WorldWideScience

Sample records for brain stem respiratory

  1. Postnatal Development of Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Protein Kinase B (TrkB) Receptor Immunoreactivity in Multiple Brain Stem Respiratory-Related Nuclei of the Rat

    Science.gov (United States)

    Liu, Qiuli; Wong-Riley, Margaret T.T.

    2013-01-01

    Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12–13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmission, and BDNF is essential for respiratory development. We hypothesized that the excitation-inhibition imbalance during the critical period stemmed from a reduced expression of BDNF and TrkB at that time within respiratory-related nuclei of the brain stem. An in-depth, semiquantitative immunohistochemical study was undertaken in seven respiratory-related brain stem nuclei and one nonrespiratory nucleus in P0–21 rats. The results indicate that the expressions of BDNF and TrkB: 1) in the pre-Bötzinger complex, nucleus ambiguus, commissural and ventrolateral subnuclei of solitary tract nucleus, and retrotrapezoid nucleus/parafacial respiratory group were significantly reduced at P12, but returned to P11 levels by P14; 2) in the lateral paragigantocellular nucleus and parapyramidal region were increased from P0 to P7, but were strikingly reduced at P10 and plateaued thereafter; and 3) in the nonrespiratory cuneate nucleus showed a gentle plateau throughout the first 3 post-natal weeks, with only a slight decline of BDNF expression after P11. Thus, the significant downregulation of both BDNF and TrkB in respiratory-related nuclei during the critical period may form the basis of, or at least contribute to, the inhibitory-excitatory imbalance within the respiratory network during this time. PMID:22678720

  2. Effects of the pyrethroid insecticide, deltamethrin, on respiratory modulated hypoglossal motoneurons in a brain stem slice from newborn mice

    DEFF Research Database (Denmark)

    Rekling, J C; Theophilidis, G

    1995-01-01

    We have studied the action of deltamethrin on respiratory modulated hypoglossal motoneurons in a brain stem slice from newborn mice. Deltamethrin depolarized the hypoglossal motoneurons, increased the background synaptic noise and reduced the frequency and amplitude of current elicited action...

  3. Stem cells and respiratory diseases

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Investigacao]. E-mail: prmrocco@biof.ufrj.br

    2008-12-15

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  4. Stem cells and respiratory diseases

    International Nuclear Information System (INIS)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2008-01-01

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  5. Traumatic primary brain stem haemorrhage

    International Nuclear Information System (INIS)

    Andrioli, G.C.; Zuccarello, M.; Trincia, G.; Fiore, D.L.; De Caro, R.

    1983-01-01

    We report 36 cases of post-traumatic 'primary brain stem haemorrhage' visualized by the CT scan and confirmed at autopsy. Clinical experience shows that many technical factors influence the inability to visualize brain stem haemorrhages. Experimental injection of fresh blood into the pons and midbrain of cadavers shows that lesions as small as 0.25 ml in volume may be visualized. The volume and the anatomical configuration of traumatic lesions of the brain stem extended over a rostro-caudal direction, and their proximity to bony structures at the base of the skull are obstacles to the visualization of brain stem haemorrhages. (Author)

  6. Paraneoplastic brain stem encephalitis.

    Science.gov (United States)

    Blaes, Franz

    2013-04-01

    Paraneoplastic brain stem encephalitis can occur as an isolated clinical syndrome or, more often, may be part of a more widespread encephalitis. Different antineuronal autoantibodies, such as anti-Hu, anti-Ri, and anti-Ma2 can be associated with the syndrome, and the most frequent tumors are lung and testicular cancer. Anti-Hu-associated brain stem encephalitis does not normally respond to immunotherapy; the syndrome may stabilize under tumor treatment. Brain stem encephalitis with anti-Ma2 often improves after immunotherapy and/or tumor therapy, whereas only a minority of anti-Ri positive patients respond to immunosuppressants or tumor treatment. The Opsoclonus-myoclonus syndrome (OMS) in children, almost exclusively associated with neuroblastoma, shows a good response to steroids, ACTH, and rituximab, some patients do respond to intravenous immunoglobulins or cyclophosphamide. In adults, OMS is mainly associated with small cell lung cancer or gynecological tumors and only a small part of the patients show improvement after immunotherapy. Earlier diagnosis and treatment seem to be one major problem to improve the prognosis of both, paraneoplastic brain stem encephalitis, and OMS.

  7. Brain stem type neuro-Behcet's syndrome

    International Nuclear Information System (INIS)

    Kataoka, Satoshi; Hirose, Genjiro; Kosoegawa, Hiroshi; Oda, Rokuhei; Yoshioka, Akira

    1987-01-01

    Two cases of brain stem type Neuro-Behcet's syndrome were evaluated by brain CT and Magnetic Resonance Imaging (Super-conducting type, 0.5 tesla) to correlate with the neurological findings. In the acute phase, low density area with peripheral enhancement effect and mass effect were seen at the brain stem in brain CT. MRI revealed a extensive high intensity signal area mainly involving the corticospinal tract in the meso-diencephalon as well as pons by T 2 weighted images (spin echo, TR = 1, 600 msec, TE = 90 msec) and the value of T 1 , T 2 , at the brain stem lesion were prolonged moderately. After high dose steroid treatment, the low density area in brain CT and high signal area in MRI were gradually reduced in its size. Peripheral enhancement effect in brain CT disappeared within 10 months in case 1, one month in the other case. In the chronic stage, the reduction of low density area and atrophy of brain stem were noted in brain CT. The lesion in chronic stage had low intensity in T 1 , T 2 weighted images and the T 1 , T 2 values at the lesion were mildly prolonged in MRI. Sequentially CT with enhancement and MRI examinations with T 1 , T 2 weighted images were useful to detect the lesion and to evaluate the activity, evolution of brain stem type Neuro-Behcet's syndrome. (author)

  8. Brain mesenchymal stem cells: The other stem cells of the brain?

    Science.gov (United States)

    Appaix, Florence; Nissou, Marie-France; van der Sanden, Boudewijn; Dreyfus, Matthieu; Berger, François; Issartel, Jean-Paul; Wion, Didier

    2014-04-26

    Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.

  9. Acute Respiratory Distress Syndrome in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2009-01-01

    Full Text Available Objective: to study the development of acute respiratory distress syndrome (ARDS in victims with isolated severe brain injury (SBI. Subject and methods. 171 studies were performed in 16 victims with SBI. Their general condition was rated as very critical. The patients were divided into three groups: 1 non-ARDS; 2 Stage 1 ARDS; and 3 Stage 2 ARDS. The indicators of Stages 1 and 2 were assessed in accordance with the classification proposed by V. V. Moroz and A. M. Golubev. Intracranial pressure (ICP, extravascular lung water index, pulmonary vascular permeability, central hemodynamics, oxygenation index, lung anastomosis, the X-ray pattern of the lung and brain (computed tomography, and its function were monitored. Results. The hemispheric cortical level of injury of the brain with function compensation of its stem was predominantly determined in the controls; subcompensation and decompensation were ascertained in the ARDS groups. According to the proposed classification, these patients developed Stages 1 and 2 ARDS. When ARDS developed, there were rises in the level of extravascular lung fluid and pulmonary vascular permeability, a reduction in the oxygenation index (it was 6—12 hours later as compared with them, increases in a lung shunt and ICP; X-ray study revealed bilateral infiltrates in the absence of heart failure in Stage 2 ARDS. The correlation was positive between ICP and extravascular lung water index, and lung vascular permeability index (r>0.4;p<0.05. Conclusion. The studies have indicated that the classification proposed by V. V. Moroz and A. M. Golubev enables an early diagnosis of ARDS. One of its causes is severe brainstem injury that results in increased extravascular fluid in the lung due to its enhanced vascular permeability. The ICP value is a determinant in the diagnosis of secondary brain injuries. Key words: acute respiratory distress syndrome, extravascu-lar lung fluid, pulmonary vascular permeability, brain injury

  10. Stem cells and respiratory diseases

    Directory of Open Access Journals (Sweden)

    Soraia Carvalho Abreu

    2008-12-01

    Full Text Available Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases.As células-tronco têm uma infinidade de implicações clínicas no pulmão. Este artigo é uma revisão crítica que inclui estudos clínicos e experimentais advindos do banco de dados do MEDLINE e SciElo nos últimos 10 anos, onde foram destacados os efeitos da terapia celular na síndrome do desconforto respiratório agudo ou doenças mais crônicas, como fibrose pulmonar e enfisema. Apesar de muitos estudos demonstrarem os efeitos benéficos das células-tronco no desenvolvimento, reparo e remodelamento pulmonar; algumas questões ainda precisam ser respondidas para um melhor entendimento dos mecanismos que controlam a divisão celular e diferenciação, permitindo o uso da terapia celular nas doenças respiratórias.

  11. Neurofibromatosis type 1: brain stem tumours

    International Nuclear Information System (INIS)

    Bilaniuk, L.T.; Molloy, P.T.; Zimmerman, R.A.; Phillips, P.C.; Vaughan, S.N.; Liu, G.T.; Sutton, L.N.; Needle, M.

    1997-01-01

    We describe the clinical and imaging findings of brain stem tumours in patients with neurofibromatosis type 1 (NF1). The NF1 patients imaged between January 1984 and January 1996 were reviewed and 25 patients were identified with a brain stem tumour. Clinical, radiographical and pathological results were obtained by review of records and images. Brain stem tumour identification occurred much later than the clinical diagnosis of NF1. Medullary enlargement was most frequent (68 %), followed by pontine (52 %) and midbrain enlargement (44 %). Patients were further subdivided into those with diffuse (12 patients) and those with focal (13 patients) tumours. Treatment for hydrocephalus was required in 67 % of the first group and only 15 % of the second group. Surgery was performed in four patients and revealed fibrillary astrocytomas, one of which progressed to an anaplastic astrocytoma. In 40 % of patients both brain stem and optic pathway tumours were present. The biological behaviour of brain stem tumours in NF1 is unknown. Diffuse tumours in the patients with NF1 appear to have a much more favourable prognosis than patients with similar tumours without neurofibromatosis type 1. (orig.). With 7 figs., 3 tabs

  12. Childhood Brain Stem Glioma Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood brain stem glioma can be a benign (not cancer) or malignant (cancer) condition where abnormal cells form in the tissues of the brain stem. Get information about the symptoms, diagnosis, prognosis, and treatment of newly diagnosed and recurrent childhood brain stem glioma in this expert-reviewed summary.

  13. Brain stem cavernous angioma

    International Nuclear Information System (INIS)

    Delcarpio-O'Donovan, R.; Melanson, D.; Tampieri, D.; Ethier, R.

    1988-01-01

    Twenty-two cases of cavernous angioma of the brain stem were definitely diagnosed by means of magnetic resonance (MR) imaging. In many cases, the diagnosis had remained elusive for several years. Clinically, some cases behaved like multiple sclerosis or brain stem tumor. Others, usually associated with bleeding, caused increased intracranial pressure or subarachnoid hemorrhage. The diagnostic limitations of computed tomography in the posterior fossa are well known. Angiography fails to reveal abnormalities, since this malformation has neither a feeding artery nor a draining vein. Diagnosticians' familiarity with the MR appearance of this lesion may save patients from invasive diagnostic studies and potentially risky treatment

  14. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  15. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  16. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  17. Brain stem death as the vital determinant for resumption of spontaneous circulation after cardiac arrest in rats.

    Directory of Open Access Journals (Sweden)

    Alice Y W Chang

    bioenergetic failure in RVLM by coenzyme Q10, the mobile electron carrier in mitochondrial respiratory chain, or oxygenation restored spontaneous circulation further established a causal relationship between functionality of RVLM and resumed spontaneous circulation after cardiac arrest. CONCLUSIONS/SIGNIFICANCE: We conclude that whereas necrotic cell death because of bioenergetic failure triggered by anoxia in RVLM, which precipitates brain stem death, negates resuscitation of an arrested heart, maintained functional integrity of this neural substrate holds the key to resumption of spontaneous circulation after cardiac arrest in rats.

  18. Stem cells for brain repair in neonatal hypoxia-ischemia.

    Science.gov (United States)

    Chicha, L; Smith, T; Guzman, R

    2014-01-01

    Neonatal hypoxic-ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain's plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic-ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.

  19. Characterization of Cancer Stem Cells in Patients with Brain ...

    African Journals Online (AJOL)

    Background: Gliomas, in general, and astrocytomas, in particular, represent the most frequent primary brain tumors. Nowadays, it is increasingly believed that gliomas may arise from cancer stem cells, which share several characteristics with normal neural stem cells. Brain tumor stem cells have been found to express a ...

  20. Magnetic resonance imaging in brain-stem tumors

    International Nuclear Information System (INIS)

    Nomura, Mikio; Saito, Hisazumi; Akino, Minoru; Abe, Hiroshi.

    1988-01-01

    Four patients with brain-stem tumors underwent magnetic resonance imaging (MRI) before and after radiotherapy. The brain-stem tumors were seen as a low signal intensity on T1-weighted images and as a high signal intensity on T2-weighted images. A tumor and its anatomic involvement were more clearly visualized on MRI than on cuncurrently performed CT. Changes in tumor before and after radiotherapy could be determined by measuring the diameter of tumor on sagittal and coronal images. This allowed quantitative evaluation of the reduction of tumor in association with improvement of symptoms. The mean T1 value in the central part of tumors was shortened in all patients after radiotherapy. The results indicate that MRI may assist in determining the effect of radiotherapy for brain-stem tumors. (Namekawa, K)

  1. The Potential of Stem Cells in Treatment of Traumatic Brain Injury.

    Science.gov (United States)

    Weston, Nicole M; Sun, Dong

    2018-01-25

    Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.

  2. Wallerian degeneration of the corticospinal tract in the brain stem

    International Nuclear Information System (INIS)

    Uchino, Akira; Onomura, Kentaro; Ohno, Masato

    1989-01-01

    Magnetic resonance imaging (MRI) of wallerian degeneration of the corticospinal tract in the brain stem was studied in 25 patients with chronic supratentorial vascular accidents. In the relatively early stages, at least three months after ictus, increased signal intensities in axial T 2 -weighted images - with or without decreased signal intensities in axial T 1 -weighted images - were observed in the brain stem ipsilaterally. In later stages, at least six months after ictus, shrinkage of the brain stem ipsilaterally - with or without decreased signal intensities - was clearly observed in axial T 1 -weighted images. MRI is therefore regarded a sensitive diagnostic modality for evaluating wallerian degeneration in the brain stem. (author)

  3. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Hayashi, Norio; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Sanada, Shigeru; Suzuki, Masayuki; Matsui, Osamu

    2008-01-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: segmentation of the brain region; separation between the cerebrum and the cerebellum-brain stem; and segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain. (author)

  4. The brain stem function in patients with brain bladder

    International Nuclear Information System (INIS)

    Takahashi, Toshihiro

    1990-01-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author)

  5. Are there fetal stem cells in the maternal brain?

    Institute of Scientific and Technical Information of China (English)

    Osman Demirhan; Necmi (C)ekin; Deniz Ta(s)temir; Erdal Tun(c); Ali irfan Güzel; Demet Meral; Bülent Demirbek

    2013-01-01

    Fetal cells can enter maternal blood during pregnancy but whether they can also cross the blood-brain barrier to enter the maternal brain remains poorly understood. Previous results suggest that fetal cells are summoned to repair damage to the mother's brain. If this is confirmed, it would open up new and safer avenues of treatment for brain damage caused by strokes and neural diseases. In this study, we aimed to investigate whether a baby's stem cells can enter the maternal brain during pregnancy. Deceased patients who had at least one male offspring and no history of abortion and blood transfusion were included in this study. DNA was extracted from brain tissue samples of deceased women using standard phenol-chloroform extraction and ethanol precipitation methods. Genomic DNA was screened by quantitative fluorescent-polymerase chain reaction amplification together with short tandem repeat markers specific to the Y chromosome, and 13, 18, 21 and X. Any foreign DNA residues that could be used to interpret the presence of fetal stem cells in the maternal brain were monitored. Results indicated that fetal stem cells can not cross the blood-brain barrier to enter the maternal brain.

  6. A case of myxedema coma presenting as a brain stem infarct in a 74-year-old Korean woman.

    Science.gov (United States)

    Ahn, Ji Yun; Kwon, Hyuk-Sool; Ahn, Hee Chol; Sohn, You Dong

    2010-09-01

    Myxedema coma is the extreme form of untreated hypothyroidism. In reality, few patients present comatose with severe myxedema. We describe a patient with myxedema coma which was initially misdiagnosed as a brain stem infarct. She presented to the hospital with alteration of the mental status, generalized edema, hypothermia, hypoventilation, and hypotension. Initially her brain stem reflexes were absent. After respiratory and circulatory support, her neurologic status was not improved soon. The diagnosis of myxedema coma was often missed or delayed due to various clinical findings and concomitant medical condition and precipitating factors. It is more difficult to diagnose when a patient has no medical history of hypothyroidism. A high index of clinical suspicion can make a timely diagnosis and initiate appropriate treatment. We report this case to alert clinicians considering diagnosis of myxedema coma in patients with severe decompensated metabolic state including mental change.

  7. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  8. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  9. Respiratory mechanics in brain injury: A review.

    Science.gov (United States)

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-04

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  10. Acute traumatic brain-stem hemorrhage produced by sudden caudal displacement of the brain

    International Nuclear Information System (INIS)

    Mirvis, S.E.; Wolf, A.L.; Thompson, R.K.

    1990-01-01

    This paper determines in an experimental canine study and a clinical review, whether acute caudal displacement of the brain following blunt trauma produces hemorrhage in the rostral anterior midline of the brain stem by tethering the basilar to the fixed carotid arteries. In four dogs, a balloon catheter was suddenly inflated over the frontal lobe; in two, the carotid-basilar vascular connections were severed prior to balloon inflation. ICP was monitored during and after balloon inflation. Hemorrhage was verified by MR imaging and direct inspection of the fixed brain specimens. Admission CT scans demonstrating acute traumatic brain stem hemorrhage (TBH) in human patients were reviewed to determine the site of TBH, predominant site of impact, and neurologic outcome

  11. Stem cells to regenerate the newborn brain

    NARCIS (Netherlands)

    van Velthoven, C.T.J.

    2011-01-01

    Perinatal hypoxia-ischemia (HI) is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. In this thesis we investigate whether mesenchymal stem cells (MSC) regenerate the neonatal brain after HI injury. We show that transplantation of MSC after neonatal brain injury

  12. Brain stem hypoplasia associated with Cri-du-Chat syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Ho; Lee, Ha Young; Lim, Myung Kwan; Kim, Mi Young; Kang, Young Hye; Lee, Kyung Hee; Cho, Soon Gu [Dept. of Radiology, Inha University Hospital, Inha University School of Medicine, Incheon (Korea, Republic of)

    2013-12-15

    Cri-du-Chat syndrome, also called the 5p-syndrome, is a rare genetic abnormality, and only few cases have been reported on its brain MRI findings. We describe the magnetic resonance imaging findings of a 1-year-old girl with Cri-du-Chat syndrome who showed brain stem hypoplasia, particularly in the pons, with normal cerebellum and diffuse hypoplasia of the cerebral hemispheres. We suggest that Cri-du-Chat syndrome chould be suspected in children with brain stem hypoplasia, particularly for those with high-pitched cries.

  13. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Champagnat, J; Denavit-Saubié, M

    1996-01-01

    neurons located in the rostral ventrolateral part of the slice. 2. Bath-applied TRH (1 microM) decreased the time between inspiratory discharges recorded on the XII nerve from 12.3 +/- 3.3 s to 4.9 +/- 1.1 s (n = 28; means +/- SD), i.e., caused an approximate threefold increase in the respiratory...... frequency. The coefficient of variation of the time between the inspiratory discharges decreased by one-half. Thus the respiratory output became more stable in response to TRH. The duration of the inspiratory discharges increased from 474 +/- 108 ms to 679 +/- 114 ms, and the amplitude decreased by 24...... in a thick brain stem slice preparation from the newborn mouse. The action of TRH on the respiratory output from the slice was investigated by recordings from the XII nerve. Cellular responses to TRH were investigated using whole cell recordings from hypoglossal motoneurons and three types of inspiratory...

  14. How study of respiratory physiology aided our understanding of abnormal brain function in panic disorder.

    Science.gov (United States)

    Sinha, S; Papp, L A; Gorman, J M

    2000-12-01

    There is a substantial body of literature demonstrating that stimulation of respiration (hyperventilation) is a common event in panic disorder patients during panic attack episodes. Further, a number of abnormalities in respiration, such as enhanced CO2 sensitivity, have been detected in panic patients. This led some to posit that there is a fundamental abnormality in the physiological mechanisms that control breathing in panic disorder and that this abnormality is central to illness etiology. More recently, however, evidence has accumulated suggesting that respiratory physiology is normal in panic patients and that their tendency to hyperventilate and to react with panic to respiratory stimulants like CO2 represents the triggering of a hypersensitive fear network. The fear network anatomy is taken from preclinical studies that have identified the brain pathways that subserve the acquisition and maintenance of conditioned fear. Included are the amygdala and its brain stem projections, the hippocampus, and the medial prefrontal cortex. Although attempts to image this system in patients during panic attacks have been difficult, the theory that the fear network is operative and hyperactive in panic patients explains why both medication and psychosocial therapies are clearly effective. Studies of respiration in panic disorder are an excellent example of the way in which peripheral markers have guided researchers in developing a more complete picture of the neural events that occur in psychopathological states.

  15. Delayed radiation injury of brain stem after radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Yang Yunli; Liu Yingxin; Xie Dong; Su Danke; Chen Mingzhong

    2002-01-01

    Objective: To study the clinical characteristics, MRI findings, diagnosis, treatment and prognostic factors of patients with radiation induced brain stem injury in nasopharyngeal carcinoma. Methods: From January 1991 to January 2001, 24 patients with radiation injury of brain stem were treated, 14 males and 10 females. The latency ranged from 6 to 38 months, with a median of 18 months. The lesions were located in the pons in 10 patients, mesencephalon + pons in 4, pons + medulla oblongata in 5, medulla oblongata in 2 and mesencephalon + pons + medulla oblongata in 3. MRI findings showed that the injury was chiefly presented as hypointensity foci on T 1 WI and hyperintensity foci on T 2 WI. Results: Eighteen patients were treated with dexamethasone in the early phase, with symptoms relieved in 12 patients but unimproved in 6 patients. Eight 44% patients died within the 8-38 months, leaving 16 patients surviving for 0.5 to 6.0 years. Conclusions: Radiation injury of brain stem has a short latency with severe symptoms, signifying poor prognosis. It is suggested that adequate reduction of irradiation volume and dose at the brain stem should be able to lower the incidence of brain stem injury

  16. Wallerian degeneration of the corticospinal tract in the brain stem; MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Onomura, Kentaro; Ohno, Masato (Kyushu Rosai Hospital, Kitakyushu, Fukuoka (Japan))

    1989-04-01

    Magnetic resonance imaging (MRI) of wallerian degeneration of the corticospinal tract in the brain stem was studied in 25 patients with chronic supratentorial vascular accidents. In the relatively early stages, at least three months after ictus, increased signal intensities in axial T{sub 2}-weighted images - with or without decreased signal intensities in axial T{sub 1}-weighted images - were observed in the brain stem ipsilaterally. In later stages, at least six months after ictus, shrinkage of the brain stem ipsilaterally - with or without decreased signal intensities - was clearly observed in axial T{sub 1}-weighted images. MRI is therefore regarded a sensitive diagnostic modality for evaluating wallerian degeneration in the brain stem. (author).

  17. CT findings of traumatic primary brain-stem injury

    International Nuclear Information System (INIS)

    Hosaka, Yasuaki; Hatashita, Shizuo; Bandou, Kuniaki; Ueki, Yasuyuki; Abe, Kouzou; Koga, Nobunori; Sugimura, Jun; Sakakibara, Tokiwa; Takagi, Suguru

    1984-01-01

    A series of 27 consecutive patients with traumatic primary brain stem injuries was studied. They were diagnosed by means of clinical signs, neurological examination, and computerized tomography (CT). The CT findings of the brain-stem lesions were classified into 4 types: Type H, spotty, high-density; Type H and L, high- and low-densities; Type L, low-density; Type I, isodensity. The Glasgow coma scale (GCS), neurological findings on admission, CT findings (findings in the brain stem, obliteration of perimesencephalic cistern (PMC), and other findings), and the Glasgow outcome scale (GOS) were examined. In the 9 cases of Type H, there was a correlation between the GCS and the GOS, and the spotty, high-density lesions were localized mainly in the dorsal and/or ventral midbrain parenchyma, but these lesions did not show focal signs and symptoms. Without an obliteration of the PMC, Type-H patients did not always have a bad outcome. In the 4 cases of Type H and L, the 2 cases of Type L, and the 12 cases of Type I, there was an obliteration of the PMC. All of the these cases had a bad outcome (1 case of moderate disability, 3 cases of severe disability, and 14 cases of death). The mechanism producing a spotty, high-density area was discussed. The weaker impact (than the other types) and individual anatomical differences weresupposed to make for a spotty, high-density are in the brain stem. (author)

  18. Neural stem cells in the ischemic and injured brain: endogenous and transplanted.

    Science.gov (United States)

    Dong, Jing; Liu, Baohua; Song, Lei; Lu, Lei; Xu, Haitao; Gu, Yue

    2012-12-01

    Neural stem cells functions as the pool of new neurons in adult brain, and plays important roles in normal brain function. Additionally, this pool reacts to brain ischemia, hemorrhage, trauma and many kinds of diseases, serving as endogenous repair mechanisms. The present manuscript discussed the responses of adult neurogenesis to brain ischemia and other insults, then the potential of neural stem cell transplantation therapy to treat such brain injury conditions.

  19. Stem Cell Technology for (Epi)genetic Brain Disorders.

    Science.gov (United States)

    Riemens, Renzo J M; Soares, Edilene S; Esteller, Manel; Delgado-Morales, Raul

    2017-01-01

    Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

  20. Childhood Brain Stem Glioma Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Childhood brain stem glioma presents as a diffuse intrinsic pontine glioma (DIPG; a fast-growing tumor that is difficult to treat and has a poor prognosis) or a focal glioma (grows more slowly, is easier to treat, and has a better prognosis). Learn about the diagnosis, cellular classification, staging, treatment, and clinical trials for pediatric brain stem glioma in this expert-reviewed summary.

  1. Mapping the calcitonin receptor in human brain stem

    DEFF Research Database (Denmark)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J

    2016-01-01

    understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract...... receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our...

  2. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.

    Science.gov (United States)

    Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan

    2018-05-03

    Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p mesenchymal stem cell-treated mice compared to the control group following ischemia (p cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.

  3. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  4. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Directory of Open Access Journals (Sweden)

    Cecilie Jonsgar Sandberg

    Full Text Available There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60. Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate. We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6, foetal human neural stem cells (n = 1 and human brain tissues (n = 12. The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular

  5. Diffusion-weighted magnetic resonance imaging (MRI) in acute brain stem infarction

    International Nuclear Information System (INIS)

    Narisawa, Aya; Shamoto, Hiroshi; Shimizu, Hiroaki; Tominaga, Teiji; Yoshimoto, Takashi

    2001-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) provides one of the earliest demonstrations of ischemic lesions. However some lesions may be missed in the acute stage due to technical limitation of DWI. We therefore conducted the study to clarify the sensitivity of DWI to acute brain stem infarctions. Twenty-eight patients with the final diagnosis of brain stem infarction (midbrain 2, pons 9, medulla oblongata 17) who had been examined by DWI within 24 hours of onset were retrospectively analyzed for how sensitively the initial DWI demonstrated the final ischemic lesion. Only obvious (distinguishable with DWI alone without referring clinical symptoms and other informations) hyperintensity on DWI was regarded to show an ischemic lesion. Sixteen (57.1%) out of 28 patients had brain stem infarctions demonstrated by initial DWI. In the remaining 12 cases, no obvious ischemic lesion was evident on initial DWI. Subsequent MRI studies obtained 127 hours, on average after the onset showed infarction in the medulla oblongate in 11 cases and in the pons in one case. Negative findings of DWI in the acute stage does not exclude possibility of the brain stem infarction, in particularly medulla oblongata infarction. (author)

  6. Four cases with localized brain-stem lesion on CT scan following closed head injury

    International Nuclear Information System (INIS)

    Saeki, Naokatsu; Odaki, Masaru; Oka, Nobuo; Takase, Manabu; Ono, Junichi.

    1981-01-01

    Cases of primary brain-stem injury following closed head injury, verified by a CT scan, have been increasingly reported. However, most of them have other intracranial lesions in addition to the brain stem, resulting in a poor outcome. The CT scan of 200 cases with severe head injury-Araki's classification of types 3 and 4 - were analysed. Four cases out of them had localized brain-stem lesion without any other significant intracranial injury on a CT scan at the acute stage and had a better outcome than had previously been reported. In this analysis, these 4 cases were studied, and the CT findings, prognosis, and pathogenesis of the localized brain-stem injury were discussed. Follow-up CT of three cases, and taken one month or more later, showed diffuse cortical atrophy. This may indicate the presence of diffuse cerebral injury which could not be seen on CT scans at the acute stage. This atrophic change may also be related with the mechanism of posttraumatic conscious impairment and posttraumatic neurological deficits, such as mental symptoms and impairment of the higher cortical function. Shearing injury is a probable pathogenesis for this diffuse cortical injury. On the other hand, one case did not have any cortical atrophy on a follow-up CT scan. Therefore, this is a case with a localized primary brain-stem injury. Coup injury against the brain stem by a tentorial margin in a case with a small tentorial opening is a possible mechanism producing the localized brain-stem injury. (J.P.N.)

  7. Sumoylation of hypoxia-inducible factor-1α ameliorates failure of brain stem cardiovascular regulation in experimental brain death.

    Directory of Open Access Journals (Sweden)

    Julie Y H Chan

    2011-03-01

    Full Text Available One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM. RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1, Ubc9 (the only known conjugating enzyme for the sumoylation pathway or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem

  8. Effects of neuroinflammation on the regenerative capacity of brain stem cells.

    Science.gov (United States)

    Russo, Isabella; Barlati, Sergio; Bosetti, Francesca

    2011-03-01

    In the adult brain, neurogenesis under physiological conditions occurs in the subventricular zone and in the dentate gyrus. Although the exact molecular mechanisms that regulate neural stem cell proliferation and differentiation are largely unknown, several factors have been shown to affect neurogenesis. Decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. Furthermore, in pathological conditions of the central nervous system associated with neuroinflammation, inflammatory mediators such as cytokines and chemokines can affect the capacity of brain stem cells and alter neurogenesis. In this review, we summarize the state of the art on the effects of neuroinflammation on adult neurogenesis and discuss the use of the lipopolysaccharide-model to study the effects of inflammation and reactive-microglia on brain stem cells and neurogenesis. Furthermore, we discuss the possible causes underlying reduced neurogenesis with normal aging and potential anti-inflammatory, pro-neurogenic interventions aimed at improving memory deficits in normal and pathological aging and in neurodegenerative diseases. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  9. Persistent Inflammation Alters the Function of the Endogenous Brain Stem Cell Compartment

    OpenAIRE

    Pluchino, Stefano; Muzio, Luca; Alfaro-Cervello, Clara; Salani, Giuliana; Porcheri, Cristina; Brambilla, Elena; Cavasinni, Francesca; Bergamaschi, Andrea; Garcia-Verdugo, Jose Manuel; Comi, Giancarlo; Martino, Gianvito; Imitola, Jaime; Deleidi, Michela; Khoury, Samia Joseph

    2008-01-01

    Endogenous neural stem/precursor cells (NPCs) are considered a functional reservoir for promoting tissue homeostasis and repair after injury, therefore regenerative strategies that mobilize these cells have recently been proposed. Despite evidence of increased neurogenesis upon acute inflammatory insults (e.g. ischaemic stroke), the plasticity of the endogenous brain stem cell compartment in chronic CNS inflammatory disorders remains poorly characterized. Here we show that persistent brain in...

  10. The stem cell secretome and its role in brain repair.

    Science.gov (United States)

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2013-12-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  11. Neurogenesis in the brain stem of the rabbit: an autoradiographic study

    International Nuclear Information System (INIS)

    Oblinger, M.M.; Das, G.D.

    1981-01-01

    With the aid of ( 3 H)-thymidine autoradiography, neurogenesis was documented in the nuclear groups of the medulla oblongata, pons, and mid-brain, as well as in the brain stem reticular formation of the rabbit. Following single injections of ( 3 H)-thymidine, counts were taken of intensely labeled neurons within the nuclei of the functional columns related to the cranial nerves, nuclei of several other functional classifications, and nuclei that did not fit into a functional category. In the brain stem as a whole, neurogenesis was found to occur between days 10.0 and 18.5 of gestation: however, the majority of nuclei studied contained intensely neurons only between days 12.0 and 15.0. Only in the pontine nucleus and the tectum were intensely labeled cells observed as late as day 18.5. Directional gradients of histogenesis were often observed within, as well as between, various nuclei. Within the nuclear columns related to the cranial nerves, a clear mediolateral spread of neurogenesis was observable such that nuclei of the motor columns reached a peak in neurogenesis before those in the sensory columns. Likewise, a mediolateral proliferation pattern was seen in the brain stem reticular formation. Other individual directional gradients were discernible; however, in the brain stem as a whole, distinct overall gradients were not observable. In many individual nuclei, gradients in neuron size were observed such that large neurons preferentially arose prior to smaller neurons. Information pertaining to gradients in neurogenesis, as well as to relationships among functionally related nuclei, are discussed

  12. Comparative brain stem lesions on MRI of acute disseminated encephalomyelitis, neuromyelitis optica, and multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Zhengqi Lu

    Full Text Available BACKGROUND: Brain stem lesions are common in patients with acute disseminated encephalomyelitis (ADEM, neuromyelitis optica (NMO, and multiple sclerosis (MS. OBJECTIVES: To investigate comparative brain stem lesions on magnetic resonance imaging (MRI among adult patients with ADEM, NMO, and MS. METHODS: Sixty-five adult patients with ADEM (n = 17, NMO (n = 23, and MS (n = 25 who had brain stem lesions on MRI were enrolled. Morphological features of brain stem lesions among these diseases were assessed. RESULTS: Patients with ADEM had a higher frequency of midbrain lesions than did patients with NMO (94.1% vs. 17.4%, P<0.001 and MS (94.1% vs. 40.0%, P<0.001; patients with NMO had a lower frequency of pons lesions than did patients with MS (34.8% vs. 84.0%, P<0.001 and ADEM (34.8% vs. 70.6%, P = 0.025; and patients with NMO had a higher frequency of medulla oblongata lesions than did patients with ADEM (91.3% vs. 35.3%, P<0.001 and MS (91.3% vs. 36.0%, P<0.001. On the axial section of the brain stem, the majority (82.4% of patients with ADEM showed lesions on the ventral part; the brain stem lesions in patients with NMO were typically located in the dorsal part (91.3%; and lesions in patients with MS were found in both the ventral (44.0% and dorsal (56.0% parts. The lesions in patients with ADEM (100% and NMO (91.3% had poorly defined margins, while lesions of patients with MS (76.0% had well defined margins. Brain stem lesions in patients with ADEM were usually bilateral and symmetrical (82.4%, while lesions in patients with NMO (87.0% and MS (92.0% were asymmetrical or unilateral. CONCLUSIONS: Brain stem lesions showed various morphological features among adult patients with ADEM, NMO, and MS. The different lesion locations may be helpful in distinguishing these diseases.

  13. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH

    2016-08-01

    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  14. [Stem Cells in the Brain of Mammals and Human: Fundamental and Applied Aspects].

    Science.gov (United States)

    Aleksandrova, M A; Marey, M V

    2015-01-01

    Brain stem cells represent an extremely intriguing phenomenon. The aim of our review is to present an integrity vision of their role in the brain of mammals and humans, and their clinical perspectives. Over last two decades, investigations of biology of the neural stem cells produced significant changes in general knowledge about the processes of development and functioning of the brain. Researches on the cellular and molecular mechanisms of NSC differentiation and behavior led to new understanding of their involvement in learning and memory. In the regenerative medicine, original therapeutic approaches to neurodegenerative brain diseases have been elaborated due to fundamental achievements in this field. They are based on specific regenerative potential of neural stem cells and progenitor cells, which possess the ability to replace dead cells and express crucially significant biologically active factors that are missing in the pathological brain. For the needs of cell substitution therapy in the neural diseases, adequate methods of maintaining stem cells in culture and their differentiation into different types of neurons and glial cells, have been developed currently. The success of modern cellular technologies has significantly expanded the range of cells used for cell therapy. The near future may bring new perspective and distinct progress in brain cell therapy due to optimizing the cells types most promising for medical needs.

  15. Physics strategies for sparing neural stem cells during whole-brain radiation treatments

    International Nuclear Information System (INIS)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean; Hwang, Andrew; Barani, Igor J.

    2011-01-01

    Purpose: Currently, there are no successful long-term treatments or preventive strategies for radiation-induced cognitive impairments, and only a few possibilities have been suggested. One such approach involves reducing the dose to neural stem cell compartments (within and outside of the hippocampus) during whole-brain radiation treatments for brain metastases. This study investigates the fundamental physics issues associated with the sparing of neural stem cells during photon radiotherapy for brain metastases. Methods: Several factors influence the stem cell dose: intracranial scattering, collimator leakage, beam energy, and total number of beams. The relative importance of these factors is investigated through a set of radiation therapy plans, which are all variations of an initial 6 MV intensity-modulated radiation therapy (IMRT) plan designed to simultaneously deliver a whole-brain dose of 30 Gy and maximally reduce stem cell compartment dose. Additionally, an in-house leaf segmentation algorithm was developed that utilizes jaw motion to minimize the collimator leakage. Results: The plans are all normalized such that 50% of the PTV receives 30 Gy. For the initial 6 MV IMRT plan, 50% of the stem cells receive a dose greater than 6.3 Gy. Calculations indicate that 3.6 Gy of this dose originates from intracranial scattering. The jaw-tracking segmentation algorithm, used in conjunction with direct machine parameter optimization, reduces the 50% stem cell dose to 4.3 and 3.7 Gy for 6 and 10 MV treatment beams, respectively. Conclusions: Intracranial scattering alone is responsible for a large dose contribution to the stem cell compartment. It is, therefore, important to minimize other contributing factors, particularly the collimator leakage, to maximally reduce dose to these critical structures. The use of collimator jaw tracking in conjunction with modern collimators can minimize this leakage.

  16. Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody.

    Science.gov (United States)

    Barnett, M; Prosser, J; Sutton, I; Halmagyi, G M; Davies, L; Harper, C; Dalmau, J

    2001-02-01

    A woman developed brain stem encephalopathy in association with serum anti-Ma2 antibodies and left upper lobe lung mass. T2 weighted MRI of the brain showed abnormalities involving the pons, left middle and superior cerebellar peduncles, and bilateral basal ganglia. Immunohistochemical analysis for serum antineuronal antibodies was confounded by the presence of a non-neuronal specific antinuclear antibody. Immunoblot studies showed the presence of anti-Ma2 antibodies. A premortem tissue diagnosis of the lung mass could not be established despite two CT guided needle biopsies, and the patient died as a result of rapid neurological deterioration. The necropsy showed that the lung lesion was an adenocarcinoma which expressed Ma2 immunoreactive protein. Neuropathological findings included prominent perivascular inflammatory infiltrates, glial nodules, and neuronophagia involving the brain stem, basal ganglia, hippocampus and the dentate nucleus of the cerebellum. Ma2 is an autoantigen previously identified in patients with germ cell tumours of the testis and paraneoplastic brain stem and limbic encephalitis. Our patient's clinical and immunopathological findings indicate that this disorder can affect women with lung adenocarcinoma, and that the encephalitic changes predominate in those regions of the brain known to express high concentrations of Ma proteins.

  17. Pericarditis mediated by respiratory syncytial virus in a hematopoietic stem cell transplant patient.

    Science.gov (United States)

    Rubach, M P; Pavlisko, E N; Perfect, J R

    2013-08-01

    We describe a case of pericarditis and large pericardial effusion in a 63-year-old African-American man undergoing autologous hematopoietic stem cell transplant for multiple myeloma. Pericardial tissue biopsy demonstrated fibrinous pericarditis, and immunohistochemistry stains were positive for respiratory syncytial virus. The patient improved with oral ribavirin and intravenous immune globulin infusions. © 2013 John Wiley & Sons A/S.

  18. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    International Nuclear Information System (INIS)

    Kanoto, Masafumi; Hosoya, Takaaki; Toyoguchi, Yuuki; Oda, Atsuko

    2013-01-01

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis

  19. HTLV-I associated myelopathy with multiple spotty areas in cerebral white matter and brain stem by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Yasuo; Takahashi, Mitsuo; Yoshikawa, Hiroo; Yorifuji, Shirou; Tarui, Seiichiro

    1988-01-01

    A 48-year-old woman was admitted with complaints of urinary incontinence and gait disturbance, both of which had progressed slowly without any sign of remission. Family history was not contributory. Neurologically, extreme spasticity was recoginized in the lower limbs. Babinski sign was positive bilaterally. Flower-like atypical lymphocytes were seen in blood. Positive anti-HTLV-I antibody was confirmed in serum and spinal fluid by western blot. She was diagnosed as having HTLV-I associated myelopathy (HAM). CT reveald calcification in bilateral globus pallidus, and MRI revealed multiple spotty areas in cerebral white matter and brain stem, but no spinal cord lesion was detectable. Electrophysiologically, brain stem auditory evoked potential (BAEP) suggested the presence of bilateral brain stem lesions. Neither median nor posterior tibial nerve somatosensory evoked potentials were evoked, a finding suggesting the existence of spinal cord lesion. In this case, the lesion was not confined to spinal cord, it was also observed in brain stem and cerebral white matter. Such distinct lesions in cerebral white matter and brain stem have not been reported in patients with HAM. It is suggested that HTLV-I is probably associated with cerebral white matter and brain stem.

  20. Aqp 9 and Brain Tumour Stem Cells

    Directory of Open Access Journals (Sweden)

    Guri Fossdal

    2012-01-01

    Full Text Available Several studies have implicated the aquaporins (aqp 1, 4, and 9 in the pathogenesis of malignant brain tumours, suggesting that they contribute to motility, invasiveness, and oedema formation and facilitate metabolism in tumour cells under hypoxic conditions. We have studied the expression of aqp1, 4, and 9 in biopsies from glioblastomas, isolated tumour stem cells grown in a tumoursphere assay and analyzed the progenitor and differentiated cells from these cultures. We have compared these to the situation in normal rat brain, its stem cells, and differentiated cells derived thereof. In short, qPCR in tumour tissue showed presence of aqp1, 4, and 9. In the tumour progenitor population, aqp9 was markedly more highly expressed, whilst in tumour-derived differentiated cells, aqp4 was downregulated. However, immunostaining did not reveal increased protein expression of aqp9 in the tumourspheres containing progenitor cells; in contrast, its expression (both mRNA and protein was high in differentiated cultures. We, therefore, propose that aquaporin 9 may have a central role in the tumorigenesis of glioblastoma.

  1. Respiratory foreign bodies and Eikenella corrodens brain abscess in two children

    International Nuclear Information System (INIS)

    Sane, S.M.; Belani, K.K.; Faerber, E.N.

    1999-01-01

    We report the coexistence of aspirated foreign bodies and brain abscess in two boys. One child had aspirated a metallic needle, and in the other boy partially embedded sunflower seeds were found in the bronchial wall. Both patients had growth of Eikenella corrodens (oral gram-negative flora) from the abscess. Aspirated foreign body in the respiratory tract should be one of the diagnostic considerations if any of the normal oropharyngeal organisms such as E. corrodens is the causative organism of brain abscess. (orig.)

  2. Delayed radiation-induced necrosis of the brain stem

    International Nuclear Information System (INIS)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi; Uozumi, Toru.

    1993-01-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author)

  3. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Pla, Conrado; Al-Amro, Abdullah S.; Bahary, Jean-Paul; Villemure, Jean-Guy; Caron, Jean-Louis; Olivier, Andre; Podgorsak, Ervin B.

    1998-01-01

    Purpose: The aim of this work was to develop a parameter for use during fractionated stereotactic radiotherapy treatment planning to aid in the determination of the appropriate treatment volume and fractionation regimen that will minimize risk of late damage to normal tissue. Materials and Methods: We have used the linear quadratic model to assess the biologically effective dose at the periphery of stereotactic radiotherapy treatment volumes that impinge on the brain stem. This paper reports a retrospective study of 77 patients with malignant and benign intracranial lesions, treated between 1987 and 1995, with the dynamic rotation technique in 6 fractions over a period of 2 weeks, to a total dose of 42 Gy prescribed at the 90% isodose surface. From differential dose-volume histograms, we evaluated biologically effective dose-volume histograms and obtained an integral biologically-effective dose (IBED) in each case. Results: Of the 77 patients in the study, 36 had target volumes positioned so that the brain stem received more than 1% of the prescribed dose, and 4 of these, all treated for meningioma, developed serious late damage involving the brain stem. Other than type of lesion, the only significant variable was the volume of brain stem exposed. An analysis of the IBEDs received by these 36 patients shows evidence of a threshold value for late damage to the brain stem consistent with similar thresholds that have been determined for external beam radiotherapy. Conclusions: We have introduced a new parameter, the IBED, that may be used to represent the fractional effective dose to structures such as the brain stem that are partially irradiated with stereotactic dose distributions. The IBED is easily calculated prior to treatment and may be used to determine appropriate treatment volumes and fractionation regimens minimizing possible toxicity to normal tissue

  4. Brain tumour stem cells: implications for cancer therapy and regenerative medicine.

    Science.gov (United States)

    Sanchez-Martin, Manuel

    2008-09-01

    The cancer relapse and mortality rate suggest that current therapies do not eradicate all malignant cells. Currently, it is accepted that tumorigenesis and organogenesis are similar in many respects, as for example, homeostasis is governed by a distinct sub-population of stem cells in both situations. There is increasing evidence that many types of cancer contain their own stem cells: cancer stem cells (CSC), which are characterized by their self-renewing capacity and differentiation ability. The investigation of solid tumour stem cells has gained momentum particularly in the area of brain tumours. Gliomas are the most common type of primary brain tumours. Nearly two-thirds of gliomas are highly malignant lesions with fast progression and unfortunate prognosis. Despite recent advances, two-year survival for glioblastoma (GBM) with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells endowed with features of primitive neural progenitor cells and a tumour-initiating function. In general, this fraction is characterized for forming neurospheres, being endowed with drug resistance properties and often, we can isolate some of them using sorting methods with specific antibodies. The molecular characterization of these stem populations will be critical to developing an effective therapy for these tumours with very dismal prognosis. To achieve this aim, the development of a mouse model which recapitulates the nature of these tumours is essential. This review will focus on glioma stem cell knowledge and discuss future implications in brain cancer therapy and regenerative medicine.

