have been seen. The contributions of these areas to performance seem to differ with, for example, pre-SMA being involved when the task is relatively novel whereas this is not the case for FEF. The findings from brain stimulation studies offer both insight into which areas are necessary for effective inhibitory control and recent extension of findings for the role of the inferior frontal gyrus illustrate how the specific functions by which these areas contribute may be further clarified. Future work, including making use of the temporal specificity of TMS and combination of TMS/tDCS with other neuroimaging techniques, may further clarify the nature and functions played by the network of areas involved in inhibitory control. PMID:22494830

  20. Brain Stimulation May Help People with Anorexia

    Science.gov (United States)

    ... 2016 (HealthDay News) -- Brain stimulation may ease major symptoms of the eating disorder anorexia nervosa, a typically hard-to-treat condition, ... these findings suggest that brain stimulation may reduce symptoms of anorexia by ... PLoS One . "Anorexia nervosa is thought to affect up to 4 percent ...

  1. Opiate withdrawal behavior after focal brain stimulation.

    Science.gov (United States)

    Williams, D A; Thorn, B E

    1984-11-01

    Electrical stimulation of the brainstem abolishes pain, while continued stimulation induces tolerance to the analgesic effect. Analgesic drugs producing tolerance also induce physical dependence, suggesting that the phenomenon of tolerance is associated with addiction. There is evidence that the neural mechanism for stimulation-produced analgesia is related to the release of opiate substances within the brain. We therefore propose that repeated or protracted brain stimulation elicits dependence upon the endorphins released by electrical stimulation of the neurons themselves. To investigate this possibility, rats were given repetitive bursts of analgesic electrical brain stimulation for two hours. Immediately thereafter, they were injected with the opiate antagonist, naloxone. Behaviors associated with low grade opiate withdrawal were observed. These data suggest that prolonged analgesic stimulation can result in naloxone-precipitated behaviors similar to the behaviors exhibited during opiate withdrawal. PMID:6542676

  2. Balancing the Brain: Resting State Networks and Deep Brain Stimulation

    OpenAIRE

    Kringelbach, Morten L.

    2011-01-01

    Over the last three decades, large numbers of patients with otherwise treatment-resistant disorders have been helped by deep brain stimulation, yet a full scientific understanding of the underlying neural mechanisms is still missing. We have previously proposed that efficacious deep brain stimulation works by restoring the balance of the brain’s resting state networks. Here, we extend this proposal by reviewing how detailed investigations of the highly coherent functional and structural brain...

  3. Anticipation of Brain Shift in Deep Brain Stimulation Automatic Planning

    OpenAIRE

    Hamzé, Noura; Bilger, Alexandre; Duriez, Christian; Cotin, Stéphane; Essert, Caroline

    2015-01-01

    International audience Deep Brain Stimulation is a neurosurgery procedure consisting in implanting an electrode in a deep structure of the brain. This intervention requires a preoperative planning phase, with a millimetric accuracy, in which surgeons decide the best placement of the electrode depending on a set of surgical rules. However, brain tissues may deform during the surgery because of the brain shift phenomenon, leading the electrode to mistake the target, or moreover to damage a v...

  4. Deep brain stimulation for cluster headache

    DEFF Research Database (Denmark)

    Grover, Patrick J; Pereira, Erlick A C; Green, Alexander L;

    2009-01-01

    Cluster headache is a severely debilitating disorder that can remain unrelieved by current pharmacotherapy. Alongside ablative neurosurgical procedures, neuromodulatory treatments of deep brain stimulation (DBS) and occipital nerve simulation have emerged in the last few years as effective...... circumstances to intervene. Here we review current data on neurosurgical interventions for chronic cluster headache focusing upon DBS and occipital nerve stimulation, and discuss the indications for and putative mechanisms of DBS including translational insights from functional neuroimaging, diffusion weighted...

  5. Neurogenic Hippocampal Targets of Deep Brain Stimulation

    OpenAIRE

    Encinas, Juan M.; Hamani, Clement; Lozano, Andres M.; Enikolopov, Grigori

    2011-01-01

    Deep brain stimulation (DBS) is being used to treat movement, neurological, and psychiatric disorders; it has been recently successfully applied to patients with treatment-resistant depression or in minimally conscious state. In addition to its clinical importance, DBS presents a powerful approach to target specific neural circuits and determine the functional relationship between the components of these circuits. We examined the effect of high frequency stimulation of a crucial component of ...

  6. Brain stimulation in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Vladan Novakovic

    2011-10-01

    Full Text Available Posttraumatic stress disorder (PTSD is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT and Cranial electrotherapy stimulation (CES have both been in use for decades; transcranial magnetic stimulation (TMS, magnetic seizure therapy (MST, deep brain stimulation (DBS, transcranial Direct Current Stimulation (tDCS, and vagus nerve stimulation (VNS have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES, depression (ECT, CES, rTMS, VNS, DBS, obsessive-compulsive disorder (OCD (DBS, essential tremor, dystonia (DBS, epilepsy (DBS, VNS, Parkinson Disease (DBS, pain (CES, and insomnia (CES. To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in

  7. Brain stimulation using electromagnetic sources: theoretical aspects.

    OpenAIRE

    Heller, L.; van Hulsteyn, D B

    1992-01-01

    We prove that, at the frequencies generally proposed for extracranial stimulation of the brain, it is not possible, using any superposition of external current sources, to produce a three-dimensional local maximum of the electric field strength inside the brain. The maximum always occurs on a boundary where the conductivity jumps in value. Nevertheless, it may be possible to achieve greater two-dimensional focusing and shaping of the electric field than is currently available. Towards this go...

  8. Electrical Tongue Stimulation Normalizes Activity Within the Motion-Sensitive Brain Network in Balance-Impaired Subjects as Revealed by Group Independent Component Analysis

    OpenAIRE

    Wildenberg, Joseph C.; Tyler, Mitchell E.; Danilov, Yuri P; Kaczmarek, Kurt A.; Meyerand, Mary E.

    2011-01-01

    Multivariate analysis of functional magnetic resonance imaging (fMRI) data allows investigations into network behavior beyond simple activations of individual regions. We apply group independent component analysis to fMRI data collected in a previous study looking at the sustained neuromodulatory effects of electrical tongue stimulation in balance-impaired individuals. Twelve subjects with balance disorders viewed optic flow in an fMRI scanner before and after 5 days of electrical tongue stim...

  9. Deep Brain Stimulation og Identitet i Fremtiden

    OpenAIRE

    Andersen, Camilla; Farah, Adna; Pil, Kierkegaard; Lucas, Haasum

    2015-01-01

    The rapidly progressing technology of today is the impetus for increased interest and discussion regarding transhumanism. As a result, our group has decided to conduct research regarding deep brain stimulation, in order to focus on a single technology that is growing rapidly and seeing multiple uses in treating various neurological pathologies. The possibilities of the technology will be relevant to the future of transhuman though, as well as the immediate effects on the individuals who elec...

  10. Enhancing duration processing with parietal brain stimulation.

    Science.gov (United States)

    Dormal, Valérie; Javadi, Amir-Homayoun; Pesenti, Mauro; Walsh, Vincent; Cappelletti, Marinella

    2016-05-01

    Numerosity and duration are thought to share common magnitude-based mechanisms in brain regions including the right parietal and frontal cortices like the supplementary motor area, SMA. Numerosity and duration are, however, also different in several intrinsic features. For instance, in a quantification context, numerosity is known for being more automatically accessed than temporal events, and durations are by definition sequential whereas numerosity can be both sequential and simultaneous. Moreover, numerosity and duration processing diverge in terms of their neuronal correlates. Whether these observed neuronal specificities can be accounted for by differences in automaticity or presentation-mode is however not clear. To address this issue, we used brain stimulation (transcranial random noise stimulation, tRNS) to the right parietal cortex or the SMA combined with experimental stimuli differing in their level of automaticity (numerosity and duration) and presentation mode (sequential or simultaneous). Compared to a no stimulation group, performance changed in duration but not in numerosity categorisation following right parietal but not SMA stimulation. These results indicate that the right parietal cortex is critical for duration processing, and suggest that tRNS has a stronger effect on less automatic processes such as duration. PMID:27037043

  11. Neuroethics: The Ethics and History Behind Deep Brain Stimulation

    OpenAIRE

    Simmonds, Matthew; Franck, Jannick

    2014-01-01

    In this Project we have tried to answer the Question: What is the history leading up to the development of Deep Brain Stimulation, and what are the ethical implications to the ethics of neuroscience? Has the historical background of psychosurgery affected the ethical climate now in regards to Deep Brain Stimulation, and are there any challenges to Deep Brain Stimulation’s future? We have gone through the historical background leading up to the use of Deep Brain Stimulation, and we discuss ...

  12. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    Science.gov (United States)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  13. Deep Brain Electrical Stimulation in Epilepsy

    Science.gov (United States)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  14. Deep brain stimulation as a treatment for Parkinson's disease

    OpenAIRE

    Von Heymann-Horan, Kevin; Zoet, Amir; Primdahl Nielsen, Mie; Becher Østerbøg, Tina

    2012-01-01

    This project is an examination of the use of deep brain stimulation (DBS) in the treatment of Parkinson's disease. The project contains an overview of the areas of the brain that are affected by Parkinson's disease and that are targeted by deep brain stimulation for treatment. The function and anatomy of these regions are discussed. The history of deep brain stimulation is examined, as are new methods and theories as to how deep brain stimulation can be used more effectively to treat not only...

  15. Deep brain stimulation for chronic pain.

    Science.gov (United States)

    Boccard, Sandra G J; Pereira, Erlick A C; Aziz, Tipu Z

    2015-10-01

    Deep brain stimulation (DBS) is a neurosurgical intervention popularised in movement disorders such as Parkinson's disease, and also reported to improve symptoms of epilepsy, Tourette's syndrome, obsessive compulsive disorders and cluster headache. Since the 1950s, DBS has been used as a treatment to relieve intractable pain of several aetiologies including post stroke pain, phantom limb pain, facial pain and brachial plexus avulsion. Several patient series have shown benefits in stimulating various brain areas, including the sensory thalamus (ventral posterior lateral and medial), the periaqueductal and periventricular grey, or, more recently, the anterior cingulate cortex. However, this technique remains "off label" in the USA as it does not have Federal Drug Administration approval. Consequently, only a small number of surgeons report DBS for pain using current technology and techniques and few regions approve it. Randomised, blinded and controlled clinical trials that may use novel trial methodologies are desirable to evaluate the efficacy of DBS in patients who are refractory to other therapies. New imaging techniques, including tractography, may help optimise electrode placement and clinical outcome. PMID:26122383

  16. Deep brain stimulation for major depression.

    Science.gov (United States)

    Schlaepfer, T E; Bewernick, B H

    2013-01-01

    A third of patients suffering from major depression cannot be helped by conventional treatment methods. These patients face reduced quality of life, high risk of suicide, and little hope of recovery. Deep brain stimulation (DBS) is under scientific evaluation as a new treatment option for these treatment-resistant patients. First clinical studies with small samples have been stimulated at the subgenual cingulate gyrus (Cg25/24), the anterior limb of the capsula interna (ALIC), and the nucleus accumbens (NAcc). Long-term antidepressant effects, augmentation of social functioning, and normalization of brain metabolism have been shown in about 50% of patients. Cognitive safety regarding attention, learning, and memory has been reported. Adverse events were wound infection, suicide, and hypomania, amongst others. Larger studies are under way to confirm these preliminary encouraging results. New hypothesis-guided targets (e.g., medial forebrain bundle, habenula) are about to be assessed in clinical trials. The application of DBS for other psychiatric diseases (e.g., bipolar disorder, alcohol dependency, opioid addiction, schizophrenia) is debated and single case studies are under way. Standards are needed for study registration, target selection, patient inclusion and monitoring, and publication of results to guarantee safety for the patients and scientific exchange. PMID:24112897

  17. Neuropsychiatric deep brain stimulation for translational neuroimaging.

    Science.gov (United States)

    Höflich, Anna; Savli, Markus; Comasco, Erika; Moser, Ulrike; Novak, Klaus; Kasper, Siegfried; Lanzenberger, Rupert

    2013-10-01

    From a neuroimaging point of view, deep brain stimulation (DBS) in psychiatric disorders represents a unique source of information to probe results gained in functional, structural and molecular neuroimaging studies in vivo. However, the implementation has, up to now, been restricted by the heterogeneity of the data reported in DBS studies. The aim of the present study was therefore to provide a comprehensive and standardized database of currently used DBS targets in selected psychiatric disorders (obsessive-compulsive disorder (OCD), treatment-resistant depression (TRD), Gilles de la Tourette syndrome (GTS)) to enable topological comparisons between neuroimaging results and stimulation areas. A systematic literature research was performed and all peer-reviewed publications until the year 2012 were included. Literature research yielded a total of 84 peer-reviewed studies including about 296 psychiatric patients. The individual stimulation data of 37 of these studies meeting the inclusion criteria which included a total of 202 patients (63 OCD, 89 TRD, 50 GTS) was translated into MNI stereotactic space with respect to AC origin in order to identify key targets. The created database can be used to compare DBS target areas in MNI stereotactic coordinates with: 1) activation patterns in functional brain imaging (fMRI, phfMRI, PET, MET, EEG); 2) brain connectivity data (e.g., MR-based DTI/tractography, functional and effective connectivity); 3) quantitative molecular distribution data (e.g., neuroreceptor PET, post-mortem neuroreceptor mapping); 4) structural data (e.g., VBM for neuroplastic changes). Vice versa, the structural, functional and molecular data may provide a rationale to define new DBS targets and adjust/fine-tune currently used targets in DBS based on this overview in stereotactic coordinates. Furthermore, the availability of DBS data in stereotactic space may facilitate the investigation and interpretation of treatment effects and side effect of DBS by

  18. Deep brain stimulation to reduce sexual drive

    Science.gov (United States)

    Fuss, Johannes; Auer, Matthias K.; Biedermann, Sarah V.; Briken, Peer; Hacke, Werner

    2015-01-01

    To date there are few treatment options to reduce high sexual drive or sexual urges in paraphilic patients with a risk for sexual offending. Pharmacological therapy aims to reduce sexual drive by lowering testosterone at the cost of severe side effects. We hypothesize that high sexual drive could also be reduced with deep brain stimulation (DBS) of circuits that generate sexual drive. This approach would help to avoid systemic side effects of antiandrogenic drug therapies. So far the best investigated target to reduce sexual drive is the ventromedial hypothalamus, which was lesioned unilaterally and bilaterally by stereotaxic interventions in paraphilic patients in the 1970s. Here, we discuss DBS as a treatment strategy in patients with severe paraphilic disorders with a serious risk of sexual offending. There are profound ethical and practical issues associated with DBS treatment of paraphilic patients that must be solved before considering such a treatment approach. PMID:26057198

  19. Origin and evolution of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Vittorio Alessandro eSironi

    2011-08-01

    Full Text Available This paper briefly describes how the electrical stimulation, used since antiquity to modulate the nervous system, has been a fundamental tool of neurophysiologic investigation in the second half of the 18th century and was subsequently used by the early 20th century, even for therapeutic purposes. In mid-20th century the advent of stereotactic procedures has allowed the drift from lesional to stimulating technique of deep nuclei of the brain for therapeutic purposes. In this way, DBS was born, that, over the last two decades, has led to positive results for the treatment of medically refractory Parkinson's disease, essential tremor and dystonia. In recent years, the indications for therapeutic use of DBS have been extended to epilepsy, Tourette's syndrome, psychiatric diseases (depression, obsessive-compulsive disorder, some kinds of headache, eating disorders and the minimally conscious state. The potentials of the DBS for therapeutic use are fascinating, but there are still many unresolved technical and ethical problems, concerning the identification of the targets for each disease, the selection of the patients and the evaluation of the results.

  20. Emerging applications of deep brain stimulation.

    Science.gov (United States)

    Sharma, Mayur; Naik, Vikas; Deogaonkar, Milind

    2016-06-01

    Deep brain stimulation (DBS) implantation surgery is an established treatment modality for a variety of medical refractory movement disorders such as Parkinson's disease, essential tremors and dystonia. Following the success of DBS in these movement disorders with a high rate of safety and efficacy, there is a resurgence of interest in the utility of this modality in other medical refractory disorders. Consequently, neuromodulation has been explored for a variety of refractory conditions such as neuropsychiatric disorders (major depressive disorders, obsessive-compulsive disorders, addictions), eating disorders including obesity, traumatic brain injury, post-traumatic stress disorders (PTSD), dementias and chronic pain. This review provides an overview of the emerging applications of DBS in these disorders, including summary of the published literature. We have highlighted the pathophysiology and likely aberrant neural circuits involved in these refractory disorders. Current and possible surgical targets for neurosurgical intervention related to these disorders have also been discussed. Furthermore, recent advances such as closed loop systems; responsive neurostimulation systems and optogenetics techniques have been addressed. PMID:26788743

  1. Early Brain Stimulation May Help Stroke Survivors Recover Language Function

    Science.gov (United States)

    ... Hub Making News on Heart.org Learn More Early brain stimulation may help stroke survivors recover language function June ... the therapy session,” Thiel said. “We believe brain stimulation should be most effective early, within about five weeks after stroke, because genes ...

  2. Modulation of untruthful responses with noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    FelipeFregni

    2013-02-01

    Full Text Available Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether noninvasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience, as well as across modality responses (verbal and motor responses. Results reveal that real, but not sham, transcranial direct current stimulation (tDCS over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying noninvasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts.

  3. Stimulation-Based Control of Dynamic Brain Networks.

    Science.gov (United States)

    Muldoon, Sarah Feldt; Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew; Grafton, Scott T; Vettel, Jean M; Bassett, Danielle S

    2016-09-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  4. Deep Brain Stimulation Alleviates Parkinsonian Bradykinesia by Regularizing Pallidal Activity

    OpenAIRE

    Dorval, Alan D.; Kuncel, Alexis M.; Birdno, Merrill J.; Turner, Dennis A.; Grill, Warren M.

    2010-01-01

    Deep brain stimulation (DBS) of the basal ganglia can alleviate the motor symptoms of Parkinson's disease although the therapeutic mechanisms are unclear. We hypothesize that DBS relieves symptoms by minimizing pathologically disordered neuronal activity in the basal ganglia. In human participants with parkinsonism and clinically effective deep brain leads, regular (i.e., periodic) high-frequency stimulation was replaced with irregular (i.e., aperiodic) stimulation at the same mean frequency ...

  5. Brain stimulation in patients with disorders of consciousness

    OpenAIRE

    Thibaut, Aurore; Laureys, Steven

    2015-01-01

    Background and Aim: There is a long history of brain stimulation in medical science, and it was tested for years trying to treat several neurological diseases. On the other hand, the treatment choices for patients with severe brain injury resulting in disorders of consciousness (DOC) are still limited and research in this field remains challenging. In the current literature, only a few techniques of brain stimulation were studied in this population of patients. This review describes noninvasi...

  6. Repetitive transcranial magnetic stimulation activates specific regions in rat brain

    OpenAIRE

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive ther...

  7. Brain stimulation for intractable epilepsy: Anterior thalamus and responsive stimulation

    OpenAIRE

    2014-01-01

    Despite medications, resective surgery, and vagal nerve stimulation, some patients with epilepsy continue to have seizures. In these patients, other approaches are urgently needed. The biological basis of stimulation of anterior thalamic nucleus and epileptogenic focus is presented. Results from two large randomized controlled trials Stimulation of Anterior Nucleus of Thalamus for Epilepsy (SANTE) and Neuropace pivotal trial are discussed. Neuromodulation provides effective treatment for a se...

  8. Ethical issues in deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Maartje eSchermer

    2011-05-01

    Full Text Available Deep brain stimulation (DBS is currently used to treat neurological disorders like Parkinson’s disease (PD, essential tremor and dystonia, and is explored as an experimental treatment for psychiatric disorders like Major Depression (MD and Obsessive Compulsive Disorder (OCD. This mini review discusses ethical issues in DBS treatment and research, as they have been discussed in the medical and ethical literature.With regard to DBS treatment, the most important issues are balancing risks and benefits and ensuring respect for the autonomous wish of the patient. This implies special attention to patient selection, psycho-social impact of treatment, effects on personal identity, and treatment of children. Moreover, it implies a careful informed consent process in which unrealistic expectations of patients and their families are addressed and in which special attention is given to competence. In the context of research, the fundamental ethical challenge is to promote high-quality scientific research in the interest of future patients, while at the same time safeguarding the rights and interests of vulnerable research subjects. Several guidelines have been proposed to ensure this. One of the preconditions to further development of responsible and transparent research practices is the establishment of a comprehensive registry.

  9. Deep brain stimulation for Tourette syndrome.

    Science.gov (United States)

    Visser-Vandewalle, V; Kuhn, J

    2013-01-01

    Tourette syndrome is a neuropsychiatric disorder characterized by motor and vocal tics, often associated with behavioral disorders, with typical onset in early childhood. In most patients, the symptoms decrease spontaneously when adulthood is reached, or can be treated with behavioral therapy or medication. Only a small proportion of patients are candidates for surgical treatment. In 1999, thalamic deep brain stimulation (DBS) was introduced for intractable Tourette syndrome. Since then, a diversity of targets have been used, located mainly at the level of the medial part of the thalamus, in the globus pallidus internus (anteromedial limbic and posteroventrolateral motor part), the globus pallidus externus, and the internal capsule/nucleus accumbens. The pathophysiology of Tourette syndrome is still a matter of considerable debate. Current knowledge of cortical-basal ganglia-thalamocortical circuits provides explanations for the beneficial effects of DBS on tics. Inclusion and exclusion criteria have been formulated to identify good candidates for DBS. Because of the small number of patients, there is a strong need for multicenter double-blind trials with standard protocols. PMID:24112899

  10. Changes in brain gray matter due to repetitive painful stimulation.

    Science.gov (United States)

    Teutsch, S; Herken, W; Bingel, U; Schoell, E; May, A

    2008-08-15

    Using functional imaging, we recently investigated how repeated painful stimulation over several days is processed, perceived and modulated in the healthy human brain. Considering that activation-dependent brain plasticity in humans on a structural level has already been demonstrated in adults, we were interested in whether repeated painful stimulation may lead to structural changes of the brain. 14 healthy subjects were stimulated daily with a 20 min pain paradigm for 8 consecutive days, using structural MRI performed on days 1, 8, 22 and again after 1 year. Using voxel based morphometry, we are able to show that repeated painful stimulation resulted in a substantial increase of gray matter in pain transmitting areas, including mid-cingulate and somatosensory cortex. These changes are stimulation dependent, i.e. they recede after the regular nociceptive input is stopped. This data raises some interesting questions regarding structural plasticity of the brain concerning the experience of both acute and chronic pain. PMID:18582579

  11. Theory of feedback controlled brain stimulations for Parkinson's disease

    Science.gov (United States)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  12. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa;

    2016-01-01

    and 'offline' NTBS effects outlasting plasticity-inducing NTBS protocols can be assessed. Finally, both strategies can be combined to close the loop between measuring and modulating brain activity by means of closed-loop brain state-dependent NTBS. In this paper, we will provide a conceptual framework......Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures or...... neuronal activity patterns for a given brain function. It is nowadays feasible to combine NTBS, either consecutively or concurrently, with a variety of neuroimaging and electrophysiological techniques. Here we discuss what kind of information can be gained from combined approaches, which often are...

  13. Deep brain stimulation af behandlingsrefraktaer, invaliderende dystoni. Dansk Selskab for Bevaegeforstyrrelser (Danmodis)

    DEFF Research Database (Denmark)

    Hjermind, Lena E; Løkkegaard, Annemette; Werdelin, Lene M; Regeur, Lisbeth; Jespersen, Bo; Madsen, Flemming Find; Badakhshani, Karim; Dupont, Erik; Sunde, Niels Aagaard; Sørensen, Jens Christian; Ostergaard, Karen; Karlsborg, Merete

    Deep brain stimulation af behandlingsrefraktaer, invaliderende dystoni. Dansk Selskab for Bevaegeforstyrrelser (Danmodis)......Deep brain stimulation af behandlingsrefraktaer, invaliderende dystoni. Dansk Selskab for Bevaegeforstyrrelser (Danmodis)...

  14. Synergistic effects of ethanol and cocaine on brain stimulation reward.

    OpenAIRE

    Lewis, M. J.; June, H L

    1994-01-01

    The effects of two widely abused drugs, ethanol and cocaine, were examined alone and in combination on intracranial reward processes. In agreement with previous research, higher doses of both cocaine and ethanol alone produced facilitation of behavior maintained by brain stimulation reward. Low intraperitoneal doses of ethanol and cocaine, which alone did not affect performance, were found to reduce stimulation reward threshold and modestly increase response rate. The enhancement of brain sti...

  15. Economic substitutability of electrical brain stimulation, food, and water.

    OpenAIRE

    Green, L.; Rachlin, H

    1991-01-01

    Concurrent variable-ratio schedules of electrical brain stimulation, food, and water were paired in various combinations as reinforcement of rats' lever presses. Relative prices of the concurrent reinforcers were varied by changing the ratio of the response requirements on the two levers. Economic substitutability, measured by the sensitivity of response ratio to changes in relative price, was highest with brain stimulation reinforcement of presses on both levers and lowest with food reinforc...

  16. Non-invasive brain stimulation in early rehabilitation after stroke

    OpenAIRE

    Blesneag, AV; Popa, L.; Stan, AD

    2015-01-01

    The new tendency in rehabilitation involves non-invasive tools that, if applied early after stroke, promote neurorecovery. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation may correct the disruption of cortical excitability and effectively contribute to the restoration of movement and speech. The present paper analyses the results of non-invasive brain stimulation (NIBS) trials, highlighting different aspects related to the repetitive transcranial magne...

  17. Coupling BCI and cortical stimulation for brain-state-dependent stimulation: Methods for spectral estimation in the presence of stimulation after-effects

    OpenAIRE

    Armin Walter; Ander Ramos Murguialday; Niels Birbaumer; Martin Bogdan

    2012-01-01

    Brain-state-dependent stimulation combines brain-computer interfaces (BCI) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of brain-state-dependent stimulation because they can impair the detection of ta...

  18. Systemic Stimulation of TLR2 Impairs Neonatal Mouse Brain Development

    OpenAIRE

    Xiaonan Du; Bobbi Fleiss; Hongfu Li; Barbara D'Angelo; Yanyan Sun; Changlian Zhu; Henrik Hagberg; Ofer Levy; Carina Mallard; Xiaoyang Wang

    2011-01-01

    Background: Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely characterized. Stimulation of Toll-like receptors (TLRs) through specific agonists induces inflammatory responses that trigger both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development. Methodol...

  19. Diffusion Tractography in Deep Brain Stimulation Surgery: A Review

    OpenAIRE

    Calabrese, Evan

    2016-01-01

    Deep brain stimulation (DBS) is believed to exert its therapeutic effects through modulation of brain circuitry, yet conventional preoperative planning does not allow direct targeting or visualization of white matter pathways. Diffusion MRI tractography (DT) is virtually the only non-invasive method of visualizing structural connectivity in the brain, leading many to suggest its use to guide DBS targeting. DT-guided DBS not only has the potential to allow direct white matter targeting for est...

  20. Vascular changes caused by deep brain stimulation using double-dose gadolinium-enhanced brain MRI

    Institute of Scientific and Technical Information of China (English)

    Byeong Sam Choi; Yong Hwan Kim; Sang Ryong Jeon

    2014-01-01

    We retrospectively analyzed the clinical data of 32 patients with medically intractable idiopathic Parkinson’s disease who had undergone staged bilateral deep brain stimulation of the subtha-lamic nuclei from January 2007 to May 2011. The vascularture of the patients who received two deep brain stimulations was detected using double-dose gadolinium-enhanced brain MRI. The dimensions of straight sinus, superior sagittal sinus, ipsilateral internal cerebral vein in the tha-lamic branch and ipsilateral anterior caudate vein were reduced. These ifndings demonstrate that bilateral deep brain stimulation of the subthalamic nuclei affects cerebral venous blood lfow.

  1. Brain stimulation: Neuromodulation as a potential treatment for motor recovery following traumatic brain injury.

    Science.gov (United States)

    Clayton, E; Kinley-Cooper, S K; Weber, R A; Adkins, D L

    2016-06-01

    There is growing evidence that electrical and magnetic brain stimulation can improve motor function and motor learning following brain damage. Rodent and primate studies have strongly demonstrated that combining cortical stimulation (CS) with skilled motor rehabilitative training enhances functional motor recovery following stroke. Brain stimulation following traumatic brain injury (TBI) is less well studied, but early pre-clinical and human pilot studies suggest that it is a promising treatment for TBI-induced motor impairments as well. This review will first discuss the evidence supporting brain stimulation efficacy derived from the stroke research field as proof of principle and then will review the few studies exploring neuromodulation in experimental TBI studies. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26855256

  2. Computer Controlled Switching Device for Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    J. Tauchmanová

    2007-01-01

    Full Text Available This paper has two goals. The practical part deals with the design of a computer controlled switching device for an external stimulator for deep brain stimulation. The switching device is used during investigations with functional magnetic resonance for controlling signals leading to the deep brain stimulation (DBS electrode in the patient's brain. The motivation for designing this device was improve measured data quality and to enable new types of experiments.The theoretical part reports on early attempts to approach the problem of modeling and localizing the neural response of the human brain as a system identification and estimation task. The parametric identification method and real fMRI data are used for modeling the hemodynamic response.The project is in cooperation with 1st Faculty of Medicine, Charles University in Prague and Na Homolce hospital in Prague.

  3. Brain-shift aware risk map for Deep Brain Stimulation Planning

    OpenAIRE

    Bilger, Alexandre; Essert, Caroline; Duriez, Christian; Cotin, Stéphane

    2012-01-01

    In Deep Brain Stimulation surgery, the efficiency of the procedure heavily relies on the accuracy of the placement of the stimulating electrode. Meanwhile, the effectiveness of the placement is difficult due to brain shifts occurring during and after the procedure. We propose an approach to overcome the limitations of current planning software that ignores brain shift. In particular, we consider the motion of vascular structures in order to reduce risks of dissecting a vessel during the proce...

  4. Moving the brain: Neuroimaging motivational changes of deep brain stimulation in obsessive-compulsive disorder

    NARCIS (Netherlands)

    M. Figee

    2013-01-01

    Deep brain stimulation (DBS) is a neurosurgical technique that involves the implantation of electrodes in the brain. DBS enables electrical modulation of abnormal brain activity for treatment of neuropsychiatric disorders such as obsessive-compulsive disorder (OCD). Mrs. D. has been suffering from O

  5. Electrical stimulation of cerebellar fastigial nucleus protects rat brain, in vitro, from staurosporine-induced apoptosis.

    Science.gov (United States)

    Zhou, P; Qian, L; Glickstein, S B; Golanov, E V; Pickel, V M; Reis, D J

    2001-10-01

    Electrical stimulation of the cerebellar fastigial nucleus (FN) elicits a prolonged ( approximately 10 days) and substantial (50-80%) protection against ischemic and excitotoxic injuries. The mechanism(s) of protection are unknown. We investigated whether FN stimulation directly protects brain cells against apoptotic cell death in an in vitro rat brain slice culture model. Rats were electrically stimulated in FN or, as control, the cerebellar dentate nucleus (DN). Coronal slices through the forebrain were explanted, exposed to staurosporine, harvested, and analyzed for caspase-3 activity by a fluorescence assay. FN, but not DN, stimulation significantly reduced staurosporine-induced caspase-3 activity by 39 +/- 7% at 3 h, 31 +/- 3% at 6 h and 26 +/- 4% at 10 h of incubation. Immunocytochemistry revealed FN-specific reductions in activated caspase-3 mainly in glial-like cells throughout the forebrain. FN stimulation also results in a 56.5% reduction in cytochrome c release upon staurosporine incubation. We conclude that neuroprotection elicited from FN stimulation can directly modify the sensitivity of brain cells to apoptotic stimuli and thereby suppress staurosporine induced apoptosis in adult rat brain slices. This model indicates that neuroprotection can be studied in vitro and provides new insight into the potential role of glial cells in ischemic protection of neurons induced by FN stimulation. PMID:11677261

  6. Uncovering the mechanism(s) of deep brain stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang; Yu Chao; Lin Ling; Lu, Stephen C-Y [Inspiring Technical Laboratory, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China)

    2005-01-01

    Deep brain stimulators, often called 'pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS.

  7. Uncovering the mechanism(s) of deep brain stimulation

    Science.gov (United States)

    Gang, Li; Chao, Yu; Ling, Lin; C-Y Lu, Stephen

    2005-01-01

    Deep brain stimulators, often called `pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS.

  8. Uncovering the mechanism(s) of deep brain stimulation

    International Nuclear Information System (INIS)

    Deep brain stimulators, often called 'pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS

  9. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Alireza Gharabaghi

    2014-03-01

    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  10. Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects

    OpenAIRE

    Walter, Armin; Murguialday, Ander R.; Rosenstiel, Wolfgang; Birbaumer, Niels; Bogdan, Martin

    2012-01-01

    Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of BSDS because they can impair the detection of targeted brain states. ...

  11. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas.

    Science.gov (United States)

    van Dijk, A; Klanker, M; van Oorschot, N; Post, R; Hamelink, R; Feenstra, M G P; Denys, D

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) has proven to be an effective treatment for therapy refractory obsessive-compulsive disorder. Clinical observations show that anxiety symptoms decrease rapidly following DBS. As in clinical studies different regions are targeted, it is of principal interest to understand which brain area is responsible for the anxiolytic effect and whether high-frequency stimulation of different areas differentially affect unconditioned (innate) and conditioned (learned) anxiety. In this study, we examined the effect of stimulation in five brain areas in rats (NAc core and shell, bed nucleus of the stria terminalis (BNST), internal capsule (IC) and the ventral medial caudate nucleus (CAU)). The elevated plus maze was used to test the effect of stimulation on unconditioned anxiety, the Vogel conflict test for conditioned anxiety, and an activity test for general locomotor behaviour. We found different anxiolytic effects of stimulation in the five target areas. Stimulation of the CAU decreased both conditioned and unconditioned anxiety, while stimulation of the IC uniquely reduced conditioned anxiety. Remarkably, neither the accumbens nor the BNST stimulation affected conditioned or unconditioned anxiety. Locomotor activity increased with NAc core stimulation but decreased with the BNST. These findings suggest that (1) DBS may have a differential effect on unconditioned and conditioned anxiety depending on the stimulation area, and that (2) stimulation of the IC exclusively reduces conditioned anxiety. This suggests that the anxiolytic effects of DBS seen in OCD patients may not be induced by stimulation of the NAc, but rather by the IC. PMID:23900312

  12. MRI-induced heating of deep brain stimulation leads

    International Nuclear Information System (INIS)

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  13. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report.

    Science.gov (United States)

    Ho, Allen L; Choudhri, Omar; Sung, C Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-03-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS). PMID:26180680

  14. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    Science.gov (United States)

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-01

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect. PMID:26725509

  15. Role of sound stimulation in reprogramming brain connectivity

    Indian Academy of Sciences (India)

    Sraboni Chaudhury; Tapas C Nag; Suman Jain; Shashi Wadhwa

    2013-09-01

    Sensory stimulation has a critical role to play in the development of an individual. Environmental factors tend to modify the inputs received by the sensory pathway. The developing brain is most vulnerable to these alterations and interacts with the environment to modify its neural circuitry. In addition to other sensory stimuli, auditory stimulation can also act as external stimuli to provide enrichment during the perinatal period. There is evidence that suggests that enriched environment in the form of auditory stimulation can play a substantial role in modulating plasticity during the prenatal period. This review focuses on the emerging role of prenatal auditory stimulation in the development of higher brain functions such as learning and memory in birds and mammals. The molecular mechanisms of various changes in the hippocampus following sound stimulation to effect neurogenesis, learning and memory are described. Sound stimulation can also modify neural connectivity in the early postnatal life to enhance higher cognitive function or even repair the secondary damages in various neurological and psychiatric disorders. Thus, it becomes imperative to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of various psychiatric disorders, such as autism.

  16. Focusing and targeting of magnetic brain stimulation using multiple coils.

    Science.gov (United States)

    Ruohonen, J; Ilmoniemi, R J

    1998-05-01

    Neurones can be excited by an externally applied time-varying electromagnetic field. Focused magnetic brain stimulation is attained using multiple small coils instead of one large coil, the resultant induced electric field being a superposition of the fields from each coil. In multichannel magnetic brain stimulation, partial cancellation of fields from individual coils provides a significant improvement in the focusing of the stimulating field, and independent coil channels allow targeting of the stimuli on a given spot without moving the coils. The problem of shaping the stimulating field in multichannel stimulation is analysed, and a method is derived that yields the driving currents required to induce a field with a user-defined shape. The formulation makes use of lead fields and minimum-norm estimation from magneto-encephalography. Using these methods, some properties of multichannel coil arrays are examined. Computer-assisted multichannel stimulation of the cortex will enable several new studies, including quick determination of the cortical regions, the stimulation of which disrupts cortical processing required by a task. PMID:9747568

  17. Bilateral adaptive deep brain stimulation is effective in Parkinson's disease

    Science.gov (United States)

    Little, Simon; Beudel, Martijn; Zrinzo, Ludvic; Foltynie, Thomas; Limousin, Patricia; Hariz, Marwan; Neal, Spencer; Cheeran, Binith; Cagnan, Hayriye; Gratwicke, James; Aziz, Tipu Z; Pogosyan, Alex; Brown, Peter

    2016-01-01

    Introduction & objectives Adaptive deep brain stimulation (aDBS) uses feedback from brain signals to guide stimulation. A recent acute trial of unilateral aDBS showed that aDBS can lead to substantial improvements in contralateral hemibody Unified Parkinson’s Disease Rating Scale (UPDRS) motor scores and may be superior to conventional continuous DBS in Parkinson’s disease (PD). We test whether potential benefits are retained with bilateral aDBS and in the face of concurrent medication. Methods We applied bilateral aDBS in 4 patients with PD undergoing DBS of the subthalamic nucleus. aDBS was delivered bilaterally with independent triggering of stimulation according to the amplitude of β activity at the corresponding electrode. Mean stimulation voltage was 3.0±0.1 volts. Motor assessments consisted of double-blinded video-taped motor UPDRS scores that included both limb and axial features. Results UPDRS scores were 43% (p=0.04; Cohen’s d=1.62) better with aDBS than without stimulation. Motor improvement with aDBS occurred despite an average time on stimulation (ToS) of only 45%. Levodopa was well tolerated during aDBS and led to further reductions in ToS. Conclusion Bilateral aDBS can improve both axial and limb symptoms and can track the need for stimulation across drug states. PMID:26424898

  18. Clinical utility of brain stimulation modalities following traumatic brain injury: current evidence

    Directory of Open Access Journals (Sweden)

    Li S

    2015-06-01

    Full Text Available Shasha Li,1,2 Ana Luiza Zaninotto,2,3 Iuri Santana Neville,4 Wellingson Silva Paiva,4 Danuza Nunn,2 Felipe Fregni21Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2Spaulding Neuromodulation Center, Harvard Medical School, Boston, MA, USA; 3Division of Psychology, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil; 4Division of Neurosurgery, University of São Paulo Medical School, São Paulo, São Paulo, BrazilAbstract: Traumatic brain injury (TBI remains the main cause of disability and a major public health problem worldwide. This review focuses on the neurophysiology of TBI, and the rationale and current state of evidence of clinical application of brain stimulation to promote TBI recovery, particularly on consciousness, cognitive function, motor impairments, and psychiatric conditions. We discuss the mechanisms of different brain stimulation techniques including major noninvasive and invasive stimulations. Thus far, most noninvasive brain stimulation interventions have been nontargeted and focused on the chronic phase of recovery after TBI. In the acute stages, there is limited available evidence of the efficacy and safety of brain stimulation to improve functional outcomes. Comparing the studies across different techniques, transcranial direct current stimulation is the intervention that currently has the higher number of properly designed clinical trials, though total number is still small. We recognize the need for larger studies with target neuroplasticity modulation to fully explore the benefits of brain stimulation to effect TBI recovery during different stages of recovery.Keywords: traumatic brain injury, brain stimulation, neuroplasticity

  19. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases

    OpenAIRE

    Fox, Michael D.; Buckner, Randy L.; Liu, Hesheng; Chakravarty, M. Mallar; Lozano, Andres M.; Pascual-Leone, Alvaro

    2014-01-01

    Brain stimulation is a powerful treatment for an increasing number of psychiatric and neurological diseases, but it is unclear why certain stimulation sites work or where in the brain is the best place to stimulate to treat a given patient or disease. We found that although different types of brain stimulation are applied in different locations, targets used to treat the same disease most often are nodes in the same brain network. These results suggest that brain networks might be used to und...

  20. Noninvasive brain stimulation in the study of the human visual system

    OpenAIRE

    Halko, Mark; Eldaief, Mark C.; Pascual-Leone, Alvaro

    2013-01-01

    There are currently two techniques to manipulate brain function non-invasively: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). These brain stimulation techniques work to cause long-term change within the brain. We have been combining noninvasive brain stimulation with functional magnetic resonance imaging (fMRI) to investigate the plasticity of brain networks. When fMRI is used as an outcome measure, it is possible to identify the specificity of tD...

  1. Using Brain Stimulation to Disentangle Neural Correlates of Conscious Vision

    Directory of Open Access Journals (Sweden)

    TomAlexanderde Graaf

    2014-09-01

    Full Text Available Research into the neural correlates of consciousness (NCCs has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as fMRI or EEG do not always afford inference on the role these brain processes play in conscious vision. Such empirical neural correlates of consciousness could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical neural correlates of consciousness.

  2. Complications of deep brain stimulation surgery.

    Science.gov (United States)

    Beric, A; Kelly, P J; Rezai, A; Sterio, D; Mogilner, A; Zonenshayn, M; Kopell, B

    2001-01-01

    Although technological advances have reduced device-related complications, DBS surgery still carries a significant risk of transient and permanent complications. We report our experience in 86 patients and 149 DBS implants. Patients with Parkinson's disease, essential tremor and dystonia were treated. There were 8 perioperative, 8 postoperative, 9 hardware-related complications and 4 stimulation-induced side effects. Only 5 patients (6%) sustained some persistent neurological sequelae, however, 26 of the 86 patients undergoing 149 DBS implants in this series experienced some untoward event with the procedure. Although there were no fatalities or permanent severe disabilities encountered, it is important to extend the informed consent to include all potential complications. PMID:12378060

  3. Localisation of brain functions : stimuling brain activity and source reconstruction for classification/

    OpenAIRE

    Noirhomme, Quentin

    2006-01-01

    A key issue in understanding how the brain functions is the ability to correlate functional information with anatomical localisation. Functional information can be provided by a variety of techniques like positron emission tomography (PET), functional MRI (fMRI), electroencephalography (EEG), magnetoencephalography (MEG) or transcranial magnetic stimulation (TMS). All these methods provide different, but complementary, information about the functional areas of the brain. ...

  4. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... high-quality head models from magnetic resonance images and their usage in subsequent field calculations based on the FEM. The pipeline starts by extracting the borders between skin, skull, cerebrospinal fluid, gray and white matter. The quality of the resulting surfaces is subsequently improved...... the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh...

  5. Moving the brain: Neuroimaging motivational changes of deep brain stimulation in obsessive-compulsive disorder

    OpenAIRE

    Denys, D.A.J.P.; Wingen, van, G.A.; Figee, M

    2013-01-01

    Deep brain stimulation (DBS) is a neurosurgical technique that involves the implantation of electrodes in the brain. DBS enables electrical modulation of abnormal brain activity for treatment of neuropsychiatric disorders such as obsessive-compulsive disorder (OCD). Mrs. D. has been suffering from OCD for more than 20 years, which caused her to compulsively clean every detail of her house and have obsessive thoughts about dirt and contamination. DBS helped her to overcome all of her obsession...

  6. In vivo impedance spectroscopy of deep brain stimulation electrodes

    Science.gov (United States)

    Lempka, Scott F.; Miocinovic, Svjetlana; Johnson, Matthew D.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  7. Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Charles J Wilson

    2011-06-01

    Full Text Available High frequency deep-brain stimulation of the subthalamic nucleus (DBS relieves many of the symptoms of Parkinson's disease in humans and animal models. Although the treatment has seen widespread use, its therapeutic mechanism remains paradoxical. The subthalamic nucleus is excitatory, so its stimulation at rates higher than its normal firing rate should worsen the disease by increasing subthalamic excitation of the globus pallidus. The therapeutic effectiveness of DBS is also frequency and intensity sensitive, and the stimulation must be periodic; aperiodic stimulation at the same mean rate is ineffective. These requirements are not adequately explained by existing models, whether based on firing rate changes or on reduced bursting. Here we report modeling studies suggesting that high frequency periodic excitation of the subthalamic nucleus may act by desynchronizing the firing of neurons in the globus pallidus, rather than by changing the firing rate or pattern of individual cells. Globus pallidus neurons are normally desynchronized, but their activity becomes correlated in Parkinson's disease. Periodic stimulation may induce chaotic desynchronization by interacting with the intrinsic oscillatory mechanism of globus pallidus neurons. Our modeling results suggest a mechanism of action of deep brain stimulation and a pathophysiology of Parkinsonism in which synchrony, rather than firing rate, is the critical pathological feature.

  8. Transcranial magnetic stimulation for investigating causal brain-behavioral relationships and their time course.

    Science.gov (United States)

    Sliwinska, Magdalena W; Vitello, Sylvia; Devlin, Joseph T

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a safe, non-invasive brain stimulation technique that uses a strong electromagnet in order to temporarily disrupt information processing in a brain region, generating a short-lived "virtual lesion." Stimulation that interferes with task performance indicates that the affected brain region is necessary to perform the task normally. In other words, unlike neuroimaging methods such as functional magnetic resonance imaging (fMRI) that indicate correlations between brain and behavior, TMS can be used to demonstrate causal brain-behavior relations. Furthermore, by varying the duration and onset of the virtual lesion, TMS can also reveal the time course of normal processing. As a result, TMS has become an important tool in cognitive neuroscience. Advantages of the technique over lesion-deficit studies include better spatial-temporal precision of the disruption effect, the ability to use participants as their own control subjects, and the accessibility of participants. Limitations include concurrent auditory and somatosensory stimulation that may influence task performance, limited access to structures more than a few centimeters from the surface of the scalp, and the relatively large space of free parameters that need to be optimized in order for the experiment to work. Experimental designs that give careful consideration to appropriate control conditions help to address these concerns. This article illustrates these issues with TMS results that investigate the spatial and temporal contributions of the left supramarginal gyrus (SMG) to reading. PMID:25079670

  9. A new brain stimulation method: Noninvasive transcranial magneto–acoustical stimulation

    Science.gov (United States)

    Yuan, Yi; Chen, Yu-Dong; Li, Xiao-Li

    2016-08-01

    We investigate transcranial magneto–acoustical stimulation (TMAS) for noninvasive brain neuromodulation in vivo. TMAS as a novel technique uses an ultrasound wave to induce an electric current in the brain tissue in the static magnetic field. It has the advantage of high spatial resolution and penetration depth. The mechanism of TMAS onto a neuron is analyzed by combining the TMAS principle and Hodgkin–Huxley neuron model. The anesthetized rats are stimulated by TMAS, resulting in the local field potentials which are recorded and analyzed. The simulation results show that TMAS can induce neuronal action potential. The experimental results indicate that TMAS can not only increase the amplitude of local field potentials but also enhance the effect of focused ultrasound stimulation on the neuromodulation. In summary, TMAS can accomplish brain neuromodulation, suggesting a potentially powerful noninvasive stimulation method to interfere with brain rhythms for diagnostic and therapeutic purposes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503321 and 61273063) and the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161).

  10. Neuropsychiatric Outcome of an Adolescent Who Received Deep Brain Stimulation for Tourette's Syndrome

    Directory of Open Access Journals (Sweden)

    S. J. Pullen

    2011-01-01

    Full Text Available This case study followed one adolescent patient who underwent bilateral deep brain stimulation of the centromedian parafascicular complex (CM-Pf for debilitating, treatment refractory Tourette's syndrome for a period of 1.5 years. Neurocognitive testing showed no significant changes between baseline and follow-up assessments. Psychiatric assessment revealed positive outcomes in overall adaptive functioning and reduction in psychotropic medication load in this patient. Furthermore, despite significant baseline psychiatric comorbidity, this patient reported no suicidal ideation following electrode implantation. Deep brain stimulation is increasingly being used in children and adolescents. This case reports on the positive neurologic and neuropsychiatric outcome of an adolescent male with bilateral CM-Pf stimulation.

  11. The Present Indication and Future of Deep Brain Stimulation

    OpenAIRE

    Sugiyama, Kenji; Nozaki, Takao; ASAKAWA, Tetsuya; KOIZUMI, SHINICHIRO; Saitoh, Osamu; Namba, Hiroki

    2015-01-01

    The use of electrical stimulation to treat pain in human disease dates back to ancient Rome or Greece. Modern deep brain stimulation (DBS) was initially applied for pain treatment in the 1960s, and was later used to treat movement disorders in the 1990s. After recognition of DBS as a therapy for central nervous system (CNS) circuit disorders, DBS use showed drastic increase in terms of adaptability to disease and the patient’s population. More than 100,000 patients have received DBS therapy w...

  12. Post-mortem Findings in Huntington’s Deep Brain Stimulation: A Moving Target Due to Atrophy

    OpenAIRE

    Vedam-Mai, Vinata; Martinez-Ramirez, Daniel; Hilliard, Justin D.; Carbunaru, Samuel; Yachnis, Anthony T.; Bloom, Joshua; Keeling, Peyton; Awe, Lisa; Foote, Kelly D.; Okun, Michael S.

    2016-01-01

    Background Deep brain stimulation (DBS) has been shown to be effective for Parkinson’s disease, essential tremor, and primary dystonia. However, mixed results have been reported in Huntington’s disease (HD). Case Report A single case of HD DBS was identified from the University of Florida DBS Brain Tissue Network. The clinical presentation, evolution, surgical planning, DBS parameters, clinical outcomes, and brain pathological changes are summarized. Discussion This case of HD DBS revealed th...

  13. [Shining light on translational research in deep brain stimulation].

    Science.gov (United States)

    Lüscher, Christian; Davoine, Elise; Bellone, Carmilla

    2015-04-29

    For the last decade, optogenetics has revolutionised the neurosciences by enabling an unprecedented characterisation of the circuits involved in brain diseases, in particular addiction, depression, and obsessive compulsive disorders (OCD) and other anxiety disorders. Recently, the technique has also been used to propose blueprints for novel treatments of these diseases. For many reasons, optogenetics cannot be applied to humans applications anytime soon; we therefore argue that an intermediate step would be novel deep brain stimulation (DBS) protocols that emulate successful optogenetic "treatments" in animal models. Here we provide a roadmap of a translational path to rational, optogenetically inspired DBS protocols to refine existing approaches and expand it to novel indications. PMID:26062226

  14. Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity

    Science.gov (United States)

    Yuan, Yi; Chen, Yudong; Li, Xiaoli

    2016-02-01

    A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.

  15. Effects of Deep Brain Stimulation on Autonomic Function.

    Science.gov (United States)

    Basiago, Adam; Binder, Devin K

    2016-01-01

    Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson's disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target. PMID:27537920

  16. Effects of Deep Brain Stimulation on Autonomic Function

    Directory of Open Access Journals (Sweden)

    Adam Basiago

    2016-08-01

    Full Text Available Over the course of the development of deep brain stimulation (DBS into a well-established therapy for Parkinson’s disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target.

  17. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    OpenAIRE

    Joyce G Rohan; Carhuatanta, Kim A.; McInturf, Shawn M.; Miklasevich, Molly K.; Jankord, Ryan

    2015-01-01

    Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats th...