  5. Olivary degeneration after cerebellar or brain stem haemorrhage: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan) Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Hasuo, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Uchida, K. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Matsumoto, S. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Tsukamoto, Y. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Ohno, M. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Masuda, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan))

    1993-05-01

    Magnetic resonance (MR) images of seven patients with olivary degeneration caused by cerebellar or brain stem haemorrhages were reviewed. In four patients with cerebellar haemorrhage, old haematomas were identified as being located in the dentate nucleus; the contralateral inferior olivary nuclei were hyperintense on proton-density- and T2-weighted images. In two patients with pontine haemorrhages, the old haematomas were in the tegmentum and the ipsilateral inferior olivary nuclei, which were hyperintense. In one case of midbrain haemorrhage, the inferior olivary nuclei were hyperintense bilaterally. The briefest interval from the ictus to MRI was 2 months. Hypertrophic olivary nuclei were observed only at least 4 months after the ictus. Olivary degeneration after cerebellar or brain stem haemorrhage should not be confused with ischaemic, neoplastic, or other primary pathological conditions of the medulla. (orig.)

  6. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  7. MRI of the brain stem using fluid attenuated inversion recivery pulse sequences

    International Nuclear Information System (INIS)

    De Coene, B.; Hajnal, J.V.; Pennock, J.M.; Bydder, G.M.

    1993-01-01

    Heavily T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences with inversion times of 2000-2500 ms and echo times of 130-200 ms were used to image the brain stem of a normal adult and five patients. These sequences produce high signal from many white matter tracts and display high lesion contrast. The corticospinal and parietopontine tracts, lateral and medial lemnisci, superior and inferior cerebellar peduncles, medial longitudinal fasciculi, thalamo-olivary tracts the cuneate and gracile fasiculi gave high signal and were directly visualised. The oculomotor and trigeminal nerves were demonstrated within the brain stem. Lesions not seen with conventional T2-weighted spin echo sequences were seen with high contrast in patients with infarction, multiple sclerosis, sarcoidosis, chunt obstruction and metastatic tumour. The anatomical detail and high lesion contrast given by the FLAIR pulse sequence appear likely to be of value in diagnosis of disease in the brain stem. (orig.)

  8. Patient-derived stem cells: pathways to drug discovery for brain diseases

    Directory of Open Access Journals (Sweden)

    Alan eMackay-Sim

    2013-03-01

    Full Text Available The concept of drug discovery through stem cell biology is based on technological developments whose genesis is now coincident. The first is automated cell microscopy with concurrent advances in image acquisition and analysis, known as high content screening (HCS. The second is patient-derived stem cells for modelling the cell biology of brain diseases. HCS has developed from the requirements of the pharmaceutical industry for high throughput assays to screen thousands of chemical compounds in the search for new drugs. HCS combines new fluorescent probes with automated microscopy and computational power to quantify the effects of compounds on cell functions. Stem cell biology has advanced greatly since the discovery of genetic reprogramming of somatic cells into induced pluripotent stem cells (iPSCs. There is now a rush of papers describing their generation from patients with various diseases of the nervous system. Although the majority of these have been genetic diseases, iPSCs have been generated from patients with complex diseases (schizophrenia and sporadic Parkinson’s disease. Some genetic diseases are also modelled in embryonic stem cells generated from blastocysts rejected during in vitro fertilisation. Neural stem cells have been isolated from post-mortem brain of Alzheimer’s patients and neural stem cells generated from biopsies of the olfactory organ of patients is another approach. These olfactory neurosphere-derived cells demonstrate robust disease-specific phenotypes in patients with schizophrenia and Parkinson’s disease. High content screening is already in use to find small molecules for the generation and differentiation of embryonic stem cells and induced pluripotent stem cells. The challenges for using stem cells for drug discovery are to develop robust stem cell culture methods that meet the rigorous requirements for repeatable, consistent quantities of defined cell types at the industrial scale necessary for high

  9. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Science.gov (United States)

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  10. Infrequent lesions involving the brain stem: assessment with magnetic resonance

    International Nuclear Information System (INIS)

    Gonzalez, Alejandro P.; Salvatico, Rosana; Romero, Carlos; Lambre, Hector; Trejo, Mariano; Meli, Francisco

    2005-01-01

    Purpose: Report five non frequent cases that involve the brain stem studied with MRI. Material and methods: 115 patients were evaluated retrospectively between January 2002 and March 2004. Five non frequent cases were selected. Their ages were between 3 and 75 years, and all of them were male. A 1.5 magnet was used. The diagnosis was made with the clinical evolution, blood and CSF analysis and in one case by biopsy. Results: The mentioned cases were posterior reversible leucoencephalopathy, rhombencephalitis due to listeria monocytogenes, brain stem infiltrating glioma, Leigh syndrome and pontine myelinolysis. Conclusions: We think that the reported cases have to be considered among the different diagnosis of the brainstem pathology, in spite of their non frequent presentation. (author)

  11. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada)

    2006-04-15

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  12. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    International Nuclear Information System (INIS)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan

    2006-01-01

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  13. Radiotherapy for pediatric brain stem tumors

    International Nuclear Information System (INIS)

    Shcherbenko, O.I.; Parkhomenko, R.A.; Govorina, E.V.; Zelinskaya, N.I.; Ardatova, G.V.; Nechaeva, V.N.

    2000-01-01

    The immediate and short-term results of gamma therapy of brain stem tumors in 24 children were evaluated. All the patients were able to sustain treatment due to adjuvant support with dehydrating and hormonal drugs, and beneficial clinical effect was recorded in 80%. However, magnetic resonance tomography showed no decrease in tumor size. Tumor growth relapsed 3-8 months after radiotherapy. Although total dose ranged 60-72 Gy in 19 patients, there was no clinical evidence of radiation injury [ru

  14. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    Science.gov (United States)

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  15. Anatomy of Respiratory Rhythmic Systems in Brain Stem and Cerebellum of the Carp

    NARCIS (Netherlands)

    Jüch, P.J.W.; Luiten, P.G.M.

    1981-01-01

    The afferent and efferent connections of two respiratory rhythmic loci in the dorsal mesencephalic tegmentum were studied by retrograde and anterograde transport of horseradish peroxidase. The injection areas were determined with extracellular activity recording using HRP filled glass micropipettes,

  16. Cytokine Immunopathogenesis of Enterovirus 71 Brain Stem Encephalitis

    Directory of Open Access Journals (Sweden)

    Shih-Min Wang

    2012-01-01

    Full Text Available Enterovirus 71 (EV71 is one of the most important causes of herpangina and hand, foot, and mouth disease. It can also cause severe complications of the central nervous system (CNS. Brain stem encephalitis with pulmonary edema is the severe complication that can lead to death. EV71 replicates in leukocytes, endothelial cells, and dendritic cells resulting in the production of immune and inflammatory mediators that shape innate and acquired immune responses and the complications of disease. Cytokines, as a part of innate immunity, favor the development of antiviral and Th1 immune responses. Cytokines and chemokines play an important role in the pathogenesis EV71 brain stem encephalitis. Both the CNS and the systemic inflammatory responses to infection play important, but distinctly different, roles in the pathogenesis of EV71 pulmonary edema. Administration of intravenous immunoglobulin and milrinone, a phosphodiesterase inhibitor, has been shown to modulate inflammation, to reduce sympathetic overactivity, and to improve survival in patients with EV71 autonomic nervous system dysregulation and pulmonary edema.

  17. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Directory of Open Access Journals (Sweden)

    Shengxiu Li

    Full Text Available TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  18. A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors

    Directory of Open Access Journals (Sweden)

    Li Shengwen

    2008-05-01

    Full Text Available Abstract Brain tumors are now the leading cause of cancer-related deaths in children under age 15. Malignant gliomas are, for all practical purposes, incurable and new therapeutic approaches are desperately needed. One emerging strategy is to use the tumor tracking capacity inherent in many stem cell populations to deliver therapeutic agents to the brain cancer cells. Current limitations of the stem cell therapy strategy include that stem cells are treated as a single entity and lack of uniform technology is adopted for selection of clinically relevant sub-populations of stem cells. Specifically, therapeutic success relies on the selection of a clinically competent stem cell population based on their capacity of targeting brain tumors. A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors is proposed to fill the gap in the current work flow of stem cell-based therapy. The organotypic slice platform has advantages of being mimic in vivo model, easier to manipulate to optimize parameters than in vivo models such as rodents and primates. This model serves as a framework to address the discrepancy between anticipated in vivo results and actual in vivo results, a critical barrier to timely progress in the field of the use of stem cells for the treatment of neurological disorders.

  19. A brain-targeted ampakine compound protects against opioid-induced respiratory depression.

    Science.gov (United States)

    Dai, Wei; Xiao, Dian; Gao, Xiang; Zhou, Xin-Bo; Fang, Tong-Yu; Yong, Zheng; Su, Rui-Bin

    2017-08-15

    The use of opioid drugs for pain relief can induce life-threatening respiratory depression. Although naloxone effectively counteracts opioid-induced respiratory depression, it diminishes the efficacy of analgesia. Our studies indicate that ampakines, in particular, a brain-targeted compound XD-8-17C, are able to reverse respiratory depression without affecting analgesia at relatively low doses. Mice and rats were subcutaneously or intravenously injected with the opioid agonist TH-030418 to induce moderate or severe respiratory depression. XD-8-17C was intravenously administered before or after TH-030418. The effect of XD-8-17C on opioid-induced respiratory depression was evaluated in terms of the opioid-induced acute death rate, arterial blood gas analysis and pulmonary function tests. In addition, the hot-plate test was conducted to investigate whether XD-8-17C influenced opioid-induced analgesia. Pre-treatment with XD-8-17C significantly reduced opioid-induced acute death, and increased the median lethal dose of TH-030418 by 4.7-fold. Blood gas analysis and pulmonary function tests demonstrated that post-treatment with XD-8-17C alleviated respiratory depression, as indicated by restoration of arterial blood gas (pO 2 , sO 2 , cK + ) and lung function parameters (respiratory frequency, minute ventilation) to the normal range. The hot-plate test showed that XD-8-17C had no impact on the antinociceptive efficacy of morphine. The ability of XD-8-17C to reverse opioid-induced respiratory depression has the potential to increase the safety and convenience of opioid treatment. These findings contribute to the discovery of novel therapeutic agents that protect against opioid-induced respiratory depression without loss of analgesia. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    Kamei, Hidekazu

    1989-01-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  1. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  2. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanoto, Masafumi, E-mail: mkanoto@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Hosoya, Takaaki, E-mail: thosoya@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Toyoguchi, Yuuki, E-mail: c-elegans_0201g@mail.goo.ne.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Oda, Atsuko, E-mail: a.oda@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan)

    2013-01-15

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis.

  3. Neurosyphilis Involving Cranial Nerves in Brain Stem: 2 Case Reports

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Hye [Dept. of Radiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Choi, Woo Suk; Kim, Eui Jong [Dept. of Radiology, Kyung Hee University Hospital, Seoul (Korea, Republic of); Yoon, Sung Sang; Heo, Sung Hyuk [Dept. of Neurology, Kyung Hee University Hospital, Seoul (Korea, Republic of)

    2012-01-15

    Neurosyphilis uncommonly presents with cranial neuropathies in acute syphilitic meningitis and meningovascular neurosyphilis. We now report two cases in which the meningeal form of neurosyphilis involved cranial nerves in the brain stem: the oculomotor and trigeminal nerve.

  4. Neurosyphilis Involving Cranial Nerves in Brain Stem: 2 Case Reports

    International Nuclear Information System (INIS)

    Jang, Ji Hye; Choi, Woo Suk; Kim, Eui Jong; Yoon, Sung Sang; Heo, Sung Hyuk

    2012-01-01

    Neurosyphilis uncommonly presents with cranial neuropathies in acute syphilitic meningitis and meningovascular neurosyphilis. We now report two cases in which the meningeal form of neurosyphilis involved cranial nerves in the brain stem: the oculomotor and trigeminal nerve.

  5. Analysis of Neural Stem Cells from Human Cortical Brain Structures In Vitro.

    Science.gov (United States)

    Aleksandrova, M A; Poltavtseva, R A; Marei, M V; Sukhikh, G T

    2016-05-01

    Comparative immunohistochemical analysis of the neocortex from human fetuses showed that neural stem and progenitor cells are present in the brain throughout the gestation period, at least from week 8 through 26. At the same time, neural stem cells from the first and second trimester fetuses differed by the distribution, morphology, growth, and quantity. Immunocytochemical analysis of neural stem cells derived from fetuses at different gestation terms and cultured under different conditions showed their differentiation capacity. Detailed analysis of neural stem cell populations derived from fetuses on gestation weeks 8-9, 18-20, and 26 expressing Lex/SSEA1 was performed.

  6. Development and aging of a brain neural stem cell niche.

    Science.gov (United States)

    Conover, Joanne C; Todd, Krysti L

    2017-08-01

    In the anterior forebrain, along the lateral wall of the lateral ventricles, a neurogenic stem cell niche is found in a region referred to as the ventricular-subventricular zone (V-SVZ). In rodents, robust V-SVZ neurogenesis provides new neurons to the olfactory bulb throughout adulthood; however, with increasing age stem cell numbers are reduced and neurogenic capacity is significantly diminished, but new olfactory bulb neurons continue to be produced even in old age. Humans, in contrast, show little to no new neurogenesis after two years of age and whether V-SVZ neural stem cells persist in the adult human brain remains unclear. Here, we review functional and organizational differences in the V-SVZ stem cell niche of mice and humans, and examine how aging affects the V-SVZ niche and its associated functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain

    Directory of Open Access Journals (Sweden)

    Debora Coimbra-Costa

    2017-08-01

    Full Text Available Acute hypoxia increases the formation of reactive oxygen species (ROS in the brain. However, the effect of reoxygenation, unavoidable to achieve full recovery of the hypoxic organ, has not been clearly established. The aim of the present study was to evaluate the effects of exposition to acute severe respiratory hypoxia followed by reoxygenation on the evolution of oxidative stress and apoptosis in the brain. We investigated the effect of in vivo acute severe normobaric hypoxia (rats exposed to 7% O2 for 6 h and reoxygenation in normoxia (21% O2 for 24 h or 48 h on oxidative stress markers, the antioxidant system and apoptosis in the brain. After respiratory hypoxia we found increased levels of HIF-1α expression, lipid peroxidation, protein oxidation and nitric oxide in brain extracts. Antioxidant defence systems such as superoxide dismutase (SOD, reduced glutathione (GSH and glutathione peroxidase (GPx and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in the brain. After 24 h of reoxygenation, oxidative stress parameters and the anti-oxidant system returned to control values. Regarding the apoptosis parameters, acute hypoxia increased cytochrome c, AIF and caspase 3 activity in the brain. The apoptotic effect is greatest after 24 h of reoxygenation. Immunohistochemistry suggests that CA3 and dentate gyrus in the hippocampus seem more susceptible to hypoxia than the cortex. Severe acute hypoxia increases oxidative damage, which in turn could activate apoptotic mechanisms. Our work is the first to demonstrate that after 24 h of reoxygenation oxidative stress is attenuated, while apoptosis is maintained mainly in the hippocampus, which may, in fact, be the cause of impaired brain function. Keywords: Antioxidants, Apoptosis, Normobaric hypoxia, Oxidative stress, Reoxygenation

  8. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of neuroinflammation on the regenerative capacity of brain stem cells

    OpenAIRE

    Russo, Isabella; Barlati, Sergio; Bosetti, Francesca

    2011-01-01

    In the adult brain, neurogenesis under physiological conditions occurs in the subventricular zone and in the dentate gyrus. Although the exact molecular mechanisms that regulate neural stem cell proliferation and differentiation are largely unknown, several factors have been shown to affect neurogenesis. Decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. Furthermore, in pathological conditions of the central nervous system ...

  10. Respiratory Failure

    Science.gov (United States)

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  11. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    Zhong-jun Zhang

    2015-01-01

    Full Text Available Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10 6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.

  12. High predictive value of brain MRI imaging in primary mitochondrial respiratory chain deficiency.

    Science.gov (United States)

    de Beaurepaire, Isaure; Grévent, David; Rio, Marlène; Desguerre, Isabelle; de Lonlay, Pascale; Levy, Raphaël; Dangouloff-Ros, Volodia; Bonnefont, Jean-Paul; Barcia, Giulia; Funalot, Benoit; Besmond, Claude; Metodiev, Metodi D; Ruzzenente, Benedetta; Assouline, Zahra; Munnich, Arnold; Rötig, Agnès; Boddaert, Nathalie

    2018-06-01

    Because the mitochondrial respiratory chain (RC) is ubiquitous, its deficiency can theoretically give rise to any symptom in any organ or tissue at any age with any mode of inheritance, owing to the twofold genetic origin of respiratory enzyme machinery, that is, nuclear and mitochondrial. Not all respiratory enzyme deficiencies are primary and secondary or artefactual deficiency is frequently observed, leading to a number of misleading conclusions and inappropriate investigations in clinical practice. This study is aimed at investigating the potential role of brain MRI in distinguishing primary RC deficiency from phenocopies and other aetiologies. Starting from a large series of 189 patients (median age: 3.5 years (8 days-56 years), 58% males) showing signs of RC enzyme deficiency, for whom both brain MRIs and disease-causing mutations were available, we retrospectively studied the positive predictive value (PPV) and the positive likelihood ratio (LR+) of brain MRI imaging and its ability to discriminate between two groups: primary deficiency of the mitochondrial RC machinery and phenocopies. Detection of (1) brainstem hyperintensity with basal ganglia involvement (P≤0.001) and (2) lactate peak with either brainstem or basal ganglia hyperintensity was highly suggestive of primary RC deficiency (P≤0.01). Fourteen items had a PPV>95% and LR+ was greater than 9 for seven signs. Biallelic SLC19A3 mutations represented the main differential diagnosis. Non-significant differences between the two groups were found for cortical/subcortical atrophy, leucoencephalopathy and involvement of caudate nuclei, spinothalamic tract and corpus callosum. Based on these results and owing to invasiveness of skeletal muscle biopsies and cost of high-throughput DNA sequencing, we suggest giving consideration to brain MRI imaging as a diagnostic marker and an informative investigation to be performed in patients showing signs of RC enzyme deficiency. © Article author(s) (or their

  13. Endovascular treatment of brain-stem arteriovenous malformations: safety and efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.M.; Wang, Y.H.; Chen, Y.F.; Huang, K.M. [Department of Medical Imaging, National Taiwan University Hospital, 7 Chung-Shan South Road, 10016, Taipei (Taiwan); Tu, Y.K. [Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, 1001, Taipei (Taiwan)

    2003-09-01

    Our purpose was to evaluate the safety and efficacy of endovascular treatment of brain-stem arteriovenous malformations (AVMs), reviewing six cases managed in the last 5 years. There were four patients who presented with bleeding, one with a progressive neurological deficit and one with obstructive hydrocephalus. Of the six patients, one showed 100%, one 90%, two 75% and two about 50% angiographic obliteration of the AVM after embolisation; the volume decreased about 75% on average. Five patients had a good outcome and one an acceptable outcome, with a mild postprocedure neurological deficit; none had further bleeding during midterm follow-up. Endovascular management of a brain-stem AVM may be an alternative to treatment such as radiosurgery and microsurgery in selected cases. It may be not as risky as previously thought. Embolisation can reduce the size of the AVM and possibly make it more treatable by radiosurgery and decrease the possibility of radiation injury. (orig.)

  14. MRI findings of radiation encephalopathy of brain stem after radiotherapy for nasopharyngeal cancer

    International Nuclear Information System (INIS)

    Liang Changhong; Li Guoye; Huang Biao; Huang Meiping; Zheng Junhui; Tan Shaoheng; Zeng Qiongxin

    1998-01-01

    Purpose: To study MRI findings and clinical manifestation of radiation encephalopathy (RE) of brain stem. Methods: MRI findings and clinical symptoms in 51 patients with RE of brain stem after radiotherapy for nasopharyngeal cancer were reviewed. Results: Clinical symptoms included number weakness or paralysis in the limbs and symptoms of damaged cranial nerves. All lesions appeared hypo- or iso-intense on spin echo(SE) T 1 -weighted images and inhomogeneous and mixed hyper- and iso-intense on Turbo spin echo (TSE) T 2 -weighted images. The lesions were located in mesencephalon, pons, medulla, basilar part of pons, basilar part of pons and medulla oblongata in 2,7,3,9 and 30 patients respectively. The enhancement patterns included irregular rings in 39 patients, spotty in 3 and no enhancement in 9 patients. Mass effect was minimal in all patients. On follow-up MRI, the lesions disappeared in 4 patients, did not change in size and shape in 8 patients and enlarged in 2 patients. Conclusion: MRI could demonstrate the characteristic findings of RE of brain stem. MRI findings sometimes are not consistent with the clinical symptoms

  15. MRI measurements of the brain stem and cerebellum in high functioning autistic children

    International Nuclear Information System (INIS)

    Hashimoto, Toshiaki; Tayama, Masanobu; Miyazaki, Masahito; Murakawa, Kazuyoshi; Kuroda, Yasuhiro

    1994-01-01

    To determine involvements of the brain stem and/or cerebellum in autism, we compared midsagittal magnetic resonance images of the brains of high functioning autistic children with those of normal controls. We found that the midbrain and medulla oblongata were significantly smaller in these autistic children than in the control children. The pons area did not differ between the two groups, nor was there any difference in the cerebellar vermis area. The ratio of the brain stem and cerebellum to the posterior fossa area did not differ significantly between the high functioning autistic and the control children. The development of the cerebellar vermis area was delayed in autistic children as compared with that in the control children. Thus, it was suggested that significant anatomical changes in the midbrain and medulla oblongata existed in the autistic children. (author)

  16. MRI measurements of the brain stem and cerebellum in high functioning autistic children

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Toshiaki; Tayama, Masanobu; Miyazaki, Masahito; Murakawa, Kazuyoshi; Kuroda, Yasuhiro [Tokushima Univ. (Japan). School of Medicine

    1994-01-01

    To determine involvements of the brain stem and/or cerebellum in autism, we compared midsagittal magnetic resonance images of the brains of high functioning autistic children with those of normal controls. We found that the midbrain and medulla oblongata were significantly smaller in these autistic children than in the control children. The pons area did not differ between the two groups, nor was there any difference in the cerebellar vermis area. The ratio of the brain stem and cerebellum to the posterior fossa area did not differ significantly between the high functioning autistic and the control children. The development of the cerebellar vermis area was delayed in autistic children as compared with that in the control children. Thus, it was suggested that significant anatomical changes in the midbrain and medulla oblongata existed in the autistic children. (author).

  17. Brain stem auditory evoked responses in chronic alcoholics.

    OpenAIRE

    Chan, Y W; McLeod, J G; Tuck, R R; Feary, P A

    1985-01-01

    Brain stem auditory evoked responses (BAERs) were performed on 25 alcoholic patients with Wernicke-Korsakoff syndrome, 56 alcoholic patients without Wernicke-Korsakoff syndrome, 24 of whom had cerebellar ataxia, and 37 control subjects. Abnormal BAERs were found in 48% of patients with Wernicke-Korsakoff syndrome, in 25% of alcoholic patients without Wernicke-Korsakoff syndrome but with cerebellar ataxia, and in 13% of alcoholic patients without Wernicke-Korsakoff syndrome or ataxia. The mean...

  18. Pediatric brain stem tumors: analysis of 25 cases

    International Nuclear Information System (INIS)

    Pinel, M.I.S.; Kalifa, C.; Sarrazin, D.; Lemerle, J.

    1985-01-01

    The charts of 25 pediatric patients with brain stem tumors have been reviewed. The use of computed tomography was found to have been valuable in diagnosis and follow-up, as well as in the design of radiation therapy portals. Radiotherapy and combination chemotherapy with VM-26 (4'-1 demethyl-epipodophyllo toxin B-D-thenylidene glucoside) and CCNU(1-2-chloroethyl-methyl-3-Cyclohexyl-1-nitrosourea) were the treatment employed. (M.A.C.) [pt

  19. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment.

    Science.gov (United States)

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-05-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.

  20. The brain stem function in patients with brain bladder; Clinical evaluation using dynamic CT scan and auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshihiro (Yokohama City Univ. (Japan). Faculty of Medicine)

    1990-11-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author).

  1. Pediatric respiratory and systemic effects of chronic air pollution exposure: nose, lung, heart, and brain pathology.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William

    2007-01-01

    Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.

  2. Stem cells technology: a powerful tool behind new brain treatments.

    Science.gov (United States)

    Duru, Lucienne N; Quan, Zhenzhen; Qazi, Talal Jamil; Qing, Hong

    2018-06-18

    Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.

  3. Brain-stem evoked potentials and noise effects in seagulls.

    Science.gov (United States)

    Counter, S A

    1985-01-01

    Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.

  4. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    Science.gov (United States)

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  5. Auditory Brain Stem Processing in Reptiles and Amphibians: Roles of Coupled Ears

    DEFF Research Database (Denmark)

    Willis, Katie L.; Christensen-Dalsgaard, Jakob; Carr, Catherine

    2014-01-01

    Comparative approaches to the auditory system have yielded great insight into the evolution of sound localization circuits, particularly within the nonmammalian tetrapods. The fossil record demonstrates multiple appearances of tympanic hearing, and examination of the auditory brain stem of various...... groups can reveal the organizing effects of the ear across taxa. If the peripheral structures have a strongly organizing influence on the neural structures, then homologous neural structures should be observed only in groups with a homologous tympanic ear. Therefore, the central auditory systems...... of anurans (frogs), reptiles (including birds), and mammals should all be more similar within each group than among the groups. Although there is large variation in the peripheral auditory system, there is evidence that auditory brain stem nuclei in tetrapods are homologous and have similar functions among...

  6. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation

    OpenAIRE

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving...

  7. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  8. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO Mouse Brain.

    Directory of Open Access Journals (Sweden)

    Ernst-Bernhard Kayser

    Full Text Available Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase, causes Leigh syndrome (LS, a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration.Here we used the Ndufs4(KO mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient "rest" of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue native

  9. Delayed radiation-induced necrosis of the brain stem; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi (National Kure Hospital, Hiroshima (Japan)); Uozumi, Toru

    1993-03-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author).

  10. Respiratory Deleted in Malignant Brain Tumours 1 (DMBT1) levels increase during lung maturation and infection

    DEFF Research Database (Denmark)

    Müller, H; End, C; Weiss, C

    2007-01-01

    .0179). An increase of respiratory DMBT1 levels was detected in neonatal infections (P ...Deleted in Malignant Brain Tumours 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein that binds and aggregates various bacteria and viruses in vitro. Studies in adults have shown that DMBT1 is expressed mainly by mucosal epithelia and glands, in particular within the respiratory...... tract, and plays a role in innate immune defence. We hypothesized that respiratory DMBT1 levels may be influenced by various developmental and clinical factors such as maturity, age and bacterial infection. DMBT1 levels were studied in 205 tracheal aspirate samples of 82 ventilated preterm and full...

  11. Brain stem/brain stem occipital bone ratio and the four-line view in nuchal translucency images of fetuses with open spina bifida.

    Science.gov (United States)

    Iuculano, Ambra; Zoppi, Maria Angelica; Piras, Alessandra; Arras, Maurizio; Monni, Giovanni

    2014-09-10

    Abstract Objective: Brain stem depth/brain stem occipital bone distance (BS/BSOB ratio) and the four-line view, in images obtained for nuchal translucency (NT) screening in fetuses with open spina bifida (OSB). Methods: Single center, retrospective study based on the assessment of NT screening images of fetuses with OSB. A ratio between the BS depth and the BSOB distance was calculated (BS/BSOB ratio) and the four-line view observed, and the sensitivity for a BS/BSOB ratio superior/equal to 1, and for the lack of detection of the four-line view were calculated. Results: There were 17 cases of prenatal diagnosis OSB. In six cases, the suspicion on OSB was raised during NT screening, in six cases, the diagnosis was made before 20 weeks and in five cases during anomaly scan. The BS/BSOB ratio was superior/equal to 1 in all 17 cases, and three lines, were visualized in 15/17 images of the OSB cases, being the sensitivity 100% (95% CI, 81 to 100%) and 88% (95% CI, 65 to 96%). Conclusion: Assessment of BS/BSOB ratio and four-line view in NT images is feasible detecting affected by OSB with high sensitivity. The presence of associated anomalies or of an enlarged NT enhances the early detection.

  12. Cell Therapy in Parkinson's Disease: Host Brain Repair Machinery Gets a Boost From Stem Cell Grafts.

    Science.gov (United States)

    Napoli, Eleonora; Borlongan, Cesar V

    2017-06-01

    This commentary highlights the major findings and future research directions arising from the recent publication by Zuo and colleagues in Stem Cells 2017 (in press). Here, we discuss the novel observations that transplanted human neural stem cells can induce endogenous brain repair by specifically stimulating a host of regenerative processes in the neurogenic niche (i.e., subventricular zone [SVZ]) in an animal model of Parkinson's disease. That the identified therapeutic proteomes, neurotrophic factors, and anti-inflammatory cytokines in the SVZ may facilitate brain regeneration and behavioral recovery open a new venue of research for our understanding of the pathology and treatment of Parkinson's disease. Stem Cells 2017;35:1443-1445. © 2017 AlphaMed Press.

  13. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Respiratory manifestations of panic disorder: causes, consequences and therapeutic implications.

    Science.gov (United States)

    Sardinha, Aline; Freire, Rafael Christophe da Rocha; Zin, Walter Araújo; Nardi, Antonio Egidio

    2009-07-01

    Multiple respiratory abnormalities can be found in anxiety disorders, especially in panic disorder (PD). Individuals with PD experience unexpected panic attacks, characterized by anxiety and fear, resulting in a number of autonomic and respiratory symptoms. Respiratory stimulation is a common event during panic attacks. The respiratory abnormality most often reported in PD patients is increased CO2 sensitivity, which has given rise to the hypothesis of fundamental abnormalities in the physiological mechanisms that control breathing in PD. There is evidence that PD patients with dominant respiratory symptoms are more sensitive to respiratory tests than are those who do not manifest such symptoms, and that the former group constitutes a distinct subtype. Patients with PD tend to hyperventilate and to panic in response to respiratory stimulants such as CO2, triggering the activation of a hypersensitive fear network. Although respiratory physiology seems to remain normal in these subjects, recent evidence supports the idea that they present subclinical abnormalities in respiration and in other functions related to body homeostasis. The fear network, composed of the hippocampus, the medial prefrontal cortex, the amygdala and its brain stem projections, might be oversensitive in PD patients. This theory might explain why medication and cognitive-behavioral therapy are both clearly effective. Our aim was to review the relationship between respiration and PD, addressing the respiratory subtype of PD and the hyperventilation syndrome, with a focus on respiratory challenge tests, as well as on the current mechanistic concepts and the pharmacological implications of this relationship.

  15. Brain mesenchymal stem cells: physiology and pathological implications.

    Science.gov (United States)

    Pombero, Ana; Garcia-Lopez, Raquel; Martinez, Salvador

    2016-06-01

    Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine. © 2016 Japanese Society of Developmental Biologists.

  16. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Romeo Cecchelli

    Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  17. Sensorimotor Functional and Structural Networks after Intracerebral Stem Cell Grafts in the Ischemic Mouse Brain.

    Science.gov (United States)

    Green, Claudia; Minassian, Anuka; Vogel, Stefanie; Diedenhofen, Michael; Beyrau, Andreas; Wiedermann, Dirk; Hoehn, Mathias

    2018-02-14

    Past investigations on stem cell-mediated recovery after stroke have limited their focus on the extent and morphological development of the ischemic lesion itself over time or on the integration capacity of the stem cell graft ex vivo However, an assessment of the long-term functional and structural improvement in vivo is essential to reliably quantify the regenerative capacity of cell implantation after stroke. We induced ischemic stroke in nude mice and implanted human neural stem cells (H9 derived) into the ipsilateral cortex in the acute phase. Functional and structural connectivity changes of the sensorimotor network were noninvasively monitored using magnetic resonance imaging for 3 months after stem cell implantation. A sharp decrease of the functional sensorimotor network extended even to the contralateral hemisphere, persisting for the whole 12 weeks of observation. In mice with stem cell implantation, functional networks were stabilized early on, pointing to a paracrine effect as an early supportive mechanism of the graft. This stabilization required the persistent vitality of the stem cells, monitored by bioluminescence imaging. Thus, we also observed deterioration of the early network stabilization upon vitality loss of the graft after a few weeks. Structural connectivity analysis showed fiber-density increases between the cortex and white matter regions occurring predominantly on the ischemic hemisphere. These fiber-density changes were nearly the same for both study groups. This motivated us to hypothesize that the stem cells can influence, via early paracrine effect, the functional networks, while observed structural changes are mainly stimulated by the ischemic event. SIGNIFICANCE STATEMENT In recent years, research on strokes has made a shift away from a focus on immediate ischemic effects and towards an emphasis on the long-range effects of the lesion on the whole brain. Outcome improvements in stem cell therapies also require the understanding of

  18. Conductive Hearing Loss during Infancy: Effects on Later Auditory Brain Stem Electrophysiology.

    Science.gov (United States)

    Gunnarson, Adele D.; Finitzo, Terese

    1991-01-01

    Long-term effects on auditory electrophysiology from early fluctuating hearing loss were studied in 27 children, aged 5 to 7 years, who had been evaluated originally in infancy. Findings suggested that early fluctuating hearing loss disrupts later auditory brain stem electrophysiology. (Author/DB)

  19. Radiation and misonidazole in children with brain stem gliomas and supratentorial glioblastoma

    International Nuclear Information System (INIS)

    Bloom, H.J.G.; Bugden, R.D.

    1982-01-01

    In a series of 484 children with intracranial tumors referred to the Royal Marsden Hospital for radiotherapy, there were 47 (12%) examples of inoperable pontine and medullary tumors for which the 5-year survival rate was 17%. The limited local tumor mass in brain stem tumors, the absence of cerebro-spinal or distant metastases, and their often initial good but short-lived response to irradiation, all support the trial of a chemical radiosensitizing agent with which to try and achieve greater and more prolonged local control of the disease. Since the prognosis for cerebral hemisphere glioblastoma, which is relatively uncommon in children, is also extremely poor, such cases were included in this pilot study. The problems and possible risks associated with combined radiotherapy and a chemical radiosensitizer in children with brain tumors is discussed. So far, 8 children with brain stem tumors and 3 children with cerebral hemisphere gliomas heave been treated in this study. In addtion, data is also available on 3 children re-treated for incurrent medulloblastomas. Preliminary observations regarding experience with this small series will be reported including blood misonidazole levels, drug tolerance and the possible influence of anticonvulsants and steriods on toxicity

  20. Diffusion Tensor Tractography Imaging in a Case of Acute Brain Stem Infarct

    Directory of Open Access Journals (Sweden)

    Nilgül Yardımcı

    2009-03-01

    Full Text Available Diffusion tensor tractography enables graphical reconstruction of the white matter pathways in the brain and quantitative study of white matter integrity. With this method virtual dissection of the living human brain can be performed. This technique has many potential clinical applications in neurological disorders, including the investigation of stroke. We present tractography findings of a patient that had an acute ischemic infarct in the brain stem. We aimed to report the disintegration of the white matter tracts at the infarct location in vivo, as well as the associated clinical symptoms. The current use of tractography in neurological disorders shows that it has the potential to improve our understanding of the damage and recovery process in diseases of the brain and spinal cord. From a clinical point of view tractography might be used to test new hypotheses, and to provide important new insights into the organization of the brain and the effects of brain disorders

  1. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    OpenAIRE

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2007-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal ...

  2. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    Sun, Jinqiao; Sha, Bin; Zhou, Wenhao; Yang, Yi

    2010-01-01

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  3. Effects of Various Kynurenine Metabolites on Respiratory Parameters of Rat Brain, Liver and Heart Mitochondria

    Directory of Open Access Journals (Sweden)

    Halina Baran*

    2016-01-01

    Full Text Available Previously, we demonstrated that the endogenous glutamate receptor antagonist kynurenic acid dose-dependently and significantly affected rat heart mitochondria. Now we have investigated the effects of L-tryptophan, L-kynurenine, 3-hydroxykynurenine and kynurenic, anthranilic, 3-hydroxyanthranilic, xanthurenic and quinolinic acids on respiratory parameters (ie, state 2, state 3, respiratory control index (RC and ADP/oxygen ratio in brain, liver and heart mitochondria of adult rats. Mitochondria were incubated with glutamate/malate (5 mM or succinate (10 mM and in the presence of L-tryptophan metabolites (1 mM or in the absence, as control. Kynurenic and anthranilic acids significantly reduced RC values of heart mitochondria in the presence of glutamate/malate. Xanthurenic acid significantly reduced RC values of brain mitochondria in the presence of glutamate/malate. Furthermore, 3-hydroxykynurenine and 3-hydroxyanthranilic acid decreased RC values of brain, liver and heart mitochondria using glutamate/malate. In the presence of succinate, 3-hydroxykynurenine and 3-hydroxyanthranilic acid affected RC values of brain mitochondria, whereas in liver and heart mitochondria only 3-hydroxykynurenine lowered RC values significantly. Furthermore, lowered ADP/oxygen ratios were observed in brain mitochondria in the presence of succinate with 3-hydroxykynurenine and 3-hydroxyanthranilic acid, and to a lesser extent with glutamate/malate. In addition, 3-hydroxyanthranilic acid significantly lowered the ADP/oxygen ratio in heart mitochondria exposed to glutamate/malate, while in the liver mitochondria only a mild reduction was found. Tests of the influence of L-tryptophan and its metabolites on complex I in liver mitochondria showed that only 3-hydroxykynurenine, 3-hydroxyanthranilic acid and L-kynurenine led to a significant acceleration of NADH-driven complex I activities. The data indicate that L-tryptophan metabolites had different effects on brain, liver

  4. TGFβ lengthens the G1 phase of stem cells in aged mouse brain.

    Science.gov (United States)

    Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André

    2014-12-01

    Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.

  5. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    Science.gov (United States)

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  6. Age and Gender Effects On Auditory Brain Stem Response (ABR

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2012-10-01

    Full Text Available Objectives: Auditory Brain Stem Response (ABR is a result of eight nerve and brain stem nuclei stimulation. Several factors may affect the latencies, interpeak latencies and amplitudes in ABR especially sex and age. In this study, age and sex influence on ABR were studied. Methods: This study was performed on 120 cases (60 males and 60 females at Akhavan rehabilitation center of university of welfare and rehabilitation sciences, Tehran, Iran. Cases were divided in three age groups: 18-30, 31-50 and 51-70 years old. Each age group consists of 20 males and 20 females. Age and sex influences on absolute latency of wave I and V, and IPL of I-V were examined. Results: Independent t test showed that females have significantly shorter latency of wave I, V, and IPL I-V latency (P<0.001 than males. Two way ANOVA showed that latency of wave I, V and IPL I-V in 51-70 years old group was significantly higher than 18-30 and 31-50 years old groups (P<0.001 Discussion: According to the results of present study and similar studies, in clinical practice, different norms for older adults and both genders should be established.

  7. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    Directory of Open Access Journals (Sweden)

    Matthew J Fogarty

    Full Text Available Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E day 13 and birth (postnatal day 0. Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study. For respiratory-based motor neurons (hypoglossal and phrenic motor pools, we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic and muscle innervations (55% decrease. By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase and muscle innervations (99% increase; however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to

  8. Prognostic factors and therapeutic options of radiotherapy in pediatric brain stem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Ming; Shiau, Cheng-Ying; Wong, Tai-Tong; Wang, Ling-Wei; Wu, Le-Jung; Chi, Kwan-Hwa; Chen, Kuang Y.; Yen, Sang-Hue [Veterans General Hospital-Taipei, Taipei, Taiwan (China)

    1998-08-01

    A retrospective analysis was made to clarify the relationship between prognosis, radiation dose and survival of brain stem gliomas. From 1983 to 1995, 22 children with brain stem tumors were treated by radiotherapy in the Veterans General Hospital-Taipei. Twelve patients had pathology proof and the remainder were diagnosed by computerized tomography and/or magnetic resonance imaging. Seven patients had postoperative radiotherapy. Fifteen patients had radiotherapy as primary management, five of whom had adjuvant chemotherapy. All patients received 4000-7060 cGy, either in conventional daily or hyperfractionated twice daily radiotherapy. Survival from date of diagnosis was calculated by the Kaplan-Meier method. Univariate analyses and multivariate analyses were calculated by the log rank test and the Cox proportional hazard model, respectively. Most patients showed improvement following treatment. The overall 2-year survival rate was 55.5% with a median survival of 27.1 months. Two-year survival for patients with primary management of operation and radiotherapy (n=7), radiotherapy alone (n=10) and radiotherapy with adjuvant chemotherapy (n=5) were 66.7, 50 and 53.3%, respectively. In univariate analysis, the study revealed that the growth pattern of tumors and the simultaneous presence of cranial neuropathy and long tract sign were significant prognostic factors (P=0.017 and 0.036). A trend of better outcome with radiation dose >6600 cGy and the hyperfractionation scheme was also noted in our study (P=0.0573 and 0.0615). However, only the hyperfractionation scheme showed significance in multivariate analyses (P=0.0355). Survival was not significantly affected by age, gender or method of diagnosis. Radiotherapy appears to be an effective treatment modality of brain stem tumors. Patients with both cranial neuropathy and long tract signs had a poorer outcome. Hyperfractionated radiotherapy may give better local control and lead to better survival. (author)

  9. Prognostic factors and therapeutic options of radiotherapy in pediatric brain stem gliomas

    International Nuclear Information System (INIS)

    Liu, Yu-Ming; Shiau, Cheng-Ying; Wong, Tai-Tong; Wang, Ling-Wei; Wu, Le-Jung; Chi, Kwan-Hwa; Chen, Kuang Y.; Yen, Sang-Hue

    1998-01-01

    A retrospective analysis was made to clarify the relationship between prognosis, radiation dose and survival of brain stem gliomas. From 1983 to 1995, 22 children with brain stem tumors were treated by radiotherapy in the Veterans General Hospital-Taipei. Twelve patients had pathology proof and the remainder were diagnosed by computerized tomography and/or magnetic resonance imaging. Seven patients had postoperative radiotherapy. Fifteen patients had radiotherapy as primary management, five of whom had adjuvant chemotherapy. All patients received 4000-7060 cGy, either in conventional daily or hyperfractionated twice daily radiotherapy. Survival from date of diagnosis was calculated by the Kaplan-Meier method. Univariate analyses and multivariate analyses were calculated by the log rank test and the Cox proportional hazard model, respectively. Most patients showed improvement following treatment. The overall 2-year survival rate was 55.5% with a median survival of 27.1 months. Two-year survival for patients with primary management of operation and radiotherapy (n=7), radiotherapy alone (n=10) and radiotherapy with adjuvant chemotherapy (n=5) were 66.7, 50 and 53.3%, respectively. In univariate analysis, the study revealed that the growth pattern of tumors and the simultaneous presence of cranial neuropathy and long tract sign were significant prognostic factors (P=0.017 and 0.036). A trend of better outcome with radiation dose >6600 cGy and the hyperfractionation scheme was also noted in our study (P=0.0573 and 0.0615). However, only the hyperfractionation scheme showed significance in multivariate analyses (P=0.0355). Survival was not significantly affected by age, gender or method of diagnosis. Radiotherapy appears to be an effective treatment modality of brain stem tumors. Patients with both cranial neuropathy and long tract signs had a poorer outcome. Hyperfractionated radiotherapy may give better local control and lead to better survival. (author)

  10. Regional brain stem atrophy in idiopathic Parkinson's disease detected by anatomical MRI.

    Directory of Open Access Journals (Sweden)

    Thomas Jubault

    Full Text Available Idiopathic Parkinson's disease (PD is a neurodegenerative disorder characterized by the dysfunction of dopaminergic dependent cortico-basal ganglia loops and diagnosed on the basis of motor symptoms (tremors and/or rigidity and bradykinesia. Post-mortem studies tend to show that the destruction of dopaminergic neurons in the substantia nigra constitutes an intermediate step in a broader neurodegenerative process rather than a unique feature of Parkinson's disease, as a consistent pattern of progression would exist, originating from the medulla oblongata/pontine tegmentum. To date, neuroimaging techniques have been unable to characterize the pre-symptomatic stages of PD. However, if such a regular neurodegenerative pattern were to exist, consistent damages would be found in the brain stem, even at early stages of the disease. We recruited 23 PD patients at Hoenn and Yahr stages I to II of the disease and 18 healthy controls (HC matched for age. T1-weighted anatomical scans were acquired (MPRAGE, 1 mm3 resolution and analyzed using an optimized VBM protocol to detect white and grey matter volume reduction without spatial a priori. When the HC group was compared to the PD group, a single cluster exhibited statistical difference (p<0.05 corrected for false detection rate, 4287 mm3 in the brain stem, between the pons and the medulla oblongata. The present study provides in-vivo evidence that brain stem damage may be the first identifiable stage of PD neuropathology, and that the identification of this consistent damage along with other factors could help with earlier diagnosis in the future. This damage could also explain some non-motor symptoms in PD that often precede diagnosis, such as autonomic dysfunction and sleep disorders.

  11. Preventive sparing of spinal cord and brain stem in the initial irradiation of locally advanced head and neck cancers.

    Science.gov (United States)

    Farace, Paolo; Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco

    2014-01-06

    Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step-and-shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose < 45 Gy to spinal cord and < 50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5 ± 2.2 Gy and 36.7 ± 14.0 Gy), without significant changes on the other OARs. A marked difference (-15.9 ± 1.9 Gy and -10.1 ± 5.7 Gy) was obtained at the expense of a small difference (-1.3% ± 0.9%) from initial PTV195% coverage (96.6% ± 0.9%). Similar difference (-15.7 ± 2.2 Gy and -10.2 ± 6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (-0.3% ± 0.3% from the initial 98.3% ± 0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer.

  12. Effects of atelocollagen on neural stem cell function and its migrating capacity into brain in psychiatric disease model.

    Science.gov (United States)

    Yoshinaga, Toshihiro; Hashimoto, Eri; Ukai, Wataru; Ishii, Takao; Shirasaka, Tomohiro; Kigawa, Yoshiyasu; Tateno, Masaru; Kaneta, Hiroo; Watanabe, Kimihiko; Igarashi, Takeshi; Kobayashi, Seiju; Sohma, Hitoshi; Kato, Tadafumi; Saito, Toshikazu

    2013-10-01

    Stem cell therapy is well proposed as a potential method for the improvement of neurodegenerative damage in the brain. Among several different procedures to reach the cells into the injured lesion, the intravenous (IV) injection has benefit as a minimally invasive approach. However, for the brain disease, prompt development of the effective treatment way of cellular biodistribution of stem cells into the brain after IV injection is needed. Atelocollagen has been used as an adjunctive material in a gene, drug and cell delivery system because of its extremely low antigenicity and bioabsorbability to protect these transplants from intrabody environment. However, there is little work about the direct effect of atelocollagen on stem cells, we examined the functional change of survival, proliferation, migration and differentiation of cultured neural stem cells (NSCs) induced by atelocollagen in vitro. By 72-h treatment 0.01-0.05% atelocollagen showed no significant effects on survival, proliferation and migration of NSCs, while 0.03-0.05% atelocollagen induced significant reduction of neuronal differentiation and increase of astrocytic differentiation. Furthermore, IV treated NSCs complexed with atelocollagen (0.02%) could effectively migrate into the brain rather than NSC treated alone using chronic alcohol binge model rat. These experiments suggested that high dose of atelocollagen exerts direct influence on NSC function but under 0.03% of atelocollagen induces beneficial effect on regenerative approach of IV administration of NSCs for CNS disease.

  13. Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Honma, Tsuguo

    2009-01-01

    Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)

  14. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    Science.gov (United States)

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  15. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances.

    Science.gov (United States)

    Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel

    2014-11-01

    The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.

  16. [Distribution of human enterovirus 71 in brainstem of infants with brain stem encephalitis and infection mechanism].

    Science.gov (United States)

    Hao, Bo; Gao, Di; Tang, Da-Wei; Wang, Xiao-Guang; Liu, Shui-Ping; Kong, Xiao-Ping; Liu, Chao; Huang, Jing-Lu; Bi, Qi-Ming; Quan, Li; Luo, Bin

    2012-04-01

    To explore the mechanism that how human enterovirus 71 (EV71) invades the brainstem and how intercellular adhesion molecules-1 (ICAM-1) participates by analyzing the expression and distribution of human EV71, and ICAM-1 in brainstem of infants with brain stem encephalitis. Twenty-two brainstem of infants with brain stem encephalitis were collected as the experimental group and 10 brainstems of fatal congenital heart disease were selected as the control group. The sections with perivascular cuffings were selected to observe EV71-VP1 expression by immunohistochemistry method and ICAM-1 expression was detected for the sections with EV71-VP1 positive expression. The staining image analysis and statistics analysis were performed. The experiment and control groups were compared. (1) EV71-VP1 positive cells in the experimental group were mainly astrocytes in brainstem with nigger-brown particles, and the control group was negative. (2) ICAM-1 positive cells showed nigger-brown. The expression in inflammatory cells (around blood vessels of brain stem and in glial nodules) and gliocytes increased. The results showed statistical difference comparing with control group (P diagnose fatal EV71 infection in infants. EV71 can invade the brainstem via hematogenous route. ICAM-1 may play an important role in the pathogenic process.

  17. Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Janel E. Le Belle

    2014-11-01

    Full Text Available A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

  18. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  19. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, Elke R. [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Maderwald, Stefan [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Linn, Jennifer; Bochmann, Katja [LMU Munich, Department of Neuroradiology, Munich (Germany); Dassinger, Benjamin [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Justus-Liebig-University Giessen, Department of Neuroradiology, Giessen (Germany); Forsting, Michael [University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Ladd, Mark E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2014-03-15

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  20. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    International Nuclear Information System (INIS)

    Gizewski, Elke R.; Maderwald, Stefan; Linn, Jennifer; Bochmann, Katja; Dassinger, Benjamin; Forsting, Michael; Ladd, Mark E.

    2014-01-01

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  1. Milrinone in Enterovirus 71 Brain Stem Encephalitis

    Directory of Open Access Journals (Sweden)

    SHIH-MIN eWANG

    2016-03-01

    Full Text Available Enterovirus 71 (EV71 was implicated in a widespread outbreak of hand-foot-and-mouth disease (HFMD across the Asia Pacific area since 1997 and has also been reported sporadically in patients with brain stem encephalitis. Neurogenic shock with pulmonary edema (PE is a fatal complication of EV71 infection. Among inotropic agents, milrinone is selected as a therapeutic agent for EV71- induced PE due to its immunopathogenesis. Milrinone is a type III phosphodiesterase inhibitor that has both inotropic and vasodilator effects. Its clinical efficacy has been shown by modulating inflammation, reducing sympathetic over-activity, and improving survival in patients with EV71-associated PE. Milrinone exhibits immunoregulatory and anti-inflammatory effects in the management of systemic inflammatory responses in severe EV71 infection.

  2. Optimized Longitudinal Monitoring of Stem Cell Grafts in Mouse Brain Using a Novel Bioluminescent/Near Infrared Fluorescent Fusion Reporter

    NARCIS (Netherlands)

    L. Mezzanotte (Laura); Iljas, J.D. (Juvita Delancy); I. Que (Ivo); A. Chan (Albert); E.L. Kaijzel (Eric); R.C. Hoeben (Rob); C.W.G.M. Löwik (Clemens)

    2017-01-01

    textabstractBiodistribution and fate of transplanted stem cells via longitudinal monitoring has been successfully achieved in the last decade using optical imaging. However, sensitive longitudinal imaging of transplanted stem cells in deep tissue like the brain remains challenging not only due to

  3. Progressive multifocal leukoencephalopathy limited to the brain stem

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, O.; Maschke, M.; Diener, H.C. [Neurologische Universitaetsklinik, University of Essen (Germany); Wanke, I. [Department of Neuroradiology, University of Essen (Germany)

    2002-03-01

    Progressive multifocal leukoencephalopathy (PML) is a subacute demyelinating slow-virus encephalitis caused by the JC polyomavirus in 2-5% of patients with AIDS. MRI typically shows multiple lesions in the cerebral hemispheres. We present a rare case of rapidly evolving and lethal PML with a severe bulbar syndrome and spastic tetraparesis in a patient with AIDS. MRI showed high-signal lesions on T2-weighted images confined to the brain stem, extending from the medulla oblongata to the midbrain. JC virus polymerase chain reaction in cerebrospinal fluid was positive, and neuropathology showed the findings of PML. This case was also notable because of the rapid progression despite improved immune status with antiretroviral therapy. (orig.)

  4. Brain Injury Expands the Numbers of Neural Stem Cells and Progenitors in the SVZ by Enhancing Their Responsiveness to EGF

    Directory of Open Access Journals (Sweden)

    Dhivyaa Alagappan

    2009-04-01

    Full Text Available There is an increase in the numbers of neural precursors in the SVZ (subventricular zone after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries.

  5. Long-term meditation is associated with increased gray matter density in the brain stem

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua

    2009-01-01

    density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some......Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter...

  6. Does high-resolution CT has diagnostic value in patients presenting with respiratory symptoms after hematopoietic stem cell transplantation?

    International Nuclear Information System (INIS)

    Wijers, Sofieke C.; Boelens, Jaap Jan; Raphael, Martine F.; Beek, Frederik J.; Jong, Pim A. de

    2011-01-01

    Background: Hematopoietic stem cell transplantation (SCT) can be complicated by a variety of live-threatening infectious and non-infectious pulmonary complications. The management of these complications is critically dependent on the most probable diagnosis, which is in part based on imaging work-up. Methods: Systematic review of the literature related to the diagnostic value of high-resolution computed tomography (HRCT) in patients who underwent SCT and developed respiratory symptoms. Results: Literature review did not reveal systematic cohort studies that included patients with respiratory symptoms post-SCT who underwent HRCT and had a well-defined outcome. Most studies selected participants based on their final diagnosis instead of the indication for diagnostic testing in practice. Nevertheless, several papers clearly indicated a potential role for HRCT when complications after SCT occur. A variety of articles described the role of certain HRCT findings in the diagnosis of specific infectious complications, but less data were available for non-infectious complications. Conclusion: We believe more diagnostic studies are needed to determine the value of HRCT for a specific diagnosis in SCT-recipients who present with respiratory symptoms at the transplant clinic. Currently, radiologists should be cautious since HRCT interpretation in these patients is not unambiguous.

  7. Initial Attempts of Development and Characterization of an In Vitro Blood Brain Barrier Model Derived from Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Hall, Vanessa Jane

    The human blood brain barrier has yet to be successfully replicated as an in vitro model. One of the more promising approaches has been to develop an in vitro model derived from human pluripotent stem cells. However, as promising as this model may be, a successful replication of the differentiation...... method on different kinds of pluripotent stem cell lines have yet to be accomplished. We try to approach the promising method as described by Stebbins et al. (2015) to differentiate human pluripotent stem cells into brain like endothelial cells (BECs). Five different human pluripotent stem cell lines...... configurations (mono culture, non-contact co-culture and contact co-culture) with primary rat astrocytes to induce barrier-like properties. Endothelial cell media supplemented with retinoic acid were then applied to the cells to ensure selective expansion of BECs. The different culture configurations were...

  8. Exogenous stem cells pioneer a biobridge to the advantage of host brain cells following stroke: New insights for clinical applications

    Directory of Open Access Journals (Sweden)

    Marci G Crowley

    2017-01-01

    Full Text Available Stroke continues to maintain its status as one of the top causes of mortality within the United States. Currently, the only Food and Drug Administration (FDA-approved drug in place for stroke patients, tissue plasminogen activator (tPA, has a rigid therapeutic window, closing at approximately 4.5 h after stroke onset. Due to this short time frame and other restrictions, such as any condition that increases a patient's risk for hemorrhaging, it has been predicted that <5% of ischemic stroke patients benefit from tPA. Given that rehabilitation therapy remains the only other option for stroke victims, there is a clear unmet clinical need for treatment available for the remaining 95%. While still considered an experimental treatment, the utilization of stem cell therapies for stroke holds consistent promise. Copious preclinical studies report the capacity for transplanted stem cells to rescue the brain parenchyma surrounding the stroke-induced infarct core. At present, the exact mechanisms in which stem cells contribute a robust therapeutic benefit remains unclear. Following stem cell administration, researchers have observed cell replacement, an increase in growth factors, and a reduction in inflammation. With a deeper understanding of the precise mechanism of stem cells, these therapies can be optimized in the clinic to afford the greatest therapeutic benefit. Recent studies have depicted a unique method of endogenous stem cell activation as a result of stem cell therapy. In both traumatic brain injury and stroke models, transplanted mesenchymal stromal cells (MSCs facilitated a pathway between the neurogenic niches of the brain and the damaged area through extracellular matrix remodeling. The biobridge pioneered by the MSCs was utilized by the endogenous stem cells, and these cells were able to travel to the damaged areas distal to the neurogenic niches, a feat unachievable without prior remodeling. These studies broaden our understanding of stem

  9. Facial Involuntary Movements and Respiratory Failure in CANOMAD, Responsive to IVIG Therapy

    Directory of Open Access Journals (Sweden)

    Kate Johnson

    2015-01-01

    Full Text Available CANOMAD is a rare chronic neuropathy, characterized by chronic sensory ataxia and intermittent brain stem symptoms due to antidisialosyl antibodies. The disorder results in significant morbidity but is poorly understood and often misdiagnosed. We describe a unique case of CANOMAD, associated with involuntary movements of the face; patient reported exacerbations with citrus and chocolate and respiratory muscle weakness. Our patient was initially misdiagnosed with Miller Fisher Syndrome, highlighting the need for vigilance should neurological symptoms recur in patients initially diagnosed with a Guillain Barre variant. Moreover, the optimal treatment is unknown. This patient responded remarkably to intravenous immunoglobulin and has been maintained on this treatment, without further exacerbations.

  10. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation.

    Science.gov (United States)

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-03-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving NSCs in the left hemisphere and PBS in the right; group B, receiving NSCs in the right hemisphere and PBS in the left; and group C, receiving equal NSCs in both hemispheres. Murine brains were stained for morphological analysis and subsequent evaluation of infiltrated immune cells. ELISA was performed to detect neurotrophic and immunomodulatory factors in the brain. The findings indicated that brain injury and secondary inflammation in the left hemisphere were more severe than those in the right hemisphere, following NSC transplantation. In contrast to the left hemisphere, more neurotrophic factors but less pro-inflammatory cytokines were detected in the right hemisphere. In addition, increased levels of neurotrophic factors and interleukin (IL)-10 were observed in the NSC transplantation side when compared with the PBS-treated hemispheres, although lower levels of IL-6 and tumor necrosis factor-α were detected. In conclusion, the present study indicated that syringe needle skull penetration vs. drill penetration is an improved method that reduces the risk of brain injury and secondary inflammation following intracerebral NSC transplantation. Furthermore, NSCs have the potential to modulate inflammation secondary to brain injuries.

  11. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells

    Directory of Open Access Journals (Sweden)

    Margie eCastillo-Melendez

    2013-10-01

    Full Text Available In the research, clinical and wider community there is great interest in the use of stem cells to reduce the progression, or indeed repair brain injury. Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The most readily identifiable outcome of perinatal brain injury is cerebral palsy, however this is just one consequence in a spectrum of mild to severe neurological deficits. As we review, there are now clinical trials taking place worldwide targeting cerebral palsy with stem cell therapies. It will likely be many years before strong evidence-based results emerge from these trials. With such trials underway, it is both appropriate and timely to address the physiological basis for the efficacy of stem-like cells in preventing damage to, or regenerating, the newborn brain. Appropriate experimental animal models are best placed to deliver this information. Cell availability, the potential for immunological rejection, ethical and logistical considerations, together with the propensity for native cells to form terratomas, make it unlikely that embryonic or fetal stem cells will be practical. Fortunately, these issues do not pertain to the use of human amnion epithelial cells (hAECs, or umbilical cord blood (UCB stem cells that are readily and economically obtained from the placenta and umbilical cord discarded at birth. These cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. We will explore the novel characteristics of hAECs and undifferentiated UCB cells, as well as UCB-derived endothelial progenitor cells and mesenchymal stem cells, and how immunomodulation and anti-inflammatory properties are principal mechanisms of action that are common to these cells, and which in turn may ameliorate the cerebral hypoxia and inflammation that are final pathways in the pathogenesis of perinatal brain

  12. Respiratory induced heart rate variability during slow mechanical ventilation Marker to exclude brain death patients

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Kružliak, P.; Šrámek, V.; Cundrle, I.; Leinveber, P.; Adamek, M.; Zvoníček, V.

    2017-01-01

    Roč. 129, 7-8 (2017), s. 251-258 ISSN 0043-5325 R&D Projects: GA ČR GAP103/11/0933; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MZd NS10105 Institutional support: RVO:68081731 Keywords : critical illness * sedation * brain death * respiratory rate variability * heart rate variability * mechanical ventilation Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Medical engineering Impact factor: 0.974, year: 2016

  13. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S K; Wei, W I; Sham, J S.T.; Choy, D T.K.; Hui, Y [Queen Mary Hospital, Hong Kong (Hong Kong)

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  14. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    International Nuclear Information System (INIS)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y.

    1992-01-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author)

  15. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  16. Guidelines for the pathoanatomical examination of the lower brain stem in ingestive and swallowing disorders and its application to a dysphagic spinocerebellar ataxia type 3 patient

    NARCIS (Netherlands)

    Rub, U; Brunt, ER; Del Turco, D; de Vos, RAI; Gierga, K; Paulson, H; Braak, H

    Despite the fact that considerable progress has been made in the last 20 years regarding the three-phase process of ingestion and the lower brain stem nuclei involved in it, no comprehensive descriptions of the ingestion-related lower brain stem nuclei are available for neuropathologists confronted

  17. In vitro delineation of human brain-stem anatomy using a small resonator: correlation with macroscopic and histological findings

    International Nuclear Information System (INIS)

    Maeurer, J.; Mitrovic, T.; Knollmann, F.D.; Luedtke, E.; Requardt

    1996-01-01

    Our purpose was to investigate the potential of an experimental animal coil using a commercial MRI unit to delineate the anatomical structure of the human brain stem. Three formaldehyde-fixed brain-stem specimens were examined by MRI and sectioned perpendicular to their longitudinal axis. The images were compared with gross anatomy and myelin-stained histological sections. Fibre tracts and nuclei which were not evident on examination of the unstained specimen were readily identified by MRI. Due to its inherent grey/white matter contrast, MRI with a high-resolution coil delineates anatomical structures in a way comparable to the myelin-stained histological sections. However, pigmented structures, readily visible on examination of the unstained specimen were discernible on neither MRI nor on myelin-stained sections. The excellent anatomical detail and grey/white matter contrast provided by these images could make MRI a useful adjunct to the pathologist investigating brain disease. (orig.)

  18. Effectiveness of mesenchymal stems cells cultured by hanging drop vs. conventional culturing on the repair of hypoxic-ischemic-damaged mouse brains, measured by stemness gene expression

    OpenAIRE

    Lou Yongli; Guo Dewei; Zhang Hui; Song Laijun

    2016-01-01

    In this study, we investigated the therapeutic effects of Human Mesenchymal Stem Cells (hMSCs) cultured by hanging drop and conventional culturing methods on cerebellar repair in hypoxic-ischemic (HI) brain injured mice. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze the expression levels of three stemness genes, Oct4, Sox2 and Nanog, and the migration related gene CXCR4. MSC prepared by hanging drop or conventional techniques were adminis...

  19. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.

    Science.gov (United States)

    Sukiasyan, N; Hultborn, H; Zhang, M

    2009-03-03

    The function of local networks in the CNS depends upon both the connectivity between neurons and their intrinsic properties. An intrinsic property of spinal motoneurons is the presence of persistent inward currents (PICs), which are mediated by non-inactivating calcium (mainly Ca(V)1.3) and/or sodium channels and serve to amplify neuronal input signals. It is of fundamental importance for the prediction of network function to determine the distribution of neurons possessing the ion channels that produce PICs. Although the distribution pattern of Ca(V)1.3 immunoreactivity (Ca(V)1.3-IR) has been studied in some specific central nervous regions in some species, so far no systematic investigations have been performed in both the rat spinal cord and brain stem. In the present study this issue was investigated by immunohistochemistry. The results indicated that the Ca(V)1.3-IR neurons were widely distributed across different parts of the spinal cord and the brain stem although with variable labeling intensities. In the spinal gray matter large neurons in the ventral horn (presumably motoneurons) tended to display higher levels of immunoreactivity than smaller neurons in the dorsal horn. In the white matter, a subset of glial cells labeled by an oligodendrocyte marker was also Ca(V)1.3-positive. In the brain stem, neurons in the motor nuclei appeared to have higher levels of immunoreactivity than those in the sensory nuclei. Moreover, a number of nuclei containing monoaminergic cells, for example the locus coeruleus, were also strongly immunoreactive. Ca(V)1.3-IR was consistently detected in the neuronal perikarya regardless of the neuronal type. However, in the large neurons in the spinal ventral horn and the cranial motor nuclei the Ca(V)1.3-IR was clearly detectable in first and second order dendrites. These results indicate that in the rat spinal cord and brain stem Ca(V)1.3 is probably a common calcium channel used by many kinds of neurons to facilitate the neuronal

  20. Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients

    NARCIS (Netherlands)

    Wu, L.; Sluiter, A.A.; Guo, Ho Fu; Balesar, R. A.; Swaab, D. F.; Zhou, Jiang Ning; Verwer, R. W H

    Neurodegenerative diseases are progressive and incurable and are becoming ever more prevalent. To study whether neural stem cell can reactivate or rescue functions of impaired neurons in the human aging and neurodegenerating brain, we co-cultured postmortem slices from Alzheimer patients and control

  1. Reelin signaling in the migration of ventral brain stem and spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Sandra eBlaess

    2016-03-01

    Full Text Available The extracellular matrix protein Reelin is an important orchestrator of neuronal migration during the development of the central nervous system. While its role and mechanism of action have been extensively studied and reviewed in the formation of dorsal laminar brain structures like the cerebral cortex, hippocampus, and cerebellum, its functions during the neuronal migration events that result in the nuclear organization of the ventral central nervous system are less well understood. In an attempt to delineate an underlying pattern of Reelin action in the formation of neuronal cell clusters, this review highlights the role of Reelin signaling in the migration of neuronal populations that originate in the ventral brain stem and the spinal cord.

  2. Effects of respiratory acidosis and alkalosis on the distribution of cyanide into the rat brain.

    Science.gov (United States)

    Djerad, A; Monier, C; Houzé, P; Borron, S W; Lefauconnier, J M; Baud, F J

    2001-06-01

    The aim of this study was to determine whether respiratory acidosis favors the cerebral distribution of cyanide, and conversely, if respiratory alkalosis limits its distribution. The pharmacokinetics of a nontoxic dose of cyanide were first studied in a group of 7 rats in order to determine the distribution phase. The pharmacokinetics were found to best fit a 3-compartment model with very rapid distribution (whole blood T(1/2)alpha = 21.6 +/- 3.3 s). Then the effects of the modulation of arterial pH on the distribution of a nontoxic dose of intravenously administered cyanide into the brains of rats were studied by means of the determination of the permeability-area product (PA). The modulation of arterial blood pH was performed by variation of arterial carbon dioxide tension (PaCO2) in 3 groups of 8 anesthetized mechanically ventilated rats. The mean arterial pH measured 20 min after the start of mechanical ventilation in the acidotic, physiologic, and alkalotic groups were 7.07 +/- 0.03, 7.41 +/- 0.01, and 7.58 +/- 0.01, respectively. The mean PAs in the acidotic, physiologic, and alkalotic groups, determined 30 s after the intravenous administration of cyanide, were 0.015 +/- 0.002, 0.011 +/- 0.001, and 0.008 +/- 0.001 s(-1), respectively (one-way ANOVA; p < 0.0087). At alkalotic pH the mean permeability-area product was 43% of that measured at acidotic pH. This effect of pH on the rapidity of cyanide distribution does not appear to be limited to specific areas of the brain. We conclude that modulation of arterial pH by altering PaCO2 may induce significant effects on the brain uptake of cyanide.

  3. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    International Nuclear Information System (INIS)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S.

    1998-01-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.)

  4. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S. [Internal Medicine III, Shimane Medical University, Izumo (Japan)

    1998-12-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.) With 4 figs., 3 tabs., 16 refs.

  5. Tomographic criteria of gliomas in the brain stem in infants

    International Nuclear Information System (INIS)

    Machado Junior, M.A.; Bracchi, M.; D'Incerti, L.; Passerini, A.

    1994-01-01

    The relationship between Computed Tomography Imaging, histopathological and prognostic data is evaluated by reviewing 37 cases of brain stem neoplasm in infants. The results indicate a presence of a cystic lesion with solid mural nodule as the single prognostic criteria of a greater survival rate. Such finding frequently corresponds to Pilocytic Astrocytomas. No correlations between contrast enhancement and prognostic was found. The association between the prognostic value to the densitometric characteristics of the lesions was not possible. It was concluded that the evaluations of the extension of such lesion is fundamental. Therefore, Magnetic Resonance Imaging has more value than computed tomography. (M.A.C.)

  6. Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain.

    Directory of Open Access Journals (Sweden)

    Manohar B Mutnal

    2011-01-01

    Full Text Available Congenital cytomegalovirus (CMV brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons.

  7. Fractal ventilation enhances respiratory sinus arrhythmia

    Directory of Open Access Journals (Sweden)

    Girling Linda G

    2005-05-01

    Full Text Available Abstract Background Programming a mechanical ventilator with a biologically variable or fractal breathing pattern (an example of 1/f noise improves gas exchange and respiratory mechanics. Here we show that fractal ventilation increases respiratory sinus arrhythmia (RSA – a mechanism known to improve ventilation/perfusion matching. Methods Pigs were anaesthetised with propofol/ketamine, paralysed with doxacurium, and ventilated in either control mode (CV or in fractal mode (FV at baseline and then following infusion of oleic acid to result in lung injury. Results Mean RSA and mean positive RSA were nearly double with FV, both at baseline and following oleic acid. At baseline, mean RSA = 18.6 msec with CV and 36.8 msec with FV (n = 10; p = 0.043; post oleic acid, mean RSA = 11.1 msec with CV and 21.8 msec with FV (n = 9, p = 0.028; at baseline, mean positive RSA = 20.8 msec with CV and 38.1 msec with FV (p = 0.047; post oleic acid, mean positive RSA = 13.2 msec with CV and 24.4 msec with FV (p = 0.026. Heart rate variability was also greater with FV. At baseline the coefficient of variation for heart rate was 2.2% during CV and 4.0% during FV. Following oleic acid the variation was 2.1 vs. 5.6% respectively. Conclusion These findings suggest FV enhances physiological entrainment between respiratory, brain stem and cardiac nonlinear oscillators, further supporting the concept that RSA itself reflects cardiorespiratory interaction. In addition, these results provide another mechanism whereby FV may be superior to conventional CV.

  8. Brain Stem Infarction Due to Basilar Artery Dissection in a Patient with Moyamoya Disease Four Years after Successful Bilateral Revascularization Surgeries.

    Science.gov (United States)

    Abe, Takatsugu; Fujimura, Miki; Mugikura, Shunji; Endo, Hidenori; Tominaga, Teiji

    2016-06-01

    Moyamoya disease (MMD) is a rare cerebrovascular disease with an unknown etiology and is characterized by intrinsic fragility in the intracranial vascular walls such as the affected internal elastic lamina and thinning medial layer. The association of MMD with intracranial arterial dissection is extremely rare, whereas that with basilar artery dissection (BAD) has not been reported previously. A 46-year-old woman developed brain stem infarction due to BAD 4 years after successful bilateral superficial temporal artery-middle cerebral artery anastomosis with indirect pial synangiosis for ischemic-onset MMD. She presented with sudden occipitalgia and subsequently developed transient dysarthria and mild hemiparesis. Although a transient ischemic attack was initially suspected, her condition deteriorated in a manner that was consistent with left hemiplegia with severe dysarthria. Magnetic resonance (MR) imaging revealed brain stem infarction, and MR angiography delineated a double-lumen sign in the basilar artery, indicating BAD. She was treated conservatively and brain stem infarction did not expand. One year after the onset of brain stem infarction, her activity of daily living is still dependent (modified Rankin Scale of 4), and there were no morphological changes associated with BAD or recurrent cerebrovascular events during the follow-up period. The association of MMD with BAD is extremely rare. While considering the common underlying pathology such as an affected internal elastic lamina and fragile medial layer, the occurrence of BAD in a patient with MMD in a stable hemodynamic state is apparently unique. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Neural stem cells in the immature, but not the mature, subventricular zone respond robustly to traumatic brain injury.

    Science.gov (United States)

    Goodus, Matthew T; Guzman, Alanna M; Calderon, Frances; Jiang, Yuhui; Levison, Steven W

    2015-01-01

    Pediatric traumatic brain injury is a significant problem that affects many children each year. Progress is being made in developing neuroprotective strategies to combat these injuries. However, investigators are a long way from therapies to fully preserve injured neurons and glia. To restore neurological function, regenerative strategies will be required. Given the importance of stem cells in repairing damaged tissues and the known persistence of neural precursors in the subventricular zone (SVZ), we evaluated regenerative responses of the SVZ to a focal brain lesion. As tissues repair more slowly with aging, injury responses of male Sprague Dawley rats at 6, 11, 17, and 60 days of age and C57Bl/6 mice at 14 days of age were compared. In the injured immature animals, cell proliferation in the dorsolateral SVZ more than doubled by 48 h. By contrast, the proliferative response was almost undetectable in the adult brain. Three approaches were used to assess the relative numbers of bona fide neural stem cells, as follows: the neurosphere assay (on rats injured at postnatal day 11, P11), flow cytometry using a novel 4-marker panel (on mice injured at P14) and staining for stem/progenitor cell markers in the niche (on rats injured at P17). Precursors from the injured immature SVZ formed almost twice as many spheres as precursors from uninjured age-matched brains. Furthermore, spheres formed from the injured brain were larger, indicating that the neural precursors that formed these spheres divided more rapidly. Flow cytometry revealed a 2-fold increase in the percentage of stem cells, a 4-fold increase in multipotential progenitor-3 cells and a 2.5-fold increase in glial-restricted progenitor-2/multipotential-3 cells. Analogously, there was a 2-fold increase in the mitotic index of nestin+/Mash1- immunoreactive cells within the immediately subependymal region. As the early postnatal SVZ is predominantly generating glial cells, an expansion of precursors might not

  10. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  11. Long-term meditation is associated with increased gray matter density in the brain stem

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua

    2009-01-01

    Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter...... density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some...... of the cardiorespiratory parasympathetic effects and traits, as well as the cognitive, emotional, and immunoreactive impact reported in several studies of different meditation practices....

  12. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Manoj Kumar Jaiswal

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) and motor neuron diseases (MNDs) are progressive neurodegenera-tive diseases that affect nerve cells in the brain affecting upper and lower motor neurons (UMNs/LMNs), brain stem and spinal cord.The clinical phenotype is characterized by loss of motor neurons (MNs), mus-cular weakness and atrophy eventually leading to paralysis and death due to respiratory failure within 3–5 years after disease onset. No effective treatment or cure is currently available that halts or reverses ALS and MND except FDA approved drug riluzole that only modestly slows the progression of ALS in some patients. Recent advances in human derived induced pluripotent stem cells have made it possible for the first time to obtain substantial amounts of human cells to recapitulate in vitro"disease in dish"and test some of the underlying pathogenetic mechanisms involved in ALS and MNDs. In this review, I discussed the opportunities and challenges of induced pluropotent stem cells-derived motor neurons for treatment of ALS and MND patients with special emphasis on their implications in finding a cure for ALS and MNDs.

  13. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease.

    Science.gov (United States)

    Jaiswal, Manoj Kumar

    2017-05-01

    Amyotrophic lateral sclerosis (ALS) and motor neuron diseases (MNDs) are progressive neurodegenerative diseases that affect nerve cells in the brain affecting upper and lower motor neurons (UMNs/LMNs), brain stem and spinal cord. The clinical phenotype is characterized by loss of motor neurons (MNs), muscular weakness and atrophy eventually leading to paralysis and death due to respiratory failure within 3-5 years after disease onset. No effective treatment or cure is currently available that halts or reverses ALS and MND except FDA approved drug riluzole that only modestly slows the progression of ALS in some patients. Recent advances in human derived induced pluripotent stem cells have made it possible for the first time to obtain substantial amounts of human cells to recapitulate in vitro " disease in dish " and test some of the underlying pathogenetic mechanisms involved in ALS and MNDs. In this review, I discussed the opportunities and challenges of induced pluropotent stem cells-derived motor neurons for treatment of ALS and MND patients with special emphasis on their implications in finding a cure for ALS and MNDs.

  14. Morphological and histochemical changes in the brain stem in case of experimental hemispheric intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    S. I. Tertishniy

    2015-10-01

    Full Text Available Aim. Investigation of the extent of morphological changes and activity of biogenic amines (according to the intensity of luminescence in the neurons of the brain stem in intracerebral hemorrhage (ICH. Methods and results. ICH was designed on 29 white rats of Vistar line by the administration of autologous blood in the cerebral hemisphere. It was revealed that increased luminescence intensity by 18.4±5.5% was registered in monoaminergic neurons in 1–6 hours after experimental ICH. After 12 hours – 1 day development of dislocation syndrome leads to mosaic focal ischemic neuronal injuries with maximum reduction in the level of catecholamines by 29.5±5.0% compared with control cases. Three–6 days after ICH on a background of selective neuronal necrosis in substantial number of neurons in the nuclei of the brainstem the level of catecholamines is significantly reduced. Conclusion. Disclosed observations reflect significant functional pathology of neurons responsible for the regulation of cardiorespiratory function and may underlie disturbances of integrative activity in the brain stem in general.

  15. Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain.

    Science.gov (United States)

    Hawkins, Kate E; Corcelli, Michelangelo; Dowding, Kate; Ranzoni, Anna M; Vlahova, Filipa; Hau, Kwan-Leong; Hunjan, Avina; Peebles, Donald; Gressens, Pierre; Hagberg, Henrik; de Coppi, Paolo; Hristova, Mariya; Guillot, Pascale V

    2018-05-01

    Human mesenchymal stem cells (MSCs) have huge potential for regenerative medicine. In particular, the use of pluripotent stem cell-derived mesenchymal stem cells (PSC-MSCs) overcomes the hurdle of replicative senescence associated with the in vitro expansion of primary cells and has increased therapeutic benefits in comparison to the use of various adult sources of MSCs in a wide range of animal disease models. On the other hand, fetal MSCs exhibit faster growth kinetics and possess longer telomeres and a wider differentiation potential than adult MSCs. Here, for the first time, we compare the therapeutic potential of PSC-MSCs (ES-MSCs from embryonic stem cells) to fetal MSCs (AF-MSCs from the amniotic fluid), demonstrating that ES-MSCs have a superior neuroprotective potential over AF-MSCs in the mouse brain following hypoxia-ischemia. Further, we demonstrate that nuclear factor (NF)-κB-stimulated interleukin (IL)-13 production contributes to an increased in vitro anti-inflammatory potential of ES-MSC-conditioned medium (CM) over AF-MSC-CM, thus suggesting a potential mechanism for this observation. Moreover, we show that induced pluripotent stem cell-derived MSCs (iMSCs) exhibit many similarities to ES-MSCs, including enhanced NF-κB signaling and IL-13 production in comparison to AF-MSCs. Future studies should assess whether iMSCs also exhibit similar neuroprotective potential to ES-MSCs, thus presenting a potential strategy to overcome the ethical issues associated with the use of embryonic stem cells and providing a potential source of cells for autologous use against neonatal hypoxic-ischemic encephalopathy in humans. Stem Cells Translational Medicine 2018;7:439-449. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  16. Transcranial magnetic stimulation of human adult stem cells in the mammalian brain

    Directory of Open Access Journals (Sweden)

    Karlea L Kremer

    2016-03-01

    Full Text Available Introduction: The burden of stroke on the community is growing, and therefore, so is the need for a therapy to overcome the disability following stroke. Cellular-based therapies are being actively investigated at a pre-clinical and clinical level. Studies have reported the beneficial effects of exogenous stem cell implantation, however, these benefits are also associated with limited survival of implanted stem cells. This exploratory study investigated the use of transcranial magnetic stimulation (TMS as a complementary therapy to increase stem cell survival following implantation of human dental pulp stem cells (DPSC in the rodent cortex. Methods: Sprague-Dawley rats were anaesthetised and injected with 6x105 DPSC or control media via an intracranial injection, and then received real TMS (TMS0.2Hz or sham TMS (TMSsham every 2nd day beginning on day 3 post DPSC injection for 2 weeks. Brain sections were analysed for the survival, migration and differentiation characteristics of the implanted cells. Results: In animals treated with DPSC and TMS0.2Hz there were significantly less implanted DPSC and those that survived remained in the original cerebral hemisphere compared to animals that received TMSsham. The surviving implanted DPSC in TMS0.2Hz were also found to express the apoptotic marker Caspase-3. Conclusions: We suggest that TMS at this intensity may cause an increase in glutamate levels, which promotes an unfavourable environment for stem cell implantation, proliferation and differentiation. It should be noted that only one paradigm of TMS was tested as this was conducted as an exploratory study, and further TMS paradigms should be investigated in the future.

  17. Data on effects of rotenone on calcium retention capacity, respiration and activities of respiratory chain complexes I and II in isolated rat brain mitochondria

    Directory of Open Access Journals (Sweden)

    Evelina Rekuviene

    2017-08-01

    Full Text Available The data presented in this article are related to the research article entitled “Rotenone decreases ischemia-induced injury by inhibiting mitochondrial permeability transition in mature brains” (Rekuviene et al., 2017 [1]. Data in this article present the direct effects of rotenone on calcium retention capacity (CRC in isolated normal cortex and cerebellum mitochondria, effects of rotenone intravenous infusion on leak and phosphorylating respiration rates of isolated cortex and cerebellum mitochondria, on activities of respiratory chain complexes I and II in freezed-thawed/sonicated cortex and cerebellum mitochondria after brain ischemia. In addition, detailed experimental procedures of isolation of brain mitochondria, measurements of CRC, respiration, activities of respiratory chain complexes and H2O2 generation in cortex and cerebellum mitochondria are described.

  18. Human Umbilical Cord Blood Stem Cells: Rational for Use as a Neuroprotectant in Ischemic Brain Disease

    Directory of Open Access Journals (Sweden)

    Hadar Arien-Zakay

    2010-09-01

    Full Text Available The use of stem cells for reparative medicine was first proposed more than three decades ago. Hematopoietic stem cells from bone marrow, peripheral blood and human umbilical cord blood (CB have gained major use for treatment of hematological indications. CB, however, is also a source of cells capable of differentiating into various non-hematopoietic cell types, including neural cells. Several animal model reports have shown that CB cells may be used for treatment of neurological injuries. This review summarizes the information available on the origin of CB-derived neuronal cells and the mechanisms proposed to explain their action. The potential use of stem/progenitor cells for treatment of ischemic brain injuries is discussed. Issues that remain to be resolved at the present stage of preclinical trials are addressed.

  19. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    Directory of Open Access Journals (Sweden)

    Lars eRoll

    2014-08-01

    Full Text Available The limited regeneration capacity of the adult central nervous system requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation.In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo.As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM, a complex network that contains numerous signaling molecules. It appears that signals in the damaged central nervous system lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C.Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  20. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    Science.gov (United States)

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.

  1. Novel Regenerative Therapies Based on Regionally Induced Multipotent Stem Cells in Post-Stroke Brains: Their Origin, Characterization, and Perspective.

    Science.gov (United States)

    Takagi, Toshinori; Yoshimura, Shinichi; Sakuma, Rika; Nakano-Doi, Akiko; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-12-01

    Brain injuries such as ischemic stroke cause severe neural loss. Until recently, it was believed that post-ischemic areas mainly contain necrotic tissue and inflammatory cells. However, using a mouse model of cerebral infarction, we demonstrated that stem cells develop within ischemic areas. Ischemia-induced stem cells can function as neural progenitors; thus, we initially named them injury/ischemia-induced neural stem/progenitor cells (iNSPCs). However, because they differentiate into more than neural lineages, we now refer to them as ischemia-induced multipotent stem cells (iSCs). Very recently, we showed that putative iNSPCs/iSCs are present within post-stroke areas in human brains. Because iNSPCs/iSCs isolated from mouse and human ischemic tissues can differentiate into neuronal lineages in vitro, it is possible that a clearer understanding of iNSPC/iSC profiles and the molecules that regulate iNSPC/iSC fate (e.g., proliferation, differentiation, and survival) would make it possible to perform neural regeneration/repair in patients following stroke. In this article, we introduce the origin and traits of iNSPCs/iSCs based on our reports and recent viewpoints. We also discuss their possible contribution to neurogenesis through endogenous and exogenous iNSPC/iSC therapies following ischemic stroke.

  2. Evaluation of quality of life in long-term survivors of paediatric brain stem tumors, treated with radiotherapy

    International Nuclear Information System (INIS)

    Skowronska-Gardas, Anna; Pedziwiatr, Katarzyna; Chojnacka, Marzanna

    2004-01-01

    The quality of life in long-term survivors of paediatric brain stem tumors, treated with radiotherapy is evaluated. They suffer predominantly from pre-treatment neurological impairments, which seriously influence their quality of life. The most often observed treatment sequelae are pituitary insufficiency and hearing loss

  3. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain

    Czech Academy of Sciences Publication Activity Database

    Kosi, N.; Alic, I.; Kolačevic, M.; Vrsaljko, N.; Miloševic, N.J.; Sobol, Margaryta; Filimonenko, Anatolij; Hozák, Pavel; Gajovic, S.; Pochet, R.; Mitrečic, D.

    2015-01-01

    Roč. 1597, February (2015), s. 65-76 ISSN 1872-6240 R&D Projects: GA TA ČR(CZ) TE01020118; GA MPO FR-TI3/588 Institutional support: RVO:68378050 Keywords : Nop2 * Brain * Stem cells * Stroke Subject RIV: EB - Genetics ; Molecular Biology

  4. Brain stem tumors in children - therapeutic results in patients of the University Children's Hospital of Cracow in Poland

    International Nuclear Information System (INIS)

    Korab-Chrzanowska, E.; Bartoszewska, J.; Kwiatkowski, S.

    2005-01-01

    To analyse the treatment results achieved in children treated for brain stem tumours at one institution between the years 1990 and 2004. Material. 20 patients (10 girls, 10 boys) aged 2.8-15.6 years were treated for brain stem tumors at the University Children's Hospital of Cracow (UCHC) in the years 1990-2004. The tumour type was defined basing on imaging studies (CT, MRI), and, in the case of 7 patients, additionally basing on histopathological results. In the collected material the predominant tumor type was benign glioma, detected in 17 patients. Malignant gliomas were diagnosed in 3 children. 7 children were treated by radiotherapy only. Surgical procedures and adjuvant radiotherapy were employed in 3 patients. 6 children underwent radiotherapy and chemotherapy. Combined surgical treatment followed by radiotherapy and chemotherapy was employed in 4 patients. Of the 20 patients 6 have died (30%). The surviving group (70%) includes 1 patient with tumor progression (5%), 5 - with stable tumors (25%), and 8 (40%) - with tumor regression. The probability of three-year overall survival for the entire group as calculated by the Kaplan-Meier method was 70% while the probability of three-year progression-free survival was 65%. Conclusions. Diffuse brain stem tumors, mostly those involving the pons, and malignant gliomas have poor prognosis. In the presented material we achieved the best treatment results in patients with exophytic or focal tumors, treated surgically with adjuvant therapy. (author)

  5. Clinical translation of stem cell therapy in traumatic brain injury: the potential of encapsulated mesenchymal cell biodelivery of glucagon-like peptide-1

    OpenAIRE

    Heile, Anna; Brinker, Thomas

    2011-01-01

    Traumatic brain injury remains a major cause of death and disability; it is estimated that annually 10 million people are affected. Preclinical studies have shown the potential therapeutic value of stem cell therapies. Neuroprotective as well as regenerative properties of stem cells have been suggested to be the mechanism of action in preclinical studies. However, up to now stem cell therapy has not been studied extensively in clinical trials. This article summarizes the current experimental ...

  6. Reduction in cardiolipin decreases mitochondrial spare respiratory capacity and increases glucose transport into and across human brain cerebral microvascular endothelial cells.

    Science.gov (United States)

    Nguyen, Hieu M; Mejia, Edgard M; Chang, Wenguang; Wang, Ying; Watson, Emily; On, Ngoc; Miller, Donald W; Hatch, Grant M

    2016-10-01

    Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. Cardiolipin is a mitochondrial phospholipid required for function of the electron transport chain and ATP generation. We examined the role of cardiolipin in maintaining mitochondrial function necessary to support barrier properties of brain microvessel endothelial cells. Knockdown of the terminal enzyme of cardiolipin synthesis, cardiolipin synthase, in hCMEC/D3 cells resulted in decreased cellular cardiolipin levels compared to controls. The reduction in cardiolipin resulted in decreased mitochondrial spare respiratory capacity, increased pyruvate kinase activity, and increased 2-deoxy-[(3) H]glucose uptake and glucose transporter-1 expression and localization to membranes in hCMEC/D3 cells compared to controls. The mechanism for the increase in glucose uptake was an increase in adenosine-5'-monophosphate kinase and protein kinase B activity and decreased glycogen synthase kinase 3 beta activity. Knockdown of cardiolipin synthase did not affect permeability of fluorescent dextran across confluent hCMEC/D3 monolayers grown on Transwell(®) inserts. In contrast, knockdown of cardiolipin synthase resulted in an increase in 2-deoxy-[(3) H]glucose transport across these monolayers compared to controls. The data indicate that in hCMEC/D3 cells, spare respiratory capacity is dependent on cardiolipin. In addition, reduction in cardiolipin in these cells alters their cellular energy status and this results in increased glucose transport into and across hCMEC/D3 monolayers. Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. In human adult brain endothelial cell hCMEC/D3 monolayers cultured on Transwell(®) plates, knockdown of cardiolipin synthase results in decrease in mitochondrial

  7. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain

    Czech Academy of Sciences Publication Activity Database

    Kosi, N.; Alic, I.; Kolacevic, M.; Vrsaljko, N.; Milosevic, N.J.; Sobol, Margaryta; Philimonenko, Anatoly; Hozák, Pavel; Gajovic, S.; Pochet, R.; Mitrecic, D.

    2015-01-01

    Roč. 1597, FEB 9 (2015), s. 65-76 ISSN 1872-6240 R&D Projects: GA TA ČR(CZ) TE01020118; GA MPO FR-TI3/588 Institutional support: RVO:68378050 Keywords : Nop2 * Brain * Stem cells * Stroke * Nucleolus * Cell cycle Subject RIV: EB - Genetics ; Molecular Biology

  8. In vivo Brain Delivery of v-myc Overproduced Human Neural Stem Cells via the Intranasal Pathway: Tumor Characteristics in the Lung of a Nude Mouse

    Directory of Open Access Journals (Sweden)

    Eun Seong Lee

    2015-01-01

    Full Text Available We aimed to monitor the successful brain delivery of stem cells via the intranasal route and to observe the long-term consequence of the immortalized human neural stem cells in the lungs of a nude mouse model. Stably immortalized HB1.F3 human neural stem cells with firefly luciferase gene (F3-effluc were intranasally delivered to BALB/c nude mice. Bioluminescence images were serially acquired until 41 days in vivo and at 4 hours and 41 days ex vivo after intranasal delivery. Lungs were evaluated by histopathology. After intranasal delivery of F3-effluc cells, the intense in vivo signals were detected in the nasal area, migrated toward the brain areas at 4 hours (4 of 13, 30.8%, and gradually decreased for 2 days. The brain signals were confirmed by ex vivo imaging (2 of 4, 50%. In the mice with initial lung signals (4 of 9, 44.4%, the lung signals disappeared for 5 days but reappeared 2 weeks later. The intense lung signals were confirmed to originate from the tumors in the lungs formed by F3-effluc cells by ex vivo imaging and histopathology. We propose that intranasal delivery of immortalized stem cells should be monitored for their successful delivery to the brain and their tumorigenicity longitudinally.

  9. Human Mesenchymal Stem Cell Treatment Normalizes Cortical Gene Expression after Traumatic Brain Injury.

    Science.gov (United States)

    Darkazalli, Ali; Vied, Cynthia; Badger, Crystal-Dawn; Levenson, Cathy W

    2017-01-01

    Traumatic brain injury (TBI) results in a progressive disease state with many adverse and long-term neurological consequences. Mesenchymal stem cells (MSCs) have emerged as a promising cytotherapy and have been previously shown to reduce secondary apoptosis and cognitive deficits associated with TBI. Consistent with the established literature, we observed that systemically administered human MSCs (hMSCs) accumulate with high specificity at the TBI lesion boundary zone known as the penumbra. Substantial work has been done to illuminate the mechanisms by which MSCs, and the bioactive molecules they secrete, exert their therapeutic effect. However, no such work has been published to examine the effect of MSC treatment on gene expression in the brain post-TBI. In the present study, we use high-throughput RNA sequencing (RNAseq) of cortical tissue from the TBI penumbra to assess the molecular effects of both TBI and subsequent treatment with intravenously delivered hMSCs. RNAseq revealed that expression of almost 7000 cortical genes in the penumbra were differentially regulated by TBI. Pathway analysis using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database revealed that TBI regulated a large number of genes belonging to pathways involved in metabolism, receptor-mediated cell signaling, neuronal plasticity, immune cell recruitment and infiltration, and neurodegenerative disease. Remarkably, hMSC treatment was found to normalize 49% of all genes disrupted by TBI, with notably robust normalization of specific pathways within the categories mentioned above, including neuroactive receptor-ligand interactions (57%), glycolysis and gluconeogenesis (81%), and Parkinson's disease (100%). These data provide evidence in support of the multi-mechanistic nature of stem cell therapy and suggest that hMSC treatment is capable of simultaneously normalizing a wide variety of important molecular pathways that are disrupted by brain injury.