  18. Future of brain stimulation: new targets, new indications, new technology.

    Science.gov (United States)

    Hariz, Marwan; Blomstedt, Patric; Zrinzo, Ludvic

    2013-11-01

    In the last quarter of a century, DBS has become an established neurosurgical treatment for Parkinson's disease (PD), dystonia, and tremors. Improved understanding of brain circuitries and their involvement in various neurological and psychiatric illnesses, coupled with the safety of DBS and its exquisite role as a tool for ethical study of the human brain, have unlocked new opportunities for this technology, both for future therapies and in research. Serendipitous discoveries and advances in structural and functional imaging are providing abundant "new" brain targets for an ever-increasing number of pathologies, leading to investigations of DBS in diverse neurological, psychiatric, behavioral, and cognitive conditions. Trials and "proof of concept" studies of DBS are underway in pain, epilepsy, tinnitus, OCD, depression, and Gilles de la Tourette syndrome, as well as in eating disorders, addiction, cognitive decline, consciousness, and autonomic states. In parallel, ongoing technological development will provide pulse generators with longer battery longevity, segmental electrode designs allowing a current steering, and the possibility to deliver "on-demand" stimulation based on closed-loop concepts. The future of brain stimulation is certainly promising, especially for movement disorders-that will remain the main indication for DBS for the foreseeable future-and probably for some psychiatric disorders. However, brain stimulation as a technique may be at risk of gliding down a slippery slope: Some reports indicate a disturbing trend with suggestions that future DBS may be proposed for enhancement of memory in healthy people, or as a tool for "treatment" of "antisocial behavior" and for improving "morality." PMID:24123327

  19. The rationale for deep brain stimulation in Alzheimer's disease.

    Science.gov (United States)

    Mirzadeh, Zaman; Bari, Ausaf; Lozano, Andres M

    2016-07-01

    Alzheimer's disease is a major worldwide health problem with no effective therapy. Deep brain stimulation (DBS) has emerged as a useful therapy for certain movement disorders and is increasingly being investigated for treatment of other neural circuit disorders. Here we review the rationale for investigating DBS as a therapy for Alzheimer's disease. Phase I clinical trials of DBS targeting memory circuits in Alzheimer's disease patients have shown promising results in clinical assessments of cognitive function, neurophysiological tests of cortical glucose metabolism, and neuroanatomical volumetric measurements showing reduced rates of atrophy. These findings have been supported by animal studies, where electrical stimulation of multiple nodes within the memory circuit have shown neuroplasticity through stimulation-enhanced hippocampal neurogenesis and improved performance in memory tasks. The precise mechanisms by which DBS may enhance memory and cognitive functions in Alzheimer's disease patients and the degree of its clinical efficacy continue to be examined in ongoing clinical trials. PMID:26443701

  20. Modeling of a segmented electrode for desynchronizing deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Julia eBuhlmann

    2011-12-01

    Full Text Available Deep brain stimulation (DBS is an effective therapy for medically refrac- tory movement disorders like Parkinson’s disease. The electrodes, implanted in the target area within the human brain, generate an electric field which activates nerve fibers and cell bodies in the proximate vicinity. Even though the different target nuclei display considerable differences in their anatomical structure, only few types of electrodes are currently commercially available. It is desirable to adjust the electric field and in particular the volume of tissue activated around the electrode with respect to the corresponding target nucleus in a such way that side effects can be reduced. Furthermore, a more selective and partial activation of the target structure is desirable for an optimal application of novel stimulation strate- gies, e.g. coordinated reset neuromodulation. Hence we designed a DBS electrode with a segmented design allowing a more selective activation of the target struc- ture. We created a finite element model (FEM of the electrode and analyzed the volume of tissue activated for this electrode design. The segmented electrode ac- tivated an area in a targeted manner, of which the dimension and position relative to the electrode could be controlled by adjusting the stimulation parameters for each contact. According to our computational analysis, this directed stimulation might be superior with respect to the occurrence of side effects and it enables the application of coordinated reset neuromodulation under optimal conditions.

  1. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.

    Directory of Open Access Journals (Sweden)

    Nathalie Van Den Berge

    Full Text Available Deep Brain Stimulation (DBS is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI, which reflects changes in blood oxygen level dependent (BOLD responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.

  2. Modelling the current distribution across the depth electrode-brain interface in deep brain stimulation

    OpenAIRE

    Yousif, Nada; Liu, Xuguang

    2007-01-01

    The mismatch between the extensive clinical use of deep brain stimulation (DBS), which is being used to treat an increasing number of neurological disorders, and the lack of understanding of the underlying mechanisms, is confounded by the difficulty of measuring the spread of electric current in the brain in vivo. Here we present a brief review of the recent computational models which simulate the electric current and field distribution in the three-dimensional space, and consequently make es...

  3. Evaluation of novel stimulus waveforms for deep brain stimulation

    Science.gov (United States)

    Foutz, Thomas J.; McIntyre, Cameron C.

    2010-12-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of a wide range of neurological disorders. Historically, DBS and other neurostimulation technologies have relied on rectangular stimulation waveforms to impose their effects on the nervous system. Recent work has suggested that non-rectangular waveforms may have advantages over the traditional rectangular pulse. Therefore, we used detailed computer models to compare a range of charge-balanced biphasic waveforms with rectangular, exponential, triangular, Gaussian and sinusoidal stimulus pulse shapes. We explored the neural activation energy of these waveforms for both intracellular and extracellular current-controlled stimulation conditions. In the context of extracellular stimulation, we compared their effects on both axonal fibers of passage and projection neurons. Finally, we evaluated the impact of delivering the waveforms through a clinical DBS electrode, as opposed to a theoretical point source. Our results suggest that DBS with a 1 ms centered-triangular pulse can decrease energy consumption by 64% when compared with the standard 100 µs rectangular pulse (energy cost of 48 and 133 nJ, respectively, to stimulate 50% of a distributed population of axons) and can decrease energy consumption by 10% when compared with the most energy efficient rectangular pulse (1.25 ms duration). In turn, there may be measureable energy savings when using appropriately designed non-rectangular pulses in clinical DBS applications, thereby warranting further experimental investigation.

  4. Double electrodes simultaneous stimulation and implantation technique in deep brain stimulation

    Institute of Scientific and Technical Information of China (English)

    BIAN Liu-guan; W Tirakotai; DK Schulte; H Bertalanffy; D Hellwig

    2005-01-01

    @@ Posttraumatic tremor is often one of the causes of disability in head injury patients. Usually, pharmacotherapy for this type of tremor is not effective. Since early 1970s, surgical ablation of the ventral thalamus has been used to treat various types of tremor.1 Nowadays, deep brain stimulation (DBS) confirms its efficacy in alleviating different forms of tremor, including posttraumatic tremor.2,3 Such therapy has been reported achieving around 80% success rate in the treatment of posttraumatic tremor.

  5. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    International Nuclear Information System (INIS)

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/√2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  6. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2015-05-01

    Full Text Available Deep brain stimulation (DBS is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design.

  7. Midbrain raphe stimulation improves behavioral and anatomical recovery from fluid-percussion brain injury.

    Science.gov (United States)

    Carballosa Gonzalez, Melissa M; Blaya, Meghan O; Alonso, Ofelia F; Bramlett, Helen M; Hentall, Ian D

    2013-01-15

    The midbrain median raphe (MR) and dorsal raphe (DR) nuclei were tested for their capacity to regulate recovery from traumatic brain injury (TBI). An implanted, wireless self-powered stimulator delivered intermittent 8-Hz pulse trains for 7 days to the rat's MR or DR, beginning 4-6 h after a moderate parasagittal (right) fluid-percussion injury. MR stimulation was also examined with a higher frequency (24 Hz) or a delayed start (7 days after injury). Controls had sham injuries, inactive stimulators, or both. The stimulation caused no apparent acute responses or adverse long-term changes. In water-maze trials conducted 5 weeks post-injury, early 8-Hz MR and DR stimulation restored the rate of acquisition of reference memory for a hidden platform of fixed location. Short-term spatial working memory, for a variably located hidden platform, was restored only by early 8-Hz MR stimulation. All stimulation protocols reversed injury-induced asymmetry of spontaneous forelimb reaching movements tested 6 weeks post-injury. Post-mortem histological measurement at 8 weeks post-injury revealed volume losses in parietal-occipital cortex and decussating white matter (corpus callosum plus external capsule), but not hippocampus. The cortical losses were significantly reversed by early 8-Hz MR and DR stimulation, the white matter losses by all forms of MR stimulation. The generally most effective protocol, 8-Hz MR stimulation, was tested 3 days post-injury for its acute effect on forebrain cyclic adenosine monophosphate (cAMP), a key trophic signaling molecule. This procedure reversed injury-induced declines of cAMP levels in both cortex and hippocampus. In conclusion, midbrain raphe nuclei can enduringly enhance recovery from early disseminated TBI, possibly in part through increased signaling by cAMP in efferent targets. A neurosurgical treatment for TBI using interim electrical stimulation in raphe repair centers is suggested. PMID:22963112

  8. Treatment of Wilson's disease motor complications with deep brain stimulation.

    Science.gov (United States)

    Hedera, Peter

    2014-05-01

    A considerable proportion of patients with Wilson's disease (WD) experience neurologic symptoms that are functionally disabling. The most common neurologic problems in advanced WD include dystonia and tremor. Medically refractory idiopathic dystonia and essential tremor (ET) have been successfully treated with deep brain stimulation (DBS), functional surgical therapy targeting the globus pallidus pars interna (GPi), or the ventral intermediate (Vim) thalamic nucleus. Even though the pathophysiology of tremor is different in WD and ET, available experience supports DBS targeting the Vim for WD patients. Dystonia associated with WD is classified as secondary dystonia and GPi stimulation has yielded mixed results in these patients. The presence of structural changes in the basal ganglia may limit the therapeutic success of DBS for WD dystonia compared with idiopathic dystonia. In spite of these limitations, DBS in WD may be an effective approach to treat medically refractory residual neurologic symptoms in carefully selected patients. PMID:24547944

  9. Deep brain stimulation: current applications and future prospects.

    Science.gov (United States)

    Suchorska, Bogdana; Ruge, Maximilian I

    2015-12-01

    Deep Brain Stimulation (DBS) has proven to be an effective and minimally invasive surgical treatment for a variety of neurological and psychiatric diseases such as Parkinson's Disease, essential tremor, dystonia, Tourette's Syndrome and depression. In contrast to early surgical lesioning procedures, DBS has a considerably lower side-effect rate and is usually reversible. Common targets include nuclei involved in the basal ganglia circuitry as well as its efferent and afferent pathways such as the subthalamic nucleus (STN), the globus pallidus internus (GPi) or the ventral striatal region. Despite the increasing application of DBS, the exact mechanism of action is still matter of debates. Current trials focus on establishing alternative targets, exploring new indications as well as on capturing cortical responses during DBS in order to improve individual stimulation parameters. PMID:26760984

  10. Transcranial brain stimulation to promote functional recovery after stroke

    DEFF Research Database (Denmark)

    Raffin, Estelle; Siebner, Hartwig R

    2014-01-01

    therapeutic efficacy. SUMMARY: This review addressed six questions: How does NIBS facilitate the recovery of function after stroke? Which brain regions should be targeted by NIBS? Is there a particularly effective NIBS modality that should be used? Does the location of the stroke influence the therapeutic......PURPOSE OF REVIEW: Noninvasive brain stimulation (NIBS) is increasingly used to enhance the recovery of function after stroke. The purpose of this review is to highlight and discuss some unresolved questions that need to be addressed to better understand and exploit the potential of NIBS as a...... therapeutic tool. RECENT FINDINGS: Recent meta-analyses showed that the treatment effects of NIBS in patients with stroke are rather inconsistent across studies and the evidence for therapeutic efficacy is still uncertain. This raises the question of how NIBS can be developed further to improve its...

  11. Increment of brain temporal perfusion during auditory stimulation

    International Nuclear Information System (INIS)

    A study on the dynamic exploration of the auditory pathway is presented, in which technetium-99m hexamethylpropylene amine oxime single-photon emission computed tomography (SPET) was used in volunteers with normal hearing. Changes in 99mTc-HMPAO distribution were calculated using a region of interest/whole-brain count ratio. The results showed a temporal perfusion increment of 17% (right) and 19% (left) during tonal supraliminar stimulation, which was significantly different from the control ROI. Sensitivity tests for the method were requested before any clinical application. (orig.)

  12. Diffusion Tractography in Deep Brain Stimulation Surgery: A Review

    Science.gov (United States)

    Calabrese, Evan

    2016-01-01

    Deep brain stimulation (DBS) is believed to exert its therapeutic effects through modulation of brain circuitry, yet conventional preoperative planning does not allow direct targeting or visualization of white matter pathways. Diffusion MRI tractography (DT) is virtually the only non-invasive method of visualizing structural connectivity in the brain, leading many to suggest its use to guide DBS targeting. DT-guided DBS not only has the potential to allow direct white matter targeting for established applications [e.g., Parkinson’s disease (PD), essential tremor (ET), dystonia], but may also aid in the discovery of new therapeutic targets for a variety of other neurologic and psychiatric diseases. Despite these exciting opportunities, DT lacks standardization and rigorous anatomic validation, raising significant concern for the use of such data in stereotactic brain surgery. This review covers the technical details, proposed methods, and initial clinical data for the use of DT in DBS surgery. Rather than focusing on specific disease applications, this review focuses on methods that can be applied to virtually any DBS target. PMID:27199677

  13. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of Smart Deep Brain Stimulation

    Science.gov (United States)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  14. Systemic stimulation of TLR2 impairs neonatal mouse brain development.

    Directory of Open Access Journals (Sweden)

    Xiaonan Du

    Full Text Available BACKGROUND: Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely characterized. Stimulation of Toll-like receptors (TLRs through specific agonists induces inflammatory responses that trigger both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development. METHODOLOGY/PRINCIPAL FINDINGS: Mice were injected intraperitoneally (i.p. once a day from postnatal day (PND 3 to PND11 with endotoxin-free saline, a TLR2 agonist Pam(3CSK(4 (5 mg/kg or Lipopolysaccharide (LPS, 0.3 mg/kg. Pups were sacrificed at PND12 or PND53 and brain, spleen and liver were collected and weighed. Brain sections were stained for brain injury markers. Long-term effects on memory function were assessed using the Trace Fear Conditioning test at PND50. After 9 days of Pam(3CSK(4 administration, we found a decreased volume of cerebral gray matter, white matter in the forebrain and cerebellar molecular layer that was accompanied by an increase in spleen and liver weight at PND12. Such effects were not observed in Pam3CSK4-treated TLR 2-deficient mice. Pam3CSK4-treated mice also displayed decreased hippocampus neuronal density, and increased cerebral microglia density, while there was no effect on caspase-3 or general cell proliferation at PND12. Significantly elevated levels of IL-1β, IL-6, KC, and MCP-1 were detected after the first Pam3CSK4 injection in brain homogenates of PND3 mice. Pam(3CSK(4 administration did not affect long-term memory function nor the volume of gray or white matter. CONCLUSIONS/SIGNIFICANCE: Repeated systemic exposure to the TLR2 agonist Pam(3CSK(4 can have a short-term negative impact on the neonatal mouse brain.

  15. Orosensory self-stimulation by sucrose involves brain dopaminergic mechanisms.

    Science.gov (United States)

    Schneider, L H

    1989-01-01

    The most convincing body of evidence supporting a role for brain dopaminergic mechanisms in sweet taste reward has been obtained using the sham-feeding rat. In rats prepared with a chronic gastric fistula and tested with the cannula open, intake is a direct function of the palatability of the solution offered as well as of the state of food deprivation. Because essentially none of the ingested fluid passes on to the intestine, negative postingestive feedback is eliminated. Thus, the relative orosensory/hedonic potency of the food determines and sustains the rate of sham intake; long periods of food deprivation are not required. In this way, the sham feeding of sweet solutions may be considered a form of oral self-stimulation behavior and afford a preparation through which the neurochemical and neuranatomical substrates of sweet taste reward may be identified. The results obtained in the series of experiments summarized in this paper clearly indicate that central D-1 and D-2 receptor mechanisms are critical for the orosensory self-stimulation by sucrose in the rat. In conclusion, I suggest that such investigations of the roles of brain dopaminergic mechanisms in the sucrose sham-feeding rat preparation may further our understanding of normal and aberrant attractions to sweet fluids in humans (see Cabanac, Drewnowski, and Halmi, this volume), as an innate, positive affective response of human neonates to sucrose and the sustained positive hedonic ratings for glucose when tasted but not when consumed have demonstrated. PMID:2699194

  16. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study.

    Science.gov (United States)

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson's disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target. PMID:27070317

  17. The stimulated social brain: effects of transcranial direct current stimulation on social cognition.

    Science.gov (United States)

    Sellaro, Roberta; Nitsche, Michael A; Colzato, Lorenza S

    2016-04-01

    Transcranial direct current stimulation (tDCS) is an increasingly popular noninvasive neuromodulatory tool in the fields of cognitive and clinical neuroscience and psychiatry. It is an inexpensive, painless, and safe brain-stimulation technique that has proven to be effective in modulating cognitive and sensory-perceptual functioning in healthy individuals and clinical populations. Importantly, recent findings have shown that tDCS may also be an effective and promising tool for probing the neural mechanisms of social cognition. In this review, we present the state-of-the-art of the field of tDCS research in social cognition. By doing so, we aim to gather knowledge of the potential of tDCS to modulate social functioning and social decision making in healthy humans, and to inspire future research investigations. PMID:27206250

  18. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yakunina, Natalia [Kangwon National University, Institute of Medical Science, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kang, Eun Kyoung [Kangwon National University Hospital, Department of Rehabilitation Medicine, Chuncheon (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of); Min, Ji-Hoon [University of Michigan, Department of Biopsychology, Cognition, and Neuroscience, Ann Arbor, MI (United States); Kim, Sam Soo [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Radiology, Chuncheon (Korea, Republic of); Nam, Eui-Cheol [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of)

    2015-10-15

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  19. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    International Nuclear Information System (INIS)

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  20. Deep Brain Stimulation Response in Pathologically Confirmed Cases of Multiple System Atrophy

    OpenAIRE

    Ullman, Michael; Vedam-Mai, Vinata; Resnick, Andrew S.; Yachnis, Anthony T.; McFarland, Nikolaus R.; Merritt, Stacy; Zeilman, Pamela; Foote, Kelly D; Okun, Michael S.

    2011-01-01

    Deep brain stimulation is a treatment for select cases of medication refractory movement disorders including Parkinson’s disease. Deep brain stimulation has not been recommended for treatment in multiple system atrophy patients. However, the paucity of literature documenting the effects of deep brain stimulation in multiple system atrophy patients and the revelation of a levodopa-responsive subtype of multiple system atrophy suggests further investigation is necessary.

  1. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms

    OpenAIRE

    Lim, L.W.; Prickaerts, J.; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Y. Temel

    2015-01-01

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and v...

  2. Deep brain stimulation increases impulsivity in two patients with obsessive-compulsive disorder

    NARCIS (Netherlands)

    J. Luigjes; M. Mantione; W. van den Brink; P.R. Schuurman; P. van den Munckhof; D. Denys

    2011-01-01

    Deep brain stimulation (DBS) is an adjustable, reversible, nondestructive neurosurgical intervention using implanted electrodes to deliver electrical pulses to areas in the brain. DBS has recently shown promising results as an experimental treatment of refractory obsessive-compulsive disorder (OCD).

  3. Non-invasive brain stimulation for the treatment of symptoms following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Simarjot K Dhaliwal

    2015-08-01

    Full Text Available Background: Traumatic brain injury (TBI is a common cause of physical, psychological, and cognitive impairment, but many current treatments for TBI are ineffective or produce adverse side effects. Non-invasive methods of brain stimulation could help ameliorate some common trauma-induced symptoms.Objective: This review summarizes instances in which repetitive Transcranial Magnetic Stimulation (rTMS and transcranial Direct Current Stimulation (tDCS have been used to treat symptoms following a traumatic brain injury. A subsequent discussion attempts to determine the value of these methods in light of their potential risks.Methods: The research databases of PubMed/MEDLINE and PsycINFO were electronically searched using terms relevant to the use of rTMS and tDCS as a tool to decrease symptoms in the context of rehabilitation post-TBI.Results: Eight case-studies and four multi-subject reports using rTMS and six multi-subject studies using tDCS were found. Two instances of seizure are discussed. Conclusions: There is evidence that rTMS can be an effective treatment option for some post-TBI symptoms such as depression, tinnitus, and neglect. Although the safety of this method remains uncertain, the use of rTMS in cases of mild-TBI without obvious structural damage may be justified. Evidence on the effectiveness of tDCS is mixed, highlighting the need for additional

  4. Effects of thalamic deep brain stimulation on spontaneous language production.

    Science.gov (United States)

    Ehlen, Felicitas; Vonberg, Isabelle; Kühn, Andrea A; Klostermann, Fabian

    2016-08-01

    The thalamus is thought to contribute to language-related processing, but specifications of this notion remain vague. An assessment of potential effects of thalamic deep brain stimulation (DBS) on spontaneous language may help to delineate respective functions. For this purpose, we analyzed spontaneous language samples from thirteen (six female / seven male) patients with essential tremor treated with DBS of the thalamic ventral intermediate nucleus (VIM) in their respective ON vs. OFF conditions. Samples were obtained from semi-structured interviews and examined on multidimensional linguistic levels. In the VIM-DBS ON condition, participants used a significantly higher proportion of paratactic as opposed to hypotactic sentence structures. This increase correlated negatively with the change in the more global cognitive score, which in itself did not change significantly. In conclusion, VIM-DBS appears to induce the use of a simplified syntactic structure. The findings are discussed in relation to concepts of thalamic roles in language-related cognitive behavior. PMID:27267813

  5. The present indication and future of deep brain stimulation.

    Science.gov (United States)

    Sugiyama, Kenji; Nozaki, Takao; Asakawa, Tetsuya; Koizumi, Shinichiro; Saitoh, Osamu; Namba, Hiroki

    2015-01-01

    The use of electrical stimulation to treat pain in human disease dates back to ancient Rome or Greece. Modern deep brain stimulation (DBS) was initially applied for pain treatment in the 1960s, and was later used to treat movement disorders in the 1990s. After recognition of DBS as a therapy for central nervous system (CNS) circuit disorders, DBS use showed drastic increase in terms of adaptability to disease and the patient's population. More than 100,000 patients have received DBS therapy worldwide. The established indications for DBS are Parkinson's disease, tremor, and dystonia, whereas global indications of DBS expanded to other neuronal diseases or disorders such as neuropathic pain, epilepsy, and tinnitus. DBS is also experimentally used to manage cognitive disorders and psychiatric diseases such as major depression, obsessive-compulsive disorder (OCD), Tourette's syndrome, and eating disorders. The importance of ethics and conflicts surrounding the regulation and freedom of choice associated with the application of DBS therapy for new diseases or disorders is increasing. These debates are centered on the use of DBS to treat new diseases and disorders as well as its potential to enhance ability in normal healthy individuals. Here we present three issues that need to be addressed in the future: (1) elucidation of the mechanisms of DBS, (2) development of new DBS methods, and (3) miniaturization of the DBS system. With the use of DBS, functional neurosurgery entered into the new era that man can manage and control the brain circuit to treat intractable neuronal diseases and disorders. PMID:25925757

  6. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network

    Science.gov (United States)

    Fan, Denggui; Wang, Zhihui; Wang, Qingyun

    2016-07-01

    of 32 different contacts with optimal stimulation intensity and immediately after the stimulation, respectively. These can reveal regional differences in pathological activity within STN nucleus. It is shown that in line with the experimental results directional steering stimulation can induce the low-amplitude LFP which implies the occurrence of desynchronizing regime, as well as the distribution of DF can locate at the 13-40 Hz of beta frequency range. Hopefully, the obtained results can provide theoretical evidences in exploring pathophysiologic activity of brain.

  7. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis

    Science.gov (United States)

    Peters, Heather T.; Edwards, Dylan J.; Wortman-Jutt, Susan; Page, Stephen J.

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity. PMID:27555811

  8. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis.

    Science.gov (United States)

    Peters, Heather T; Edwards, Dylan J; Wortman-Jutt, Susan; Page, Stephen J

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity. PMID:27555811

  9. Systematic Review of Parameters of Stimulation: Clinical Trial Design Characteristics and Motor Outcomes in Noninvasive Brain Stimulation in Stroke

    OpenAIRE

    BamideleOyebamijiAdeyemo

    2012-01-01

    Introduction: Repetitive Transcranial Magnetic Stimulation (rTMS) and Transcranial Direct Current Stimulation are two powerful non-invasive neuromodulatory therapies that have the potential to alter and evaluate the integrity of the corticospinal tract. Moreover, recent evidence has shown that brain stimulation might be beneficial in stroke recovery. Therefore, investigating and investing in innovative therapies that may improve neurorehabilitative stroke recovery are next steps in research a...

  10. Deep brain stimulation for vocal tremor: a comprehensive, multidisciplinary methodology.

    Science.gov (United States)

    Ho, Allen L; Erickson-Direnzo, Elizabeth; Pendharkar, Arjun V; Sung, Chih-Kwang; Halpern, Casey H

    2015-06-01

    Tremulous voice is a characteristic feature of a multitude of movement disorders, but when it occurs in individuals diagnosed with essential tremor, it is referred to as essential vocal tremor (EVT). For individuals with EVT, their tremulous voice is associated with significant social embarrassment and in severe cases may result in the discontinuation of employment and hobbies. Management of EVT is extremely difficult, and current behavioral and medical interventions for vocal tremor result in suboptimal outcomes. Deep brain stimulation (DBS) has been proposed as a potential therapeutic avenue for EVT, but few studies can be identified that have systematically examined improvements in EVT following DBS. The authors describe a case of awake bilateral DBS targeting the ventral intermediate nucleus for a patient suffering from severe voice and arm tremor. They also present their comprehensive, multidisciplinary methodology for definitive treatment of EVT via DBS. To the authors' knowledge, this is the first time comprehensive intraoperative voice evaluation has been used to guide microelectrode/stimulator placement, as well as the first time that standard pre- and post-DBS assessments have been conducted, demonstrating the efficacy of this tailored DBS approach. PMID:26030706

  11. Deep brain stimulation for severe autism: from pathophysiology to procedure.

    Science.gov (United States)

    Sinha, Saurabh; McGovern, Robert A; Sheth, Sameer A

    2015-06-01

    Autism is a heterogeneous neurodevelopmental disorder characterized by early-onset impairment in social interaction and communication and by repetitive, restricted behaviors and interests. Because the degree of impairment may vary, a spectrum of clinical manifestations exists. Severe autism is characterized by complete lack of language development and potentially life-threatening self-injurious behavior, the latter of which may be refractory to medical therapy and devastating for affected individuals and their caretakers. New treatment strategies are therefore needed. Here, the authors propose deep brain stimulation (DBS) of the basolateral nucleus of the amygdala (BLA) as a therapeutic intervention to treat severe autism. The authors review recent developments in the understanding of the pathophysiology of autism. Specifically, they describe the genetic and environmental alterations that affect neurodevelopment. The authors also highlight the resultant microstructural, macrostructural, and functional abnormalities that emerge during brain development, which create a pattern of dysfunctional neural networks involved in socioemotional processing. They then discuss how these findings implicate the BLA as a key node in the pathophysiology of autism and review a reported case of BLA DBS for treatment of severe autism. Much progress has been made in recent years in understanding the pathophysiology of autism. The BLA represents a logical neurosurgical target for treating severe autism. Further study is needed that considers mechanistic and operative challenges. PMID:26030703

  12. Post-mortem Findings in Huntington’s Deep Brain Stimulation: A Moving Target Due to Atrophy

    Science.gov (United States)

    Vedam-Mai, Vinata; Martinez-Ramirez, Daniel; Hilliard, Justin D.; Carbunaru, Samuel; Yachnis, Anthony T.; Bloom, Joshua; Keeling, Peyton; Awe, Lisa; Foote, Kelly D.; Okun, Michael S.

    2016-01-01

    Background Deep brain stimulation (DBS) has been shown to be effective for Parkinson’s disease, essential tremor, and primary dystonia. However, mixed results have been reported in Huntington’s disease (HD). Case Report A single case of HD DBS was identified from the University of Florida DBS Brain Tissue Network. The clinical presentation, evolution, surgical planning, DBS parameters, clinical outcomes, and brain pathological changes are summarized. Discussion This case of HD DBS revealed that chorea may improve and be sustained. Minimal histopathological changes were noted around the DBS leads. Severe atrophy due to HD likely changed the DBS lead position relative to the internal capsule. PMID:27127722

  13. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases.

    Science.gov (United States)

    Fox, Michael D; Buckner, Randy L; Liu, Hesheng; Chakravarty, M Mallar; Lozano, Andres M; Pascual-Leone, Alvaro

    2014-10-14

    Brain stimulation, a therapy increasingly used for neurological and psychiatric disease, traditionally is divided into invasive approaches, such as deep brain stimulation (DBS), and noninvasive approaches, such as transcranial magnetic stimulation. The relationship between these approaches is unknown, therapeutic mechanisms remain unclear, and the ideal stimulation site for a given technique is often ambiguous, limiting optimization of the stimulation and its application in further disorders. In this article, we identify diseases treated with both types of stimulation, list the stimulation sites thought to be most effective in each disease, and test the hypothesis that these sites are different nodes within the same brain network as defined by resting-state functional-connectivity MRI. Sites where DBS was effective were functionally connected to sites where noninvasive brain stimulation was effective across diseases including depression, Parkinson's disease, obsessive-compulsive disorder, essential tremor, addiction, pain, minimally conscious states, and Alzheimer's disease. A lack of functional connectivity identified sites where stimulation was ineffective, and the sign of the correlation related to whether excitatory or inhibitory noninvasive stimulation was found clinically effective. These results suggest that resting-state functional connectivity may be useful for translating therapy between stimulation modalities, optimizing treatment, and identifying new stimulation targets. More broadly, this work supports a network perspective toward understanding and treating neuropsychiatric disease, highlighting the therapeutic potential of targeted brain network modulation. PMID:25267639

  14. Improved Efficacy of Temporally Non-Regular Deep Brain Stimulation in Parkinson's Disease

    OpenAIRE

    Brocker, David T.; Swan, Brandon D; Turner, Dennis A.; Gross, Robert E.; Tatter, Stephen B.; Koop, Mandy Miller; Bronte-Stewart, Helen; Grill, Warren M.

    2012-01-01

    High frequency deep brain stimulation is an effective therapy for motor symptoms in Parkinson's disease. However, the relative clinical efficacy of regular versus non-regular temporal patterns of stimulation in Parkinson's disease remains unclear. To determine the temporal characteristics of non-regular temporal patterns of stimulation important for treatment of Parkinson's disease, we compared the efficacy of temporally regular stimulation with four non-regular patterns of stimulation in sub...

  15. Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing.

    Directory of Open Access Journals (Sweden)

    Marcus Heldmann

    Full Text Available The influence of bilateral deep brain stimulation (DBS of the nucleus nucleus (NAcc on the processing of reward in a gambling paradigm was investigated using H(2[(15O]-PET (positron emission tomography in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control.

  16. Modulating pathological oscillations by rhythmic non-invasive brain stimulation – a therapeutic concept?

    Directory of Open Access Journals (Sweden)

    Lutz eKrawinkel

    2015-03-01

    Full Text Available A large amount of studies of the last decades revealed an association between human behaviour and oscillatory activity in the human brain. Alike, abnormalities of oscillatory activity were related with pathological behaviour in many neuropsychiatric disorders, such as in Parkinson’s disease (PD or in schizophrenia (SCZ. As a therapeutic tool, non-invasive brain stimulation (NIBS has demonstrated the potential to improve behavioural performance in patients suffering from neuropsychiatric disorders. Since evidence accumulates that NIBS might be able to modulate oscillatory activity and related behaviour in a scientific setting, this review focuses on discussing potential interventional strategies to target abnormalities in oscillatory activity in neuropsychiatric disorders. In particular, we will review oscillatory changes described in patients after stroke, with PD or suffering from SCZ. Potential ways of targeting interventionally the underlying pathological oscillations to improve related pathological behaviour will be further discussed.

  17. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R;

    2015-01-01

    whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation...... of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up...

  18. Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation.

    Science.gov (United States)

    Clough, R W; Neese, S L; Sherill, L K; Tan, A A; Duke, A; Roosevelt, R W; Browning, R A; Smith, D C

    2007-06-29

    Development of cerebral edema (intracellular and/or extracellular water accumulation) following traumatic brain injury contributes to mortality and morbidity that accompanies brain injury. Chronic intermittent vagus nerve stimulation (VNS) initiated at either 2 h or 24 h (VNS: 30 s train of 0.5 mA, 20 Hz, biphasic pulses every 30 min) following traumatic brain injury enhances recovery of motor and cognitive function in rats in the weeks following brain injury; however, the mechanisms of facilitated recovery are unknown. The present study examines the effects of VNS on development of acute cerebral edema following unilateral fluid percussion brain injury (FPI) in rats, concomitant with assessment of their behavioral recovery. Two hours following FPI, VNS was initiated. Behavioral testing, using both beam walk and locomotor placing tasks, was conducted at 1 and 2 days following FPI. Edema was measured 48 h post-FPI by the customary method of region-specific brain weights before and after complete dehydration. Results of this study replicated that VNS initiated at 2 h after FPI: 1) effectively facilitated the recovery of vestibulomotor function at 2 days after FPI assessed by beam walk performance (P<0.01); and 2) tended to improve locomotor placing performance at the same time point (P=0.18). Most interestingly, results of this study showed that development of edema within the cerebral cortex ipsilateral to FPI was significantly attenuated at 48 h in FPI rats receiving VNS compared with non-VNS FPI rats (P<0.04). Finally, a correlation analysis between beam walk performance and cerebral edema following FPI revealed a significant inverse correlation between behavior performance and cerebral edema. Together, these results suggest that VNS facilitation of motor recovery following experimental brain injury in rats is associated with VNS-mediated attenuation of cerebral edema. PMID:17543463

  19. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain

    OpenAIRE

    Jeffrey, Melanie; Lang, Min; Gane, Jonathan; Wu, Chiping; Burnham, W McIntyre; Zhang, Liang

    2013-01-01

    Background Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skul...

  20. Transcranial magnetic stimulation of the brain: guidelines for pain treatment research

    OpenAIRE

    Klein, Max M.; Treister, Roi; Raij, Tommi; Pascual-Leone, Alvaro; Park, Lawrence; Nurmikko, Turo; Lenz, Fred; Lefaucheur, Jean-Pascal; Lang, Magdalena; Hallett, Mark; Fox, Michael; Cudkowicz, Merit; Costello, Ann; Daniel B. Carr; Ayache, Samar S.

    2015-01-01

    Abstract Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. Nearby ferromagnetic or electronic implants are contraindications. Adverse effects are minimal, pr...

  1. Deep brain stimulation for psychiatric diseases: what are the risks?

    Science.gov (United States)

    Saleh, Christian; Fontaine, Denys

    2015-05-01

    Despite the application of deep brain stimulation (DBS) as an efficient treatment modality for psychiatric disorders, such as obsessive-compulsive disorder (OCD), Gilles de la Tourette Syndrome (GTS), and treatment refractory major depression (TRD), few patients are operated or included in clinical trials, often for fear of the potential risks of an approach deemed too dangerous. To assess the surgical risks, we conducted an analysis of publications on DBS for psychiatric disorders. A PubMed search was conducted on reports on DBS for OCD, GTS, and TRD. Forty-nine articles were included. Only reports on complications related to DBS were selected and analyzed. Two hundred seventy-two patients with a mean follow-up of 22 months were included in our analysis. Surgical mortality was nil. The overall mortality was 1.1 %: two suicides were unrelated to DBS and one death was reported to be unlikely due to DBS. The majority of complications were transient and related to stimulation. Long-term morbidity occurred in 16.5 % of cases. Three patients had permanent neurological complications due to intracerebral hemorrhage (2.2 %). Complications reported in DBS for psychiatric diseases appear to be similar to those reported for DBS in movement disorders. But class I evidence is lacking. Our analysis was based mainly on small non-randomized studies. A significant number of patients (approximately 150 patients) who were treated with DBS for psychiatric diseases had to be excluded from our analysis as no data on complications was available. The exact prevalence of complications of DBS in psychiatric diseases could not be established. DBS for psychiatric diseases is promising, but remains an experimental technique in need of further evaluation. A close surveillance of patients undergoing DBS for psychiatric diseases is mandatory. PMID:25795265

  2. Evaluation of deep brain stimulation for Parkinson's disease by using FDG PET

    International Nuclear Information System (INIS)

    Objective: Patients are effectively treated with medication in their initial phases of Parkinson's disease. However, the drugs become less effective and the adverse effects revealed. Recent years, the chronic deep brain stimulation is becoming an important treatment for patients with patients with Parkinson's disease. It has shown that the Parkinson's state is characterized by pathological neural activity in the motor system including the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN). The chronic deep brain stimulation can make benefits in the patients by intermediate the pathological neural activity. It needs an external method to evaluate the mechanism of therapy and to monitor the effect of treatment. The objective of our study is to observe the regional glucose metabolism changes in the motor loops and demonstrate the mechanism of therapy and how to monitor the treatment. Patients and Methods: Employing FDG PET, we had studied 7 patients who suffered from Parkinson's disease all the patients were failing medical therapy.the electrodes were implanted in the brain by the direction of MRI.The target of DBS is STN. Resting FDG PET were performed on and off STN stimulation. Metabolic changes with DBS were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings off medication. PET imaging was read by visual interpretation in blind method and calculated by semi-quantitative analysis. The statistic data was analysis after FDG PET imaging. Results: Through the research, regional cerebral glucose metabolic changes with DBS on and off were correlated with clinical improvement as measured by changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings. STN DBS improved UPDRS motor ratings (33%, P<0.001) and significantly increased regional glucose metabolism in the frontal lobe, temporal lobe, Parietal lobe cortex ipsilateral to stimulation. The heighten

  3. Stimulation of brain muscarinic acetylcholine receptors acutely reverses radiogenic hypodipsia

    International Nuclear Information System (INIS)

    A sufficiently large dose of ionizing radiation produces changes in water consumption. However, the direction, durations, and physiological substrates of these alterations remain in question. Here we report a 5-d hypodipsia in rats exposed to 600 rads 60Co but a more transient, albeit larger, reduction in drinking after 1000 60Co. Brain cholinergic neurons have been implicated as mediators of thirst. Therefore, we explored the role of hypothalamic muscarinic receptors in the production of radiation-induced hypodipsia. This was accomplished through the intrahypothalamic injection of carbachol (a muscarinic agonist) or atropine (a muscarinic antagonist) in irradiated rats. Intracranial carbachol produced acute reversal of radiogenic hypodipsia while atropine potentiated the hypodipsia. These post-irradiation drug-induced behaviors were similar to those observed after the same drug treatments before irradiation. Since cholinergic neuronal functions persist and are labile (can be pharmacologically stimulated and blocked) after irradiation, this suggests that other neuronal systems and/or neurochemicals may be more prominently involved in radiogenic hypodipsia

  4. Modulating presence and impulsiveness by external stimulation of the brain

    Directory of Open Access Journals (Sweden)

    Baumgartner Thomas

    2008-08-01

    Full Text Available Abstract Background "The feeling of being there" is one possible way to describe the phenomenon of feeling present in a virtual environment and to act as if this environment is real. One brain area, which is hypothesized to be critically involved in modulating this feeling (also called presence is the dorso-lateral prefrontal cortex (dlPFC, an area also associated with the control of impulsive behavior. Methods In our experiment we applied transcranial direct current stimulation (tDCS to the right dlPFC in order to modulate the experience of presence while watching a virtual roller coaster ride. During the ride we also registered electro-dermal activity. Subjects also performed a test measuring impulsiveness and answered a questionnaire about their presence feeling while they were exposed to the virtual roller coaster scenario. Results Application of cathodal tDCS to the right dlPFC while subjects were exposed to a virtual roller coaster scenario modulates the electrodermal response to the virtual reality stimulus. In addition, measures reflecting impulsiveness were also modulated by application of cathodal tDCS to the right dlPFC. Conclusion Modulating the activation with the right dlPFC results in substantial changes in responses of the vegetative nervous system and changed impulsiveness. The effects can be explained by theories discussing the top-down influence of the right dlPFC on the "impulsive system".

  5. Deep brain stimulation for dystonia: review of the literature.

    Science.gov (United States)

    Mehdorn, Hubertus M

    2016-06-01

    Deep brain stimulation (DBS) has become one of the major therapy options for movement disorders including dystonia. This article should give a review of the current literature from a neurosurgical perspective. Since dystonia is a rare disease, only few studies on larger cohorts have been published, and very few randomized controlled studies are avaialable in the international literature. Our experiences gained treating 134 patients with various types of dystonia, between 1999 and 2015, will serve a guide to interpret the current literature. Symptoms of dystonia are due to a variety of medical conditions. A careful and extensive neurological evaluation is mandatory before medical and surgical treatment options are considered, since the clinical benefits of more aggressive treatment e.g. by DBS depend to a large extent on the etiology of the disease. Diagnostic steps should include also magnetic resonance imaging (MRI) and possibly genetic evaluation. Therapy consists of physiotherapy, medical therapy including botulinum toxin injections in focal dystonia and DBS. This neurosurgical therapy is considered a highly effective therapy in well selected patients, which should be discussed, depending on the etiology, early in the patient's career. Patients with primary dystonia will benefit the most from DBS to the ventromediolateral part of the globus pallidus internus (GPi) with acceptable low complication rates; in order to optimize longterm results in these groups of patient, they will require an interdisciplinary individualized approach both pre- and postoperatively as well as longterm care adjusting to their needs. PMID:26977634

  6. Ipsilateral motor pathways after stroke: implications for noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Lynley V Bradnam

    2013-05-01

    Full Text Available In humans the two cerebral hemispheres have essential roles in controlling the upper limb. The purpose of this article is to draw attention to the potential importance of ipsilateral descending pathways for functional recovery after stroke, and the use of noninvasive brain stimulation (NBS protocols of the contralesional primary motor cortex (M1. Conventionally NBS is used to suppress contralesional M1, and to attenuate transcallosal inhibition onto the ipsilesional M1. There has been little consideration of the fact that contralesional M1 suppression may also reduce excitability of ipsilateral descending pathways that may be important for paretic upper limb control for some patients. One such ipsilateral pathway is the cortico-reticulo-propriospinal pathway (CRPP. In this review we outline a neurophysiological model to explain how contralesional M1 may gain control of the paretic arm via the CRPP. We conclude that the relative importance of the CRPP for motor control in individual patients must be considered before using NBS to suppress contralesional M1. Neurophysiological, neuroimaging and clinical assessments can assist this decision making and facilitate the translation of NBS into the clinical setting.

  7. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    Science.gov (United States)

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. PMID:27221544

  8. Effects of deep brain stimulation on prepulse inhibition in obsessive-compulsive disorder.

    Science.gov (United States)

    Kohl, S; Gruendler, T O J; Huys, D; Sildatke, E; Dembek, T A; Hellmich, M; Vorderwulbecke, M; Timmermann, L; Ahmari, S E; Klosterkoetter, J; Jessen, F; Sturm, V; Visser-Vandewalle, V; Kuhn, J

    2015-01-01

    Owing to a high response rate, deep brain stimulation (DBS) of the ventral striatal area has been approved for treatment-refractory obsessive-compulsive disorder (tr-OCD). Many basic issues regarding DBS for tr-OCD are still not understood, in particular, the mechanisms of action and the origin of side effects. We measured prepulse inhibition (PPI) in treatment-refractory OCD patients undergoing DBS of the nucleus accumbens (NAcc) and matched controls. As PPI has been used in animal DBS studies, it is highly suitable for translational research. Eight patients receiving DBS, eight patients with pharmacological treatment and eight age-matched healthy controls participated in our study. PPI was measured twice in the DBS group: one session with the stimulator switched on and one session with the stimulator switched off. OCD patients in the pharmacologic group took part in a single session. Controls were tested twice, to ensure stability of data. Statistical analysis revealed significant differences between controls and (1) patients with pharmacological treatment and (2) OCD DBS patients when the stimulation was switched off. Switching the stimulator on led to an increase in PPI at a stimulus-onset asynchrony of 200 ms. There was no significant difference in PPI between OCD patients being stimulated and the control group. This study shows that NAcc-DBS leads to an increase in PPI in tr-OCD patients towards a level seen in healthy controls. Assuming that PPI impairments partially reflect the neurobiological substrates of OCD, our results show that DBS of the NAcc may improve sensorimotor gating via correction of dysfunctional neural substrates. Bearing in mind that PPI is based on a complex and multilayered network, our data confirm that DBS most likely takes effect via network modulation. PMID:26556284

  9. Etanercept Attenuates Traumatic Brain Injury in Rats by Reducing Brain TNF-α Contents and by Stimulating Newly Formed Neurogenesis

    OpenAIRE

    Chong-Un Cheong; Ching-Ping Chang; Chien-Ming Chao; Bor-Chih Cheng; Chung-Zhing Yang; Chung-Ching Chio

    2013-01-01

    It remains unclear whether etanercept penetrates directly into the contused brain and improves the outcomes of TBI by attenuating brain contents of TNF- α and/or stimulating newly formed neurogenesis. Rats that sustained TBI are immediately treated with etanercept. Acute neurological and motor injury is assessed in all rats the day prior to and 7 days after surgery. The numbers of the colocalizations of 5-bromodeoxyuridine and doublecortin specific markers in the contused brain injury that oc...

  10. OPTIMAL REPRESENTATION OF MER SIGNALS APPLIED TO THE IDENTIFICATION OF BRAIN STRUCTURES DURING DEEP BRAIN STIMULATION

    Directory of Open Access Journals (Sweden)

    Hernán Darío Vargas Cardona

    2015-07-01

    Full Text Available Identification of brain signals from microelectrode recordings (MER is a key procedure during deep brain stimulation (DBS applied in Parkinson’s disease patients. The main purpose of this research work is to identify with high accuracy a brain structure called subthalamic nucleus (STN, since it is the target structure where the DBS achieves the best therapeutic results. To do this, we present an approach for optimal representation of MER signals through method of frames. We obtain coefficients that minimize the Euclidean norm of order two. From optimal coefficients, we extract some features from signals combining the wavelet packet and cosine dictionaries. For a comparison frame with the state of the art, we also process the signals using the discrete wavelet transform (DWT with several mother functions. We validate the proposed methodology in a real data base. We employ simple supervised machine learning algorithms, as the K-Nearest Neighbors classifier (K-NN, a linear Bayesian classifier (LDC and a quadratic Bayesian classifier (QDC. Classification results obtained with the proposed method improves significantly the performance of the DWT. We achieve a positive identification of the STN superior to 97,6%. Identification outcomes achieved by the MOF are highly accurate, as we can potentially get a false positive rate of less than 2% during the DBS.

  11. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions

    Directory of Open Access Journals (Sweden)

    Alexander Opitz

    2014-01-01

    Full Text Available The spatial extent of transcranial magnetic stimulation (TMS is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES is a local brain stimulation method generally considered the gold standard to map structure–function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP mapping experiment for both TMS and DES with realistic individual finite element method (FEM simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  12. [Non-invasive brain stimulation in neurology : Transcranial direct current stimulation to enhance cognitive functioning].

    Science.gov (United States)

    Antonenko, D; Flöel, A

    2016-08-01

    Transcranial direct current stimulation (tDCS) has been successfully used in neuroscientific research to modulate cognitive functions. Recent studies suggested that improvement of behavioral performance is associated with tDCS-induced modulation of neuronal activity and connectivity. Thus, tDCS may also represent a promising tool for reconstitution of cognitive functions in the context of memory decline related to Alzheimer's disease or aphasia following stroke; however, evidence from randomized sham-controlled clinical trials is still scarce. Initial results of tDCS-induced behavioral improvement in patients with Alzheimer's dementia and its precursors indicated that an intense memory training combined with tDCS may be effective. Early interventions in the stage of mild cognitive impairment could be crucial but further evidence is needed to substantiate this. In patients with aphasia following stroke tDCS was applied to the left and right hemispheres, with varying results depending on the severity of the symptoms and polarity of the stimulation. Patients with mild aphasia can benefit from tDCS of the language dominant hemisphere while in patients with severe aphasia tDCS of right hemispheric homologous brain language areas may be particularly relevant. Moreover, recent studies suggested that an intervention in the subacute phase of aphasia could be most promising. In summary, tDCS could provide the exciting possibility to reconstitute cognitive functions in patients with neurological disorders. Future studies have to elucidate whether tDCS can be used in the clinical routine to prevent further cognitive decline in neurodegenerative diseases and whether beneficial effects from experimental studies translate into long-term improvement in activities of daily life. PMID:27167887

  13. Deep brain stimulation or thalamotomy in fragile X-associated tremor/ataxia syndrome? Case report.

    Science.gov (United States)

    Tamás, Gertrúd; Kovács, Norbert; Varga, Noémi Ágnes; Barsi, Péter; Erőss, Loránd; Molnár, Mária Judit; Balás, István

    2016-01-01

    We present the case of a 66-year-old man who has been treated for essential tremor since the age of 58. He developed mild cerebellar gait ataxia seven years after tremor onset. Moderate, global brain atrophy was identified on MRI scans. At the age of 68, only temporary tremor relief could be achieved by bilateral deep brain stimulation of the ventral intermedius nucleus of the thalamus. Bilateral stimulation of the subthalamic nucleus also resulted only in transient improvement. In the meantime, progressive gait ataxia and tetraataxia developed accompanied by other cerebellar symptoms, such as nystagmus and scanning speech. These correlated with progressive development of bilateral symmetric hyperintensity of the middle cerebellar peduncles on T2 weighted MRI scans. Genetic testing revealed premutation of the FMR1 gene, establishing the diagnosis of fragile X-associated tremor/ataxia syndrome. Although this is a rare disorder, it should be taken into consideration during preoperative evaluation of essential tremor. Postural tremor ceased two years later after thalamotomy on the left side, while kinetic tremor of the right hand also improved. PMID:27375149

  14. Is deep brain stimulation a treatment option for anorexia nervosa?

    Science.gov (United States)

    Oudijn, Marloes S; Storosum, Jitschak G; Nelis, Elise; Denys, Damiaan

    2013-01-01

    Anorexia nervosa (AN) is a severe psychiatric disorder with high rates of morbidity, comorbidity and mortality, which in a subset of patients (21%) takes on a chronic course. Since an evidence based treatment for AN is scarce, it is crucial to investigate new treatment options, preferably focused on influencing the underlying neurobiological mechanisms of AN. The objective of the present paper was to review the evidence for possible neurobiological correlates of AN, and to hypothesize about potential targets for Deep brain stimulation (DBS) as a treatment for chronic, therapy-refractory AN. One avenue for exploring new treatment options based on the neurobiological correlates of AN, is the search for symptomatologic and neurobiologic parallels between AN and other compulsivity- or reward-related disorders. As in other compulsive disorders, the fronto-striatal circuitry, in particular the insula, the ventral striatum (VS) and the prefrontal, orbitofrontal, temporal, parietal and anterior cingulate cortices, are likely to be implicated in the neuropathogenesis of AN. In this paper we will review the few available cases in which DBS has been performed in patients with AN (either as primary diagnosis or as comorbid condition). Given the overlap in symptomatology and neurocircuitry between reward-related disorders such as obsessive compulsive disorder (OCD) and AN, and the established efficacy of accumbal DBS in OCD, we hypothesize that DBS of the nucleus accumbens (NAc) and other areas associated with reward, e.g. the anterior cingulated cortex (ACC), might be an effective treatment for patients with chronic, treatment refractory AN, providing not only weight restoration, but also significant and sustained improvement in AN core symptoms and associated comorbidities and complications. Possible targets for DBS in AN are the ACC, the ventral anterior limb of the capsula interna (vALIC) and the VS. We suggest conducting larger efficacy studies that also explore the

  15. Delayed awakening in dystonia patients undergoing deep brain stimulation surgery.

    Science.gov (United States)

    Trombetta, Carlos; Deogaonkar, Anupa; Deogaonkar, Milind; Ebrahim, Zeyd; Rezai, Ali; Machado, Andre; Farag, Ehab

    2010-07-01

    We aimed to identify the incidence, duration and causes of delayed emergence from anesthesia in patients with dystonia undergoing surgery for deep brain stimulation (DBS) placement. A retrospective review of patients with dystonia who underwent DBS placement was conducted and the following characteristics were noted: age, gender, comorbid conditions, American Society of Anesthesiologists classification, anesthetic agents used, amount of initial dose, amount of infusion dose, duration of the infusion and the time needed for emergence. Twenty-four patients underwent 33 DBS procedures for dystonia. Propofol was administered to 21 patients, in 29 of the 33 procedures. Dexmedetomidine was administered to three patients, in four procedures. The average propofol loading dose was 0.7mg/kg, and the infusion rate was 80microg/kg per minute (min), for an average duration of 89min. The average time of emergence was 36min. Only 31% of patients emerged from propofol anesthesia during the expected time frame, 69% of patients had some degree of delayed emergence, and 24% had a significant delay in emergence. Delayed emergence was more common in younger patients due to the higher loading doses these patients received. This study shows a 69% incidence of delayed emergence in dystonia patients undergoing DBS surgery. It also suggests an association between delayed emergence and younger patients who receive higher loading doses. A possible cause of delayed emergence is excessive anesthetic potentiation of the low output pallidal state in dystonia which may depress the pallido-thalamo-cortical circuitry. Delayed emergence could also result from depression of the previously affected ventral pallidal inputs to the septo-hippocampal system that mediates general anesthesia and awareness. Complex neurotransmitter disturbances may also be involved. PMID:20466547

  16. Neuroprotective effects of vagus nerve stimulation on traumatic brain injur y

    Institute of Scientific and Technical Information of China (English)

    Long Zhou; Jinhuang Lin; Junming Lin; Guoju Kui; Jianhua Zhang; Yigang Yu

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of trau-matic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain ex-plosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1βand interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-αand interleukin-1βconcentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1βand interleukin-10 in the serum and brain tissue.