  10. Spatio-temporal neural stem cell behavior that leads to both perfect and imperfect structural brain regeneration in adult newts.

    Science.gov (United States)

    Urata, Yuko; Yamashita, Wataru; Inoue, Takeshi; Agata, Kiyokazu

    2018-06-14

    Adult newts can regenerate large parts of their brain from adult neural stem cells (NSCs), but how adult NSCs reorganize brain structures during regeneration remains unclear. In development, elaborate brain structures are produced under broadly coordinated regulations of embryonic NSCs in the neural tube, whereas brain regeneration entails exquisite control of the reestablishment of certain brain parts, suggesting a yet-unknown mechanism directs NSCs upon partial brain excision. Here we report that upon one-quarter excision of the adult newt ( Pleurodeles waltl ) mesencephalon, active participation of local NSCs around specific brain subregions' boundaries leads to some imperfect and some perfect brain regeneration along an individual's rostrocaudal axis. Regeneration phenotypes depend on how the wound closing occurs using local NSCs, and perfect regeneration replicates development-like processes but takes more than one year. Our findings indicate that newt brain regeneration is supported by modularity of boundary-domain NSCs with self-organizing ability in neighboring fields. © 2018. Published by The Company of Biologists Ltd.

  11. Establishment of 9L/F344 rat intracerebral glioma model of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Zong-yu XIAO

    2015-04-01

    Full Text Available Objective To establish the 9L/F344 rat intracerebral glioma model of brain tumor stem cells.  Methods Rat 9L gliosarcoma stem-like cells were cultured in serum-free suspension. The expression of CD133 and nestin were tested by immunohistochemistry. A total of 48 inbredline male F344 rats were randomly divided into 2 groups, and 9L tumor sphere cells and 9L monolayer cells were respectively implanted into the right caudate nucleus of F344 rats in 2 groups. Survival time was observed and determined using the method of Kaplan-Meier survival analysis. Fourteen days after implantation or when the rats were dying, their brains were perfused and sectioned for HE staining, and CD133 and nestin were detected by immunohistochemistry.  Results Rat 9L tumor spheres were formed with suspension culture in serum-free medium. The gliomas formed in both groups were invasive without obvious capsule. More new vessels, bleeding and necrosis could be detected in 9L tumor spheres group. The tumor cells in both groups were positive for CD133 and nestin. There was no significant difference in the expression of CD133 and nestin between 2 groups (P > 0.05, for all. According to the expression of nestin, the tumors formed by 9L tumor sphere cells were more invasive. The median survival time of the rats bearing 9L tumor sphere cells was 15 d (95%CI: 15.219-15.781, and the median survival time of the rats bearing 9L monolayer cells was 21 d (95%CI: 20.395-21.605. There was significant difference between 2 groups (χ2 = 12.800, P = 0.000.  Conclusions 9L/F344 rat intracerebral glioma model of brain tumor stem cells is successfully established, which provides a glioma model for the future research. DOI: 10.3969/j.issn.1672-6731.2015.04.012

  12. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications.

    Science.gov (United States)

    Abou-Antoun, Tamara J; Hale, James S; Lathia, Justin D; Dombrowski, Stephen M

    2017-04-01

    Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.

  13. Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Cindy Leten

    2016-01-01

    Full Text Available Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683 in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI and magnetic resonance imaging (MRI. Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1 outliers can be detected earlier, (2 GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3 a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.

  14. Effects of intravenous administration of bone marrow stromal stem cells on cognitive impairment of the whole-brain irradiated rat models

    International Nuclear Information System (INIS)

    Ding Weijun; Wang Jianhua; Zhu Min; Chen Baoguo; Wang Yang

    2007-01-01

    Objective: To explore the effect of intravenous infusion of bone marrow stromal stem cells(MSCs) on cognitive function of rats after whole brain irradiation. Methods: MSCs were isolated and cultured from adult rats. After Sprague-Dawly female rats were anaesthetized with chloral hydrate, their whole cerebrum was irradiated with a single dose of 20 Gy by 6 MV X-ray. Seven days after irradiation, 4 x 106 Hoechst33342-1abelled MSCs were intravenously injected into the tail vein of these rats. Four and 8 weeks after transplantation, the learning and memorizing ability was measured with the Y maze test. Immunohistochemical method was used to identify MSCs or ceils derived from MSCs in the brain. Results: The learning and memorizing ability of irradiation groups were significantly different from that of normal control group (P < 0.01). Significant improvement of cognitive impairment was observed in rats treated with MSCs at 4 and 8 weeks after transplantation as compared with the controll groups (P<0.05). This showed that the MSCs survived and were localized to the brain tissue. The number of Hoechst33342 immunohistofluorescence positive cells and double-immunostaining cells significantly decreased in 8 weeks group as compared with the 4 weeks group. Conclusion: Marrow stromal stem cells delivered to the irradiation brain tissue through intravenous route improve the cognitive impairment after whole brain irradiation. These cells may survive and differentiate in the brain tissue of irradiated rats. (authors)

  15. Terapia com células-tronco na síndrome do desconforto respiratório agudo Stem cell therapy in acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Tatiana Maron-Gutierrez

    2009-03-01

    . It is believed that an efficient therapy for the acute respiratory distress syndrome should attenuate inflammatory response and promote adequate repair of the lung injury. This article presents a brief review on the use of stem cells and their potential therapeutic effect on the acute respiratory distress syndrome. This systematic review was based upon clinical and experimental acute respiratory distress syndrome studies included in the MedLine and SciElO database during the last 10 years. Stem cell transplant lead to an improvement in lung injury and fibrotic process by inducing adequate tissue repair. This includes alveolar epithelial cell differentiation,and also reduces pulmonary and systemic inflammatory mediators and secretion of growth factors. Stem cells could be a potential therapy for acute respiratory distress syndrome promoting lung repair and attenuating the inflammatory response. However, mechanisms involving their anti-inflammatory and antifibrinogenic effects require better elucidation, limiting their immediate clinical use in acute respiratory distress syndrome.

  16. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Science.gov (United States)

    Zhou, Hai-xiao; Liu, Zhi-gang; Liu, Xiao-jiao; Chen, Qian-xue

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. PMID:26981097

  17. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hai-xiao Zhou

    2016-01-01

    Full Text Available Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5-3.0 atm impact force. The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions.

  18. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  19. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. IL-6 deficiency leads to reduced metallothionein-I+II expression and increased oxidative stress in the brain stem after 6-aminonicotinamide treatment

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2000-01-01

    -AN-injected IL-6KO mice reactive astrocytosis and recruitment of macrophages and T-lymphocytes were clearly reduced, as were BM leukopoiesis and spleen immune reaction. Expression of MT-I+II was significantly reduced while MT-III was increased. Oxidative stress, as determined by measuring nitrated...... in brain stem gray matter areas and BM toxicity. In both normal and genetically IL-6-deficient mice (IL-6 knockout (IL-6KO) mice), the extent of astroglial degeneration/cell death in the brain stem was similar as determined from disappearance of GFAP immunoreactivity. In 6-AN-injected normal mice reactive...... tyrosine and malondialdehyde, was increased by 6-AN to a greater extent in IL-6KO mice. The blood-brain barrier to albumin was only disrupted in 6-AN-injected normal mice, which likely is due to the substantial migration of blood-derived inflammatory cells into the CNS. The present results demonstrate...

  1. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    Science.gov (United States)

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  2. Induced Neural Stem Cells Achieve Long-Term Survival and Functional Integration in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Kathrin Hemmer

    2014-09-01

    Full Text Available Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]. iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications.

  3. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    DEFF Research Database (Denmark)

    Kristoffersen, Karina

    2013-01-01

    Glioblastoma Multiforme (GBM) is the most common and aggressive brain tumor in adults with a median survival for newly diagnosed GBM patients at less than 1.5 year. Despite intense treatment efforts the vast majority of patients will experience relapse and much research today is therefore searching...... for new molecular and cellular targets that can improve the prognosis for GBM patients. One such target is the brain cancer stem-like cells (bCSC) that are believed to be responsible for tumor initiation, progression, treatment resistance and ultimately relapse. bCSC are identified based...... on their resemblance to normal neural stem cells (NSC) and their tumorigenic potential. Like for NSC, the epidermal growth factor receptor (EGFR) and Notch receptor signaling pathways are believed to be important for the maintenance of bCSC. These pathways as such present promising targets in a future anti-bCSC GBM...

  4. Activity of respiratory system during laser irradiation of brain structures

    Science.gov (United States)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  5. Estradiol receptors mediate estradiol-induced inhibition of mitochondrial Ca^{2+} efflux in rat caudate nucleus and brain stem

    OpenAIRE

    PETROVIC, SNJEZANA; MILOSEVIC, MAJA; RISTIC-MEDIC, DANIJELA; VELICKOVIC, NATASA; DRAKULIC, DUNJA; GRKOVIC, IVANA; HORVAT, ANICA

    2015-01-01

    Our earlier studies found that in vitro estradiol modulates mitochondrial Ca2+ transport in discrete brain regions. The present study examined the role of estradiol receptors (ERs) in estradiol-induced inhibition of Ca^{2+} efflux from synaptosomal mitochondria isolated from rat caudate nuclei and brain stems. Radioactively labeled CaCl_2 (0.6?0.75 µCi ^45CaCl_{2}) was used for Ca^{2+} transport monitoring. The results revealed that in the presence of ER antagonist 7\\alpha,17ß-[9[(4,4,5,5,5-...

  6. Childhood Brain Stem Glioma Treatment

    Science.gov (United States)

    ... The tentorium separates the supratentorium from the infratentorium (right panel). The skull and meninges protect the brain and spinal cord (left panel). Brain tumors are the second most common ...

  7. Proliferation of differentiated glial cells in the brain stem

    Directory of Open Access Journals (Sweden)

    P.C. Barradas

    1998-02-01

    Full Text Available Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase, that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions.

  8. Efficient and Fast Differentiation of Human Neural Stem Cells from Human Embryonic Stem Cells for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xinxin Han

    2017-01-01

    Full Text Available Stem cell-based therapies have been used for repairing damaged brain tissue and helping functional recovery after brain injury. Aberrance neurogenesis is related with brain injury, and multipotential neural stem cells from human embryonic stem (hES cells provide a great promise for cell replacement therapies. Optimized protocols for neural differentiation are necessary to produce functional human neural stem cells (hNSCs for cell therapy. However, the qualified procedure is scarce and detailed features of hNSCs originated from hES cells are still unclear. In this study, we developed a method to obtain hNSCs from hES cells, by which we could harvest abundant hNSCs in a relatively short time. Then, we examined the expression of pluripotent and multipotent marker genes through immunostaining and confirmed differentiation potential of the differentiated hNSCs. Furthermore, we analyzed the mitotic activity of these hNSCs. In this report, we provided comprehensive features of hNSCs and delivered the knowledge about how to obtain more high-quality hNSCs from hES cells which may help to accelerate the NSC-based therapies in brain injury treatment.

  9. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway.

    Directory of Open Access Journals (Sweden)

    Mayumi Jijiwa

    Full Text Available Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6 in BTSC of a subset of glioblastoma multiforme (GBM. Patients with CD44(high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44(high GBM but not from CD44(low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN, increased expression of phosphorylated AKT in CD44(high GBM, but not in CD44(low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKT pathway.

  10. Mesenchymal Stem Cells Regulate Blood Brain Barrier Integrity in Traumatic Brain Injury Through Production of the Soluble Factor TIMP3

    Science.gov (United States)

    Menge, Tyler; Zhao, Yuhai; Zhao, Jing; Wataha, Kathryn; Geber, Michael; Zhang, Jianhu; Letourneau, Phillip; Redell, John; Shen, Li; Wang, Jing; Peng, Zhalong; Xue, Hasen; Kozar, Rosemary; Cox, Charles S.; Khakoo, Aarif Y.; Holcomb, John B.; Dash, Pramod K.; Pati, Shibani

    2013-01-01

    Mesenchymal stem cells (MCSs) have been shown to have therapeutic potential in multiple disease states associated with vascular instability including traumatic brain injury (TBI). In the present study, Tissue Inhibitor of Matrix Metalloproteinase-3 (TIMP3) is identified as the soluble factor produced by MSCs that can recapitulate the beneficial effects of MSCs on endothelial function and blood brain barrier (BBB) compromise in TBI. Attenuation of TIMP3 expression in MSCs completely abrogates the effect of MSCs on BBB permeability and stability, while intravenous administration of rTIMP3 alone can inhibit BBB permeability in TBI. Our results demonstrate that MSCs increase circulating levels of soluble TIMP3, which inhibits VEGF-A induced breakdown of endothelial AJs in vitro and in vivo. These findings elucidate a clear molecular mechanism for the effects of MSCs on the BBB in TBI, and directly demonstrate a role for TIMP3 in regulation of BBB integrity. PMID:23175708

  11. Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain

    Directory of Open Access Journals (Sweden)

    Marina E. Emborg

    2013-03-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies.

  12. Respiratory difficulty caused by an ectopic brain tissue mass in the neck of a two-month-old baby: a case report

    Directory of Open Access Journals (Sweden)

    Aboud Mohammed J

    2011-06-01

    Full Text Available Abstract Introduction Neuroglial heterotopia, heterotopic brain tissue, or differentiated neural tissue outside the cranial vault is uncommon, and these anomalies most commonly occur in the nasal cavity. Case presentation We report a case of rare pure cystic heterotopic brain tissue in a two-month-old Caucasian baby girl that presented as a large cystic neck mass and was confused with a cystic hygroma. Her mother reported a progressive increase in the size of this swelling and mild respiratory difficulty when the girl was sleeping. A computed tomography scan of the brain and neck showed a large heterogeneous mass extending from the base of the skull to the left submandibular region; a cystic component was also noted. Our patient under went total excision of the cystic mass and prevention of airway obstruction by a left submandibular approach. The final gross pathology diagnosis was heterotopic brain tissue. Conclusions Pure cystic neck heterotopic brain tissue lesions are very uncommon, and a preoperative diagnosis of this lesion is difficult. Brain heterotopia is a rare, benign condition that should be considered in the differential diagnosis of the neonatal head and neck mass.

  13. Identifying endogenous neural stem cells in the adult brain in vitro and in vivo: novel approaches.

    Science.gov (United States)

    Rueger, Maria Adele; Androutsellis-Theotokis, Andreas

    2013-01-01

    In the 1960s, Joseph Altman reported that the adult mammalian brain is capable of generating new neurons. Today it is understood that some of these neurons are derived from uncommitted cells in the subventricular zone lining the lateral ventricles, and the dentate gyrus of the hippocampus. The first area generates new neuroblasts which migrate to the olfactory bulb, whereas hippocampal neurogenesis seems to play roles in particular types of learning and memory. A part of these uncommitted (immature) cells is able to divide and their progeny can generate all three major cell types of the nervous system: neurons, astrocytes, and oligodendrocytes; these properties define such cells as neural stem cells. Although the roles of these cells are not yet clear, it is accepted that they affect functions including olfaction and learning/memory. Experiments with insults to the central nervous system also show that neural stem cells are quickly mobilized due to injury and in various disorders by proliferating, and migrating to injury sites. This suggests a role of endogenous neural stem cells in disease. New pools of stem cells are being discovered, suggesting an even more important role for these cells. To understand these cells and to coax them to contribute to tissue repair it would be very useful to be able to image them in the living organism. Here we discuss advances in imaging approaches as well as new concepts that emerge from stem cell biology with emphasis on the interface between imaging and stem cells.

  14. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Kokubu, Yasuhiro; Yamaguchi, Tomoko; Kawabata, Kenji

    2017-04-29

    Brain-derived microvascular endothelial cells (BMECs), which play a central role in blood brain barrier (BBB), can be used for the evaluation of drug transport into the brain. Although human BMEC cell lines have already been reported, they lack original properties such as barrier integrity. Pluripotent stem cells (PSCs) can be used for various applications such as regenerative therapy, drug screening, and pathological study. In the recent study, an induction method of BMECs from PSCs has been established, making it possible to more precisely study the in vitro human BBB function. Here, using induced pluripotent stem (iPS) cell-derived BMECs, we examined the effects of oxygen-glucose deprivation (OGD) and OGD/reoxygenation (OGD/R) on BBB permeability. OGD disrupted the barrier function, and the dysfunction was rapidly restored by re-supply of the oxygen and glucose. Interestingly, TNF-α, which is known to be secreted from astrocytes and microglia in the cerebral ischemia, prevented the restoration of OGD-induced barrier dysfunction in an apoptosis-independent manner. Thus, we could establish the in vitro BBB disease model that mimics the cerebral ischemia by using iPS cell-derived BMECs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain.

    Science.gov (United States)

    Janssens, Derek H; Lee, Cheng-Yu

    2014-04-01

    During malignant transformation the cells of origin give rise to cancer stem cells which possess the capacity to undergo limitless rounds of self-renewing division, regenerating themselves while producing more tumor cells. Within normal tissues, a limitless self-renewal capacity is unique to the stem cells, which divide asymmetrically to produce more restricted progenitors. Accumulating evidence suggests that misregulation of the self-renewal machinery in stem cell progeny can lead to tumorigenesis, but how it influences the properties of the resulting tumors remains unclear. Studies of the type II neural stem cell (neuroblast) lineages in the Drosophila larval brain have identified a regulatory cascade that promotes commitment to a progenitor cell identity by restricting their response to the self-renewal machinery. Brain tumor (Brat) and Numb initiate this cascade by asymmetrically extinguishing the activity of the self-renewal factors. Subsequently, Earmuff (Erm) and the SWI/SNF complex stably restrict the competence of the progenitor cell to respond to reactivation of self-renewal mechanisms. Together, this cascade programs the progenitor cell to undergo limited rounds of division, generating exclusive differentiated progeny. Here we review how defects in this cascade lead to tumor initiation and how inhibiting the self-renewal mechanisms may be an effective strategy to block CSC expansion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model.

    Directory of Open Access Journals (Sweden)

    Stine Skov Jensen

    Full Text Available Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking invasion and tumor stemness into account.Glioblastoma stem cell-like containing spheroid (GSS cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models.We observed a pronounced invasion into brain slice cultures both by confocal time-lapse microscopy and immunohistochemistry. This invasion closely resembled the invasion in vivo. The Ki-67 proliferation indexes in spheroids implanted into brain slices were lower than in free-floating spheroids. The expression of stem cell markers varied between free-floating spheroids, spheroids implanted into brain slices and tumors in vivo.The established invasion model kept in stem cell medium closely mimics tumor cell invasion into the brain in vivo preserving also to some extent the expression of stem cell markers. The model is feasible and robust and we suggest the model as an in vivo-like model with a great potential in glioma studies and drug discovery.

  17. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    Science.gov (United States)

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-09

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The role of CXC chemokine ligand (CXCL)12-CXC chemokine receptor (CXCR)4 signalling in the migration of neural stem cells towards a brain tumour

    NARCIS (Netherlands)

    van der Meulen, A. A. E.; Biber, K.; Lukovac, S.; Balasubramaniyan, V.; den Dunnen, W. F. A.; Boddeke, H. W. G. M.; Mooij, J. J. A.

    2009-01-01

    Aims: It has been shown that neural stem cells (NSCs) migrate towards areas of brain injury or brain tumours and that NSCs have the capacity to track infiltrating tumour cells. The possible mechanism behind the migratory behaviour of NSCs is not yet completely understood. As chemokines are involved

  19. On the possible high +Gz tolerance increase by multimodal brain imaging controlled respiratory AFTE biofeedback training exercise

    Science.gov (United States)

    Smietanowski, Maciej; Achimowicz, Jerzy; Lorenc, Kamil; Nowicki, Grzegorz; Zalewska, Ewa; Truszczynski, Olaf

    The experimental data related to Valsalva manouvers and short term voluntary apnea, available in the literature, suggest that the cerebral blood flow increase and reduction of the peripheral one may be expected if the specific AFTE based respiratory training is performed. The authors had verified this hypothesis by studying the relations between EEG measured subject relaxation combined with voluntary apnea by multimodal brain imaging technique (EEG mapping, Neuroscan and fMRI) in a group of healthy volunteers. The SPM analysis of respiratory related changes in cortical and subcortical BOLD signal has partially confirmed the hypothesis. The mechanism of this effect is probably based on the simultaneous blood pressure increase and total peripheral resistance increase. However the question is still open for further experimental verification if AFTE can be treated as the tool which can increase pilot/astronaut situation awareness in the extreme environment typical for aerospace operations where highly variable accelerations due to liftoff, rapid maneuvers, and vibrations can be expected in the critical phases of the mission.

  20. Therapeutic Potential of Umbilical Cord Blood Stem Cells on Brain Damage of a Model of Stroke

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Nikravesh

    2011-11-01

    Full Text Available Introduction: Human cord blood-derived stem cells are a rich source of stem cells as well as precursors. With regard to the researchers have focused on the therapeutic potential of stem cell in the neurological disease such as stroke, the aim of this study was the investiga-tion of the therapeutic effects of human cord blood-derived stem cells in cerebral ischemia on rat. Methods: This study was carried out on young rats. Firstly, to create a laboratory model of ischemic stroke, carotid artery of animals was occluded for 30 minutes. Then, umbilical cord blood cells were isolated and labeled using bromodeoxyuridine and 2×105 cells were injected into the experimental group via the tail vein. Rats with hypoxic condi-tions were used as a sham group. A group of animals did not receive any injection or sur-geries were used as a control. Results: Obtained results were evaluated based on behavior-al responses and immunohistochemistry, with emphasis on areas of putamen and caudate nucleus in the control, sham and experimental groups. Our results indicated that behavioral recovery was observed in the experimental group compared to the either the sham or the control group. However, histological studies demonstrated a low percent of tissue injury in the experimental group in comparison with the sham group. Conclusion: Stem cell trans-plantation is beneficial for the brain tissue reparation after hypoxic ischemic cell death.

  1. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  2. A detrimental effect of a combined chemotherapy-radiotherapy approach in children with diffuse intrinsic brain stem gliomas?

    International Nuclear Information System (INIS)

    Freeman, Carolyn R.; Kepner, Jim; Kun, Larry E.; Sanford, Robert A.; Kadota, Richard; Mandell, Lynda; Friedman, Henry

    2000-01-01

    Purpose: To compare the proportion of patients that survive at least 1 year following treatment with hyperfractionated radiotherapy (HRT) to a dose of 70.2 Gy on Pediatric Oncology Group (POG) study no. 8495 with that of patients treated with similar radiotherapy plus cisplatinum given by continuous infusion on weeks 1, 3, and 5 of radiotherapy on POG no. 9239. Methods and Materials: The eligibility criteria for the two studies were identical and included age 3 to 21 years, previously untreated tumor involving the brain stem of which two-thirds was in the pons, history less than 6 months, and clinical findings typical for diffuse intrinsic brain stem glioma, including cranial nerve deficits, long tract signs, and ataxia. The outcome of 57 patients who were treated at the 70.2 Gy dose level of POG no. 8495 between May 1986 and February 1988 was compared with that of 64 patients treated with identical radiotherapy plus cisplatinum on POG no. 9239 between June 1992 and March 1996. Results: The number of patients accrued to POG no. 9239 was determined to guarantee that the probability was at least 0.80 of correctly detecting that the 1-year survival rate exceeded that of patients on POG no. 8495 by 0.2. However, the z value for this test was -1.564, giving a p value of 0.9411. That is, there is almost sufficient evidence to conclude that survival for patients receiving HRT plus cisplatinum on POG no. 9239 was worse than that for patients receiving the same radiotherapy alone on POG no. 8495. Conclusion: The finding that patients who received cisplatinum given as a radiosensitizing agent concurrent with HRT fared less well than those receiving the same dose of HRT alone was unexpected and is clearly a cause for concern as many current protocols for patients with diffuse intrinsic brain stem gliomas call for use of chemotherapeutic and/or biological agents given concurrent with radiotherapy

  3. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.

    Science.gov (United States)

    Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia

    2015-04-01

    Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.

  4. Stem cells and repair of lung injuries

    Directory of Open Access Journals (Sweden)

    Randell Scott H

    2004-07-01

    Full Text Available Abstract Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung.

  5. The continuum of stem cell transdifferentiation: possibility of hematopoietic stem cell plasticity with concurrent CD45 expression.

    Science.gov (United States)

    Udani, V M

    2006-02-01

    Recent years have seen a surge of scientific research examining adult stem cell plasticity. For example, the hematopoietic stem cell has been shown to give rise to skin, respiratory epithelium, intestinal epithelium, renal epithelium, liver parenchyma, pancreas, skeletal muscle, vascular endothelium, myocardium, and central nervous system (CNS) neurons. The potential for such stem cell plasticity seems to be enhanced by stressors such as injury and neoplasia. Interestingly, recent studies have demonstrated that hematopoietic stem cells may be able to adopt certain nonhematopoietic phenotypes, such as endothelial, neural, or skeletal muscle phenotypes, without entirely losing their initial hematopoietic identity. We propose that transdifferentiation can, in certain conditions, be a partial rather than a complete event, and we encourage further investigation into the phenomenon of a stem cell simultaneously expressing phenotypic features of two distinct cell fates.

  6. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Meyer, Morten; Petterson, Stine Asferg

    2016-01-01

    AIMS: Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking...... invasion and tumor stemness into account. METHODS: Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains...... of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. RESULTS: We observed a pronounced invasion into brain slice...

  7. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain.

    Science.gov (United States)

    Emborg, Marina E; Liu, Yan; Xi, Jiajie; Zhang, Xiaoqing; Yin, Yingnan; Lu, Jianfeng; Joers, Valerie; Swanson, Christine; Holden, James E; Zhang, Su-Chun

    2013-03-28

    The generation of induced pluripotent stem cells (iPSCs) opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Your Brain and Nervous System

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Brain & Nervous System KidsHealth / For Kids / Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  9. Cancer stem cell hypotheses: Impact on modern molecular

    Indian Academy of Sciences (India)

    basis for the so-called cancer stem cell (CSC) hypotheses. The first exact proof of CSC ... or less equal ability for tumour regeneration and repopulation. (Nowell 1976 .... Also, there are reports that the 'stemness' (stem-like properties) of brain.

  10. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.

    Science.gov (United States)

    Liu, Yung-Chiang; Lee, I-Chi; Chen, Pin-Yuan

    2018-05-01

    Glioblastoma (GBM) is the most malignant primary brain tumor and contains tumorigenic cancer stem cells (CSCs), which support the progression of tumor growth. The selection of CSCs and facilitation of the brain tumor niches may assist the development of novel therapeutics for GBM. Herein, hydrogel materials composed of agarose and hydroxypropyl methyl cellulose (HMC) in different concentrations were established and compared to emulate brain tumor niches and CSC microenvironments within a label-free system. Human GBM cell line, U-87 MG, was cultured on a series of HMC-agarose based culture system. Cell aggregation and spheroids formation were investigated after 4 days of culture, and 2.5% HMC-agarose based culture system demonstrated the largest spheroids number and size. Moreover, CD133 marker expression of GBM cells after 6 days of culture in 2.5% HMC-agarose based culture system was 60%, relatively higher than the control group at only 15%. Additionally, cells on 2.5% HMC-agarose based culture system show the highest chemoresistance, even at the high dose of 500 µM temozolomide for 72 h, the live cell ratio was still > 80%. Furthermore, the results also indicate that the expression of ABCG2 gene was up-regulated after culture in 2.5% HMC-agarose based culture system. Therefore, our results demonstrated that biomimetic brain tumor microenvironment may regulate GBM cells towards the CSC phenotype and expression of CSC characteristics. The microenvironment selection and spheroids formation in HMC-agarose based culture system may provide a label-free CSC selection strategy and drug testing model for future biomedical applications.

  11. Posterior brain in fetuses with open spina bifida at 11 to 13 weeks.

    Science.gov (United States)

    Lachmann, Robert; Chaoui, Rabih; Moratalla, Jose; Picciarelli, Gemma; Nicolaides, Kypros H

    2011-01-01

    To measure the changes in the posterior fossa in first-trimester fetuses with open spina bifida (OSB). The brain stem diameter and brain stem to occipital bone (BSOB) diameter were measured in stored images of the mid-sagittal view of the fetal face at 11(+0) to 13(+6) weeks from 30 fetuses with OSB and 1000 normal controls. In the control group, the brain stem and BSOB diameter increased significantly with crown-rump length (CRL) and the brain stem to BSOB ratio decreased. In the spina bifida group, the brain stem diameter was above the 95th percentile of the control group in 29 (96.7%) cases, the BSOB diameter was below the 5th percentile in 26 (86.7%) and the brain stem to BSOB ratio was above the 95th percentile in all cases. At 11 to 13 weeks the majority of fetuses with OSB have measurable abnormalities in the posterior brain.

  12. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    Science.gov (United States)

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  13. Value of CSF gating for T2-weighted images of the temporal lobes and brain stem

    International Nuclear Information System (INIS)

    Enzmann, D.R.; O'Donohue, J.; Griffin, C.; Rubin, J.B.; Drace, J.; Wright, A.

    1987-01-01

    Ungated and CSF-gated long TR, long TE MR images of the temporal lobes, basal ganglia, and brain stem in health and disease were quantitatively compared. Twenty-five pair of images were evaluated for the following three parameters: signal-to-noise ratio (S/N), object contrast, and resolving power. Ungated sequences were performed in the same fashion as gated sequences for TR (TR = 2,000 msec, TE = 80 msec for ungated sequences; TR = 1,500-1,800 msec, TE = 80 msec for CSF-gated sequences). In both normal and pathologic brain tissue, the CSF-gated image was superior to the ungated image in object contrast and resolving power and equivalent in S/N. The major benefit of CSF gating was elimination of phase shift images arising from the basal cisterns and the third ventricle

  14. Exophytic pilocytic astrocytoma of the brain stem in an adult with encasement of the caudal cranial nerve complex (IX-XII): presurgical anatomical neuroimaging using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yousry, Indra; Yousry, Tarek A. [Department of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich (Germany); Muacevic, Alexander; Olteanu-Nerbe, Vlad [Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians University, Munich (Germany); Naidich, Thomas P. [Department of Radiology, Section of Neuroradiology, Mount Sinai Hospital, New York (United States)

    2004-07-01

    We describe a rare case of adult pilocytic astrocytoma in which exophytic growth from the brain stem presented as a right cerebellopontine angle mass. An initial MRI examination using T2- and T1-weighted images without and with contrast suggested the diagnosis of schwannoma. Subsequent use of 3D CISS (three-dimensional constructive interference in steady state) and T1-weighted contrast-enhanced 3D MP-RAGE (three-dimensional magnetization prepared rapid acquisition gradient echo) sequences led to the diagnosis of an exophytic brain stem tumor, documented the precise relationships of the tumor to cranial nerve VIII, revealed encasement of cranial nerves IX-XII (later confirmed intraoperatively), and provided the proper basis for planning surgical management. (orig.)

  15. Exophytic pilocytic astrocytoma of the brain stem in an adult with encasement of the caudal cranial nerve complex (IX-XII): presurgical anatomical neuroimaging using MRI

    International Nuclear Information System (INIS)

    Yousry, Indra; Yousry, Tarek A.; Muacevic, Alexander; Olteanu-Nerbe, Vlad; Naidich, Thomas P.

    2004-01-01

    We describe a rare case of adult pilocytic astrocytoma in which exophytic growth from the brain stem presented as a right cerebellopontine angle mass. An initial MRI examination using T2- and T1-weighted images without and with contrast suggested the diagnosis of schwannoma. Subsequent use of 3D CISS (three-dimensional constructive interference in steady state) and T1-weighted contrast-enhanced 3D MP-RAGE (three-dimensional magnetization prepared rapid acquisition gradient echo) sequences led to the diagnosis of an exophytic brain stem tumor, documented the precise relationships of the tumor to cranial nerve VIII, revealed encasement of cranial nerves IX-XII (later confirmed intraoperatively), and provided the proper basis for planning surgical management. (orig.)

  16. When stem cells grow old: phenotypes and mechanisms of stem cell aging

    Science.gov (United States)

    Schultz, Michael B.; Sinclair, David A.

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  17. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483-2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization......-stimulus orthodromic activation, using an electrode placed in the dorsomedial slice near the nucleus tractus solitarius, evoked single excitatory postsynaptic potentials (EPSPs) or short trains of EPSPs (500 ms to 1 s). However, tetanic stimulation (5 pulses, 10 Hz) induced voltage-dependent afterdepolarizations...

  18. Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury.

    Science.gov (United States)

    Llorens-Bobadilla, Enric; Zhao, Sheng; Baser, Avni; Saiz-Castro, Gonzalo; Zwadlo, Klara; Martin-Villalba, Ana

    2015-09-03

    Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effect of Mobile Phone-Induced Electromagnetic Field on Brain Hemodynamics and Human Stem Cell Functioning: Possible Mechanistic Link to Cancer Risk and Early Diagnostic Value of Electronphotonic Imaging.

    Science.gov (United States)

    Bhargav, Hemant; Srinivasan, T M; Varambally, S; Gangadhar, B N; Koka, Prasad

    2015-01-01

    The mobile phones (MP) are low power radio devices which work on electromagnetic fields (EMFs), in the frequency range of 900-1800 MHz. Exposure to MPEMFs may affect brain physiology and lead to various health hazards including brain tumors. Earlier studies with positron emission tomography (PET) have found alterations in cerebral blood flow (CBF) after acute exposure to MPEMFs. It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemia and tumors, including brain tumors such as gliomas. Both significant misbalance in DSB repair and severe stress response have been triggered by MPEMFs and EMFs from cell towers. It has been shown that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells. This may be important for cancer risk assessment and indicates that stem cells are the most relevant cellular model for validating safe mobile communication signals. Recently developed technology for recording the human bio-electromagnetic (BEM) field using Electron photonic Imaging (EPI) or Gas Discharge Visualisation (GDV) technique provides useful information about the human BEM. Studies have recorded acute effects of Mobile Phone Electromagnetic Fields (MPEMFs) using EPI and found quantifiable effects on human BEM field. Present manuscript reviews evidences of altered brain physiology and stem cell functioning due to mobile phone/cell tower radiations, its association with increased cancer risk and explores early diagnostic value of EPI imaging in detecting EMF induced changes on human BEM.

  20. Neurogenesis and brain injury: managing a renewable resource for repair

    OpenAIRE

    Hallbergson, Anna F.; Gnatenco, Carmen; Peterson, Daniel A.

    2003-01-01

    The brain shows limited ability to repair itself, but neurogenesis in certain areas of the adult brain suggests that neural stem cells may be used for structural brain repair. It will be necessary to understand how neurogenesis in the adult brain is regulated to develop strategies that harness neural stem cells for therapeutic use.

  1. Acute respiratory failure in 3 children with juvenile myelomonocytic leukemia

    DEFF Research Database (Denmark)

    Gustafsson, Britt; Hellebostad, Marit; Ifversen, Marianne

    2011-01-01

    Juvenile myelomonocytic leukemia is a rare hematopoietic stem cell disease in children with features of both myelodysplasia and myeloproliferation. Extramedullary involvement has been reported and pulmonary involvement secondary to leukemic infiltration is an initial manifestation, which may resu...... in acute respiratory failure....

  2. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma

    International Nuclear Information System (INIS)

    Evers, Patrick; Lee, Percy P; DeMarco, John; Agazaryan, Nzhde; Sayre, James W; Selch, Michael; Pajonk, Frank

    2010-01-01

    Glioblastoma is the most common brain tumor in adults. The mechanisms leading to glioblastoma are not well understood but animal studies support that inactivation of tumor suppressor genes in neural stem cells (NSC) is required and sufficient to induce glial cancers. This suggests that the NSC niches in the brain may harbor cancer stem cells (CSCs), Thus providing novel therapy targets. We hypothesize that higher radiation doses to these NSC niches improve patient survival by eradicating CSCs. 55 adult patients with Grade 3 or Grade 4 glial cancer treated with radiotherapy at UCLA between February of 2003 and May of 2009 were included in this retrospective study. Using radiation planning software and patient radiological records, the SVZ and SGL were reconstructed for each of these patients and dosimetry data for these structures was calculated. Using Kaplan-Meier analysis we show that patients whose bilateral subventricular zone (SVZ) received greater than the median SVZ dose (= 43 Gy) had a significant improvement in progression-free survival if compared to patients who received less than the median dose (15.0 vs 7.2 months PFS; P = 0.028). Furthermore, a mean dose >43 Gy to the bilateral SVZ yielded a hazard ratio of 0.73 (P = 0.019). Importantly, similarly analyzing total prescription dose failed to illustrate a statistically significant impact. Our study leads us to hypothesize that in glioma targeted radiotherapy of the stem cell niches in the adult brain could yield significant benefits over radiotherapy of the primary tumor mass alone and that damage caused by smaller fractions of radiation maybe less efficiently detected by the DNA repair mechanisms in CSCs

  3. Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R; Klein, Isabelle; Mal, Hervé; Courbage, Maurice; Mangin, Laurence

    2016-08-01

    Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736-2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. When stem cells grow old: phenotypes and mechanisms of stem cell aging.

    Science.gov (United States)

    Schultz, Michael B; Sinclair, David A

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. © 2016. Published by The Company of Biologists Ltd.

  5. Respiratory mechanics in brain injury: A review

    OpenAIRE

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-01-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case ...

  6. Bilateral cerebellar and brain stem infarction resulting from vertebral artery injury following cervical trauma without radiographic damage of the spinal column: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Mimata, Yoshikuni; Sato, Kotaro; Suzuki, Yoshiaki [Iwate Prefectural Chubu Hospital, Department of Orthopaedic Surgery, Kitakami (Japan); Murakami, Hideki [Iwate Medical University, Department of Orthopaedic Surgery, School of Medicine, Morioka (Japan)

    2014-01-15

    Vertebral artery injury can be a complication of cervical spine injury. Although most cases are asymptomatic, the rare case progresses to severe neurological impairment and fatal outcomes. We experienced a case of bilateral cerebellar and brain stem infarction with fatal outcome resulting from vertebral artery injury associated with cervical spine trauma. A 69-year-old male was admitted to our hospital because of tetraplegia after falling down the stairs and hitting his head on the floor. Marked bony damage of the cervical spine was not apparent on radiographs and CT scans, so the injury was initially considered to be a cervical cord injury without bony damage. However, an intensity change in the intervertebral disc at C5/C6, and a ventral epidural hematoma were observed on MRI. A CT angiogram of the neck showed the right vertebral artery was completely occluded at the C4 level of the spine. Forty-eight hours after injury, the patient lapsed into drowsy consciousness. The cranial CT scan showed a massive low-density area in the bilateral cerebellar hemispheres and brain stem. Anticoagulation was initiated after a diagnosis of the right vertebral artery injury, but the patient developed bilateral cerebellar and brain stem infarction. The patient's brain herniation progressed and the patient died 52 h after injury. We considered that not only anticoagulation but also treatment for thrombosis would have been needed to prevent cranial embolism. We fully realize that early and appropriate treatment are essential to improve the treatment results, and constructing a medical system with a team of orthopedists, radiologists, and neurosurgeons is also very important. (orig.)

  7. BRAIN DEATH DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Calixto Machado

    2009-10-01

    Full Text Available Brain death (BD diagnosis should be established based on the following set of principles, i.e. excluding major confusing factors, identifying the cause of coma, determining irreversibility, and precisely testing brainstem reflexes at all levels of the brainstem. Nonetheless, most criteria for BD diagnosis do not mention that this is not the only way of diagnosing death. The Cuban Commission for the Determination of Death has emphasized the aforesaid three possible situations for diagnosing death: a outside intensive care environment (without life support physicians apply the cardio-circulatory and respiratory criteria; b in forensic medicine circumstances, physicians utilize cadaveric signs (they do not even need a stethoscope; c in the intensive care environment (with life support when cardiorespiratory arrest occurs physicians utilize the cardio-circulatory and respiratory criteria. This methodology of diagnosing death, based on finding any of the death signs, is not related to the concept that there are different types of death. The irreversible loss of cardio-circulatory and respiratory functions can only cause death when ischemia and anoxia are prolonged enough to produce an irreversible destruction of the brain. The sign of irreversible loss of brain functions, that is to say BD diagnosis, is fully reviewed.

  8. Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.

    Science.gov (United States)

    Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V

    2018-02-27

    Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.

  9. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  10. Adult neural stem cells: The promise of the future

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2007-01-01

    Full Text Available Philippe TaupinNational Neuroscience Institute, National University of SingaporeAbstract: Stem cells are self-renewing undifferentiated cells that give rise to multiple types of specialized cells of the body. In the adult, stem cells are multipotents and contribute to homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. With the recent evidences that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS, the adult brain has the potential to regenerate and may be amenable to repair. The function(s of NSCs in the adult CNS remains the source of intense research and debates. The promise of the future of adult NSCs is to redefine the functioning and physiopathology of the CNS, as well as to treat a broad range of CNS diseases and injuries.Keywords: neurogenesis, transdifferentiation, plasticity, cellular therapy

  11. Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation is associated with cell-type-dependent splicing of mtAspRS mRNA

    NARCIS (Netherlands)

    van Berge, Laura; Dooves, Stephanie; van Berkel, Carola G. M.; Polder, Emiel; van der Knaap, Marjo S.; Scheper, Gert C.

    2012-01-01

    LBSL (leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation) is an autosomal recessive white matter disorder with slowly progressive cerebellar ataxia, spasticity and dorsal column dysfunction. Magnetic resonance imaging shows characteristic abnormalities in the

  12. Ochratoxin A at nanomolar concentration perturbs the homeostasis of neural stem cells in highly differentiated but not in immature three-dimensional brain cell cultures.

    Science.gov (United States)

    Zurich, Marie-Gabrielle; Honegger, Paul

    2011-08-28

    Ochratoxin A (OTA), a fungal contaminant of basic food commodities, is known to be highly cytotoxic, but the pathways underlying adverse effects at subcytotoxic concentrations remain to be elucidated. Recent reports indicate that OTA affects cell cycle regulation. Therefore, 3D brain cell cultures were used to study OTA effects on mitotically active neural stem/progenitor cells, comparing highly differentiated cultures with their immature counterparts. Changes in the rate of DNA synthesis were related to early changes in the mRNA expression of neural stem/progenitor cell markers. OTA at 10nM, a concentration below the cytotoxic level, was ineffective in immature cultures, whereas in mature cultures it significantly decreased the rate of DNA synthesis together with the mRNA expression of key transcriptional regulators such as Sox2, Mash1, Hes5, and Gli1; the cell cycle activator cyclin D2; the phenotypic markers nestin, doublecortin, and PDGFRα. These effects were largely prevented by Sonic hedgehog (Shh) peptide (500ngml(-1)) administration, indicating that OTA impaired the Shh pathway and the Sox2 regulatory transcription factor critical for stem cell self-renewal. Similar adverse effects of OTA in vivo might perturb the regulation of stem cell proliferation in the adult brain and in other organs exhibiting homeostatic and/or regenerative cell proliferation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Cancer Stem Cells – New Approach to Cancerogenensis and Treatment

    Directory of Open Access Journals (Sweden)

    Zuzana Mačingová

    2008-01-01

    Full Text Available Recently, there is an increasing evidence supporting the theory of cancer stem cells not only in leukemia but also in solid cancer. To date, the existence of cancer stem cells has been proven in acute and chronic myeloid leukemia, in breast cancer, in brain tumors, in lung cancer and gastrointestinal tumors. This review is focusing on the recent discovery of stem cells in leukemia, human brain tumors and breast cancer. A small population of cells in the tumor (less than 1 % shows the potential to give rise to the tumor and its growth. These cells have a substantial characteristic of stem cells – ability for self-renewal without loss of proliferation capacity with each cell division. Furthermore they are immortal, rather resistant to treatment and express typical markers of stem cells. The origin of these resident cancer stem cells is not clear. Whether the cancer stem cells originate from normal stem cells in consequence of genetic and epigenetic changes and/or redifferentiation from somatic tumor cells to the stem-like cells remains to be investigated. We propose the idea of the relation between normal tissue stem cells and cancer stem cells and their populations – progenitor cells. Based on this we highlight one of the major characteristic of stem cell – plasticity, which is equally important in the physiological regeneration process as well as carcinogenesis. Furthermore, we consider the microenvironment as a limiting factor for tumor genesis in AML, breast cancer and brain tumors. Thus the biological properties of cancer stem cells are just beginning to be revealed, the continuation of these studies should lead to the development of cancer stem cells target therapies for cancer treatment.

  14. Effects of sevoflurane on adenylate cyclase and phosphodiesterases activity in brain of rats

    International Nuclear Information System (INIS)

    Feng Changdong; Yang Jianping; Dai Tijun

    2009-01-01

    Objective: To investigate the effects of sevoflurane on c adenylate cyclase (AC) and phosphodiesterases (PDE) activity in the cerebrocortex, hippocampus and brain stem of rats, and to examine the role of cAMP in sevoflurane anesthesia. Methods: Fourty SD rats were delaminately designed and allocated randomly to 5 groups inhaling 1.5% sevoflurane i.e., no recovery (recovery group, n=8) and one hour after righting reflexrecovery (aware group, n=8). The brain tissues were rapidly dissected into cerebrocortex and hippocampus and brain stem.Then the adenylate cyclase and phosphodiesterases activity were assessed. Results: So far as the activity of AC is concerned, compared with the control group, the activity of AC in the cerebrocortex, hippocampus and brain stem brain stem of induction group and anesthesia group, the cerebrocortex, and hippocampus in the recovery group were significantly increased; compared with those in the anesthesia group, the activity of AC in the cerebrocortex, hippocampus and brain stem of aware group were significantly decreased (P<0.05); For the activity of PDE, compared with the control group, the activity of PDE in the cerebrocortex, hippocampus and brain stem in the induction group and anesthesia group was significantly decreased, compared with that in anesthesia group, the activity of PDE in the cerebrocortex, hippocampus and brain stem of recovery group and aware group was significantly increased (P<0.05). Conclusion: cAMP may play an important role in sevoflurane anesthesia. (authors)

  15. MRI patterns in prolonged low response states following traumatic brain injury in children and adolescents.

    Science.gov (United States)

    Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A

    2007-01-01

    To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.