  17. Conditioning of brain stimulation-induced presleep behavior.

    Science.gov (United States)

    Wyrwicka, W; Chase, M H

    1994-11-01

    Experiments were conducted on three chronic unanesthetized, undrugged cats. Electrical stimulation of the basal forebrain area (BFA) resulted in presleep behavior (i.e., the cats would sit or lie down, and EEG spindles would arise). After several sessions (conducted twice a week), two of these cats began to exhibit presleep behavior almost immediately after entering the experimental compartment, even before the application of BFA stimulation. The third cat often ate some food (which was always present in the compartment) before showing presleep behavior. When stimulation was withheld during an extinction procedure, the cats still exhibited presleep behavior in the absence of stimulation during several sessions. We conclude that repeated BFA stimulation led to conditioning of the stimulation effects, that is, the presleep behavior that was evoked by the environmental situation alone, without BFA stimulation or any other intermittent stimulus. PMID:7824587

  18. Swallowing and deep brain stimulation in Parkinson's disease: a systematic review.

    Science.gov (United States)

    Troche, Michelle S; Brandimore, Alexandra E; Foote, Kelly D; Okun, Michael S

    2013-09-01

    The purpose of this review is to assess the current state of the literature on the topic of deep brain stimulation (DBS) and its effects on swallowing function in Parkinson's disease (PD). Pubmed, Cochrane review, and web of science searches were completed on all articles addressing DBS that contained a swallowing outcome measure. Outcome measures included the penetration/aspiration scale, pharyngeal transit time, oropharyngeal residue, drooling, aspiration pneumonia, death, hyolaryngeal excursion, epiglottic inversion, UPDRS scores, and presence of coughing/throat clearing during meals. The search identified 13 studies specifically addressing the effects of DBS on swallowing. Critical assessment of the 13 identified peer-reviewed publications revealed nine studies employing an experimental design, (e.g. "on" vs. "off", pre- vs. post-DBS) and four case reports. None of the nine experimental studies were found to identify clinically significant improvement or decline in swallowing function with DBS. Despite these findings, several common threads were identified across experimental studies and will be examined in this review. Additionally, available data demonstrate that, although subthalamic nucleus (STN) stimulation has been considered to cause more impairment to swallowing function than globus pallidus internus (GPi) stimulation, there are no experimental studies directly comparing swallowing function in STN vs. GPi. Moreover, there has been no comparison of unilateral vs. bilateral DBS surgery and the coincident effects on swallowing function. This review includes a critical analysis of all experimental studies and discusses methodological issues that should be addressed in future studies. PMID:23726461

  19. Electrical Stimulation of the Suprahyoid Muscles in Brain-injured Patients with Dysphagia: A Pilot Study

    OpenAIRE

    Beom, Jaewon; Kim, Sang Jun; Han, Tai Ryoon

    2011-01-01

    Objective To investigate the therapeutic effects of repetitive electrical stimulation of the suprahyoid muscles in brain-injured patients with dysphagia. Method Twenty-eight brain-injured patients who showed reduced laryngeal elevation and supraglottic penetration or subglottic aspiration during a videofluoroscopic swallowing study (VFSS) were selected. The patients received either conventional dysphagia management (CDM) or CDM with repetitive electrical stimulation of the suprahyoid muscles ...

  20. Unilateral neuromodulation of the ventromedial hypothalamus of the rat through deep brain stimulation

    Science.gov (United States)

    Lehmkuhle, M. J.; Mayes, S. M.; Kipke, D. R.

    2010-06-01

    This study offers evidence that long-term deep brain stimulation of the ventromedial hypothalamus (VMH) can alter weight gain in mammals without affecting feeding behavior. Animals stimulated unilaterally at high frequencies of 150 or 500 Hz demonstrated increased CO2 production that decreased from prestimulation levels after the stimulation was removed. Animals stimulated for up to 6 weeks gained weight at a lower rate than normal animals or animals implanted with an electrode but not stimulated. Stimulated animals exhibited normal food and water consumption. A significant decrease in efficiency was observed during stimulation that coincided with an increase in the amount of feces produced. Whereas the weight of control animals was significantly different from week to week, the weight of stimulated animals did not change accordingly. These data suggest that the VMH may be a viable target for long-term deep brain stimulation for modulation of the neural mechanisms of metabolism. The potential therapeutic effects of deep brain stimulation of the hypothalamus are discussed.

  1. [Interest of EEG recording during direct electrical stimulation for brain mapping function in surgery].

    Science.gov (United States)

    Trebuchon, A; Guye, M; Tcherniack, V; Tramoni, E; Bruder, N; Metellus, P

    2012-06-01

    Brain tumor surgery is at risk when lesions are located in eloquent areas. The interindividual anatomo-functional variability of the central nervous system implies that brain surgery within eloquent regions may induce neurological sequelae. Brain mapping using intraoperative direct electrical stimulation in awake patients has been for long validated as the standard for functional brain mapping. Direct electrical stimulation inducing a local transient electrical and functional disorganization is considered positive if the task performed by the patient is disturbed. The brain area stimulated is then considered as essential for the function tested. However, the exactitude of the information provided by this technique is cautious because the actual impact of cortical direct electrical stimulation is not known. Indeed, the possibility of false negative (insufficient intensity of the stimulation due to the heterogeneity of excitability threshold of different cortical areas) or false positive (current spread, interregional signal propagation responsible for remote effects, which make difficult the interpretation of positive or negative behavioural effects) constitute a limitation of this technique. To improve the sensitivity and specificity of this technique, we used an electrocorticographic recording system allowing a real time visualization of the local. We provide here evidence that direct cortical stimulation combined with electrocorticographic recording could be useful to detect remote after discharge and to adjust stimulation parameters. In addition this technique offers new perspective to better assess connectivity of cerebral networks. PMID:22683402

  2. Psychiatric and Cognitive Effects of Deep Brain Stimulation for Parkinson's Disease.

    Science.gov (United States)

    Nassery, Adam; Palmese, Christina A; Sarva, Harini; Groves, Mark; Miravite, Joan; Kopell, Brian Harris

    2016-10-01

    Deep brain stimulation (DBS) is effective for Parkinson's disease (PD), dystonia, and essential tremor (ET). While motor benefits are well documented, cognitive and psychiatric side effects from the subthalamic nucleus (STN) and globus pallidus interna (GPi) DBS for PD are increasingly recognized. Underlying disease, medications, microlesions, and post-surgical stimulation likely all contribute to non-motor symptoms (NMS). PMID:27539167

  3. The Effect of Deep Brain Stimulation on the Speech Motor System

    Science.gov (United States)

    Mücke, Doris; Becker, Johannes; Barbe, Michael T.; Meister, Ingo; Liebhart, Lena; Roettger, Timo B.; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-01-01

    Purpose: Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the…

  4. Rebound of affective symptoms following acute cessation of deep brain stimulation in obsessive-compulsive disorder

    NARCIS (Netherlands)

    Ooms, Pieter; Blankers, Matthijs; Figee, Martijn; Mantione, Mariska; van den Munckhof, Pepijn; Schuurman, P Richard; Denys, D.

    2014-01-01

    BACKGROUND: Deep brain stimulation (DBS) is regarded as an effective way to treat refractory obsessive-compulsive disorder (OCD). Little is known about the effects of DBS cessation following a longer period of stimulation. OBJECTIVE: To determine the relapse and rebound effects of psychiatric sympto

  5. No impact of deep brain stimulation on fear–potentiated startle in obsessive-compulsive disorder

    NARCIS (Netherlands)

    Baas, Johanna M P; Klumpers, Floris; Mantione, Mariska H.; Figee, Martijn; Vulink, Nienke C.; Richard Schuurman, P.; Mazaheri, Ali; Denys, Damiaan

    2014-01-01

    Deep brain stimulation (DBS) of the ventral internal capsule is effective in treating therapy refractory obsessive-compulsive disorder (OCD). Given the close proximity of the stimulation site to the stria terminalis (BNST), we hypothesized that the striking decrease in anxiety symptoms following DBS

  6. No impact of deep brain stimulation on fear-potentiated startle in obsessive-compulsive disorder

    NARCIS (Netherlands)

    Baas, Johanna M P; Klumpers, Floris; Mantione, Mariska H; Figee, Martijn; Vulink, Nienke C; Schuurman, P Richard; Mazaheri, Ali; Denys, D.

    2014-01-01

    Deep brain stimulation (DBS) of the ventral internal capsule is effective in treating therapy refractory obsessive-compulsive disorder (OCD). Given the close proximity of the stimulation site to the stria terminalis (BNST), we hypothesized that the striking decrease in anxiety symptoms following DBS

  7. A randomized double-blind crossover trial comparing subthalamic and pallidal deep brain stimulation for dystonia

    DEFF Research Database (Denmark)

    Schjerling, Lisbeth; Hjermind, Lena E; Jespersen, Bo;

    2013-01-01

    Object The authors' aim was to compare the subthalamic nucleus (STN) with the globus pallidus internus (GPi) as a stimulation target for deep brain stimulation (DBS) for medically refractory dystonia. Methods In a prospective double-blind crossover study, electrodes were bilaterally implanted in ...

  8. Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array.

    Science.gov (United States)

    Xiao, YiZi; Peña, Edgar; Johnson, Matthew D

    2016-02-01

    Programming deep brain stimulation (DBS) systems currently involves a clinician manually sweeping through a range of stimulus parameter settings to identify the setting that delivers the most robust therapy for a patient. With the advent of DBS arrays with a higher number and density of electrodes, this trial and error process becomes unmanageable in a clinical setting. This study developed a computationally efficient, model-based algorithm to estimate an electrode configuration that will most strongly activate tissue within a volume of interest. The cerebellar-receiving area of motor thalamus, the target for treating essential tremor with DBS, was rendered from imaging data and discretized into grid points aligned in approximate afferent and efferent axonal pathway orientations. A finite-element model (FEM) was constructed to simulate the volumetric tissue voltage during DBS. We leveraged the principle of voltage superposition to formulate a convex optimization-based approach to maximize activating function (AF) values at each grid point (via three different criteria), hence increasing the overall probability of action potential initiation and neuronal entrainment within the target volume. For both efferent and afferent pathways, this approach achieved global optima within several seconds. The optimal electrode configuration and resulting AF values differed across each optimization criteria and between axonal orientations. This approach only required a set of FEM simulations equal to the number of DBS array electrodes, and could readily accommodate anisotropic-inhomogeneous tissue conductances or other axonal orientations. The algorithm provides an efficient, flexible determination of optimal electrode configurations for programming DBS arrays. PMID:26208259

  9. Non-invasive brain stimulation in neglect rehabilitation: An update.

    Directory of Open Access Journals (Sweden)

    René Martin Müri

    2013-06-01

    The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients.

  10. The challenge of crafting policy for do-it-yourself brain stimulation

    OpenAIRE

    Fitz, Nicholas S; Reiner, Peter B

    2013-01-01

    Transcranial direct current stimulation (tDCS), a simple means of brain stimulation, possesses a trifecta of appealing features: it is relatively safe, relatively inexpensive and relatively effective. It is also relatively easy to obtain a device and the do-it-yourself (DIY) community has become galvanised by reports that tDCS can be used as an all-purpose cognitive enhancer. We provide practical recommendations designed to guide balanced discourse, propagate norms of safe use and stimulate d...

  11. Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation

    OpenAIRE

    Katharine A Dunlop; Blake eWoodside; Jonathan eDownar

    2016-01-01

    The term eating disorders (ED) encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS). NIBS, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are accessible forms of neuromodulation that alter...

  12. Targeting Neural Endophenotypes of Eating Disorders with Non-invasive Brain Stimulation

    OpenAIRE

    Katharine A Dunlop; Woodside, Blake; Downar, Jonathan

    2016-01-01

    The term “eating disorders” (ED) encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS). NIBS, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), are accessible forms of neuromodulation that al...

  13. Restoring Cognitive Functions Using Non-Invasive Brain Stimulation Techniques in Patients with Cerebellar Disorders

    OpenAIRE

    RChrisMiall

    2014-01-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebro–cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic...

  14. REACHING TO PROPRIOCEPTIVELY DEFINED TARGETS IN PARKINSON’S DISEASE: EFFECTS OF DEEP BRAIN STIMULATION THERAPY

    OpenAIRE

    Lee, D.; HENRIQUES, D. Y.; Snider, J.; Song, D.; POIZNER, H.

    2013-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) provides a unique window into human brain function since it can reversibly alter the functioning of specific brain circuits. Basal ganglia–cortical circuits are thought to be excessively noisy in patients with Parkinson’s disease (PD), based in part on the lack of specificity of proprioceptive signals in basal ganglia–thalamic–cortical circuits in monkey models of the disease. PD patients are known to have deficits in proprioception,...

  15. Brain Topological Correlates of Motor Performance Changes After Repetitive Transcranial Magnetic Stimulation

    OpenAIRE

    Park, Chang-hyun; Chang, Won Hyuk; Yoo, Woo-Kyoung; Shin, Yong-Il; Kim, Sung Tae; Kim, Yun-Hee

    2014-01-01

    Repetitive transcranial magnetic stimulation (rTMS) influences the brain temporally beyond the stimulation period and spatially beyond the stimulation site. Application of rTMS over the primary motor cortex (M1) has been shown to lead to plastic changes in interregional connectivity over the motor system as well as alterations in motor performance. With a sequential combination of rTMS over the M1 and functional magnetic resonance imaging (fMRI), we sought changes in the topology of brain net...

  16. Anaesthetic management of a patient with deep brain stimulation implant for radical nephrectomy

    Directory of Open Access Journals (Sweden)

    Monica Khetarpal

    2014-01-01

    Full Text Available A 63-year-old man with severe Parkinson′s disease (PD who had been implanted with deep brain stimulators into both sides underwent radical nephrectomy under general anaesthesia with standard monitoring. Deep brain stimulation (DBS is an alternative and effective treatment option for severe and refractory PD and other illnesses such as essential tremor and intractable epilepsy. Anaesthesia in the patients with implanted neurostimulator requires special consideration because of the interaction between neurostimulator and the diathermy. The diathermy can damage the brain tissue at the site of electrode. There are no standard guidelines for the anaesthetic management of a patient with DBS electrode in situ posted for surgery.

  17. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  18. Brain responses to acupuncture stimulation in the prosthetic hand of an amputee patient.

    Science.gov (United States)

    Lee, In-Seon; Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2015-10-01

    This report describes the brain responses to acupuncture in an upper limb amputee patient. A 62-year-old male had previously undergone a lower left arm amputation following an electrical accident. Using functional MRI, we investigated brain responses to acupuncture stimulation in the aforementioned amputee under three conditions: (a) intact hand, (b) prosthetic hand (used by the patient), and (c) fake fabric hand. The patient described greater de qi sensation when he received acupuncture stimulation in his prosthetic hand compared to a fake hand, with both stimulations performed in a similar manner. We found enhanced brain activation in the insula and sensorimotor cortex in response to acupuncture stimulation in the amputee's prosthetic hand, while there was only minimal activation in the visual cortex in response to acupuncture stimulation in a fake hand. The enhanced brain responses to acupuncture stimulation of the patient's prosthetic hand might be derived from cortical reorganisation, as he has been using his prosthetic hand for over 40 years. Our findings suggest the possible use of acupuncture stimulation in a prosthetic hand as an enhanced sensory feedback mechanism, which may represent a new treatment approach for phantom limb pain. PMID:26033865

  19. Optogenetic Tools for Confined Stimulation in Deep Brain Structures.

    Science.gov (United States)

    Castonguay, Alexandre; Thomas, Sébastien; Lesage, Frédéric; Casanova, Christian

    2016-01-01

    Optogenetics has emerged in the past decade as a technique to modulate brain activity with cell-type specificity and with high temporal resolution. Among the challenges associated with this technique is the difficulty to target a spatially restricted neuron population. Indeed, light absorption and scattering in biological tissues make it difficult to illuminate a minute volume, especially in the deep brain, without the use of optical fibers to guide light. This work describes the design and the in vivo application of a side-firing optical fiber adequate for delivering light to specific regions within a brain subcortical structure. PMID:26965129

  20. Toward proton MR spectroscopic imaging of stimulated brain function

    International Nuclear Information System (INIS)

    With the objective of complementing local cerebral metabolic studies of PET, and as a prelude to spectroscopic imaging, the authors have performed the first localized proton spectroscopic study of the stimulated human auditory cortex. Water suppressed localized spectroscopy (voxel size 3cm x 3cm x 3cm enclosing the auditory cortex, Te = 272ms, Tr = 3s) was performed on a 1.5T MRI/MRS system and spectra were acquired during stimulation with a 1kHz tone presented at 2Hz. Measurements were conducted for 30-40 min with a temporal resolution of 3.2 min (64 averages per time block). Results included in this paper from six subjects show a lactate peak which increases during stimulation compared to baseline values. These results suggest an increase in anaerobic glycolysis during stimulation and provide unique and valuable information that should complement glucose metabolism and flood flow studies of PET

  1. Changes in local cerebral glucose utilization during rewarding brain stimulation.

    OpenAIRE

    Esposito, R U; Porrino, L J; Seeger, T F; Crane, A M; Everist, H D; Pert, A

    1984-01-01

    The quantitative 2-deoxy[14C]glucose method was used to determine local cerebral glucose utilization in unrestrained rats responding (lever-press) for rewarding electrical stimulation to area A10 (ventral tegmental area) and in similarly implanted inactive controls. Self-stimulation was associated with significant increases in metabolic activity, highly circumscribed in the ventral tegmental area, that continued rostrally within a rather compact zone of activity through the medial forebrain b...

  2. Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution

    OpenAIRE

    Yousif, Nada; Liu, Xuguang

    2009-01-01

    Deep brain stimulation (DBS) is an increasingly used surgical therapy for a range of neurological disorders involving the long-term electrical stimulation of various regions of the human brain in a disorder-specific manner. Despite being used for the last 20 years, the underlying mechanisms are still not known, and disputed. In particular, when the electrodes are implanted into the human brain, an interface is created with changing biophysical properties which may impact on stimulation. We pr...

  3. Neural plasticity in human brain connectivity: the effects of long term deep brain stimulation of the subthalamic nucleus in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Tim J van Hartevelt

    Full Text Available BACKGROUND: Positive clinical outcomes are now well established for deep brain stimulation, but little is known about the effects of long-term deep brain stimulation on brain structural and functional connectivity. Here, we used the rare opportunity to acquire pre- and postoperative diffusion tensor imaging in a patient undergoing deep brain stimulation in bilateral subthalamic nuclei for Parkinson's Disease. This allowed us to analyse the differences in structural connectivity before and after deep brain stimulation. Further, a computational model of spontaneous brain activity was used to estimate the changes in functional connectivity arising from the specific changes in structural connectivity. RESULTS: We found significant localised structural changes as a result of long-term deep brain stimulation. These changes were found in sensory-motor, prefrontal/limbic, and olfactory brain regions which are known to be affected in Parkinson's Disease. The nature of these changes was an increase of nodal efficiency in most areas and a decrease of nodal efficiency in the precentral sensory-motor area. Importantly, the computational model clearly shows the impact of deep brain stimulation-induced structural alterations on functional brain changes, which is to shift the neural dynamics back towards a healthy regime. The results demonstrate that deep brain stimulation in Parkinson's Disease leads to a topological reorganisation towards healthy bifurcation of the functional networks measured in controls, which suggests a potential neural mechanism for the alleviation of symptoms. CONCLUSIONS: The findings suggest that long-term deep brain stimulation has not only restorative effects on the structural connectivity, but also affects the functional connectivity at a global level. Overall, our results support causal changes in human neural plasticity after long-term deep brain stimulation and may help to identify the underlying mechanisms of deep brain

  4. Postoperative control in deep brain stimulation of the subthalamic region: the contact membership concept

    International Nuclear Information System (INIS)

    In deep brain stimulation, the anatomic positions of electrode contact centers are used as the basis for analysis. We propose a new semi-quantitative approach (contact membership concept) considering patient's individual anatomy, contact size, and extent of involvement of STN and neighboring structures. In ten bilaterally operated and improved Parkinsonian patients, effective contact positions (contacts used for monopolar stimulation) were analyzed. The position of the contact center (classical binary approach: each center assigned, 1, or not, 0, to a given structure) and of the contact in its dimension (contact membership concept: membership degree, ordinal values from 0 to 1, assigned to each anatomic structure according to extent of involvement) were compared for the whole patient group and, individually, for each patient. The membership concept revealed that for 13 out of 20 contacts, more than one structure was involved, where the classical binary approach assigned only one structure. For both approaches lateral STN, zona incerta and H1 (Forel's Field) were the main structures involved, but their frequencies of appearance differed. The membership concept allows detailed analysis of the anatomic contact position. In the future this approach could assist in correlating anatomy and clinical results for all electrode contacts (effective ones and clinically less efficient ones). (orig.)

  5. Astroglial Control of the Antidepressant-Like Effects of Prefrontal Cortex Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    A. Etiévant

    2015-08-01

    Full Text Available Although deep brain stimulation (DBS shows promising efficacy as a therapy for intractable depression, the neurobiological bases underlying its therapeutic action remain largely unknown. The present study was aimed at characterizing the effects of infralimbic prefrontal cortex (IL-PFC DBS on several pre-clinical markers of the antidepressant-like response and at investigating putative non-neuronal mechanism underlying DBS action. We found that DBS induced an antidepressant-like response that was prevented by IL-PFC neuronal lesion and by adenosine A1 receptor antagonists including caffeine. Moreover, high frequency DBS induced a rapid increase of hippocampal mitosis and reversed the effects of stress on hippocampal synaptic metaplasticity. In addition, DBS increased spontaneous IL-PFC low-frequency oscillations and both raphe 5-HT firing activity and synaptogenesis. Unambiguously, a local glial lesion counteracted all these neurobiological effects of DBS. Further in vivo electrophysiological results revealed that this astrocytic modulation of DBS involved adenosine A1 receptors and K+ buffering system. Finally, a glial lesion within the site of stimulation failed to counteract the beneficial effects of low frequency (30 Hz DBS. It is proposed that an unaltered neuronal–glial system constitutes a major prerequisite to optimize antidepressant DBS efficacy. It is also suggested that decreasing frequency could heighten antidepressant response of partial responders.

  6. Malignant neuroleptic syndrome following deep brain stimulation surgery: a case report

    Directory of Open Access Journals (Sweden)

    Stavrinou Lampis C

    2011-06-01

    Full Text Available Abstract Background The neuroleptic malignant syndrome is an uncommon but dangerous complication characterized by hyperthermia, autonomic dysfunction, altered mental state, hemodynamic dysregulation, elevated serum creatine kinase, and rigor. It is most often caused by an adverse reaction to anti-psychotic drugs or abrupt discontinuation of neuroleptic or anti-parkinsonian agents. To the best of our knowledge, it has never been reported following the common practice of discontinuation of anti-parkinsonian drugs during the pre-operative preparation for deep brain stimulation surgery for Parkinson's disease. Case presentation We present the first case of neuroleptic malignant syndrome associated with discontinuation of anti-parkinsonian medication prior to deep brain stimulation surgery in a 54-year-old Caucasian man. Conclusion The characteristic neuroleptic malignant syndrome symptoms can be attributed to other, more common causes associated with deep brain stimulation treatment for Parkinson's disease, thus requiring a high index of clinical suspicion to timely establish the correct diagnosis. As more centers become eligible to perform deep brain stimulation, neurologists and neurosurgeons alike should be aware of this potentially fatal complication. Timely activation of the deep brain stimulation system may be important in accelerating the patient's recovery.

  7. Prolonged repeated acupuncture stimulation induces habituation effects in pain-related brain areas: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Chuanfu Li

    Full Text Available Most previous studies of brain responses to acupuncture were designed to investigate the acupuncture instant effect while the cumulative effect that should be more important in clinical practice has seldom been discussed. In this study, the neural basis of the acupuncture cumulative effect was analyzed. For this experiment, forty healthy volunteers were recruited, in which more than 40 minutes of repeated acupuncture stimulation was implemented at acupoint Zhusanli (ST36. Three runs of acupuncture fMRI datasets were acquired, with each run consisting of two blocks of acupuncture stimulation. Besides general linear model (GLM analysis, the cumulative effects of acupuncture were analyzed with analysis of covariance (ANCOVA to find the association between the brain response and the cumulative duration of acupuncture stimulation in each stimulation block. The experimental results showed that the brain response in the initial stage was the strongest although the brain response to acupuncture was time-variant. In particular, the brain areas that were activated in the first block and the brain areas that demonstrated cumulative effects in the course of repeated acupuncture stimulation overlapped in the pain-related areas, including the bilateral middle cingulate cortex, the bilateral paracentral lobule, the SII, and the right thalamus. Furthermore, the cumulative effects demonstrated bimodal characteristics, i.e. the brain response was positive at the beginning, and became negative at the end. It was suggested that the cumulative effect of repeated acupuncture stimulation was consistent with the characteristic of habituation effects. This finding may explain the neurophysiologic mechanism underlying acupuncture analgesia.

  8. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI

    Science.gov (United States)

    Peña-Gómez, Cleofé; Sala-Lonch, Roser; Junqué, Carme; Clemente, Immaculada C.; Vidal, Dídac; Bargalló, Núria; Falcón, Carles; Valls-Solé, Josep; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2013-01-01

    Background Brain areas interact mutually to perform particular complex brain functions such as memory or language. Furthermore, under resting-state conditions several spatial patterns have been identified that resemble functional systems involved in cognitive functions. Among these, the default-mode network (DMN), which is consistently deactivated during task periods and is related to a variety of cognitive functions, has attracted most attention. In addition, in resting-state conditions some brain areas engaged in focused attention (such as the anticorrelated network, AN) show a strong negative correlation with DMN; as task demand increases, AN activity rises, and DMN activity falls. Objective We combined transcranial direct current stimulation (tDCS) with functional magnetic resonance imaging (fMRI) to investigate these brain network dynamics. Methods Ten healthy young volunteers underwent four blocks of resting-state fMRI (10-minutes), each of them immediately after 20 minutes of sham or active tDCS (2 mA), on two different days. On the first day the anodal electrode was placed over the left dorsolateral prefrontal cortex (DLPFC) (part of the AN) with the cathode over the contralateral supraorbital area, and on the second day, the electrode arrangement was reversed (anode right-DLPFC, cathode left-supraorbital). Results After active stimulation, functional network connectivity revealed increased synchrony within the AN components and reduced synchrony in the DMN components. Conclusions Our study reveals a reconfiguration of intrinsic brain activity networks after active tDCS. These effects may help to explain earlier reports of improvements in cognitive functions after anodal-tDCS, where increasing cortical excitability may have facilitated reconfiguration of functional brain networks to address upcoming cognitive demands. PMID:21962981

  9. Phasic Burst Stimulation: A Closed-Loop Approach to Tuning Deep Brain Stimulation Parameters for Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Abbey B Holt

    2016-07-01

    Full Text Available We propose a novel, closed-loop approach to tuning deep brain stimulation (DBS for Parkinson's disease (PD. The approach, termed Phasic Burst Stimulation (PhaBS, applies a burst of stimulus pulses over a range of phases predicted to disrupt pathological oscillations seen in PD. Stimulation parameters are optimized based on phase response curves (PRCs, which would be measured from each patient. This approach is tested in a computational model of PD with an emergent population oscillation. We show that the stimulus phase can be optimized using the PRC, and that PhaBS is more effective at suppressing the pathological oscillation than a single phasic stimulus pulse. PhaBS provides a closed-loop approach to DBS that can be optimized for each patient.

  10. Phasic Burst Stimulation: A Closed-Loop Approach to Tuning Deep Brain Stimulation Parameters for Parkinson's Disease.

    Science.gov (United States)

    Holt, Abbey B; Wilson, Dan; Shinn, Max; Moehlis, Jeff; Netoff, Theoden I

    2016-07-01

    We propose a novel, closed-loop approach to tuning deep brain stimulation (DBS) for Parkinson's disease (PD). The approach, termed Phasic Burst Stimulation (PhaBS), applies a burst of stimulus pulses over a range of phases predicted to disrupt pathological oscillations seen in PD. Stimulation parameters are optimized based on phase response curves (PRCs), which would be measured from each patient. This approach is tested in a computational model of PD with an emergent population oscillation. We show that the stimulus phase can be optimized using the PRC, and that PhaBS is more effective at suppressing the pathological oscillation than a single phasic stimulus pulse. PhaBS provides a closed-loop approach to DBS that can be optimized for each patient. PMID:27415832

  11. Phasic Burst Stimulation: A Closed-Loop Approach to Tuning Deep Brain Stimulation Parameters for Parkinson’s Disease

    Science.gov (United States)

    Holt, Abbey B.; Wilson, Dan; Moehlis, Jeff; Netoff, Theoden I.

    2016-01-01

    We propose a novel, closed-loop approach to tuning deep brain stimulation (DBS) for Parkinson’s disease (PD). The approach, termed Phasic Burst Stimulation (PhaBS), applies a burst of stimulus pulses over a range of phases predicted to disrupt pathological oscillations seen in PD. Stimulation parameters are optimized based on phase response curves (PRCs), which would be measured from each patient. This approach is tested in a computational model of PD with an emergent population oscillation. We show that the stimulus phase can be optimized using the PRC, and that PhaBS is more effective at suppressing the pathological oscillation than a single phasic stimulus pulse. PhaBS provides a closed-loop approach to DBS that can be optimized for each patient. PMID:27415832

  12. Differential responsiveness of the right parahippocampal region to electrical stimulation in fixed human brains: Implications for historical surgical stimulation studies?

    Science.gov (United States)

    Rouleau, Nicolas; Persinger, Michael A

    2016-07-01

    If structure dictates function within the living human brain, then the persistence of specific responses to weak electric currents in fixed, deceased brains could reflect "hardwired" properties. Different key structures from the left and right hemispheres of brains that had been fixed for over 20years with ethanol-formalin-acetic acid were stimulated with either 1-Hz, 7-Hz, 10-Hz, 20-Hz, or 30-Hz, sine-wave, square-wave, or pulsed currents while needle-recorded quantitative electroencephalographic responses were obtained. Differential responses occurred only within the right hippocampus and parahippocampal gyrus. The right hippocampus displayed frequency-independent increases in gamma power relative to the left hemispheric homologue. The parahippocampal region responded exclusively to 7-Hz pulsed currents with wideband (8-30Hz) power. These profiles are consistent with dynamic connections associated with memory and consciousness and may partially explain the interactions resultant of pulse type and hemisphere for experiential elicitations during the golden age of surgical stimulations. The results also indicate that there may be an essential "hardwiring" within the human brain that is maintained for decades when it is fixed appropriately. PMID:27208828

  13. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns.

    Science.gov (United States)

    Barascud, Nicolas; Pearce, Marcus T; Griffiths, Timothy D; Friston, Karl J; Chait, Maria

    2016-02-01

    We use behavioral methods, magnetoencephalography, and functional MRI to investigate how human listeners discover temporal patterns and statistical regularities in complex sound sequences. Sensitivity to patterns is fundamental to sensory processing, in particular in the auditory system, because most auditory signals only have meaning as successions over time. Previous evidence suggests that the brain is tuned to the statistics of sensory stimulation. However, the process through which this arises has been elusive. We demonstrate that listeners are remarkably sensitive to the emergence of complex patterns within rapidly evolving sound sequences, performing on par with an ideal observer model. Brain responses reveal online processes of evidence accumulation--dynamic changes in tonic activity precisely correlate with the expected precision or predictability of ongoing auditory input--both in terms of deterministic (first-order) structure and the entropy of random sequences. Source analysis demonstrates an interaction between primary auditory cortex, hippocampus, and inferior frontal gyrus in the process of discovering the regularity within the ongoing sound sequence. The results are consistent with precision based predictive coding accounts of perceptual inference and provide compelling neurophysiological evidence of the brain's capacity to encode high-order temporal structure in sensory signals. PMID:26787854

  14. Deep Brain Stimulation for Obsessive-Compulsive Disorder : A Meta-Analysis of Treatment Outcome and Predictors of Response

    NARCIS (Netherlands)

    Alonso, Pino; Cuadras, Daniel; Gabriëls, Loes; Denys, D.; Goodman, Wayne; Greenberg, Ben D; Jimenez-Ponce, Fiacro; Kuhn, Jens; Lenartz, Doris; Mallet, Luc; Nuttin, Bart; Real, Eva; Segalas, Cinto; Schuurman, Rick; Tezenas du Montcel, Sophie; Menchon, Jose M

    2015-01-01

    BACKGROUND: Deep brain stimulation (DBS) has been proposed as an alternative to ablative neurosurgery for severe treatment-resistant Obsessive-Compulsive Disorder (OCD), although with partially discrepant results probably related to differences in anatomical targetting and stimulation conditions. We

  15. Human brain activation during sexual stimulation of the penis

    NARCIS (Netherlands)

    Georgiadis, [No Value; Holstege, G; Georgiadis, Janniko R.

    2005-01-01

    Penile sensory information is essential for reproduction, but almost nothing is known about how sexually salient inputs from the penis are processed in the brain. We used positron emission tomography to measure regional cerebral blood flow (rCBF) during various stages of male sexual performance. Com

  16. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.

    Science.gov (United States)

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2013-09-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126

  17. The study on a real-time remote monitoring system for Parkinson's disease patients with deep brain stimulators.

    Science.gov (United States)

    Chen, Yue; Hao, Hongwei; Chen, Hao; Tian, Ye; Li, Luming

    2014-01-01

    The Deep Brain Stimulation (DBS) has become a well-accepted treatment for Parkinson's disease patients around the world. However, postoperative care of the stimulators usually puts a heavy burden on the patients' families, especially in China. To solve the problem, this study developed a real-time remote monitoring system for deep brain stimulators. Based on Internet technologies, the system offers remote adjustment service so that in vivo stimulators could be programmed at patients' home by clinic caregivers. We tested the system on an experimental condition and the results have proved that this early exploration of remote monitoring deep brain stimulators was successful. PMID:25570219

  18. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    Science.gov (United States)

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  19. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Harry Chao

    Full Text Available Functional magnetic resonance imaging (fMRI provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1. The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91, and location (overlap ratio from 0.61 to 0.67. The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI.

  20. Effect of Repetitive Transcranial Magnetic Stimulation on Patients with Brain Injury and Dysphagia

    OpenAIRE

    Kim, Leesuk; Chun, Min Ho; Kim, Bo Ryun; Lee, Sook Joung

    2011-01-01

    Objective To investigate the effect of repetitive transcranial magnetic stimulation (rTMS) on recovery of the swallowing function in patients with a brain injury. Method Patients with a brain injury and dysphagia were enrolled. Patients were randomly assigned to sham, and low and high frequency stimulation groups. We performed rTMS at 100% of motor evoked potential (MEP) threshold and a 5 Hz frequency for 10 seconds and then repeated this every minute in the high frequency group. In the low f...

  1. Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson's disease

    International Nuclear Information System (INIS)

    This article deals with technical aspects of intraoperative functional magnetic resonance imaging (fMRI) for monitoring the effect of deep brain stimulation (DBS) in a patient with Parkinson's disease. Under motor activation, therapeutic high-frequency stimulation of the subthalamic nucleus was accompanied by an activation decrease in the contralateral primary sensorimotor cortex and the ipsilateral cerebellum. Furthermore, an activation increase in the contralateral basal ganglia and insula region were detected. These findings demonstrate that fMRI constitutes a promising clinical application for investigating brain activity changes induced by DBS. (orig.)

  2. Invasive and transcranial photoacoustic imaging of the vascular response to brain electrical stimulation

    Science.gov (United States)

    Tsytsarev, Vassiliy; Yao, Junjie; Hu, Song; Li, Li; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2010-02-01

    Advances in the brain functional imaging greatly facilitated the understanding of neurovascular coupling. For monitoring of the microvascular response to the brain electrical stimulation in vivo we used optical-resolution photoacoustic microscopy (OR-PAM) through the cranial openings as well as transcranially. Both types of the vascular response, vasoconstriction and vasodilatation, were clearly observed with good spatial and temporal resolution. Obtained results confirm one of the primary points of the neurovascular coupling theory that blood vessels could present vasoconstriction or vasodilatation in response to electrical stimulation, depending on the balance between inhibition and excitation of the different parts of the elements of the neurovascular coupling system.

  3. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    Science.gov (United States)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  4. A Prospective Pilot Trial for Pallidal Deep Brain Stimulation in Huntington’s Disease

    OpenAIRE

    Wojtecki, Lars; Groiss, Stefan J.; Ferrea, Stefano; Elben, Saskia; Hartmann, Christian J.; Dunnett, Stephen B; Rosser, Anne; Saft, Carsten; Südmeyer, Martin; Ohmann, Christian; Schnitzler, Alfons; Vesper, Jan

    2015-01-01

    Background Movement disorders in Huntington’s disease are often medically refractive. The aim of the trial was assessment of procedure safety of deep brain stimulation, equality of internal- and external-pallidal stimulation and efficacy followed-up for 6 months in a prospective pilot trial. Methods In a controlled double-blind phase six patients (four chorea-dominant, two Westphal-variant) with predominant movement disorder were randomly assigned to either the sequence of 6-week i...

  5. Novel methods and circuits for field shaping in deep brain stimulation

    OpenAIRE

    Valente, V.

    2011-01-01

    Deep Brain Stimulation (DBS) is a clinical tool used to treat various neurological disorders, including tremor, Parkinson’s disease (PD) and dystonia. Today’s routine use of this therapy is a result of the pioneering work of Benabid and colleagues, who assessed the benefits of applying high-frequency stimulation to the ventral intermediate nucleus and reported substantial long-term improvements in PD patients. Clinical applications of DBS, however, have preceded research and le...

  6. The Polarity-Dependent Effects of the Bilateral Brain Stimulation on Working Memory

    OpenAIRE

    Keshvari, Fatemeh; Pouretemad, Hamid-Reza; Ekhtiari, Hamed

    2013-01-01

    Introduction Working memory plays a critical role in cognitive processes which are central to our daily life. Neuroimaging studies have shown that one of the most important areas corresponding to the working memory is the dorsolateral prefrontal cortex (DLFPC). This study was aimed to assess whether bilateral modulation of the DLPFC using a noninvasive brain stimulation, namely transcranial direct current stimulation (tDCS), modifies the working memory function in healthy adults. Methods In a...

  7. Brain Abnormalities in HIV and Stimulant Users: Interventions and Prevention

    OpenAIRE

    Chang, Linda; Shoptaw, Steven; Normand, Jacques

    2013-01-01

    The session, “HIV and other Infectious Diseases,” was chaired by Dr. Jacques Normand, Director of the AIDS Research Program of the U.S. National Institute on Drug Abuse. The two presenters (and their presentation topics) were: Dr. Linda Chang (“Neural Correlates of Cognitive Deficits and Training Effects on Brain Function in HIV-infected Individuals”) and Dr. Steven Shoptaw (“HIV Prevention in Substance Users”).

  8. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive Level

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Bergmann, Til Ole; Herz, Damian Marc;

    2015-01-01

    Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how the...... emerge in the context of rapid automatic responses or in the context of slow deliberate responses. We argue that these complementary modeling approaches facilitate the use of NTBS as a means of dissecting the causal architecture of cognitive systems of the human brain.......Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how these...... approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable...

  9. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    International Nuclear Information System (INIS)

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The κ-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other κ-agonists Dynorphin-A (1-13) amide, and its protected analog D[Ala]2-dynorphin-A (1-13) amide also produced a significant increase in the formation of [3H]-IP's, whereas the μ-selective agonists [D-Ala2-N-Me-Phe4-Gly5-ol]-enkephalin and morphine and the δ-selective agonist [D-Pen2,5]-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the κ-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain κ- but neither μ- nor δ- receptors are coupled to the PI turnover response

  10. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  11. Stimulating brain tissue with bright light alters functional connectivity in brain at the resting state

    OpenAIRE

    Timo Takala; Markku Timonen; Juha Nikkinen; Jukka Remes; Antti Aunio; Ahmed Abou-Elseoud; Juuso Nissilä; Tuomo Starck; Osmo Tervonen; Vesa Kiviniemi

    2012-01-01

    Light is considered to modulate human brain function only via the retinal pathway, a way of thinking that we aimed to challenge in the present study. Literature provides evidence of inherent phototransduction for instance in the rat brain and there are potentially photosensitive opsin proteins like melanopsin and panopsin in the human brain too. In order to investigate a short term response, functional connectivity changes of the brain were studied in the resting state with functional magneti...

  12. Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback

    OpenAIRE

    Van Gompel, Jamie J.; Chang, Su-Youne; Goerss, Stephan J.; Kim, In Yong; Kimble, Christopher; Bennet, Kevin E.; Lee, Kendall H.

    2010-01-01

    Deep brain stimulation (DBS) is effective when there appears to be a distortion in the complex neurochemical circuitry of the brain. Currently, the mechanism of DBS is incompletely understood; however, it has been hypothesized that DBS evokes release of neurochemicals. Well-established chemical detection systems such as microdialysis and mass spectrometry are impractical if one is assessing changes that are happening on a second-to-second time scale or for chronically used implanted recording...

  13. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease

    OpenAIRE

    Oswal, A; Beudel, M; Zrinzo, L; Limousin, P.; Hariz, M; Foltynie, T.; Litvak, V; P Brown

    2016-01-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimula...

  14. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond.

    Science.gov (United States)

    Marin, Marie-France; Camprodon, Joan A; Dougherty, Darin D; Milad, Mohammed R

    2014-04-01

    Conditioned fear acquisition and extinction paradigms have been widely used both in animals and humans to examine the neurobiology of emotional memory. Studies have also shown that patients suffering from posttraumatic stress disorder (PTSD) exhibit deficient extinction recall along with dysfunctional activation of the fear extinction network, including the ventromedial prefrontal cortex, amygdala, and hippocampus. A great deal of overlap exists between this fear extinction network and brain regions associated with symptom severity in PTSD. This suggests that the neural nodes of fear extinction could be targeted to reduce behavioral deficits that may subsequently translate into symptom improvement. In this article, we discuss potential applications of brain stimulation and neuromodulation methods, which, combined with a mechanistic understanding of the neurobiology of fear extinction, could be used to further our understanding of the pathophysiology of anxiety disorders and develop novel therapeutic tools. To this end, we discuss the following stimulation approaches: deep-brain stimulation, vagus nerve stimulation, transcranial direct current stimulation, and transcranial magnetic stimulation. We propose new translational research avenues that, from a systems neuroscience perspective, aim to expand our understanding of circuit dynamics and fear processing toward the practical development of clinical tools, to be used alone or in combination with behavioral therapies. PMID:24634247

  15. Manganese-enhanced MR imaging of brain activation evoked by noxious peripheral electrical stimulation.

    Science.gov (United States)

    Cha, Myeounghoon; Lee, Kyuhong; Lee, Chulhyun; Cho, Jee-Hyun; Cheong, Chaejoon; Sohn, Jin-Hun; Lee, Bae Hwan

    2016-02-01

    As imaging technology develops, magnetic resonance imaging (MRI) has furthered our understanding of brain function by clarifying the anatomical structure and generating functional imaging data related to information processing in pain conditions. Recent studies have reported that manganese (Mn(2+))-enhanced MRI (MEMRI) provides valuable information about the functions of the central nervous system. The aim of this study was to identify specific brain regions activated during noxious electric stimulation using high-resolution MEMRI. Male Sprague Dawley rats were divided into three groups: naïve, sham electrical stimulation, and noxious electric stimulation. Under urethane with α-chloralose mixture anesthesia, a catheter was placed in the external carotid artery to administrate 20% mannitol and manganese chloride (25mM MnCl2). Noxious electric stimulation (2Hz, 10V) was applied to the hind paw with a needle electrode. Stimulation-induced neuronal activation was detected using 4.7-T MRI. In response to noxious electrical stimulation, remarkable Mn(2+)-enhanced signals were observed in the agranular insular cortex, auditory cortex, primary somatosensory cortex of the hind limb, and granular and dysgranular insular cortex, which correspond to sensory tactile electric stimulus to the hindpaws. These results indicate that the combination of MEMRI with activity-induced Mn(2+)-dependent contrast can delineate functional areas in the rat brain. PMID:26733299

  16. Neurodoping: brain stimulation as a performance-enhancing measure.

    Science.gov (United States)

    Davis, Nick J

    2013-08-01

    Doping may be defined, broadly, as the use of unauthorised means to increase performance in sport. Doping is most commonly associated with the use of drugs. In this paper, I discuss the use of emerging techniques for the modulation of brain activity in healthy people using electric or magnetic fields, and suggest how they might be used to enhance physical and mental performance in sports. I will suggest that neurodoping may have different uses in different sports, and I argue that each sport must determine whether neurodoping should be considered as cheating, or should be considered a legitimate aid to training or performance. PMID:23504390

  17. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson's disease.

    Science.gov (United States)

    Tremblay, Christina; Macoir, Joël; Langlois, Mélanie; Cantin, Léo; Prud'homme, Michel; Monetta, Laura

    2015-02-01

    The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) on different language abilities are still controversial and its impact on high-level language abilities such as metaphor comprehension has been overlooked. The aim of this study was to determine the effects of STN electrical stimulation on metaphor comprehension and language abilities such as lexical and semantic capacities. Eight PD individuals with bilateral STN-DBS were first evaluated OFF-DBS and, at least seven weeks later, ON-DBS. Performance on metaphor comprehension, lexical decision, word association and verbal fluency tasks were compared ON and OFF-DBS in addition to motor symptoms evaluation. STN stimulation had a significant beneficial effect on motor symptoms in PD. However, this stimulation did not have any effect on metaphor comprehension or any other cognitive ability evaluated in this study. These outcomes suggest that STN stimulation may have dissociable effects on motor and language functions. PMID:25577507

  18. Rapid subthalamic nucleus deep brain stimulation lead placement utilising CT/MRI fusion, microelectrode recording and test stimulation

    International Nuclear Information System (INIS)

    Subthalamic nucleus (STN) deep brain stimulation (DBS) has become an established treatment strategy for patients with medically refractory Parkinson's disease (PD). There are however numerous strategies employed for STN lead placement. Variations include method of STN localisation, use of microelectrode recording, number of microelectrode recording passes and time taken for the procedure. We describe a relatively simple and rapid technique of STN lead placement utilising CT/ MRI image fusion, microelectrode recording and test stimulation. The first 58 consecutive patients undergoing STN DBS were assessed pre- and post-operatively. UPDRS scores, medication use and any surgical complication were assessed. Bilateral STN DBS was an efficacious treatment option for medically refractory PD. We have described a technique which can be performed with effect and low morbidity, and in a time which is well tolerated by patients. (author)

  19. [Does Prefrontal Noninvasive Brain Stimulation Alleviating Symptoms in Depression and Schizophrenia Impact Mood and Emotion Processing?].

    Science.gov (United States)

    Psomiades, Marion; Fonteneau, Clara; Suaud-Chagny, Marie-Françoise; Haesebaert, Frédéric; Brunelin, Jérôme

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are noninvasive brain stimulation techniques currently used as therapeutic tools in various psychiatric conditions. Applied over the dorsolateral prefrontal cortex (DLPFC), they showed their efficacy in reducing drug-resistant symptoms in patients with major depression and in patients with schizophrenia with predominantly negative symptoms. The DLPFC is a brain structure involved in the expression of these symptoms as well as in other dysfunctional functions observed in theses conditions such as emotional processes. The goal of this review is to establish whether or not a link exists between clinical improvements and modulation of emotional processes following the stimulation of the DLPFC in both conditions. The data collected show that improved emotional processes is not linked to a clinical improvement neither in patients with depression nor in patients with negative schizophrenia. Our results suggests that although sharing common brain structures, the brain networks involved in both symptoms and in emotional processes would be separate. PMID:27570958

  20. Free-living energy expenditure reduced after deep brain stimulation surgery for Parkinson's disease

    DEFF Research Database (Denmark)

    Jørgensen, Hans Ulrik; Werdelin, Lene; Lokkegaard, Annemette;

    2012-01-01

    with deep brain stimulation in the subthalamic nucleus (STN-DBS) is now considered the gold standard in fluctuating PD. Many patients experience a gain of weight following the surgery. The aim of this study was to identify possible mechanisms, which may contribute to body weight gain in patients with...

  1. Using non-invasive brain stimulation to augment motor training-induced plasticity

    Directory of Open Access Journals (Sweden)

    Pascual-Leone Alvaro

    2009-03-01

    Full Text Available Abstract Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS. These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date.

  2. The Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    OpenAIRE

    P. Justin eRossi; Aysegul eGunduz; Jack eJudy; Linda eWilson; Andre eMachado; James J Giordano; W. Jeff eElias; Alterman, Ron L.; Rossi, Marvin A.; Butson, Christopher L.; Fox, Michael D.; McIntyre, Cameron C.; Nader ePouratian; Swann, Nicole C.; Coralie ede Hemptinne

    2016-01-01

    This review summarizes the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized; these advances were presented at the 3rd Annual Deep Brain Stimulation Think Tank. The Think Tank’s contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and ...

  3. Perturbation and Nonlinear Dynamic Analysis of Acoustic Phonatory Signal in Parkinsonian Patients Receiving Deep Brain Stimulation

    Science.gov (United States)

    Lee, Victoria S.; Zhou, Xiao Ping; Rahn, Douglas A., III; Wang, Emily Q.; Jiang, Jack J.

    2008-01-01

    Nineteen PD patients who received deep brain stimulation (DBS), 10 non-surgical (control) PD patients, and 11 non-pathologic age- and gender-matched subjects performed sustained vowel phonations. The following acoustic measures were obtained on the sustained vowel phonations: correlation dimension (D[subscript 2]), percent jitter, percent shimmer,…

  4. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    Science.gov (United States)

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  5. Cognitive Functioning in Children with Pantothenate-Kinase-Associated Neurodegeneration Undergoing Deep Brain Stimulation

    Science.gov (United States)

    Mahoney, Rachel; Selway, Richard; Lin, Jean-Pierre

    2011-01-01

    Aim: To examine the cognitive functioning of young people with pantothenate-kinase-associated neurodegeneration (PKAN) after pallidal deep brain stimulation (DBS). PKAN is characterized by progressive generalized dystonia and has historically been associated with cognitive decline. With growing evidence that DBS can improve motor function in…

  6. Cognitive effects of deep brain stimulation in patients with obsessive-compulsive disorder

    NARCIS (Netherlands)

    Mantione, Mariska; Nieman, Dorien; Figee, Martijn; van den Munckhof, Pepijn; Schuurman, Rick; Denys, D.

    2015-01-01

    BACKGROUND: Deep brain stimulation (DBS) is a promising treatment for treatment-refractory obsessive-compulsive disorder (OCD). However, the effects of DBS on cognitive functioning remain unclear. Therefore, we aimed to assess cognitive safety of DBS for treatment-refractory OCD and the association

  7. Clinical Outcome and Mechanisms of Deep Brain Stimulation for Obsessive-Compulsive Disorder

    NARCIS (Netherlands)

    van Westen, Maarten; Rietveld, Erik; Figee, Martijn; Denys, D.

    2015-01-01

    Clinical outcome of deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) shows robust effects in terms of a mean Yale-Brown Obsessive-Compulsive Scale (YBOCS) reduction of 47.7 % and a mean response percentage (minimum 35 % YBOCS reduction) of 58.2 %. It appears that most patients re

  8. Deep brain stimulation for obsessive-compulsive disorders : long-term analysis of quality of life

    NARCIS (Netherlands)

    Ooms, Pieter; Mantione, Mariska; Figee, Martijn; Schuurman, P Richard; van den Munckhof, Pepijn; Denys, D.

    2014-01-01

    OBJECTIVE: To evaluate the long-term effects of deep brain stimulation (DBS) on quality of life (QOL) in therapy-refractory obsessive-compulsive disorder (OCD) patients. DESIGN: 16 patients who met Diagnostic and Statistical Manual of Mental Disorders (4th ed) (DSM-IV) criteria for OCD and were cons

  9. Hunger dependence of electrical brain self-stimulation in the pigeon

    OpenAIRE

    Delius, Juan; Pellander, Kirsti

    1982-01-01

    Contrary to recent evidence, further data showing that intracranial self-stimulation behaviour in the pigeon is frequently hunger-dependent is reported. A compilation of reinforcing brain loci in the pigeon suggests an association with two dopaminergic systems, the paleostriatal complex and the nucleus basalis system, the latter being known to be involved in the control of feeding.

  10. Noninvasive brain stimulation can induce paradoxical facilitation . Are these neuroenhancements transferable and meaningful to security services?

    Directory of Open Access Journals (Sweden)

    Shirley Fecteau

    2013-08-01

    Full Text Available For ages, we have been looking for ways to enhance our physical and cognitive capacities in order to augment our security. One potential way to achieve this goal may be to externally stimulate the brain. Methods of noninvasive brain stimulation (NIBS, such as repetitive transcranial magnetic stimulation and transcranial electrical stimulation, have been recently developed to modulate brain activity. Both techniques are relatively safe and can transiently modify motor and cognitive functions outlasting the stimulation period. The purpose of this paper is to review data suggesting that NIBS can enhance motor and cognitive performance in healthy volunteers. We frame these findings in the context of whether they may serve security purposes. Specifically, we review studies reporting that NIBS induces paradoxical facilitation in motor (precision, speed, strength, acceleration endurance, and execution of daily motor task and cognitive functions (attention, impulsive behaviour, risk-taking, working memory, planning, and deceptive capacities. Although transferability and meaningfulness of these NIBS-induced paradoxical facilitations into real life situations are not clear yet, NIBS may contribute at improving training of motor and cognitive functions relevant for military, civil and forensic security services. This is an enthusiastic perspective that also calls for fair and open debates on the ethics of using NIBS in healthy individuals to enhance normal functions.

  11. Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions.

    Science.gov (United States)

    Ryali, Srikanth; Shih, Yen-Yu Ian; Chen, Tianwen; Kochalka, John; Albaugh, Daniel; Fang, Zhongnan; Supekar, Kaustubh; Lee, Jin Hyung; Menon, Vinod

    2016-05-15

    State-space multivariate dynamical systems (MDS) (Ryali et al. 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods are poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort, optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in f

  12. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Hartwigsen, Gesa; Kassuba, Tanja;

    2009-01-01

    cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship......Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse...... in the human brain. This transient neurodisruption has been termed a "virtual lesion". Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that...

  13. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Mariska eMantione

    2014-05-01

    Full Text Available Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens, even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation targeted at the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. This case report substantiates the assumption that the nucleus accumbens is involved in musical preference, based on the observation of direct stimulation of the accumbens with deep brain stimulation. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties.

  14. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    Science.gov (United States)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  15. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain

    Directory of Open Access Journals (Sweden)

    Zhan-chi Zhang

    2015-01-01

    Full Text Available In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers, to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  16. Low-frequency transcranial magnetic stimulation is beneifcial for enhancing synaptic plasticity in the aging brain

    Institute of Scientific and Technical Information of China (English)

    Zhan-chi Zhang; Feng Luan; Chun-yan Xie; Dan-dan Geng; Yan-yong Wang; Jun Ma

    2015-01-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deifcits in learning-im-paired mice. However, the mechanisms by which this treatment improves these deifcits during normal aging are still unknown. Therefore, the current study investigated the effects of tran-scranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, syn-aptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcra-nial magnetic stimulation with low intensity (110%average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippo-campus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this reg-ulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  17. Brain state-dependent closed-loop modulation of paired associative stimulation controlled by sensorimotor desynchronization

    Directory of Open Access Journals (Sweden)

    Vladislav eRoyter

    2016-05-01

    Full Text Available Background: Pairing peripheral electrical stimulation (ES and transcranial magnetic stimulation (TMS increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI-related oscillatory modulation amplifies both ES-related cortical effects -sensorimotor event-related desynchronization (ERD - and TMS-induced peripheral responses - motor-evoked potentials (MEP. However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear.Objective: The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. Method: The paired application of functional electrical stimulation (FES of the extensor digitorum communis (EDC muscle and subsequent single-pulse TMS (110% resting motor threshold of the contralateral primary motor cortex was controlled by beta-band (16-22Hz ERD during motor-imagery of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC of both MEP peak-to-peak amplitude and area under the curve (AUC before and after the intervention. Result: The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain-state dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied.Conclusion: These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation in the context of neurorehabilitation.

  18. Large-Scale Networks in the Human Brain revealed by Functional Connectivity MRI

    OpenAIRE

    Krienen, Fenna Marie

    2013-01-01

    The human brain is composed of distributed networks that connect a disproportionately large neocortex to the brainstem, cerebellum and other subcortical structures. New methods for analyzing non-invasive imaging data have begun to reveal new insights into human brain organization. These methods permit characterization of functional interactions within and across brain networks, and allow us to appreciate points of departure between the human brain and non-human primates.

  19. The mechanisms of action of deep brain stimulation and ideas for the future development.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2015-10-01

    Deep brain stimulation (DBS) has been used as a treatment of movement disorders such as Parkinson's disease, dystonia, and essential tremor for over twenty years, and is a promising treatment for depression and epilepsy. However, the exact mechanisms of action of DBS are still uncertain, although different theories have emerged. This review summarizes the current understanding in this field. Different modalities used to investigate DBS such as electrophysiological, imaging and biochemical studies have revealed different mechanisms of DBS. The mechanisms may also be different depending on the structure targeted, the disease condition or the animal model employed. DBS may inhibit the target neuronal networks but activate the efferent axons. It may suppress pathological rhythms or impose new rhythms associated with beneficial effects, and involves neuronal networks with widespread connections. Different neurotransmitter systems such as dopamine and GABA upregulation are involved in the effects of DBS. There are also technical advances to prolong the battery life and specific targeting based on new electrode designs with multiple contacts which have the ability to steer the current toward a specific direction. There is ongoing work in closed loop or adaptive DBS using neural oscillations to provide the feedback signals. These oscillations need to be better characterized in a wide variety of clinical settings in future studies. Individualization of DBS parameters based on neural oscillations may optimize the clinical benefits of DBS. PMID:26296674

  20. Alteration of political belief by non- invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Caroline eChawke

    2016-01-01

    Full Text Available People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing and reduced affiliation with opposing political candidates. As such, this study used a method of non- invasive brain simulation (tRNS to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant’s initial political orientation and the political campaign advertisement they were exposed to.

  1. Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization

    OpenAIRE

    Lorenz, Romy; Monti, Ricardo Pio; Hampshire, Adam; Koush, Yury; Anagnostopoulos, Christoforos; Faisal, Aldo A.; Sharp, David; Montana, Giovanni; Leech, Robert; Violante, Ines R

    2016-01-01

    Non-invasive brain stimulation, such as transcranial alternating current stimulation (tACS) provides a powerful tool to directly modulate brain oscillations that mediate complex cognitive processes. While the body of evidence about the effect of tACS on behavioral and cognitive performance is constantly growing, those studies fail to address the importance of subject- specific stimulation protocols. With this study here, we set the foundation to combine tACS with a recently presented framewor...

  2. Inter-subject and Inter-session Variability of Plasticity Induction by Non-invasive Brain Stimulation

    DEFF Research Database (Denmark)

    Ziemann, Ulf; Siebner, Hartwig R

    2015-01-01

    Non-invasive brain stimulation (NIBS) protocols such as regular repetitive transcranial magnetic stimulation (rTMS), theta-burst stimulation (TBS), paired associative stimulation (PAS) and transcranial direct current stimulation (tDCS) can change the excitability of the stimulated neuronal network...... in human cortex well beyond the time of stimulation. These aftereffects have been termed long-term potentiation (LTP)-like and long-term depression (LTD)-like plasticity because indirect evidence supported the notion that synaptic strengthening or weakening similar to LTP/D at the cellular level...

  3. Systematic Review of Parameters of Stimulation, Clinical Trial Design Characteristics, and Motor Outcomes in Non-Invasive Brain Stimulation in Stroke

    OpenAIRE

    Simis, Marcel; Adeyemo, Bamidele Oyebamiji; Macea, Debora Duarte; Fregni, Felipe

    2012-01-01

    Introduction/Objectives: Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation are two powerful non-invasive neuromodulatory therapies that have the potential to alter and evaluate the integrity of the corticospinal tract. Moreover, recent evidence has shown that brain stimulation might be beneficial in stroke recovery. Therefore, investigating and investing in innovative therapies that may improve neurorehabilitative stroke recovery are next steps in...

  4. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops.

    Science.gov (United States)

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a "brain in the loop" using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a "brain-state dynamics" loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a "task dynamics" loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  5. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops

    Science.gov (United States)

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a “brain in the loop” using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a “brain-state dynamics” loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a “task dynamics” loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  6. Stimulation of the subthalamic vasodilator area and fastigial nucleus independently protects the brain against focal ischemia.

    Science.gov (United States)

    Glickstein, S B; Ilch, C P; Reis, D J; Golanov, E V

    2001-08-31

    We investigated whether stimulation of the functionally discrete subthalamic region, subthalamic cerebrovasodilator area (SVA), which increases cerebral blood flow (CBF) when excited, would, like stimulation of cerebellar fastigial nucleus (FN), produce central neurogenic neuroprotection. A 1-h electrical stimulation of SVA or FN reduced infarctions triggered by permanent occlusion of middle cerebral artery (MCA) by 48-55% in Sprague-Dawley rats and by 59% in Fisher rats. The salvaging effect of SVA stimulation, similar to FN, was long lasting and reduced the volume of infarctions placed 72 h or 10 days later by 58 and 26%, respectively, in Fisher rats. Bilateral lesioning of FN neurons by the microinjection of ibotenic acid 5 days before SVA stimulation did not affect SVA-evoked neuroprotection. Bilateral lesions of SVA neurons administered 5 days before FN stimulation had no effect on FN-induced neuroprotection but reversed the stimulus-locked increase in CBF accompanying FN stimulation. This study demonstrates that (1) excitation of neurons and/or fibers projecting through the SVA reduces ischemic infarctions as substantially as excitation of FN neurons; (2) the effects are long-lasting and not attributable to increases in cerebral blood flow, changes in blood gases or brain temperature, or rat strain; (3) the neuroprotective effects of SVA and FN stimulation are mutually independent and (4) FN-evoked cerebrovasodilation is mediated by SVA neurons. The SVA and FN are part of a neuronal system in CNS, which is distributed and, when excited, acts to protect the brain from ischemic injury. PMID:11520492

  7. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region

    Science.gov (United States)

    van Dijk, Kees J.; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C.; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2015-08-01

    Objective. The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson’s disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional degrees of freedom in shaping the stimulating electric field. The objective of this study is to compare the performances of a new HD lead with a conventional cylindrical contact (CC) lead. Approach. A computational model, consisting of a finite element electric field model combined with multi-compartment neuron and axon models representing different neural populations in the subthalamic region, was used to evaluate the two leads. We compared ring-mode and steering-mode stimulation with the HD lead to single contact stimulation with the CC lead. These stimulation modes were tested for the lead: (1) positioned in the centroid of the STN, (2) shifted 1 mm towards the internal capsule (IC), and (3) shifted 2 mm towards the IC. Under these conditions, we quantified the number of STN neurons that were activated without activating IC fibers, which are known to cause side-effects. Main results. The modeling results show that the HD lead is able to mimic the stimulation effect of the CC lead. Additionally, in steering-mode stimulation there was a significant increase of activated STN neurons compared to the CC mode. Significance. From the model simulations we conclude that the HD lead in steering-mode with optimized stimulation parameter selection can stimulate more STN cells. Next, the clinical impact of the increased number of activated STN cells should be tested and balanced across the increased complexity of identifying the optimized stimulation parameter settings for the HD lead.

  8. Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

    2012-09-06

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

  9. Midbrain Raphe Stimulation Improves Behavioral and Anatomical Recovery from Fluid-Percussion Brain Injury

    OpenAIRE

    Carballosa Gonzalez, Melissa M.; Blaya, Meghan O.; Alonso, Ofelia F.; Bramlett, Helen M; Hentall, Ian D.

    2013-01-01

    The midbrain median raphe (MR) and dorsal raphe (DR) nuclei were tested for their capacity to regulate recovery from traumatic brain injury (TBI). An implanted, wireless self-powered stimulator delivered intermittent 8-Hz pulse trains for 7 days to the rat's MR or DR, beginning 4–6 h after a moderate parasagittal (right) fluid-percussion injury. MR stimulation was also examined with a higher frequency (24 Hz) or a delayed start (7 days after injury). Controls had sham injuries, inactive stimu...

  10. Study Reveals Brain Biology behind Self-Control

    Science.gov (United States)

    Sparks, Sarah D.

    2011-01-01

    A new neuroscience twist on a classic psychology study offers some clues to what makes one student able to buckle down for hours of homework before a test while his classmates party. The study published in the September 2011 edition of "Proceedings of the National Academy of Science," suggests environmental cues may "hijack" the brain's mechanisms…

  11. What Brain Sciences Reveal about Integrating Theory and Practice

    Science.gov (United States)

    Patton, Michael Quinn

    2014-01-01

    Theory and practice are integrated in the human brain. Situation recognition and response are key to this integration. Scholars of decision making and expertise have found that people with great expertise are more adept at situational recognition and intentional about their decision-making processes. Several interdisciplinary fields of inquiry…

  12. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    OpenAIRE

    Zhen Feng; Ying-jun Zhong; Liang Wang; Tian-qi Wei

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In additio...

  13. Development of implantable optoelectronic module for optical brain tissue stimulation in freely moving mice

    Science.gov (United States)

    Rusakov, Konstantin; Czajkowski, Rafał; Kaźmierczak, Andrzej

    2015-09-01

    The research aims to design and manufacture of wireless optogenetics devices for freely moving animals in cages IntelliCage system. The purpose of the device is to stimulate specific brain regions using light. The constructed device consists of a light source and optical fibre structure responsible for delivering light into the corresponding region of the brain of the animal. The size of the animal (mouse) and the fact that it is freely moving imposes substantial limitations with respect to the size and weight of the optoelectronic device. The present paper describes research on optical fibre structure fabrication, assembling it to the small size (less than 500 × 500 μm2 top surface) LED chip and experimental validation of the optoelectronic stimulator.

  14. Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects

    Directory of Open Access Journals (Sweden)

    Maximo Zimerman

    2010-12-01

    Full Text Available Healthy aging is accompanied by changes in cognitive and motor functions that result in impairment of activities of daily living. This process involves a number of modifications in the brain and is associated with metabolic, structural and physiological changes; some of these serving as adaptive responses to the functional declines. Up to date there are no universally accepted strategies to ameliorate declining functions in this population. An essential basis to develop such strategies is a better understanding of neuroplastic changes during healthy aging. In this context, non-invasive brain stimulation techniques, such as transcranial direct current or transcranial magnetic stimulation, provide an attractive option to modulate cortical neuronal assemblies, even with subsequent changes in neuroplasticity. Thus, in the present review we discuss the use of these techniques as a tool to study underlying cortical mechanisms during healthy aging and as an interventional strategy to enhance declining functions and learning abilities in aged subjects.

  15. Anaesthetic management of shoulder arthroscopic repair in Parkinson′s disease with deep brain stimulator

    Directory of Open Access Journals (Sweden)

    Ranju Gandhi

    2014-01-01

    Full Text Available We describe the anaesthetic management of arthroscopic repair for complete rotator cuff tear of shoulder in a 59-year-old female with Parkinson′s disease (PD with deep brain stimulator (DBS using a combination of general anaesthesia with interscalene approach to brachial plexus block. The DBS consists of implanted electrodes in the brain connected to the implantable pulse generator (IPG normally placed in the anterior chest wall subcutaneously. It can be programmed externally from a hand-held device placed directly over the battery stimulator unit. In our patient, IPG with its leads was located in close vicinity of the operative site with potential for DBS malfunction. Implications of DBS in a patient with PD for shoulder arthroscopy for anaesthesiologist are discussed along with a brief review of DBS.

  16. Feedback-Controlled Transcranial Alternating Current Stimulation Reveals a Functional Role of Sleep Spindles in Motor Memory Consolidation.

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R; Alagapan, Sankaraleengam; Mellin, Juliann M; Vaughn, Bradley V; Fröhlich, Flavio

    2016-08-22

    Transient episodes of brain oscillations are a common feature of both the waking and the sleeping brain. Sleep spindles represent a prominent example of a poorly understood transient brain oscillation that is impaired in disorders such as Alzheimer's disease and schizophrenia. However, the causal role of these bouts of thalamo-cortical oscillations remains unknown. Demonstrating a functional role of sleep spindles in cognitive processes has, so far, been hindered by the lack of a tool to target transient brain oscillations in real time. Here, we show, for the first time, selective enhancement of sleep spindles with non-invasive brain stimulation in humans. We developed a system that detects sleep spindles in real time and applies oscillatory stimulation. Our stimulation selectively enhanced spindle activity as determined by increased sigma activity after transcranial alternating current stimulation (tACS) application. This targeted modulation caused significant enhancement of motor memory consolidation that correlated with the stimulation-induced change in fast spindle activity. Strikingly, we found a similar correlation between motor memory and spindle characteristics during the sham night for the same spindle frequencies and electrode locations. Therefore, our results directly demonstrate a functional relationship between oscillatory spindle activity and cognition. PMID:27476602

  17. Selective Sensation Based Brain-Computer Interface via Mechanical Vibrotactile Stimulation

    OpenAIRE

    Lin Yao; Jianjun Meng; Dingguo Zhang; Xinjun Sheng; Xiangyang Zhu

    2013-01-01

    In this work, mechanical vibrotactile stimulation was applied to subjects' left and right wrist skins with equal intensity, and a selective sensation perception task was performed to achieve two types of selections similar to motor imagery Brain-Computer Interface. The proposed system was based on event-related desynchronization/synchronization (ERD/ERS), which had a correlation with processing of afferent inflow in human somatosensory system, and attentional effect which modulated the ERD/ER...

  18. Management of Deep Brain Stimulator Battery Failure: Battery Estimators, Charge Density, and Importance of Clinical Symptoms

    OpenAIRE

    Fakhar, Kaihan; Hastings, Erin; Butson, Christopher R.; Foote, Kelly D.; Zeilman, Pam; Okun, Michael S.

    2013-01-01

    Objective We aimed in this investigation to study deep brain stimulation (DBS) battery drain with special attention directed toward patient symptoms prior to and following battery replacement. Background Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator). Methods A cohort of 320 patients undergoing DBS battery replacement from 2002–2012 were included in an IRB approved study. Sta...

  19. Modulating affect, cognition and behavior – prospects of deep brain stimulation for treatment resistant psychiatric disorders

    OpenAIRE

    Schlaepfer, Thomas E

    2011-01-01

    Most patients suffering from psychiatric disorders respond to combina-tions of psycho- and psychopharmacotherapy, however there are patients who profit little if anything even after many years of treatment. Since about a decade different modalities of targeted neuromodulation – among them most prominently – Deep Brain Stimulation (DBS) - are being actively researched as putative approaches to very treatment resistant forms of those disorders. Recently, promising pilot data have been re-ported...

  20. Preserving cortico-striatal function: Deep brain stimulation in Huntington's disease

    OpenAIRE

    Nagel, Sean J.; John Thomas Gale; Mayur Pandya

    2015-01-01

    Huntington’s disease (HD) is an incurable neurodegenerative disease characterized by the triad of chorea, cognitive dysfunction and psychiatric disturbances. Since the discovery of the HD gene, the pathogenesis has been outlined, but to date a cure has not been found. Disease modifying therapies are needed desperately to improve function, alleviate suffering, and provide hope for symptomatic patients. Deep brain stimulation (DBS), a proven therapy for managing the symptoms of some neurodegene...

  1. Swallowing function in Parkinson’s patients following Zona Incerta deep brain stimulation

    OpenAIRE

    Sundstedt, Stina; Olofsson, Katarina; van Doorn, Jan; Linder, Jan; Nordh, Erik; Blomstedt, Patric

    2012-01-01

    Objective The purpose of the present study was to examine if there was a negative effect of caudal Zona Incerta deep brain stimulation (cZI DBS) on pharyngeal swallowing function in Parkinson’s patients (PD). There are no former reports on swallowing and cZI DBS. Methods Eight patients (aged 49 to 71 years; median 62) were evaluated pre- and postoperatively, at six and 12 months after DBS surgery. Evaluation tools were Fiberoptic Endoscopic Evaluation of Swallowing examinations and patients’ ...

  2. Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus

    OpenAIRE

    Dirk De Ridder, Elsa van der Loo, Karolien Van der Kelen, Tomas Menovsky, Paul van de Heyning, Aage Moller

    2007-01-01

    Introduction: Some forms of tinnitus are considered to be auditory phantom phenomena related to reorganization and hyperactivity of the auditory central nervous system. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool capable of modulating human brain activity, using single pulse or burst stimuli. Burst rTMS has only been performed in the theta range, and has not been used clinically. The authors analyze whether burst TMS at theta (5 Hz), alpha (10 Hz) and beta (20 H...

  3. The Ethics of Deep Brain Stimulation for the Treatment of Anorexia Nervosa

    OpenAIRE

    Maslen, H; Pugh, J.; Savulescu, J.

    2015-01-01

    There is preliminary evidence, from case reports and investigational studies, to suggest that Deep Brain Stimulation (DBS) could be used to treat some patients with Anorexia Nervosa (AN). Although this research is at an early stage, the invasive nature of the intervention and the vulnerability of the potential patients are such that anticipatory ethical analysis is warranted. In this paper, we first show how different treatment mechanisms raise different philosophical and ethical questions. W...

  4. Management of Deep Brain Stimulator Battery Failure: Battery Estimators, Charge Density, and Importance of Clinical Symptoms

    OpenAIRE

    Kaihan Fakhar; Erin Hastings; Butson, Christopher R.; Foote, Kelly D.; Pam Zeilman; Okun, Michael S.

    2013-01-01

    OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS) battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator). METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. ...

  5. Deep Brain Stimulation and Cognitive Decline in Parkinson’s Disease: A Clinical Review

    OpenAIRE

    JoãoMassano

    2012-01-01

    Parkinson’s disease (PD) is a common and often debilitating disorder, with a growing prevalence accompanying global population aging. Current drug therapy is not satisfactory enough for many patients, especially after a few years of symptom progression. This is mainly due to the motor complications that frequently emerge as disease progresses. Deep brain stimulation (DBS) is a useful therapeutic option in carefully selected patients that significantly improves motor symptoms, functional statu...

  6. Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain.

    Science.gov (United States)

    Naro, Antonino; Milardi, Demetrio; Russo, Margherita; Terranova, Carmen; Rizzo, Vincenzo; Cacciola, Alberto; Marino, Silvia; Calabro, Rocco S; Quartarone, Angelo

    2016-01-01

    Neuromodulatory effects of non-invasive brain stimulation (NIBS) have been extensively studied in chronic pain. A hypothetic mechanism of action would be to prevent or revert the ongoing maladaptive plasticity within the pain matrix. In this review, the authors discuss the mechanisms underlying the development of maladaptive plasticity in patients with chronic pain and the putative mechanisms of NIBS in modulating synaptic plasticity in neuropathic pain conditions. PMID:27512368

  7. Deep Brain Stimulation in Huntington’s Disease—Preliminary Evidence on Pathophysiology, Efficacy and Safety

    Directory of Open Access Journals (Sweden)

    Lars Wojtecki

    2016-08-01

    Full Text Available Huntington’s disease (HD is one of the most disabling degenerative movement disorders, as it not only affects the motor system but also leads to cognitive disabilities and psychiatric symptoms. Deep brain stimulation (DBS of the pallidum is a promising symptomatic treatment targeting the core motor symptom: chorea. This article gives an overview of preliminary evidence on pathophysiology, safety and efficacy of DBS in HD.

  8. Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits

    OpenAIRE

    Bourne, Sarah K.; Eckhardt, Christine A.; Sheth, Sameer A.; Eskandar, Emad N.

    2012-01-01

    Deep brain stimulation (DBS) has emerged as a safe, effective, and reversible treatment for a number of movement disorders. This has prompted investigation of its use for other applications including psychiatric disorders. In recent years, DBS has been introduced for the treatment of obsessive compulsive disorder (OCD), which is characterized by recurrent unwanted thoughts or ideas (obsessions) and repetitive behaviors or mental acts performed in order to relieve these obsessions (compulsions...

  9. Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits

    OpenAIRE

    Sarah Kathleen Bourne; Christine Ann Eckhardt; Sheth, Sameer A.; Eskandar, Emad N.

    2012-01-01

    Deep brain stimulation (DBS) has emerged as a safe, effective, and reversible treatment for a number of movement disorders. This has prompted investigation of its use for other applications including psychiatric disorders. In recent years, DBS has been introduced for the treatment of obsessive-compulsive disorder (OCD), which is characterized by recurrent unwanted thoughts or ideas (obsessions) and repetitive behaviors or mental acts performed in order to relieve these obsessions (compulsions...

  10. Deep brain stimulation (DBS) at the interface of neurology and psychiatry

    OpenAIRE

    Williams, Nolan R.; Okun, Michael S.

    2013-01-01

    Deep brain stimulation (DBS) is an emerging interventional therapy for well-screened patients with specific treatment-resistant neuropsychiatric diseases. Some neuropsychiatric conditions, such as Parkinson disease, have available and reasonable guideline and efficacy data, while other conditions, such as major depressive disorder and Tourette syndrome, have more limited, but promising results. This review summarizes both the efficacy and the neuroanatomical targets for DBS in four common neu...

  11. Deep Brain Stimulation and Dantrolene for Secondary Dystonia in X-Linked Adrenoleukodystrophy

    OpenAIRE

    Van Karnebeek, Clara; Horvath, Gabriella; Murphy, Tyler; Purtzki, Jacqueline; Bowden, Kristin; Sirrs, Sandra; Honey, Christopher R.; Stockler, Sylvia

    2014-01-01

    Deep brain stimulation (DBS) has been used to treat secondary dystonias caused by inborn errors of metabolism with varying degrees of effectiveness. Here we report for the first time the application of DBS as treatment for secondary dystonia in a 22-year-old male with X-linked adrenoleukodystrophy (X-ALD). The disease manifested at age 6 with ADHD, tics, and dystonic gait, and deteriorated to loss of ambulation by age 11, and speech difficulties, seizures, and characteristic adrenal insuffici...

  12. Restoration of grasp following paralysis through brain-controlled stimulation of muscles

    OpenAIRE

    Ethier, C.; Oby, E.R.; Bauman, M.J.; Miller, L.E.

    2012-01-01

    Patients with spinal cord injury lack the connections between brain and spinal cord circuits essential for voluntary movement. Clinical systems that achieve muscle contraction through functional electrical stimulation (FES) have proven to be effective in allowing patients with tetraplegia to regain control of hand movement and to achieve a greater measure of independence in activities of daily living 1,2 . In typical systems, the patient uses residual proximal limb movements to trigger pre-pr...

  13. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms.

    Science.gov (United States)

    Lim, L W; Prickaerts, J; Huguet, G; Kadar, E; Hartung, H; Sharp, T; Temel, Y

    2015-01-01

    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and ventral tegmental area) on a variety of depressive-like behaviors using rat models. In the naive animal study, we found that HFS of the Cg, vmPFC, NAc core and LHb reduced anxiety levels and increased motivation for food. In the chronic unpredictable stress model, there was a robust depressive-like behavioral phenotype. Moreover, vmPFC HFS, in a comparison of all stimulated targets, produced the most profound antidepressant effects with enhanced hedonia, reduced anxiety and decreased forced-swim immobility. In the following set of electrophysiological and histochemical experiments designed to unravel some of the underlying mechanisms, we found that vmPFC HFS evoked a specific modulation of the serotonergic neurons in the dorsal raphe nucleus (DRN), which have long been linked to mood. Finally, using a neuronal mapping approach by means of c-Fos expression, we found that vmPFC HFS modulated a brain circuit linked to the DRN and known to be involved in affect. In conclusion, HFS of the vmPFC produced the most potent antidepressant effects in naive rats and rats subjected to stress by mechanisms also including the DRN. PMID:25826110

  14. Globus Pallidus Interna Deep Brain Stimulation in a Patient with Medically Intractable Meige Syndrome

    Directory of Open Access Journals (Sweden)

    Dae-Woong Bae

    2014-10-01

    Full Text Available Medical therapies in patients with Meige syndrome, including botulinum toxin injection, have been limited because of incomplete response or adverse side effects. We evaluated a patient with Meige syndrome who was successfully treated with deep brain stimulation (DBS in the globus pallidus interna (GPi. This case report and other previous reports suggest that bilateral GPi DBS may be an effective treatment for medically refractory Meige syndrome, without significant adverse effects.

  15. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease

    OpenAIRE

    Mannu P; Rinaldi S; Fontani V; Castagna A

    2011-01-01

    Piero Mannu1, Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyPurpose: Behavioral and psychiatric symptoms of dementia (BPSD) are common in Alzheimer's disease (AD) and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC) i...

  16. Analysis of electrodes' placement and deformation in deep brain stimulation from medical images

    OpenAIRE

    Mehri, Maroua; Lalys, Florent; Maumet, Camille; Haegelen, Claire; Jannin, Pierre

    2012-01-01

    Deep brain stimulation (DBS) is used to reduce the motor symptoms such as rigidity or bradykinesia in patients with Parkinson's disease (PD). The Subthalamic Nucleus (STN) has emerged as prime target of DBS in idiopathic PD. However, DBS surgery is a difficult procedure requiring the exact positioning of electrodes in the pre-operative selected targets. This positioning is usually planned using patients' pre-operative images, along with digital atlases, assuming that electrode's trajectory is...

  17. Deep brain stimulation for Parkinson's disease dissociates mood and motor circuits: a functional MRI case study.

    Science.gov (United States)

    Stefurak, Taresa; Mikulis, David; Mayberg, Helen; Lang, Anthony E; Hevenor, Stephanie; Pahapill, Peter; Saint-Cyr, Jean; Lozano, Andres

    2003-12-01

    Behavioral disturbances have been reported with subthalamic (STN) deep brain stimulation (DBS) treatment in Parkinson's disease (PD). We report correlative functional imaging (fMRI) of mood and motor responses induced by successive right and left DBS. A 36-year-old woman with medically refractory PD and a history of clinically remitted depression underwent uncomplicated implantation of bilateral STN DBS. High-frequency stimulation of the left electrode improved motor symptoms. Unexpectedly, right DBS alone elicited several reproducible episodes of acute depressive dysphoria. Structural and functional magnetic resonance imaging (fMRI) imaging was carried out with sequential individual electrode stimulation. The electrode on the left was within the inferior STN, whereas the right electrode was marginally superior and lateral to the intended STN target within the Fields of Forel/zona incerta. fMRI image analysis (Analysis of Functional NeuroImages, AFNI) contrasting OFF versus ON stimulation identified significant lateralized blood oxygen level-dependent (BOLD) signal changes with DBS (P disturbance resolved spontaneously in 4 weeks despite identical stimulation parameters. Transient depressive mood induced by subcortical DBS stimulation was correlated with changes in mesolimbic cortical structures. This case provides new evidence supporting cortical segregation of motor and nonmotor cortico-basal ganglionic systems that may converge in close proximity at the level of the STN and the adjacent white matter tracts (Fields of Forel/zona incerta). PMID:14673888

  18. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke

    Directory of Open Access Journals (Sweden)

    Maximilian Jonas Wessel

    2015-05-01

    Full Text Available Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current (tDCS, transcranial magnetic (TMS and paired associative (PAS stimulation are noninvasive brain stimulation techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.

  19. Effect of aging on alpha-1 adrenergic stimulation of phosphoinositide hydrolysis in various regions of rat brain

    International Nuclear Information System (INIS)

    The effects of aging were examined on the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis in three brain regions. Tissue minces of thalamus, cerebral cortex and hippocampus from 3-, 18- and 28-month-old male Fischer 344 rats were prelabeled with [3H]myoinositol. Exposure of these prelabeled minces to phenylephrine and (-)-norepinephrine revealed that accumulation of [3H]inositol phosphates was selectively reduced by 20 to 30% in the thalamus and cerebral cortex of the oldest age group. Analysis of concentration-response and competition binding curves indicated that this decrease was due to diminished agonist efficacy rather than diminished receptor affinity. The reduction in responsiveness to phenylephrine and (-)-norepinephrine in the cerebral cortex and the lack of any changes in the hippocampus parallel previously reported changes in the density of alpha-1 adrenergic receptors with aging. These data indicate that the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis is reduced in some, but not all, brain regions of aged Fischer 344 rats

  20. Brain-Controlled Neuromuscular Stimulation to Drive Neural Plasticity and Functional Recovery

    Science.gov (United States)

    Ethier, C.; Gallego, J.A.; Miller, L.E.

    2015-01-01

    There is mounting evidence that appropriately timed neuromuscular stimulation can induce neural plasticity and generate functional recovery from motor disorders. This review addresses the idea that coordinating stimulation with a patient’s voluntary effort might further enhance neurorehabilitation. Studies in cell cultures and behaving animals have delineated the rules underlying neural plasticity when single neurons are used as triggers. However, the rules governing more complex stimuli and larger networks are less well understood. We argue that functional recovery might be optimized if stimulation were modulated by a brain machine interface, to matched the details of the patient’s voluntary intent. The potential of this novel approach highlights the need for a better understanding of the complex rules underlying this form of plasticity. PMID:25827275

  1. The challenge of crafting policy for do-it-yourself brain stimulation.

    Science.gov (United States)

    Fitz, Nicholas S; Reiner, Peter B

    2015-05-01

    Transcranial direct current stimulation (tDCS), a simple means of brain stimulation, possesses a trifecta of appealing features: it is relatively safe, relatively inexpensive and relatively effective. It is also relatively easy to obtain a device and the do-it-yourself (DIY) community has become galvanised by reports that tDCS can be used as an all-purpose cognitive enhancer. We provide practical recommendations designed to guide balanced discourse, propagate norms of safe use and stimulate dialogue between the DIY community and regulatory authorities. We call on all stakeholders-regulators, scientists and the DIY community-to share in crafting policy proposals that ensure public safety while supporting DIY innovation. PMID:23733050

  2. Numerical analysis and design of single-source multicoil TMS for deep and focused brain stimulation.

    Science.gov (United States)

    Gomez, Luis; Cajko, Frantishek; Hernandez-Garcia, Luis; Grbic, Anthony; Michielssen, Eric

    2013-10-01

    Transcranial magnetic stimulation (TMS) is a tool for noninvasive stimulation of neuronal tissue used for research in cognitive neuroscience and to treat neurological disorders. Many TMS applications call for large electric fields to be sharply focused on regions that often lie deep inside the brain. Unfortunately, the fields generated by present-day TMS coils diffuse and decay rapidly as they penetrate into the head. As a result, they tend to stimulate relatively large regions of tissue near the brain surface. Earlier studies suggested that a focused TMS excitation can be attained using multiple nonuniformly fed coils in a multichannel array. We propose a systematic, genetic algorithm-based technique for synthesizing multichannel arrays that minimize the volume of the excited region required to achieve a prescribed penetration depth and maintain realistic values for the input driving currents. Because multichannel arrays are costly to build, we also propose a method to convert the multichannel arrays into single-channel ones while minimally materially deteriorating performance. Numerical results show that the new multi- and single-channel arrays stimulate tissue 2.4 cm into the head while exciting 3.0 and 2.6 times less volume than conventional Figure-8 coils, respectively. PMID:23708768

  3. Treatment of neurological and psychiatric disorders with deep brain stimulation; raising hopes and future challenges.

    Science.gov (United States)

    Sharifi, Mohammad Sharif

    2013-01-01

    The technology of Neural Stimulation in recent years has become the focus of the research and treatment, although it has been around for many years. The potential use of stimulating the brain and nerves ranges from the spinal cord stimulation to the implantations of cochlear and bionic eyes with a large discrepancy between the clinical readiness for these various uses. Electrical high-frequency Deep Brain Stimulation (DBS) was developed as an alternative option to treat a few neurological disorders. However, with advancing in surgical procedures, technologies and safeties, the applications of DBS are expanding not only for therapeutic purposes but also for research. Although the exact mechanisms of action/s are not fully understood, the outcome of the ongoing research and clinical trials are promising. DBS has been used to treat the essential tremor since 1997, Parkinson's disease (PD) since 2002 and dystonia since 2003. It has also been used to treat various disorders, including major depression. The therapeutic effect of DBS in PD is well established but for other diseases such as epilepsy the outcomes are unclear and ambiguous. This article is a succinct review of the literature, focusing on PD, epilepsy and Obsessive Compulsive Disorder (OCD). PMID:25337356

  4. Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Priyanka Shah

    2013-12-01

    Full Text Available Stroke victims tend to prioritize speaking, writing and walking as the three most important rehabilitation goals. Of note is that two of these goals involve communication. This underscores the significance of developing successful approaches to aphasia treatment for the several hundred thousand new aphasia patients each year and over 1 million stroke survivors with chronic aphasia in the U.S. alone. After several years of growth as a research tool, noninvasive brain stimulation (NBS is gradually entering the arena of clinical aphasiology. In this review, we first examine the current state of knowledge of post-stroke language recovery including the contributions from the dominant and non-dominant hemispheres. Next, we briefly discuss the methods and the physiologic basis of the use of inhibitory and excitatory repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS as research tools in patients who experience post-stroke aphasia. Finally, we provide a critical review of the most influential evidence behind the potential use of these two brain stimulation methods as clinical rehabilitative tools.

  5. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    International Nuclear Information System (INIS)

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test ≥7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  6. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Chemaitilly, Wassim [Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Lukose, Renin C.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  7. Perceptual Shift in Bilingualism: Brain Potentials Reveal Plasticity in Pre-Attentive Colour Perception

    Science.gov (United States)

    Athanasopoulos, Panos; Dering, Benjamin; Wiggett, Alison; Kuipers, Jan-Rouke; Thierry, Guillaume

    2010-01-01

    The validity of the linguistic relativity principle continues to stimulate vigorous debate and research. The debate has recently shifted from the behavioural investigation arena to a more biologically grounded field, in which tangible physiological evidence for language effects on perception can be obtained. Using brain potentials in a colour…

  8. Power spectral density analysis of physiological, rest and action tremor in Parkinson’s disease patients treated with deep brain stimulation

    OpenAIRE

    Heida, Tjitske; Wentink, Eva Christine; Marani, Enrico

    2013-01-01

    Background: Observation of the signals recorded from the extremities of Parkinson’s disease patients showing rest and/or action tremor reveal a distinct high power resonance peak in the frequency band corresponding to tremor. The aim of the study was to investigate, using quantitative measures, how clinically effective and less effective deep brain stimulation protocols redistribute movement power over the frequency bands associated with movement, pathological and physiological tremor, and wh...

  9. Restoring cognitive functions using non-invasive brain stimulation techniques in patients with cerebellar disorders

    Directory of Open Access Journals (Sweden)

    RChrisMiall

    2014-04-01

    Full Text Available Numerous studies have highlighted the possibility of modulating the excitability of cerebro-cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral-lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato-rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro-cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided towards neuro-enhancement in certain patient populations, using what is commonly termed 'non-invasive brain stimulation' as a cognitive rehabilitation tool to modulate cerebro-cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo

  10. Lifetime stress cumulatively programs brain transcriptome and impedes stroke recovery: benefit of sensory stimulation.

    Directory of Open Access Journals (Sweden)

    Fabíola C R Zucchi

    Full Text Available Prenatal stress (PS represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1 if PS modulates recovery following cortical ischemia in adulthood; (2 if a second hit by adult stress (AS exaggerates stress responses and ischemic damage; and (3 if tactile stimulation (TS attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health.

  11. PET imaging reveals brain functional changes in internet gaming disorder

    International Nuclear Information System (INIS)

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D2 (D2)/Serotonin 2A (5-HT2A) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D2 receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and 11C-N-methylspiperone (11C-NMSP) to assess the availability of D2/5-HT2A receptors and with 18F-fluoro-D-glucose (18F-FDG) to assess regional brain glucose metabolism, a marker of brain function. 11C-NMSP and 18F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D2 receptors was observed in the striatum, and was correlated to years of overuse. A low level of D2 receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D2 receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D2/5-HT2A receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  12. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  13. Deep brain stimulation of the subthalamic nucleus: effectiveness in advanced Parkinson's disease patients previously reliant on apomorphine

    OpenAIRE

    Varma, T; Fox, S.; Eldridge, P; Littlechild, P; Byrne, P.; Forster, A; Marshall, A.; Cameron, H.; McIver, K; Fletcher, N; Steiger, M.

    2003-01-01

    Objectives: To assess the efficacy of bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with advanced Parkinson's disease previously reliant on apomorphine as their main antiparkinsonian medication.

  14. Neuropsychological functions and rCBF SPECT in Parkinson's disease patients considered candidates for deep brain stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Paschali, Anna; Lakiotis, Velissarios; Vassilakos, Paulos [University of Patras Medical School, Department of Nuclear Medicine, Patras (Greece); Messinis, Lambros; Lyros, Epameinondas; Papathanasopoulos, Panagiotis [University of Patras Medical School, Department of Neurology, Neuropsychology Section, Patras (Greece); Constantoyannis, Costas; Kefalopoulou, Zinovia [University of Patras Medical School, Department of Neurosurgery, Patras (Greece)

    2009-11-15

    In the present study, we examined relationships between neuropsychological functions and brain single photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) observed at presurgical evaluation for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in advanced Parkinson's disease (PD) patients. Twenty advanced non-demented PD patients, candidates for DBS surgery, underwent perfusion brain SPECT study and neuropsychological assessment prior to surgery (range: 30-50 days). Patients were further assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (H and Y) scale. During all assessments patients were ''on'' standard medication. NeuroGam software, which permits voxel by voxel analysis, was used to compare the brain perfusion of PD patients with a normal database adjusted for sex and age. Neuropsychological scores were compared to age, education and sex-adjusted normative databases. Our results indicated that the distribution of rCBF showed significant differences when compared to an age- and sex-adjusted normative database. We found impaired blood flow in 17 (85%) of our patients in the left prefrontal lobe, in 14 (70%) in the right prefrontal lobe and in 11 (55%) in the left frontal and right parietal lobes. Neuropsychological testing revealed that 18 (90%) of our patients had significant impairments in measures of executive functions (set-shifting) and 15 (75%) in response inhibition. Furthermore, we found significant correlations between measures of visual attention, executive functions and the right frontal lobe region. The presence of widespread blood flow reduction was observed mainly in the frontal lobes of dementia-free patients with advanced PD. Furthermore, performance on specific cognitive measures was highly related to perfusion brain SPECT findings. (orig.)

  15. Neuropsychological functions and rCBF SPECT in Parkinson's disease patients considered candidates for deep brain stimulation

    International Nuclear Information System (INIS)

    In the present study, we examined relationships between neuropsychological functions and brain single photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) observed at presurgical evaluation for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in advanced Parkinson's disease (PD) patients. Twenty advanced non-demented PD patients, candidates for DBS surgery, underwent perfusion brain SPECT study and neuropsychological assessment prior to surgery (range: 30-50 days). Patients were further assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (H and Y) scale. During all assessments patients were ''on'' standard medication. NeuroGam software, which permits voxel by voxel analysis, was used to compare the brain perfusion of PD patients with a normal database adjusted for sex and age. Neuropsychological scores were compared to age, education and sex-adjusted normative databases. Our results indicated that the distribution of rCBF showed significant differences when compared to an age- and sex-adjusted normative database. We found impaired blood flow in 17 (85%) of our patients in the left prefrontal lobe, in 14 (70%) in the right prefrontal lobe and in 11 (55%) in the left frontal and right parietal lobes. Neuropsychological testing revealed that 18 (90%) of our patients had significant impairments in measures of executive functions (set-shifting) and 15 (75%) in response inhibition. Furthermore, we found significant correlations between measures of visual attention, executive functions and the right frontal lobe region. The presence of widespread blood flow reduction was observed mainly in the frontal lobes of dementia-free patients with advanced PD. Furthermore, performance on specific cognitive measures was highly related to perfusion brain SPECT findings. (orig.)

  16. Acute Modulation of Brain Connectivity in Parkinson Disease after Automatic Mechanical Peripheral Stimulation: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Carlo Cosimo Quattrocchi

    Full Text Available The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS in patients with idiopathic Parkinson Disease.Eleven patients (6 women and 5 men with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition.Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12 and with the right anterior temporal lobe (max Z score 3.42 and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79.Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration.This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest.Clinical Trials.gov NCT01815281.

  17. Subthalamic nucleus deep brain stimulation does not improve visuo-motor impairment in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Simon D Israeli-Korn

    Full Text Available OBJECTIVE: To evaluate how bilateral subthalamic nucleus deep brain stimulation (STN-DBS affects visuo-motor coordination (VMC in patients with Parkinson's disease (PD. BACKGROUND: VMC involves multi-sensory integration, motor planning, executive function and attention. VMC deficits are well-described in PD. STN-DBS conveys marked motor benefit in PD, but pyscho-cognitive complications are recognized and the effect on VMC is not known. METHODS: Thirteen PD patients with bilateral STN-DBS underwent neurological, cognitive, and mood assessment before VMC testing with optimal DBS stimulation parameters ('on-stimulation' and then, on the same day without any medication changes, after DBS silencing and establishing motor function deterioration ('off-stimulation'. Twelve age-matched healthy controls performed 2 successive VMC testing sessions, with a break of similar duration to that of the PD group. The computer cursor was controlled with a dome-shaped 'mouse' hidden from view that minimized tremor effects. Movement duration, hand velocity, tracking continuity, directional control variables, and feedback utilization variables were measured. MANOVA was performed on (1 clinically measured motor function, (2 VMC performance and (3 mood and attention, looking for main and interaction effects of: (1 group (controls/PD, (2 test-order (controls: first/second, PD: on-stimulation/off-stimulation, (3 path (sine/square/circle and (4 hand (dominant/non-dominant. RESULTS: Unified PD Rating Scale (UPDRS Part III worsened off-stimulation versus on-stimulation (mean: 42.3 versus 21.6, p = 0.02, as did finger tapping (p = 0.02, posture-gait (p = 0.01, upper limb function (p<0.001 and backwards digit span (p = 0.02. Stimulation state did not affect mood. PD patients performed worse in non-velocity related VMC variables than controls (F(5,18 = 8.5, p<0.001. In the control group there were significant main effects of hand (dominant/non-dominant, path

  18. The brain's functional network architecture reveals human motives.

    Science.gov (United States)

    Hein, Grit; Morishima, Yosuke; Leiberg, Susanne; Sul, Sunhae; Fehr, Ernst

    2016-03-01

    Goal-directed human behaviors are driven by motives. Motives are, however, purely mental constructs that are not directly observable. Here, we show that the brain's functional network architecture captures information that predicts different motives behind the same altruistic act with high accuracy. In contrast, mere activity in these regions contains no information about motives. Empathy-based altruism is primarily characterized by a positive connectivity from the anterior cingulate cortex (ACC) to the anterior insula (AI), whereas reciprocity-based altruism additionally invokes strong positive connectivity from the AI to the ACC and even stronger positive connectivity from the AI to the ventral striatum. Moreover, predominantly selfish individuals show distinct functional architectures compared to altruists, and they only increase altruistic behavior in response to empathy inductions, but not reciprocity inductions. PMID:26941317

  19. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    Science.gov (United States)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  20. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc- HMPAO brain SPECT

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of '99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc-HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map(SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  1. Dominant negative Bmp5 mutation reveals key role of BMPs in skeletal response to mechanical stimulation

    Directory of Open Access Journals (Sweden)

    Kingsley David M

    2008-04-01

    Full Text Available Abstract Background Over a hundred years ago, Wolff originally observed that bone growth and remodeling are exquisitely sensitive to mechanical forces acting on the skeleton. Clinical studies have noted that the size and the strength of bone increase with weight bearing and muscular activity and decrease with bed rest and disuse. Although the processes of mechanotransduction and functional response of bone to mechanical strain have been extensively studied, the molecular signaling mechanisms that mediate the response of bone cells to mechanical stimulation remain unclear. Results Here, we identify a novel germline mutation at the mouse Bone morphogenetic protein 5 (Bmp5 locus. Genetic analysis shows that the mutation occurs at a site encoding the proteolytic processing sequence of the BMP5 protein and blocks proper processing of BMP5. Anatomic studies reveal that this mutation affects the formation of multiple skeletal features including several muscle-induced skeletal sites in vivo. Biomechanical studies of osteoblasts from these anatomic sites show that the mutation inhibits the proper response of bone cells to mechanical stimulation. Conclusion The results from these genetic, biochemical, and biomechanical studies suggest that BMPs are required not only for skeletal patterning during embryonic development, but also for bone response and remodeling to mechanical stimulation at specific anatomic sites in the skeleton.

  2. Enhancing multiple object tracking performance with noninvasive brain stimulation: A causal role for the anterior intraparietal sulcus

    Directory of Open Access Journals (Sweden)

    Eric Joshua Blumberg

    2015-02-01

    Full Text Available Multiple object tracking (MOT is a complex task recruiting a distributed network of brain regions. There are also marked individual differences in MOT performance. A positive causal relationship between the anterior intraparietal sulcus (AIPS, an integral region in the MOT attention network and inter-individual variation in MOT performance has not been previously established. The present study used transcranial direction current stimulation (tDCS, a form of non-invasive brain stimulation, in order to examine such a causal link. Active anodal stimulation was applied to the right AIPS and the left dorsolateral prefrontal cortex (and sham stimulation, an area associated with working memory (but not MOT while participants completed a MOT task. Stimulation to the right AIPS significantly improved MOT accuracy more than the other two conditions. The results confirm a causal role of the AIPS in the MOT task and illustrate that transcranial direct current stimulation has the ability to improve MOT performance.

  3. Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Katharine A Dunlop

    2016-02-01

    Full Text Available The term eating disorders (ED encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS. NIBS, including repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related rewards and punishment cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and their underlying behavioral and neurobiological targets associated with ED as potential candidates for NIBS and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED.

  4. Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments.

    Science.gov (United States)

    Mahlknecht, Philipp; Limousin, Patricia; Foltynie, Thomas

    2015-11-01

    Modern deep brain stimulation (DBS) has become a routine therapy for patients with movement disorders such as Parkinson's disease, generalized or segmental dystonia and for multiple forms of tremor. Growing numbers of publications also report beneficial effects in other movement disorders such as Tourette's syndrome, various forms of chorea and DBS is even being studied for Parkinson's-related dementia. While exerting remarkable effects on many motor symptoms, DBS does not restore normal neurophysiology and therefore may also have undesirable side effects including speech and gait deterioration. Furthermore, its efficacy might be compromised in the long term, due to progression of the underlying disease. Various programming strategies have been studied to try and address these issues, e.g., the use of low-frequency rather than high-frequency stimulation or the targeting of alternative brain structures such as the pedunculopontine nucleus. In addition, further technical developments will soon provide clinicians with an expanded choice of hardware such as segmented electrodes allowing for a steering of the current to optimize beneficial effects and reduce side effects as well as the possibility of adaptive stimulation systems based on closed-loop concepts with or without accompanying advances in programming and imaging software. In the present article, we will provide an update on the most recent achievements and discoveries relevant to the application of DBS in the treatment of movement disorder patients and give an outlook on future clinical and technical developments. PMID:26037016

  5. Targeting Neural Endophenotypes of Eating Disorders with Non-invasive Brain Stimulation

    Science.gov (United States)

    Dunlop, Katharine A.; Woodside, Blake; Downar, Jonathan

    2016-01-01

    The term “eating disorders” (ED) encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS). NIBS, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related to rewards and punishment, cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC) initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and the underlying behavioral and neurobiological targets associated with ED. This review will also identify candidate targets for NIBS based on these dimensions and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED. PMID:26909013

  6. No impact of deep brain stimulation on fear-potentiated startle in obsessive-compulsive disorder.

    Science.gov (United States)

    Baas, Johanna M P; Klumpers, Floris; Mantione, Mariska H; Figee, Martijn; Vulink, Nienke C; Schuurman, P Richard; Mazaheri, Ali; Denys, Damiaan

    2014-01-01

    Deep brain stimulation (DBS) of the ventral internal capsule is effective in treating therapy refractory obsessive-compulsive disorder (OCD). Given the close proximity of the stimulation site to the stria terminalis (BNST), we hypothesized that the striking decrease in anxiety symptoms following DBS could be the result of the modulation of contextual anxiety. However, the effect of DBS in this region on contextual anxiety is as of yet unknown. Thus, the current study investigated the effect of DBS on contextual anxiety in an experimental threat of shock paradigm. Eight patients with DBS treatment for severe OCD were tested in a double-blind crossover design with randomly assigned 2-week periods of active and sham stimulation. DBS resulted in significant decrease of obsessive-compulsive symptoms, anxiety, and depression. However, even though the threat manipulation resulted in a clear context-potentiated startle effect, none of the parameters derived from the startle recordings was modulated by the DBS. This suggests that DBS in the ventral internal capsule is effective in treating anxiety symptoms of OCD without modulating the startle circuitry. We hypothesize that the anxiety symptoms present in OCD are likely distinct from the pathological brain circuits in defensive states of other anxiety disorders. PMID:25249953

  7. No Impact of Deep Brain Stimulation on Fear-Potentiated Startle in Obsessive–Compulsive Disorder

    Science.gov (United States)

    Baas, Johanna M. P.; Klumpers, Floris; Mantione, Mariska H.; Figee, Martijn; Vulink, Nienke C.; Schuurman, P. Richard; Mazaheri, Ali; Denys, Damiaan

    2014-01-01

    Deep brain stimulation (DBS) of the ventral internal capsule is effective in treating therapy refractory obsessive–compulsive disorder (OCD). Given the close proximity of the stimulation site to the stria terminalis (BNST), we hypothesized that the striking decrease in anxiety symptoms following DBS could be the result of the modulation of contextual anxiety. However, the effect of DBS in this region on contextual anxiety is as of yet unknown. Thus, the current study investigated the effect of DBS on contextual anxiety in an experimental threat of shock paradigm. Eight patients with DBS treatment for severe OCD were tested in a double-blind crossover design with randomly assigned 2-week periods of active and sham stimulation. DBS resulted in significant decrease of obsessive–compulsive symptoms, anxiety, and depression. However, even though the threat manipulation resulted in a clear context-potentiated startle effect, none of the parameters derived from the startle recordings was modulated by the DBS. This suggests that DBS in the ventral internal capsule is effective in treating anxiety symptoms of OCD without modulating the startle circuitry. We hypothesize that the anxiety symptoms present in OCD are likely distinct from the pathological brain circuits in defensive states of other anxiety disorders. PMID:25249953

  8. No impact of deep brain stimulation on fear-potentiated startle in obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Johanna M.P. Baas

    2014-09-01

    Full Text Available Deep brain stimulation (DBS of the ventral internal capsule is effective in treating therapy refractory obsessive-compulsive disorder (OCD. Given the close proximity of the stimulation site to the stria terminalis (BNST, we hypothesized that the striking decrease in anxiety symptoms following DBS could be the result of the modulation of contextual anxiety. However, the effect of DBS in this region on contextual anxiety is as of yet unknown. Thus, the current study investigated the effect of DBS on contextual anxiety in an experimental threat of shock paradigm. Eight patients with DBS treatment for severe OCD were tested in a double-blind crossover design with randomly assigned two-week periods of active and sham stimulation. DBS resulted in significant decrease of obsessive-compulsive symptoms, anxiety and depression. However, even though the threat manipulation resulted in a clear context potentiated startle effect, none of the parameters derived from the startle recordings was modulated by the DBS. This suggests that DBS in the ventral internal capsule is effective in treating anxiety symptoms of obsessive-compulsive disorder without modulating the startle circuitry. We hypothesize that the anxiety symptoms present in OCD are likely distinct from the pathological brain circuits in defensive states of other anxiety disorders.