  16. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...... offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models...

  17. Critical appraisal of cerebral blood flow measured from brain stem and cerebellar regions after 133 Xe inhalation in humans

    International Nuclear Information System (INIS)

    Juge, O.; Meyer, J.S.; Sakai, F.; Yamaguchi, F.; Yamamoto, M.; Shaw, T.

    1979-01-01

    Validity of regional blood flow (rCBF) measurements recorded over the human posterior fossa after 133Xe inhalation was tested. Recording of counts from both brain stem and cerebellum (BSC) was reproducible and contamination by counts derived from surrounding anatomical structures was low and no greater than that found over hemispheres. BSC flow values showed significant correlation with the state of awareness as judged by clinical and EEG evaluation

  18. Aging differentially affects male and female neural stem cell neurogenic properties

    Directory of Open Access Journals (Sweden)

    Jay Waldron

    2010-09-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Montreal, Quebec, CanadaPurpose: Neural stem cell transplantation as a brain repair strategy is a very promising technology. However, despite many attempts, the clinical success remains very deceiving. Despite clear evidence that sexual dimorphism rules many aspects of human biology, the occurrence of a sex difference in neural stem cell biology is largely understudied. Herein, we propose to determine whether gender is a dimension that drives the fate of neural stem cells through aging. Should it occur, we believe that neural stem cell sexual dimorphism and its variation during aging should be taken into account to refine clinical approaches of brain repair strategies.Methods: Neural stem cells were isolated from the subventricular zone of three- and 20-month-old male and female Long-Evans rats. Expression of the estrogen receptors, ERα and ERβ, progesterone receptor, androgen receptor, and glucocorticoid receptor was analyzed and quantified by Western blotting on undifferentiated neural stem cells. A second set of neural stem cells was treated with retinoic acid to trigger differentiation, and the expression of neuronal, astroglial, and oligodendroglial markers was determined using Western blotting.Conclusion: We provided in vitro evidence that the fate of neural stem cells is affected by sex and aging. Indeed, young male neural stem cells mainly expressed markers of neuronal and oligodendroglial fate, whereas young female neural stem cells underwent differentiation towards an astroglial phenotype. Aging resulted in a lessened capacity to express neuron and astrocyte markers. Undifferentiated neural stem cells displayed sexual dimorphism in the expression of steroid receptors, in particular ERα and ERβ, and the expression level of several steroid receptors increased

  19. Respiratory insufficiency correlated strongly with mortality of rodents infected with West Nile virus.

    Directory of Open Access Journals (Sweden)

    John D Morrey

    Full Text Available West Nile virus (WNV disease can be fatal for high-risk patients. Since WNV or its antigens have been identified in multiple anatomical locations of the central nervous system of persons or rodent models, one cannot know where to investigate the actual mechanism of mortality without careful studies in animal models. In this study, depressed respiratory functions measured by plethysmography correlated strongly with mortality. This respiratory distress, as well as reduced oxygen saturation, occurred beginning as early as 4 days before mortality. Affected medullary respiratory control cells may have contributed to the animals' respiratory insufficiency, because WNV antigen staining was present in neurons located in the ventrolateral medulla. Starvation or dehydration would be irrelevant in people, but could cause death in rodents due to lethargy or loss of appetite. Animal experiments were performed to exclude this possibility. Plasma ketones were increased in moribund infected hamsters, but late-stage starvation markers were not apparent. Moreover, daily subcutaneous administration of 5% dextrose in physiological saline solution did not improve survival or other disease signs. Therefore, infected hamsters did not die from starvation or dehydration. No cerebral edema was apparent in WNV- or sham-infected hamsters as determined by comparing wet-to-total weight ratios of brains, or by evaluating blood-brain-barrier permeability using Evans blue dye penetration into brains. Limited vasculitis was present in the right atrium of the heart of infected hamsters, but abnormal electrocardiograms for several days leading up to mortality did not occur. Since respiratory insufficiency was strongly correlated with mortality more than any other pathological parameter, it is the likely cause of death in rodents. These animal data and a poor prognosis for persons with respiratory insufficiency support the hypothesis that neurological lesions affecting respiratory

  20. STEM CELL RESEARCH-CONCEPT AND CONTROVERSIES

    African Journals Online (AJOL)

    Dr. E. P. Gharoro

    cells, heart cells, brain cells, etc.). Some researchers regard them as offering the greatest potential for the .... anaemia, heart damage, corneal damage, etc. To be useful for transplant purposes, stem cells must ... activity in the brain was demonstrated contradicting caja's “no new neurons” dogma. However, research into.

  1. Recent Experiences in the Respiratory Unit of the Johannesburg ...

    African Journals Online (AJOL)

    A. W. W. VAN AS, M.B., B.CH. (RAND) ... females, were referred to the Respiratory Unit in 5 months. (It must be ... of a lymphoma. ... patient who had had a renal transplant; she recovered fully. ... tube to slip down the right main-stem bronchus and obstruct the left ... the rate of spontaneous depolarization of automatic cells is.

  2. Diverse and Tissue Specific Mitochondrial Respiratory Response in A Mouse Model of Sepsis-Induced Multiple Organ Failure

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hara, Naomi; Morata, Saori

    2016-01-01

    control ratio was also significantly increased. Maximal Protonophore-induced respiratory (uncoupled) capacity was similar between the two treatment groups.The present study suggests a diverse and tissue specific mitochondrial respiratory response to sepsis. The brain displayed an early impaired...... C57BL/6 mice were analyzed at either 6 hours or 24 hours. ROS-production was simultaneously measured in brain samples using fluorometry.Septic brain tissue exhibited an early increased uncoupling of respiration. Temporal changes between the two time points were diminutive and no difference in ROS...

  3. Systemic Injection of Neural Stem/progenitor Cells in Mice With Chronic EAE

    OpenAIRE

    Donegà, Matteo; Giusto, Elena; Cossetti, Chiara; Schaeffer, Julia; Pluchino, Stefano

    2014-01-01

    Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several pre clinical models of neurological diseases.

  4. Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells.

    Science.gov (United States)

    Al-Ahmad, Abraham J

    2017-10-01

    Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells. Copyright © 2017 the American Physiological Society.

  5. Heterogeneity of brain blood flow and permeability during acute hypertension

    International Nuclear Information System (INIS)

    Baumbach, G.L.; Heistad, D.D.

    1985-01-01

    The purpose of this study was to examine regional autoregulation of blood flow in the brain during acute hypertension. In anesthetized cats severe hypertension increased blood flow more in cerebrum (159%) and cerebellum (106%) than brain stem (58%). In contrast to the heterogeneous autoregulatory response, hypocapnia produced uniform vasoconstriction in the brain. The authors also compared vasodilatation during severe hypertension with vasodilatation during hypercapnia. During hypercapnia, blood flow increased as much in brain stem, as in cerebrum and cerebellum. Thus, regional differences in autoregulation appear to be specific for autoregulatory stimulus and are not secondary to nonspecific differences in vasoconstrictor or vasodilator capacity. To determine whether the blood-brain barrier is more susceptible to hypertensive disruption in regions with less effective autoregulation, permeability of the barrier was quantitated with 125 I-albumin. Severe hypertension produced disruption of the barrier in cerebrum but not in brain stem. Thus, there are parallel differences in effectiveness of autoregulation and susceptibility to disruption of the blood-brain barrier in different regions of the brain

  6. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells.

    Science.gov (United States)

    Colamaio, Marianna; Tosti, Nadia; Puca, Francesca; Mari, Alessia; Gattordo, Rosaria; Kuzay, Yalçın; Federico, Antonella; Pepe, Anna; Sarnataro, Daniela; Ragozzino, Elvira; Raia, Maddalena; Hirata, Hidenari; Gemei, Marica; Mimori, Koshi; Del Vecchio, Luigi; Battista, Sabrina; Fusco, Alfredo

    2016-10-01

    Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.

  7. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation.

    Science.gov (United States)

    Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae

    2017-01-01

    Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established.

  8. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke.

    Science.gov (United States)

    Wei, Ling; Wei, Zheng Z; Jiang, Michael Qize; Mohamad, Osama; Yu, Shan Ping

    2017-10-01

    One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Brain death and related issues

    International Nuclear Information System (INIS)

    Akhtar, M.; Mushtaq, S.; Jamil, K.; Ahmed, S.

    2003-01-01

    Concerns about the erroneous diagnosis of death and premature burial have been expressed from times immemorial. Patients with brain stem death have absolutely no chance of recovery. Brain death is considered at par with death in most of the countries. General public in most parts of the world shows reluctance to accept this concept due to different social, cultural and religious backgrounds and state of literacy and awareness. The criteria for the diagnosis of brain death have been established which include certain pre-conditions, exclusions and tests of the brain stem function. These criteria are universally accepted. The criteria in children are somewhat different from the adults. The subject is intimately related with organ transplantation. If the patients is registered as organ donor or the family consents, organs can be harvested from brain dead patients for transplantation. Pakistan is amongst the few countries where no legislation exists to accept brain death as being at par with death of an individual, and to facilitate and regulate, cadaveric organ donation and transplantation. (author)

  10. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung, E-mail: keejung@skku.edu

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.

  11. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    International Nuclear Information System (INIS)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung

    2015-01-01

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics

  12. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  13. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  14. Effectiveness of mesenchymal stems cells cultured by hanging drop vs. conventional culturing on the repair of hypoxic-ischemic-damaged mouse brains, measured by stemness gene expression

    Directory of Open Access Journals (Sweden)

    Lou Yongli

    2016-01-01

    Full Text Available In this study, we investigated the therapeutic effects of Human Mesenchymal Stem Cells (hMSCs cultured by hanging drop and conventional culturing methods on cerebellar repair in hypoxic-ischemic (HI brain injured mice. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR was used to analyze the expression levels of three stemness genes, Oct4, Sox2 and Nanog, and the migration related gene CXCR4. MSC prepared by hanging drop or conventional techniques were administered intranasally to nine day old mice, and analyzed by MRI at day 28. Results indicate that the MSCs, especially the hanging drop cultured MSCs, significantly improved the mice’s cerebellar damage repair. MSCs derived from the hanging drop culture were smaller than those from the conventional culture. The gene expression levels were significantly increased for the MSCs derived from the hanging drop culture. The mechanism might relate to the fact that the hanging drop cultured MSCs can be kept in an undifferentiated state, resulting in its higher expression level of migration receptor of CXCR4.

  15. Universal Mask Usage for Reduction of Respiratory Viral Infections After Stem Cell Transplant: A Prospective Trial.

    Science.gov (United States)

    Sung, Anthony D; Sung, Julia A M; Thomas, Samantha; Hyslop, Terry; Gasparetto, Cristina; Long, Gwynn; Rizzieri, David; Sullivan, Keith M; Corbet, Kelly; Broadwater, Gloria; Chao, Nelson J; Horwitz, Mitchell E

    2016-10-15

    Respiratory viral infections (RVIs) are frequent complications of hematopoietic stem cell transplant (HSCT). Surgical masks are a simple and inexpensive intervention that may reduce nosocomial spread. In this prospective single-center study, we instituted a universal surgical mask policy requiring all individuals with direct contact with HSCT patients to wear a surgical mask, regardless of symptoms or season. The primary endpoint was the incidence of RVIs in the mask period (2010-2014) compared with the premask period (2003-2009). RVIs decreased from 10.3% (95/920 patients) in the premask period to 4.4% (40/911) in the mask period (P mask group compared with the premask group (0.19-0.85, P = .02). In contrast, no decrease was observed during this same period in an adjacent hematologic malignancy unit, which followed the same infection control practices except for the mask policy. The majority of this decrease was in parainfluenza virus 3 (PIV3) (8.3% to 2.2%, P mask is associated with a reduction in RVIs, particularly PIV3, during the most vulnerable period following HSCT. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4

    Directory of Open Access Journals (Sweden)

    Leprince Pierre

    2004-09-01

    Full Text Available Abstract Background Spontaneous repair is limited after CNS injury or degeneration because neurogenesis and axonal regrowth rarely occur in the adult brain. As a result, cell transplantation has raised much interest as potential treatment for patients with CNS lesions. Several types of cells have been considered as candidates for such cell transplantation and replacement therapies. Foetal brain tissue has already been shown to have significant effects in patients with Parkinson's disease. Clinical use of the foetal brain tissue is, however, limited by ethical and technical problems as it requires high numbers of grafted foetal cells and immunosuppression. Alternatively, several reports suggested that mesenchymal stem cells, isolated from adult bone marrow, are multipotent cells and could be used in autograft approach for replacement therapies. Results In this study, we addressed the question of the possible influence of mesenchymal stem cells on neural stem cell fate. We have previously reported that adult rat mesenchymal stem cells are able to express nestin in defined culture conditions (in the absence of serum and after 25 cell population doublings and we report here that nestin-positive (but not nestin-negative mesenchymal stem cells are able to favour the astroglial lineage in neural progenitors and stem cells cultivated from embryonic striatum. The increase of the number of GFAP-positive cells is associated with a significant decrease of the number of Tuj1- and O4-positive cells. Using quantitative RT-PCR, we demonstrate that mesenchymal stem cells express LIF, CNTF, BMP2 and BMP4 mRNAs, four cytokines known to play a role in astroglial fate decision. In this model, BMP4 is responsible for the astroglial stimulation and oligodendroglial inhibition, as 1 this cytokine is present in a biologically-active form only in nestin-positive mesenchymal stem cells conditioned medium and 2 anti-BMP4 antibodies inhibit the nestin-positive mesenchymal

  17. Characteristics of MR imaging of brain stem glioma for the treatment of combination chemotherapy with interferon-. beta. and ACNU in addition to radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Toshihiko; Yoshida, Jun; Sugita, Kenichiro (Nagoya Univ. (Japan). Faculty of Medicine)

    1990-08-01

    In an attempt to improve the prognosis of brain stem glioma patients, a new treatment using a combination of chemotherapy of interferon-{beta}, ACNU, (1) - (4 - Amino - 2 - methyl - 5 - primidinyl) - methyl - 3 - (2-chloroethyl) - 3 -nitrosourea hydrochloride, and radiation, so called IAR therapy, was utilized on 19 patients who were diagnosed through CT and/or MRI findings as having pontine glioma. Eight of these patients were given IAR therapy at four week intervals and the changes were checked on MRI. The MRI response was classified into 3 types, that is, type 1: diffuse low intensity lesion on T{sub 1} WI changing to isodensity and tumor mass disappearing rapidly; type 2: located high intensity lesion in low intensity on T{sub 1} WI once appearing on decreasing the whole tumor size, then this lesion disappearing gradually; type 3: spotted low and/or iso mosaic intensity lesion appearing on and after treatment, with little change in tumor mass. The type 1 patients showed rapid improvement of neurological deficits and good recovery was obtained. Type 2 patients also recovered well but at recurrent periods tended to show disseminated sings intraspinally. The type 3 patients did not recover from neurological deficits well. But there were no significant differences of prognosis among these 3 types. Furthermore, MRI showed more precise data than CT scan on brain stem lesions and seemed to be more useful for diagnosis and follow-up treatment than CT scan. Though it is suggested that IAR combination therapy should be respected as the first choice for the treatment of brain stem glioma, it is strongly requested that some maintenance therapy is established for continuing the reduction time after induction of complete or partial remission with IAR therapy. (author).

  18. Stem cells: Concepts and prospects

    Indian Academy of Sciences (India)

    development exemplified by murine experiments motivated the ... from specific regions of the brain, cardiac stem cells from atrial ..... have also been shown to integrate and differentiate .... to vascular network structures in three dimensional.

  19. Stem Cells in Regenerative Medicine

    OpenAIRE

    Sykova, Eva; Forostyak, Serhiy

    2013-01-01

    Background: A number of cardiovascular, neurological, musculoskeletal and other diseases have a limited capacity for repair and only a modest progress has been made in treatment of brain diseases. The discovery of stem cells has opened new possibilities for the treatment of these maladies, and cell therapy now stands at the cutting-edge of modern regenerative medicine and tissue engineering. Experimental data and the first clinical trials employing stem cells have shown their broad therapeuti...

  20. Respiratory arrest after retrobulbar anaesthesia | Ashaye | West ...

    African Journals Online (AJOL)

    This report highlights this rare but fatal complication of suspected brain stem anaesthesia after retrobulbar anaesthesia. Retrobulbar and peribulbar blocks should be performed in safe situations where individuals trained in airway maintenance and ventilatory support should be immediately available. Keywords: Cataract ...

  1. Mesenchymal Stem Cells of Dental Origin-Their Potential for Antiinflammatory and Regenerative Actions in Brain and Gut Damage.

    Science.gov (United States)

    Földes, Anna; Kádár, Kristóf; Kerémi, Beáta; Zsembery, Ákos; Gyires, Klára; S Zádori, Zoltán; Varga, Gábor

    2016-01-01

    Alzheimer's disease, Parkinson's disease, traumatic brain and spinal cord injury and neuroinflammatory multiple sclerosis are diverse disorders of the central nervous system. However, they are all characterized by various levels of inappropriate inflammatory/immune response along with tissue destruction. In the gastrointestinal system, inflammatory bowel disease (IBD) is also a consequence of tissue destruction resulting from an uncontrolled inflammation. Interestingly, there are many similarities in the immunopathomechanisms of these CNS disorders and the various forms of IBD. Since it is very hard or impossible to cure them by conventional manner, novel therapeutic approaches such as the use of mesenchymal stem cells, are needed. Mesenchymal stem cells have already been isolated from various tissues including the dental pulp and periodontal ligament. Such cells possess transdifferentiating capabilities for different tissue specific cells to serve as new building blocks for regeneration. But more importantly, they are also potent immunomodulators inhibiting proinflammatory processes and stimulating anti-inflammatory mechanisms. The present review was prepared to compare the immunopathomechanisms of the above mentioned neurodegenerative, neurotraumatic and neuroinflammatory diseases with IBD. Additionally, we considered the potential use of mesenchymal stem cells, especially those from dental origin to treat such disorders. We conceive that such efforts will yield considerable advance in treatment options for central and peripheral disorders related to inflammatory degeneration.

  2. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    Science.gov (United States)

    2015-11-01

    Montero-Menei, C.; Menei, P. Mesenchymal Stem Cells as Cellular Vehicles for Delivery of Nanoparticles to Brain Tumors. Biomaterials 2010, 31, 8393... Stem Cells : Considerations for Regenerative Medicine Approaches. Tissue Eng. Part B. Rev. 2010, 16, 159–168. 55. Ellem, S. J.; Taylor, R. a.; Furic, L...Award Number: W81XWH-13-1-0304 TITLE: Mesenchymal Stem Cell -Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs CONTRACTING

  3. The effect of electromagnetic radiation on the rat brain: an experimental study.

    Science.gov (United States)

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  4. Oestrogen influences on mitochondrial gene expression and respiratory chain activity in cortical and mesencephalic astrocytes.

    Science.gov (United States)

    Araújo, G W; Beyer, C; Arnold, S

    2008-07-01

    The regulation of mitochondrial energy metabolism plays an essential role in the central nervous system (CNS). Abnormalities of the mitochondrial respiratory chain often accompany neurodegenerative diseases. This makes mitochondria a perfect target for strategies of cellular protection against toxic compounds and pathological conditions. Steroid hormones, such as oestrogen, are well-known to fulfil a protective role in the brain during ischaemic and degenerative processes. Because astrocytes function as the major energy supplier in the CNS, we have analysed oestrogen effects on the mitochondrial respiratory chain of this cell type. In our studies, we applied semi- and quantitative polymerase chain reaction analysis of gene expression and polarographic measurements of the respiratory chain activity of mitochondria. We observed that structural and functional properties were regulated dependent on the oestrogen exposure time and the brain region, but independent of the nuclear oestrogen receptors. We could demonstrate that long-term oestrogen exposure increases the subunit gene expression of respiratory chain complexes and the mitochondrial DNA content, thereby indicating an up-regulation of the amount of mitochondria per cell together with an increase of mitochondrial energy production. This could represent an important indirect mechanism by which long-term oestrogen exposure protects neurones from cell death under neurotoxic conditions. On the other hand, we observed short-term effects of oestrogen on the activity of mitochondrial, proton-pumping respiratory chain complexes. In astrocytes from the cortex, respiratory chain activity was decreased, whereas it was increased in astrocytes from the mesencephalon. An increased production of reactive oxygen species would be the consequence of an increased respiratory chain activity in mesencephalic astrocytes. This could explain the different efficiencies of oestrogen-mediated short-term protection in distinct brain

  5. Respiratory guiding system for respiratory motion management in respiratory gated radiotherapy

    International Nuclear Information System (INIS)

    Kang, Seong Hee; Kim, Dong Su; Kim, Tae Ho; Suh, Tae Suk

    2013-01-01

    Respiratory guiding systems have been shown to improve the respiratory regularity. This, in turn, improves the efficiency of synchronized moving aperture radiation therapy, and it reduces the artifacts caused by irregular breathing in imaging techniques such as four-dimensional computed tomography (4D CT), which is used for treatment planning in RGRT. We have previously developed a respiratory guiding system that incorporates an individual-specific guiding waveform, which is easy to follow for each volunteer, to improve the respiratory regularity. The present study evaluates the application of this system to improve the respiratory regularity for respiratory-gated radiation therapy (RGRT). In this study, we evaluated the effectiveness of an in-house-developed respiratory guiding system incorporating an individual specific guiding waveform to improve the respiratory regularity for RGRT. Most volunteers showed significantly less residual motion at each phase during guided breathing owing to the improvement in respiratory regularity. Therefore, the respiratory guiding system can clearly reduce the residual, or respiratory, motion in each phase. From the result, the CTV and the PTV margins during RGRT can be reduced by using the respiratory guiding system, which reduces the residual motions, thus improving the accuracy of RGRT

  6. Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary.

    Science.gov (United States)

    Boros, Ákos; Albert, Mihály; Pankovics, Péter; Bíró, Hunor; Pesavento, Patricia A; Phan, Tung Gia; Delwart, Eric; Reuter, Gábor

    2017-12-01

    A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease.

  7. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  8. Causes of early neonatal respiratory distress in the former Venda - a ...

    African Journals Online (AJOL)

    respiratory distress in the newborn in Western Europe ... cell count. Positive clinical findings are an enlarged liver or spleen, skin petechiae or blisters, or a positive rapid plasma reagin (RPR) test. A positive maternal history features intrapartum fever above ..... Stem H. Elhs U. The low birth weight Af"can baby. Arch Dts Child ...

  9. Recovery function of the human brain stem auditory-evoked potential.

    Science.gov (United States)

    Kevanishvili, Z; Lagidze, Z

    1979-01-01

    Amplitude reduction and peak latency prolongation were observed in the human brain stem auditory-evoked potential (BEP) with preceding (conditioning) stimulation. At a conditioning interval (CI) of 5 ms the alteration of BEP was greater than at a CI of 10 ms. At a CI of 10 ms the amplitudes of some BEP components (e.g. waves I and II) were more decreased than those of others (e.g. wave V), while the peak latency prolongation did not show any obvious component selectivity. At a CI of 5 ms, the extent of the amplitude decrement of individual BEP components differed less, while the increase in the peak latencies of the later components was greater than that of the earlier components. The alterations of the parameters of the test BEPs at both CIs are ascribed to the desynchronization of intrinsic neural events. The differential amplitude reduction at a CI of 10 ms is explained by the different durations of neural firings determining various effects of desynchronization upon the amplitudes of individual BEP components. The decrease in the extent of the component selectivity and the preferential increase in the peak latencies of the later BEP components observed at a CI of 5 ms are explained by the intensification of the mechanism of the relative refractory period.

  10. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-06-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. Methods We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. Results Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III and glioblastoma multiforme (World Health Organization grade IV relative to non-neoplastic brain tissue (P erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969. Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811 proteins. Conclusion microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse

  11. Stem cells engineering for cell-based therapy.

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  12. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  13. Regional cerebral blood flow and CSF pressures during Cushing response induced by a supratentorial expanding mass

    International Nuclear Information System (INIS)

    Schrader, H.; Zwetnow, N.N.; Moerkrid, L.

    1985-01-01

    In order to delineate the critical blood flow pattern during the Cushing response in intracranial hypertension, regional cerebral blood flow was measured with radioactive microspheres in 12 anesthetized dogs at respiratory arrest caused either by expansion of an epidural supratentorial balloon or by cisternal infusion. Regional cerebrospinal fluid pressures were recorded and the local cerebral perfusion pressure calculated in various cerebrospinal compartments. In the 8 dogs of the balloon expansion group, the systemic arterial pressure was unmanipulated in 4, while it was kept at a constant low level (48 and 70 mm Hg) in 2 dogs and, in another 2 dogs, at a constant high level (150 and 160 mm Hg) induced by infusion of Aramine. At respiratory arrest, regional cerebral blood flow had a stereotyped pattern and was largely independent of the blood pressure level. In contrast, concomitant pressure gradients between the various cerebrospinal compartments varied markedly in the 3 animal groups increasing with higher arterial pressure. Flow decreased by 85-100% supratentorially and by 70-100% in the upper brain stem down to the level of the upper pons, while changes in the lower brain stem were minor, on the average 25%. When intracranial pressure was raised by cisternal infusion in 4 dogs, the supratentorial blood flow pattern at respiratory arrest was appriximately similar to the flow pattern in the balloon inflation group. However, blood flow decreased markedly (74-85%) also in the lower brain stem. The results constitute another argument in favour of the Cushing response in supratentorial expansion being caused by ischemia in the brain stem. The critical ischemic region seems to be located rostrally to the oblongate medulla, probably in the pons. (author)

  14. Fetal guinea pig brain 15-hydroxyprostaglandin dehydrogenase: Ontogeny and effect of ethanol

    International Nuclear Information System (INIS)

    Treissman, D.; Brien, J.F.

    1991-01-01

    The objectives of this study were to determine the ontogeny of 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) activity in the brain of the fetal guinea pig and to test the hypothesis that acute in vitro ethanol exposure produces concentration-dependent inhibition of fetal brain 15-OH-PGDH activity. Enzyme activity was determined in vitro by measuring the rate of oxidation of PGE2 to 15-keto-PGE2 using an optimized radiometric procedure. The study was conducted utilizing the whole brain of the fetal guinea pig at mean gestational ages of 34, 43 and 62 days (term, about 66 days) and the brain stem (pons and medulla) of the fetal guinea pig at mean gestational ages of 43 and 62 days. The direct effect of acute in vitro exposure to ethanol was assessed by incubating 15-OH-PGDH with ethanol in the concentration range of 10 to 80 mM. 15-OH-PGDH was measurable in the whole brain and brain stem, and the enzyme activity was similar for the gestational ages examined. There was no significant ethanol-induced inhibition of 15-OH-PGDH activity in the whole brain or brain stem. The data demonstrate that the whole brain and brain stem of the fetal guinea pig have the capacity to metabolize PGE2 to 15-keto-PGE2, an inactive metabolite, during the second half of gestation. The data apparently are not consistent with the hypothesis that acute in vitro exposure to ethanol directly inhibits 15-OH-PGDH activity in fetal brain

  15. Role of the brain stem in tibial inhibition of the micturition reflex in cats.

    Science.gov (United States)

    Ferroni, Matthew C; Slater, Rick C; Shen, Bing; Xiao, Zhiying; Wang, Jicheng; Lee, Andy; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-08-01

    This study examined the role of the brain stem in inhibition of bladder reflexes induced by tibial nerve stimulation (TNS) in α-chloralose-anesthetized decerebrate cats. Repeated cystometrograms (CMGs) were performed by infusing saline or 0.25% acetic acid (AA) to elicit normal or overactive bladder reflexes, respectively. TNS (5 or 30 Hz) at three times the threshold (3T) intensity for inducing toe movement was applied for 30 min between CMGs to induce post-TNS inhibition or applied during the CMGs to induce acute TNS inhibition. Inhibition was evident as an increase in bladder capacity without a change in amplitude of bladder contractions. TNS applied for 30 min between saline CMGs elicited prolonged (>2 h) poststimulation inhibition that significantly (P reflexes but are not involved in inhibition of normal bladder reflexes. Copyright © 2015 the American Physiological Society.

  16. Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest.

    Science.gov (United States)

    Pruyn, Michele L; Gartner, Barbara L; Harmon, Mark E

    2002-02-01

    Our primary objective was to present and test a new technique for in vitro estimation of respiration of cores taken from old trees to determine respiratory trends in sapwood. Our secondary objective was to quantify effects of tree age and stem position on respiratory potential (rate of CO2 production of woody tissue under standardized laboratory conditions). We extracted cores from one to four vertical positions in boles of +200-, +50- and +15-year-old Pinus ponderosa Dougl. ex Laws. trees. Cores were divided into five segments corresponding to radial depths of inner bark; outer, middle and inner sapwood; and heartwood. Data suggested that core segment CO2 production was an indicator of its respiratory activity, and that potential artifacts caused by wounding and extraction were minimal. On a dry mass basis, respiratory potential of inner bark was 3-15 times greater than that of sapwood at all heights for all ages (P sapwood at all heights and in all ages of trees, outer sapwood had a 30-60% higher respiratory potential than middle or inner sapwood (P sapwood. For all ages of trees, sapwood rings produced in the same calendar year released over 50% more CO2 at treetops than at bases (P sapwood volume basis, sapwood of younger trees had higher respiratory potential than sapwood of older trees. In contrast, the trend was reversed when using the outer-bark surface area of stems as a basis for comparing respiratory potential. The differences observed in respiratory potential calculated on a core dry mass, sapwood volume, or outer-bark surface area basis clearly demonstrate that the resulting trends within and among trees are determined by the way in which the data are expressed. Although these data are based on core segments rather than in vivo measurements, we conclude that the relative differences are probably valid even if the absolute differences are not.

  17. Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chung Hyung-Min

    2009-08-01

    Full Text Available Abstract Background Studies have provided important findings about the roles of Notch signaling in neural development. Unfortunately, however, most of these studies have investigated the neural stem cells (NSCs of mice or other laboratory animals rather than humans, mainly owing to the difficulties associated with obtaining human brain samples. It prompted us to focus on neuroectodermal spheres (NESs which are derived from human embryonic stem cell (hESC and densely inhabited by NSCs. We here investigated the role of Notch signaling with the hESC-derived NESs. Results From hESCs, we derived NESs, the in-vitro version of brain-derived neurospheres. NES formation was confirmed by increased levels of various NSC marker genes and the emergence of rosette structures in which neuroprogenitors are known to reside. We found that Notch signaling, which maintains stem cell characteristics of in-vivo-derived neuroprogenitors, is active in these hESC-derived NESs, similar to their in-vivo counterpart. Expression levels of Notch signaling molecules such as NICD, DLLs, JAG1, HES1 and HES5 were increased in the NESs. Inhibition of the Notch signaling by a γ-secretase inhibitor reduced rosette structures, expression levels of NSC marker genes and proliferation potential in the NESs, and, if combined with withdrawal of growth factors, triggered differentiation toward neurons. Conclusion Our results indicate that the hESC-derived NESs, which share biochemical features with brain-derived neurospheres, maintain stem cell characteristics mainly through Notch signaling, which suggests that the hESC-derived NESs could be an in-vitro model for in-vivo neurogenesis.

  18. Effect of Fusarium isolates and their filtrates on respiratory rate and chemical analysis of squash plants.

    Science.gov (United States)

    El-Shenawy, Z; Mansour, M A; El-Behrawi, S

    1978-01-01

    The highly pathogenic isolate stimulated the emergence of the squash seedlings first, caused, however, the highest death rate of the seedlings finally. Fusarium isolates and their culture filtrates inhibited the respiratory rate of squash plants significantly. However, F. oxysporum isolates inhibited respiration more than F. solani isolates. Seasonal changes of respiration decline show that the respiratory rate decreased with plant growth in the case of infested soil and of plants injected with culture filtrates. However, spraying Fusarium culture filtrates on the foliage gave opposite results when the plants grew older. Fusarium solani isolates decreased nitrogen content of squash stems and leaves, while F. oxysporum isolates gave reverse results. Injecting Fusarium culture filtrate into the plant decreased nitrogen content of both stems and leaves, while spraying the foliage with the filtrates increased nitrogen content more than that of the control. Phosphorus content of the stems of squash plants, sown in infested soil, was less than in the control when the plants were treated with F. solani and higher when they were treated with F. oxysporum isolates. On the other hand, the phosphorus content of squash leaves was higher than in the control. In the case of injected plants, however, the phosphorus content in stems and leaves was equal to that of the control or less, and with sprayed plants it was higher than in the control. Infesting the soil with Fusarium isolates and spraying the foliage with their culture filtrates increased potassium content of squash stems and leaves, while injecting the filtrates into the plants decreased potassium content of both stems and leaves.

  19. Mesenchymal stem cells induce T-cell tolerance and protect the preterm brain after global hypoxia-ischemia.

    Directory of Open Access Journals (Sweden)

    Reint K Jellema

    Full Text Available Hypoxic-ischemic encephalopathy (HIE in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 10(6 MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI, in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE.

  20. Expression and function of orphan nuclear receptor TLX in adult neural stem cells.

    Science.gov (United States)

    Shi, Yanhong; Chichung Lie, D; Taupin, Philippe; Nakashima, Kinichi; Ray, Jasodhara; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2004-01-01

    The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.

  1. Impaired cortical processing of inspiratory loads in children with chronic respiratory defects

    Directory of Open Access Journals (Sweden)

    Clément Annick

    2007-09-01

    Full Text Available Abstract Background Inspiratory occlusion evoked cortical potentials (the respiratory related-evoked potentials, RREPs bear witness of the processing of changes in respiratory mechanics by the brain. Their impairment in children having suffered near-fatal asthma supports the hypothesis that relates asthma severity with the ability of the patients to perceive respiratory changes. It is not known whether or not chronic respiratory defects are associated with an alteration in brain processing of inspiratory loads. The aim of the present study was to compare the presence, the latencies and the amplitudes of the P1, N1, P2, and N2 components of the RREPs in children with chronic lung or neuromuscular disease. Methods RREPs were recorded in patients with stable asthma (n = 21, cystic fibrosis (n = 32, and neuromuscular disease (n = 16 and in healthy controls (n = 11. Results The 4 RREP components were significantly less frequently observed in the 3 groups of patients than in the controls. Within the patient groups, the N1 and the P2 components were significantly less frequently observed in the patients with asthma (16/21 for both components and cystic fibrosis (20/32 and 14/32 than in the patients with neuromuscular disease (15/16 and 16/16. When present, the latencies and amplitudes of the 4 components were similar in the patients and controls. Conclusion Chronic ventilatory defects in children are associated with an impaired cortical processing of afferent respiratory signals.

  2. Spontaneous sleep-like brain state alternations and breathing characteristics in urethane anesthetized mice.

    Directory of Open Access Journals (Sweden)

    Silvia Pagliardini

    Full Text Available Brain state alternations resembling those of sleep spontaneously occur in rats under urethane anesthesia and they are closely linked with sleep-like respiratory changes. Although rats are a common model for both sleep and respiratory physiology, we sought to determine if similar brain state and respiratory changes occur in mice under urethane. We made local field potential recordings from the hippocampus and measured respiratory activity by means of EMG recordings in intercostal, genioglossus, and abdominal muscles. Similar to results in adult rats, urethane anesthetized mice displayed quasi-periodic spontaneous forebrain state alternations between deactivated patterns resembling slow wave sleep (SWS and activated patterns resembling rapid eye movement (REM sleep. These alternations were associated with an increase in breathing rate, respiratory variability, a depression of inspiratory related activity in genioglossus muscle and an increase in expiratory-related abdominal muscle activity when comparing deactivated (SWS-like to activated (REM-like states. These results demonstrate that urethane anesthesia consistently induces sleep-like brain state alternations and correlated changes in respiratory activity across different rodent species. They open up the powerful possibility of utilizing transgenic mouse technology for the advancement and translation of knowledge regarding sleep cycle alternations and their impact on respiration.

  3. Endovascular transplantation of stem cells to the injured rat CNS

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan [Karolinska University Hospital, Department of Clinical Neuroscience, Karolinska Institutet, Department of Neuroradiology, Stockholm (Sweden); Le Blanc, Katarina [Karolinska University Hospital, Department of Stem Cell Research, Karolinska Institutet, Department of Clinical Immunology, Stockholm (Sweden)

    2009-10-15

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  4. Endovascular transplantation of stem cells to the injured rat CNS

    International Nuclear Information System (INIS)

    Lundberg, Johan; Soederman, Mikael; Andersson, Tommy; Holmin, Staffan; Le Blanc, Katarina

    2009-01-01

    Transplantation procedures using intraparenchymal injection of stem cells result in tissue injury in addition to associated surgical risks. Intravenous injection of mesenchymal stem cells gives engraftment to lesions, but the method has low efficiency and specificity. In traumatic brain injuries (TBI), there is a transient breakdown of the blood-brain barrier and an inflammatory response, which increase migration of cells from blood to parenchyma. The aim of this investigation was to analyze the effect of intra-arterial administration on cellular engraftment. Experimental TBI was produced in a rat model. Endovascular technique was used to administer human mesenchymal stem cells in the ipsilateral internal carotid artery. Evaluation of engraftment and side effects were performed by immunohistochemical analysis of the brain and several other organs. The results were compared to intravenous administration of stem cells. Intra-arterial transplantion of mesenchymal stem cells resulted in central nervous system (CNS) engraftment without thromboembolic ischemia. We observed a significantly higher number of transplanted cells in the injured hemisphere after intra-arterial compared to intravenous administration both 1 day (p<0.01) and 5 days (p<0.05) after the transplantation. Some cells were also detected in the spleen but not in the other organs analyzed. Selective intra-arterial administration of mesenchymal stem cells to the injured CNS is a minimally invasive method for transplantation. The method is significantly more efficient than the intravenous route and causes no side effects in the current model. The technique can potentially be used for repeated transplantation to the CNS after TBI and in other diseases. (orig.)

  5. Mechanism and Clinical Importance of Respiratory Failure Induced by Anticholinesterases

    Directory of Open Access Journals (Sweden)

    Ivosevic Anita

    2017-12-01

    Full Text Available Respiratory failure is the predominant cause of death in humans and animals poisoned with anticholinesterases. Organophosphorus and carbamate anticholinesterases inhibit acetylcholinesterase irreversibly and reversibly, respectively. Some of them contain a quaternary atom that makes them lipophobic, limiting their action at the periphery, i.e. outside the central nervous system. They impair respiratory function primarily by inducing a desensitization block of nicotinic receptors in the neuromuscular synapse. Lipophilic anticholinesterases inhibit the acetylcholinesterase both in the brain and in other tissues, including respiratory muscles. Their doses needed for cessation of central respiratory drive are significantly less than doses needed for paralysis of the neuromuscular transmission. Antagonist of muscarinic receptors atropine blocks both the central and peripheral muscarinic receptors and effectively antagonizes the central respiratory depression produced by anticholinesterases. To manage the peripheral nicotinic receptor hyperstimulation phenomena, oximes as acetylcholinesterase reactivators are used. Addition of diazepam is useful for treatment of seizures, since they are cholinergic only in their initial phase and can contribute to the occurrence of central respiratory depression. Possible involvement of central nicotinic receptors as well as the other neurotransmitter systems – glutamatergic, opioidergic – necessitates further research of additional antidotes.

  6. Genotypic variations in photosynthetic rate and respiratory losses in some grain legumes

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, R K; Saxena, M C; Kalubarme, M H; Singh, V B; Prasad, V V.S.S. [Gobind Ballabh Pant Univ. of Agriculture and Technology, Pantnagar (India)

    1976-01-01

    The relative rate of photosynthesis in 12 genotypes of Cajanus cajan as measured by /sup 14/CO/sub 2/ fixation, ranged from 100 percent in Pant A-2 to 126 percent in UPA 120. /sup 14/CO/sub 2/ fixation was not related to specific leaf weight. Respiratory losses in the 20-day period after exposure were 63 and 51 percent respectively, in seedlings of UPA-120 and Prabhat cultivars. The relative rate of photosynthesis in 13 genotypes of Vigna aureus ranged from 100 percent in LM-646 to 196 percent in LM-205. PS-16 also showed high photosynthetic rate. The translocation of /sup 14/C from leaves, stems and petioles to reproductive organs was also determined. Baisakhi accumulated larger proportion of total /sup 14/C in grain and showed lower respiratory loss than PS-16. The relative rate of photosynthesis in 20 Cicer arietinum cultivars ranged from 100 percent in S-330-1 to 224 percent in L-550. There was a considerable contribution from pod and stem towards total photosynthesis.

  7. A phase I trial of etanidazole and hyperfractionated radiotherapy in children with diffuse brain stem glioma

    International Nuclear Information System (INIS)

    Dutton, S.C.; Pomeroy, S.L.; Billett, A.L.; Barnes, P.; Kuhlman, C.; Riese, N.E.; Goumnerova, L.; Scott, R.M.; Coleman, C.N.; Tarbell, N.J.

    1997-01-01

    Objective: Prospective phase I study to evaluate the toxicity and maximum tolerated dose of etanidazole administered concurrently with hyperfractionated radiation therapy (HRT) for children with brain stem glioma. Materials and Methods: Eighteen patients with brain stem glioma were treated with etanidazole and HRT from 1990-1996. Eligibility required MRI confirmation of diffuse glioma of medulla, pons or mesencephalon, and signs/symptoms of cranial nerve deficit, ataxia or long tract signs of ≤ 6 months duration. Cervico-medullary tumors were excluded. Patients (median age 8.5 years; 11 males, 7 females) received HRT to the tumor volume plus a 2 cm margin with parallel opposed 6-15 MV photons. The total dose was 66 Gy for the first 3 patients, followed by 63 Gy over 4.2 weeks (1.5 Gy BID with 6 hours between fractions) for the subsequent 15 patients. Etanidazole was administered as a rapid IV infusion 30 minutes prior to the morning fraction of HRT at doses of 1.8 gm/m2 x 17 doses (30.6 gm/m2) at step 1 to a maximum of 2.4 gm/m2 x 21 doses (50.4 gm/m2) at step 8. Dose escalation was planned with 3 patients at each of the 8 levels. Results: Three patients were treated at each dose level except level 2, on which only one patient was treated. The highest dose level achieved was step 7 which delivered a total etanidazole dose of 46.2 gm/m2. Two patients were treated at this level, and both patients experienced grade 3 toxicity in the form of a diffuse cutaneous rash. Three patients received a lower dose of 42 gm/m2 without significant toxicity, and this represents the maximum tolerated dose (MTD). There were 24 cases of grade 1 toxicity (10 vomiting, 5 peripheral neuropathy, 2 rash, 2 constipation, 1 skin erythema, 1 weight loss, 3 other), eleven cases of grade 2 toxicity (4 vomiting, 2 skin erythema, 2 constipation, 1 arthalgia, 1 urinary retention, 1 hematologic), and four grade b 3 toxicities (2 rash, 1 vomiting, 1 skin desquamation). Grade 2 or 3 peripheral

  8. A Case of Primary Central Nervous System Lymphoma Located at Brain Stem in a Child.

    Science.gov (United States)

    Kim, Jinho; Kim, Young Zoon

    2016-10-01

    Primary central nervous system lymphoma (PCNSL) is an extranodal Non-Hodgkin's lymphoma that is confined to the brain, eyes, and/or leptomeninges without evidence of a systemic primary tumor. Although the tumor can affect all age groups, it is rare in childhood; thus, its incidence and prognosis in children have not been well defined and the best treatment strategy remains unclear. A nine-year old presented at our department with complaints of diplopia, dizziness, dysarthria, and right side hemiparesis. Magnetic resonance image suggested a diffuse brain stem glioma with infiltration into the right cerebellar peduncle. The patient was surgically treated by craniotomy and frameless stereotactic-guided biopsy, and unexpectedly, the histopathology of the mass was consistent with diffuse large B cell lymphoma, and immunohistochemical staining revealed positivity for CD20 and CD79a. Accordingly, we performed a staging work-up for systemic lymphoma, but no evidence of lymphoma elsewhere in the body was obtained. In addition, she had a negative serologic finding for human immunodeficient virus, which confirmed the histopathological diagnosis of PCNSL. She was treated by radiosurgery at 12 Gy and subsequent adjuvant combination chemotherapy based on high dose methotrexate. Unfortunately, 10 months after the tissue-based diagnosis, she succumbed due to an acute hydrocephalic crisis.

  9. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Stem cells and the origin of gliomas: A historical reappraisal with molecular advancements

    Directory of Open Access Journals (Sweden)

    Michael L Levy

    2009-01-01

    Full Text Available Michael L Levy1, Allen L Ho1,2, Samuel Hughes3, Jayant Menon1, Rahul Jandial41Division of Neurosurgery, University of California, San Diego, La Jolla, California, USA; 2Del E Webb Neurosciences, Aging and Stem Cell Research Center, The Burnham Institute for Medical Research, La Jolla, California, USA; 3Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA; 4Division of Neurosurgery, Department of Surgery, City of Hope Cancer Center, Duarte, CA, USAAbstract: The biology of both normal and tumor development clearly possesses overlapping and parallel features. Oncogenes and tumor suppressors are relevant not only in tumor biology, but also in physiological developmental regulators of growth and differentiation. Conversely, genes identified as regulators of developmental biology are relevant to tumor biology. This is particularly relevant in the context of brain tumors, where recent evidence is mounting that the origin of brain tumors, specifically gliomas, may represent dysfunctional developmental neurobiology. Neural stem cells are increasingly being investigated as the cell type that originally undergoes malignant transformation – the cell of origin – and the evidence for this is discussed.Keywords: stem cells, gliomas, neural stem cells, brain tumors, cancer stem cells

  11. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer.

    Science.gov (United States)

    Paliwal, Swati; Chaudhuri, Rituparna; Agrawal, Anurag; Mohanty, Sujata

    2018-03-30

    The past decade has witnessed an upsurge in studies demonstrating mitochondrial transfer as one of the emerging mechanisms through which mesenchymal stem cells (MSCs) can regenerate and repair damaged cells or tissues. It has been found to play a critical role in healing several diseases related to brain injury, cardiac myopathies, muscle sepsis, lung disorders and acute respiratory disorders. Several studies have shown that various mechanisms are involved in mitochondrial transfer that includes tunnel tube formation, micro vesicle formation, gap junctions, cell fusion and others modes of transfer. Few studies have investigated the mechanisms that contribute to mitochondrial transfer, primarily comprising of signaling pathways involved in tunnel tube formation that facilitates tunnel tube formation for movement of mitochondria from one cell to another. Various stress signals such as release of damaged mitochondria, mtDNA and mitochondrial products along with elevated reactive oxygen species levels trigger the transfer of mitochondria from MSCs to recipient cells. However, extensive cell signaling pathways that lead to mitochondrial transfer from healthy cells are still under investigation and the changes that contribute to restoration of mitochondrial bioenergetics in recipient cells remain largely elusive. In this review, we have discussed the phenomenon of mitochondrial transfer from MSCs to neighboring stressed cells, and how this aids in cellular repair and regeneration of different organs such as lung, heart, eye, brain and kidney. The potential scope of mitochondrial transfer in providing novel therapeutic strategies for treatment of various pathophysiological conditions has also been discussed.

  12. Is There a Link between Mitochondrial Reserve Respiratory Capacity and Aging?

    DEFF Research Database (Denmark)

    Hansen, Thomas Lau; Rasmussen, Lene Juel; Madsen, Claus Desler

    2012-01-01

    Oxidative phosphorylation is an indispensable resource of ATP in tissues with high requirement of energy. If the ATP demand is not met, studies suggest that this will lead to senescence and cell death in the affected tissue. The term reserve respiratory capacity or spare respiratory capacity...... is used to describe the amount of extra ATP that can be produced by oxidative phosphorylation in case of a sudden increase in energy demand. Depletion of the reserve respiratory capacity has been related to a range of pathologies affecting high energy requiring tissues. During aging of an organism......, and as a result of mitochondrial dysfunctions, the efficiency of oxidative phosphorylation declines. Based on examples from the energy requiring tissues such as brain, heart, and skeletal muscle, we propose that the age-related decline of oxidative phosphorylation decreases the reserve respiratory capacity...

  13. Cystatin C Has a Dual Role in Post-Traumatic Brain Injury Recovery

    Directory of Open Access Journals (Sweden)

    Marina Martinez-Vargas

    2014-04-01

    Full Text Available Cathepsin B is one of the major lysosomal cysteine proteases involved in neuronal protein catabolism. This cathepsin is released after traumatic injury and increases neuronal death; however, release of cystatin C, a cathepsin inhibitor, appears to be a self-protective brain response. Here we describe the effect of cystatin C intracerebroventricular administration in rats prior to inducing a traumatic brain injury. We observed that cystatin C injection caused a dual response in post-traumatic brain injury recovery: higher doses (350 fmoles increased bleeding and mortality, whereas lower doses (3.5 to 35 fmoles decreased bleeding, neuronal damage and mortality. We also analyzed the expression of cathepsin B and cystatin C in the brains of control rats and of rats after a traumatic brain injury. Cathepsin B was detected in the brain stem, cerebellum, hippocampus and cerebral cortex of control rats. Cystatin C was localized to the choroid plexus, brain stem and cerebellum of control rats. Twenty-four hours after traumatic brain injury, we observed changes in both the expression and localization of both proteins in the cerebral cortex, hippocampus and brain stem. An early increase and intralysosomal expression of cystatin C after brain injury was associated with reduced neuronal damage.

  14. Therapy of brain stem tumors - palliative conception with prospect of curative success

    International Nuclear Information System (INIS)

    Bamberg, M.; Budach, V.; Clar, H.E.; Schmitt, G.

    1984-01-01

    From 1969 to 1981, 23 patients with tumors in the pons region were irradiated at the Department of Radiotherapy of the West German Tumor Center in Essen. The age of the patients ranged from 18 months to 50 years. Fifteen patients (65%) were younger than 18 years, one was 25 years old, and seven were between 40 and 50 years old. In two cases the histologic diagnosis of an astrocytoma I and astrocytoma II could be confirmed by exploratory excision and cyst punction, respectively. Nineteen patients received a shunt system (ventriculoatrial shunt) prior to radiotherapy in order to achieve a pressure reduction. After a follow-up period of 1.5 to 12 years, eleven patients are alive, and twelve patients died from a local recurrence or from progressive tumor growth. The five-year survival rate is 47%. Five of the surviving patients show no or only slight adverse effects on their general condition and are able to attend school or carry out their profession (in Karnofsky: 90 to 100%). Four other patients suffering from marked remaining neurologic symptoms are able to take care of themselves (Karnofsky: 70 to 80%). Two patients need permanent nursing (Karnofsky: 50 to 60%). Because of the local propagation tendency of pons tumors, radiotherapy should be locally restricted to the brain stem and the adjacent brain structures, e.g. cerebellum and proximal neck marrow. The authors recommend target volumes of 55 to 60 Gy, which must be applied within 6 to 8 weeks, taking into account the age of patients. This palliative therapy conception should be applied routinely in the hope of bringing about a curative treatment to this group of patients. (orig.) [de

  15. The influence of heroin abuse on glutathione-dependent enzymes in human brain.

    Science.gov (United States)

    Gutowicz, Marzena; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2011-01-01

    Heroin is an illicit narcotic abused by millions of people worldwide. In our earlier studies we have shown that heroin intoxication changes the antioxidant status in human brain. In the present work we continued our studies by estimating the effect of heroin abuse on reduced glutathione (GSH) and enzymes related to this cofactor, such as glutathione S-transferase detoxifying electrophilics (GST) and organic peroxides (as Se-independent glutathione peroxidase-GSHPx), and Se-dependent glutathione peroxidase (Se-GSHPx) specific mainly for hydrogen peroxide. Studies were conducted on human brains obtained from autopsy of 9 heroin abusers and 8 controls. The level of GSH and the activity of glutathione-related enzymes were determined spectrophotometrically. The expression of GST pi on mRNA and protein level was studied by RT-PCR and Western blotting, respectively. The results indicated significant increase of GST and GSHPx activities, unchanged Se-GSHPx activity, and decreased level of GSH in frontal, temporal, parietal and occipital cortex, brain stem, hippocampus, and white matter of heroin abusers. GST pi expression was increased on both mRNA and protein levels, however the increase was lower in brain stem than in other regions. Heroin affects all regions of human brain, and especially brain stem. Its intoxication leads to an increase of organic rather then inorganic peroxides in various brain regions. Glutathione S-transferase plays an important role during heroin intoxication, however its protective effect is lower in brain stem than in brain cortex or hippocampus. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Intracerebral neural stem cell transplantation improved the auditory of mice with presbycusis.

    Science.gov (United States)

    Ren, Hongmiao; Chen, Jichuan; Wang, Yinan; Zhang, Shichang; Zhang, Bo

    2013-01-01

    Stem cell-based regenerative therapy is a potential cellular therapeutic strategy for patients with incurable brain diseases. Embryonic neural stem cells (NSCs) represent an attractive cell source in regenerative medicine strategies in the treatment of diseased brains. Here, we assess the capability of intracerebral embryonic NSCs transplantation for C57BL/6J mice with presbycusis in vivo. Morphology analyses revealed that the neuronal rate of apoptosis was lower in the aged group (10 months of age) but not in the young group (2 months of age) after NSCs transplantation, while the electrophysiological data suggest that the Auditory Brain Stem Response (ABR) threshold was significantly decreased in the aged group at 2 weeks and 3 weeks after transplantation. By contrast, there was no difference in the aged group at 4 weeks post-transplantation or in the young group at any time post-transplantation. Furthermore, immunofluorescence experiments showed that NSCs differentiated into neurons that engrafted and migrated to the brain, even to sites of lesions. Together, our results demonstrate that NSCs transplantation improve the auditory of C57BL/6J mice with presbycusis.

  17. Lineage analysis of quiescent regenerative stem cells in the adult brain by genetic labelling reveals spatially restricted neurogenic niches in the olfactory bulb.

    Science.gov (United States)

    Giachino, Claudio; Taylor, Verdon

    2009-07-01

    The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo. Taking advantage of the recombination characteristics of a nestin::CreER(T2) allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER(T2)-expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER(T2)-expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER(T2)-targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.

  18. Low dose ionizing radiation responses and knockdown of ATM kinase activity in glioma stem cells

    International Nuclear Information System (INIS)

    Lim, Y.C.; Roberts, T.; Day, B.; Kozlov, S.; Walker, D.; Lavin, M.; Harding, A.

    2009-01-01

    Genesis of new cells in the mammalian brain has previously been regarded as a negligible event; an assumption that long limited our understanding in the development of neoplasias. The recent discovery of perpetual lineages derived from neural stem cells has resulted in a new approach to studying the cellular behaviour of potential cancer stem cells in the brain. Glioblastoma multiforme (GBM), the most aggressive and lethal brain tumour is derived from a group of cancerous stem cells known as glioma stem cells. GBM cells are impervious to conventional therapies such as surgical resection and ionizing radiation because of their pluripotent and radioresistant properties. Thus in our study, we aim to investigate whether a combination of chemo- and radio- therapies is an effective treatment for glioma stem cells. The study utilizes a specific kinase inhibitor (ATMi) of the ATM (Ataxia-telangiectasia mutated) protein which is an essential protein in DNA-damage responses. In the presence of both low dose radiation and ATMi, glioma stem cells have rapid onset of cell death and reduction in growth. Since DNA damage can be inherited through cell division, accumulated DNA breaks in later generations may also lead to cell death. The limitation of conventional radiation therapy is that administration of fractionated (low) doses to reduce any potential harm to the surrounding healthy cells in the brain outweighs the benefits of high radiation doses to induce actual arrest in the propagation of malignant cells. Our study demonstrates a benefit in using low dose radiation combined with chemotherapy resulting in a reduction in malignancy of glioma stem cells. (author)

  19. Brain imaging during seizure: ictal brain SPECT

    International Nuclear Information System (INIS)

    Kottamasu, Sambasiva Rao

    1997-01-01

    The role of single photon computed tomography (SPECT) in presurgical localization of medically intractable complex partial epilepsy (CPE) in children is reviewed. 99m Technetium neurolite, a newer lipophylic agent with a high first pass brain extraction and little or no redistribution is injected during a seizure, while the child is monitored with a video recording and continuous EEG and SPECT imaging is performed in the next 1-3 hours with the images representing regional cerebral profusion at the time of injection. On SPECT studies performed with radiopharmaceutical injected during a seizure, ictal focus is generally hypervascular. Other findings on ictal brain SPECT include hypoperfusion of adjacent cerebral cortex and white matter, hyperperfusion of contralateral motor cortex, hyperperfusion of ipsilateral basal ganglia and thalamus, brain stem and contralateral cerebellum. Ictal brain SPECT is non-invasive, cost effective and highly sensitive for localization of epileptic focus in patients with intractable CPE. (author)

  20. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  1. Controlling micro- and nano-environment of tumor and stem cells for novel research and therapy of brain cancer

    Science.gov (United States)

    Smith, Christopher Lloyd

    The use of modern technologies in cancer research has engendered a great deal of excitement. Many of these advanced approaches involve in-depth mathematical analyses of the inner working of cells, via genomic and proteomic analyses. However these techniques may not be ideal for the study of complex cell phenotypes and behaviors. This dissertation explores cancer and potential therapies through phenotypic analysis of cell behaviors, an alternative approach. We employ this experimental framework to study brain cancer (glioma), a particularly formidable example of this diverse ailment. Through the application of micro- and nanotechnology, we carefully control the surrounding environments of cells to understand their responses to various cues and to manipulate their behaviors. Subsequently we obtain clinically relevant information that allows better understanding of glioma, and enhancement of potential therapies. We first aim to address brain tumor dispersal, through analysis of cell migration. Utilizing nanometer-scale topographic models of the extracellular matrix, we study the migratory response of glioma cells to various stimuli in vitro. Second, we implement knowledge gained from these investigations to define characteristics of tumor progression in patients, and to develop treatments inhibiting cell migration. Next we use microfluidic and nanotopographic models to study the behaviors of stem cells in vitro. Here we attempt to improve their abilities to deliver therapeutic proteins to cancer, an innovative treatment approach. We analyze the multi-step process by which adipose-derived stem cells naturally home to tumor sites, and identify numerous environmental perturbations to enhance this behavior. Finally, we attempt to demonstrate that these cell culture-based manipulations can enhance the localization of adipose stem cells to glioma in vivo using animal models. Throughout this work we utilize environmental cues to analyze and induce particular behaviors in

  2. Respiratory sinus arrhythmia as a non-invasive index of ′brain-heart′ interaction in stress

    Directory of Open Access Journals (Sweden)

    Ingrid Tonhajzerova

    2016-01-01

    Full Text Available Respiratory sinus arrhythmia (RSA is accepted as a peripheral marker of cardiac-linked parasympathetic regulation. According to polyvagal theory, the RSA is also considered as the index of emotion regulation. The neurovisceral integration model posits that parasympathetic modulation of the heart marked by RSA is related to complex nervous regulation associated with emotional and cognitive processing. From this perspective, high resting RSA amplitude associated with a greater withdrawal during stressors and subsequent recovery could represent a flexible and adaptive physiological response system to a challenge. Conversely, low resting RSA accompanied by an inadequate reactivity to stress might reflect maladaptive regulatory mechanisms. The RSA reactivity is different with various types of stressors: while the RSA decreases to cognitive tasks indicating a vagal withdrawal, the RSA magnitude increases to emotional challenge indicating an effective cognitive processing of emotional stimuli. The RSA reactivity to stress could have important implications for several mental disorders, e.g. depressive or anxiety disorder. It seems that the study of the RSA, as a non-invasive index of ′brain-heart′ communication, could provide important information on the pathway linked to mental and physical health.

  3. Go with the Flow: Cerebrospinal Fluid Flow Regulates Neural Stem Cell Proliferation.

    Science.gov (United States)

    Kaneko, Naoko; Sawamoto, Kazunobu

    2018-06-01

    Adult neural stem cells in the wall of brain ventricles make direct contact with cerebrospinal fluid. In this issue of Cell Stem Cell, Petrik et al. (2018) demonstrate that these neural stem cells sense the flow of cerebrospinal fluid through a transmembrane sodium channel, ENaC, which regulates their proliferation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. MicroRNAs: regulators of oncogenesis and stemness

    Directory of Open Access Journals (Sweden)

    Papagiannakopoulos Thales

    2008-06-01

    Full Text Available Abstract MicroRNAs (miRNAs are essential post-transcriptional regulators that determine cell identity and fate. Aberrant expression of miRNAs can lead to diseases, including cancer. Expression of many miRNAs in the de-differentiated brain tumor cancer stem cells resembles that of neural stem cells. In this issue of BMC Medicine, Silber et al provide evidence of the expression of such miRNAs and their potential to mediate differentiation in both stem cell populations. In this commentary, we discuss the known functions of miRNAs in cancer and stem cells, their therapeutic potential and how the findings of Silber et al provide insight into the role of miR-124/miR-137 dysregulation in glioblastomas.

  5. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Coránguez

    Full Text Available Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  6. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Science.gov (United States)

    Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza

    2013-01-01

    Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  7. The number of stem cells in the subependymal zone of the adult rodent brain is correlated with the number of ependymal cells and not with the volume of the niche.

    Science.gov (United States)

    Kazanis, Ilias; Ffrench-Constant, Charles

    2012-05-01

    The mammalian subependymal zone (SEZ; often called subventricular) situated at the lateral walls of the lateral ventricles of the brain contains a pool of relatively quiescent adult neural stem cells whose neurogenic activity persists throughout life. These stem cells are positioned in close proximity both to the ependymal cells that provide the cerebrospinal fluid interface and to the blood vessel endothelial cells, but the relative contribution of these 2 cell types to stem cell regulation remains undetermined. Here, we address this question by analyzing a naturally occurring example of volumetric scaling of the SEZ in a comparison of the mouse SEZ with the larger rat SEZ. Our analysis reveals that the number of stem cells in the SEZ niche is correlated with the number of ependymal cells rather than with the volume, thereby indicating the importance of ependymal-derived factors in the formation and function of the SEZ. The elucidation of the factors generated by ependymal cells that regulate stem cell numbers within the SEZ is, therefore, of importance for stem cell biology and regenerative neuroscience.

  8. Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Niu Chao

    2010-08-01

    Full Text Available Abstract Objective To investigate the effect of all-trans retinoic acid(ATRA on the proliferation and differentiation of brain tumor stem cells(BTSCs in vitro. Methods Limiting dilution and clonogenic assay were used to isolate and screen BTSCs from the fresh specimen of human brain glioblastoma. The obtained BTSCs, which were cultured in serum-free medium, were classified into four groups in accordance with the composition of the different treatments. The proliferation of the BTSCs was evaluated by MTT assay. The BTSCs were induced to differentiate in serum-containing medium, and classified into the ATRA group and control group. On the 10th day of induction, the expressions of CD133 and glial fibrillary acidic protein (GFAP in the differentiated BTSCs were detected by immunofluorescence. The differentiated BTSCs were cultured in serum-free medium, the percentage and the time required for formation of brain tumor spheres (BTS were observed. Results BTSCs obtained by limiting dilution were all identified as CD133-positive by immunofluorescence. In serum-free medium, the proliferation of BTSCs in the ATRA group was observed significantly faster than that in the control group, but slower than that in the growth factor group and ATRA/growth factor group, and the size of the BTS in the ATRA group was smaller than that in the latter two groups(P P P P Conclusion ATRA can promote the proliferation and induce the differentiation of BTSCs, but the differentiation is incomplete, terminal differentiation cannot be achieved and BTSs can be formed again.

  9. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  10. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  11. Reprogramming Cells for Brain Repair

    Directory of Open Access Journals (Sweden)

    Randall D. McKinnon

    2013-08-01

    Full Text Available At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to replace lost neurons or their supporting glia. In contrast, pre-clinical studies have demonstrated that exogenous transplants can have remarkable efficacy for brain repair in animal models. Mesenchymal stromal cells (MSCs can provide paracrine factors that repair damage caused by ischemic injury, and oligodendrocyte progenitor cell (OPC grafts give dramatic functional recovery from spinal cord injury. These studies have progressed to clinical trials, including human embryonic stem cell (hESC-derived OPCs for spinal cord repair. However, ESC-derived allografts are less than optimal, and we need to identify a more appropriate donor graft population. The cell reprogramming field has developed the ability to trans-differentiate somatic cells into distinct cell types, a technology that has the potential to generate autologous neurons and glia which address the histocompatibility concerns of allografts and the tumorigenicity concerns of ESC-derived grafts. Further clarifying how cell reprogramming works may lead to more efficient direct reprogram approaches, and possibly in vivo reprogramming, in order to promote brain and spinal cord repair.

  12. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  13. Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis.

    Science.gov (United States)

    Matthay, Michael A; Pati, Shibani; Lee, Jae-Woo

    2017-02-01

    Several experimental studies have provided evidence that bone-marrow derived mesenchymal stem (stromal) cells (MSC) may be effective in treating critically ill surgical patients who develop traumatic brain injury, acute renal failure, or the acute respiratory distress syndrome. There is also preclinical evidence that MSC may be effective in treating sepsis-induced organ failure, including evidence that MSC have antimicrobial properties. This review considers preclinical studies with direct relevance to organ failure following trauma, sepsis or major infections that apply to critically ill patients. Progress has been made in understanding the mechanisms of benefit, including MSC release of paracrine factors, transfer of mitochondria, and elaboration of exosomes and microvesicles. Regardless of how well they are designed, preclinical studies have limitations in modeling the complexity of clinical syndromes, especially in patients who are critically ill. In order to facilitate translation of the preclinical studies of MSC to critically ill patients, there will need to be more standardization regarding MSC production with a focus on culture methods and cell characterization. Finally, well designed clinical trials will be needed in critically ill patient to assess safety and efficacy. Stem Cells 2017;35:316-324. © 2016 AlphaMed Press.

  14. Organization of haemopoietic stem cells: the generation-age hypothesis

    International Nuclear Information System (INIS)

    Rosendaal, M.; Hodgson, G.S.; Bradley, T.R.

    1978-01-01

    This paper proposes that the previous division history of each stem cell is one determinant of the functional organisation of the haemopoietic stem cell population. Older stem cell are used to form blood before younger ones. The stem cells generating capacity of a lineage is finite, and cells are eventually lost to the system by forming two committed precursors of the cell lines, and the next oldest stem cell takes over. Hence the proposed term 'generation-age hypothesis', supported by experimental evidence. Older stem cells from normal bone marrow and 13 day foetal liver were stripped away with phase-specific drugs revealing a younger population of stem cells with three-to four-fold greater stem cell generating capacity. Normal stem cells aged by continuous irradiation and serial retransplantation had eight-fold reduced generating capacity. That of stem cells in the bloodstream was half to a quarter that of normal bone marrow stem cells. There were some circulating stem cells, identified by reaction to brain-associated antigen, positive for 75% of normal femoral stem cells but not their progeny, whose capacity for stem cell generation was an eighth to one fortieth that of normal cells. (U.K.)

  15. A Two-Dimensional Human Minilung System (Model for Respiratory Syncytial Virus Infections

    Directory of Open Access Journals (Sweden)

    Esmeralda Magro-Lopez

    2017-12-01

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of serious pediatric respiratory diseases that lacks effective vaccine or specific therapeutics. Although our understanding about HRSV biology has dramatically increased during the last decades, the need for adequate models of HRSV infection is compelling. We have generated a two-dimensional minilung from human embryonic stem cells (hESCs. The differentiation protocol yielded at least six types of lung and airway cells, although it is biased toward the generation of distal cells. We show evidence of HRSV replication in lung cells, and the induction of innate and proinflammatory responses, thus supporting its use as a model for the study of HRSV–host interactions.

  16. Stem Cell Therapy: An emerging science

    International Nuclear Information System (INIS)

    Khan, Muhammad M.

    2007-01-01

    The research on stem cells is advancing knowledge about the development of an organism from a single cell and to how healthy cells replace damaged cells in adult organisms. Stem cell therapy is emerging rapidly nowadays as a technical tool for tissue repair and replacement. The purpose of this review to provide a framework of understanding for the challenges behind translating fundamental stem cell biology and its potential use into clinical therapies, also to give an overview on stem cell research to the scientists of Saudi Arabia in general. English language MEDLINE publications from 1980 through January 2007 for experimental, observational and clinical studies having relation with stem cells with different diseases were reviewed. Approximately 85 publications were reviewed based on the relevance, strength and quality of design and methods, 36 publications were selected for inclusion. Stem cells reside in a specific area of each tissue where they may remain undivided for several years until they are activated by disease or tissue injury. The embryonic stem cells are typically derived from four or five days old embryos and they are pluripotent. The adult tissues reported to contain stem cells brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin and liver. The promise of stem cell therapies is an exciting one, but significant technical hurdles remain that will only be overcome through years of intensive research. (author)

  17. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture.

    Science.gov (United States)

    Kaiser, Andreas; Kale, Ajay; Novozhilova, Ekaterina; Siratirakun, Piyaporn; Aquino, Jorge B; Thonabulsombat, Charoensri; Ernfors, Patrik; Olivius, Petri

    2014-05-30

    Conditioned medium (CM), made by collecting medium after a few days in cell culture and then re-using it to further stimulate other cells, is a known experimental concept since the 1950s. Our group has explored this technique to stimulate the performance of cells in culture in general, and to evaluate stem- and progenitor cell aptitude for auditory nerve repair enhancement in particular. As compared to other mediums, all primary endpoints in our published experimental settings have weighed in favor of conditioned culture medium, where we have shown that conditioned culture medium has a stimulatory effect on cell survival. In order to explore the reasons for this improved survival we set out to analyze the conditioned culture medium. We utilized ELISA kits to investigate whether brain stem (BS) slice CM contains any significant amounts of brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF). We further looked for a donor cell with progenitor characteristics that would be receptive to BDNF and GDNF. We chose the well-documented boundary cap (BC) progenitor cells to be tested in our in vitro co-culture setting together with cochlear nucleus (CN) of the BS. The results show that BS CM contains BDNF and GDNF and that survival of BC cells, as well as BC cell differentiation into neurons, were enhanced when BS CM were used. Altogether, we conclude that BC cells transplanted into a BDNF and GDNF rich environment could be suitable for treatment of a traumatized or degenerated auditory nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effects of irradiation on stem cell response to differentiation inhibitors in the Planarian Dugesia etrusca

    Energy Technology Data Exchange (ETDEWEB)

    Steele, V.E.; Lange, C.S.

    1976-07-01

    The planarian owes its extensive powers of regeneration to the possession of a totipotential stem cell system. The survival of the animal after irradiation depends mainly upon this system. In this respect the planarian is analogous to mammalian organ systems such as bone marrow or gut epithelium. The differentiated cells control the course of stem cell mediated tissue renewal by the secretion of differentiator and/or inhibitor substances. One such inhibitor substance, present in extracts prepared from homogenized whole planarians, specifically inhibits brain formation. This substance is organ specific, but not species specific. The differentiative integrity of the stem cells after irradiation is measured by comparing the regenerated brain volumes resulting from the presence or absence of the brain inhibitory extract during the regeneration period. Our data suggest that increasing doses of x irradiation decreases the ability of the stem cells to respond to differentiative substances. The data presented also explore the possibility of altering the postirradiation recovery pattern by shifting the differentiative demands placed on the stem cells. The final proportions of animals (one-half regenerated with, and one-half without, the extract) surviving after 60 days were not significantly different.

  19. Evaluation of respiratory pattern during respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Dobashi, Suguru; Mori, Shinichiro

    2014-01-01

    The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

  20. Lymphocytic infundibulo-neurohypophysitis (LINH) with involvement of the hypothalamus and with coexistent focal infiltration of the brain stem: A case report

    International Nuclear Information System (INIS)

    Spalek, M.; Kowalska, A.

    2006-01-01

    Autoimmune (lymphocytic) hypophysitis is a rare disease. It was originally labeled lymphocytic adenohypophysitis (LAH) and was first described in 1962. However, when it was later realized that the autoimmune infiltrate could exclusively involve the infundibular stem and the posterior lobe, the term lymphocytic infundibulo-neurohypophysitis (LINH) was created. Review of the literature identified 39 patients with LINH, 245 with LAH, and 95 with LPH (lymphocytic pan-hypophysitis) to date. The authors present the case of a 19-year-old woman with acute bacterial infection previous to symptoms of hypopituitarism. CT and MR imaging showed tumor-like areas of intensive post-contrast enhancement without edema in the suprasellar region and in the brain stem. Based on the diagnostic investigations, LINH was diagnosed. Germinoma, sarcoidosis, tuberculosis, and bacterial hypophysitis were excluded in the diagnostic differentiation. Regression of clinical and radiological symptoms was observed after corticotherapy. Lymphocytic infundibulo-neurohypophysitis is a rare disease that should be considered in the differential diagnosis of any suprasellar and/or intrasellar mass. (author)

  1. Tissue engineering and the use of stem/progenitor cells for airway epithelium repair

    Directory of Open Access Journals (Sweden)

    GM Roomans

    2010-06-01

    Full Text Available Stem/progenitor cells can be used to repair defects in the airway wall, resulting from e.g., tumors, trauma, tissue reactions following long-time intubations, or diseases that are associated with epithelial damage. Several potential sources of cells for airway epithelium have been identified. These can be divided into two groups. The first group consists of endogenous progenitor cells present in the respiratory tract. This group can be subdivided according to location into (a a ductal cell type in the submucosal glands of the proximal trachea, (b basal cells in the intercartilaginous zones of the lower trachea and bronchi, (c variant Clara cells (Clarav-cells in the bronchioles and (d at the junctions between the bronchioles and the alveolar ducts, and (e alveolar type II cells. This classification of progenitor cell niches is, however, controversial. The second group consists of exogenous stem cells derived from other tissues in the body. This second group can be subdivided into: (a embryonic stem (ES cells, induced pluripotent stem (iPS cells, or amniotic fluid stem cells, (b side-population cells from bone marrow or epithelial stem cells present in bone marrow or circulation and (c fat-derived mesenchymal cells. Airway epithelial cells can be co-cultured in a system that includes a basal lamina equivalent, extracellular factors from mesenchymal fibroblasts, and in an air-liquid interface system. Recently, spheroid-based culture systems have been developed. Several clinical applications have been suggested: cystic fibrosis, acute respiratory distress syndrome, chronic obstructive lung disease, pulmonary fibrosis, pulmonary edema, and pulmonary hypertension. Clinical applications so far are few, but include subglottic stenosis, tracheomalacia, bronchiomalacia, and emphysema.

  2. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells.

    Science.gov (United States)

    Hollmann, Emma K; Bailey, Amanda K; Potharazu, Archit V; Neely, M Diana; Bowman, Aaron B; Lippmann, Ethan S

    2017-04-13

    Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods. Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines. The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm 2 across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm 2 and fluorescein permeability below 1.95 × 10 -7 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm 2 for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated

  3. Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expectations in the era of regenerative biology.

    Science.gov (United States)

    Kazanis, Ilias

    2012-02-01

    Since the first experimental reports showing the persistence of neurogenic activity in the adult mammalian brain, this field of neurosciences has expanded significantly. It is now widely accepted that neural stem and precursor cells survive during adulthood and are able to respond to various endogenous and exogenous cues by altering their proliferation and differentiation activity. Nevertheless, the pathway to therapeutic applications still seems to be long. This review attempts to summarize and revisit the available data regarding the plasticity potential of adult neural stem cells and of their normal microenvironment, the neurogenic niche. Recent data have demonstrated that adult neural stem cells retain a high level of pluripotency and that adult neurogenic systems can switch the balance between neurogenesis and gliogenesis and can generate a range of cell types with an efficiency that was not initially expected. Moreover, adult neural stem and precursor cells seem to be able to self-regulate their interaction with the microenvironment and even to contribute to its synthesis, altogether revealing a high level of plasticity potential. The next important step will be to elucidate the factors that limit this plasticity in vivo, and such a restrictive role for the microenvironment is discussed in more details.

  4. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell.

    Directory of Open Access Journals (Sweden)

    Luciano Conti

    2005-09-01

    Full Text Available Pluripotent mouse embryonic stem (ES cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2 and epidermal growth factor (EGF is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying

  5. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Champagnat, J; Denavit-Saubié, M

    1996-01-01

    with the aim of extending the classification of inspiratory neurons to include analysis of active membrane properties. 2. The slice generated a regular rhythmic motor output recorded as burst of action potentials on a XII nerve root with a peak to peak time of 11.5 +/- 3.4 s and a duration of 483 +/- 54 ms......1. The electrophysiological properties of inspiratory neurons were studied in a rhythmically active thick-slice preparation of the newborn mouse brain stem maintained in vitro. Whole cell patch recordings were performed from 60 inspiratory neurons within the rostral ventrolateral part of the slice...

  6. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; van Heerde, Marc; Twisk, Jos W. R.; Plotz, Frans B.; Markhors, Dick G.

    2009-01-01

    Introduction Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  7. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    NARCIS (Netherlands)

    Kneijber, M.C.J.; van Heerde, M.; Twisk, J.W.R.; Plotz, F.; Markhorst, D.G.

    2009-01-01

    Introduction: Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  8. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals.

    Science.gov (United States)

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood-brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p -aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood-brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p -aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells.

  9. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases.

    Science.gov (United States)

    Conese, Massimo; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2013-01-01

    Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders. Copyright © 2013 S. Karger AG, Basel.

  10. A preclinical murine model for the early detection of radiation-induced brain injury using magnetic resonance imaging and behavioral tests for learning and memory: with applications for the evaluation of possible stem cell imaging agents and therapies.

    Science.gov (United States)

    Ngen, Ethel J; Wang, Lee; Gandhi, Nishant; Kato, Yoshinori; Armour, Michael; Zhu, Wenlian; Wong, John; Gabrielson, Kathleen L; Artemov, Dmitri

    2016-06-01

    Stem cell therapies are being developed for radiotherapy-induced brain injuries (RIBI). Magnetic resonance imaging (MRI) offers advantages for imaging transplanted stem cells. However, most MRI cell-tracking techniques employ superparamagnetic iron oxide particles (SPIOs), which are difficult to distinguish from hemorrhage. In current preclinical RIBI models, hemorrhage occurs concurrently with other injury markers. This makes the evaluation of the recruitment of transplanted SPIO-labeled stem cells to injury sites difficult. Here, we developed a RIBI model, with early injury markers reflective of hippocampal dysfunction, which can be detected noninvasively with MRI and behavioral tests. Lesions were generated by sub-hemispheric irradiation of mouse hippocampi with single X-ray beams of 80 Gy. Lesion formation was monitored with anatomical and contrast-enhanced MRI and changes in memory and learning were assessed with fear-conditioning tests. Early injury markers were detected 2 weeks after irradiation. These included an increase in the permeability of the blood-brain barrier, demonstrated by a 92 ± 20 % contrast enhancement of the irradiated versus the non-irradiated brain hemispheres, within 15 min of the administration of an MRI contrast agent. A change in short-term memory was also detected, as demonstrated by a 40.88 ± 5.03 % decrease in the freezing time measured during the short-term memory context test at this time point, compared to that before irradiation. SPIO-labeled stem cells transplanted contralateral to the lesion migrated toward the lesion at this time point. No hemorrhage was detected up to 10 weeks after irradiation. This model can be used to evaluate SPIO-based stem cell-tracking agents, short-term.

  11. Role of brain-derived neurotrophic factor in the excitatory-inhibitory imbalance during the critical period of postnatal respiratory development in the rat.

    Science.gov (United States)

    Gao, Xiu-Ping; Zhang, Hanmeng; Wong-Riley, Margaret

    2015-11-01

    The critical period of respiratory development in rats is a narrow window toward the end of the second postnatal week (P12-13), when abrupt neurochemical, electrophysiological, and ventilatory changes occur, when inhibition dominates over excitation, and when the animals' response to hypoxia is the weakest. The goal of this study was to further test our hypothesis that a major mechanism underlying the synaptic imbalance during the critical period is a reduced expression of brain-derived neurotrophic factor (BDNF) and its TrkB receptors. Our aims were to determine (1) that the inhibitory dominance observed in hypoglossal motoneurons during the critical period was also demonstrable in a key respiratory chemosensor, NTSVL; (2) if in vivo application of a TrkB agonist, 7,8-DHF, would prevent, but a TrkB antagonist, ANA-12, would accentuate the synaptic imbalance; and (3) if hypoxia would also heighten the imbalance. Our results indicate that (1) the synaptic imbalance was evident in the NTSVL during the critical period; (2) intraperitoneal injections of 7,8-DHF prevented the synaptic imbalance during the critical period, whereas ANA-12 in vivo accentuated such an imbalance; and (3) acute hypoxia induced the weakest response in both the amplitude and frequency of sEPSCs during the critical period, but it increased the frequency of sIPSCs during the critical period. Thus, our findings are consistent with and strengthen our hypothesis that BDNF and TrkB play a significant role in inducing a synaptic imbalance during the critical period of respiratory development in the rat. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Data on respiratory variables in critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+

    Directory of Open Access Journals (Sweden)

    Dimitris Georgopoulos

    2016-09-01

    Full Text Available The data show respiratory variables in 108 critically ill patients with acute respiratory failure placed on proportional assist ventilation with load adjustable gain factors (PAV+ after at least 36 h on passive mechanical ventilation. PAV+ was continued for 48 h until the patients met pre-defined criteria either for switching to controlled modes or for breathing without ventilator assistance. Data during passive mechanical ventilation and during PAV+ are reported. Data are acquired from the whole population, as well as from patients with and without acute respiratory distress syndrome. The reported variables are tidal volume, driving pressure (ΔP, the difference between static end-inspiratory plateau pressure and positive end-expiratory airway pressure, respiratory system compliance and resistance, and arterial blood gasses. The data are supplemental to our original research article, which described individual ΔP in these patients and examined how it related to ΔP when the same patients were ventilated with passive mechanical ventilation using the currently accepted lung-protective strategy “Driving pressure during assisted mechanical ventilation. Is it controlled by patient brain?” [1]. Keywords: Tidal volume, Compliance, Driving pressure

  13. NJP VOLUME 42 NO 2

    African Journals Online (AJOL)

    PROF. EZECHUKWU

    2015-02-26

    Feb 26, 2015 ... volvement of the amygdala, hippocampus, thalamus and hypothalamus. ... autonomic nervous system(ANS) nuclei in the brain stem from ... The cerebral cortex influences these divisions ... recorded respiratory movements, skin temperature and ... suffering from complex partial seizures of temporal lobe.

  14. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy.

    Science.gov (United States)

    Wei, Zheng Z; Zhu, Yan-Bing; Zhang, James Y; McCrary, Myles R; Wang, Song; Zhang, Yong-Bo; Yu, Shan-Ping; Wei, Ling

    2017-10-05

    Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: "stem cells," "hypoxic preconditioning," "ischemic preconditioning," and "cell transplantation." Original articles and critical reviews on the topics were selected. Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.

  15. Stem Cell-Based Therapies for Polyglutamine Diseases.

    Science.gov (United States)

    Mendonça, Liliana S; Onofre, Isabel; Miranda, Catarina Oliveira; Perfeito, Rita; Nóbrega, Clévio; de Almeida, Luís Pereira

    2018-01-01

    Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders with very heterogeneous clinical presentations, although with common features such as progressive neuronal death. Thus, at the time of diagnosis patients might present an extensive and irreversible neuronal death demanding cell replacement or support provided by cell-based therapies. For this purpose stem cells, which include diverse populations ranging from embryonic stem cells (ESCs), to fetal stem cells, mesenchymal stromal cells (MSCs) or induced pluripotent stem cells (iPSCs) have remarkable potential to promote extensive brain regeneration and recovery in neurodegenerative disorders. This regenerative potential has been demonstrated in exciting pre and clinical assays. However, despite these promising results, several drawbacks are hampering their successful clinical implementation. Problems related to ethical issues, quality control of the cells used and the lack of reliable models for the efficacy assessment of human stem cells. In this chapter the main advantages and disadvantages of the available sources of stem cells as well as their efficacy and potential to improve disease outcomes are discussed.

  16. Pivotal Role of Brain-Derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats.

    Science.gov (United States)

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon

    2017-01-24

    Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.

  17. Cellular modulation of polymeric device surfaces: promise of adult stem cells for neuroprosthetics

    Directory of Open Access Journals (Sweden)

    Anja eRichter

    2011-10-01

    Full Text Available Minimizing the foreign body response is seen as one critical research strategy for implants especially when designed for immune-privileged organs like the brain. The context of this work is to improve deep brain stimulating devices used in a consistently growing spectrum of psychomotoric and psychiatric diseases mainly in form of stiff electrodes. Based on the compliance match hypothesis of biocompatibility we present another step forward using flexible implant materials covered with brain-mimicking layers. Therefore we covered two types of flexible polyimide films with glandular stem cells derived from pancreatic acini. Using Real Time-PCR and fluorescent immunocytochemistry we analyzed markers representing various cell types of all three germ layers and stemness. The results demonstrate on mRNA and protein level the unchanged differentiation potential of the cells on the polyimides. We additionally developed a fibrinous hydrogel coating to protect them against shear forces upon eventual implantation. By repeating previous analysis and additional metabolism tests for all stages we corroborate the validity of this improvement. Consequently we assume that a stem cell cover may provide a native, fully and actively integrating brain-mimicking interface to the neuropil.

  18. Homing and Tracking of Iron Oxide Labelled Mesenchymal Stem Cells After Infusion in Traumatic Brain Injury Mice: a Longitudinal In Vivo MRI Study.

    Science.gov (United States)

    Mishra, Sushanta Kumar; Khushu, Subash; Singh, Ajay K; Gangenahalli, Gurudutta

    2018-06-17

    Stem cells transplantation has emerged as a promising alternative therapeutic due to its potency at injury site. The need to monitor and non-invasively track the infused stem cells is a significant challenge in the development of regenerative medicine. Thus, in vivo tracking to monitor infused stem cells is especially vital. In this manuscript, we have described an effective in vitro labelling method of MSCs, a serial in vivo tracking of implanted stem cells at traumatic brain injury (TBI) site through 7 T magnetic resonance imaging (MRI). Proper homing of infused MSCs was carried out at different time points using histological analysis and Prussian blue staining. Longitudinal in vivo tracking of infused MSCs were performed up to 21 days in different groups through MRI using relaxometry technique. Results demonstrated that MSCs incubated with iron oxide-poly-L-lysine complex (IO-PLL) at a ratio of 50:1.5 μg/ml and a time period of 6 h was optimised to increase labelling efficiency. T2*-weighted images and relaxation study demonstrated a significant signal loss and effective decrease in transverse relaxation time on day-3 at injury site after systemic transplantation, revealed maximum number of stem cells homing to the lesion area. MRI results further correlate with histological and Prussian blue staining in different time periods. Decrease in negative signal and increase in relaxation times were observed after day-14, may indicate damage tissue replacement with healthy tissue. MSCs tracking with synthesized negative contrast agent represent a great advantage during both in vitro and in vivo analysis. The proposed absolute bias correction based relaxometry analysis could be extrapolated for stem cell tracking and therapies in various neurodegenerative diseases.

  19. Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture

    Directory of Open Access Journals (Sweden)

    Maria Angeles Marques-Torrejon

    2018-02-01

    Full Text Available Glioblastoma multiforme (GBM is an aggressive incurable brain cancer. The cells that fuel the growth of tumours resemble neural stem cells found in the developing and adult mammalian forebrain. These are referred to as glioma stem cells (GSCs. Similar to neural stem cells, GSCs exhibit a variety of phenotypic states: dormant, quiescent, proliferative and differentiating. How environmental cues within the brain influence these distinct states is not well understood. Laboratory models of GBM can be generated using either genetically engineered mouse models, or via intracranial transplantation of cultured tumour initiating cells (mouse or human. Unfortunately, these approaches are expensive, time-consuming, low-throughput and ill-suited for monitoring live cell behaviours. Here, we explored whole adult brain coronal organotypic slices as an alternative model. Mouse adult brain slices remain viable in a serum-free basal medium for several weeks. GSCs can be easily microinjected into specific anatomical sites ex vivo, and we demonstrate distinct responses of engrafted GSCs to diverse microenvironments in the brain tissue. Within the subependymal zone – one of the adult neural stem cell niches – injected tumour cells could effectively engraft and respond to endothelial niche signals. Tumour-transplanted slices were treated with the antimitotic drug temozolomide as proof of principle of the utility in modelling responses to existing treatments. Engraftment of mouse or human GSCs onto whole brain coronal organotypic brain slices therefore provides a simplified, yet flexible, experimental model. This will help to increase the precision and throughput of modelling GSC-host brain interactions and complements ongoing in vivo studies. This article has an associated First Person interview with the first author of the paper.

  20. Brain mitochondrial function in a murine model of cerebral malaria and the therapeutic effects of rhEPO

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hempel, Casper; Sjövall, Fredrik

    2013-01-01

    and no connection between disease severity and mitochondrial respiratory function. Treatment with rhEPO similarly had no effect on respiratory function. Thus cerebral metabolic dysfunction in CM does not seem to be directly linked to altered mitochondrial respiratory capacity as analyzed in brain homogenates ex...

  1. Brain volume reductions in adolescent heavy drinkers.

    Science.gov (United States)

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (pteens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (pbrain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  2. Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats.

    Science.gov (United States)

    Amini, Naser; Vousooghi, Nasim; Hadjighassem, Mahmoudreza; Bakhtiyari, Mehrdad; Mousavi, Neda; Safakheil, Hosein; Jafari, Leila; Sarveazad, Arash; Yari, Abazar; Ramezani, Sara; Faghihi, Faezeh; Joghataei, Mohammad Taghi

    2016-05-01

    Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit.

  3. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  4. Acute Fibrinous and Organizing Pneumonia Associated With Allogenic Hematopoietic Stem Cell Transplant Successfully Treated With Corticosteroids

    Directory of Open Access Journals (Sweden)

    Lam-Phuong Nguyen DO

    2016-04-01

    Full Text Available Acute fibrinous and organizing pneumonia (AFOP is an extremely rare, relatively new, and distinct histological pattern of acute lung injury characterized predominately by the presence of intra-alveolar fibrin and associated organizing pneumonia. AFOP may be idiopathic or associated with a wide spectrum of clinical conditions. It has a variable clinical presentation from mild respiratory symptoms to that similar to the acute respiratory distress syndrome. Currently there is no consensus on treatment, and corticosteroids previously were of unclear benefit. To date, there are less than 40 cases of AFOP reported in the literature and only one has been linked to hematopoietic stem cell transplantation. Here we report the first case series of 2 patients who developed AFOP following allogenic stem cell transplant that were successfully treated with high-dose corticosteroids.

  5. Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity.

    Science.gov (United States)

    Conese, Massimo; Piro, Donatella; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2014-01-01

    Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.

  6. Respiratory function after lesions in medulla oblongata.

    Science.gov (United States)

    Woischneck, Dieter; Kapapa, Thomas; Heissler, Hans E; Reissberg, Steffen; Skalej, Martin; Firsching, Raimund

    2009-12-01

    To evaluate the correlation of lesions of the brain as visualized in cranial magnetic resonance imaging (MRI) and the ability of spontaneous respiration. In a prospective concept, cranial MRI after traumatic brain injury or spontaneous intracerebral hemorrhage was performed in 250 subjects at an early stage. All MRI findings were correlated with respiratory conditions on the day of examination. Sedation was performed only to facilitate toleration of the artificial ventilation, as and when necessary. Spontaneous respiration could hence be registered clinically. Thirteen subjects (5.2%) had no spontaneous respiration. In these cases, a bilateral lesion of the distal medulla oblongata could be displayed. In four of these cases, no additional injuries of the brainstem were detected. These subjects awoke 2 days after the impact with tetraparesis and apnea. Combined lesions of the medulla oblongata and other brainstem regions were found in nine subjects. All these patients died without awakening. In the absence of a bilateral lesion of the caudal medulla oblongata, spontaneous respiration was always possible. A unilateral lesion of the caudal medulla oblongata was visualized in one patient who had the ability of spontaneous respiration. This work confirms the presence of autonomous respiratory centers within the caudal medulla oblongata that allows sufficient adequate respiration in coma. Respiration ceases in the presence of a bilateral lesion of this area.

  7. μ opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and suppresses post-inspiratory drive.

    Science.gov (United States)

    Levitt, Erica S; Abdala, Ana P; Paton, Julian F R; Bissonnette, John M; Williams, John T

    2015-10-01

    In addition to reductions in respiratory rate, opioids also cause aspiration and difficulty swallowing, indicating impairment of the upper airways. The Kölliker-Fuse (KF) maintains upper airway patency and a normal respiratory pattern. In this study, activation of μ opioid receptors in the KF reduced respiratory frequency and tidal volume in anaesthetized rats. Nerve recordings in an in situ preparation showed that activation of μ opioid receptors in the KF eliminated the post-inspiration phase of the respiratory cycle. In brain slices, μ opioid agonists hyperpolarized a distinct population (61%) of KF neurons by activation of an inwardly rectifying potassium conductance. These results suggest that KF neurons that are hyperpolarized by opioids could contribute to opioid-induced respiratory disturbances, particularly the impairment of upper airways. Opioid-induced respiratory effects include aspiration and difficulty swallowing, suggesting impairment of the upper airways. The pontine Kölliker-Fuse nucleus (KF) controls upper airway patency and regulates respiration, in particular the inspiratory/expiratory phase transition. Given the importance of the KF in coordinating respiratory pattern, the mechanisms of μ opioid receptor activation in this nucleus were investigated at the systems and cellular level. In anaesthetized, vagi-intact rats, injection of opioid agonists DAMGO or [Met(5) ]enkephalin (ME) into the KF reduced respiratory frequency and amplitude. The μ opioid agonist DAMGO applied directly into the KF of the in situ arterially perfused working heart-brainstem preparation of rat resulted in robust apneusis (lengthened low amplitude inspiration due to loss of post-inspiratory drive) that was rapidly reversed by the opioid antagonist naloxone. In brain slice preparations, activation of μ opioid receptors on KF neurons hyperpolarized a distinct population (61%) of neurons. As expected, the opioid-induced hyperpolarization reduced the excitability of

  8. The use of radionuclides in brain scan

    International Nuclear Information System (INIS)

    Boasquevisque, E.M.