  9. Stimulation of phosphoinositide hydrolysis by a novel substance partially purified from rat and bovine brain

    International Nuclear Information System (INIS)

    This study demonstrates the partial purification of a potentially novel substance from rat and bovine brain. Whole brains were homogenized in distilled water, then heated at 1000C for 30 min. The water extract was dialyzed and the 3H-inositol monophosphate (3H-IP) using lithium-treated slices of rat cerebral cortex prelabelled with 3H-myo-inositol. A major peak of activity was observed in fractions from the molecular weight range of 800-1300 daltons. Stimulation of phosphoinositide hydrolysis by this material was time-dependent and dose-related. Maximal stimulation of 3H-IP (323% of control) required 10mg/ml of bovine material and was observed at 30 minutes. These effects could not be mimicked by a number of substances of similar molecular weight (e.g. substance P, neurotensin, angiotensin II, bradykinin). Furthermore, the effects of this material were not blocked by antagonist drugs which act at the alpha-adrenoceptor, muscarinic cholinoceptor, 5-HT2 receptor, substance P receptor, or neurotensin receptor. These results indicate that the substance isolated may be a novel neuroactive molecule which has receptors coupled to phosphoinositide hydrolysis in brain

  10. Understanding deep brain stimulation in obsessive compulsive disorder: A preclinical study into the mechanism of action and behaviour

    NARCIS (Netherlands)

    A. van Dijk

    2013-01-01

    We see a strong impact of deep brain stimulation (DBS) on several aspects of OCD (obsessive compulsive disorder). DBS in different brain areas affects compulsive behaviour, conditioned and unconditioned anxiety. DBS in the internal capsule (IC) shows the most promising behavioural results by uniquel

  11. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism.

    Directory of Open Access Journals (Sweden)

    Thien Thanh Dang-Vu

    Full Text Available Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT with 99mTc-Ethylene Cysteinate Dimer (ECD, during wakefulness and after sleep deprivation.Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF were performed to characterize brain activity patterns during wakefulness in sleepwalkers.During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls.Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness.

  12. Cognitive and Neurophysiological Effects of Non-invasive Brain Stimulation in Stroke Patients after Motor Rehabilitation.

    Science.gov (United States)

    D'Agata, Federico; Peila, Elena; Cicerale, Alessandro; Caglio, Marcella M; Caroppo, Paola; Vighetti, Sergio; Piedimonte, Alessandro; Minuto, Alice; Campagnoli, Marcello; Salatino, Adriana; Molo, Maria T; Mortara, Paolo; Pinessi, Lorenzo; Massazza, Giuseppe

    2016-01-01

    The primary aim of this study was to evaluate and compare the effectiveness of two specific Non-Invasive Brain Stimulation (NIBS) paradigms, the repetitive Transcranial Magnetic Stimulation (rTMS), and transcranial Direct Current Stimulation (tDCS), in the upper limb rehabilitation of patients with stroke. Short and long term outcomes (after 3 and 6 months, respectively) were evaluated. We measured, at multiple time points, the manual dexterity using a validated clinical scale (ARAT), electroencephalography auditory event related potentials, and neuropsychological performances in patients with chronic stroke of middle severity. Thirty four patients were enrolled and randomized. The intervention group was treated with a NIBS protocol longer than usual, applying a second cycle of stimulation, after a washout period, using different techniques in the two cycles (rTMS/tDCS). We compared the results with a control group treated with sham stimulation. We split the data analysis into three studies. In this first study we examined if a cumulative effect was clinically visible. In the second study we compared the effects of the two techniques. In the third study we explored if patients with minor cognitive impairment have most benefit from the treatment and if cognitive and motor outcomes were correlated. We found that the impairment in some cognitive domains cannot be considered an exclusion criterion for rehabilitation with NIBS. ERP improved, related to cognitive and attentional processes after stimulation on the motor cortex, but transitorily. This effect could be linked to the restoration of hemispheric balance or by the effects of distant connections. In our study the effects of the two NIBS were comparable, with some advantages using tDCS vs. rTMS in stroke rehabilitation. Finally we found that more than one cycle (2-4 weeks), spaced out by washout periods, should be used, only in responder patients, to obtain clinical relevant results. PMID:27445730

  13. Evaluation of Interactive Visualization on Mobile Computing Platforms for Selection of Deep Brain Stimulation Parameters.

    Science.gov (United States)

    Butson, Christopher R; Tamm, Georg; Jain, Sanket; Fogal, Thomas; Krüger, Jens

    2013-01-01

    In recent years, there has been significant growth in the use of patient-specific models to predict the effects of neuromodulation therapies such as deep brain stimulation (DBS). However, translating these models from a research environment to the everyday clinical workflow has been a challenge, primarily due to the complexity of the models and the expertise required in specialized visualization software. In this paper, we deploy the interactive visualization system ImageVis3D Mobile, which has been designed for mobile computing devices such as the iPhone or iPad, in an evaluation environment to visualize models of Parkinson's disease patients who received DBS therapy. Selection of DBS settings is a significant clinical challenge that requires repeated revisions to achieve optimal therapeutic response, and is often performed without any visual representation of the stimulation system in the patient. We used ImageVis3D Mobile to provide models to movement disorders clinicians and asked them to use the software to determine: 1) which of the four DBS electrode contacts they would select for therapy; and 2) what stimulation settings they would choose. We compared the stimulation protocol chosen from the software versus the stimulation protocol that was chosen via clinical practice (independent of the study). Lastly, we compared the amount of time required to reach these settings using the software versus the time required through standard practice. We found that the stimulation settings chosen using ImageVis3D Mobile were similar to those used in standard of care, but were selected in drastically less time. We show how our visualization system, available directly at the point of care on a device familiar to the clinician, can be used to guide clinical decision making for selection of DBS settings. In our view, the positive impact of the system could also translate to areas other than DBS. PMID:22450824

  14. Image-Guided Focused Ultrasound-Mediated Regional Brain Stimulation in Sheep.

    Science.gov (United States)

    Lee, Wonhye; Lee, Stephanie D; Park, Michael Y; Foley, Lori; Purcell-Estabrook, Erin; Kim, Hyungmin; Fischer, Krisztina; Maeng, Lee-So; Yoo, Seung-Schik

    2016-02-01

    Non-invasive brain stimulation using focused ultrasound has largely been carried out in small animals. In the present study, we applied stimulatory focused ultrasound transcranially to the primary sensorimotor (SM1) and visual (V1) brain areas in sheep (Dorset, all female, n = 8), under the guidance of magnetic resonance imaging, and examined the electrophysiologic responses. By use of a 250-kHz focused ultrasound transducer, the area was sonicated in pulsed mode (tone-burst duration of 1 ms, duty cycle of 50%) for 300 ms. The acoustic intensity at the focal target was varied up to a spatial peak pulse-average intensity (Isppa) of 14.3 W/cm(2). Sonication of SM1 elicited electromyographic responses from the contralateral hind leg, whereas stimulation of V1 generated electroencephalographic potentials. These responses were detected only above a certain acoustic intensity, and the threshold intensity, as well as the degree of responses, varied among sheep. Post-sonication animal behavior was normal, but minor microhemorrhages were observed from the V1 areas exposed to highly repetitive sonication (every second for ≥500 times for electroencephalographic measurements, Isppa = 6.6-10.5 W/cm(2), mechanical index = 0.9-1.2). Our results suggest the potential translational utility of focused ultrasound as a new brain stimulation modality, yet also call for caution in the use of an excessive number of sonications. PMID:26525652

  15. Non-invasive brain stimulation enhances the effects of Melodic Intonation Therapy

    Directory of Open Access Journals (Sweden)

    Bradley W. Vines

    2011-09-01

    Full Text Available Research has suggested that a fronto-temporal network in the right hemisphere may be responsible for mediating Melodic Intonation Therapy’s positive effects on speech recovery. We investigated the potential for a non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS, to augment the benefits of MIT in patients with non-fluent aphasia by modulating neural activity in the brain during treatment with MIT. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. We applied anodal tDCS to the posterior inferior frontal gyrus (IFG of the right hemisphere, an area that has been shown to both contribute to singing through the mapping of sounds to ariculatory actions and serve as a key region in the process of recovery from aphasia, particularly in patients with large left hemispheric lesions. The stimulation was applied while patients were treated with MIT by a trained therapist. Six patients with moderate to severe non-fluent aphasia underwent three consecutive days of anodal-tDCS+MIT, and an equivalent series of sham-tDCS+MIT. The two treatment series were separated by one week, and the order in which the treatments were administered was randomized. Compared to the effects of sham-tDCS+MIT, anodal-tDCS+MIT led to significant improvements in fluency of speech. These results support the hypothesis that, as the brain seeks to reorganize and compensate for damage to left-hemisphere language centers, combining anodal-tDCS with MIT may further recovery from post-stroke aphasia by enhancing activity in a right-hemisphere sensorimotor network for articulation.

  16. A critical reflection on the technological development of deep brain stimulation (DBS

    Directory of Open Access Journals (Sweden)

    Christian eIneichen

    2014-09-01

    Full Text Available Since the translational research findings of Benabid and colleagues, which partly led to their seminal paper regarding the treatment of mainly tremor-dominant Parkinson patients through thalamic high-frequency-stimulation (HFS in 1987, we still struggle with identifying a satisfactory mechanistic explanation of the underlying principles of Deep Brain Stimulation. Furthermore, the technological advance of DBS devices (electrodes and implantable pulse generators, IPG's has shown a distinct lack of dynamic progression. In light of this we argue that it is time to leave the paleolithic age and enter hellenistic times: the device-manufacturing industry and the medical community together should put more emphasis on advancing the technology rather than resting on their laurels.

  17. Deep brain stimulation for aggressive behavior and obsessive-compulsive disorder.

    Science.gov (United States)

    Messina, Giuseppe; Islam, Lucrezia; Cordella, Roberto; Gambini, Orsola; Franzini, Angelo

    2016-06-01

    Drug-resistant obsessive-compulsive disorder and aggressive behavior are two severely disabling psychiatric conditions which may carry a certain burden on the patients themselves and on their families. In the last decade, the fields of interests of deep brain stimulation (DBS) also encompass psychiatric disorders, supported by imaging and neurophysiological techniques. We here report our institutional experience with the two above-mentioned disorders, describing the procedure commonly employed and the results obtained. Refinement of such techniques, possibly relying on advanced magnetic resonance imaging (MRI), together with probabilistic pictures of field of activation models, could shed more light into this complex field of investigation; further studies are necessary to confirm and make actual results a starting point to new and more precise methodologies in this stimulating research field. PMID:27007543

  18. Deep Brain Stimulation: More Complex than the Inhibition of Cells and Excitation of Fibers.

    Science.gov (United States)

    Florence, Gerson; Sameshima, Koichi; Fonoff, Erich T; Hamani, Clement

    2016-08-01

    High-frequency deep brain stimulation (DBS) is an effective treatment for some movement disorders. Though mechanisms underlying DBS are still unclear, commonly accepted theories include a "functional inhibition" of neuronal cell bodies and the excitation of axonal projections near the electrodes. It is becoming clear, however, that the paradoxical dissociation "local inhibition" and "distant excitation" is far more complex than initially thought. Despite an initial increase in neuronal activity following stimulation, cells are often unable to maintain normal ionic concentrations, particularly those of sodium and potassium. Based on currently available evidence, we proposed an alternative hypothesis. Increased extracellular concentrations of potassium during DBS may change the dynamics of both cells and axons, contributing not only to the intermittent excitation and inhibition of these elements but also to interrupt abnormal pathological activity. In this article, we review mechanisms through which high extracellular potassium may mediate some of the effects of DBS. PMID:26150316

  19. Secondary Hyperalgesia Phenotypes Exhibit Differences in Brain Activation during Noxious Stimulation

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Pereira, Manuel Pedro; Werner, Mads Utke; Mårtensson, Johan; Larsson, Henrik B W; Dahl, Jørgen Berg

    2015-01-01

    the burn-injury) (p < 0.05). After the burn-injury, we found significant differences between responders during noxious stimulation of both primary (p < 0.01) and secondary hyperalgesia (p ≤ 0.04) skin areas. A decreased volume of the right (p = 0.001) and left caudate nucleus (p = 0.01) was detected....... To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47°C, 7...... hyperalgesia areas after burn-injury. In addition, T1-weighted images were used to measure differences in gray-matter density in cortical and subcortical regions of the brain. We found significant differences in neuronal activity between high- and low-sensitization responders at baseline (before application of...

  20. Oscillations in Pedunculopontine Nucleus in Parkinson's disease and its relationship with deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Min Li

    2015-09-01

    Full Text Available The recent development of deep brain stimulation (DBS of the pedunculopontine nucleus (PPN for the treatment of parkinsonian patients, particularly those in advanced stages with axial symptoms, has ignited interest into the study of this brain nucleus. In contrast to the extensively studied alterations of neural activity that occur in the basal ganglia in Parkinson’s disease (PD, our understanding of the activity of the PPN remains insufficient. In recent years, however, a series of studies recording oscillatory activity in the PPN of parkinsonian patients have made important findings. Here, we briefly review recent studies that explore the different kinds of oscillations observed in the PPN of parkinsonian patients, and how they underlie the pathophysiology of PD and the efficacy of PPN DBS in these disorders.

  1. Assistance to planning in deep brain stimulation: data fusion method for locating anatomical targets in MRI.

    Science.gov (United States)

    Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves

    2006-01-01

    Symptoms of Parkinson's disease can be relieved through deep brain stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. In order to identify these anatomical targets, which are located deep within the brain, we developed a semi-automated method of image analysis, based on data fusion. Information provided by both anatomical magnetic resonance images and expert knowledge is managed in a common possibilistic frame, using a fuzzy logic approach. More specifically, a graph-based virtual atlas modeling theoretical anatomical knowledge is matched to the image data from each patient, through a research algorithm (or strategy) which simultaneously computes an estimation of the location of every structures, thus assisting the neurosurgeon in defining the optimal target. The method was tested on 10 images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements. PMID:17946793

  2. Pallidal Deep Brain Stimulation in the Treatment of Huntington’s Chorea

    OpenAIRE

    Loutfi, Ghada; Linder, Jan; Hariz, Gun-Marie; Hariz, Marwan,; Blomstedt, Patric

    2014-01-01

    Despite the success of deep brain stimulation (DBS) in various movement disorders, its use in Huntington´s Disease (HD) has been limited. So far, promising results of pallidal DBS have been reported in 7 patients with HD. We performed bilateral pallidal DBS in a 59 year old woman with HD since 12 years and severe motor symptoms. At the evaluation after 12 months the effect was deemed satisfactory mainly concerning the patient’s choreatic symptoms. However, the improvement according to the uni...

  3. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices

    OpenAIRE

    Joshua Kahan; Anastasia Papadaki; Mark White; Laura Mancini; Tarek Yousry; Ludvic Zrinzo; Patricia Limousin; Marwan Hariz; Tom Foltynie; John Thornton

    2015-01-01

    Background Deep brain stimulation (DBS) is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips – which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit co...

  4. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism.

    Science.gov (United States)

    Frank, Michael J; Samanta, Johan; Moustafa, Ahmed A; Sherman, Scott J

    2007-11-23

    Deep brain stimulation (DBS) of the subthalamic nucleus markedly improves the motor symptoms of Parkinson's disease, but causes cognitive side effects such as impulsivity. We showed that DBS selectively interferes with the normal ability to slow down when faced with decision conflict. While on DBS, patients actually sped up their decisions under high-conflict conditions. This form of impulsivity was not affected by dopaminergic medication status. Instead, medication impaired patients' ability to learn from negative decision outcomes. These findings implicate independent mechanisms leading to impulsivity in treated Parkinson's patients and were predicted by a single neurocomputational model of the basal ganglia. PMID:17962524

  5. Social anxiety disorder: radio electric asymmetric conveyor brain stimulation versus sertraline

    Directory of Open Access Journals (Sweden)

    Fontani V

    2011-11-01

    Full Text Available Vania Fontani1, Piero Mannu1,2, Alessandro Castagna1, Salvatore Rinaldi11Department of Neuro Psycho Physio Pathology, Rinaldi Fontani Institute, Florence; 2Psychic Studies Center, Cagliari, ItalyPurpose: Social anxiety disorder (SAD is a disabling condition that affects almost 5% of the general population. Many types of drugs have shown their efficacy in the treatment of SAD. There are also some data regarding psychotherapies, but no data are available today about the efficacy of brain stimulation techniques. The aim of the study is to compare the efficacy of noninvasive brain stimulation neuro psycho physical optimization (NPPO protocol performed by radio electric asymmetric conveyor (REAC with that of sertraline in adults with SAD.Patients and methods: Twenty SAD patients on sertraline were compared with 23 SAD patients who refused any drug treatment and who chose to be treated with NPPO-REAC brain stimulation. This was a 6-month, open-label, naturalistic study. Patients on sertraline received flexible doses, whereas NPPO-REAC patients received two 18-session cycles of treatment. Clinical Global Improvement scale items "much improved" or "very much improved" and Liebowitz Social Anxiety Scale total score variation on fear and avoidance components were used to detect the results. The statistical analysis was performed with t-test. All measures <0.05 have been considered statistically significant.Results: Ten of 23 subjects on NPPO-REAC and six of the 20 taking sertraline were much improved or very much improved 1 month after the first NPPO-REAC cycle (t1. Sixteen of the subjects on NPPO-REAC and ten of the subjects taking sertraline were much improved or very much improved 1 month after the second NPPO-REAC cycle (t2. In respect of the Liebowitz Social Anxiety Scale, at t1 NPPO-REAC resulted in statistically more efficacy for sertraline on both fear and avoidance total scores. At t2, NPPO-REAC resulted in statistically more efficacy for

  6. New Insights Offered by a Computational Model of Deep Brain Stimulation

    DEFF Research Database (Denmark)

    Modolo, J.; Mosekilde, Erik; Beuter, A.

    Deep brain stimulation (DBS) is a standard neurosurgical procedure used to treat motor symptoms in about 5% of patients with Parkinson's disease (PD). Despite the indisputable success of this procedure, the biological mechanisms underlying the clinical benefits of DBS have not yet been fully...... exploring the physiological mechanisms which respond to this treatment strategy (i.e., DBS). Finally, we present new insights into the ways this computational model may help to elucidate the dynamic network effects produced in a cerebral structure when DBS is applied. (C) 2007 Elsevier Ltd. All rights...

  7. The Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    Directory of Open Access Journals (Sweden)

    P. Justin eRossi

    2016-04-01

    Full Text Available This review summarizes the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized; these advances were presented at the 3rd Annual Deep Brain Stimulation Think Tank. The Think Tank’s contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies.

  8. Anatomical correlates for category-specific naming of objects and actions: a brain stimulation mapping study.

    Science.gov (United States)

    Lubrano, Vincent; Filleron, Thomas; Démonet, Jean-François; Roux, Franck-Emmanuel

    2014-02-01

    The production of object and action words can be dissociated in aphasics, yet their anatomical correlates have been difficult to distinguish in functional imaging studies. To investigate the extent to which the cortical neural networks underlying object- and action-naming processing overlap, we performed electrostimulation mapping (ESM), which is a neurosurgical mapping technique routinely used to examine language function during brain-tumor resections. Forty-one right-handed patients who had surgery for a brain tumor were asked to perform overt naming of object and action pictures under stimulation. Overall, 73 out of the 633 stimulated cortical sites (11.5%) were associated with stimulation-induced language interferences. These interference sites were very much localized (<1 cm(2) ), and showed substantial variability across individuals in their exact localization. Stimulation interfered with both object and action naming over 44 sites, whereas it specifically interfered with object naming over 19 sites and with action naming over 10 sites. Specific object-naming sites were mainly identified in Broca's area (Brodmann area 44/45) and the temporal cortex, whereas action-naming specific sites were mainly identified in the posterior midfrontal gyrus (Brodmann area 6/9) and Broca's area (P = 0.003 by the Fisher's exact test). The anatomical loci we emphasized are in line with a cortical distinction between objects and actions based on conceptual/semantic features, so the prefrontal/premotor cortex would preferentially support sensorimotor contingencies associated with actions, whereas the temporal cortex would preferentially underpin (functional) properties of objects. PMID:23015527

  9. Pallidal Deep Brain Stimulation Improves Higher Control of the Oculomotor System in Parkinson's Disease.

    Science.gov (United States)

    Antoniades, Chrystalina A; Rebelo, Pedro; Kennard, Christopher; Aziz, Tipu Z; Green, Alexander L; FitzGerald, James J

    2015-09-23

    The frontal cortex and basal ganglia form a set of parallel but mostly segregated circuits called cortico-basal ganglia loops. The oculomotor loop controls eye movements and can direct relatively simple movements, such as reflexive prosaccades, without external help but needs input from "higher" loops for more complex behaviors. The antisaccade task requires the dorsolateral prefrontal cortex, which is part of the prefrontal loop. Information flows from prefrontal to oculomotor circuits in the striatum, and directional errors in this task can be considered a measure of failure of prefrontal control over the oculomotor loop. The antisaccadic error rate (AER) is increased in Parkinson's disease (PD). Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has no effect on the AER, but a previous case suggested that DBS of the globus pallidus interna (GPi) might. Our aim was to compare the effects of STN DBS and GPi DBS on the AER. We tested eye movements in 14 human DBS patients and 10 controls. GPi DBS substantially reduced the AER, restoring lost higher control over oculomotor function. Interloop information flow involves striatal neurons that receive cortical input and project to pallidum. They are normally silent when quiescent, but in PD they fire randomly, creating noise that may account for the degradation in interloop control. The reduced AER with GPi DBS could be explained by retrograde stimulation of striatopallidal axons with consequent activation of inhibitory collaterals and reduction in background striatal firing rates. This study may help explain aspects of PD pathophysiology and the mechanism of action of GPi DBS. Significance statement: Parkinson's disease causes symptoms including stiffness, slowness of movement, and tremor. Electrical stimulation of specific areas deep in the brain can effectively treat these symptoms, but exactly how is not fully understood. Part of the cause of such symptoms may be impairments in the way information flows

  10. Analysis of electrodes' placement and deformation in deep brain stimulation from medical images

    Science.gov (United States)

    Mehri, Maroua; Lalys, Florent; Maumet, Camille; Haegelen, Claire; Jannin, Pierre

    2012-02-01

    Deep brain stimulation (DBS) is used to reduce the motor symptoms such as rigidity or bradykinesia, in patients with Parkinson's disease (PD). The Subthalamic Nucleus (STN) has emerged as prime target of DBS in idiopathic PD. However, DBS surgery is a difficult procedure requiring the exact positioning of electrodes in the pre-operative selected targets. This positioning is usually planned using patients' pre-operative images, along with digital atlases, assuming that electrode's trajectory is linear. However, it has been demonstrated that anatomical brain deformations induce electrode's deformations resulting in errors in the intra-operative targeting stage. In order to meet the need of a higher degree of placement accuracy and to help constructing a computer-aided-placement tool, we studied the electrodes' deformation in regards to patients' clinical data (i.e., sex, mean PD duration and brain atrophy index). Firstly, we presented an automatic algorithm for the segmentation of electrode's axis from post-operative CT images, which aims to localize the electrodes' stimulated contacts. To assess our method, we applied our algorithm on 25 patients who had undergone bilateral STNDBS. We found a placement error of 0.91+/-0.38 mm. Then, from the segmented axis, we quantitatively analyzed the electrodes' curvature and correlated it with patients' clinical data. We found a positive significant correlation between mean curvature index of the electrode and brain atrophy index for male patients and between mean curvature index of the electrode and mean PD duration for female patients. These results help understanding DBS electrode' deformations and would help ensuring better anticipation of electrodes' placement.

  11. Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain: Purification of a distinct cGMP-stimulated isoenzyme

    International Nuclear Information System (INIS)

    In the absence of detergent, ∼80-85% of the total cGMP-stimulated phosphodiesterase (PDE) activity in bovine brain was associated with washed particulate fractions; ∼85-90% of the calmodulin-sensitive PDE was soluble. Particulate cGMP-stimulated PDE was higher in cerebral cortical gray matter than in other regions. Homogenization of the brain particulate fraction in 1% Lubrol increased cGMP-stimulated activity ∼100% and calmodulin-stimulated ∼400-500%. Although 1% Lubrol readily solubilized these PDE activities, ∼75% of the cAMP PDE activity (0.5 μM [3H]cAMP) that was not affected by cGMP was not solubilized. This cAMP PDE activity was very sensitive to inhibition by Rolipram but not cilostamide. Thus, three different PDE types, i.e., cGMP stimulated, calmodulin sensitive, and Rolipram inhibited, are associated in different ways with crude bovine brain particulate fractions. The brain enzyme exhibited a slightly greater subunit Mr than did soluble forms from calf liver or bovine brain, as evidenced by protein staining or immunoblotting after polyacrylamide gel electrophoresis under denaturing conditions. Incubation of brain particulate and liver soluble cGMP-stimulated PDEs with V8 protease produced several peptides of similar size, as well as at least two distinct fragments of ∼27 kDa from the brain and ∼23 kDa from the liver enzyme. After photolabeling in the presence of [32P]cGMP and digestion with V8 protease, [32P]cGMP in each PDE was predominantly recovered with a peptide of ∼14 kDa. All of these observations are consistent with the existence of at least two discrete forms (isoenzymes) of cGMP-stimulated PDE

  12. Theta burst stimulation to characterize changes in brain plasticity following mild traumatic brain injury: a proof-of-principle study

    Science.gov (United States)

    Tremblay, Sara; Vernet, Marine; Bashir, Shahid; Pascual-Leone, Alvaro; Théoret, Hugo

    2016-01-01

    Purpose Recent studies investigating the acute effects of mild traumatic brain injury (mTBI) suggest the presence of unbalanced excitatory and inhibitory mechanisms within primary motor cortex (M1). Whether these abnormalities are associated with impaired synaptic plasticity remains unknown. Methods The effects of continuous theta burst stimulation (cTBS) on transcranial magnetic stimulation-induced motor evoked potentials (MEPs) were assessed on average two weeks and six weeks following mTBI in five individuals. Results The procedure was well-tolerated by all participants. Continuous TBS failed to induce a significant reduction of MEP amplitudes two weeks after the injury, but response to cTBS normalized six weeks following injury, as a majority of patients became asymptomatic. Conclusions These preliminary results suggest that cTBS can be used to assess M1 synaptic plasticity in the acute and sub-acute phases following mTBI and may provide insights into neurobiological substrates of symptoms and consequences of mTBI. PMID:25735241

  13. Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: Why, how, and what is the ultimate goal?

    Directory of Open Access Journals (Sweden)

    Catarina eFreitas

    2013-04-01

    Full Text Available Sustaining brain and cognitive function across the lifespan must be one of the main biomedical goals of the XXI Century. We need to aim to prevent neuropsychiatric diseases and, thus, to identify and remediate brain and cognitive dysfunction before clinical symptoms manifest and disability develops. The brain undergoes a complex array of changes from developmental years into old age, putatively the underpinnings of changes in cognition and behavior throughout life. A functionally ‘normal’ brain is a changing brain, a brain whose capacity and mechanisms of change are shifting appropriately from one time-point to another in a given individual’s life. Therefore, assessing the mechanisms of brain plasticity across the lifespan is critical to gain insight into an individual’s brain health. Indexing brain plasticity in humans is possible with transcranial magnetic stimulation (TMS, which, in combination with neuroimaging, provides a powerful tool for exploring local cortical and brain network plasticity. Here, we review investigations to date, summarize findings, and discuss some of the challenges that need to be solved to enhance the use of TMS measures of brain plasticity across all ages. Ultimately, TMS measures of plasticity can become the foundation for a brain health index to enable objective correlates of an individual’s brain health over time, assessment across diseases and disorders, and reliable evaluation of indicators of efficacy of future preventive and therapeutic interventions.

  14. Brain activity modification produced by a single radioelectric asymmetric brain stimulation pulse: a new tool for neuropsychiatric treatments. Preliminary fMRI study

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-10-01

    Full Text Available Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna1 1Department of Neuro-Psycho-Physio Pathology, Rinaldi Fontani Institute, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, Italy Purpose: Radioelectric asymmetric brain stimulation technology with its treatment protocols has shown efficacy in various psychiatric disorders. The aim of this work was to highlight the mechanisms by which these positive effects are achieved. The current study was conducted to determine whether a single 500-millisecond radioelectric asymmetric conveyor (REAC brain stimulation pulse (BSP, applied to the ear, can effect a modification of brain activity that is detectable using functional magnetic resonance imaging (fMRI. Methods: Ten healthy volunteers, six females and four males, underwent fMRI during a simple finger-tapping motor task before and after receiving a single 500-millisecond REAC-BSP. Results: The fMRI results indicate that the average variation in task-induced encephalic activation patterns is lower in subjects following the single REAC pulse. Conclusion: The current report demonstrates that a single REAC-BSP is sufficient to modulate brain activity in awake subjects, able to be measured using fMRI. These initial results open new perspectives into the understanding of the effects of weak and brief radio pulses upon brain activity, and provide the basis for further indepth studies using REAC-BSP and fMRI. Keywords: fMRI, brain stimulation, brain modulation, REAC, neuropsychiatric treatments

  15. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies.

    Science.gov (United States)

    Grahn, Peter J; Mallory, Grant W; Khurram, Obaid U; Berry, B Michael; Hachmann, Jan T; Bieber, Allan J; Bennet, Kevin E; Min, Hoon-Ki; Chang, Su-Youne; Lee, Kendall H; Lujan, J L

    2014-01-01

    Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a "smart" neuroprosthetic system for treatment of neurologic and psychiatric disorders

  16. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies.

    Directory of Open Access Journals (Sweden)

    Peter Jonas Grahn

    2014-06-01

    Full Text Available Current strategies for optimizing deep brain stimulation (DBS therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS.Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a smart neuroprosthetic system for treatment of neurologic and

  17. Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions.

    Science.gov (United States)

    Najafi, Mahshid; McMenamin, Brenton W; Simon, Jonathan Z; Pessoa, Luiz

    2016-07-15

    Large-scale analysis of functional MRI data has revealed that brain regions can be grouped into stable "networks" or communities. In many instances, the communities are characterized as relatively disjoint. Although recent work indicates that brain regions may participate in multiple communities (for example, hub regions), the extent of community overlap is poorly understood. To address these issues, here we investigated large-scale brain networks based on "rest" and task human functional MRI data by employing a mixed-membership Bayesian model that allows each brain region to belong to all communities simultaneously with varying membership strengths. The approach allowed us to 1) compare the structure of disjoint and overlapping communities; 2) determine the relationship between functional diversity (how diverse is a region's functional activation repertoire) and membership diversity (how diverse is a region's affiliation to communities); 3) characterize overlapping community structure; 4) characterize the degree of non-modularity in brain networks; 5) study the distribution of "bridges", including bottleneck and hub bridges. Our findings revealed the existence of dense community overlap that was not limited to "special" hubs. Furthermore, the findings revealed important differences between community organization during rest and during specific task states. Overall, we suggest that dense overlapping communities are well suited to capture the flexible and task dependent mapping between brain regions and their functions. PMID:27129758

  18. Neuronal activation by electrical neuromuscular stimulation in hemiplegic patients demonstrated with 99m-Tc-ECD brain SPECT

    International Nuclear Information System (INIS)

    Electrical neuromuscular stimulation (ENS) has been shown to improve volitional movement of upper limbs and decrease muscle hypertonia in hemiplegic patients. Aim: The purpose of this study was to demonstrate regional cerebral perfusion changes secondary to neuronal activation after ENS using 99mTc-ECD SPECT and to correlate these findings with clinical improvement. Materials and Methods: Nine hemiplegic and 3 paraparetic patients, with 14 to 59 years of age, 10 males and 2 females, were studied. ENS was performed for 14 weeks in 45-minute sessions on the muscles involved in hand opening and closing. Each patient was submitted to neurological examination before and after treatment and underwent three 99mTc-ECD SPECT studies: a pre-treatment study; a study performed during the first ENS session; and the third study during the last ENS session (after 14 weeks of treatment). Visual analysis of brain SPECT images was performed by two experienced nuclear physicians. Region-to-pons ratio (R/PO) was obtained for 15 brain regions. An asymmetry index (AI) was also calculated for all regions using the equation: AI=2X(R-L)/(R+L), where R is right and L is left. The visual and semi-quantitative results were compared in the three studies. Results: Visual analysis revealed perfusion improvement mainly in areas adjacent to the brain lesion (penumbra) but also in the contra-lateral cerebral hemisphere. Perfusion improvement was found in the frontal lobe (5 patients), fronto-parietal (1), fronto-temporal (1), temporal (2), basal ganglia (5) and in the thalami (1). In the pre-treatment study, 8 patients showed cerebellar diaschisis, which decreased during treatment in 2 patients and increased in 2. The asymmetry index showed significant variability among the three studies in 8 regions. The R/PO ratio did not correlate with the visual analysis. Neurological examination showed significant improvement in 10 patients, 9 of which showed perilesional brain perfusion improvement

  19. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  20. Deep brain stimulation of the ventral striatum increases BDNF in the fear extinction circuit

    Directory of Open Access Journals (Sweden)

    Fabricio H Do-Monte

    2013-08-01

    Full Text Available Deep brain stimulation (DBS of the ventral capsule/ventral striatum (VC/VS reduces the symptoms of treatment-resistant obsessive compulsive disorder (OCD, and improves response to extinction-based therapies. We recently reported that DBS-like stimulation of a rat homologue of VC/VS, the dorsal-VS, reduced conditioned fear and enhanced extinction memory (Rodriguez-Romaguera et al, 2012. In contrast, DBS of the ventral-VS had the opposite effects. To examine possible mechanisms, we assessed the effects of VS DBS on the expression of the neural activity marker Fos and brain-derived neurotrophic factor (BDNF, a key mediator of extinction plasticity in prefrontal-amygdala circuits. Consistent with decreased fear expression, DBS of dorsal-VS increased Fos expression in prelimbic and infralimbic prefrontal cortices and in the lateral division of the central nucleus of amygdala, an area that inhibits amygdala output. Consistent with improved extinction memory, we found that DBS of dorsal-VS, but not ventral-VS, increased neuronal BDNF expression in prelimbic and infralimbic prefrontal cortices. These rodent findings are consistent with the idea that clinical DBS of VC/VS may augment fear extinction through an increase in BDNF expression.

  1. Deep brain stimulation of the ventral striatum increases BDNF in the fear extinction circuit.

    Science.gov (United States)

    Do-Monte, Fabricio H; Rodriguez-Romaguera, Jose; Rosas-Vidal, Luis E; Quirk, Gregory J

    2013-01-01

    Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) reduces the symptoms of treatment-resistant obsessive compulsive disorder (OCD), and improves response to extinction-based therapies. We recently reported that DBS-like stimulation of a rat homologue of VC/VS, the dorsal-VS, reduced conditioned fear and enhanced extinction memory (Rodriguez-Romaguera et al., 2012). In contrast, DBS of the ventral-VS had the opposite effects. To examine possible mechanisms of these effects, we assessed the effects of VS DBS on the expression of the neural activity marker Fos and brain-derived neurotrophic factor (BDNF), a key mediator of extinction plasticity in prefrontal-amygdala circuits. Consistent with decreased fear expression, DBS of dorsal-VS increased Fos expression in prelimbic and infralimbic prefrontal cortices and in the lateral division of the central nucleus of amygdala, an area that inhibits amygdala output. Consistent with improved extinction memory, we found that DBS of dorsal-VS, but not ventral-VS, increased neuronal BDNF expression in prelimbic and infralimbic prefrontal cortices. These rodent findings are consistent with the idea that clinical DBS of VC/VS may augment fear extinction through an increase in BDNF expression. PMID:23964215

  2. Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Moussa A. Chalah

    2015-11-01

    Full Text Available Multiple sclerosis (MS is a chronic progressive inflammatory disease of the central nervous system and the major cause of non-traumatic disability in young adults. Fatigue is a frequent symptom reported by the majority of MS patients during their disease course and drastically af-fects their quality of life. Despite its significant prevalence and impact, the underlying patho-physiological mechanisms are not well elucidated. MS fatigue is still considered the result of multifactorial and complex constellations, and is commonly classified into primary fatigue related to the pathological changes of the disease itself, and secondary fatigue attributed to mimicking symptoms, comorbid sleep and mood disorders, and medications side effects. Data from neuroimaging, neurophysiology, neuroendocrine and neuroimmune studies have raised hypotheses regarding the origin of this symptom, some of which have succeeded in identifying an association between MS fatigue and structural or functional abnormalities within various brain networks. Hence, the aim of this work is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the emergent use of noninvasive brain stimulation (NIBS techniques as potential treatments. This will include a presentation of the various NIBS modalities and a proposition of their potential mechanisms of action in this context. Specific issues related to the value of transcranial direct current stimulation will be addressed.

  3. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jinqiao, E-mail: jinqiao1977@163.com [Institute of Pediatrics, Children' s Hospital of Fudan University (China); Sha, Bin [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Zhou, Wenhao, E-mail: zhou_wenhao@yahoo.com.cn [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Yang, Yi [Institute of Pediatrics, Children' s Hospital of Fudan University (China)

    2010-03-26

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  4. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette's syndrome.

    Directory of Open Access Journals (Sweden)

    Nicholas Maling

    Full Text Available Tourette syndrome (TS is an idiopathic, childhood-onset neuropsychiatric disorder, which is marked by persistent multiple motor and phonic tics. The disorder is highly disruptive and in some cases completely debilitating. For those with severe, treatment-refractory TS, deep brain stimulation (DBS has emerged as a possible option, although its mechanism of action is not fully understood. We performed a longitudinal study of the effects of DBS on TS symptomatology while concomitantly examining neurophysiological dynamics. We present the first report of the clinical correlation between the presence of gamma band activity and decreased tic severity. Local field potential recordings from five subjects implanted in the centromedian nucleus (CM of the thalamus revealed a temporal correlation between the power of gamma band activity and the clinical metrics of symptomatology as measured by the Yale Global Tic Severity Scale and the Modified Rush Tic Rating Scale. Additional studies utilizing short-term stimulation also produced increases in gamma power. Our results suggest that modulation of gamma band activity in both long-term and short-term DBS of the CM is a key factor in mitigating the pathophysiology associated with TS.

  5. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease

    Science.gov (United States)

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir

    2016-01-01

    Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise

  6. Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review

    Directory of Open Access Journals (Sweden)

    Callaway Enoch

    2010-03-01

    Full Text Available Abstract Background In spite of advances in psychotherapy and pharmacotherapy, there are still a significant number of patients with depression and obsessive-compulsive disorder that are not aided by either intervention. Although still in the experimental stage, deep brain stimulation (DBS offers many advantages over other physically-invasive procedures as a treatment for these psychiatric disorders. The purpose of this study is to systematically review reports on clinical trials of DBS for obsessive-compulsive disorder (OCD and treatment-resistant depression (TRD. Locations for stimulation, success rates and effects of the stimulation on brain metabolism are noted when available. The first observation of the effects of DBS on OCD and TRD came in the course of using DBS to treat movement disorders. Reports of changes in OCD and depression during such studies are reviewed with particular attention to electrode locations and associated adverse events; although these reports were adventitious observations rather than planned. Subsequent studies have been guided by more precise theories of structures involved in DBS and OICD. This study suggests stimulation sites and prognostic indicators for DBS. We also briefly review tractography, a relatively new procedure that holds great promise for the further development of DBS. Methods Articles were retrieved from MEDLINE via PubMed. Relevant references in retrieved articles were followed up. We included all articles reporting on studies of patients selected for having OCD or TRD. Adequacy of the selected studies was evaluated by the Jadad scale. Evaluation criteria included: number of patients, use of recognized psychiatric rating scales, and use of brain blood flow measurements. Success rates classified as "improved" or "recovered" were recorded. Studies of DBS for movement disorders were included if they reported coincidental relief of depression or reduction in OCD. Most of the studies involved small

  7. Noninvasive brain stimulation by radioelectric asymmetric conveyor in the treatment of agoraphobia: open-label, naturalistic study

    Directory of Open Access Journals (Sweden)

    Mannu P

    2011-11-01

    Full Text Available Piero Mannu, Salvatore Rinaldi, Vania Fontani, Alessandro Castagna, Matteo Lotti MargottiDepartment of Neuro Psycho Physio Pathology, Rinaldi Fontani Institute, Florence, ItalyBackground: Agoraphobia is considered to be the most serious complication of panic disorder. It involves progressive development of debilitating anxiety symptoms related to being in situations where one would be extremely embarrassed and could not be rescued in the case of a panic attack. This study aimed to investigate the efficacy of noninvasive brain stimulation using a radioelectric asymmetric conveyor (REAC for agoraphobia.Patients and methods: Twenty-three patients (3 males and 20 females suffering from agoraphobia and without a history of panic disorder were evaluated by a psychiatrist using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, and the Agoraphobia Scale (AS. The patients were subjected to two 18-session cycles of noninvasive brain stimulation with the REAC, according to an established therapeutic protocol called neuro-psycho-physical optimization.Results: Analyzing the anxiety and avoidance parameters of the AS after the first and second cycles of REAC treatment revealed variation in levels of response to treatment, including weak (AS item 7, moderate (AS items 10 and 13, and good responses (AS items 1–6, 8, 9, 11, 12, and 14–20.Conclusion: These results highlight the potential of the REAC to treat complex clinical situations such as agoraphobia, which is typically resistant to pharmacologic treatments. Furthermore, these data show the advantages of REAC treatment, even compared with modern cognitive behavioral therapy, including a relatively rapid and “stable” clinical response (just over 6 months and economic cost.Keywords: anxiety, avoidance, fear, REAC

  8. Resuscitation therapy for traumatic brain injury-induced coma in rats:mechanisms of median nerve electrical stimulation

    Institute of Scientific and Technical Information of China (English)

    Zhen Feng; Ying-jun Zhong; Liang Wang; Tian-qi Wei

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually in-creased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our ifndings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the pre-frontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  9. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  10. The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals.

    Science.gov (United States)

    Wexler, Anna

    2016-04-01

    Scientists and neuroethicists have recently drawn attention to the ethical and regulatory issues surrounding the do-it-yourself (DIY) brain stimulation community, which comprises individuals stimulating their own brains with transcranial direct current stimulation (tDCS) for self-improvement. However, to date, existing regulatory proposals and ethical discussions have been put forth without engaging those involved in the DIY tDCS community or attempting to understand the nature of their practices. I argue that to better contend with the growing ethical and safety concerns surrounding DIY tDCS, we need to understand the practices of the community. This study presents the results of a preliminary inquiry into the DIY tDCS community, with a focus on knowledge that is formed, shared and appropriated within it. I show that when making or acquiring a device, DIYers (as some members call themselves) produce a body of knowledge that is completely separate from that of the scientific community, and share it via online forums, blogs, videos and personal communications. However, when applying tDCS, DIYers draw heavily on existing scientific knowledge, posting links to academic journal articles and scientific resources and adopting the standardised electrode placement system used by scientists. Some DIYers co-opt scientific knowledge and modify it by creating their own manuals and guides based on published papers. Finally, I explore how DIYers cope with the methodological limitations inherent in self-experimentation. I conclude by discussing how a deeper understanding of the practices of DIY tDCS has important regulatory and ethical implications. PMID:26324456

  11. Brain SPECT guided repetitive transcranial magnetic stimulation (rTMS) in treatment resistant major depressive disorder.

    Science.gov (United States)

    Jha, Shailesh; Chadda, Rakesh K; Kumar, Nand; Bal, C S

    2016-06-01

    Repetitive transcranial magnetic stimulation (rTMS) has emerged as a potential treatment in treatment resistant major depressive disorder (MDD). However, there is no consensus about the exact site of stimulation for rTMS. Single-photon emission computed tomography (SPECT) offers a potential technique in deciding the site of stimulation. The present study was conducted to assess the difference in outcome of brain SPECT assisted rTMS versus standard protocol of twenty sessions of high frequency rTMS as add on treatment in 20 patients with treatment resistant MDD, given over a period of 4 weeks. Thirteen subjects (group I) received high frequency rTMS over an area of hypoperfusion in the prefrontal cortex, as identified on SPECT, whereas 7 subjects (group II) were administered rTMS in the left dorsoslateral prefrontal cortex (DLPFC) area. Improvement was monitored using standardized instruments. Patients in the group I showed a significantly better response compared to those in the group II. In group I, 46% of the subjects were responders on MADRS, 38% on BDI and 77% on CGI. The parallel figures of responders in Group II were 0% on MADRS, 14% on BDI and 43% on CGI. There were no remitters in the study. No significant untoward side effects were noticed. The study had limitations of a small sample size and non-controlled design, and all the subjects were also receiving the standard antidepressant therapy. Administration of rTMS over brain SPECT specified area of hypoperfusion may have a better clinical outcome compared to the standard protocol. PMID:27208445

  12. Effects of STN and GPi deep brain stimulation on impulse control disorders and dopamine dysregulation syndrome.

    Directory of Open Access Journals (Sweden)

    Sarah J Moum

    Full Text Available OBJECTIVE: Impulse control disorders (ICDs and dopamine dysregulation syndrome (DDS are important behavioral problems that affect a subpopulation of patients with Parkinson's disease (PD and typically result in markedly diminished quality of life for patients and their caregivers. We aimed to investigate the effects of subthalamic nucleus (STN and internal globus pallidus (GPi deep brain stimulation (DBS on ICD/DDS frequency and dopaminergic medication usage. METHODS: A retrospective chart review was performed on 159 individuals who underwent unilateral or bilateral PD DBS surgery in either STN or GPi. According to published criteria, pre- and post-operative records were reviewed to categorize patients both pre- and post-operatively as having ICD, DDS, both ICD and DDS, or neither ICD nor DDS. Group differences in patient demographics, clinical presentations, levodopa equivalent dose (LED, and change in diagnosis following unilateral/bilateral by brain target (STN or GPi DBS placement were examined. RESULTS: 28 patients met diagnostic criteria for ICD or DDS pre- or post-operatively. ICD or DDS classification did not differ by GPi or STN target stimulation. There was no change in DDS diagnosis after unilateral or bilateral stimulation. For ICD, diagnosis resolved in 2 of 7 individuals after unilateral or bilateral DBS. Post-operative development of these syndromes was significant; 17 patients developed ICD diagnoses post-operatively with 2 patients with pre-operative ICD developing DDS post-operatively. CONCLUSIONS: Unilateral or bilateral DBS did not significantly treat DDS or ICD in our sample, even though a few cases of ICD resolved post-operatively. Rather, our study provides preliminary evidence that DDS and ICD diagnoses may emerge following DBS surgery.

  13. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes

    Science.gov (United States)

    Howell, Bryan; Huynh, Brian; Grill, Warren M.

    2015-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS. Approach. We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo. Main results. Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45-84% less power. Similar gains in selectivity were evident with the optimized electrodes: 50% of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44 to 48% with the standard electrode to 0-14% with bipolar designs; 50% of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53 to 55% with the standard electrode to 1-5% with an array of cathodes; and, 50% of TAs could be activated while reducing activation of AOPs from 43 to 100% with the standard electrode to 2-15% with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation. Significance. Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes.

  14. Stimulation of the sphenopalatine ganglion induces reperfusion and blood-brain barrier protection in the photothrombotic stroke model.

    Directory of Open Access Journals (Sweden)

    Haviv Levi

    Full Text Available PURPOSE: The treatment of stroke remains a challenge. Animal studies showing that electrical stimulation of the sphenopalatine ganglion (SPG exerts beneficial effects in the treatment of stroke have led to the initiation of clinical studies. However, the detailed effects of SPG stimulation on the injured brain are not known. METHODS: The effect of acute SPG stimulation was studied by direct vascular imaging, fluorescent angiography and laser Doppler flowmetry in the sensory motor cortex of the anaesthetized rat. Focal cerebral ischemia was induced by the rose bengal (RB photothrombosis method. In chronic experiments, SPG stimulation, starting 15 min or 24 h after photothrombosis, was given for 3 h per day on four consecutive days. Structural damage was assessed using histological and immunohistochemical methods. Cortical functions were assessed by quantitative analysis of epidural electro-corticographic (ECoG activity continuously recorded in behaving animals. RESULTS: Stimulation induced intensity- and duration-dependent vasodilation and increased cerebral blood flow in both healthy and photothrombotic brains. In SPG-stimulated rats both blood brain-barrier (BBB opening, pathological brain activity and lesion volume were attenuated compared to untreated stroke animals, with no apparent difference in the glial response surrounding the necrotic lesion. CONCLUSION: SPG-stimulation in rats induces vasodilation of cortical arterioles, partial reperfusion of the ischemic lesion, and normalization of brain functions with reduced BBB dysfunction and stroke volume. These findings support the potential therapeutic effect of SPG stimulation in focal cerebral ischemia even when applied 24 h after stroke onset and thus may extend the therapeutic window of currently administered stroke medications.

  15. Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges

    Directory of Open Access Journals (Sweden)

    Carmelo Mario Vicario

    2013-11-01

    Full Text Available In the last decades interest in application of non-invasive brain stimulation for enhancing neural functions is growing continuously. However, the use of such techniques in pediatric populations remains rather limited and mainly confined to the treatment of severe neurological and psychiatric diseases. In this article we provide a complete review of non-invasive brain stimulation studies conducted in pediatric populations. We also provide a brief discussion about the current limitations and future directions in a field of research still very young and full of issues to be explored.