    1979-01-01

    Brain scanning is easy to perform, safe and well tolerated by the patient. It has a high sensitivity, and accuracy (85-90%) in detecting focal lesions with a minimal size of 1.5-2cm, located superior to the brain stem; however, it lacks specificity. It does not compete with other procedures such as CT scan and angiography bit they rather complement one another. The brain scan is useful as a screening exam. (Author) [pt

  9. [Acid-base equilibrium and the brain].

    Science.gov (United States)

    Rabary, O; Boussofara, M; Grimaud, D

    1994-01-01

    In physiological conditions, the regulation of acid-base balance in brain maintains a noteworthy stability of cerebral pH. During systemic metabolic acid-base imbalances cerebral pH is well controlled as the blood/brain barrier is slowly and poorly permeable to electrolytes (HCO3- and H+). Cerebral pH is regulated by a modulation of the respiratory drive, triggered by the early alterations of interstitial fluid pH, close to medullary chemoreceptors. As blood/brain barrier is highly permeable to Co2, CSF pH is corrected in a few hours, even in case of severe metabolic acidosis and alkalosis. Conversely, during ventilatory acidosis and alkalosis the cerebral pH varies in the same direction and in the same range than blood pH. Therefore, the brain is better protected against metabolic than ventilatory acid-base imbalances. Ventilatory acidosis and alkalosis are able to impair cerebral blood flow and brain activity through interstitial pH alterations. During respiratory acidosis, [HCO3-] increases in extracellular fluids to control cerebral pH by two main ways: a carbonic anhydrase activation at the blood/brain and blood/CSF barriers level and an increase in chloride shift in glial cells (HCO3- exchanged for Cl-). During respiratory alkalosis, [HCO3-] decreases in extracellular fluids by the opposite changes in HCO3- transport and by an increase in lactic acid synthesis by cerebral cells. The treatment of metabolic acidosis with bicarbonates may induce a cerebral acidosis and worsen a cerebral oedema during ketoacidosis. Moderate hypocapnia carried out to treat intracranial hypertension is mainly effective when cerebral blood flow is high and vascular CO2 reactivity maintained. Hypocapnia may restore an altered cerebral blood flow autoregulation. Instrumental hypocapnia requires a control of cerebral perfusion pressure and cerebral arteriovenous difference for oxygen, to select patients for whom this kind of treatment may be of benefit, to choose the optimal level of

  10. Presenilins are required for maintenance of neural stem cells in the developing brain

    Directory of Open Access Journals (Sweden)

    Kim Woo-Young

    2008-01-01

    Full Text Available Abstract The early embryonic lethality of mutant mice bearing germ-line deletions of both presenilin genes precluded the study of their functions in neural development. We therefore employed the Cre-loxP technology to generate presenilin conditional double knockout (PS cDKO mice, in which expression of both presenilins is inactivated in neural progenitor cells (NPC or neural stem cells and their derivative neurons and glia beginning at embryonic day 11 (E11. In PS cDKO mice, dividing NPCs labeled by BrdU are decreased in number beginning at E13.5. By E15.5, fewer than 20% of NPCs remain in PS cDKO mice. The depletion of NPCs is accompanied by severe morphological defects and hemorrhages in the PS cDKO embryonic brain. Interkinetic nuclear migration of NPCs is also disrupted in PS cDKO embryos, as evidenced by displacement of S-phase and M-phase nuclei in the ventricular zone of the telencephalon. Furthermore, the depletion of neural progenitor cells in PS cDKO embryos is due to NPCs exiting cell cycle and differentiating into neurons rather than reentering cell cycle between E13.5 and E14.5 following PS inactivation in most NPCs. The length of cell cycle, however, is unchanged in PS cDKO embryos. Expression of Notch target genes, Hes1 and Hes5, is significantly decreased in PS cDKO brains, whereas Dll1 expression is up-regulated, indicating that Notch signaling is effectively blocked by PS inactivation. These findings demonstrate that presenilins are essential for neural progenitor cells to re-enter cell cycle and thus ensure proper expansion of neural progenitor pool during embryonic neural development.

  11. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  12. Review: the development of neural stem cell biology and technology in regenerative medicine

    OpenAIRE

    Shanmuganathan, Divyanjali; Sivakumaran, Nivethika

    2018-01-01

    In the middle of the last century, it has been known that neural stem cells (NSCs) play a key role in regenerative medicine to cure the neurodegenerative disease. This review article covers about the introduction to neural stem cell biology and the isolation, differentiation and transplantation methods/techniques of neural stem cells. The neural stem cells can be transplanted into the human brain in the future to replace the damaged and dead neurons. The highly limited access to embryonic ste...

  13. Pitfalls in diagnosing brain death in infancy

    International Nuclear Information System (INIS)

    Toffol, G.J.; Lansky, L.L.; Hughes, J.R.; Blend, M.J.; Pavel, D.G.; Kecskes, S.A.; Ortega, R.E.; Tan, W.S.

    1987-01-01

    A 3-year-old child with phenotypic trisomy 18 syndrome survived 26 days after a cardiopulmonary arrest, secondary to an acute viral illness. The child was deeply comatose. No barbiturates, other sedatives, or aminoglycoside antibiotics had been recently administered. The child was normothermic with adequate cardiovascular function. Brain stem function was absent, as assessed by testing of brain stem reflexes. Serial cerebral radionuclide angiograms (CRAG) documented intact cerebral blood flow while electrocerebral silence (ECS) was present on two consecutive EEG recordings within 24 hours. Preservation of intracranial circulation was confirmed by rapid rotational computed tomographic (CT) scans. Cranial CT scans also revealed communicating hydrocephalus, and bilateral basal ganglia hemorrhages. This unusual case illustrates discordance between apparent irreversible loss of cortical function as indicated by electrocerebral silence with preserved cerebral blood flow. The implications of these apparent paradoxical events will be discussed in the context of defining brain death in children

  14. Brain-lung crosstalk in critical care: how protective mechanical ventilation can affect the brain homeostasis.

    Science.gov (United States)

    Mazzeo, A T; Fanelli, V; Mascia, L

    2013-03-01

    The maintenance of brain homeostasis against multiple internal and external challenges occurring during the acute phase of acute brain injury may be influenced by critical care management, especially in its respiratory, hemodynamic and metabolic components. The occurrence of acute lung injury represents the most frequent extracranial complication after brain injury and deserves special attention in daily practice as optimal ventilatory strategy for patients with acute brain and lung injury are potentially in conflict. Protecting the lung while protecting the brain is thus a new target in the modern neurointensive care. This article discusses the essentials of brain-lung crosstalk and focuses on how mechanical ventilation may exert an active role in the process of maintaining or treatening brain homeostasis after acute brain injury, highlighting the following points: 1) the role of inflammation as common pathomechanism of both acute lung and brain injury; 2) the recognition of ventilatory induced lung injury as determinant of systemic inflammation affecting distal organs, included the brain; 3) the possible implication of protective mechanical ventilation strategy on the patient with an acute brain injury as an undiscovered area of research in both experimental and clinical settings.

  15. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Energy Technology Data Exchange (ETDEWEB)

    Goffart, Nicolas [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Kroonen, Jérôme [Human Genetics, CHU and University of Liège, Liège 4000 (Belgium); The T& P Bohnenn Laboratory for Neuro-Oncology, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht 3556 (Netherlands); Rogister, Bernard, E-mail: Bernard.Register@ulg.ac.be [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Department of Neurology, CHU and University of Liège, Liège 4000 (Belgium); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège 4000 (Belgium)

    2013-08-14

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  16. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    International Nuclear Information System (INIS)

    Goffart, Nicolas; Kroonen, Jérôme; Rogister, Bernard

    2013-01-01

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology

  17. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Directory of Open Access Journals (Sweden)

    Nicolas Goffart

    2013-08-01

    Full Text Available Glioblastoma multiforme (GBM, WHO grade IV is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  18. How closely does stem growth of adult beech (Fagus sylvatica) relate to net carbon gain under experimentally enhanced ozone stress?

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Winkler, J. Barbro; Löw, Markus; Nunn, Angela J.; Kuptz, Daniel; Häberle, Karl-Heinz; Reiter, Ilja M.; Matyssek, Rainer

    2012-01-01

    The hypothesis was tested that O 3 -induced changes in leaf-level photosynthetic parameters have the capacity of limiting the seasonal photosynthetic carbon gain of adult beech trees. To this end, canopy-level photosynthetic carbon gain and respiratory carbon loss were assessed in European beech (Fagus sylvatica) by using a physiologically based model, integrating environmental and photosynthetic parameters. The latter were derived from leaves at various canopy positions under the ambient O 3 regime, as prevailing at the forest site (control), or under an experimental twice-ambient O 3 regime (elevated O 3 ), as released through a free-air canopy O 3 fumigation system. Gross carbon gain at the canopy-level declined by 1.7%, while respiratory carbon loss increased by 4.6% under elevated O 3 . As this outcome only partly accounts for the decline in stem growth, O 3 -induced changes in allocation are referred to and discussed as crucial in quantitatively linking carbon gain with stem growth. - Highlights: ► We model O 3 -induced changes in the photosynthetic carbon gain of adult beech trees. ► Elevated O 3 decreases gross carbon gain but increases respiratory carbon loss. ► Reduction in net carbon gain only partly accounts for the decline in stem growth. ► O 3 effects on the whole-tree allocation is crucial in addition to carbon gains. - Reduction in net carbon gain at the canopy level only partly accounts for the decline in stem growth under elevated ozone.

  19. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  20. Hematopoietic and Mesenchymal Stem Cells for the Treatment of Chronic Respiratory Diseases: Role of Plasticity and Heterogeneity

    Directory of Open Access Journals (Sweden)

    Massimo Conese

    2014-01-01

    Full Text Available Chronic lung diseases, such as cystic fibrosis (CF, asthma, and chronic obstructive pulmonary disease (COPD are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs and mesenchymal stromal (stem cells (MSCs, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.

  1. Viral Pneumonia in Patients with Hematologic Malignancy or Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vakil, Erik; Evans, Scott E

    2017-03-01

    Viral pneumonias in patients with hematologic malignancies and recipients of hematopoietic stem cell transplantation cause significant morbidity and mortality. Advances in diagnostic techniques have enabled rapid identification of respiratory viral pathogens from upper and lower respiratory tract samples. Lymphopenia, myeloablative and T-cell depleting chemotherapy, graft-versus-host disease, and other factors increase the risk of developing life-threatening viral pneumonia. Chest imaging is often nonspecific but may aid in diagnoses. Bronchoscopy with bronchoalveolar lavage is recommended in those at high risk for viral pneumonia who have new infiltrates on chest imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Regional Susceptibility to Domoic Acid in Primary Astrocyte Cells Cultured from the Brain Stem and Hippocampus

    Directory of Open Access Journals (Sweden)

    Olga M. Pulido

    2008-02-01

    Full Text Available Domoic acid is a marine biotoxin associated with harmful algal blooms and is the causative agent of amnesic shellfish poisoning in marine animals and humans. It is also an excitatory amino acid analog to glutamate and kainic acid which acts through glutamate receptors eliciting a very rapid and potent neurotoxic response. The hippocampus, among other brain regions, has been identified as a specific target site having high sensitivity to DOM toxicity. Histopathology evidence indicates that in addition to neurons, the astrocytes were also injured. Electron microscopy data reported in this study further supports the light microscopy findings. Furthermore, the effect of DOM was confirmed by culturing primary astrocytes from the hippocampus and the brain stem and subsequently exposing them to domoic acid. The RNA was extracted and used for biomarker analysis. The biomarker analysis was done for the early response genes including c-fos, c-jun, c-myc, Hsp-72; specific marker for the astrocytes- GFAP and the glutamate receptors including GluR 2, NMDAR 1, NMDAR 2A and B. Although, the astrocyte-GFAP and c-fos were not affected, c-jun and GluR 2 were down-regulated. The microarray analysis revealed that the chemokines / cytokines, tyrosine kinases (Trk, and apoptotic genes were altered. The chemokines that were up-regulated included - IL1-a, IL-1B, IL-6, the small inducible cytokine, interferon protein IP-10, CXC chemokine LIX, and IGF binding proteins. The Bax, Bcl-2, Trk A and Trk B were all downregulated. Interestingly, only the hippocampal astrocytes were affected. Our findings suggest that astrocytes may present a possible target for pharmacological interventions for the prevention and treatment of amnesic shellfish poisoning and for other brain pathologies involving excitotoxicity

  3. Metformin and Ara-a Effectively Suppress Brain Cancer by Targeting Cancer Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Tarek H. Mouhieddine

    2015-11-01

    Full Text Available Background: Gliomas and neuroblastomas pose a great health burden worldwide with a poor and moderate prognosis, respectively. Many studies have tried to find effective treatments for these primary malignant brain tumors. Of interest, the AMP-activated protein kinase (AMPK pathway was found to be associated with tumorigenesis and tumor survival, leading to many studies on AMPK drugs, especially Metformin, and their potential role as anti-cancer treatments. Cancer stem cells (CSCs are a small population of slowly-dividing, treatment-resistant, undifferentiated cancer cells that are being discovered in a multitude of cancers. They are thought to be responsible for replenishing the tumor with highly proliferative cells and increasing the risk of recurrence. Methods: Metformin and 9-β-d-Arabinofuranosyl Adenine (Ara-a were used to study the role of the AMPK pathway in vitro on U251 (glioblastoma and SHSY-5Y (neuroblastoma cell lines.Results: We found that both drugs are able to decrease the survival of U251 and SH-SY5Y cell lines in a 2D as well as a 3D culture model. Metformin and Ara-a significantly decreased the invasive ability of these cancer cell lines. Treatment with these drugs decreased the sphere-forming units (SFU of U251 cells, with Ara-a being more efficient, signifying the extinction of the CSC population. However, if treatment is withdrawn before all SFUs are extinguished, the CSCs regain some of their sphere-forming capabilities in the case of Metformin but not Ara-a treatment. Conclusion: Metformin and Ara-a have proved to be effective in the treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer stem/progenitor cell population, which prevents recurrence.

  4. HM-PAO-SPECT of the brain in a new-born child

    Energy Technology Data Exchange (ETDEWEB)

    Gruenwald, F.; Biersack, H.J.; Bindl, L.

    1988-08-01

    HM-PAO-SPECT of the brain was performed in a 14 days old new-born child. Diencephalon, brain stem and cerebellum showed a relative high tracer accumulation; there was nearly no accumulation in the neocortex.

  5. A role for adult TLX-positive neural stem cells in learning and behaviour.

    Science.gov (United States)

    Zhang, Chun-Li; Zou, Yuhua; He, Weimin; Gage, Fred H; Evans, Ronald M

    2008-02-21

    Neurogenesis persists in the adult brain and can be regulated by a plethora of external stimuli, such as learning, memory, exercise, environment and stress. Although newly generated neurons are able to migrate and preferentially incorporate into the neural network, how these cells are molecularly regulated and whether they are required for any normal brain function are unresolved questions. The adult neural stem cell pool is composed of orphan nuclear receptor TLX-positive cells. Here, using genetic approaches in mice, we demonstrate that TLX (also called NR2E1) regulates adult neural stem cell proliferation in a cell-autonomous manner by controlling a defined genetic network implicated in cell proliferation and growth. Consequently, specific removal of TLX from the adult mouse brain through inducible recombination results in a significant reduction of stem cell proliferation and a marked decrement in spatial learning. In contrast, the resulting suppression of adult neurogenesis does not affect contextual fear conditioning, locomotion or diurnal rhythmic activities, indicating a more selective contribution of newly generated neurons to specific cognitive functions.

  6. Diffusion of intracerebrally injected [1-14C]arachidonic acid and [2-3H]glycerol in the mouse brain. Effects of ischemia and electroconvulsive shock

    International Nuclear Information System (INIS)

    Pediconi, M.F.; Rodriguez de Turco, E.B.; Bazan, N.G.

    1982-01-01

    [2- 3 H]Glycerol and [1- 14 C]arachidonic acid were injected into the region of the frontal horn of the left ventricle of mice and were distributed rapidly throughout the brain. After 10 sec, most of the radioactive fatty acid was found in the hemisphere near the injection site; after 10 min, it was recovered in similar proportions in the cerebellum and brain stem. [2- 3 H]Glycerol showed a heterogeneous distribution, with most of the label remaining in the left hemisphere even after 10 min. On a fresh weight basis, cerebrum, cerebellum, and brain stem were found to contain similar amounts of labeled glycerol. However, the amount of [1- 14 C]arachidonate in cerebrum was only 50% of that recovered from cerebellum or brain stem. Brain ischemia or a single electroconvulsive shock reduced the spread of the label, producing an accumulation of radioactivity in the injected hemisphere, except for an increase in [2- 3 H]glycerol in the brain stem during ischemia. Despite the significant decrease in available precursor in the cerebellum and brain stem after electroshock, the amount of label incorporated into lipids was not altered in these areas and only slightly diminished in the cerebrum

  7. Grounded understanding of abstract concepts: The case of STEM learning.

    Science.gov (United States)

    Hayes, Justin C; Kraemer, David J M

    2017-01-01

    Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.

  8. A novel swine model of ricin-induced acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Shahaf Katalan

    2017-02-01

    Full Text Available Pulmonary exposure to the plant toxin ricin leads to respiratory insufficiency and death. To date, in-depth study of acute respiratory distress syndrome (ARDS following pulmonary exposure to toxins is hampered by the lack of an appropriate animal model. To this end, we established the pig as a large animal model for the comprehensive study of the multifarious clinical manifestations of pulmonary ricinosis. Here, we report for the first time, the monitoring of barometric whole body plethysmography for pulmonary function tests in non-anesthetized ricin-treated pigs. Up to 30 h post-exposure, as a result of progressing hypoxemia and to prevent carbon dioxide retention, animals exhibited a compensatory response of elevation in minute volume, attributed mainly to a large elevation in respiratory rate with minimal response in tidal volume. This response was followed by decompensation, manifested by a decrease in minute volume and severe hypoxemia, refractory to oxygen treatment. Radiological evaluation revealed evidence of early diffuse bilateral pulmonary infiltrates while hemodynamic parameters remained unchanged, excluding cardiac failure as an explanation for respiratory insufficiency. Ricin-intoxicated pigs suffered from increased lung permeability accompanied by cytokine storming. Histological studies revealed lung tissue insults that accumulated over time and led to diffuse alveolar damage. Charting the decline in PaO2/FiO2 ratio in a mechanically ventilated pig confirmed that ricin-induced respiratory damage complies with the accepted diagnostic criteria for ARDS. The establishment of this animal model of pulmonary ricinosis should help in the pursuit of efficient medical countermeasures specifically tailored to deal with the respiratory deficiencies stemming from ricin-induced ARDS.

  9. Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T.; Gage, Fred H.; Evans, Ronald M.; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a β-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active β-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active β-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active β-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/β-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode. PMID:20010817

  10. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  11. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells.

    Science.gov (United States)

    Bernal, Giovanna M; Peterson, Daniel A

    2011-06-01

    Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  12. Optimization behavior of brainstem respiratory neurons. A cerebral neural network model.

    Science.gov (United States)

    Poon, C S

    1991-01-01

    A recent model of respiratory control suggested that the steady-state respiratory responses to CO2 and exercise may be governed by an optimal control law in the brainstem respiratory neurons. It was not certain, however, whether such complex optimization behavior could be accomplished by a realistic biological neural network. To test this hypothesis, we developed a hybrid computer-neural model in which the dynamics of the lung, brain and other tissue compartments were simulated on a digital computer. Mimicking the "controller" was a human subject who pedalled on a bicycle with varying speed (analog of ventilatory output) with a view to minimize an analog signal of the total cost of breathing (chemical and mechanical) which was computed interactively and displayed on an oscilloscope. In this manner, the visuomotor cortex served as a proxy (homolog) of the brainstem respiratory neurons in the model. Results in 4 subjects showed a linear steady-state ventilatory CO2 response to arterial PCO2 during simulated CO2 inhalation and a nearly isocapnic steady-state response during simulated exercise. Thus, neural optimization is a plausible mechanism for respiratory control during exercise and can be achieved by a neural network with cognitive computational ability without the need for an exercise stimulus.

  13. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    Science.gov (United States)

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  14. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Maronpot, Robert R; Torres-Jardon, Ricardo; Henríquez-Roldán, Carlos; Schoonhoven, Robert; Acuña-Ayala, Hilda; Villarreal-Calderón, Anna; Nakamura, Jun; Fernando, Reshan; Reed, William; Azzarelli, Biagio; Swenberg, James A

    2003-01-01

    Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NFkappaB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid(1-42) in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days-10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NFkappaB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and beta amyloid(1-42) in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer

  15. Respiratory acidosis

    Science.gov (United States)

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and COPD ) Diseases of the lung tissue (such as ...

  16. Fatal outcome after brain stem infarction related to bilateral vertebral artery occlusion - case report of a detrimental complication of cervical spine trauma

    Directory of Open Access Journals (Sweden)

    Beauchamp Kathryn M

    2011-07-01

    Full Text Available Abstract Background Vertebral artery injury (VAI after blunt cervical trauma occurs more frequently than historically believed. The symptoms due to vertebral artery (VA occlusion usually manifest within the first 24 hours after trauma. Misdiagnosed VAI or delay in diagnosis has been reported to cause acute deterioration of previously conscious and neurologically intact patients. Case presentation A 67 year-old male was involved in a motor vehicle crash (MVC sustaining multiple injuries. Initial evaluation by the emergency medical response team revealed that he was alert, oriented, and neurologically intact. He was transferred to the local hospital where cervical spine computed tomography (CT revealed several abnormalities. Distraction and subluxation was present at C5-C6 and a comminuted fracture of the left lateral mass of C6 with violation of the transverse foramen was noted. Unavailability of a spine specialist prompted the patient's transfer to an area medical center equipped with spine care capabilities. After arrival, the patient became unresponsive and neurological deficits were noted. His continued deterioration prompted yet another transfer to our Level 1 regional trauma center. A repeat cervical spine CT at our institution revealed significantly worsened subluxation at C5-C6. CT angiogram also revealed complete occlusion of bilateral VA. The following day, a repeat CT of the head revealed brain stem infarction due to bilateral VA occlusion. Shortly following, the patient was diagnosed with brain death and care was withdrawn. Conclusion Brain stem infarction secondary to bilateral VA occlusion following cervical spine trauma resulted in fatal outcome. Prompt imaging evaluation is necessary to assess for VAI in cervical trauma cases with facet joint subluxation/dislocation or transverse foramen fracture so that treatment is not delayed. Additionally, multiple transportation events are risk factors for worsening when unstable cervical

  17. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination.

    Science.gov (United States)

    Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Shi, Yanhong

    2009-04-01

    MicroRNAs have been implicated as having important roles in stem cell biology. MicroRNA-9 (miR-9) is expressed specifically in neurogenic areas of the brain and may be involved in neural stem cell self-renewal and differentiation. We showed previously that the nuclear receptor TLX is an essential regulator of neural stem cell self-renewal. Here we show that miR-9 suppresses TLX expression to negatively regulate neural stem cell proliferation and accelerate neural differentiation. Introducing a TLX expression vector that is not prone to miR-9 regulation rescued miR-9-induced proliferation deficiency and inhibited precocious differentiation. In utero electroporation of miR-9 in embryonic brains led to premature differentiation and outward migration of the transfected neural stem cells. Moreover, TLX represses expression of the miR-9 pri-miRNA. By forming a negative regulatory loop with TLX, miR-9 provides a model for controlling the balance between neural stem cell proliferation and differentiation.

  18. Activity-dependent long-term plasticity of afferent synapses on grafted stem/progenitor cell-derived neurons

    DEFF Research Database (Denmark)

    Sørensen, Andreas Toft; Rogelius, Nina; Lundberg, Cecilia

    2011-01-01

    Stem cell-based cell replacement therapies aiming at restoring injured or diseased brain function ultimately rely on the capability of transplanted cells to promote functional recovery. The mechanisms by which stem cell-based therapies for neurological conditions can lead to functional recovery...

  19. Midbrain and medullary control of postinspiratory activity of the crural and costal diaphragm in vivo

    NARCIS (Netherlands)

    Subramanian, Hari H.; Holstege, Gert

    Subramanian HH, Holstege G. Midbrain and medullary control of postinspiratory activity of the crural and costal diaphragm in vivo. J Neurophysiol 105: 2852-2862, 2011. First published March 30, 2011; doi:10.1152/jn.00168.2011.-Studies on brain stem respiratory neurons suggest that eupnea consists of

  20. Acute respiratory distress syndrome 40 years later: time to revisit its definition.

    Science.gov (United States)

    Phua, Jason; Stewart, Thomas E; Ferguson, Niall D

    2008-10-01

    Acute respiratory distress syndrome is a common disorder associated with significant mortality and morbidity. The aim of this article is to critically evaluate the definition of acute respiratory distress syndrome and examine the impact the definition has on clinical practice and research. Articles from a MEDLINE search (1950 to August 2007) using the Medical Subject Heading respiratory distress syndrome, adult, diagnosis, limited to the English language and human subjects, their relevant bibliographies, and personal collections, were reviewed. The definition of acute respiratory distress syndrome is important to researchers, clinicians, and administrators alike. It has evolved significantly over the last 40 years, culminating in the American-European Consensus Conference definition, which was published in 1994. Although the American-European Consensus Conference definition is widely used, it has some important limitations that may impact on the conduct of clinical research, on resource allocation, and ultimately on the bedside management of such patients. These limitations stem partially from the fact that as defined, acute respiratory distress syndrome is a heterogeneous entity and also involve the reliability and validity of the criteria used in the definition. This article critically evaluates the American-European Consensus Conference definition and its limitations. Importantly, it highlights how these limitations may contribute to clinical trials that have failed to detect a potential true treatment effect. Finally, recommendations are made that could be considered in future definition modifications with an emphasis on the significance of accurately identifying the target population in future trials and subsequently in clinical care. How acute respiratory distress syndrome is defined has a significant impact on the results of randomized, controlled trials and epidemiologic studies. Changes to the current American-European Consensus Conference definition are

  1. A new mitochondrial point mutation in the transfer RNA(Lys) gene associated with progressive external ophthalmoplegia with impaired respiratory regulation.

    Science.gov (United States)

    Wolf, Joachim; Obermaier-Kusser, Bert; Jacobs, Martina; Milles, Cornelia; Mörl, Mario; von Pein, Harald D; Grau, Armin J; Bauer, Matthias F

    2012-05-15

    We report a novel heteroplasmic point mutation G8299A in the gene for mitochondrial tRNA(Lys) in a patient with progressive external ophthalmoplegia complicated by recurrent respiratory insufficiency. Biochemical analysis of respiratory chain complexes in muscle homogenate showed a combined complex I and IV deficiency. The transition does not represent a known neutral polymorphism and affects a position in the tRNA acceptor stem which is conserved in primates, leading to a destabilization of this functionally important domain. In vitro analysis of an essential maturation step of the tRNA transcript indicates the probable pathogenicity of this mutation. We hypothesize that there is a causal relationship between the novel G8299A transition and progressive external ophthalmoplegia with recurrent respiratory failure due to a depressed respiratory drive. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies

    International Nuclear Information System (INIS)

    Barani, Igor J.; Benedict, Stanley H.; Lin, Peck-Sun

    2007-01-01

    Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependent and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy

  3. Respiratory alkalosis

    Science.gov (United States)

    Alkalosis - respiratory ... leads to shortness of breath can also cause respiratory alkalosis (such as pulmonary embolism and asthma). ... Treatment is aimed at the condition that causes respiratory alkalosis. Breathing into a paper bag -- or using ...

  4. Recent Advances in Stem Cell-Based Therapeutics for Stroke

    OpenAIRE

    Napoli, Eleonora; Borlongan, Cesar V.

    2016-01-01

    Regenerative medicine for central nervous system disorders, including stroke, has challenged the non-regenerative capacity of the brain. Among the many treatment strategies tailored towards repairing the injured brain, stem cell-based therapeutics have been demonstrated as safe and effective in animal models of stroke, and are being tested in limited clinical trials. We address here key lab-to-clinic translational research that relate to efficacy, safety, and mechanism of action underlying st...

  5. The brain as a dream state generator: an activation-synthesis hypothesis of the dream process.

    Science.gov (United States)

    Hobson, J A; McCarley, R W

    1977-12-01

    Recent research in the neurobiology of dreaming sleep provides new evidence for possible structural and functional substrates of formal aspects of the dream process. The data suggest that dreaming sleep is physiologically determined and shaped by a brain stem neuronal mechanism that can be modeled physiologically and mathematically. Formal features of the generator processes with strong implications for dream theory include periodicity and automaticity of forebrain activation, suggesting a preprogrammed neural basis for dream mentation in sleep; intense and sporadic activation of brain stem sensorimotor circuits including reticular, oculomotor, and vestibular neurons, possibly determining spatiotemporal aspects of dream imagery; and shifts in transmitter ratios, possibly accounting for dream amnesia. The authors suggest that the automatically activated forebrain synthesizes the dream by comparing information generated in specific brain stem circuits with information stored in memory.

  6. Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment

    International Nuclear Information System (INIS)

    Marsh, James C.; Ziel, Ellis G; Diaz, Aidnag Z; Turian, Julius V; Wendt, Julie A.; Gobole, Rohit

    2013-01-01

    We compared integral dose with uninvolved brain (ID brain ) during partial brain radiotherapy (PBRT) for high-grade glioma patients using helical tomotherapy (HT) and seven field traditional inverse-planned intensity-modulated radiotherapy (IMRT) with and without selective sparing (SPA) of contralateral hippocampus, neural stem cell compartment (NSC) and limbic circuit. We prepared four PBRT treatment plans for four patients with high-grade gliomas (60Gy in 30 fractions delivered to planning treatment volume (PTV60Gy)). For all plans, a structure denoted 'uninvolved brain' was created, which included all brain tissue not part of PTV or standard (STD) organs at risk (OAR). No dosimetric constraints were included for uninvolved brain. Selective SPA plans were prepared with IMRT and HT; contralateral hippocampus, NSC and limbic circuit were contoured; and dosimetric constraints were entered for these structures without compromising dose to PTV or STD OAR. We compared V100 and D95 for PTV46Gy and PTV60Gy, and ID brain for all plans. There were no significant differences in V100 and D95 for PTV46Gy and PTV60Gy. ID brain was lower in traditional IMRT versus HT plans for STD and SPA plans (mean ID brain 23.64Gy vs. 28Gy and 18.7Gy vs. 24.5Gy, respectively) and in SPA versus STD plans both with IMRT and HT (18.7Gy vs. 23.64Gy and 24.5Gy vs. 28Gy, respectively). n the setting of PBRT for high-grade gliomas, IMRT reduces ID brain compared with HT with or without selective SPA of contralateral hippocampus, limbic circuit and NSC, and the use of selective SPA reduces ID brain compared with STD PBRT delivered with either traditional IMRT or HT.

  7. Organoid technology for brain and therapeutics research.

    Science.gov (United States)

    Wang, Zhi; Wang, Shu-Na; Xu, Tian-Ying; Miao, Zhu-Wei; Su, Ding-Feng; Miao, Chao-Yu

    2017-10-01

    Brain is one of the most complex organs in human. The current brain research is mainly based on the animal models and traditional cell culture. However, the inherent species differences between humans and animals as well as the gap between organ level and cell level make it difficult to study human brain development and associated disorders through traditional technologies. Recently, the brain organoids derived from pluripotent stem cells have been reported to recapitulate many key features of human brain in vivo, for example recapitulating the zone of putative outer radial glia cells. Brain organoids offer a new platform for scientists to study brain development, neurological diseases, drug discovery and personalized medicine, regenerative medicine, and so on. Here, we discuss the progress, applications, advantages, limitations, and prospects of brain organoid technology in neurosciences and related therapeutics. © 2017 John Wiley & Sons Ltd.

  8. Selection of reference genes for normalisation of real-time RT-PCR in brain-stem death injury in Ovis aries

    Directory of Open Access Journals (Sweden)

    Fraser John F

    2009-07-01

    Full Text Available Abstract Background Heart and lung transplantation is frequently the only therapeutic option for patients with end stage cardio respiratory disease. Organ donation post brain stem death (BSD is a pre-requisite, yet BSD itself causes such severe damage that many organs offered for donation are unusable, with lung being the organ most affected by BSD. In Australia and New Zealand, less than 50% of lungs offered for donation post BSD are suitable for transplantation, as compared with over 90% of kidneys, resulting in patients dying for lack of suitable lungs. Our group has developed a novel 24 h sheep BSD model to mimic the physiological milieu of the typical human organ donor. Characterisation of the gene expression changes associated with BSD is critical and will assist in determining the aetiology of lung damage post BSD. Real-time PCR is a highly sensitive method involving multiple steps from extraction to processing RNA so the choice of housekeeping genes is important in obtaining reliable results. Little information however, is available on the expression stability of reference genes in the sheep pulmonary artery and lung. We aimed to establish a set of stably expressed reference genes for use as a standard for analysis of gene expression changes in BSD. Results We evaluated the expression stability of 6 candidate normalisation genes (ACTB, GAPDH, HGPRT, PGK1, PPIA and RPLP0 using real time quantitative PCR. There was a wide range of Ct-values within each tissue for pulmonary artery (15–24 and lung (16–25 but the expression pattern for each gene was similar across the two tissues. After geNorm analysis, ACTB and PPIA were shown to be the most stably expressed in the pulmonary artery and ACTB and PGK1 in the lung tissue of BSD sheep. Conclusion Accurate normalisation is critical in obtaining reliable and reproducible results in gene expression studies. This study demonstrates tissue associated variability in the selection of these

  9. The use of stem cells in regenerative medicine for Parkinson's and Huntington's Diseases.

    Science.gov (United States)

    Lescaudron, L; Naveilhan, P; Neveu, I

    2012-01-01

    Cell transplantation has been proposed as a means of replacing specific cell populations lost through neurodegenerative processes such as that seen in Parkinson's or Huntington's diseases. Improvement of the clinical symptoms has been observed in a number of Parkinson and Huntington's patients transplanted with freshly isolated fetal brain tissue but such restorative approach is greatly hampered by logistic and ethical concerns relative to the use of fetal tissue, in addition to potential side effects that remain to be controlled. In this context, stem cells that are capable of self-renewal and can differentiate into neurons, have received a great deal of interest, as demonstrated by the numerous studies based on the transplantation of neural stem/progenitor cells, embryonic stem cells or mesenchymal stem cells into animal models of Parkinson's or Huntington's diseases. More recently, the induction of pluripotent stem cells from somatic adult cells has raised a new hope for the treatment of neurodegenerative diseases. In the present article, we review the main experimental approaches to assess the efficiency of cell-based therapy for Parkinson's or Huntington's diseases, and discuss the recent advances in using stem cells to replace lost dopaminergic mesencephalic or striatal neurons. Characteristics of the different stem cells are extensively examined with a special attention to their ability of producing neurotrophic or immunosuppressive factors, as these may provide a favourable environment for brain tissue repair and long-term survival of transplanted cells in the central nervous system. Thus, stem cell therapy can be a valuable tool in regenerative medicine.

  10. The longest telomeres: a general signature of adult stem cell compartments

    Science.gov (United States)

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  11. dp53 Restrains ectopic neural stem cell formation in the Drosophila brain in a non-apoptotic mechanism involving Archipelago and cyclin E.

    Directory of Open Access Journals (Sweden)

    Yingshi Ouyang

    Full Text Available Accumulating evidence suggests that tumor-initiating stem cells or cancer stem cells (CSCs possibly originating from normal stem cells may be the root cause of certain malignancies. How stem cell homeostasis is impaired in tumor tissues is not well understood, although certain tumor suppressors have been implicated. In this study, we use the Drosophila neural stem cells (NSCs called neuroblasts as a model to study this process. Loss-of-function of Numb, a key cell fate determinant with well-conserved mammalian counterparts, leads to the formation of ectopic neuroblasts and a tumor phenotype in the larval brain. Overexpression of the Drosophila tumor suppressor p53 (dp53 was able to suppress ectopic neuroblast formation caused by numb loss-of-function. This occurred in a non-apoptotic manner and was independent of Dacapo, the fly counterpart of the well-characterized mammalian p53 target p21 involved in cellular senescence. The observation that dp53 affected Edu incorporation into neuroblasts led us to test the hypothesis that dp53 acts through regulation of factors involved in cell cycle progression. Our results show that the inhibitory effect of dp53 on ectopic neuroblast formation was mediated largely through its regulation of Cyclin E (Cyc E. Overexpression of Cyc E was able to abrogate dp53's ability to rescue numb loss-of-function phenotypes. Increasing Cyc E levels by attenuating Archipelago (Ago, a recently identified transcriptional target of dp53 and a negative regulator of Cyc E, had similar effects. Conversely, reducing Cyc E activity by overexpressing Ago blocked ectopic neuroblast formation in numb mutant. Our results reveal an intimate connection between cell cycle progression and NSC self-renewal vs. differentiation control, and indicate that p53-mediated regulation of ectopic NSC self-renewal through the Ago/Cyc E axis becomes particularly important when NSC homeostasis is perturbed as in numb loss-of-function condition. This has

  12. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling.

    Science.gov (United States)

    Zhao, Chunnian; Sun, GuoQiang; Li, Shengxiu; Lang, Ming-Fei; Yang, Su; Li, Wendong; Shi, Yanhong

    2010-02-02

    Neural stem cell self-renewal and differentiation is orchestrated by precise control of gene expression involving nuclear receptor TLX. Let-7b, a member of the let-7 microRNA family, is expressed in mammalian brains and exhibits increased expression during neural differentiation. However, the role of let-7b in neural stem cell proliferation and differentiation remains unknown. Here we show that let-7b regulates neural stem cell proliferation and differentiation by targeting the stem cell regulator TLX and the cell cycle regulator cyclin D1. Overexpression of let-7b led to reduced neural stem cell proliferation and increased neural differentiation, whereas antisense knockdown of let-7b resulted in enhanced proliferation of neural stem cells. Moreover, in utero electroporation of let-7b to embryonic mouse brains led to reduced cell cycle progression in neural stem cells. Introducing an expression vector of Tlx or cyclin D1 that lacks the let-7b recognition site rescued let-7b-induced proliferation deficiency, suggesting that both TLX and cyclin D1 are important targets for let-7b-mediated regulation of neural stem cell proliferation. Let-7b, by targeting TLX and cyclin D1, establishes an efficient strategy to control neural stem cell proliferation and differentiation.

  13. Roles of neural stem cells in the repair of peripheral nerve injury.

    Science.gov (United States)

    Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu

    2017-12-01

    Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  14. The aged brain: genesis and fate of residual progenitor cells in the subventricular zone

    Directory of Open Access Journals (Sweden)

    Vivian eCapilla-Gonzalez

    2015-09-01

    Full Text Available Neural stem cells persist in the adult mammalian brain through life. The subventricular zone is the largest source of stem cells in the nervous system, and continuously generates new neuronal and glial cells involved in brain regeneration. During aging, the germinal potential of the subventricular zone suffers a widespread decline, but the causes of this turn down are not fully understood. This review provides a compilation of the current knowledge about the age-related changes in the neural stem cell population, as well as the fate of the newly generated cells in the aged brain. It is known that the neurogenic capacity is clearly disrupted during aging, while the production of oligodendroglial cells is not compromised. Interestingly, the human brain seems to primarily preserve the ability to produce new oligodendrocytes instead of neurons, which could be related to the development of neurological disorders. Further studies in this matter are required to improve our understanding and the current strategies for fighting neurological diseases associated with senescence.

  15. Current status of treating neurodegenerative disease with induced pluripotent stem cells.

    Science.gov (United States)

    Pen, A E; Jensen, U B

    2017-01-01

    Degenerative diseases of the brain have proven challenging to treat, let alone cure. One of the treatment options is the use of stem cell therapy, which has been under investigation for several years. However, treatment with stem cells comes with a number of drawbacks, for instance the source of these cells. Currently, a number of options are tested to produce stem cells, although the main issues of quantity and ethics remain for most of them. Over recent years, the potential of induced pluripotent stem cells (iPSCs) has been widely investigated and these cells seem promising for production of numerous different tissues both in vitro and in vivo. One of the major advantages of iPSCs is that they can be made autologous and can provide a sufficient quantity of cells by culturing, making the use of other stem cell sources unnecessary. As the first descriptions of iPSC production with the transcription factors Sox2, Klf4, Oct4 and C-Myc, called the Yamanaka factors, a variety of methods has been developed to convert somatic cells from all germ layers to pluripotent stem cells. Improvement of these methods is necessary to increase the efficiency of reprogramming, the quality of pluripotency and the safety of these cells before use in human trials. This review focusses on the current accomplishments and remaining challenges in the production and use of iPSCs for treatment of neurodegenerative diseases of the brain such as Alzheimer's disease and Parkinson's disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement.

    Directory of Open Access Journals (Sweden)

    Vanessa Donega

    Full Text Available Mesenchymal stem cell (MSC administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. Nine-day-old mice were subjected to unilateral carotid artery occlusion and hypoxia. MSCs were administered intranasally at 3, 10 or 17 days after hypoxia-ischemia (HI. Motor, cognitive and histological outcome was investigated. PKH-26 labeled cells were used to localize MSCs in the brain. We identified 0.5 × 10(6 MSCs as the minimal effective dose with a therapeutic window of at least 10 days but less than 17 days post-HI. A single dose was sufficient for a marked beneficial effect. MSCs reach the lesion site within 24 h when given 3 or 10 days after injury. However, no MSCs were detected in the lesion when administered 17 days following HI. We also show for the first time that intranasal MSC treatment after HI improves cognitive function. Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy.

  17. Respiratory syncytial virus-related encephalitis: magnetic resonance imaging findings with diffusion-weighted study

    International Nuclear Information System (INIS)

    Park, Arim; Suh, Sang-il; Seol, Hae-Young; Son, Gyu-Ri; Lee, Nam-Joon; Lee, Young Hen; Seo, Hyung Suk; Eun, Baik-Lin

    2014-01-01

    Respiratory syncytial virus (RSV) is a common pathogen causing acute respiratory infection in children. Herein, we describe the incidence and clinical and magnetic resonance imaging (MRI) findings of RSV-related encephalitis, a major neurological complication of RSV infection. We retrospectively reviewed the medical records and imaging findings of the patients over the past 7 years who are admitted to our medical center and are tested positive for RSV-RNA by reverse transcriptase PCR. In total, 3,856 patients were diagnosed with RSV bronchiolitis, and 28 of them underwent brain MRI for the evaluation of neurologic symptoms; 8 of these 28 patients had positive imaging findings. Five of these 8 patients were excluded because of non-RSV-related pathologies, such as subdural hemorrhage, brain volume loss due to status epilepticus, periventricular leukomalacia, preexisting ventriculomegaly, and hypoxic brain injury. The incidence of RSV-related encephalitis was as follows: 3/3,856 (0.08 %) of the patients are positive for RSV RNA, 3/28 (10.7 %) of the patient underwent brain MRI for neurological symptom, and 3/8 (37.5 %) of patients revealed abnormal MR findings. The imaging findings were suggestive of patterns of rhombenmesencephalitis, encephalitis with acute disseminated encephalomyelitis, and limbic encephalitis. They demonstrated no diffusion abnormality on diffusion-weighted image and symptom improvement on the follow-up study. Encephalitis with RSV bronchiolitis occurs rarely. However, on brain MRI performed upon suspicion of neurologic involvement, RSV encephalitis is not infrequently observed among the abnormal MR findings and may mimic other viral and limbic encephalitis. Physicians should be aware of this entity to ensure proper diagnosis and neurologic care of RSV-positive patients. (orig.)

  18. Respiratory syncytial virus-related encephalitis: magnetic resonance imaging findings with diffusion-weighted study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Arim; Suh, Sang-il; Seol, Hae-Young [Korea University College of Medicine, Department of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Son, Gyu-Ri; Lee, Nam-Joon [Korea University College of Medicine, Department of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Lee, Young Hen; Seo, Hyung Suk [Korea University College of Medicine, Department of Radiology, Korea University Ansan Hospital, Gyeonggi-do (Korea, Republic of); Eun, Baik-Lin [Korea University College of Medicine, Department of Pediatrics, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2014-02-15

    Respiratory syncytial virus (RSV) is a common pathogen causing acute respiratory infection in children. Herein, we describe the incidence and clinical and magnetic resonance imaging (MRI) findings of RSV-related encephalitis, a major neurological complication of RSV infection. We retrospectively reviewed the medical records and imaging findings of the patients over the past 7 years who are admitted to our medical center and are tested positive for RSV-RNA by reverse transcriptase PCR. In total, 3,856 patients were diagnosed with RSV bronchiolitis, and 28 of them underwent brain MRI for the evaluation of neurologic symptoms; 8 of these 28 patients had positive imaging findings. Five of these 8 patients were excluded because of non-RSV-related pathologies, such as subdural hemorrhage, brain volume loss due to status epilepticus, periventricular leukomalacia, preexisting ventriculomegaly, and hypoxic brain injury. The incidence of RSV-related encephalitis was as follows: 3/3,856 (0.08 %) of the patients are positive for RSV RNA, 3/28 (10.7 %) of the patient underwent brain MRI for neurological symptom, and 3/8 (37.5 %) of patients revealed abnormal MR findings. The imaging findings were suggestive of patterns of rhombenmesencephalitis, encephalitis with acute disseminated encephalomyelitis, and limbic encephalitis. They demonstrated no diffusion abnormality on diffusion-weighted image and symptom improvement on the follow-up study. Encephalitis with RSV bronchiolitis occurs rarely. However, on brain MRI performed upon suspicion of neurologic involvement, RSV encephalitis is not infrequently observed among the abnormal MR findings and may mimic other viral and limbic encephalitis. Physicians should be aware of this entity to ensure proper diagnosis and neurologic care of RSV-positive patients. (orig.)

  19. Respiratory

    Science.gov (United States)

    The words "respiratory" and "respiration" refer to the lungs and breathing. ... Boron WF. Organization of the respiratory system. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 26.