  16. Effect of deep brain stimulation on substantia nigra neurons in a rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    WU Sheng-tian; MA Yu; ZHANG Kai; ZHANG Jian-guo

    2012-01-01

    Background Parkinson's disease(PD)is a common neurodegenerative disease,which occurs mainly in the elderly.Recent studies have demonstrated that apoptosis plays an important role in the occurrence and development of PD.Subthalamic nucleus deep brain stimulation(STN-DBS)has been recognized as an effective treatment for PD.Recent clinical observations have shown that STN-DBS was able to delay early PD progression,and experiments in animal models have also demonstrated a protective effect of STN-DBS on neurons.However,the correlation between the neuron-protective effect of STN-DBS and the progression of substantia nigra pars compacta(SNc)neuronal apoptosis is still unknown.The aim of this study was to investigate the protective effect and potential mechanism of STN-DBS on SNc neurons in PD rats.Methods After the establishment of a PD rat model by unilateral/2-point injection of 6-hydroxydopamine in the medial forebrain bundle of the brain,DBS by implanting electrodes in the STN was administered.Behavioral changes were observed,and morphological changes of SNc neurons were analyzed by Nissl staining and DNA in situ end-labeling.Through extracellular recording of single neuron discharges and microelectrophoresis,the causes of and changes in SNc excitability during STN-DBS were analyzed,and the protective effect and potential mechanism of action of STN-DBS on SNc neurons in PD rats was investigated.Results SNc neuron apoptosis was significantly decreased(P<0.05)in the stimulation group,compared with the sham stimulation PD group.Spontaneous discharges of SNc neurons were observed in normal rats and PD model rats,and the mean frequency of spontaneous discharges of SNc neurons in normal rats((40.65±11.08)Hz)was higher than that of residual SNc neurons in PD rats((36.71±9.23)Hz).Electrical stimulation of the STN in rats was associated with elevated excitation in unilateral SNc neurons.However,administering the gamma-aminobutyric acid receptor blocker

  17. Selective sensation based brain-computer interface via mechanical vibrotactile stimulation.

    Directory of Open Access Journals (Sweden)

    Lin Yao

    Full Text Available In this work, mechanical vibrotactile stimulation was applied to subjects' left and right wrist skins with equal intensity, and a selective sensation perception task was performed to achieve two types of selections similar to motor imagery Brain-Computer Interface. The proposed system was based on event-related desynchronization/synchronization (ERD/ERS, which had a correlation with processing of afferent inflow in human somatosensory system, and attentional effect which modulated the ERD/ERS. The experiments were carried out on nine subjects (without experience in selective sensation, and six of them showed a discrimination accuracy above 80%, three of them above 95%. Comparative experiments with motor imagery (with and without presence of stimulation were also carried out, which further showed the feasibility of selective sensation as an alternative BCI task complementary to motor imagery. Specifically there was significant improvement ([Formula: see text] from near 65% in motor imagery (with and without presence of stimulation to above 80% in selective sensation on some subjects. The proposed BCI modality might well cooperate with existing BCI modalities in the literature in enlarging the widespread usage of BCI system.

  18. Modeling and automatic feedback control of tremor: adaptive estimation of deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Muhammad Rehan

    Full Text Available This paper discusses modeling and automatic feedback control of (postural and rest tremor for adaptive-control-methodology-based estimation of deep brain stimulation (DBS parameters. The simplest linear oscillator-based tremor model, between stimulation amplitude and tremor, is investigated by utilizing input-output knowledge. Further, a nonlinear generalization of the oscillator-based tremor model, useful for derivation of a control strategy involving incorporation of parametric-bound knowledge, is provided. Using the Lyapunov method, a robust adaptive output feedback control law, based on measurement of the tremor signal from the fingers of a patient, is formulated to estimate the stimulation amplitude required to control the tremor. By means of the proposed control strategy, an algorithm is developed for estimation of DBS parameters such as amplitude, frequency and pulse width, which provides a framework for development of an automatic clinical device for control of motor symptoms. The DBS parameter estimation results for the proposed control scheme are verified through numerical simulations.

  19. Nonmotor Symptoms and Subthalamic Deep Brain Stimulation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Han-Joon Kim

    2015-05-01

    Full Text Available Subthalamic deep brain stimulation (STN DBS is an established treatment for the motor symptoms in patients with advanced Parkinson’s disease (PD. In addition to improvements in motor symptoms, many studies have reported changes in various nonmotor symptoms (NMSs after STN DBS in patients with PD. Psychiatric symptoms, including depression, apathy, anxiety, and impulsivity, can worsen or improve depending on the electrical stimulation parameters, the locations of the stimulating contacts within the STN, and changes in medications after surgery. Global cognitive function is not affected by STN DBS, and there is no increase in the incidence of dementia after STN DBS compared to that after medical treatment, although clinically insignificant declines in verbal fluency have been consistently reported. Pain, especially PD-related pain, improves with STN DBS. Evidence regarding the effects of STN DBS on autonomic symptoms and sleep-related problems is limited and remains conflicting. Many symptoms of nonmotor fluctuations, which are occasionally more troublesome than motor fluctuations, improve with STN DBS. Although it is clear that NMSs are not target symptoms for STN DBS, NMSs have a strong influence on the quality of life of patients with PD, and clinicians should thus be aware of these NMSs when deciding whether to perform surgery and should pay attention to changes in these symptoms after STN DBS to ensure the optimal care for patients.

  20. [The transition of deep brain stimulation from disease specific to symptom specific indications].

    Science.gov (United States)

    Okun, Michael S

    2012-01-01

    The success of chronic deep brain stimulation (DBS) and electrical neuro-network modulation (ENM) to address neurological and neuropsychiatric disorders has led the Food and Drug Administration (FDA), and also other worldwide regulatory agencies to grant approval for the use of DBS in specific disorders. In the United States, DBS is FDA approved for the treatment of advanced Parkinson's disease (PD), essential tremor (ET), obsessive compulsive disorder (OCD), and for dystonia. OCD and dystonia have been approved under a mechanism referred to as a humanitarian device exemption (HDE). However, as the field of DBS and ENM evolve there has been a shift in practice patterns from targeting diseases to targeting specific and disabling symptoms. This shift has been driving interdisciplinary DBS boards to collect, and to address symptom profiles in all potential DBS candidates. Based on a specific symptom profile, a strategic and personalized medicine approach can be undertaken. The personalized approach will take into consideration the brain target, a unilateral versus a bilateral procedure, and the potential for use of more than one DBS lead per brain hemisphere. Additionally, a personalized approach to DBS will also facilitate improved pre-operative medication adjustments, as well as optimal post-operative medication, behavioral, and device management. PMID:23196455

  1. When benefitting a patient increases the risk for harm for third persons - the case of treating pedophilic Parkinsonian patients with deep brain stimulation.

    Science.gov (United States)

    Müller, Sabine; Walter, Henrik; Christen, Markus

    2014-01-01

    This paper investigates the question whether it is ethically justified to treat Parkinsonian patients with known or suspected pedophilia with deep brain stimulation - given increasing evidence that this treatment might cause impulse control disorders, disinhibition, and hypersexuality. This specific question is not as exotic as it looks at a first glance. First, the same issue is raised for all other types of sexual orientation or behavior which imply a high risk for harming other persons, e.g. sexual sadism. Second, there are also several (psychotropic) drugs as well as legal and illegal leisure drugs which bear severe risks for other persons. We show that Beauchamp and Childress' biomedical ethics fails to derive a veto against medical interventions which produce risks for third persons by making the patients dangerous to others. Therefore, our case discussion reveals a blind spot of the ethics of principles. Although the first intuition might be to forbid the application of deep brain stimulation to pedophilic patients, we argue against such a simple way out, since in some patients the reduction of dopaminergic drugs allowed by deep brain stimulation of the nucleus subthalamicus improves impulsive control disorders, including hypersexuality. Therefore, we propose a strategy consisting of three steps: (1) risk assessment, (2) shared decision-making, and (3) risk management and safeguards. PMID:24289863

  2. [Obsessive-compulsive disorder, a new model of basal ganglia dysfunction? Elements from deep brain stimulation studies].

    Science.gov (United States)

    Haynes, W I A; Millet, B; Mallet, L

    2012-01-01

    Deep brain stimulation was first developed for movement disorders but is now being offered as a therapeutic alternative in severe psychiatric disorders after the failure of conventional therapies. One of such pathologies is obsessive-compulsive disorder. This disorder which associates intrusive thoughts (obsessions) and repetitive irrepressible rituals (compulsions) is characterized by a dysfunction of a cortico-subcortical loop. After having reviewed the pathophysiological evidence to show why deep brain stimulation was an interesting path to take for severe and resistant cases of obsessive-compulsive disorder, we will present the results of the different clinical trials. Finally, we will provide possible mechanisms for the effects of deep brain stimulation in this pathology. PMID:22898561

  3. Complementary Metal Oxide Semiconductor Based Multimodal Sensor for In vivo Brain Function Imaging with a Function for Simultaneous Cell Stimulation

    Science.gov (United States)

    Tagawa, Ayato; Mitani, Masahiro; Minami, Hiroki; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2010-04-01

    We have developed a multimodal complementary metal oxide semiconductor (CMOS) sensor device embedded with Au electrodes for fluorescent imaging and cell stimulation in the deep brain of mice. The Au electrodes were placed on the pixel array of the image sensor. Windows over the photodiodes were opened in the electrode area for simultaneous fluorescent imaging and cell stimulation in the same area of the brain tissue. The sensor chip was shaped like a shank and was packaged by two packaging methods for high strength or minimal invasion. The experimental results showed that the 90 ×90 µm2 Au electrodes with windows were capable of injecting theta burst stimulation (TBS)-like current pulses at 0.2-1 mA in a saline solution. We successfully demonstrated that fluorescent imaging and TBS-like current injection can be simultaneously performed in the electrode area of a brain phantom.

  4. Disease-specific longevity of impulse generators in deep brain stimulation and review of the literature.

    Science.gov (United States)

    van Riesen, Christoph; Tsironis, Georg; Gruber, Doreen; Klostermann, Fabian; Krause, Patricia; Schneider, Gerd Helge; Kupsch, Andreas

    2016-06-01

    Deep brain stimulation (DBS) represents an established and internationally approved therapy for movement disorders. In the present retrospective analysis, we evaluated disease-specific longevity of dual channel impulse generators (IPG) used in different movement disorders. We correlated the battery lifetime with electrical stimulation settings, "total electrical energy delivered" (TEED), stimulation modi (monopolar, double monopolar and bipolar) and targets. Specifically, we reviewed the longevity and stimulation settings of 464 IPGs implanted between 1996 until 2011 in a single university center. Disease entities comprised Parkinson's disease (PD, n = 257), dystonia (n = 130) and essential tremor (ET, n = 50). Further subanalyses aimed at assessing differential longevity in different subtypes of PD and dystonia. The main finding relates to longer IPG longevity in ET (thalamic DBS) and PD (subthalamic DBS) vs. dystonia (pallidal DBS; 71.9 ± 6.7 vs. 51.5 ± 2.3 vs. 37 ± 2 months). In PD the tremor-dominant type was associated with a significant shorter battery survival than in the akinetic-rigid type without tremor or the "balanced" type with tremor, bradykinesia and rigidity (38.8 ± 3.9 vs. 53.6 ± 3.4 vs. 58.8 ± 4.1 months), while there were no significant differences in longevity between the subtypes of dystonia. Frequency, amplitude, pulse widths and TEED correlated inversely with battery lifetime. Pallidal DBS in dystonia is associated with a shorter lifetime of IPGs than subthalamic or thalamic DBS for PD or ET. The present results may contribute to the rapidly evolving refinement of DBS devices. Future studies that assess energy consumption both in patients with and without IPG replacement could help to avoid potential underestimation of longevity of IPGs. PMID:27198700

  5. Transcranial magnetic stimulation of the brain: guidelines for pain treatment research.

    Science.gov (United States)

    Klein, Max M; Treister, Roi; Raij, Tommi; Pascual-Leone, Alvaro; Park, Lawrence; Nurmikko, Turo; Lenz, Fred; Lefaucheur, Jean-Pascal; Lang, Magdalena; Hallett, Mark; Fox, Michael; Cudkowicz, Merit; Costello, Ann; Carr, Daniel B; Ayache, Samar S; Oaklander, Anne Louise

    2015-09-01

    Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. Nearby ferromagnetic or electronic implants are contraindications. Adverse effects are minimal, primarily headaches. Single provoked seizures are very rare. Transcranial magnetic stimulation devices are marketed for depression and migraine in the United States and for various indications elsewhere. Although multiple studies report that high-frequency rTMS of the motor cortex reduces neuropathic pain, their quality has been insufficient to support Food and Drug Administration application. Harvard's Radcliffe Institute therefore sponsored a workshop to solicit advice from experts in TMS, pain research, and clinical trials. They recommended that researchers standardize and document all TMS parameters and improve strategies for sham and double blinding. Subjects should have common well-characterized pain conditions amenable to motor cortex rTMS and studies should be adequately powered. They recommended standardized assessment tools (eg, NIH's PROMIS) plus validated condition-specific instruments and consensus-recommended metrics (eg, IMMPACT). Outcomes should include pain intensity and qualities, patient and clinician impression of change, and proportions achieving 30% and 50% pain relief. Secondary outcomes could include function, mood, sleep, and/or quality of life. Minimum required elements include sample sources, sizes, and demographics, recruitment methods, inclusion and exclusion criteria, baseline and posttreatment means and SD, adverse effects, safety concerns, discontinuations, and medication-usage records. Outcomes should be monitored for at least 3 months after initiation

  6. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Luisa Ciobanu

    Full Text Available During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T(2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine. We showed that the brain/vessels contrast in T(2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation.

  7. Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus

    Directory of Open Access Journals (Sweden)

    Dirk De Ridder, Elsa van der Loo, Karolien Van der Kelen, Tomas Menovsky, Paul van de Heyning, Aage Moller

    2007-01-01

    Full Text Available Introduction: Some forms of tinnitus are considered to be auditory phantom phenomena related to reorganization and hyperactivity of the auditory central nervous system. Repetitive transcranial magnetic stimulation (rTMS is a non-invasive tool capable of modulating human brain activity, using single pulse or burst stimuli. Burst rTMS has only been performed in the theta range, and has not been used clinically. The authors analyze whether burst TMS at theta (5 Hz, alpha (10 Hz and beta (20 Hz frequencies can temporarily suppress narrow band noise/white noise tinnitus, which has been demonstrated to be intractable to tonic stimulation. Methods: rTMS is performed both in tonic and burst mode in 46 patients contralateral to the tinnitus side, at 5, 10 and 20 Hz. Fourteen placebo negative rTMS responders are further analyzed. Results: In 5 patients, maximal tinnitus suppression is obtained with theta, in 2 with alpha and in 7 with beta burst stimulation. Burst rTMS suppresses narrow band/white tinnitus much better than tonic rTMS t(13=6.4, p<.000. Women experience greater suppression of their tinnitus with burst stimulation than men, t(12=2.9, p<.05. Furthermore left sided tinnitus is perceived as more distressing on the TQ than right sided tinnitus, t(12=3.2, p<.01. The lower the tinnitus pitch the more effectively rTMS suppresses tinnitus(r=-0.65, p<0.05. Discussion: Burst rTMS can be used clinically, not only theta burst, but also alpha and beta burst. Burst rTMS is capable of suppressing narrow band/white noise tinnitus very much better than tonic rTMS. This could be due the simple fact that burst neuromodulation is more powerful than tonic neuromodulation or to a differential effect of burst and tonic stimulation on the lemniscal and extralemniscal auditory system. In some patients only alpha or beta burst rTMS is capable of suppressing tinnitus, and theta burst not. Therefore in future rTMS studies it could be worthwhile not to limit burst

  8. Biomarkers for Success: Using Neuroimaging to Predict Relapse and Develop Brain Stimulation Treatments for Cocaine-Dependent Individuals.

    Science.gov (United States)

    Hanlon, C A; Dowdle, L T; Jones, J L

    2016-01-01

    Cocaine dependence is one of the most difficult substance use disorders to treat. While the powerful effects of cocaine use on behavior were documented in the 19th century, it was not until the late 20th century that we realized cocaine use was affecting brain tissue and function. Following a brief introduction (Section 1), this chapter will summarize our current knowledge regarding alterations in neural circuit function typically observed in chronic cocaine users (Section 2) and highlight an emerging body of literature which suggests that pretreatment limbic circuit activity may be a reliable predictor of clinical outcomes among individuals seeking treatment for cocaine (Section 3). Finally, as the field of addiction research strives to translate this neuroimaging data into something clinically meaningful, we will highlight several new brain stimulation approaches which utilize functional brain imaging data to design noninvasive brain stimulation interventions for individuals seeking treatment for substance dependence disorders (Section 4). PMID:27503451

  9. Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hesselmann, Volker; Sorger, Bettina; Girnus, Ralf; Lasek, Kathrin; Schulte, Oliver; Krug, Barbara; Lackner, Klaus [Department of Radiology, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924, Cologne (Germany); Maarouf, Mohammad; Sturm, Volker [Department of Stereotaxy and Functional Neurosurgery, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924, Cologne (Germany); Wedekind, Christoph [Department of Neurosurgery, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924, Cologne (Germany); Bunke, Juergen [Philips Medical Systems, Hamburg (Germany)

    2004-04-01

    This article deals with technical aspects of intraoperative functional magnetic resonance imaging (fMRI) for monitoring the effect of deep brain stimulation (DBS) in a patient with Parkinson's disease. Under motor activation, therapeutic high-frequency stimulation of the subthalamic nucleus was accompanied by an activation decrease in the contralateral primary sensorimotor cortex and the ipsilateral cerebellum. Furthermore, an activation increase in the contralateral basal ganglia and insula region were detected. These findings demonstrate that fMRI constitutes a promising clinical application for investigating brain activity changes induced by DBS. (orig.)

  10. Refining language mapping by repetitive navigated transcranial magnetic stimulation in patients with left-sided perisylvian brain lesions

    OpenAIRE

    Ille, Sebastian

    2016-01-01

    The present thesis is based on two publications for which we performed language mapping in patients suffering from left-sided perisylvian brain lesions by repetitive navigated transcranial magnetic stimulation (rTMS), functional magnetic resonance imaging (fMRI), and direct cortical stimulation (DCS) during awake surgery. In summary, we ascertained that rTMS language mappings should be analyzed with specific thresholds in order to avoid false-positive results. Furthermore, we showed that b...

  11. Retrospective review of factors leading to dissatisfaction with subthalamic nucleus deep brain stimulation during long-term management

    OpenAIRE

    Farris, Sierra; Giroux, Monique

    2013-01-01

    Background: Subthalamic nucleus deep brain stimulation is effective in reducing motor symptoms in appropriately selected patients with Parkinson's disease. We identified factors that contribute to poor outcomes during early, middle and late stages of stimulation management in a series of patients that were referred for troubleshooting poor outcomes. Methods: We performed a retrospective review of 50 patients with bilateral STN DBS seen in our movement disorders clinic with unsatisfactory clin...

  12. A Three Spatial Dimension Wave Latent Force Model for Describing Excitation Sources and Electric Potentials Produced by Deep Brain Stimulation

    OpenAIRE

    Alvarado, Pablo A.; Álvarez, Mauricio A.; Orozco, Álvaro A.

    2016-01-01

    Deep brain stimulation (DBS) is a surgical treatment for Parkinson's Disease. Static models based on quasi-static approximation are common approaches for DBS modeling. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate, as DBS therapeutic results depend on stimulus parameters such as frequency and pulse width, which are related to time variations of the electric fiel...

  13. Comparing the Anticonvulsant Effects of Low Frequency Stimulation of Different Brain Sites on the Amygdala Kindling Acquisition in Rats

    OpenAIRE

    Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Sheibani, Vahid; Shojaei, Amir; Harandi, Shaahin; Mirnajafi-Zadeh, Javad

    2013-01-01

    Low frequency stimulation (LFS) is a potential alternative therapy for epilepsy. However, it seems that the anticonvulsant effects of LFS depend on its target sites in the brain. Thus, the present study was designed to compare the anticonvulsant effects of LFS administered to amygdala, piriform cortex and substantia nigra on amygdala kindling acquisition. In control group, rats were kindled in a chronic manner (one stimulation per 24 h). In other experimental groups, animals received low-freq...

  14. The Sum of lts Parts-Effects of Gastric Distention, Nutrient Content and Sensory Stimulation on Brain Activation

    OpenAIRE

    Spetter, M.S.; Graaf, de, M.; de Mars, M; Viergever, M. A.; Smeets, P.A.M.

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to as...

  15. The Sum of Its Parts—Effects of Gastric Distention, Nutrient Content and Sensory Stimulation on Brain Activation

    OpenAIRE

    Spetter, Maartje S.; de Graaf, Cees; Mars, Monica; Viergever, Max A.; Smeets, Paul A. M.

    2014-01-01

    During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to as...

  16. Understanding deep brain stimulation in obsessive compulsive disorder: A preclinical study into the mechanism of action and behaviour

    OpenAIRE

    Dijk, van, G.

    2013-01-01

    We see a strong impact of deep brain stimulation (DBS) on several aspects of OCD (obsessive compulsive disorder). DBS in different brain areas affects compulsive behaviour, conditioned and unconditioned anxiety. DBS in the internal capsule (IC) shows the most promising behavioural results by uniquely reducing conditioned anxiety and by shortening the compulsive grooming bout in the sapap3 mutant mouse. This suggests that the IC is possibly the best target for DBS in relation to OCD. Further r...

  17. Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation.

    Directory of Open Access Journals (Sweden)

    Terry B Huff

    Full Text Available High-frequency electrical stimulation is becoming a promising therapy for neurological disorders, however the response of the central nervous system to stimulation remains poorly understood. The current work investigates the response of myelin to electrical stimulation by laser-scanning coherent anti-Stokes Raman scattering (CARS imaging of myelin in live spinal tissues in real time. Paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation. Retraction was seen to begin minutes after the onset of stimulation and continue for up to 10 min after stimulation was ceased, but was found to reverse after a 2 h recovery period. The myelin retraction resulted in exposure of Kv 1.2 potassium channels visualized by immunofluorescence. Accordingly, treating the stimulated tissue with a potassium channel blocker, 4-aminopyridine, led to the appearance of a shoulder peak in the compound action potential curve. Label-free CARS imaging of myelin coupled with multiphoton fluorescence imaging of immuno-labeled proteins at the nodes of Ranvier revealed that high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down.

  18. Relationship between calcium entry and ACh release in K+ -stimulated rat brain synaptosomes

    International Nuclear Information System (INIS)

    This paper examines the pattern of Ca++ entry-dependent ACh release in relation to the kinetics of Ca++ entry, and its inactivation in rat brain synaptosomes exposed to 50 mM K0+ for short and prolonged durations. Intrasynaptosomal ACh was radiolabeled from tritium-choline in the presence of 20 um Paraoxon to inhibit the acetylcholinesterase activity. The release of tritium-ACh was studied in superfused synaptosomal beds formed on glass microfiber filters and by rapid filtration. The intermittent stimulation of superfused synaptosomal beds by 3-min pulses of 50 mM K+ evoked decremental output of tritium-ACh which reached nearly undetectable levels after the fifth stimulus

  19. The anteromedial GPi as a new target for deep brain stimulation in obsessive compulsive disorder.

    Science.gov (United States)

    Nair, Girish; Evans, Andrew; Bear, Renee E; Velakoulis, Dennis; Bittar, Richard G

    2014-05-01

    Deep brain stimulation (DBS) is now well established in the treatment of intractable movement disorders. Over the past decade the clinical applications have expanded into the realm of psychosurgery, including depression and obsessive compulsive disorder (OCD). The optimal targets for electrode placement in psychosurgery remain unclear, with numerous anatomical targets reported for the treatment of OCD. We present four patients with Tourette's syndrome and prominent features of OCD who underwent DBS of the anteromedial globus pallidus internus (GPi) to treat their movement disorder. Their pre-operative and post-operative OCD symptoms were compared, and responded dramatically to surgery. On the basis of these results, we propose the anteromedial (limbic) GPi as a potential surgical target for the treatment of OCD, and furnish data supporting its further investigation as a DBS target for the treatment of psychiatric conditions. PMID:24524950

  20. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R;

    2009-01-01

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...... typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted...... in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory...

  1. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    Science.gov (United States)

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. PMID:26348986

  2. Brain electric stimulation in treatment of epilepsy%神经电刺激技术在癫痫治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    杨辉

    2012-01-01

    The treatment of patients with refractory epilepsy has always been challenging. Despite the availability of multiple antiepileptic drugs, approximately 20% - 30% of patients continue to have seizures, and many are not candidates for epilepsy surgery. Currently available treatment options for these unfortunate patients are limited. Brain electric stimulation provides a nondestructive treatment for these patients. Studies of electrical stimulation of the brain in epilepsy treatment begin with the research on cerebellar stimulation. Until now, the potential targets have increased over the years, including cortex, cranial nerve and multiple brain nuclei. With the development of therapeutic brain devices for epilepsy, it is convinced that the brain electric stimulation will become more widely applied in treatment of epilepsy. This overview, combining with literatures and our experiences, briefly summarizes the application of brain electric stimulation in the treatment of epilepsy.

  3. Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model.

    Science.gov (United States)

    Melega, William P; Lacan, Goran; Gorgulho, Alessandra A; Behnke, Eric J; De Salles, Antonio A F

    2012-01-01

    Prior studies of appetite regulatory networks, primarily in rodents, have established that targeted electrical stimulation of ventromedial hypothalamus (VMH) can alter food intake patterns and metabolic homeostasis. Consideration of this method for weight modulation in humans with severe overeating disorders and morbid obesity can be further advanced by modeling procedures and assessing endpoints that can provide preclinical data on efficacy and safety. In this study we adapted human deep brain stimulation (DBS) stereotactic methods and instrumentation to demonstrate in a large animal model the modulation of weight gain with VMH-DBS. Female Göttingen minipigs were used because of their dietary habits, physiologic characteristics, and brain structures that resemble those of primates. Further, these animals become obese on extra-feeding regimens. DBS electrodes were first bilaterally implanted into the VMH of the animals (n = 8) which were then maintained on a restricted food regimen for 1 mo following the surgery. The daily amount of food was then doubled for the next 2 mo in all animals to produce obesity associated with extra calorie intake, with half of the animals (n = 4) concurrently receiving continuous low frequency (50 Hz) VMH-DBS. Adverse motoric or behavioral effects were not observed subsequent to the surgical procedure or during the DBS period. Throughout this 2 mo DBS period, all animals consumed the doubled amount of daily food. However, the animals that had received VMH-DBS showed a cumulative weight gain (6.1±0.4 kg; mean ± SEM) that was lower than the nonstimulated VMH-DBS animals (9.4±1.3 kg; p<0.05), suggestive of a DBS-associated increase in metabolic rate. These results in a porcine obesity model demonstrate the efficacy and behavioral safety of a low frequency VMH-DBS application as a potential clinical strategy for modulation of body weight. PMID:22295102

  4. Comparison of two treatments for coxarthrosis: local hyperthermia versus radio electric asymmetrical brain stimulation

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-07-01

    Full Text Available Alessandro Castagna1, Salvatore Rinaldi1,2, Vania Fontani1, Piero Mannu1, Matteo Lotti Margotti11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyBackground: It is well known that psychological components are very important in the aging process and may also manifest in psychogenic movement disorders, such as coxarthrosis. This study analyzed the medical records of two similar groups of patients with coxarthrosis (n = 15 in each who were treated in two different clinics for rehabilitation therapy.Methods: Patients in Group A were treated with a course of traditional physiotherapy, including sessions of local hyperthermia. Group B patients were treated with only a course of radioelectric asymmetrical brain stimulation (REAC to improve their motor behavior.Results: Group A showed a significant decrease in symptoms of pain and stiffness, and an insignificant improvement in range of motion and muscle bulk. A single patient in this group developed worsened symptoms, and pain did not resolve completely in any patient. The patients in Group B had significantly decreased levels of pain and stiffness, and a significant improvement in range of motion and muscle bulk. No patients worsened in Group B, and the pain resolved completely in one patient.Conclusion: Both treatments were shown to be tolerable and safe. Patients who underwent REAC treatment appeared to have slightly better outcomes, with an appreciable improvement in both their physical and mental states. These aspects are particularly important in the elderly, in whom functional limitation is often associated with or exacerbated by a psychogenic component.Keywords: coxarthrosis, anti-aging, motor behavior, radioelectric asymmetric brain stimulation

  5. Deep brain stimulation versus anterior capsulotomy for obsessive-compulsive disorder: a review of the literature.

    Science.gov (United States)

    Pepper, Joshua; Hariz, Marwan; Zrinzo, Ludvic

    2015-05-01

    Obsessive-compulsive disorder (OCD) is a chronic and debilitating psychiatric condition. Traditionally, anterior capsulotomy (AC) was an established procedure for treatment of patients with refractory OCD. Over recent decades, deep brain stimulation (DBS) has gained popularity. In this paper the authors review the published literature and compare the outcome of AC and DBS targeting of the area of the ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (NAcc). Patients in published cases were grouped according to whether they received AC or DBS and according to their preoperative scores on the Yale-Brown Obsessive-Compulsive Scale (YBOCS), and then separated according to outcome measures: remission (YBOCS score DBS of the VC/VS or the NAcc (mean age 38 years, follow-up 19 months, baseline YBOCS score of 33), and 108 patients underwent AC (mean age 36 years, follow-up 61 months, baseline YBOCS score of 30). In patients treated with DBS there was a 40% decrease in YBOCS score, compared with a 51% decrease for those who underwent AC (p = 0.004). Patients who underwent AC were 9% more likely to go into remission than patients treated with DBS (p = 0.02). No difference in complication rates was noted. Anterior capsulotomy is an efficient procedure for refractory OCD. Deep brain stimulation in the VC/VS and NAcc area is an emerging and promising therapy. The current popularity of DBS over ablative surgery for OCD is not due to nonefficacy of AC, but possibly because DBS is perceived as more acceptable by clinicians and patients. PMID:25635480

  6. Cognitive effects of deep brain stimulation in patients with obsessive–compulsive disorder

    Science.gov (United States)

    Mantione, Mariska; Nieman, Dorien; Figee, Martijn; van den Munckhof, Pepijn; Schuurman, Rick; Denys, Damiaan

    2015-01-01

    Background Deep brain stimulation (DBS) is a promising treatment for treatment-refractory obsessive–compulsive disorder (OCD). However, the effects of DBS on cognitive functioning remain unclear. Therefore, we aimed to assess cognitive safety of DBS for treatment-refractory OCD and the association between clinical changes and cognitive functioning. Methods Patients with treatment-refractory OCD treated with DBS targeted at the nucleus accumbens (NAcc) were compared with a control group of 14 patients with treatment-refractory OCD treated with care as usual. We assessed cognitive functioning at baseline, 3 weeks postoperatively and following 8 months of DBS. We compared change in clinical symptoms with cognitive changes. Results There were 16 patients in the DBS group and 14 patients in the control group. Three weeks postoperatively, the DBS group showed a significantly reduced performance on measures of visual organization and verbal fluency and a trend toward reduced performance on measures of visual memory and abstract reasoning. Cognitive functioning was found to be stable on all other measures. After 8 months of DBS, reduced performances persisted, except for a significant improvement in verbal fluency. Cognitive functioning in all other domains remained unaffected. We found no correlation between improvement of clinical symptoms and cognitive changes. Limitations A limitation of this study was its relatively small sample size. Conclusion Deep brain stimulation targeted at the NAcc may be considered a safe method in terms of cognition because cognitive functioning was unaffected on most neuropsychological measures. Nevertheless, we observed some minor reduced performance on specific measures of executive functioning that were possibly associated with surgical intervention. Our results suggest that severity of OCD symptoms is independent of cognitive functioning. PMID:26107159

  7. Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model.

    Directory of Open Access Journals (Sweden)

    William P Melega

    Full Text Available Prior studies of appetite regulatory networks, primarily in rodents, have established that targeted electrical stimulation of ventromedial hypothalamus (VMH can alter food intake patterns and metabolic homeostasis. Consideration of this method for weight modulation in humans with severe overeating disorders and morbid obesity can be further advanced by modeling procedures and assessing endpoints that can provide preclinical data on efficacy and safety. In this study we adapted human deep brain stimulation (DBS stereotactic methods and instrumentation to demonstrate in a large animal model the modulation of weight gain with VMH-DBS. Female Göttingen minipigs were used because of their dietary habits, physiologic characteristics, and brain structures that resemble those of primates. Further, these animals become obese on extra-feeding regimens. DBS electrodes were first bilaterally implanted into the VMH of the animals (n = 8 which were then maintained on a restricted food regimen for 1 mo following the surgery. The daily amount of food was then doubled for the next 2 mo in all animals to produce obesity associated with extra calorie intake, with half of the animals (n = 4 concurrently receiving continuous low frequency (50 Hz VMH-DBS. Adverse motoric or behavioral effects were not observed subsequent to the surgical procedure or during the DBS period. Throughout this 2 mo DBS period, all animals consumed the doubled amount of daily food. However, the animals that had received VMH-DBS showed a cumulative weight gain (6.1±0.4 kg; mean ± SEM that was lower than the nonstimulated VMH-DBS animals (9.4±1.3 kg; p<0.05, suggestive of a DBS-associated increase in metabolic rate. These results in a porcine obesity model demonstrate the efficacy and behavioral safety of a low frequency VMH-DBS application as a potential clinical strategy for modulation of body weight.

  8. Deep brain stimulation as a treatment for Parkinson's disease related camptocormia.

    Science.gov (United States)

    Chieng, Lee Onn; Madhavan, Karthik; Wang, Michael Y

    2015-10-01

    In this systematic review, we aimed to profile the various reported interventions for camptocormia in Parkinson's disease (PD) and give an overview of the benefits of deep brain stimulation (DBS). Currently, there is no consensus in the literature regarding this. PD manifests in several ways and camptocormia is one of the commonly encountered problems for both spine and functional neurosurgeons. It is a significant forward flexion of the thoracolumbar spine which resolves in the recumbent position. DBS was introduced in 2002 in the USA, and since then its efficacy and applications have tremendously increased. We reviewed the PubMed and Medical Subject Headings database using the phrases "Parkinson's disease" or "Parkinson" in combination with "spinal deformity" or "camptocormia" or "bent spine syndrome" and "deep brain stimulation". Our review was limited to English language literature and we excluded camptocormia of non-PD origin. Our search yielded 361 articles with 131 patients in the pooled data. The majority (59%) of patients were women and the age range was 48-76 years. While half the patients on levodopa (n=42) saw no improvement of their camptocormia, 71% of the lidocaine group (n=27) and 68% of the DBS group (n=32) showed significant improvement. For mean flexion angle, the spinal surgery and DBS group demonstrated profound improvement in the bending angle, 89.9% and 78.2%, respectively. However, major complications following spinal surgery were noted. Although the results are from a small group of patients, DBS has achieved sustained improvement in camptocormia with low postoperative morbidity, and appears to be a promising treatment option. A larger, long term study is necessary to establish comprehensive outcome data. PMID:26321306

  9. Tuning and disrupting the brain – modulating the McGurk illusion with electrical stimulation

    Directory of Open Access Journals (Sweden)

    Lotfi B Merabet

    2014-08-01

    Full Text Available In the so-called McGurk illusion, when the synchronized presentation of the visual stimulus /ga/ is paired with the auditory stimulus /ba/, people in general hear it as /da/. Multisensory integration processing underlying this illusion seems to occur within the Superior Temporal Sulcus (STS. Herein, we present evidence demonstrating that bilateral cathodal transcranial direct current stimulation (tDCS of this area can decrease the McGurk illusion-type responses. Additionally, we show that the manipulation of this audio-visual integrated output occurs irrespective of the number of eye-fixations on the mouth of the speaker. Bilateral anodal tDCS of the Parietal Cortex also modulates the illusion, but in the opposite manner, inducing more illusion-type responses. This is the first demonstration of using non-invasive brain stimulation to modulate multisensory speech perception in an illusory context (i.e., both increasing and decreasing illusion-type responses to a verbal audio-visual integration task. These findings provide clear evidence that both the superior temporal and parietal areas contribute to multisensory integration processing related to speech perception. Specifically, STS seems fundamental for the temporal synchronization and integration of auditory and visual inputs. For its part, PPC may adjust the arrival of incoming audio and visual information to STS thereby enhancing their interaction in this latter area.

  10. Reduction in time-to-sleep through EEG based brain state detection and audio stimulation.

    Science.gov (United States)

    Zhuo Zhang; Cuntai Guan; Ti Eu Chan; Juanhong Yu; Aung Aung Phyo Wai; Chuanchu Wang; Haihong Zhang

    2015-08-01

    We developed an EEG- and audio-based sleep sensing and enhancing system, called iSleep (interactive Sleep enhancement apparatus). The system adopts a closed-loop approach which optimizes the audio recording selection based on user's sleep status detected through our online EEG computing algorithm. The iSleep prototype comprises two major parts: 1) a sleeping mask integrated with a single channel EEG electrode and amplifier, a pair of stereo earphones and a microcontroller with wireless circuit for control and data streaming; 2) a mobile app to receive EEG signals for online sleep monitoring and audio playback control. In this study we attempt to validate our hypothesis that appropriate audio stimulation in relation to brain state can induce faster onset of sleep and improve the quality of a nap. We conduct experiments on 28 healthy subjects, each undergoing two nap sessions - one with a quiet background and one with our audio-stimulation. We compare the time-to-sleep in both sessions between two groups of subjects, e.g., fast and slow sleep onset groups. The p-value obtained from Wilcoxon Signed Rank Test is 1.22e-04 for slow onset group, which demonstrates that iSleep can significantly reduce the time-to-sleep for people with difficulty in falling sleep. PMID:26738161

  11. Deep brain stimulation for obsessive-compulsive disorder is associated with cortisol changes.

    Science.gov (United States)

    de Koning, Pelle P; Figee, Martijn; Endert, Erik; Storosum, Jitschak G; Fliers, Eric; Denys, Damiaan

    2013-08-01

    Deep brain stimulation (DBS) is an effective treatment for obsessive-compulsive disorder (OCD), but its mechanism of action is largely unknown. Since DBS may induce rapid symptomatic changes and the pathophysiology of OCD has been linked to the hypothalamic-pituitary-adrenal (HPA) axis, we set out to study whether DBS affects the HPA axis in OCD patients. We compared a stimulation ON and OFF condition with a one-week interval in 16 therapy-refractory OCD patients, treated with DBS for at least one year, targeted at the nucleus accumbens (NAc). We measured changes in 24-h urinary excretion of free cortisol (UFC), adrenaline and noradrenaline and changes in obsessive-compulsive (Y-BOCS), depressive (HAM-D) and anxiety (HAM-A) symptom scores. Median UFC levels increased with 53% in the OFF condition (from 93 to 143nmol/24h, p=0.12). There were no changes in urinary adrenaline or noradrenaline excretion. The increase in Y-BOCS (39%), and HAM-D (78%) scores correlated strongly with increased UFC levels in the OFF condition. Our findings indicate that symptom changes following DBS for OCD patients are associated with changes in UFC levels. PMID:23333254

  12. Treatment for Traumatic Brain Injury in Mice Using Transcranial Magnetic Stimulation: A Preliminary Study

    Science.gov (United States)

    Carr, Alexandria; Zenitsky, Gary; Crowther, Lawrence; Hadimani, Ravi; Anantharam, Vellareddy; Kanthasamy, Anumantha; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive surgery-free tool used to stimulate the brain by time-varying magnetic fields. TMS is currently being investigated as a treatment for neurological disorders such as depression, Parkinson's disease and TBI. Before moving to human TMS/TBI trials, animal testing should be pursued to determine suitability and adverse effects. As an initial study, four healthy mice were treated with TMS at different power levels to determine short-term behavioral effects and set a control group baseline. The mouse's behavior was studied using the Rotorod test, which measures the animal's latency to fall off a rotating rod, and the Versamax test, which measures horizontal and vertical movement, and total distance traveled. The Rotorod test has shown for TMS power levels >=90% the mice begin to fall directly post-treatment. Similarly, the Versamax test has shown for power levels >=80% the mice are less mobile directly post-treatment. Versamax mobility was found to return to normal the day following treatment. These mice were housed in the facility for 4 months and the behavioral tests were repeated. Versamax results showed there was no significant variation in mobility indicating there are no long-term side effects of TMS treatment on the mice. This work was supported by the Barbara and James Palmer Endowment and the Carver Charitable Trust at the Department of Electrical and Computer Engineering, Iowa State University.

  13. Investigating Irregularly Patterned Deep Brain Stimulation Signal Design Using Biophysical Models

    Directory of Open Access Journals (Sweden)

    Samantha Rose Summerson

    2015-06-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder which follows from cell loss of dopaminergic neurons in the substantia nigra pars compacta (SNc, a nucleus in the basal ganglia (BG. Deep brain stimulation (DBS is an electrical therapy that modulates the pathological activity to treat the motor symptoms of PD. Although this therapy is currently used in clinical practice, the sufficient conditions for therapeutic efficacy are unknown. In this work we develop a model of critical motor circuit structures in the brain using biophysical cell models as the base components and then evaluate performance of different DBS signals in this model to perform comparative studies of their efficacy. Biological models are an important tool for gaining insights into neural function and, in this case, serve as effective tools for investigating innovative new DBS paradigms. Experiments were performed using the hemi-parkinsonian rodent model to test the same set of signals, verifying the obedience of the model to physiological trends. We show that antidromic spiking from DBS of the subthalamic nucleus (STN has a significant impact on cortical neural activity, which is frequency dependent and additionally modulated by the regularity of the stimulus pulse train used. Irregular spacing between stimulus pulses, where the amount of variability added is bounded, is shown to increase diversification of response of basal ganglia neurons and reduce entropic noise in cortical neurons, which may be fundamentally important to restoration of information flow in the motor circuit.

  14. Health, Happiness and Human Enhancement-Dealing with Unexpected Effects of Deep Brain Stimulation.

    Science.gov (United States)

    Schermer, Maartje

    2013-01-01

    Deep Brain Stimulation (DBS) is a treatment involving the implantation of electrodes into the brain. Presently, it is used for neurological disorders like Parkinson's disease, but indications are expanding to psychiatric disorders such as depression, addiction and Obsessive Compulsive Disorder (OCD). Theoretically, it may be possible to use DBS for the enhancement of various mental functions. This article discusses a case of an OCD patient who felt very happy with the DBS treatment, even though her symptoms were not reduced. First, it is explored if the argument that 'doctors are not in the business of trading happiness', as used by her psychiatrist to justify his discontinuation of the DBS treatment, holds. The relationship between enhancement and the goals of medicine is discussed and it is concluded that even though the goals of medicine do not set strict limits and may even include certain types of enhancement, there are some good reasons for limiting the kind of things doctors are required or allowed to do. Next, the case is discussed from the perspective of beneficence and autonomy. It is argued that making people feel good is not the same as enhancing their well-being and that it is unlikely-though not absolutely impossible-that the well-being of the happy OCD patient is really improved. Finally, some concerns regarding the autonomy of a request made under the influence of DBS treatment are considered. PMID:24273618

  15. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    Science.gov (United States)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  16. Centromedian-Parafascicular Complex Deep Brain Stimulation for Tourette Syndrome: A Retrospective Study.

    Science.gov (United States)

    Testini, Paola; Zhao, Cong Z; Stead, Matt; Duffy, Penelope S; Klassen, Bryan T; Lee, Kendall H

    2016-02-01

    Deep brain stimulation (DBS) of the thalamic centromedian/parafascicular (CM-Pf) complex has been reported as a promising treatment for patients with severe, treatment-resistant Tourette syndrome (TS). In this study, safety and clinical outcomes of bilateral thalamic CM-Pf DBS were reviewed in a series of 12 consecutive patients with medically refractory TS, 11 of whom met the criteria of postsurgical follow-up at our institution for at least 2 months. Five patients were followed for a year or longer. Consistent with many patients with TS, all patients had psychiatric comorbidities. Tic severity and frequency were measured by using the Yale Global Tic Severity Scale (YGTSS) over time (average, 26 months) in 10 subjects. One patient was tested at 2-week follow-up only and thus was excluded from group YGTSS analysis. Final YGTSS scores differed significantly from the preoperative baseline score. The average (n=10) improvement relative to baseline in the total score was 54% (95% CI, 37-70); average improvement relative to baseline in the YGTSS Motor tic, Phonic tic, and Impairment subtests was 46% (95% CI, 34-64), 52% (95% CI, 34-72), and 59% (95% CI, 39-78), respectively. There were no intraoperative complications. After surgery, 1 subject underwent wound revision because of a scalp erosion and wound infection; the implanted DBS system was successfully salvaged with surgical revision and combined antibiotic therapy. Stimulation-induced adverse effects did not prevent the use of the DBS system, although 1 subject is undergoing a trial period with the stimulator off. This surgical series adds to the literature on CM-Pf DBS and supports its use as an effective and safe therapeutic option for severe refractory TS. PMID:26848003

  17. Deep brain stimulation during pregnancy and delivery: experience from a series of DBS babies

    Directory of Open Access Journals (Sweden)

    Emma eSCELZO

    2015-09-01

    Full Text Available Introduction: Deep brain stimulation (DBS is widely used to improve quality of life in movement disorders and psychiatric diseases. Even though the ability to have children has a big impact on patients’ life, only a few studies describe the role of DBS in pregnancy. Objective: To describe risks and management of women treated by DBS for disabling movement disorders (MD or psychiatric diseases during pregnancy and delivery. Methods: We report a retrospective case series of women, followed in two DBS centers, who became pregnant and went on to give birth to a child while suffering from disabling MD or psychiatric diseases (Parkinson’s disease (PD, dystonia, Tourette’s syndrome (TS, Obsessive Compulsive Disorder (OCD treated by DBS. Clinical status, complications and management before, during and after pregnancy are reported. Two illustrative cases are described in greater detail.Results: DBS improved motor and behavioural disorders in all patients and allowed reduction in, or even total interruption of disease-specific medication during pregnancy. With the exception of the spontaneous early abortion of one fetus in a twin pregnancy, all pregnancies were uneventful in terms of obstetric and pediatric management. DBS parameters were adjusted in five patients in order to limit clinical worsening during pregnancy. Implanted material limited breast-feeding in one patient because of local pain at submammal stimulator site and led to local discomfort related to stretching of the cable with increasing belly size in another patient whose stimulator was implanted in the abdominal wall. Conclusions: Not only is it safe for young women with MD, TS and OCD who have a DBS-System implanted to become pregnant and give birth to a baby but DBS seems to be the key to becoming pregnant, having children, and thus greatly improves quality of life.

  18. Granulocyte colony-stimulating factor promotes behavioral recovery in a mouse model of traumatic brain injury.

    Science.gov (United States)

    Song, Shijie; Kong, Xiaoyuan; Acosta, Sandra; Sava, Vasyl; Borlongan, Cesar; Sanchez-Ramos, Juan

    2016-05-01

    Hematopoietic growth factors such as granulocyte colony-stimulating factor (G-CSF) represent a novel approach for treatment of traumatic brain injury (TBI). After mild controlled cortical impact (CCI), mice were treated with G-CSF (100 μg/kg) for 3 consecutive days. The primary behavioral endpoint was performance on the radial arm water maze (RAWM), assessed 7 and 14 days after CCI. Secondary endpoints included 1) motor performance on a rotating cylinder (rotarod), 2) measurement of microglial and astroglial response, 3) hippocampal neurogenesis, and 4) measures of neurotrophic factors (brain-derived neurotrophic factor [BDNF] and glial cell line-derived neurotrophic factor [GDNF]) and cytokines in brain homogenates. G-CSF-treated animals performed significantly better than vehicle-treated mice in the RAWM at 1 and 2 weeks but not on the rotarod. Cellular changes found in the G-CSF group included increased hippocampal neurogenesis as well as astrocytosis and microgliosis in both the striatum and the hippocampus. Neurotrophic factors GDNF and BDNF, elaborated by activated microglia and astrocytes, were increased in G-CSF-treated mice. These factors along with G-CSF itself are known to promote hippocampal neurogenesis and inhibit apoptosis and likely contributed to improvement in the hippocampal-dependent learning task. Six cytokines that were modulated by G-CSF treatment following CCI were elevated on day 3, but only one of them remained altered by day 7, and all of them were no different from vehicle controls by day 14. The pro- and anti-inflammatory cytokines modulated by G-CSF administration interact in a complex and incompletely understood network involving both damage and recovery processes, underscoring the dual role of inflammation after TBI. © 2016 Wiley Periodicals, Inc. PMID:26822127

  19. The sum of its parts--effects of gastric distention, nutrient content and sensory stimulation on brain activation.

    Directory of Open Access Journals (Sweden)

    Maartje S Spetter

    Full Text Available During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention, naso-gastric infusion of chocolate milk (stomach distention + nutrients, or ingested chocolate-milk (stomach distention + nutrients + oral exposure. Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This

  20. Treatment of ADCY5-Associated Dystonia, Chorea, and Hyperkinetic Disorders With Deep Brain Stimulation: A Multicenter Case Series.

    Science.gov (United States)

    Dy, Marisela E; Chang, Florence C F; Jesus, Sol De; Anselm, Irina; Mahant, Neil; Zeilman, Pamela; Rodan, Lance H; Foote, Kelly D; Tan, Wen-Hann; Eskandar, Emad; Sharma, Nutan; Okun, Michael S; Fung, Victor S C; Waugh, Jeff L

    2016-07-01

    ADCY5 mutations have been reported as a cause of early onset hyperkinetic movements associated with delayed motor milestones, hypotonia, and exacerbation during sleep. The movement disorder may be continuous or episodic, and can vary considerably in severity within families and in individuals. The authors report a case series of 3 patients with ADCY5 mutations treated with deep brain stimulation after unsuccessful medication trials. All had extensive imaging, metabolic, and genetic testing prior to confirmation of their ADCY5 mutation. Two of the patients had the c.1252C>T; p.R418W mutation, while the youngest and most severely affected had a de novo c.2080_2088del; p.K694_M696 mutation. All had variable and incomplete, but positive responses to deep brain stimulation. The authors conclude that deep brain stimulation may provide benefit in ADCY5-related movement disorders. Long-term efficacy remains to be confirmed by longitudinal observation. ADCY5 should be considered in the differential diagnosis of early onset hyperkinetic movement disorders, and may respond to deep brain stimulation. PMID:27052971

  1. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism

    Science.gov (United States)

    The adaptive mechanisms that protect brain metabolism during and after hypoxia, for instance, during hypoxic preconditioning, are coordinated in part by nitric oxide (NO). We tested the hypothesis that acute transient hypoxia stimulates NO synthase (NOS)-activated mechanisms of m...

  2. Deep brain stimulation of the subthalamic nucleus improves reward-based decision-learning in Parkinson’s disease

    NARCIS (Netherlands)

    Wouwe, N.C. van; Ridderinkhof, K.R.; Wildenberg, W.P.M. van den; Band, G.P.H.; Abisogun, A.; Elias, W.J.; Frysinger, R.; Wylie, S.A.

    2011-01-01

    Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson’s disease (PD). W

  3. Proceedings of the Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    OpenAIRE

    Rossi, P. Justin; Gunduz, Aysegul; Judy, Jack; Wilson, Linda; Machado, Andre; James J Giordano; Elias, W. Jeff; Rossi, Marvin A.; Butson, Christopher L.; Fox, Michael D.; McIntyre, Cameron C.; Pouratian, Nader; Swann, Nicole C.; de Hemptinne, Coralie; Gross, Robert E.

    2016-01-01

    The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized. The Think Tank's contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Present...

  4. Intensive Voice Treatment (LSVT[R]LOUD) for Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus

    Science.gov (United States)

    Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine

    2011-01-01

    Purpose: Intensive voice therapy (LSVT[R]LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes…

  5. Pitch Variability in Patients with Parkinson's Disease: Effects of Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus

    Science.gov (United States)

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; van Doorn, Jan

    2013-01-01

    Purpose: The purpose of the present study was to examine the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) pitch characteristics of connected speech in patients with Parkinson's disease (PD). Method: The authors evaluated 16 patients preoperatively and 12 months after DBS surgery. Eight…

  6. Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets

    NARCIS (Netherlands)

    P.P. de Koning; M. Figee; P. van den Munckhof; P.R. Schuurman; D. Denys

    2011-01-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder that affects 2% of the general population. Despite optimal cognitive-behavioral and pharmacologic therapy, approximately 10% of patients remain treatment resistant. Currently, deep brain stimulation (DBS) is being investigated as

  7. Rapid effects of deep brain stimulation reactivation on symptoms and neuroendocrine parameters in obsessive-compulsive disorder

    NARCIS (Netherlands)

    de Koning, P P; Figee, M; Endert, E; van den Munckhof, P; Schuurman, P R; Storosum, J G; Denys, D; Fliers, E

    2016-01-01

    Improvement of obsessions and compulsions by deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) is often preceded by a rapid and transient mood elevation (hypomania). In a previous study we showed that improvement of mood by DBS for OCD is associated with a decreased activity of th

  8. Imaging by Elemental and Molecular Mass Spectrometry Reveals the Uptake of an Arsenolipid in the Brain of Drosophila melanogaster.

    Science.gov (United States)

    Niehoff, Ann-Christin; Schulz, Jacqueline; Soltwisch, Jens; Meyer, Sören; Kettling, Hans; Sperling, Michael; Jeibmann, Astrid; Dreisewerd, Klaus; Francesconi, Kevin A; Schwerdtle, Tanja; Karst, Uwe

    2016-05-17

    Arsenic-containing lipids (arsenolipids) are natural products of marine organisms such as fish, invertebrates, and algae, many of which are important seafoods. A major group of arsenolipids, namely, the arsenic-containing hydrocarbons (AsHC), have recently been shown to be cytotoxic to human liver and bladder cells, a result that has stimulated interest in the chemistry and toxicology of these compounds. In this study, elemental laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) and molecular matrix-assisted laser desorption/ionization (MALDI-)MS were used to image and quantify the uptake of an AsHC in the model organism Drosophila melanogaster. Using these two complementary methods, both an enrichment of arsenic and the presence of the AsHC in the brain were revealed, indicating that the intact arsenolipid had crossed the blood-brain barrier. Simultaneous acquisition of quantitative elemental concentrations and molecular distributions could allow new insight into organ-specific enrichment and possible transportation processes of arsenic-containing bioactive compounds in living organisms. PMID:27098356

  9. Developmentally-Dynamic Murine Brain Proteomes and Phosphoproteomes Revealed by Quantitative Proteomics

    Directory of Open Access Journals (Sweden)

    Peter F. Doubleday

    2014-04-01

    Full Text Available Developmental processes are governed by a diverse suite of signaling pathways employing reversible phosphorylation. Recent advances in large-scale phosphoproteomic methodologies have made possible the identification and quantification of hundreds to thousands of phosphorylation sites from primary tissues. Towards a global characterization of proteomic changes across brain development, we present the results of a large-scale quantitative mass spectrometry study comparing embryonic, newborn and adult murine brain. Using anti-phosphotyrosine immuno-affinity chromatography and strong cation exchange (SCX chromatography, coupled to immobilized metal affinity chromatography (IMAC, we identified and quantified over 1,750 phosphorylation sites and over 1,300 proteins between three developmental states. Bioinformatic analyses highlight functions associated with the identified proteins and phosphoproteins and their enrichment at distinct developmental stages. These results serve as a primary reference resource and reveal dynamic developmental profiles of proteins and phosphoproteins from the developing murine brain.

  10. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain.

    Science.gov (United States)

    Lake, Blue B; Ai, Rizi; Kaeser, Gwendolyn E; Salathia, Neeraj S; Yung, Yun C; Liu, Rui; Wildberg, Andre; Gao, Derek; Fung, Ho-Lim; Chen, Song; Vijayaraghavan, Raakhee; Wong, Julian; Chen, Allison; Sheng, Xiaoyan; Kaper, Fiona; Shen, Richard; Ronaghi, Mostafa; Fan, Jian-Bing; Wang, Wei; Chun, Jerold; Zhang, Kun

    2016-06-24

    The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from a postmortem brain, generating 3227 sets of single-neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish previously unknown and orthologous neuronal subtypes as well as regional identity and transcriptomic heterogeneity within the human brain. PMID:27339989

  11. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  12. Three-dimensional brain atlas of pygmy squid, Idiosepius paradoxus, revealing the largest relative vertical lobe system volume among the cephalopods.

    Science.gov (United States)

    Koizumi, Motoki; Shigeno, Shuichi; Mizunami, Makoto; Tanaka, Nobuaki K

    2016-07-01

    Cephalopods have the largest and most complex nervous system of all invertebrates, and the brain-to-body weight ratio exceeds those of most fish and reptiles. The brain is composed of lobe units, the functions of which have been studied through surgical manipulation and electrical stimulation. However, how information is processed in each lobe for the animal to make a behavioral decision has rarely been investigated. To perform such functional analyses, it is necessary to precisely describe how brain lobes are spatially organized and mutually interconnected as a whole. We thus made three-dimensional digital brain atlases of both hatchling and juvenile pygmy squid, Idiosepius paradoxus. I. paradoxus is the smallest squid and has a brain small enough to scan as a whole region in the field-of-view of a low-magnification laser scan microscope objective. Precise analyses of the confocal images of the brains revealed one newly identified lobe and also that the relative volume of the vertical lobe system, the higher association center, in the pygmy squid represents the largest portion compared with the cephalopod species reported previously. In addition, principal component analyses of relative volumes of lobe complexes revealed that the organization of I. paradoxus brain is comparable to those of Decapodiformes species commonly used to analyze complex behaviors such as Sepia officinalis and Sepioteuthis sepioidea. These results suggest that the pygmy squid can be a good model to investigate the brain functions of coleoids utilizing physiological methods. J. Comp. Neurol. 524:2142-2157, 2016. © 2016 Wiley Periodicals, Inc. PMID:26663197

  13. Patterned brain stimulation, what a framework with rhythmic and noisy components might tell us about recovery maximization

    Directory of Open Access Journals (Sweden)

    Klaus Obermayer

    2013-06-01

    The hypothesis developed in this manuscript is that stimulation patterning with noisy and oscillatory components will help patients recover from stroke related deficits more reliably. To address this hypothesis we focus on two factors common to both neural computation (intrinsic variables as well as brain stimulation (extrinsic variables: noise and oscillation. We review diverse theoretical and experimental evidence that demonstrates that subject-function specific brain-states are associated with specific oscillatory activity patterns. These states are transient and can be maintained by noisy processes. The resulting control procedures can resemble homeostatic or stochastic resonance processes. In this context we try to extend awareness for inter-individual differences and the use of individualized stimulation in the recovery maximization of stroke patients.

  14. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton.

    Science.gov (United States)

    Grimm, Florian; Walter, Armin; Spüler, Martin; Naros, Georgios; Rosenstiel, Wolfgang; Gharabaghi, Alireza

    2016-01-01

    Brain-machine interface-controlled (BMI) neurofeedback training aims to modulate cortical physiology and is applied during neurorehabilitation to increase the responsiveness of the brain to subsequent physiotherapy. In a parallel line of research, robotic exoskeletons are used in goal-oriented rehabilitation exercises for patients with severe motor impairment to extend their range of motion (ROM) and the intensity of training. Furthermore, neuromuscular electrical stimulation (NMES) is applied in neurologically impaired patients to restore muscle strength by closing the sensorimotor loop. In this proof-of-principle study, we explored an integrated approach for providing assistance as needed to amplify the task-related ROM and the movement-related brain modulation during rehabilitation exercises of severely impaired patients. For this purpose, we combined these three approaches (BMI, NMES, and exoskeleton) in an integrated neuroprosthesis and studied the feasibility of this device in seven severely affected chronic stroke patients who performed wrist flexion and extension exercises while receiving feedback via a virtual environment. They were assisted by a gravity-compensating, seven degree-of-freedom exoskeleton which was attached to the paretic arm. NMES was applied to the wrist extensor and flexor muscles during the exercises and was controlled by a hybrid BMI based on both sensorimotor cortical desynchronization (ERD) and electromyography (EMG) activity. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. The hybrid BMI controlled the stimulation significantly better than the offline analyzed ERD (p = 0.028) or EMG (p = 0.021) modality alone. Neuromuscular stimulation could be well integrated into the exoskeleton-based training and amplified both the task-related ROM (p = 0.009) and the movement-related brain modulation (p = 0.019). Combining a hybrid BMI with neuromuscular stimulation

  15. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  16. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M.; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Thompson, Paul M.; Asarnow, Robert F.

    2016-01-01

    Abstract Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1–6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  17. Direct-current Stimulation and Multi-electrode Array Recording of Seizure-like Activity in Mice Brain Slice Preparation.

    Science.gov (United States)

    Lu, Hsiang-Chin; Chang, Wei-Jen; Chang, Wei-Pang; Shyu, Bai-Chuang

    2016-01-01

    Cathodal transcranial direct-current stimulation (tDCS) induces suppressive effects on drug-resistant seizures. To perform effective actions, the stimulation parameters (e.g., orientation, field strength, and stimulation duration) need to be examined in mice brain slice preparations. Testing and arranging the orientation of the electrode relative to the position of the mice brain slice are feasible. The present method preserves the thalamocingulate pathway to evaluate the effect of DCS on anterior cingulate cortex seizure-like activities. The results of the multichannel array recordings indicated that cathodal DCS significantly decreased the amplitude of the stimulation-evoked responses and duration of 4-aminopyridine and bicuculline-induced seizure-like activity. This study also found that cathodal DCS applications at 15 min caused long-term depression in the thalamocingulate pathway. The present study investigates the effects of DCS on thalamocingulate synaptic plasticity and acute seizure-like activities. The current procedure can test the optimal stimulation parameters including orientation, field strength, and stimulation duration in an in vitro mouse model. Also, the method can evaluate the effects of DCS on cortical seizure-like activities at both the cellular and network levels. PMID:27341682

  18. Effects of repetitive transcranial magnetic stimulation on adenosine triphosphate content and microtubule associated protein-2 expression after cerebral ischemia-reperfusion injury in rat brain

    Institute of Scientific and Technical Information of China (English)

    FENG Hong-lin; YAN Li; CUI Li-ying

    2008-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) research has mainly been focused on the therapeutic effect of psychiatric disorders and Parkinson's disease. A few studies have shown that rTMS might protect against delayed neuronal death induced by transient ischemia, enhance long-term potentiation in ischemic conditions and affect regional brain blood flow and metabolism. The aim of this study was to determine the effects of repetitive transcranial magnetic stimulation (rTMS) on adenosine triphosphate (ATP) content and microtubule associated protein-2 (MAP-2) expression in rat brain after middle cerebral artery occlusion (MCAO)/reperfusion.Methods To study the effects of different timecourses of rTMS on ATP content and MAP-2 expression, 90 rats were randomly divided into three groups (30 rats in each group). To study the effects of multiple rTMS parameters on ATP content and MAP-2 expression, the rats in each group were further divided into six subgroups (five rats each). The rats were sacrificr, 24-hour and 48-hour intervals after reperfusion, and the brain tissues were collected for the detection of ATP and MAP-2.Results rTMS could significantly increase ATP content and MAP-2 expression in the left brain following ischemic insult (P<0.01) and different rTMS parameters had different effects on the ATP level and the MAP-2 expression in the left striatum. A high-frequency rTMS played an important role in MAP-2 expression and ATP preservation.Conclusions This study revealed that rTMS induced significant increase of ATP content and MAP-2 expression in the injured area of the brain, suggesting that the regulation of both ATP and MAP-2 may be involved in the biological mechanism of the effect of rTMS on neural recovery. Therefore, rTMS may become a potential adjunctive therapy for ischemic cerebrovascular disease.

  19. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    Science.gov (United States)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  20. Sustained spatial attention to vibrotactile stimulation in the flutter range: relevant brain regions and their interaction.

    Directory of Open Access Journals (Sweden)

    Dominique Goltz

    Full Text Available The present functional magnetic resonance imaging (fMRI study was designed to get a better understanding of the brain regions involved in sustained spatial attention to tactile events and to ascertain to what extent their activation was correlated. We presented continuous 20 Hz vibrotactile stimuli (range of flutter concurrently to the left and right index fingers of healthy human volunteers. An arrow cue instructed subjects in a trial-by-trial fashion to attend to the left or right index finger and to detect rare target events that were embedded in the vibrotactile stimulation streams. We found blood oxygen level-dependent (BOLD attentional modulation in primary somatosensory cortex (SI, mainly covering Brodmann area 1, 2, and 3b, as well as in secondary somatosensory cortex (SII, contralateral to the to-be-attended hand. Furthermore, attention to the right (dominant hand resulted in additional BOLD modulation in left posterior insula. All of the effects were caused by an increased activation when attention was paid to the contralateral hand, except for the effects in left SI and insula. In left SI, the effect was related to a mixture of both a slight increase in activation when attention was paid to the contralateral hand as well as a slight decrease in activation when attention was paid to the ipsilateral hand (i.e., the tactile distraction condition. In contrast, the effect in left posterior insula was exclusively driven by a relative decrease in activation in the tactile distraction condition, which points to an active inhibition when tactile information is irrelevant. Finally, correlation analyses indicate a linear relationship between attention effects in intrahemispheric somatosensory cortices, since attentional modulation in SI and SII were interrelated within one hemisphere but not across hemispheres. All in all, our results provide a basis for future research on sustained attention to continuous vibrotactile stimulation in the range

  1. Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease.

    Science.gov (United States)

    Meissner, Sarah Nadine; Südmeyer, Martin; Keitel, Ariane; Pollok, Bettina; Bellebaum, Christian

    2016-10-15

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes. PMID:27374161

  2. Deep brain stimulation exacerbates hypokinetic dysarthria in a rat model of Parkinson's disease.

    Science.gov (United States)

    King, Nathaniel O; Anderson, Collin J; Dorval, Alan D

    2016-02-01

    Motor symptoms of Parkinson's disease (PD) follow the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Deep brain stimulation (DBS) treats some parkinsonian symptoms, such as tremor, rigidity, and bradykinesia, but may worsen certain medial motor symptoms, including hypokinetic dysarthria. The mechanisms by which DBS exacerbates dysarthria while improving other symptoms are unclear and difficult to study in human patients. This study proposes an animal model of DBS-exacerbated dysarthria. We use the unilateral, 6-hydroxydopamine (6-OHDA) rat model of PD to test the hypothesis that DBS exacerbates quantifiable aspects of vocalization. Mating calls were recorded from sexually experienced male rats under healthy and parkinsonian conditions and during DBS of the subthalamic nucleus. Relative to healthy rats, parkinsonian animals made fewer calls with shorter and less complex vocalizations. In the parkinsonian rats, putatively therapeutic DBS further reduced call frequency, duration, and complexity. The individual utterances of parkinsonian rats spanned a greater bandwidth than those of healthy rats, potentially reducing the effectiveness of the vocal signal. This utterance bandwidth was further increased by DBS. We propose that the parkinsonism-associated changes in call frequency, duration, complexity, and dynamic range combine to constitute a rat analog of parkinsonian dysarthria. Because DBS exacerbates the parkinsonism-associated changes in each of these metrics, the subthalamic stimulated 6-OHDA rat is a good model of DBS-induced hypokinetic dysarthria in PD. This model will help researchers examine how DBS alleviates many motor symptoms of PD while exacerbating parkinsonian speech deficits that can greatly diminish patient quality of life. PMID:26498277

  3. Deep brain stimulation and cognitive decline in Parkinson's disease: The predictive value of electroencephalography.

    Science.gov (United States)

    Markser, A; Maier, Franziska; Lewis, C J; Dembek, T A; Pedrosa, D; Eggers, C; Timmermann, L; Kalbe, E; Fink, G R; Burghaus, Lothar

    2015-10-01

    Some Parkinson's disease (PD) patients treated with subthalamic nucleus deep brain stimulation (STN-DBS) develop new-onset cognitive decline. We examined whether clinical EEG recordings can be used to predict cognitive deterioration in PD patients undergoing STN-DBS. In this retrospective study, we used the Grand Total EEG (GTE)-score (short and total) to evaluate pre- and postoperative EEGs. In PD patients undergoing STN-DBS (N = 30), cognitive functioning was measured using Mini-Mental State Test and DemTect before and after surgery. Severity of motor impairment was assessed using the Unified Parkinson's Disease Rating Scale-III. Patients were classified into patients with or without cognitive decline after STN-DBS surgery. Epidemiological data, pre- and postoperative EEG recordings as well as neuropsychological and neurological data, electrode positions and the third ventricle width were compared. A logistic regression model was used to identify predictors of cognitive decline. Motor deficits significantly improved from pre- to post-surgery, while the mean GTE-scores increased significantly. Six patients developed cognitive deterioration 4-12 months postoperatively. These patients had significantly higher preoperative GTE-scores than patients without cognitive deterioration, although preoperative cognitive functioning was comparable. Electrode positions, brain atrophy and neurological data did not differ between groups. Logistic regression analysis identified the GTE-score as a significant predictor of postoperative cognitive deterioration. Data suggest that the preoperative GTE-score can be used to identify PD patients that are at high risk for developing cognitive deterioration after STN-DBS surgery even though their preoperative cognitive state was normal. PMID:26159102

  4. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    Science.gov (United States)

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS. PMID:26357405

  5. No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients123

    Science.gov (United States)

    Wojtecki, Lars; Storzer, Lena; Schnitzler, Alfons

    2016-01-01

    Abstract Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson’s disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making—delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)—we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS. PMID:27257622

  6. Experimental assessment of thermal effects of high power density light stimulation for optogenetics control of deep brain structures (Conference Presentation)

    Science.gov (United States)

    Senova, Suhan; Scisniak, Ilona; Chiang, Chih Chieh; Doignon, Isabelle; Martin, Claire; Palfi, Stephane; Chaillet, Antoine; Pain, Frederic

    2016-03-01

    2D surface maps of light distribution and temperature increase were recorded in wild type anesthetized rats brains during 90s light stimulation at 478nm (blue) and 638nm (red) with continuous or pulsed optical stimulations with corresponding power ranging from 100 up to 1200 mW/mm² at the output of an optical fiber. Post mortem maps were recorded in the same animals to assess the cooling effect of blood flow. Post mortem histological analysis were carried out to assess whether high power light stimulations had phototoxic effects or could trigger non physiological functional activation. Temperature increase remains below physiological changes (0,5 -1°) for stimulations up to 400mW/mm² at 40Hz. . Histology did not show significant irreversible modifications or damage to the tissues. The spatial profile of light distribution and heat were correlated and demonstrate as expected a rapid attenuation with diatnce to the fiber.

  7. Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2010-08-01

    The energy efficiency of stimulation is an important consideration for battery-powered implantable stimulators. We used a genetic algorithm (GA) to determine the energy-optimal waveform shape for neural stimulation. The GA was coupled to a computational model of extracellular stimulation of a mammalian myelinated axon. As the GA progressed, waveforms became increasingly energy efficient and converged upon an energy-optimal shape. The results of the GA were consistent across several trials, and resulting waveforms resembled truncated Gaussian curves. When constrained to monophasic cathodic waveforms, the GA produced waveforms that were symmetric about the peak, which occurred approximately during the middle of the pulse. However, when the cathodic waveforms were coupled to rectangular charge-balancing anodic pulses, the location and sharpness of the peak varied with the duration and timing (i.e., before or after the cathodic phase) of the anodic phase. In a model of a population of mammalian axons and in vivo experiments on a cat sciatic nerve, the GA-optimized waveforms were more energy efficient and charge efficient than several conventional waveform shapes used in neural stimulation. If used in implantable neural stimulators, GA-optimized waveforms could prolong battery life, thereby reducing the frequency of recharge intervals, the volume of implanted pulse generators, and the costs and risks of battery-replacement surgeries.

  8. Revealing pathologies in the liquid crystalline structures of the brain by polarimetric studies (Presentation Recording)

    Science.gov (United States)

    Bakhshetyan, Karen; Melkonyan, Gurgen G.; Galstian, Tigran V.; Saghatelyan, Armen

    2015-10-01

    Natural or "self" alignment of molecular complexes in living tissue represents many similarities with liquid crystals (LC), which are anisotropic liquids. The orientational characteristics of those complexes may be related to many important functional parameters and their study may reveal important pathologies. The know-how, accumulated thanks to the study of LC materials, may thus be used to this end. One of the traditionally used methods, to characterize those materials, is the polarized light imaging (PLI) that allows for label-free analysis of anisotropic structures in the brain tissue and can be used, for example, for the analysis of myelinated fiber bundles. In the current work, we first attempted to apply the PLI on the mouse histological brain sections to create a map of anisotropic structures using cross-polarizer transmission light. Then we implemented the PLI for comparative study of histological sections of human postmortem brain samples under normal and pathological conditions, such as Parkinson's disease (PD). Imaging the coronal, sagittal and horizontal sections of mouse brain allowed us to create a false color-coded fiber orientation map under polarized light. In human brain datasets for both control and PD groups we measured the pixel intensities in myelin-rich subregions of internal capsule and normalized these to non-myelinated background signal from putamen and caudate nucleus. Quantification of intensities revealed a statistically significant reduction of fiber intensity of PD compared to control subjects (2.801 +/- 0.303 and 3.724 +/- 0.07 respectively; *p < 0.05). Our study confirms the validity of PLI method for visualizing myelinated axonal fibers. This relatively simple technique can become a promising tool for study of neurodegenerative diseases where labeling-free imaging is an important benefit.

  9. Recovery of function after vagus nerve stimulation initiated 24 hours after fluid percussion brain injury.

    Science.gov (United States)

    Smith, Douglas C; Tan, Arlene A; Duke, Andrea; Neese, Steven L; Clough, Richard W; Browning, Ronald A; Jensen, Robert A

    2006-10-01

    Recent evidence from our laboratory demonstrated in laboratory rats that stimulation of the vagus nerve (VNS) initiated 2 h after lateral fluid percussion brain injury (FPI) accelerates the rate of recovery on a variety of behavioral and cognitive tests. VNS animals exhibited a level of performance comparable to that of sham-operated uninjured animals by the end of a 2-week testing period. The effectiveness of VNS was further evaluated in the present study in which initiation of stimulation was delayed until 24 h post-injury. Rats were subjected to a moderate FPI and tested on the beam walk, skilled forelimb reaching, locomotor placing, forelimb flexion and Morris water maze tasks for 2 weeks following injury. VNS (30 sec trains of 0.5 mA, 20.0-Hz biphasic pulses) was initiated 24 h post-injury and continued at 30-min intervals for the duration of the study, except for brief periods when the animals were detached for behavioral assessments. Consistent with our previous findings when stimulation was initiated 2 h post-injury, VNS animals showed significantly faster rates of recovery compared to controls. By the last day of testing (day 14 post-injury), the FPI-VNS animals were performing significantly better than the FPI-no-VNS animals and were not significantly different from shams in all motor and sensorimotor tasks. Performance in the Morris water maze indicated that the VNS animals acquired the task more rapidly on days 11-13 post-injury. On day 14, the FPI-VNS animals did not differ in the latency to find the platform from sham controls, whereas the injured controls did; however, the FPI-VNS animals and injured controls were not significantly different. Despite the lack of significant histological differences between the FPI groups, VNS, when initiated 24 h following injury, clearly attenuated the ensuing behavioral deficits and enhanced acquisition of the cognitive task. The results are discussed with respect to the norepinephrine hypothesis. PMID:17020489

  10. Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    Directory of Open Access Journals (Sweden)

    King Christine E

    2011-08-01

    Full Text Available Abstract Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG-based BCI with a noninvasive functional electrical stimulation (FES system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77 with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions, and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower

  11. Novel aspects of brain metabolism as revealed by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Full text: The techniques of Magnetic Resonance Spectroscopy (MRS) and Imaging (MRI) are outlined, and compared with Positron Emission Tomography (PET). Invasive PET techniques using 19F-fluorodeoxyglucose (FDG) and 18O2 form the main basis of brain activation studies, and with 19F-fluoroDOPA, make major contributions to studies on neurological disorders such as stroke, Alzheimer's disease and Parkinson's disease. However the technique has no chemical specificity so can provide no knowledge of intermediary metabolism. Non-invasive MRI is also being applied to brain activation studies but also has no chemical specificity. On the other hand MRS has superb chemical specificity, although it suffers from low sensitivity. A most interesting example of this is the use of 13C-MRS. If glucose is labelled on the no. 1 or no. 2 positions with 13C, the passage of the label through different neuronal and glial metabolic pathways can be followed. If acetate is similarly labelled, metabolic routes through specifically glial pathways can be monitored, since acetate is taken up only by glia. These studies contributed to knowledge on metabolic trafficking, in that glia produce alanine, citrate and lactate in addition to the previously characterised production of glutamine. Studies on the hypoxic brain revealed increased production of alanine, lactate and glycerol 3-phosphate, providing further understanding of the role of the NADH redox state. 'Isotopomer analysis' of 13C resonances provides more information on metabolic pathways, because the chemical shift of a 13C atom is specifically affected by a neighbouring 13C within the same molecule. This approach was used to demonstrate that neurotransmitter γ-aminobutyrate (GABA) is partly derived from glial glutamine. Analogous 13C MRS studies are now providing novel information on metabolic flux rates within the human brain, and the most exciting developments are to follow changes in these rates on brain activation which can be

  12. Assessment of brain cell function using 123I-IMP SPECT of cerebral blood flow and visual evoked potential by photic stimulation in normal and demented elderly subjects

    International Nuclear Information System (INIS)

    Cerebral blood flow was quantitatively measured using 123I-IMP SPECT by photic stimulation and visual evoked potential (VEPs) in normal and dementia subjects: 8 with Alzheimer-type dementia, 9 with cerebrovascular dementia and 7 normal elderly subjects were divided into the three groups based on the Clinical Dementia Rating (CDR) grade: Group I (CDR 0), Group II (CDR 0.5-1), Group III (CDR 2-3). The 123I-IMP SPECT measurement was conducted at rest with the eyes closed and also during photic stimulation. VEPs were measured simultaneously. The results reveal prolongation of the P2 latency of the VEPs prolonged in accordance with the increasing severity of the dementia, and quantitative cerebral blood flow was lower in Group II and Group III than in Group I at rest, while during photic stimulation it significantly increased in Group I and II, but showed no change in Group III. The results suggest that quantitative measurement of cerebral blood flow using 123I-IMP SPECT by photic stimulation may enable more detailed assessment of brain cell function. (author)

  13. A new high-speed visual stimulation method for gaze-contingent eye movement and brain activity studies.

    Science.gov (United States)

    Richlan, Fabio; Gagl, Benjamin; Schuster, Sarah; Hawelka, Stefan; Humenberger, Josef; Hutzler, Florian

    2013-01-01

    Approaches using eye movements as markers of ongoing brain activity to investigate perceptual and cognitive processes were able to implement highly sophisticated paradigms driven by eye movement recordings. Crucially, these paradigms involve display changes that have to occur during the time of saccadic blindness, when the subject is unaware of the change. Therefore, a combination of high-speed eye tracking and high-speed visual stimulation is required in these paradigms. For combined eye movement and brain activity studies (e.g., fMRI, EEG, MEG), fast and exact timing of display changes is especially important, because of the high susceptibility of the brain to visual stimulation. Eye tracking systems already achieve sampling rates up to 2000 Hz, but recent LCD technologies for computer screens reduced the temporal resolution to mostly 60 Hz, which is too slow for gaze-contingent display changes. We developed a high-speed video projection system, which is capable of reliably delivering display changes within the time frame of eye movement research requiring reliable high-speed visual stimulation (e.g., gaze-contingent display changes, short-time presentation, masked priming). Moreover, this system can be used for fast visual presentation in order to assess brain activity using various methods, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). The latter technique was previously excluded from high-speed visual stimulation, because it is not possible to operate conventional CRT monitors in the strong magnetic field of an MRI scanner. Therefore, the present video projection system offers new possibilities for studying eye movement-related brain activity using a combination of eye tracking and fMRI. PMID:23847475

  14. Three-dimensional localization of cortical electrodes in deep brain stimulation surgery from intraoperative fluoroscopy.

    Science.gov (United States)

    Randazzo, Michael J; Kondylis, Efstathios D; Alhourani, Ahmad; Wozny, Thomas A; Lipski, Witold J; Crammond, Donald J; Richardson, R Mark

    2016-01-15

    Electrophysiological recordings from subdural electrocorticography (ECoG) electrodes implanted temporarily during deep brain stimulation (DBS) surgeries offer a unique opportunity to record cortical activity for research purposes. The optimal utilization of this important research method relies on accurate and robust localization of ECoG electrodes, and intraoperative fluoroscopy is often the only imaging modality available to visualize electrode locations. However, the localization of a three-dimensional electrode position using a two-dimensional fluoroscopic image is problematic due to the lost dimension orthogonal to the fluoroscopic image, a parallax distortion implicit to fluoroscopy, and variability of visible skull contour among fluoroscopic images. Here, we present a method to project electrodes visible on the fluoroscopic image onto a reconstructed cortical surface by leveraging numerous common landmarks to translate, rotate, and scale coregistered computed tomography (CT) and magnetic resonance imaging (MRI) reconstructed surfaces in order to recreate the coordinate framework in which the fluoroscopic image was acquired, while accounting for parallax distortion. Validation of this approach demonstrated high precision with an average total Euclidian distance between three independent reviewers of 1.65±0.68mm across 8 patients and 82 electrodes. Spatial accuracy was confirmed by correspondence between recorded neural activity over sensorimotor cortex during hand movement. This semi-automated interface reliably estimates the location of temporarily implanted subdural ECoG electrodes visible on intraoperative fluoroscopy to a cortical surface. PMID:26520771

  15. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    Science.gov (United States)

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks. PMID:26956115

  16. Clinical, neuropsychological, and pre-stimulus dorsomedial thalamic nucleus electrophysiological data in deep brain stimulation patients.

    Science.gov (United States)

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    The data presented here comprise clinical, neuropsychological, and intrathalamic electrophysiological data from 7 patients with pharmacoresistant focal epilepsy and are related to the article "Pre-stimulus thalamic theta power predicts human memory formation" C.M. Sweeney-Reed, T. Zaehle, J. Voges, F.C. Schmitt, L. Buentjen, K. Kopitzki, et al. (2016) [1]. The patients participated in a memory paradigm after receiving electrodes implanted in the DMTN due to the surgical approach taken in electrode insertion for deep brain stimulation of the anterior thalamic nucleus. Epilepsy duration and pre-operative neuropsychological tests provide an indication of the profile of patients receiving intrathalamic electrode implantation and the memory capabilities in such a patient group. The electrophysiological data were recorded from the right DMTN preceding stimulus presentation during intentional memory encoding. The patients viewed a series of photographic scenes, which they judged as indoors or outdoors. The 900 ms epochs prior to stimulus presentation were labeled as preceding successful or unsuccessful subsequent memory formation according to a subsequent memory test for the items. The difference between theta power preceding successful versus unsuccessful subsequent memory formation is shown against time for each patient individually. PMID:27508216

  17. Long-term follow-up study on deep brain stimulation for post-traumatic dystonia

    Directory of Open Access Journals (Sweden)

    Chang LIU

    2015-10-01

    Full Text Available Background Deep brain stimulation (DBS offers a very promising therapy for medically intractable dystonia. Among different dystonia subtypes, the surgical outcome of primary dystonia is most convincing, while that of post-traumatic dystonia is uncertain. This paper aims to evaluate the effect of DBS on post-traumatic dystonia. Methods Four patients of post-traumatic dystonia treated with DBS on globus pallidus internus (GPi or subthalamic nucleus (STN were reviewed and their surgical effect was evaluated. Outcome assessments were based on Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS movement and disability scores preoperatively and one month, 6 months, one year and 2 years after surgery. Improvement rate was counted to evaluate the curative effect. Results BFMDRS movement scores were improved by 38.35%, 47.28%, 62.74% and 68.69% respectively, and disability scores were improved by 35.36% , 46.83% , 59.60% and 67.01% respectively. Imaging features of these patients were reviewed. Although the location and size of encephalomalacia differed among these patients, the anatomical features of basal ganglia remained intact. Conclusions With strict selection, DBS may be a promising treatment to ameliorate the symptoms of post-traumatic dystonia. The surgical effect may be sustainable in long term. Anatomical integrity of basal ganglia may be an important factor to predict good outcome. DOI: 10.3969/j.issn.1672-6731.2015.10.006

  18. Effect of Deep Brain Stimulation on Parkinson's Nonmotor Symptoms following Unilateral DBS: A Pilot Study

    Science.gov (United States)

    Hwynn, Nelson; Ul Haq, Ihtsham; Malaty, Irene A.; Resnick, Andrew S.; Dai, Yunfeng; Foote, Kelly D.; Fernandez, Hubert H.; Wu, Samuel S.; Oyama, Genko; Jacobson, Charles E.; Kim, Sung K.; Okun, Michael S.

    2011-01-01

    Parkinson's disease (PD) management has traditionally focused largely on motor symptoms. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and globus pallidus internus (GPi) are effective treatments for motor symptoms. Nonmotor symptoms (NMSs) may also profoundly affect the quality of life. The purpose of this pilot study was to evaluate NMS changes pre- and post-DBS utilizing two recently developed questionnaires. Methods. NMS-Q (questionnaire) and NMS-S (scale) were administered to PD patients before/after unilateral DBS (STN/GPi targets). Results. Ten PD patients (9 STN implants, 1 GPi implant) were included. The three most frequent NMS symptoms identified utilizing NMS-Q in pre-surgical patients were gastrointestinal (100%), sleep (100%), and urinary (90%). NMS sleep subscore significantly decreased (−1.6 points ± 1.8, P = 0.03). The three most frequent NMS symptoms identified in pre-surgical patients using NMS-S were gastrointestinal (90%), mood (80%), and cardiovascular (80%). The largest mean decrease of NMS scores was seen in miscellaneous symptoms (pain, anosmia, weight change, and sweating) (−7 points ± 8.7), and cardiovascular/falls (−1.9, P = 0.02). Conclusion. Non-motor symptoms improved on two separate questionnaires following unilateral DBS for PD. Future studies are needed to confirm these findings and determine their clinical significance as well as to examine the strengths/weaknesses of each questionnaire/scale. PMID:22220288

  19. Aminopeptidase activity in rat brain synaptosomes - 2-mercaptoethanol stimulation and Arg-vasopressin degradation

    International Nuclear Information System (INIS)

    Rat brain synaptic plasma membranes contain an amastatin-inhibited aminopeptidase activity which degrades Arg-vaso-pressin (AVP). The pH optimum for AVP cleavage was found to be 6.8, similar to that reported for oxytocin. The ability of other peptides and arylamides such as oxytocin, Tyr-Phe-Met-Arg-Phe-NH2 and Arg-Arg-βNA to inhibit cleavage of [3H-Tyr2]-AVP suggests that the enzyme may not be specific for AVP. The AVP-cleaving activity has been solubilized and partially characterized. Synaptosomes were lysed with hypotonic buffer, washed, and extracted with 1% Nonidet P-40 detergent. The solubilized protein was chromatographed by gel filtration HPLC on Superose 6. A single peak of activity was found with a M.W. = 117,000 which could hydrolyze 1mM Ala-βNA, Arg-βNA, Arg-Arg-βNA, Phe-Met and Phe-Arg as well as slowly cleave AVP with the ultimate release of 3H-Tyr. 2-Mercaptoethanol (3.9mM) (ME) stimulated activity 3.6 to 6.6-fold for arylamide and dipeptide substrates, but 35-fold for labelled AVP, possibly owing to reduction of the AVP disulfide bond. All activities in the presence of ME were completely inhibited by 0.2mM amastatin

  20. Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT)

    International Nuclear Information System (INIS)

    Imaging has an essential role in the evaluation of correct positioning of electrodes implanted for deep brain stimulation (DBS). Although MRI offers superior anatomic visualization of target sites, there are safety concerns in patients with implanted material; imaging guidelines are inconsistent and vary. The fusion of postoperative CT with preoperative MRI images can be an alternative for the assessment of electrode positioning. The purpose of this study was to assess the accuracy of measurements realized on fused images (acquired without a stereotactic frame) using a manufacturer-provided software. Data from 23 Parkinson's disease patients who underwent bilateral electrode placement for subthalamic nucleus (STN) DBS were acquired. Preoperative high-resolution T2-weighted sequences at 3 T, and postoperative CT series were fused using a commercially available software. Electrode tip position was measured on the obtained images in three directions (in relation to the midline, the AC-PC line and an AC-PC line orthogonal, respectively) and assessed in relation to measures realized on postoperative 3D T1 images acquired at 1.5 T. Mean differences between measures carried out on fused images and on postoperative MRI lay between 0.17 and 0.97 mm. Fusion of CT and MRI images provides a safe and fast technique for postoperative assessment of electrode position in DBS. (orig.)

  1. A Gaze Independent Brain-Computer Interface Based on Visual Stimulation through Closed Eyelids

    Science.gov (United States)

    Hwang, Han-Jeong; Ferreria, Valeria Y.; Ulrich, Daniel; Kilic, Tayfun; Chatziliadis, Xenofon; Blankertz, Benjamin; Treder, Matthias

    2015-10-01

    A classical brain-computer interface (BCI) based on visual event-related potentials (ERPs) is of limited application value for paralyzed patients with severe oculomotor impairments. In this study, we introduce a novel gaze independent BCI paradigm that can be potentially used for such end-users because visual stimuli are administered on closed eyelids. The paradigm involved verbally presented questions with 3 possible answers. Online BCI experiments were conducted with twelve healthy subjects, where they selected one option by attending to one of three different visual stimuli. It was confirmed that typical cognitive ERPs can be evidently modulated by the attention of a target stimulus in eyes-closed and gaze independent condition, and further classified with high accuracy during online operation (74.58% ± 17.85 s.d.; chance level 33.33%), demonstrating the effectiveness of the proposed novel visual ERP paradigm. Also, stimulus-specific eye movements observed during stimulation were verified as reflex responses to light stimuli, and they did not contribute to classification. To the best of our knowledge, this study is the first to show the possibility of using a gaze independent visual ERP paradigm in an eyes-closed condition, thereby providing another communication option for severely locked-in patients suffering from complex ocular dysfunctions.

  2. Deep brain stimulation for the obsessive-compulsive and Tourette-like symptoms of Kleefstra syndrome.

    Science.gov (United States)

    Segar, David J; Chodakiewitz, Yosef G; Torabi, Radmehr; Cosgrove, G Rees

    2015-06-01

    Deep brain stimulation (DBS) has been reported to have beneficial effects in severe, treatment-refractory cases of obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). In this report, the authors present the first case in which DBS was used to treat the neuropsychiatric symptoms of Kleefstra syndrome, a rare genetic disorder characterized by childhood hypotonia, intellectual disability, distinctive facial features, and myriad psychiatric and behavioral disturbances. A 24-year-old female patient with childhood hypotonia, developmental delay, and diagnoses of autism spectrum disorder, OCD, and TS refractory to medical management underwent the placement of bilateral ventral capsule/ventral striatum (VC/VS) DBS leads, with clinical improvement. Medical providers and family observed gradual and progressive improvement in the patient's compulsive behaviors, coprolalia, speech, and social interaction. Symptoms recurred when both DBS electrodes failed because of lead fracture and dislodgement, although the clinical benefits were restored by lead replacement. The symptomatic and functional improvements observed in this case of VC/VS DBS for Kleefstra syndrome suggest a novel indication for DBS worthy of further investigation. PMID:26030700

  3. Modulating affect, cognition and behavior – prospects of deep brain stimulation for treatment resistant psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Thomas E. Schlaepfer

    2011-06-01

    Full Text Available Most patients suffering from psychiatric disorders respond to combina-tions of psycho- and psychopharmacotherapy, however there are patients who profit little if anything even after many years of treatment. Since about a decade different modalities of targeted neuromodulation – among them most prominently – Deep Brain Stimulation (DBS - are being actively researched as putative approaches to very treatment resistant forms of those disorders. Recently, promising pilot data have been re-ported both for Major Depression (MD and Obsessive-Compulsive Disor-der (OCD. Given the fact that patients studied had been treated unsuc-cessfully for many years renders these findings remarkable. Remarkable is the fact, that in case of the long-term studies underway for MD, patients show a stable response. This gives hope to a substantial percentage of therapy-resistant psychiatric patients requiring new therapy approaches. There are no fundamental ethic objections to its use in psychiatric disor-ders, but until substantial clinical data is available, mandatory standards are needed. DBS is a unique and very promising method for the treat-ment of therapy-resistant psychiatric patients. The method allows ma-nipulating pathological neuronal networks in a very precise way.

  4. Deep brain stimulation and ablation for obsessive compulsive disorder: evolution of contemporary indications, targets and techniques.

    Science.gov (United States)

    Tierney, Travis S; Abd-El-Barr, Muhammad M; Stanford, Arielle D; Foote, Kelly D; Okun, Michael S

    2014-06-01

    Surgical therapy for treatment-resistant obsessive compulsive disorder (OCD) remains an effective option for well-selected patients managed within a multidisciplinary setting. Historically, lesions within the limbic system have been used to control both obsessive thoughts and repetitive compulsions associated with this disease. We discuss classical targets as well as contemporary neuromodulatory approaches that have been shown to provide symptomatic relief. Recently, deep brain stimulation (DBS) of the anterior limb of the internal capsule/ventral striatum received Conformité Européene (CE) mark and Food and Drug Administration (FDA) approvals for treatment of intractable OCD. Remarkably, this is the first such approval for neurosurgical intervention in a strictly psychiatric indication in modern times. This target is discussed in detail along with alternative targets currently being proposed. We close with a discussion of gamma knife capsulotomy, a modality with deep historical roots. Further directions in the surgical treatment of OCD will require better preoperative predictors of postoperative responses, optimal selection of individualized targets, and rigorous reporting of adverse events and standardized outcomes. To meet these challenges, centers must be equipped with a multidisciplinary team and patient-centered approach to ensure adequate screening and follow up of patients with this difficult-to-treat condition. PMID:24099662

  5. Deep brain stimulation in obsessive-compulsive disorder: neurocircuitry and clinical experience.

    Science.gov (United States)

    Lipsman, Nir; Giacobbe, Peter; Lozano, Andres M

    2013-01-01

    The last decade has seen a significant rise in interest in the use of deep brain stimulation (DBS) for the management of obsessive-compulsive disorder (OCD), one of psychiatry's most challenging conditions. The prominent role of both thought (obsessions) and motor (compulsions) dysfunction in OCD place the condition at the border between the neurological and the psychiatric. This is supported by a growing body of literature that implicates structures in decision-making, reward, and action-selection circuits in the disorder. Here, we provide an overview of the neurocircuitry of OCD while reviewing the DBS literature to date for the condition. Results of DBS trials in treatment- resistant OCD have been remarkably similar, with clinical response rates in the range of 40-60%, despite the use of a diverse range of targets. These results imply that a common underlying circuit is being modulated, and moreover that there is room for improvement, and debate, in the development of an evidence-driven DBS treatment for this chronic, debilitating illness. PMID:24112898

  6. Deep brain stimulation and responsiveness of the Persian version of Parkinson's disease questionnaire with 39-items.

    Directory of Open Access Journals (Sweden)

    Gholam Ali Shahidi

    2014-12-01

    Full Text Available Assessment of quality-of-life (QOF as an outcome measure after deep brain stimulation (DBS surgery in patients with Parkinson's disease (PD need a valid, reliable and responsive instrument. The aim of the current study was to determine responsiveness of validated Persian version of PD questionnaire with 39-items (PDQ-39 after DBS surgery in patients with PD.Eleven patients with PD, who were candidate for DBS operation between May 2012 and June 2013 were assessed. PDQ-39 and short-form questionnaire with 36-items (SF-36 were used. To assess responsiveness of PDQ-39 standardized response mean (SRM was used.Mean age was 51.8 (8.8 and all of the patients, but just one were male (10 patients. Mean duration of the disease was 8.7 (2.1 years. Eight patients were categorized as moderate using Hoehn and Yahr (H and Y classification. All patients had a better H and Y score compared with the baseline evaluation (3.09 vs. 0.79. The amount of SRM was above 0.70 for all domains means a large responsiveness for PDQ-39.Persian version of PDQ-39 has an acceptable responsiveness and could be used to assess as an outcome measure to evaluate the effect of therapies on PD.

  7. Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT)

    Energy Technology Data Exchange (ETDEWEB)

    Barnaure, I.; Lovblad, K.O.; Vargas, M.I. [Geneva University Hospital, Department of Neuroradiology, Geneva 14 (Switzerland); Pollak, P.; Horvath, J.; Boex, C.; Burkhard, P. [Geneva University Hospital, Department of Neurology, Geneva (Switzerland); Momjian, S. [Geneva University Hospital, Department of Neurosurgery, Geneva (Switzerland); Remuinan, J. [Geneva University Hospital, Department of Radiology, Geneva (Switzerland)

    2015-09-15

    Imaging has an essential role in the evaluation of correct positioning of electrodes implanted for deep brain stimulation (DBS). Although MRI offers superior anatomic visualization of target sites, there are safety concerns in patients with implanted material; imaging guidelines are inconsistent and vary. The fusion of postoperative CT with preoperative MRI images can be an alternative for the assessment of electrode positioning. The purpose of this study was to assess the accuracy of measurements realized on fused images (acquired without a stereotactic frame) using a manufacturer-provided software. Data from 23 Parkinson's disease patients who underwent bilateral electrode placement for subthalamic nucleus (STN) DBS were acquired. Preoperative high-resolution T2-weighted sequences at 3 T, and postoperative CT series were fused using a commercially available software. Electrode tip position was measured on the obtained images in three directions (in relation to the midline, the AC-PC line and an AC-PC line orthogonal, respectively) and assessed in relation to measures realized on postoperative 3D T1 images acquired at 1.5 T. Mean differences between measures carried out on fused images and on postoperative MRI lay between 0.17 and 0.97 mm. Fusion of CT and MRI images provides a safe and fast technique for postoperative assessment of electrode position in DBS. (orig.)

  8. Design of a Small Modified Minkowski Fractal Antenna for Passive Deep Brain Stimulation Implants

    Directory of Open Access Journals (Sweden)

    Sara Manafi

    2014-01-01

    Full Text Available A small planar modified Minkowski fractal antenna is designed and simulated in dual frequency bands (2.4 and 5.8 GHz for wireless energy harvesting by deep brain stimulation (DBS devices. The designed antenna, physically being confined inside a miniaturized structure, can efficiently convert the wireless signals in dual ISM frequency bands to the energy source to recharge the DBS battery or power the pulse generator directly. The performance metrics such as the return loss, the specific absorption rate (SAR, and the radiation pattern within skin and muscle-fat-skin tissues are evaluated for the designed antenna. The gain of the proposed antenna is 3.2 dBi at 2.4 GHz and 4.7 dBi at 5.8 GHz; also the averaged SAR of the antenna in human body tissue is found to be well below the legally allowed limit at both frequency bands. The link budget shows the received power at the distance of 25 cm at 2.4 GHz and 5.8 GHz are around 0.4 mW and 0.04 mW, which can empower the DBS implant. The large operational bandwidth, the physical compactness, and the efficiency in wireless signal reception make this antenna suitable in being used in implanted biomedical devices such as DBS pulse generators.

  9. Aminopeptidase activity in rat brain synaptosomes - 2-mercaptoethanol stimulation and Arg-vasopressin degradation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, W.H.; Orawski, A.T.

    1986-03-05

    Rat brain synaptic plasma membranes contain an amastatin-inhibited aminopeptidase activity which degrades Arg-vaso-pressin (AVP). The pH optimum for AVP cleavage was found to be 6.8, similar to that reported for oxytocin. The ability of other peptides and arylamides such as oxytocin, Tyr-Phe-Met-Arg-Phe-NH/sub 2/ and Arg-Arg-..beta..NA to inhibit cleavage of (/sup 3/H-Tyr/sup 2/)-AVP suggests that the enzyme may not be specific for AVP. The AVP-cleaving activity has been solubilized and partially characterized. Synaptosomes were lysed with hypotonic buffer, washed, and extracted with 1% Nonidet P-40 detergent. The solubilized protein was chromatographed by gel filtration HPLC on Superose 6. A single peak of activity was found with a M.W. = 117,000 which could hydrolyze 1mM Ala-..beta..NA, Arg-..beta..NA, Arg-Arg-..beta..NA, Phe-Met and Phe-Arg as well as slowly cleave AVP with the ultimate release of /sup 3/H-Tyr. 2-Mercaptoethanol (3.9mM) (ME) stimulated activity 3.6 to 6.6-fold for arylamide and dipeptide substrates, but 35-fold for labelled AVP, possibly owing to reduction of the AVP disulfide bond. All activities in the presence of ME were completely inhibited by 0.2mM amastatin.

  10. Personality Changes after Deep Brain Stimulation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Uyen Pham

    2015-01-01

    Full Text Available Objectives. Deep brain stimulation of the subthalamic nucleus (STN-DBS is a recognized therapy that improves motor symptoms in advanced Parkinson’s disease (PD. However, little is known about its impact on personality. To address this topic, we have assessed personality traits before and after STN-DBS in PD patients. Methods. Forty patients with advanced PD were assessed with the Temperament and Character Inventory (TCI: the Urgency, Premeditation, Perseverance, Sensation Seeking impulsive behaviour scale (UPPS, and the Neuroticism and Lie subscales of the Eysenck Personality Questionnaire (EPQ-N, EPQ-L before surgery and after three months of STN-DBS. Collateral information obtained from the UPPS was also reported. Results. Despite improvement in motor function and reduction in dopaminergic dosage patients reported lower score on the TCI Persistence and Self-Transcendence scales, after three months of STN-DBS, compared to baseline (P=0.006; P=0.024. Relatives reported significantly increased scores on the UPPS Lack of Premeditation scale at follow-up (P=0.027. Conclusion. STN-DBS in PD patients is associated with personality changes in the direction of increased impulsivity.

  11. Towards fully automated closed-loop Deep Brain Stimulation in Parkinson's disease patients: A LAMSTAR-based tremor predictor.

    Science.gov (United States)

    Khobragade, Nivedita; Graupe, Daniel; Tuninetti, Daniela

    2015-08-01

    This paper describes the application of the LAMSTAR (LArge Memory STorage and Retrieval) neural network for prediction of onset of tremor in Parkinson's disease (PD) patients to allow for on-off adaptive control of Deep Brain Stimulation (DBS). Currently, the therapeutic treatment of PD by DBS is an open-loop system where continuous stimulation is applied to a target area in the brain. This work demonstrates a fully automated closed-loop DBS system so that stimulation can be applied on-demand only when needed to treat PD symptoms. The proposed LAMSTAR network uses spectral, entropy and recurrence rate parameters for prediction of the advent of tremor after the DBS stimulation is switched off. These parameters are extracted from non-invasively collected surface electromyography and accelerometry signals. The LAMSTAR network has useful characteristics, such as fast retrieval of patterns and ability to handle large amount of data of different types, which make it attractive for medical applications. Out of 21 trials blue from one subject, the average ratio of delay in prediction of tremor to the actual delay in observed tremor from the time stimulation was switched off achieved by the proposed LAMSTAR network is 0.77. Moreover, sensitivity of 100% and overall performance better than previously proposed Back Propagation neural networks is obtained. PMID:26736828

  12. Pitch Memory in Nonmusicians and Musicians: Revealing Functional Differences Using Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Schaal, N K; Krause, V; Lange, K; Banissy, M J; Williamson, V J; Pollok, B

    2015-09-01

    For music and language processing, memory for relative pitches is highly important. Functional imaging studies have shown activation of a complex neural system for pitch memory. One region that has been shown to be causally involved in the process for nonmusicians is the supramarginal gyrus (SMG). The present study aims at replicating this finding and at further examining the role of the SMG for pitch memory in musicians. Nonmusicians and musicians received cathodal transcranial direct current stimulation (tDCS) over the left SMG, right SMG, or sham stimulation, while completing a pitch recognition, pitch recall, and visual memory task. Cathodal tDCS over the left SMG led to a significant decrease in performance on both pitch memory tasks in nonmusicians. In musicians, cathodal stimulation over the left SMG had no effect, but stimulation over the right SMG impaired performance on the recognition task only. Furthermore, the results show a more pronounced deterioration effect for longer pitch sequences indicating that the SMG is involved in maintaining higher memory load. No stimulation effect was found in both groups on the visual control task. These findings provide evidence for a causal distinction of the left and right SMG function in musicians and nonmusicians. PMID:24770704

  13. [Brain structures and functional pecularities in children with mental disorders and transcranial direct current stimulation].

    Science.gov (United States)

    Kozhushko, N Iu; Kropotov, Iu D; Matveev, Iu K; Semivolos, V I; Tereshchenko, E P; Holiavin, A I

    2014-01-01

    This research represents MRI and EEG-investigation in children with mental disorders perinatal genesis during tDCS. In 70% cases brain structures damages don't found or were minimal. On the contrary, in 77% cases α-rhythm of EEG in parietal-occipital areas was non-regular. Functional insufficiency can as a basis of high efficiency tDCS by children. In cases with autism spectrum disorders the Subscales of Woodcock-Jonson were used for the quantitative estimation of efficiency of the course of treatment with tDCS. Positive changes after the course of tDCS were revealed in psychic state, speech comprehension, communication, practical and speech experience, fine motor skills and social integration. PMID:25707217

  14. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment

    Energy Technology Data Exchange (ETDEWEB)

    Handley, Kim M. [Univ. of California, Berkeley, CA (United States); Wrighton, Kelly C. [Univ. of California, Berkeley, CA (United States); Piceno, Yvette M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andersen, Gary L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeSantis, Todd Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wilkins, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); N' Guessan, A. Lucie [Univ. of Massachusetts, Amherst, MA (United States); Peacock, Aaron [Haley & Aldrich, Oak Ridge, TN (United States); Bargar, John [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL); Long, Philip E. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99353, USA; Banfield, Jillian F.

    2012-04-13

    There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identified hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill-core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (for example, Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). These data imply complex membership among highly stimulated taxa, and by inference biogeochemical responses to acetate, a non-fermentable substrate.

  15. BRAIN DYSFUNCTION OF PATIENTS WITH QIGONG INDUCED MENTAL DISORDER REVEALED BY EVOKED POTENTIALS RECORDING

    Institute of Scientific and Technical Information of China (English)

    LU Yingzhi; ZONG Wenbin; CHEN Xingshi

    2003-01-01

    Objective: In order to investigate the brain function of patients with Qigong induced mental disorder (QIMD), this study was carried out. Methods: Four kinds of evoked potentials, including contingent negative variation (CNV), auditory evoked potentials (AEP), visual evoked potentials (VEP), and somatosensory evoked potentials (SEP), were recorded from 12 patients with Qigong induced mental disorder.Comparison of their evoked potentials with the data from some normal controls was made. Results: The results revealed that there were 3 kinds of abnormal changes in evoked potentials of patients with QIMD that is latency prolongation, amplitude increase and amplitude decrease, as compared with normal controls. Conclusion: Brain dysfunction of patients with QIMD was confirmed. Its biological mechanism needs further studying.

  16. Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects

    Directory of Open Access Journals (Sweden)

    Faten eMina

    2013-07-01

    Full Text Available A number of studies showed that deep brain stimulation (DBS can modulate the activity in the epileptic brain and that a decrease of seizures can be achieved in responding patients. In most of these studies, the choice of stimulation parameters is critical to obtain desired clinical effects. In particular, the stimulation frequency is a key parameter that is difficult to tune. A reason is that our knowledge about the frequency-dependant mechanisms according to which DBS indirectly impacts the dynamics of pathological neuronal systems located in the neocortex is still limited. We address this issue using both computational modeling and intracerebral EEG (iEEG data.We developed a macroscopic (neural mass model of the thalamocortical network. In line with already-existing models, it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical cells and reticular neurons. The novelty was to introduce, in the thalamic compartment, the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique data set recorded in a patient (drug-resistant epilepsy with a focal cortical dysplasia (FCD. In this patient, DBS strongly reduced the sustained epileptic activity of the FCD for low-frequency (LFS, < 2 Hz and high-frequency stimulation (HFS, > 70 Hz while intermediate-frequency stimulation (IFS, around 50 Hz had no effect.Signal processing, clustering and optimization techniques allowed us to identify the necessary conditions for reproducing, in the model, the observed frequency-dependent stimulation effects. Key elements which explain the suppression of epileptic activity in the FCD include a feed-forward inhibition and synaptic short-term depression of thalamocortical connections at LFS, and b inhibition of the thalamic output at HFS. Conversely, modeling results indicate that IFS favors thalamic oscillations and entrains epileptic dynamics.

  17. Risk factors for small-vessel disease revealed by magnetic resonance imaging of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Kohriyama, Tatsuo; Yamaguchi, Shinya; Yamamura, Yasuhiro; Nakamura, Shigenobu [Hiroshima Univ. (Japan). School of Medicine; Tanaka, Eiji

    1996-02-01

    In total, 133 patients with asymptomatic or symptomatic cerebral infarction were randomly selected for the study (64 males, 69 females). Among them 91 patients had a history of symptomatic cerebral infarction, 46 patients of hypertension, and 28 patients of diabetes mellitus. The MRI scans were reviewed for areas with increased signal intensity on T2-weighted images. The grade of periventricular lesions, and the number of small infarctions in the subcortical white matter, basal ganglia and brain stem increased significantly with advancing age. It was thus reconfirmed that age is an important risk for demonstrating small-vessel disease on brain MRI. In addition, the degree of small-vessel disease on brain MRI was more extensive in patients with symptomatic cerebral infarction than with asymptomatic cerebral infarction. The detailed results suggest that small-vessel disease on brain MRI in patients with asymptomatic cerebral infarction might represent preclinical lesions for symptomatic cerebral infarction. The numbers of small infarctions in both the subcortical white matter and basal ganglia associated with advancing age, and histories of cerebrovascular accident and hypertension, suggest that common underlying mechanisms may exist in small-vessel disease in both the medullary arteries, which arise from cortical arteries, and perforating arteries. In the subcortical white matter, the number of patchy lesions was more strongly correlated with histories of hypertension and diabetes mellitus than was the number of spotty lesions, suggesting that the risk factors differed depending on the size of the lesions. The present study revealed that the degree of small-vessel disease on brain MRI was not correlated with the serum concentration of total cholesterol, triglyceride or HDL-cholesterol. The data thus indicate that the risk factors for small-vessel disease are distinct from those for large-vessel disease. (J.P.N.)

  18. Risk factors for small-vessel disease revealed by magnetic resonance imaging of the brain

    International Nuclear Information System (INIS)

    In total, 133 patients with asymptomatic or symptomatic cerebral infarction were randomly selected for the study (64 males, 69 females). Among them 91 patients had a history of symptomatic cerebral infarction, 46 patients of hypertension, and 28 patients of diabetes mellitus. The MRI scans were reviewed for areas with increased signal intensity on T2-weighted images. The grade of periventricular lesions, and the number of small infarctions in the subcortical white matter, basal ganglia and brain stem increased significantly with advancing age. It was thus reconfirmed that age is an important risk for demonstrating small-vessel disease on brain MRI. In addition, the degree of small-vessel disease on brain MRI was more extensive in patients with symptomatic cerebral infarction than with asymptomatic cerebral infarction. The detailed results suggest that small-vessel disease on brain MRI in patients with asymptomatic cerebral infarction might represent preclinical lesions for symptomatic cerebral infarction. The numbers of small infarctions in both the subcortical white matter and basal ganglia associated with advancing age, and histories of cerebrovascular accident and hypertension, suggest that common underlying mechanisms may exist in small-vessel disease in both the medullary arteries, which arise from cortical arteries, and perforating arteries. In the subcortical white matter, the number of patchy lesions was more strongly correlated with histories of hypertension and diabetes mellitus than was the number of spotty lesions, suggesting that the risk factors differed depending on the size of the lesions. The present study revealed that the degree of small-vessel disease on brain MRI was not correlated with the serum concentration of total cholesterol, triglyceride or HDL-cholesterol. The data thus indicate that the risk factors for small-vessel disease are distinct from those for large-vessel disease. (J.P.N.)

  19. Multimodal stimulation of Colorado potato beetle reveals modulation of pheromone response by yellow light.

    Science.gov (United States)

    Otálora-Luna, Fernando; Dickens, Joseph C

    2011-01-01

    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB), Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms. PMID:21695167

  20. Multimodal stimulation of Colorado potato beetle reveals modulation of pheromone response by yellow light.

    Directory of Open Access Journals (Sweden)

    Fernando Otálora-Luna

    Full Text Available Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB, Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms.

  1. Preoperative identification of subthalamic nucleus for deep brain stimulation using three-dimensional phase sensitive inversion recovery technique

    International Nuclear Information System (INIS)

    We assessed the feasibility of utilizing three-dimensional (3D) phase sensitive inversion recovery (IR) images for preoperatively determining deep brain stimulator position. We measured geometric distortion with a grid phantom and evaluated images of 3 volunteers to determine optimum imaging parameters for 3D phase sensitive IR. Geometric distortion measured less than 1.0%. Respective inversion and recovery times, which provided high T1 contrast between the subthalamic nucleus and adjacent tissue, were 200 and 4000 ms. In studies of 3 volunteers and 2 patients, the subthalamic nucleus was clearly depicted in 3D phase sensitive IR images. The measured coordinates of the subthalamic nucleus agreed well with those calculated by conventional estimation from midpoint of the anterior and posterior commissure. Three-dimensional phase sensitive inversion recovery was useful in visualizing the subthalamic nucleus for effective deep brain stimulation. (author)

  2. Combined Therapy of Orthopedic Surgery after Deep Brain Stimulation in Cerebral Palsy Mixed Type - A Case Report -

    OpenAIRE

    Park, Hong Souk; Park, Eun Sook; Chang, Jin Woo; Lee, Ki Seok; Suh, Young Joo; Cho, Sung-Rae

    2011-01-01

    Dystonia is a symptom defined by involuntary and irregular contractions of the muscles, which cause movement disorders and postural problems. Deep brain stimulation (DBS) in globus pallidus interna (GPi) is a good option for controlling dystonia. DBS has already been shown to have significant effects on primary dystonia as well as Parkinson's disease. Dystonia is very difficult to manage, as seen in cerebral palsy (CP) mixed with spasticity. As CP patients grow, their musculoskeletal problems...

  3. Self-Reported Executive Functioning in Everyday Life in Parkinson's Disease after Three Months of Subthalamic Deep Brain Stimulation

    OpenAIRE

    Uyen Ha Gia Pham; Stein Andersson; Mathias Toft; Are Hugo Pripp; Ane Eidahl Konglund; Espen Dietrichs; Ulrik Fredrik Malt; Inger Marie Skogseid; Ira Ronit Hebolt Haraldsen; Anne-Kristin Solbakk

    2015-01-01

    Objective. Studies on the effect of subthalamic deep brain stimulation (STN-DBS) on executive functioning in Parkinson’s disease (PD) are still controversial. In this study we compared self-reported daily executive functioning in PD patients before and after three months of STN-DBS. We also examined whether executive functioning in everyday life was associated with motor symptoms, apathy, and psychiatric symptoms. Method. 40 PD patients were examined with the Behavior Rating Inventory of Exec...

  4. Secretory activity of the brain and peripheral organs: Spontaneous and stimulated release of noradrenaline in the ontogenesis of rats.

    Science.gov (United States)

    Bondarenko, N S; Murtazina, A R; Dil'mukhametova, L K; Ikonopistseva, M A; Volina, E V; Ugrumov, M V

    2016-03-01

    Spontaneous and K(+)-stimulated release of noradrenaline from the hypothalamus, adrenal gland, and organ of Zuckerkandl under their flowing incubation was investigated in the perinatal period of ontogenesis of rats. The results suggest that, during the investigated period of ontogenesis, adrenal glands are the main source of noradrenaline in the blood, whereas the contributions of the organ of Zuckerkandl and the brain are not as significant and change during this period. PMID:27193722

  5. Expectation Modulates the Effect of Deep Brain Stimulation on Motor and Cognitive Function in Tremor-Dominant Parkinson's Disease

    OpenAIRE

    Keitel, Ariane; Ferrea, Stefano; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars

    2013-01-01

    Expectation contributes to placebo and nocebo responses in Parkinson's disease (PD). While there is evidence for expectation-induced modulations of bradykinesia, little is known about the impact of expectation on resting tremor. Subthalamic nucleus (STN) deep brain stimulation (DBS) improves cardinal PD motor symptoms including tremor whereas impairment of verbal fluency (VF) has been observed as a potential side-effect. Here we investigated how expectation modulates the effect of STN-DBS on ...

  6. Behavioral and Neurobiological Effects of Deep Brain Stimulation in a Mouse Model of High Anxiety- and Depression-Like Behavior

    OpenAIRE

    Schmuckermair, Claudia; Gaburro, Stefano; Sah, Anupam; Landgraf, Rainer; Sartori, Simone B.; Singewald, Nicolas

    2013-01-01

    Increasing evidence suggests that high-frequency deep brain stimulation of the nucleus accumbens (NAcb-DBS) may represent a novel therapeutic strategy for individuals suffering from treatment-resistant depression, although the underlying mechanisms of action remain largely unknown. In this study, using a unique mouse model of enhanced depression- and anxiety-like behavior (HAB), we investigated behavioral and neurobiological effects of NAcb-DBS. HAB mice either underwent chronic treatment wit...

  7. Rapid effects of deep brain stimulation reactivation on symptoms and neuroendocrine parameters in obsessive-compulsive disorder

    OpenAIRE

    de Koning, P P; Figee, M; Endert, E.; Van den Munckhof, P.; Schuurman, P.R.; Storosum, J G; Denys, D; Fliers, E.

    2016-01-01

    Improvement of obsessions and compulsions by deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) is often preceded by a rapid and transient mood elevation (hypomania). In a previous study we showed that improvement of mood by DBS for OCD is associated with a decreased activity of the hypothalamus-pituitary adrenal axis. The aim of our present study was to evaluate the time course of rapid clinical changes following DBS reactivation in more detail and to assess their associati...

  8. “I Am Who I Am”: On the Perceived Threats to Personal Identity from Deep Brain Stimulation

    OpenAIRE

    Baylis, Françoise

    2011-01-01

    This article explores the notion of the dislocated self following deep brain stimulation (DBS) and concludes that when personal identity is understood in dynamic, narrative, and relational terms, the claim that DBS is a threat to personal identity is deeply problematic. While DBS may result in profound changes in behaviour, mood and cognition (characteristics closely linked to personality), it is not helpful to characterize DBS as threatening to personal identity insofar as this claim is eith...

  9. Increased Thalamic Gamma Band Activity Correlates with Symptom Relief following Deep Brain Stimulation in Humans with Tourette’s Syndrome

    OpenAIRE

    Maling, Nicholas; Hashemiyoon, Rowshanak; Foote, Kelly D.; Okun, Michael S.; Sanchez, Justin C.

    2012-01-01

    Tourette syndrome (TS) is an idiopathic, childhood-onset neuropsychiatric disorder, which is marked by persistent multiple motor and phonic tics. The disorder is highly disruptive and in some cases completely debilitating. For those with severe, treatment-refractory TS, deep brain stimulation (DBS) has emerged as a possible option, although its mechanism of action is not fully understood. We performed a longitudinal study of the effects of DBS on TS symptomatology while concomitantly examinin...

  10. Neurotrophic Signaling Factors in Brain Ischemia/Reperfusion Rats: Differential Modulation Pattern between Single-Time and Multiple Electroacupuncture Stimulation

    OpenAIRE

    Changpeng Wang; Fan Yang; Xiaoyan Liu; Ming Liu; Yun Zheng; Jingchun Guo

    2014-01-01

    Electroacupuncture (EA) treatment has been widely used for stroke-like disorders in traditional Chinese medicine. However, the underlying mechanisms remain unclear. Our previous studies showed that single-time EA stimulation at “Baihui” (GV 20) and “Shuigou” (GV 26) after the onset of ischemia can protect the brain against ischemic injury in rats with middle cerebral artery occlusion (MCAO). Here, we further investigated the differential effects between multiple EA and single-time EA stimulat...

  11. A new high-speed visual stimulation method for gaze-contingent eye movement and brain activity studies

    Directory of Open Access Journals (Sweden)

    Fabio Richlan

    2013-07-01

    Full Text Available Approaches using eye movements as markers of ongoing brain activity to investigate perceptual and cognitive processes were able to implement highly sophisticated paradigms driven by eye movement recordings. Crucially, these paradigms involve display changes that have to occur during the time of saccadic blindness, when the subject is unaware of the change. Therefore, a combination of high-speed eye tracking and high-speed visual stimulation is required in these paradigms. For combined eye movement and brain activity studies (e.g., fMRI, EEG, MEG, fast and exact timing of display changes is especially important, because of the high susceptibility of these methods to visual stimulation. Eye tracking systems already achieve sampling rates up to 2000 Hz, but recent LCD technologies for computer screens reduced the temporal resolution to mostly 60 Hz, which is too slow for gaze-contingent display changes. We developed a high-speed video projection system, which is capable of reliably delivering display changes within the time frame of < 5 ms. This could not be achieved even with the fastest CRT monitors available (< 16 ms. The present video projection system facilitates the realization of cutting-edge eye movement research requiring reliable high-speed visual stimulation (e.g., gaze-contingent display changes, short-time presentation, masked priming. Moreover, this system can be used for fast visual presentation in order to assess brain activity using various methods, such as electroencephalography (EEG and functional magnetic resonance imaging (fMRI. The latter technique was previously excluded from high-speed visual stimulation, because it is not possible to operate conventional CRT monitors in the strong magnetic field of an MRI scanner. Therefore, the present video projection system offers new possibilities for studying eye movement-related brain activity using a combination of eye tracking and fMRI.

  12. The International Deep Brain Stimulation Registry and Database for Gilles de la Tourette Syndrome: How Does It Work?

    OpenAIRE

    Deeb, W.; Rossi, P. J.; Porta, M.; Visser-Vandewalle, V.; Servello, D.; Silburn, P.; Coyne, T.; Leckman, J F; Foltynie, T.; Hariz, M.; Joyce, E. M.; Zrinzo, L; Kefalopoulou, Z.; Welter, M L; Karachi, C

    2016-01-01

    Tourette Syndrome (TS) is a neuropsychiatric disease characterized by a combination of motor and vocal tics. Deep brain stimulation (DBS), already widely utilized for Parkinson's disease and other movement disorders, is an emerging therapy for select and severe cases of TS that are resistant to medication and behavioral therapy. Over the last two decades, DBS has been used experimentally to manage severe TS cases. The results of case reports and small case series have been variable but in gen...

  13. Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism

    OpenAIRE

    Dorval, Alan D.; Grill, Warren M.

    2014-01-01

    Pathophysiological activity of basal ganglia neurons accompanies the motor symptoms of Parkinson's disease. High-frequency (>90 Hz) deep brain stimulation (DBS) reduces parkinsonian symptoms, but the mechanisms remain unclear. We hypothesize that parkinsonism-associated electrophysiological changes constitute an increase in neuronal firing pattern disorder and a concomitant decrease in information transmission through the ventral basal ganglia, and that effective DBS alleviates symptoms by de...

  14. A Battery-Less, Implantable Neuro-Electronic Interface for Studying the Mechanisms of Deep Brain Stimulation in Rat Models.

    Science.gov (United States)

    Lin, Yu-Po; Yeh, Chun-Yi; Huang, Pin-Yang; Wang, Zong-Ye; Cheng, Hsiang-Hui; Li, Yi-Ting; Chuang, Chi-Fen; Huang, Po-Chiun; Tang, Kea-Tiong; Ma, Hsi-Pin; Chang, Yen-Chung; Yeh, Shih-Rung; Chen, Hsin

    2016-02-01

    Although deep brain stimulation (DBS) has been a promising alternative for treating several neural disorders, the mechanisms underlying the DBS remain not fully understood. As rat models provide the advantage of recording and stimulating different disease-related regions simultaneously, this paper proposes a battery-less, implantable neuro-electronic interface suitable for studying DBS mechanisms with a freely-moving rat. The neuro-electronic interface mainly consists of a microsystem able to interact with eight different brain regions bi-directionally and simultaneously. To minimize the size of the implant, the microsystem receives power and transmits data through a single coil. In addition, particular attention is paid to the capability of recording neural activities right after each stimulation, so as to acquire information on how stimulations modulate neural activities. The microsystem has been fabricated with the standard 0.18 μm CMOS technology. The chip area is 7.74 mm (2) , and the microsystem is able to operate with a single supply voltage of 1 V. The wireless interface allows a maximum power of 10 mW to be transmitted together with either uplink or downlink data at a rate of 2 Mbps or 100 kbps, respectively. The input referred noise of recording amplifiers is 1.16 μVrms, and the stimulation voltage is tunable from 1.5 V to 4.5 V with 5-bit resolution. After the electrical functionality of the microsystem is tested, the capability of the microsystem to interface with rat brain is further examined and compared with conventional instruments. All experimental results are presented and discussed in this paper. PMID:25838526

  15. Thirty minute transcutaneous electric acupoint stimulation modulates resting state brain activities: a perfusion and BOLD fMRI study.

    Science.gov (United States)

    Jiang, Yin; Hao, Ying; Zhang, Yue; Liu, Jing; Wang, Xiaoying; Han, Jisheng; Fang, Jing; Zhang, Jue; Cui, Cailian

    2012-05-31

    Increasing neuroimaging studies have focused on the sustained after effects of acupuncture, especially for the changes of brain activities in rest. However, short-period stimuli have mostly been chosen in these works. The present study aimed to investigate how the resting state brain activities in healthy subjects were modulated by relatively long-period (30 min) acupuncture, a widely used modality in clinical practice. Transcutaneous electric acupoint stimulation (TEAS) or intermittent minimal TEAS (MTEAS) were given for 30 min to 40 subjects. Functional MRI (fMRI) data were collected including the pre-stimulation resting state and the post-stimulation resting state, using dual-echo arterial spin labeling (ASL) techniques, representing both cerebral blood flow (CBF) signals and blood oxygen-dependent level (BOLD) signals simultaneously. Following 30 min TEAS, but not MTEAS, the mean global CBF decreased, and a significant decrease of regional CBF was observed in SI, insula, STG, MOG and IFG. Functional connectivity analysis showed more secure and spatially extended connectivity of both the DMN and SMN after 30 min TEAS. Our results implied that modulation of the regional brain activities and network connectivity induced by thirty minute TEAS may associate with the acupuncture-related therapeutic effects. Furthermore, the resting state regional CBF quantified by ASL perfusion fMRI may serve as a potential biomarker in future acupuncture studies. PMID:22541167

  16. TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions.

    Science.gov (United States)

    Hill, Aron T; Rogasch, Nigel C; Fitzgerald, Paul B; Hoy, Kate E

    2016-05-01

    Transcranial electrical stimulation (tES) techniques are able to induce changes in cortical excitability and plasticity through the administration of weak currents to the brain and are currently being used to manipulate a vast array of cognitive processes. Despite the widespread use of tES technologies within both research and remedial settings, their precise neurophysiological mechanisms of action are not well established outside of the motor cortex. The expanding use of tES within non-motor brain regions highlights the growing need for a more comprehensive understanding of the effects of stimulation across a diversity of cortical locations. The combination of transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a method of directly probing both local and widespread changes in brain neurophysiology, through the recording of TMS-evoked potentials and cortical oscillations. In this review we explore TMS-EEG as a tool for examining the impact of tES on cortical function and argue that multimodal approaches which combine tES with TMS-EEG could lead to a deeper understanding of the mechanisms which underlie tES-induced cognitive modulation. PMID:26959337

  17. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.

    Science.gov (United States)

    LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David

    2015-08-01

    Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform. PMID:26737848

  18. Early deep brain stimulation in patients with myoclonus-dystonia syndrome.

    Science.gov (United States)

    Rocha, Helena; Linhares, Paulo; Chamadoira, Clara; Rosas, Maria José; Vaz, Rui

    2016-05-01

    Myoclonus-dystonia (MD) is a rare movement disorder which is disabling and frequently refractory to medical treatment. Deep brain stimulation (DBS) of the globus pallidus interna (GPi) has been used to treat some patients. Although there is significant motor improvement with DBS, the impact on disability and on quality of life has been infrequently reported. Also, the benefit of the procedure is not established in patients without ε-sarcoglycan gene (SGCE) mutations. We present two patients with severe MD treated with GPi-DBS, one of the patients without a SGCE mutation. Motor improvements (rest/action/total subscores of the Unified Myoclonus Rating Scale and movement subscore of the Burke-Fahn-Marsden Dystonia Rating Scale [BFMRS]) and disability (BFMRS disability subscore) were carefully evaluated preoperatively and at 6 and 12months after surgery. Quality of life (addressed using the Portuguese version of the Medical Outcomes Study 36-item Short-Form General Health Survey, version 2.0 [SF-36v2]) was tested preoperatively and 12months after DBS. At 12-month follow-up, myoclonus improved 78.6% in Patient 1 and 80.7% in Patient 2, while dystonia improved 37% and 86.7%, respectively. Improvements in disability ranged from 71.4% to 75%. With regard to quality of life, all parameters addressed by the SF-36v2 improved or stabilized in both patients. No major adverse effects were noticed. Improvements in motor symptoms are consistent with reports in the literature and were obtained regardless of the identification of a SGCE gene mutation. There were also significant benefits on disability and quality of life. DBS should be considered for MD. PMID:26810467

  19. Moving forward: advances in the treatment of movement disorders with deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Terry K Schiefer

    2011-11-01

    Full Text Available The modern era of stereotactic and functional neurosurgery has ushered in state of the art technologies for the treatment of movement disorders, particularly Parkinson’s disease (PD, tremor, and dystonia. After years of experience with various surgical therapies, the eventual shortcomings of both medical and surgical treatments, and several serendipitous discoveries, deep brain stimulation (DBS has risen to the forefront as a highly effective, safe, and reversible treatment for these conditions. Idiopathic advanced Parkinson’s disease can be treated with thalamic, globus pallidus internus (GPi, or subthalamic nucleus (STN DBS. Thalamic DBS primarily relieves tremor while GPi and STN DBS alleviate a wide range of Parkinsonian symptoms. Thalamic DBS is also used in the treatment of other types of tremor, particularly essential tremor, with excellent results. Both primary and various types of secondary dystonia can be treated very effectively with GPi DBS. The variety of anatomical targets for these movement disorders is indicative of the network-level dysfunction mediating these movement disturbances. Despite an increasing understanding of the clinical benefits of DBS, little is known about how DBS can create such wide sweeping neuromodulatory effects. The key to improving this therapeutic modality and discovering new ways to treat these and other neurologic conditions lies in better understanding the intricacies of DBS. Here we review the history and pertinent clinical data for DBS treatment of PD, tremor, and dystonia. Our search criteria for PubMed included combinations of the following terms: DBS, neuromodulation, movement disorders, PD, tremor, dystonia, and history. Dates were not restricted.

  20. Long-Term Clinical Outcome of Internal Globus Pallidus Deep Brain Stimulation for Dystonia.

    Directory of Open Access Journals (Sweden)

    Hye Ran Park

    Full Text Available GPi (Internal globus pallidus DBS (deep brain stimulation is recognized as a safe, reliable, reversible and adjustable treatment in patients with medically refractory dystonia.This report describes the long-term clinical outcome of 36 patients implanted with GPi DBS at the Neurosurgery Department of Seoul National University Hospital.Nine patients with a known genetic cause, 12 patients with acquired dystonia, and 15 patients with isolated dystonia without a known genetic cause were included. When categorized by phenomenology, 29 patients had generalized, 5 patients had segmental, and 2 patients had multifocal dystonia. Patients were assessed preoperatively and at defined follow-up examinations postoperatively, using the Burke-Fahn-Marsden dystonia rating scale (BFMDRS for movement and functional disability assessment. The mean follow-up duration was 47 months (range, 12-84.The mean movement scores significantly decreased from 44.88 points preoperatively to 26.45 points at 60-month follow up (N = 19, P = 0.006. The mean disability score was also decreased over time, from 11.54 points preoperatively to 8.26 points at 60-month follow up, despite no statistical significance (N = 19, P = 0.073. When analyzed the movement and disability improvement rates at 12-month follow up point, no significant difference was noted according to etiology, disease duration, age at surgery, age of onset, and phenomenology. However, the patients with DYT-1 dystonia and isolated dystonia without a known genetic cause showed marked improvement.GPi DBS is a safe and efficient therapeutic method for treatment of dystonia patients to improve both movement and disability. However, this study has some limitations caused by the retrospective design with small sample size in a single-center.

  1. Sedation and Regional Anesthesia for Deep Brain Stimulation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Onur Ozlu

    2014-01-01

    Full Text Available Objective. To present the conscious sedation and the regional anesthesia technique, consisting of scalp block and superficial cervical plexus block, used in our institution for patients undergoing deep brain stimulation (DBS for the treatment of Parkinson’s disease (PD. Methods. The study included 26 consecutive patients. A standardized anesthesia protocol was used and clinical data were collected prospectively. Results. Conscious sedation and regional anesthesia were used in all cases. The dexmedetomidine loading dose was 1 μg kg−1 and mean infusion rate was 0.26 μg kg−1 h−1 (0.21 [mean total dexmedetomidine dose: 154.68 μg (64.65]. Propofol was used to facilitate regional anesthesia. Mean propofol dose was 1.68 mg kg (0.84 [mean total propofol dose: 117.72 mg (59.11]. Scalp block and superficial cervical plexus block were used for regional anesthesia. Anesthesia related complications were minor. Postoperative pain was evaluated; mean visual analog scale pain scores were 0 at the postoperative 1st and 6th hours and 4 at the 12th and 24th hours. Values are mean (standard deviation. Conclusions. Dexmedetomidine sedation along with scalp block and SCPB provides good surgical conditions and pain relief and does not interfere with neurophysiologic testing during DBS for PD. During DBS the SCPB may be beneficial for patients with osteoarthritic cervical pain. This trial is registered with Clinical Trials Identifier NCT01789385.

  2. Disparities in deep brain stimulation surgery among insured elders with Parkinson disease

    Science.gov (United States)

    Schootman, Mario; Kung, Nathan; Wang, Xiao-Yu; Perlmutter, Joel S.; Racette, Brad A.

    2014-01-01

    Objective: To identify sociodemographic, clinical, and physician/practice factors associated with deep brain stimulation (DBS). DBS is a proven surgical therapy for Parkinson disease (PD), but is recommended only for patients with excellent health, results in significant out-of-pocket costs, and requires substantial physician involvement. Methods: Retrospective cohort study of more than 657,000 Medicare beneficiaries with PD. Multivariable logistic regression models examined the association between demographic, clinical, socioeconomic status (SES), and physician/practice factors, and DBS therapy. Results: There were significant disparities in the use of DBS therapy among Medicare beneficiaries with PD. The greatest disparities were associated with race: black (adjusted odds ratio [AOR] 0.20, 95% confidence interval [CI] 0.16–0.25) and Asian (AOR 0.55, 95% CI 0.44–0.70) beneficiaries were considerably less likely to receive DBS than white beneficiaries. Women (AOR 0.79, 95% CI 0.75–0.83) also had lower odds of receiving DBS compared with men. Eighteen percent of procedures were performed on patients with PD who had cognitive impairment/dementia, a reported contraindication to DBS. Beneficiaries treated in minority-serving PD practices were less likely to receive DBS, regardless of individual race (AOR 0.76, 95% CI 0.66–0.87). Even after adjustment for demographic and clinical covariates, high neighborhood SES was associated with 1.4-fold higher odds of receiving DBS (AOR 1.42, 95% CI 1.33–1.53). Conclusions: Among elderly Medicare beneficiaries with PD, race, sex, and neighborhood SES are strong independent predictors of DBS receipt. Racial disparities are amplified when adjusting for physician/clinic characteristics. Future investigations of the demographic differences in clinical need/usefulness of DBS, ease of DBS attainment, and actual/opportunity DBS costs are needed to inform policies to reduce DBS disparities and improve PD quality of care. PMID

  3. Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits.

    Science.gov (United States)

    Bourne, Sarah K; Eckhardt, Christine A; Sheth, Sameer A; Eskandar, Emad N

    2012-01-01

    Deep brain stimulation (DBS) has emerged as a safe, effective, and reversible treatment for a number of movement disorders. This has prompted investigation of its use for other applications including psychiatric disorders. In recent years, DBS has been introduced for the treatment of obsessive compulsive disorder (OCD), which is characterized by recurrent unwanted thoughts or ideas (obsessions) and repetitive behaviors or mental acts performed in order to relieve these obsessions (compulsions). Abnormal activity in cortico-striato-thalamo-cortical (CSTC) circuits including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), ventral striatum, and mediodorsal (MD) thalamus has been implicated in OCD. To this end a number of DBS targets including the anterior limb of the internal capsule (ALIC), ventral capsule/ventral striatum (VC/VS), ventral caudate nucleus, subthalamic nucleus (STN), and nucleus accumbens (NAc) have been investigated for the treatment of OCD. Despite its efficacy and widespread use in movement disorders, the mechanism of DBS is not fully understood, especially as it relates to psychiatric disorders. While initially thought to create a functional lesion akin to ablative procedures, it is increasingly clear that DBS may induce clinical benefit through activation of axonal fibers spanning the CSTC circuits, alteration of oscillatory activity within this network, and/or release of critical neurotransmitters. In this article we review how the use of DBS for OCD informs our understanding of both the mechanisms of DBS and the circuitry of OCD. We review the literature on DBS for OCD and discuss potential mechanisms of action at the neuronal level as well as the broader circuit level. PMID:22712007

  4. Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits

    Directory of Open Access Journals (Sweden)

    Sarah Kathleen Bourne

    2012-06-01

    Full Text Available Deep brain stimulation (DBS has emerged as a safe, effective, and reversible treatment for a number of movement disorders. This has prompted investigation of its use for other applications including psychiatric disorders. In recent years, DBS has been introduced for the treatment of obsessive-compulsive disorder (OCD, which is characterized by recurrent unwanted thoughts or ideas (obsessions and repetitive behaviors or mental acts performed in order to relieve these obsessions (compulsions. Abnormal activity in cortico-striato-thalamo-cortical (CSTC circuits including the orbitofrontal cortex, anterior cingulate cortex, ventral striatum, and mediodorsal thalamus has been implicated in OCD. To this end a number of DBS targets including the anterior limb of the internal capsule, ventral capsule/ventral striatum, ventral caudate nucleus, subthalamic nucleus, nucleus accumbens, and the inferior thalamic peduncle have been investigated for the treatment of OCD. Despite its efficacy and widespread use in movement disorders, the mechanism of DBS is not fully understood, especially as it relates to psychiatric disorders. While initially thought to create a functional lesion akin to ablative procedures, it is increasingly clear that DBS may induce clinical benefit through activation of axonal fibers spanning the CSTC circuits, alteration of oscillatory activity within this network, and/or release of critical neurotransmitters. In this article we review how the use of DBS for OCD informs our understanding of both the mechanisms of DBS and the circuitry of OCD. We review the literature on DBS for OCD and discuss potential mechanisms of action at the neuronal level as well as the broader circuit level.

  5. Analyzing 7000 texts on deep brain stimulation: what do they tell us?

    Science.gov (United States)

    Ineichen, Christian; Christen, Markus

    2015-01-01

    The enormous increase in numbers of scientific publications in the last decades requires quantitative methods for obtaining a better understanding of topics and developments in various fields. In this exploratory study, we investigate the emergence, trends, and connections of topics within the whole text corpus of the deep brain stimulation (DBS) literature based on more than 7000 papers (title and abstracts) published between 1991 to 2014 using a network approach. Taking the co-occurrence of basic terms that represent important topics within DBS as starting point, we outline the statistics of interconnections between DBS indications, anatomical targets, positive, and negative effects, as well as methodological, technological, and economic issues. This quantitative approach confirms known trends within the literature (e.g., regarding the emergence of psychiatric indications). The data also reflect an increased discussion about complex issues such as personality connected tightly to the ethical context, as well as an apparent focus on depression as important DBS indication, where the co-occurrence of terms related to negative effects is low both for the indication as well as the related anatomical targets. We also discuss consequences of the analysis from a bioethical perspective, i.e., how such a quantitative analysis could uncover hidden subject matters that have ethical relevance. For example, we find that hardware-related issues in DBS are far more robustly connected to an ethical context compared to impulsivity, concrete side-effects or death/suicide. Our contribution also outlines the methodology of quantitative text analysis that combines statistical approaches with expert knowledge. It thus serves as an example how innovative quantitative tools can be made useful for gaining a better understanding in the field of DBS. PMID:26578908

  6. The combined depletion of monoamines alters the effectiveness of subthalamic deep brain stimulation.

    Science.gov (United States)

    Faggiani, Emilie; Delaville, Claire; Benazzouz, Abdelhamid

    2015-10-01

    Non-motor symptoms of Parkinson's disease are under-studied and therefore not well treated. Here, we investigated the role of combined depletions of dopamine, norepinephrine and/or serotonin in the manifestation of motor and non-motor deficits in the rat. Then, we studied the impact of these depletions on the efficacy of deep brain stimulation of the subthalamic nucleus (STN-DBS). We performed selective depletions of dopamine, norepinephrine and serotonin, and the behavioral effects of different combined depletions were investigated using the open field, the elevated plus maze and the forced swim test. Bilateral dopamine depletion alone induced locomotor deficits associated with anxiety and mild "depressive-like" behaviors. Although additional depletions of norepinephrine and/or serotonin did not potentiate locomotor and anxiety disorders, combined depletions of the three monoamines dramatically exacerbated "depressive-like" behavior. STN-DBS markedly reversed locomotor deficits and anxiety behavior in animals with bilateral dopamine depletion alone. However, these improvements were reduced or lost by the additional depletion of norepinephrine and/or serotonin, indicating that the depletion of these monoamines may interfere with the antiparkinsonian efficacy of STN-DBS. Furthermore, our results showed that acute STN-DBS improved "depressive-like" disorder in animals with bilateral depletion of dopamine and also in animals with combined depletions of the three monoamines, which induced severe immobility in the forced swim test. Our data highlight the key role of monoamine depletions in the pathophysiology of anxiety and depressive-like disorders and provide the first evidence of their negative consequences on the efficacy of STN-DBS upon the motor and anxiety disorders in the context of Parkinson's disease. PMID:26206409

  7. Subthalamic Nucleus Deep Brain Stimulation May Reduce Medication Costs in Early Stage Parkinson’s Disease

    Science.gov (United States)

    Hacker, Mallory L.; Currie, Amanda D.; Molinari, Anna L.; Turchan, Maxim; Millan, Sarah M.; Heusinkveld, Lauren E.; Roach, Jonathon; Konrad, Peter E.; Davis, Thomas L.; Neimat, Joseph S.; Phibbs, Fenna T.; Hedera, Peter; Byrne, Daniel W.; Charles, David

    2016-01-01

    Background: Subthalamic nucleus deep brain stimulation (STN-DBS) is well-known to reduce medication burden in advanced stage Parkinson’s disease (PD). Preliminary data from a prospective, single blind, controlled pilot trial demonstrated that early stage PD subjects treated with STN-DBS also required less medication than those treated with optimal drug therapy (ODT). Objective: The purpose of this study was to analyze medication cost and utilization from the pilot trial of DBS in early stage PD and to project 10 year medication costs. Methods: Medication data collected at each visit were used to calculate medication costs. Medications were converted to levodopa equivalent daily dose, categorized by medication class, and compared. Medication costs were projected to advanced stage PD, the time when a typical patient may be offered DBS. Results: Medication costs increased 72% in the ODT group and decreased 16% in the DBS+ODT group from baseline to 24 months. This cost difference translates into a cumulative savings for the DBS+ODT group of $7,150 over the study period. Projected medication cost savings over 10 years reach $64,590. Additionally, DBS+ODT subjects were 80% less likely to require polypharmacy compared with ODT subjects at 24 months (p <  0.05; OR = 0.2; 95% CI: 0.04–0.97). Conclusions: STN-DBS in early PD reduced medication cost over the two-year study period. DBS may offer substantial long-term reduction in medication cost by maintaining a simplified, low dose medication regimen. Further study is needed to confirm these findings, and the FDA has approved a pivotal, multicenter clinical trial evaluating STN-DBS in early PD. PMID:26967937

  8. Radio electric asymmetric brain stimulation in the treatment of behavioral and psychiatric symptoms in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Mannu P

    2011-07-01

    Full Text Available Piero Mannu1, Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyPurpose: Behavioral and psychiatric symptoms of dementia (BPSD are common in Alzheimer's disease (AD and disrupt the effective management of AD patients. The present study explores the use of radio electric asymmetric brain stimulation (REAC in patients who have had a poor response to pharmacological treatment.Patients and methods: Eight patients (five females and three males; mean [±standard deviation] age at study baseline: 69.9 ± 3.0 years diagnosed with AD according to the DSM-IV-TR criteria (mean onset age of AD: 65.4 ± 3.5 years were cognitively and psychometrically assessed with the Mini-Mental State Examination (MMSE, the Activity of Daily Living (ADL, the Instrumental Activity of Daily Living (IADL, and the Neuropsychiatric Inventory (NPI, prior to and after each of 2 REAC treatment cycles.Results: Scores on the MMSE and all subscales of the NPI (frequency, severity, and distress, the ADL, and the IADL were significantly improved following the initial REAC treatment. There was further significant improvement in all measurements (with a tendency for improvement in the IADL after the second REAC treatment cycle.Conclusion: The improvement of cognitive and behavioral/psychiatric functioning following REAC treatment suggests that this innovative approach may be an effective, safe, and tolerable alternative to pharmacological treatment of AD patients, especially in the area of BPSD. Elderly patients suffering from other types of dementia may also benefit from REAC treatment.Keywords: anxiety, depression, insomnia, behavioral and psychiatric symptoms of dementia (BPSD

  9. Deep brain stimulation of the antero-medial globus pallidus interna for Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Perminder S Sachdev

    Full Text Available BACKGROUND: We have previously reported the results of Deep Brain Stimulation (DBS of the antero-medial globus pallidus interna (GPi for severe Tourette Syndrome (TS in 11 patients. We extend this case series to 17 patients and a longer follow-up to a maximum of 46 months. METHODS: 17 patients (14 male; mean age 29.1 years, range 17-51 years with severe and medically intractable TS were implanted with Medtronic quadripolar electrodes bilaterally in the antero-medial GPi. The primary outcome measure was the Yale Global Tic Severity Scale (YGTSS. Secondary outcome measures included the Yale-Brown Obsessive Compulsive Scale, Hamilton Depression Rating Scale, Gilles de la Tourette Quality of Life Scale and Global Assessment of Functioning. Follow up was at one month, three months and finally at a mean 24.1 months (range 8-46 months following surgery. RESULTS: Overall, there was a 48.3% reduction in motor tics and a 41.3% reduction in phonic tics at one month, and this improvement was maintained at final follow-up. 12 out of 17 (70.6% patients had a>50% reduction in YGTSS score at final follow up. Only 8 patients required ongoing pharmacotherapy for tics post-surgery. Patients improved significantly on all secondary measures. Adverse consequences included lead breakage in 4 patients, infection (1, transient anxiety (2, dizziness (1, poor balance (1 and worsening of stuttering (1. CONCLUSIONS: This case series provides further support that antero-medial GPi DBS is an effective and well tolerated treatment for a subgroup of severe TS, with benefits sustained up to 4 years.

  10. Deep Brain Stimulation of the Ventroposteromedial (VPM) Thalamus 10 Years after VPM Thalamotomy to Treat a Recurrent Facial Pain.

    Science.gov (United States)

    Yamgoue, Yves; Pralong, Etienne; Levivier, Marc; Bloch, Jocelyne

    2016-01-01

    We report the successful treatment of recurrent facial pain by deep brain stimulation (DBS) of the ventroposteromedial thalamic nucleus (VPM-DBS), 10 years after VPM thalamotomy. A 62-year-old woman who suffered from an atypical right-sided trigeminal neuralgia of the V1 and V2 branches was successfully treated a decade ago with a radiofrequency VPM thermocoagulation. Ten years later, the same burning right-sided trigeminal pain progressively recurred and was resistant to medical treatments. A DBS procedure was proposed to the patient aiming to stimulate the vicinity of the preexisting stereotactic lesion. Intraoperatively, the pain relief was immediate at low stimulation intensities. Eleven months later, the patient remains pain free. This case report suggests that DBS targeting an area of the VPM close to the previous stereotactic lesion is possible as a salvage therapy, and can successfully achieve relief of facial pain 10 years after VPM thalamotomy. PMID:27096946

  11. The Relationship Between Brain Oscillatory Activity and Therapeutic Effectiveness of Transcranial Magnetic Stimulation in the Treatment of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Andrew Francis Leuchter

    2013-02-01

    Full Text Available Major Depressive Disorder (MDD is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive Transcranial Magnetic Stimulation (rTMS is a robust treatment for MDD, but the mechanism of action (MOA of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this mechanism of action and achieve better antidepressant effectiveness. We propose that rTMS can be administered: 1 synchronized to a patient’s individual alpha rhythm (IAF, or synchronized rTMS (sTMS; 2 as a low magnetic field strength sinusoidal wave form; and, 3 broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD.

  12. Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in Males.

    Science.gov (United States)

    Wiers, Corinde E; Shokri-Kojori, Ehsan; Wong, Christopher T; Abi-Dargham, Anissa; Demiral, Şükrü B; Tomasi, Dardo; Wang, Gene-Jack; Volkow, Nora D

    2016-09-01

    The extent to which cannabis is deleterious to the human brain is not well understood. Here, we test whether cannabis abusers (CA) have impaired frontal function and reactivity to dopaminergic signaling, which are fundamental to relapse in addiction. We measured brain glucose metabolism using PET and [(18)F]FDG both at baseline (placebo) and after challenge with methylphenidate (MP), a dopamine-enhancing drug, in 24 active CA (50% female) and 24 controls (HC; 50% female). Results show that (i) CA had lower baseline glucose metabolism than HC in frontal cortex including anterior cingulate, which was associated with negative emotionality. (ii) MP increased whole-brain glucose metabolism in HC but not in CA; and group by challenge effects were most profound in putamen, caudate, midbrain, thalamus, and cerebellum. In CA, MP-induced metabolic increases in putamen correlated negatively with addiction severity. (iii) There were significant gender effects, such that both the group differences at baseline in frontal metabolism and the attenuated regional brain metabolic responses to MP were observed in female CA but not in male CA. As for other drug addictions, reduced baseline frontal metabolism is likely to contribute to relapse in CA. The attenuated responses to MP in midbrain and striatum are consistent with decreased brain reactivity to dopamine stimulation and might contribute to addictive behaviors in CA. The gender differences suggest that females are more sensitive than males to the adverse effects of cannabis in brain. PMID:27156854

  13. Serial 1H-MRS of thalamus during deep brain stimulation of bilateral globus pallidus internus for primary generalized dystonia

    International Nuclear Information System (INIS)

    The physiological mechanisms of deep brain stimulation (DBS) are not completely clear. Our understanding of them may be facilitated with the use of proton magnetic resonance spectroscopy (1H-MRS). Serial 1H-MRS of both thalami was performed during the course of DBS of bilateral globus pallidus internus in a patient with primary generalized dystonia. Two days after microelectrode implantation, a pulse frequency of 185 Hz was applied for stimulation. It resulted in relief of symptoms and a decrease of Burke-Fahn-Marsden dystonia rating scale (BFMDRS) scores, and was accompanied by a prominent increase of N-acetylaspartate (NAA)/choline-containing compounds (Cho) ratio, a mild increase of NAA/creatine (Cr) ratio, and a moderate decrease of Cho/Cr ratio. Two weeks later, for a search of the optimal stimulation mode, the pulse frequency was switched to 60 Hz, which resulted in clinical deterioration and significant increase of BFMDRS scores. At that time, all investigated 1H-MRS-detected metabolic parameters had nearly returned to the pretreatment levels. Use of serial 1H-MRS investigations of various brain structures during DBS in cases of movement disorders permits detailed evaluation of the treatment response, has a potential for its possible prediction, and may facilitate understanding of the physiological mechanisms of stimulation. (orig.)

  14. Comparing the anticonvulsant effects of low frequency stimulation of different brain sites on the amygdala kindling acquisition in rats.

    Science.gov (United States)

    Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Sheibani, Vahid; Shojaei, Amir; Harandi, Shaahin; Mirnajafi-Zadeh, Javad

    2013-01-01

    Low frequency stimulation (LFS) is a potential alternative therapy for epilepsy. However, it seems that the anticonvulsant effects of LFS depend on its target sites in the brain. Thus, the present study was designed to compare the anticonvulsant effects of LFS administered to amygdala, piriform cortex and substantia nigra on amygdala kindling acquisition. In control group, rats were kindled in a chronic manner (one stimulation per 24 h). In other experimental groups, animals received low-frequency stimulation (8 packages at 100 s intervals, each package contained 200 monophasic square-wave pulses, 0.1 ms pulse duration at 1 Hz andAD threshold intensity) in amygdala, piriform cortex or substantia nigra 60 seconds after the kindling stimulation, the AD duration and daily seizure stages were recorded. The obtained results showed that administration of LFS in all three regions reduced electrical and behavioral parameters of the kindling procedure. However LFS has a stronger inhibitory effect on kindling development when applied in substantia nigra compared to the amygdala and piriform cortex which reinforce the view that the substantia nigra mediates a crucial role in amygdala-kindled seizures. LFS had also greater inhibitory effects when applied to the amygdala compared to piriform cortex. Thus, it may be suggested that antiepileptogenic effect of LFS depends on its target site and different brain areas exert different inhibitory effects on kindling acquisition according to the seizure focus. PMID:25337354

  15. Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology

    OpenAIRE

    A. Zanuzzi; J. M. Arocena; Mourik, van, N.M.; Faz Cano, A.

    2009-01-01

    Mine tailings are inhospitable to plants and soil organisms, because of low pH and poor soil organic matter contents. Vegetation establishment requires a soil system capable of supporting the nutrient and water requirements of plants and associated organisms. The objective of this study was to understand the influence of added organic and industrial wastes to the formation of soils in degraded landscapes left behind by past mining activities. Specifically, we stimulated the build up of soil o...

  16. Gut Taste Stimulants Alter Brain Activity in Areas Related to Working Memory: a Pilot Study

    Directory of Open Access Journals (Sweden)

    Anne Christin Meyer-Gerspach

    2016-07-01

    Full Text Available Background/Aims: Taste perception is one of the most important primary oral reinforcers, driving nutrient and energy intake as well as toxin avoidance. Taste receptors in the gastrointestinal tract might as well impact appetitive or aversive behavior and thus influence learning tasks and a close relation of neural taste processing and working memory networks seems plausible. Methods: In the present pilot study, we determined the effects of five taste qualities “bitter” (quinine, “sweet” (glucose, “sour” (citric acid, “salty” (NaCl and “umami” (monosodium glutamate, MSG on working memory processing using functional MRI and their effect on plasma insulin and glucose levels. On six separate occasions, subjects received one of the following test substances dissolved in 200 mL tap water via a nasogastric tube (to circumvent the oral cavity: 1 2g citric acid corresponding to 52 mM, 2 2g NaCl; 171 mM, 3 0.017g quinine; 0.26 mM, 4 1g monosodium glutamate; 30 mM, 5 25g glucose; 694 mM and 6 200 mL tap water (placebo. Results: The taste qualities “bitter” and “umami” significantly altered brain activation patterns in the primary gustatory cortex as well as in subcortical structures, previously reported to be involved in emotional learning and memory. In contrast, glucose did not reveal any statistically significant brain activation difference. Working memory performance was not different over the six treatments. Plasma insulin and glucose levels were not affected by the different taste substances (MSG, quinine, NaCl and citric acid. Conclusions: in this pilot trial, we demonstrate that acute intragastric administration of different taste substances does not affect working memory performance in humans. However, “umami” and “bitter” have effects on brain areas involved in neural working memory, overpowering the effects of “sweet”, “salty” and “sour” reception.

  17. Brain slice invasion model reveals genes differentially regulated in glioma invasion

    International Nuclear Information System (INIS)

    Invasion of tumor cells into adjacent brain areas is one of the major problems in treatment of glioma patients. To identify genes that might contribute to invasion, fluorescent F98 glioma cells were allowed to invade an organotypic brain slice. Gene expression analysis revealed 5 up-regulated and 14 down-regulated genes in invasive glioma cells as compared to non-invasive glioma cells. Two gene products, ferritin and cyclin B1, were verified in human gliomas by immunohistochemistry. Ferritin exhibited high mRNA levels in migratory F98 cells and also showed higher protein expression in the infiltrating edge of human gliomas. Cyclin B1 with high mRNA expression levels in stationary F98 cells showed marked protein expression in the central portions of gliomas. These findings are compatible with the concept of tumor cells either proliferating or migrating. Our study is the first to apply brain slice cultures for the identification of differentially regulated genes in glioma invasion

  18. Active stimulation site of nucleus accumbens deep brain stimulation in obsessive-compulsive disorder is localized in the ventral internal capsule.

    Science.gov (United States)

    van den Munckhof, Pepijn; Bosch, D Andries; Mantione, Mariska H M; Figee, Martijn; Denys, Damiaan A J P; Schuurman, P Richard

    2013-01-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder characterized by persistent thoughts and repetitive ritualistic behaviours. Despite optimal cognitive-behavioral and pharmacological therapy, approximately 10 % of patients remain treatment-resistant. Deep brain stimulation (DBS) is being investigated as experimental therapy for treatment-refractory OCD. In the current study, we determined the relationship between anatomical location of active electrode contacts and clinical outcome in 16 OCD patients undergoing bilateral nucleus accumbens (NAc) DBS. We found that most patients actually do not receive active stimulation in the NAc but in the more laterally, anteriorly and dorsally located ventral part of the anterior limb of the internal capsule, ventral ALIC (vALIC). Our nine patients receiving bilateral vALIC DBS improved on average 73 % on their Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores, whereas the six patients with their centers of stimulation located otherwise improved on average only 42 %. We therefore propose bilateral vALIC as a promising new DBS target for patients with treatment-refractory OCD. Future studies employing a direct vALIC targeting approach in larger patient numbers are needed to test whether this proposal holds true. PMID:23652657

  19. Dependency Network Analysis (DEPNA) Reveals Context Related Influence of Brain Network Nodes

    Science.gov (United States)

    Jacob, Yael; Winetraub, Yonatan; Raz, Gal; Ben-Simon, Eti; Okon-Singer, Hadas; Rosenberg-Katz, Keren; Hendler, Talma; Ben-Jacob, Eshel

    2016-01-01

    Communication between and within brain regions is essential for information processing within functional networks. The current methods to determine the influence of one region on another are either based on temporal resolution, or require a predefined model for the connectivity direction. However these requirements are not always achieved, especially in fMRI studies, which have poor temporal resolution. We thus propose a new graph theory approach that focuses on the correlation influence between selected brain regions, entitled Dependency Network Analysis (DEPNA). Partial correlations are used to quantify the level of influence of each node during task performance. As a proof of concept, we conducted the DEPNA on simulated datasets and on two empirical motor and working memory fMRI tasks. The simulations revealed that the DEPNA correctly captures the network’s hierarchy of influence. Applying DEPNA to the functional tasks reveals the dynamics between specific nodes as would be expected from prior knowledge. To conclude, we demonstrate that DEPNA can capture the most influencing nodes in the network, as they emerge during specific cognitive processes. This ability opens a new horizon for example in delineating critical nodes for specific clinical interventions. PMID:27271458

  20. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.