  20. The respiratory microbiome and respiratory infections

    NARCIS (Netherlands)

    Unger, Stefan A.; Bogaert, Debby

    2017-01-01

    Despite advances over the past ten years lower respiratory tract infections still comprise around a fifth of all deaths worldwide in children under five years of age with the majority in low- and middle-income countries. Known risk factors for severe respiratory infections and poor chronic

  1. Community-acquired respiratory infections are common in patients with non-Hodgkin lymphoma and multiple myeloma.

    Science.gov (United States)

    Lavi, Noa; Avivi, Irit; Kra-Oz, Zipora; Oren, Ilana; Hardak, Emilia

    2018-07-01

    Available data suggest that respiratory infections are associated with increased morbidity and mortality in patients hospitalized due to acute leukemia and allogeneic stem cell transplantation (allo-SCT). However, the precise incidence, risk factors, and severity of respiratory infection, mainly community-acquired, in patients with lymphoma and multiple myeloma (MM) are not fully determined. The current study aimed to investigate risk factors for respiratory infections and their clinical significance in patients with B cell non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) in the first year of diagnosis. Data of consecutive patients diagnosed with NHL or MM and treated at the Rambam Hematology Inpatient and Outpatient Units between 01/2011 and 03/2012 were evaluated. Information regarding anticancer treatment, incidence and course of respiratory infections, and infection-related outcomes was analyzed. One hundred and sixty episodes of respiratory infections were recorded in 103 (49%) of 211 (73-MM, 138-NHL) patients; 126 (79%) episodes were community-acquired, 47 (29%) of them required hospitalization. In univariate analysis, age respiratory infection risk (P = 0.058, 0.038, and 0.001, respectively). Ninety episodes (56% of all respiratory episodes) were examined for viral pathogens. Viral infections were documented in 25/90 (28%) episodes, 21 (84%) of them were community-acquired, requiring hospitalization in 5 (24%) cases. Anti-flu vaccination was performed in 119 (56%) patients. Two of the six patients diagnosed with influenza were vaccinated. Respiratory infections, including viral ones, are common in NHL and MM. Most infections are community-acquired and have a favorable outcome. Rapid identification of viral pathogens allows avoiding antibiotic overuse in this patient population.

  2. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  3. Is recurrent respiratory infection associated with allergic respiratory disease?

    Science.gov (United States)

    de Oliveira, Tiago Bittencourt; Klering, Everton Andrei; da Veiga, Ana Beatriz Gorini

    2018-03-13

    Respiratory infections cause high morbidity and mortality worldwide. This study aims to estimate the relationship between allergic respiratory diseases with the occurrence of recurrent respiratory infection (RRI) in children and adolescents. The International Study of Asthma and Allergies in Childhood questionnaire and a questionnaire that provides data on the history of respiratory infections and the use of antibiotics were used to obtain data from patients. The relationship between the presence of asthma or allergic rhinitis and the occurrence of respiratory infections in childhood was analyzed. We interviewed the caregivers of 531 children aged 0 to 15 years. The average age of participants was 7.43 years, with females accounting for 52.2%. This study found significant relationship between: presence of asthma or allergic rhinitis with RRI, with prevalence ratio (PR) of 2.47 (1.51-4.02) and 1.61 (1.34-1.93), respectively; respiratory allergies with use of antibiotics for respiratory problems, with PR of 5.32 (2.17-13.0) for asthma and of 1.64 (1.29-2.09) for allergic rhinitis; asthma and allergic rhinitis with diseases of the lower respiratory airways, with PR of 7.82 (4.63-13.21) and 1.65 (1.38-1.96), respectively. In contrast, no relationship between upper respiratory airway diseases and asthma and allergic rhinitis was observed, with PR of 0.71 (0.35-1.48) and 1.30 (0.87-1.95), respectively. RRI is associated with previous atopic diseases, and these conditions should be considered when treating children.

  4. Alternative Splicing in Neurogenesis and Brain Development.

    Science.gov (United States)

    Su, Chun-Hao; D, Dhananjaya; Tarn, Woan-Yuh

    2018-01-01

    Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  5. Alternative Splicing in Neurogenesis and Brain Development

    Directory of Open Access Journals (Sweden)

    Chun-Hao Su

    2018-02-01

    Full Text Available Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  6. [Inhibitory effect of murine cytomegalovirus infection on neural stem cells' differentiation and its mechanisms].

    Science.gov (United States)

    Zhou, Yu-feng; Fang, Feng; Dong, Yong-sui; Zhou, Hua; Zhen, Hong; Liu, Jin; Li, Ge

    2006-07-01

    Cytomegalovirus (CMV) is the leading infectious cause of congenital anomalies of the central nervous system caused by intrauterine infection. However, the exact pathogenesis of these brain abnormalities has not been fully elucidated. It has been reported that periependymitis, periventricular necrosis and calcification are the most frequent findings in the brains of congenital CMV infection. Because a number of multipotential neural stem cells (NSCs) have been identified from ventricular zone, it is possible that NSCs in this area are primary targets for viral infection, which seems to be primarily responsible for the generation of the brain abnormalities. Therefore, the objective of the present study was to investigate the effect and mechanism of murine cytomegalovirus (MCMV) infection on neural stem cells' differentiation in vitro and its role in the mechanisms of brain abnormalities caused by congenital cytomegalovirus infection. NSCs were prepared from fetal BALB/c mouse and were infected with recombinant MCMV RM461 inserted with a report gene LacZ at 1 multiplicity of infection (MOI = 1). The effect of MCMV infection on neural stem cells' differentiation was observed by detecting the ratio of nestin, GFAP and NSE positive cells with immunohistochemistry and flow cytometry on day 2 postinfection. The effects of MCMV infection on gene expression of Wnt-1 and neurogenin 1 (Ngn1) related to neural differentiation were detected by RT-PCR. NSCs isolated from embryonic mouse brains strongly expressed nestin, a specific marker of NSCs and had the capacity to differentiate into NF-200 and NSE positive neurons or GFAP positive astrocytes. At MOI = 1, the results of flow cytometry assay showed that nestin positive cells' proportion in the infection group [(62.2 +/- 1.8)%] was higher than that in the normal group [(37.2 +/- 2.4)%] (t = 4.62, P differentiation, which may be primary causes of disorders of brain development in congenital CMV infection. The decreased

  7. Quiescent Oct4+ Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein+ NSCs in the Adult Mouse Brain.

    Science.gov (United States)

    Reeve, Rachel L; Yammine, Samantha Z; Morshead, Cindi M; van der Kooy, Derek

    2017-09-01

    Adult primitive neural stem cells (pNSCs) are a rare population of glial fibrillary acidic protein (GFAP) - Oct4 + cells in the mouse forebrain subependymal zone bordering the lateral ventricles that give rise to clonal neurospheres in leukemia inhibitory factor in vitro. pNSC neurospheres can be passaged to self-renew or give rise to GFAP + NSCs that form neurospheres in epidermal growth factor and fibroblast growth factor 2, which we collectively refer to as definitive NSCs (dNSCs). Label retention experiments using doxycycline-inducible histone-2B (H2B)-green fluorescent protein (GFP) mice and several chase periods of up to 1 year quantified the adult pNSC cell cycle time as 3-5 months. We hypothesized that while pNSCs are not very proliferative at baseline, they may exist as a reserve pool of NSCs in case of injury. To test this function of pNSCs, we obtained conditional Oct4 knockout mice, Oct4 fl/fl ;Sox1 Cre (Oct4 CKO ), which do not yield adult pNSC-derived neurospheres. When we ablated the progeny of pNSCs, namely all GFAP + dNSCs, in these Oct4 CKO mice, we found that dNSCs did not recover as they do in wild-type mice, suggesting that pNSCs are necessary for dNSC repopulation. Returning to the H2B-GFP mice, we observed that the cytosine β-d-arabinofuranoside ablation of proliferating cells including dNSCs-induced quiescent pNSCs to proliferate and significantly dilute their H2B-GFP label. In conclusion, we demonstrate that pNSCs are the most quiescent stem cells in the adult brain reported to date and that their lineage position upstream of GFAP + dNSCs allows them to repopulate a depleted neural lineage. Stem Cells 2017;35:2071-2082. © 2017 AlphaMed Press.

  8. Osmotherapy in brain edema

    DEFF Research Database (Denmark)

    Grände, Per-Olof; Romner, Bertil

    2012-01-01

    Despite the fact that it has been used since the 1960s in diseases associated with brain edema and has been investigated in >150 publications on head injury, very little has been published on the outcome of osmotherapy. We can only speculate whether osmotherapy improves outcome, has no effect......, osmotherapy can be negative for outcome, which may explain why we lack scientific support for its use. These drawbacks, and the fact that the most recent Cochrane meta-analyses of osmotherapy in brain edema and stroke could not find any beneficial effects on outcome, make routine use of osmotherapy in brain...... edema doubtful. Nevertheless, the use of osmotherapy as a temporary measure may be justified to acutely prevent brain stem compression until other measures, such as evacuation of space-occupying lesions or decompressive craniotomy, can be performed. This article is the Con part in a Pro-Con debate...

  9. PET molecular imaging in stem cell therapy for neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiachuan; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University, Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Tian, Mei [University of Texas, M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2011-10-15

    Human neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal cord injury and multiple sclerosis are caused by loss of different types of neurons and glial cells in the brain and spinal cord. At present, there are no effective therapies against these disorders. Discovery of the therapeutic potential of stem cells offers new strategies for the treatment of neurological diseases. Direct assessment of stem cells' survival, interaction with the host and impact on neuronal functions after transplantation requires advanced in vivo imaging techniques. Positron emission tomography (PET) is a potential molecular imaging modality to evaluate the viability and function of transplanted tissue or stem cells in the nervous system. This review focuses on PET molecular imaging in stem cell therapy for neurological diseases. (orig.)

  10. Stem cell therapy for retinal diseases

    Science.gov (United States)

    Garcia, José Mauricio; Mendonça, Luisa; Brant, Rodrigo; Abud, Murilo; Regatieri, Caio; Diniz, Bruno

    2015-01-01

    In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions. PMID:25621115

  11. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis.

    Science.gov (United States)

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B

    2009-05-19

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

  12. Evaluation of respiratory conditions in early phase of hematopoietic stem cell transplantation Avaliação das condições respiratórias na fase inicial do transplante de células tronco hematopoiéticas

    Directory of Open Access Journals (Sweden)

    Eliane Aparecida Bom

    2012-01-01

    Full Text Available OBJECTIVE: To investigate the effectiveness of respiratory physiotherapy based on clinical evidence and analyze the improvement in respiratory parameters. METHODS: A prospective study was carried out in the Bone Marrow Transplant Unit of the Universidade Estadual de Campinas (UNICAMP. Two different previously established respiratory physiotherapy protocols were applied from days D-1 to D+7 that aimed to improve airway clearance, pulmonary re-expansion and the strengthening of respiratory muscles. Group A were subjected to diaphragmatic proprioceptive stimulation, breathing exercises, incentive spirometry with Respiron®, inspiratory muscle training with the Threshold® Inspiratory Muscle Training device, bronchial hygienization with Shaker® and cough stimulation. Group B performed a protocol that only used incentive spirometry. The parameters analyzed were: tidal volume, minute volume, maximal inspiratory pressure, maximal expiratory pressure, oxygen saturation, heart rate and respiratory frequency. RESULTS: Sixty-seven patients submitted to myeloablative hematopoietic stem cell transplantation were included in this study. Among these, thirty-nine were evaluated and randomized in the two groups. There were significant differences between the groups for tidal volume at D+2 (p-value = 0.007 and maximal inspiratory pressure (p-value = 0.03, maximal expiratory pressure (p-value = 0.03 and tidal volume (p-value = 0.004 at D+7. CONCLUSION: On comparing Group A with Group B, the authors concluded that the protocol of respiratory physiotherapy applied in this study resulted in an improvement in ventilation and in respiratory muscle strength of patients submitted to hematopoietic stem cell transplantation.OBJETIVO: investigar a eficácia da fisioterapia respiratória (FR baseada em evidência clínica e nos parâmetros respiratórios. Estudo prospectivo realizado na Unidade de Transplante de Medula Óssea da Universidade Estadual de Campinas. Dois

  13. [Brain function recovery after prolonged posttraumatic coma].

    Science.gov (United States)

    Klimash, A V; Zhanaidarov, Z S

    2016-01-01

    To explore the characteristics of brain function recovery in patients after prolonged posttraumatic coma and with long-unconscious states. Eighty-seven patients after prolonged posttraumatic coma were followed-up for two years. An analysis of a clinical/neurological picture after a prolonged episode of coma was based on the dynamics of vital functions, neurological status and patient's reactions to external stimuli. Based on the dynamics of the clinical/neurological picture that shows the recovery of functions of the certain brain areas, three stages of brain function recovery after a prolonged episode of coma were singled out: brain stem areas, diencephalic areas and telencephalic areas. These functional/anatomic areas of brain function recovery after prolonged coma were compared to the present classifications.

  14. Climate change and respiratory disease: European Respiratory Society position statement.

    Science.gov (United States)

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  15. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  16. Postmortem changes in lungs in severe closed traumatic brain injury complicated by acute respiratory failure

    Directory of Open Access Journals (Sweden)

    V. A. Tumanskiy

    2013-08-01

    Full Text Available V.А. Tumanskіy, S.І. Ternishniy, L.M. Tumanskaya Pathological changes in the lungs were studied in the work of 42 patiens who died from severe closed intracranial injury (SCII. It was complicated with acute respiratory insufficient (ARI. The most modified subpleural areas were selected from every lobe of the lungs for pathological studies. Prepared histological sections were stained by means of hemotoxylin and eosin and by Van Giеson for light microscopy. The results of the investigation have shown absence of the significant difference of pathological changes in the lungs of patients who died from ARI because of severe brain injury and traumatic intracranial hemorrhage. Pathognomic pathological changes in the lungs as a result of acute lung injury syndrome (ALIS were found in deceased patients on the third day since the SCII (n=8. There was a significant bilateral interstitial edema and mild alveolar edema with the presence of red and blood cells in the alveoli, vascular plethora of the septum interalveolar and stasis of blood in the capillaries, the slight pericapillary leukocyte infiltration, subpleural hemorrhage and laminar pulmonary atelectasis. In deceased patients on 4-6 days after SCII that was complicated with ARI (n=14, morphological changes had been detected in the lungs. It was pathognomic for acute respiratory distress syndrome (ARDS with local pneumonic to be layered. A significant interstitial pulmonary edema was observed in the respiratory part of the lungs. The edema has spread from the walls of the alveoli into the interstitial spaces of the bronchioles and blood vessels, and also less marked serous-hemorrhagic alveolar edema with presence of the fibrin in the alveoli and macrophages. The ways of intrapleural lymphatic drainage were dilatated. Histopathological changes in the lungs of those who died on the 7-15th days after severe closed craniocerebral injury with ARI to be complicated (n=12 have been indicative of two

  17. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    OpenAIRE

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C.

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  18. Comparative aspects of adult neural stem cell activity in vertebrates.

    Science.gov (United States)

    Grandel, Heiner; Brand, Michael

    2013-03-01

    At birth or after hatching from the egg, vertebrate brains still contain neural stem cells which reside in specialized niches. In some cases, these stem cells are deployed for further postnatal development of parts of the brain until the final structure is reached. In other cases, postnatal neurogenesis continues as constitutive neurogenesis into adulthood leading to a net increase of the number of neurons with age. Yet, in other cases, stem cells fuel neuronal turnover. An example is protracted development of the cerebellar granular layer in mammals and birds, where neurogenesis continues for a few weeks postnatally until the granular layer has reached its definitive size and stem cells are used up. Cerebellar growth also provides an example of continued neurogenesis during adulthood in teleosts. Again, it is the granular layer that grows as neurogenesis continues and no definite adult cerebellar size is reached. Neuronal turnover is most clearly seen in the telencephalon of male canaries, where projection neurons are replaced in nucleus high vocal centre each year before the start of a new mating season--circuitry reconstruction to achieve changes of the song repertoire in these birds? In this review, we describe these and other examples of adult neurogenesis in different vertebrate taxa. We also compare the structure of the stem cell niches to find common themes in their organization despite different functions adult neurogenesis serves in different species. Finally, we report on regeneration of the zebrafish telencephalon after injury to highlight similarities and differences of constitutive neurogenesis and neuronal regeneration.

  19. 5-Fluorouracil and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) followed by hydroxyurea, misonidazole, and irradiation for brain stem gliomas: a pilot study of the Brain Tumor Research Center and the Childrens Cancer Group

    International Nuclear Information System (INIS)

    Levin, V.A.; Edwards, M.S.; Wara, W.M.; Allen, J.; Ortega, J.; Vestnys, P.

    1984-01-01

    Twenty-eight evaluable children with the diagnosis of brain stem glioma were treated with 5-fluorouracil and CCNU before posterior fossa irradiation (5500 rads); during irradiation, the children received hydroxyurea and misonidazole. The treatment was well tolerated, and minimal toxicity was produced. The median relapse-free survival was 32 weeks, and the median survival was 44 weeks. Analysis of covariates showed that, in patients between the ages of 2 and 19 years, survival was longest in the older children (P less than 0.02). Tumor histology, sex, extent of operation (if any), Karnofsky score, and radiation dose did not correlate with survival

  20. Effect of fentanyl on 125I-β-CIT uptake in mice brain

    International Nuclear Information System (INIS)

    Liu Xingdang; Lin Xiangtong

    2003-01-01

    Objective: To investigate the effect of fentanyl on 125 I-2β-carbomethoxy-3β-(4-iodophenyl) tropane ( 125 I-β-CIT) uptake in mice brain. Methods: 1) KM mice groups of five were given different doses of fentanyl, and 10 min or 1 h later were given a dose of 125 I-β-CIT. 2)Two groups of animals were killed at 2 h after injection of 125 I-β-CIT. 3)One group of animals were killed at 1 h after injection of 125 I-β-CIT. Results: 1)In the striatum, frontal cortex, hippocampus, brain stem, cerebellum and whole brain, a dose-dependent increase in uptake (%ID/g or %ID) of 125 I-β-CIT was detected at the fentanyl doses ranging from 125 to 300 μg/kg, and the uptakes of hippocampus and cerebellum were higher than that of the controls. There was a great difference in the value of %ID/g or %ID between the group treated with 250 μg/kg fentanyl and the control group; while at the doses from 12.5 to 100 μg/kg, a dose-dependent decrease in uptake in the same regions was observed and all the uptake levels were lower (hippocampus: except 62.5 and 12.5 μg/kg groups; brain stem: except 62.5 μg/kg group) than that of the controls. 2)The uptakes of 125 I-β-CIT in the striatum, frontal cortex, hippocampus, brain stem, cerebellum and whole brain in the groups injected with 125 I-β-CIT 10 min after fentanyl treatment were higher than that in the groups injected with 125 I-β-CIT 1 h after fentanyl treatment. 3)The binding of 125 I-β-CIT in the striatum, frontal cortex, hippocampus, brain stem, cerebellum and whole brain in the groups killed at 1 h after injection of 125 I-β-CIT was higher than that in the control group, but without significant difference. Conclusion: Fentanyl may have different effects on 125 I-β-CIT at various time points and doses

  1. Peripheral chemoreceptors tune inspiratory drive via tonic expiratory neuron hubs in the medullary ventral respiratory column network.

    Science.gov (United States)

    Segers, L S; Nuding, S C; Ott, M M; Dean, J B; Bolser, D C; O'Connor, R; Morris, K F; Lindsey, B G

    2015-01-01

    Models of brain stem ventral respiratory column (VRC) circuits typically emphasize populations of neurons, each active during a particular phase of the respiratory cycle. We have proposed that "tonic" pericolumnar expiratory (t-E) neurons tune breathing during baroreceptor-evoked reductions and central chemoreceptor-evoked enhancements of inspiratory (I) drive. The aims of this study were to further characterize the coordinated activity of t-E neurons and test the hypothesis that peripheral chemoreceptors also modulate drive via inhibition of t-E neurons and disinhibition of their inspiratory neuron targets. Spike trains of 828 VRC neurons were acquired by multielectrode arrays along with phrenic nerve signals from 22 decerebrate, vagotomized, neuromuscularly blocked, artificially ventilated adult cats. Forty-eight of 191 t-E neurons fired synchronously with another t-E neuron as indicated by cross-correlogram central peaks; 32 of the 39 synchronous pairs were elements of groups with mutual pairwise correlations. Gravitational clustering identified fluctuations in t-E neuron synchrony. A network model supported the prediction that inhibitory populations with spike synchrony reduce target neuron firing probabilities, resulting in offset or central correlogram troughs. In five animals, stimulation of carotid chemoreceptors evoked changes in the firing rates of 179 of 240 neurons. Thirty-two neuron pairs had correlogram troughs consistent with convergent and divergent t-E inhibition of I cells and disinhibitory enhancement of drive. Four of 10 t-E neurons that responded to sequential stimulation of peripheral and central chemoreceptors triggered 25 cross-correlograms with offset features. The results support the hypothesis that multiple afferent systems dynamically tune inspiratory drive in part via coordinated t-E neurons. Copyright © 2015 the American Physiological Society.

  2. Partnering for optimal respiratory home care: physicians working with respiratory therapists to optimally meet respiratory home care needs.

    Science.gov (United States)

    Spratt, G; Petty, T L

    2001-05-01

    The need for respiratory care services continues to increase, reimbursement for those services has decreased, and cost-containment measures have increased the frequency of home health care. Respiratory therapists are well qualified to provide home respiratory care, reduce misallocation of respiratory services, assess patient respiratory status, identify problems and needs, evaluate the effect of the home setting, educate the patient on proper equipment use, monitor patient response to and complications of therapy, monitor equipment functioning, monitor for appropriate infection control procedures, make recommendations for changes to therapy regimen, and adjust therapy under the direction of the physician. Teamwork benefits all parties and offers cost and time savings, improved data collection and communication, higher job satisfaction, and better patient monitoring, education, and quality of life. Respiratory therapists are positioned to optimize treatment efficacy, maximize patient compliance, and minimize hospitalizations among patients receiving respiratory home care.

  3. Research progress in animal models and stem cell therapy for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Han F

    2014-12-01

    Full Text Available Fabin Han,1,2 Wei Wang1, Chao Chen1 1Centre for Stem Cells and Regenerative Medicine, 2Department of Neurology, Liaocheng People’s Hospital/The Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People’s Republic of China Abstract: Alzheimer’s disease (AD causes degeneration of brain neurons and leads to memory loss and cognitive impairment. Since current therapeutic strategies cannot cure the disease, stem cell therapy represents a powerful tool for the treatment of AD. We first review the advances in molecular pathogenesis and animal models of AD and then discuss recent clinical studies using small molecules and immunoglobulins to target amyloid-beta plaques for AD therapy. Finally, we discuss stem cell therapy for AD using neural stem cells, olfactory ensheathing cells, embryonic stem cells, and mesenchymal stem cell from bone marrow, umbilical cord, and umbilical cord blood. In particular, patient-specific induced pluripotent stem cells are proposed as a future treatment for AD. Keywords: amyloid-beta plaque, neurofibrillary tangle, neural stem cell, olfactory ensheathing cell, mesenchymal stem cell, induced pluripotent stem cell

  4. Genetic deletion of Rnd3 in neural stem cells promotes proliferation via upregulation of Notch signaling.

    Science.gov (United States)

    Dong, Huimin; Lin, Xi; Li, Yuntao; Hu, Ronghua; Xu, Yang; Guo, Xiaojie; La, Qiong; Wang, Shun; Fang, Congcong; Guo, Junli; Li, Qi; Mao, Shanping; Liu, Baohui

    2017-10-31

    Rnd3, a Rho GTPase, is involved in the inhibition of actin cytoskeleton dynamics through the Rho kinase-dependent signaling pathway. We previously demonstrated that mice with genetic deletion of Rnd3 developed a markedly larger brain compared with wild-type mice. Here, we demonstrate that Rnd3 knockout mice developed an enlarged subventricular zone, and we identify a novel role for Rnd3 as an inhibitor of Notch signaling in neural stem cells. Rnd3 deficiency, both in vivo and in vitro , resulted in increased levels of Notch intracellular domain protein. This led to enhanced Notch signaling and promotion of aberrant neural stem cell growth, thereby resulting in a larger subventricular zone and a markedly larger brain. Inhibition of Notch activity abrogated this aberrant neural stem cell growth.

  5. Hypoxia-Mediated Epigenetic Regulation of Stemness in Brain Tumor Cells.

    Science.gov (United States)

    Prasad, Pankaj; Mittal, Shivani Arora; Chongtham, Jonita; Mohanty, Sujata; Srivastava, Tapasya

    2017-06-01

    Activation of pluripotency regulatory circuit is an important event in solid tumor progression and the hypoxic microenvironment is known to enhance the stemness feature of some cells. The distinct population of cancer stem cells (CSCs)/tumor initiating cells exist in a niche and augment invasion, metastasis, and drug resistance. Previously, studies have reported global hypomethylation and site-specific aberrant methylation in gliomas along with other epigenetic modifications as important contributors to genomic instability during glioma progression. Here, we have demonstrated the role of hypoxia-mediated epigenetic modifications in regulating expression of core pluripotency factors, OCT4 and NANOG, in glioma cells. We observe hypoxia-mediated induction of demethylases, ten-eleven-translocation (TET) 1 and 3, but not TET2 in our cell-line model. Immunoprecipitation studies reveal active demethylation and direct binding of TET1 and 3 at the Oct4 and Nanog regulatory regions. Tet1 and 3 silencing assays further confirmed induction of the pluripotency pathway involving Oct4, Nanog, and Stat3, by these paralogues, although with varying degrees. Knockdown of Tet1 and Tet3 inhibited the formation of neurospheres in hypoxic conditions. We observed independent roles of TET1 and TET3 in differentially regulating pluripotency and differentiation associated genes in hypoxia. Overall, this study demonstrates an active demethylation in hypoxia by TET1 and 3 as a mechanism of Oct4 and Nanog overexpression thus contributing to the formation of CSCs in gliomas. Stem Cells 2017;35:1468-1478. © 2017 AlphaMed Press.

  6. Respiratory Syncytial Virus-Infected Mesenchymal Stem Cells Regulate Immunity via Interferon Beta and Indoleamine-2,3-Dioxygenase.

    Directory of Open Access Journals (Sweden)

    Michael B Cheung

    Full Text Available Respiratory syncytial virus (RSV has been reported to infect human mesenchymal stem cells (MSCs but the consequences are poorly understood. MSCs are present in nearly every organ including the nasal mucosa and the lung and play a role in regulating immune responses and mediating tissue repair. We sought to determine whether RSV infection of MSCs enhances their immune regulatory functions and contributes to RSV-associated lung disease. RSV was shown to replicate in human MSCs by fluorescence microscopy, plaque assay, and expression of RSV transcripts. RSV-infected MSCs showed differentially altered expression of cytokines and chemokines such as IL-1β, IL6, IL-8 and SDF-1 compared to epithelial cells. Notably, RSV-infected MSCs exhibited significantly increased expression of IFN-β (~100-fold and indoleamine-2,3-dioxygenase (IDO (~70-fold than in mock-infected MSCs. IDO was identified in cytosolic protein of infected cells by Western blots and enzymatic activity was detected by tryptophan catabolism assay. Treatment of PBMCs with culture supernatants from RSV-infected MSCs reduced their proliferation in a dose dependent manner. This effect on PBMC activation was reversed by treatment of MSCs with the IDO inhibitors 1-methyltryptophan and vitamin K3 during RSV infection, a result we confirmed by CRISPR/Cas9-mediated knockout of IDO in MSCs. Neutralizing IFN-β prevented IDO expression and activity. Treatment of MSCs with an endosomal TLR inhibitor, as well as a specific inhibitor of the TLR3/dsRNA complex, prevented IFN-β and IDO expression. Together, these results suggest that RSV infection of MSCs alters their immune regulatory function by upregulating IFN-β and IDO, affecting immune cell proliferation, which may account for the lack of protective RSV immunity and for chronicity of RSV-associated lung diseases such as asthma and COPD.

  7. Stem cells and treatment of brain and spinal cord injury

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva

    2009-01-01

    Roč. 276, Suppl.1 (2009), s. 40-40 ISSN 1742-464X. [Congress of the Federation-of-European-Biochemical-Societies /34./. 04.07.2009-09.07.2009, Prague] Institutional research plan: CEZ:AV0Z50390703 Keywords : Stem cells Subject RIV: FH - Neurology

  8. On the origins of sex-based differences in respiratory disorders: Lessons and hypotheses from stress neuroendocrinology in developing rats.

    Science.gov (United States)

    Rousseau, Jean-Philippe; Tenorio-Lopes, Luana; Baldy, Cécile; Janes, Tara Adele; Fournier, Stéphanie; Kinkead, Richard

    2017-11-01

    The environment plays a critical role in shaping development and function of the brain. Stress, especially when experienced early in life, can interfere with these processes. In the context of respiratory control, perinatal stress can therefore alter the ability to achieve the "fine-tuning" necessary for proper detection of chemosensory stimuli and production of an adequate motor (respiratory) command. Depending on the timing, intensity, and duration, the detrimental consequences of perinatal exposure to adverse conditions on the respiratory network become manifest at various life stages and can persist into adulthood. During early life, respiratory diseases commonly associated with dysfunction of neural networks include apnea of prematurity (AOP) and cardio-respiratory failure leading to sudden infant death syndrome (SIDS). Sleep disordered breathing (SDB) can occur at various life stages, including adulthood. Regardless of age, a common element of these disorders is their greater prevalence in males. While this sexual dimorphism points to a potential role of sex hormones, our understanding of the neuroendocrine mechanisms remain poorly understood. In addition to their modulatory influence on breathing, gonadal hormones regulate sexual differentiation of the brain. Stress alters these effects, and over the years our laboratory has used various perinatal stress protocols to gain insight into the origins of sex-based differences in respiratory disorders. This review discusses our recent advances with a focus on the sex-specific impact of early life stress on O 2 -chemoreflex function both in newborn and adult rats. We conclude by discussing the basic principles emerging from this work, potential mechanisms, and clinical relevance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Is Overall Mortality the Right Composite Endpoint in Clinical Trials of Acute Respiratory Distress Syndrome?

    Science.gov (United States)

    Villar, Jesús; Martínez, Domingo; Mosteiro, Fernando; Ambrós, Alfonso; Añón, José M; Ferrando, Carlos; Soler, Juan A; Montiel, Raquel; Vidal, Anxela; Conesa-Cayuela, Luís A; Blanco, Jesús; Arrojo, Regina; Solano, Rosario; Capilla, Lucía; Del Campo, Rafael; Civantos, Belén; Fernández, María Mar; Aldecoa, César; Parra, Laura; Gutiérrez, Andrea; Martínez-Jiménez, Chanel; González-Martín, Jesús M; Fernández, Rosa L; Kacmarek, Robert M

    2018-06-01

    Overall mortality in patients with acute respiratory distress syndrome is a composite endpoint because it includes death from multiple causes. In most acute respiratory distress syndrome trials, it is unknown whether reported deaths are due to acute respiratory distress syndrome or the underlying disease, unrelated to the specific intervention tested. We investigated the causes of death after contracting acute respiratory distress syndrome in a large cohort. A secondary analysis from three prospective, multicenter, observational studies. A network of multidisciplinary ICUs. We studied 778 patients with moderate-to-severe acute respiratory distress syndrome treated with lung-protective ventilation. None. We examined death in the ICU from individual causes. Overall ICU mortality was 38.8% (95% CI, 35.4-42.3). Causes of acute respiratory distress syndrome modified the risk of death. Twenty-three percent of deaths occurred from refractory hypoxemia due to nonresolving acute respiratory distress syndrome. Most patients died from causes unrelated to acute respiratory distress syndrome: 48.7% of nonsurvivors died from multisystem organ failure, and cancer or brain injury was involved in 37.1% of deaths. When quantifying the true burden of acute respiratory distress syndrome outcome, we identified 506 patients (65.0%) with one or more exclusion criteria for enrollment into current interventional trials. Overall ICU mortality of the "trial cohort" (21.3%) was markedly lower than the parent cohort (relative risk, 0.55; 95% CI, 0.43-0.70; p respiratory distress syndrome patients are not directly related to lung damage but to extrapulmonary multisystem organ failure. It would be challenging to prove that specific lung-directed therapies have an effect on overall survival.

  10. Extensive respiratory chain defects in inhibitory interneurones in patients with mitochondrial disease

    Science.gov (United States)

    Lax, Nichola Z.; Grady, John; Laude, Alex; Chan, Felix; Hepplewhite, Philippa D.; Gorman, Grainne; Whittaker, Roger G.; Ng, Yi; Cunningham, Mark O.

    2015-01-01

    Aims Mitochondrial disorders are among the most frequently inherited cause of neurological disease and arise due to mutations in mitochondrial or nuclear DNA. Currently, we do not understand the specific involvement of certain brain regions or selective neuronal vulnerability in mitochondrial disease. Recent studies suggest γ‐aminobutyric acid (GABA)‐ergic interneurones are particularly susceptible to respiratory chain dysfunction. In this neuropathological study, we assess the impact of mitochondrial DNA defects on inhibitory interneurones in patients with mitochondrial disease. Methods Histochemical, immunohistochemical and immunofluorescent assays were performed on post‐mortem brain tissue from 10 patients and 10 age‐matched control individuals. We applied a quantitative immunofluorescent method to interrogate complex I and IV protein expression in mitochondria within GABAergic interneurone populations in the frontal, temporal and occipital cortices. We also evaluated the density of inhibitory interneurones in serial sections to determine if cell loss was occurring. Results We observed significant, global reductions in complex I expression within GABAergic interneurones in frontal, temporal and occipital cortices in the majority of patients. While complex IV expression is more variable, there is reduced expression in patients harbouring m.8344A>G point mutations and POLG mutations. In addition to the severe respiratory chain deficiencies observed in remaining interneurones, quantification of GABAergic cell density showed a dramatic reduction in cell density suggesting interneurone loss. Conclusions We propose that the combined loss of interneurones and severe respiratory deficiency in remaining interneurones contributes to impaired neuronal network oscillations and could underlie development of neurological deficits, such as cognitive impairment and epilepsy, in mitochondrial disease. PMID:25786813

  11. Respiratory mechanics

    CERN Document Server

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  12. Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy

    International Nuclear Information System (INIS)

    Kang, Dong Im; Jung, Sang Hoon; Kim, Chul Jong; Park, Hee Chul; Choi, Byung Ki

    2015-01-01

    External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40%-60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (0.71 sec), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). This study is

  13. Clinical characteristics and risk factors of pulmonary hypertension associated with chronic respiratory diseases: a retrospective study.

    Science.gov (United States)

    Chen, Yonghua; Liu, Chunli; Lu, Wenju; Li, Mengxi; Hadadi, Cyrus; Wang, Elizabeth Wenqian; Yang, Kai; Lai, Ning; Huang, Junyi; Li, Shiyue; Zhong, Nanshan; Zhang, Nuofu; Wang, Jian

    2016-03-01

    Chronic respiratory disease-associated pulmonary hypertension (PH) is an important subtype of PH, which lacks clinical epidemiological data in China. Six hundred and ninety three patients hospitalized from 2010 to 2013 were classified by echocardiography according to pulmonary arterial systolic pressure (PASP): mild (36≤ PASP increase of N-terminal pro brain natriuretic peptide (NT-proBNP) and right ventricular (RV) diameter (>20 mm) were associated with moderate-to-severe PH, while RV [odds ratio (OR) =3.53, 95% CI, 2.17-5.74], NT-proBNP (OR=2.44, 95% CI, 1.51-3.95), HCT (OR=1.03, 95% CI, 1.00-1.07) and PaCO2 (OR=1.01, 95% CI, 1.00-1.03) were independent risk factors. PH related to respiratory diseases is mostly mild to moderate, and the severity is associated with the category of respiratory disease. Increased HCT can be an independent risk factor for PH related to chronic respiratory diseases.

  14. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells

    Directory of Open Access Journals (Sweden)

    Wen-Shin Song

    2016-10-01

    Conclusion: SOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers.

  15. Incidence of respiratory viruses in Peruvian children with acute respiratory infections.

    Science.gov (United States)

    del Valle Mendoza, Juana; Cornejo-Tapia, Angela; Weilg, Pablo; Verne, Eduardo; Nazario-Fuertes, Ronald; Ugarte, Claudia; del Valle, Luis J; Pumarola, Tomás

    2015-06-01

    Acute respiratory infections are responsible for high morbi-mortality in Peruvian children. However, the etiological agents are poorly identified. This study, conducted during the pandemic outbreak of H1N1 influenza in 2009, aims to determine the main etiological agents responsible for acute respiratory infections in children from Lima, Peru. Nasopharyngeal swabs collected from 717 children with acute respiratory infections between January 2009 and December 2010 were analyzed by multiplex RT-PCR for 13 respiratory viruses: influenza A, B, and C virus; parainfluenza virus (PIV) 1, 2, 3, and 4; and human respiratory syncytial virus (RSV) A and B, among others. Samples were also tested with direct fluorescent-antibodies (DFA) for six respiratory viruses. RT-PCR and DFA detected respiratory viruses in 240 (33.5%) and 85 (11.9%) cases, respectively. The most common etiological agents were RSV-A (15.3%), followed by influenza A (4.6%), PIV-1 (3.6%), and PIV-2 (1.8%). The viruses identified by DFA corresponded to RSV (5.9%) and influenza A (1.8%). Therefore, respiratory syncytial viruses (RSV) were found to be the most common etiology of acute respiratory infections. The authors suggest that active surveillance be conducted to identify the causative agents and improve clinical management, especially in the context of possible circulation of pandemic viruses. © 2015 Wiley Periodicals, Inc.

  16. The microbiota of the respiratory tract : Gatekeeper to respiratory health

    NARCIS (Netherlands)

    Man, Wing Ho; De Steenhuijsen Piters, Wouter A.A.; Bogaert, Debby

    2017-01-01

    The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts

  17. Brain-Derived Neurotrophic Factor Loaded PS80 PBCA Nanocarrier for In Vitro Neural Differentiation of Mouse Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Chiu-Yen Chung

    2017-03-01

    Full Text Available Brain derived neurotrophic factor (BDNF can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC was constructed to deliver plasmid DNAs (pDNAs containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF. The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification.

  18. Bioreactivity: Studies on a Simple Brain Stem Reflex in Behaving Animals

    Science.gov (United States)

    1990-01-04

    attempting to understand complex physiological processes, such as brain neuromodulation , or complex behavioral processes, such as arousal, is finding a...one synapse in brain, and receives dense inputs from two neurochemical systems important in neuromodulation and arousal. Initial pharmacologic studies

  19. Respiratory Home Health Care

    Science.gov (United States)

    ... Us Home > Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources ... Teenagers Living With Lung Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at ...

  20. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  1. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain

    International Nuclear Information System (INIS)

    Vittori, Milos; Breznik, Barbara; Gredar, Tajda; Hrovat, Katja; Bizjak Mali, Lilijana; Lah, Tamara T

    2016-01-01

    An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors

  2. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Sung-Rae Cho

    2016-09-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min. At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS-control (CON, PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes.

  3. Neurogenesis in the aging brain.

    Science.gov (United States)

    Apple, Deana M; Solano-Fonseca, Rene; Kokovay, Erzsebet

    2017-10-01

    Adult neurogenesis is the process of producing new neurons from neural stem cells (NSCs) for integration into the brain circuitry. Neurogenesis occurs throughout life in the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. However, during aging, NSCs and their progenitors exhibit reduced proliferation and neuron production, which is thought to contribute to age-related cognitive impairment and reduced plasticity that is necessary for some types of brain repair. In this review, we describe NSCs and their niches during tissue homeostasis and how they undergo age-associated remodeling and dysfunction. We also discuss some of the functional ramifications in the brain from NSC aging. Finally, we discuss some recent insights from interventions in NSC aging that could eventually translate into therapies for healthy brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Endogenous neurogenesis in the human brain following cerebral infarction.

    Science.gov (United States)

    Minger, Stephen L; Ekonomou, Antigoni; Carta, Eloisa M; Chinoy, Amish; Perry, Robert H; Ballard, Clive G

    2007-01-01

    Increased endogenous neurogenesis has a significant regenerative role in many experimental models of cerebrovascular diseases, but there have been very few studies in humans. We therefore examined whether there was evidence of altered endogenous neurogenesis in an 84-year-old patient who suffered a cerebrovascular accident 1 week prior to death. Using antibodies that specifically label neural stem/neural progenitor cells, we examined the presence of immunopositive cells around and distant from the infarcted area, and compared this with a control, age-matched individual. Interestingly, a large number of neural stem cells, vascular endothelial growth factor-immunopositive cells and new blood vessels were observed only around the region of infarction, and none in the corresponding brain areas of the healthy control. In addition, an increased number of neural stem cells was observed in the neurogenic region of the lateral ventricle wall. Our results suggest increased endogenous neurogenesis associated with neovascularization and migration of newly-formed cells towards a region of cerebrovascular damage in the adult human brain and highlight possible mechanisms underlying this process.

  5. Impact of Hypoglycemia on Brain Metabolism During Diabetes.

    Science.gov (United States)

    Rehni, Ashish K; Dave, Kunjan R

    2018-04-10

    Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.

  6. Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain.

    Science.gov (United States)

    Kippin, Tod E; Cain, Sean W; Masum, Zahra; Ralph, Martin R

    2004-03-17

    Many of the effects of prenatal stress on the endocrine function, brain morphology, and behavior in mammals can be reversed by brief sessions of postnatal separation and handling. We have tested the hypothesis that the effects of both the prenatal and postnatal experiences are mediated by negative and positive regulation of neural stem cell (NSC) number during critical stages in neurodevelopment. We used the in vitro clonal neurosphere assay to quantify NSCs in hamsters that had experienced prenatal stress (maternal restraint stress for 2 hr per day, for the last 7 d of gestation), postnatal handling (maternal-offspring separation for 15 min per day during postnatal days 1-21), orboth. Prenatal stress reduced the number of NSCs derived from the subependyma of the lateral ventricle. The effect was already present at postnatal day 1 and persisted into adulthood (at least 14 months of age). Similarly, prenatal stress reduced in vivo proliferation in the adult subependyma of the lateral ventricle. Conversely, postnatal handling increased NSC number and reversed the effect of prenatal stress. The effects of prenatal stress on NSCs and proliferation and the effect of postnatal handling on NSCs did not differ between male and females. The findings demonstrate that environmental factors can produce changes in NSC number that are present at birth and endure into late adulthood. These changes may underlie some of the behavioral effects produced by prenatal stress and postnatal handling.

  7. MRI abnormalities and related risk factors of the brain in patients with neuromyelitis optica

    International Nuclear Information System (INIS)

    Xiao Hui; Ma Lin; Lou Xin; Cai Youquan; Wang Yulin; Wang Yan; Wu Lei; Wu Weiping

    2011-01-01

    Objective: To investigate the MRI features of the brain in patients with neuromyelitis optica (NMO), and to evaluate the correlation between the brain abnormalities and related risk factors. Methods: Fifty-four patients with definite NMO according to 2006 Wingerchuk diagnosis criteria were enrolled in this study. MRI scanning of the brain was performed in these patients. Distribution and signal features of all the lesions were analyzed. A Logistic regression analysis was used to evaluate the risk factors of brain abnormalities. Results: Twenty-four NMO patients (44.4%) showed unremarkable findings and thirty (55.6%) showed abnormalities on brain MRI. Multiple and non-specific small lesions in the subcortical white matter and grey-white matter junction were the most frequent abnormalities on brain MRI (13/30, 43.3%). Typical lesion locations included corpus callosum, subependyma of ventricles, hypothalamus and brain stem. The lesions showed punctate, patchy and linear abnormal signals. Post-contrast MRI showed no abnormal enhancement in 16 cases. Logistic regression analysis showed that coexisting autoimmune disease or infection. history had correlations with abnormalities of the brain on MRI (OR=3.519, P<0.05). Conclusions: There was a high incidence of brain abnormalities in NMO. Subependymal white matter, corpus callosum, hypothalamus and brain stem were often involved in NMO. NMO patients with coexisting autoimmune disease and infection history had higher risk of brain abnormalities. (authors)

  8. Primary brain lymphoma presenting as Parkinson's disease

    International Nuclear Information System (INIS)

    Sanchez-Guerra, M.; Leno, C.; Berciano, J.; Cerezal, L.; Diez, C.; Figols, J.

    2001-01-01

    Neoplasm is an uncommon cause of a parkinsonian syndrome. We report a woman with primary brain B-cell lymphoma presenting as Parkinson's disease. After 1 year of the illness, CT and MRI showed lesions without mass effect in the basal ganglia and corpus callosum. The patient did not respond to levodopa and right cerebellar and brain-stem signs appeared, which prompted further neuroimaging, showing an increase in size of the lesions and a right cerebellar and pontine mass. Stereotactic biopsy of the basal ganglia showed high-grade B-cell lymphoma. Despite the basal ganglia frequently being involved in lymphoma of the brain, presentation with typical or atypical parkinsonism is exceptional. (orig.)

  9. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment

    International Nuclear Information System (INIS)

    Williams, Cecilia; Wirta, Valtteri; Meletis, Konstantinos; Wikstroem, Lilian; Carlsson, Leif; Frisen, Jonas; Lundeberg, Joakim

    2006-01-01

    Stem cells generally reside in a stem cell microenvironment, where cues for self-renewal and differentiation are present. However, the genetic program underlying stem cell proliferation and multipotency is poorly understood. Transcriptome analysis of stem cells and their in vivo microenvironment is one way of uncovering the unique stemness properties and provides a framework for the elucidation of stem cell function. Here, we characterize the gene expression profile of the in vivo neural stem cell microenvironment in the lateral ventricle wall of adult mouse brain and of in vitro proliferating neural stem cells. We have also analyzed an Lhx2-expressing hematopoietic-stem-cell-like cell line in order to define the transcriptome of a well-characterized and pure cell population with stem cell characteristics. We report the generation, assembly and annotation of 50,792 high-quality 5'-end expressed sequence tag sequences. We further describe a shared expression of 1065 transcripts by all three stem cell libraries and a large overlap with previously published gene expression signatures for neural stem/progenitor cells and other multipotent stem cells. The sequences and cDNA clones obtained within this framework provide a comprehensive resource for the analysis of genes in adult stem cells that can accelerate future stem cell research

  10. Increased 3-nitrotyrosine levels in mitochondrial membranes and impaired respiratory chain activity in brain regions of adult female rats submitted to daily vitamin A supplementation for 2 months.

    Science.gov (United States)

    de Oliveira, Marcos Roberto; Lorenzi, Rodrigo; Schnorr, Carlos Eduardo; Morrone, Maurílio; Moreira, José Cláudio Fonseca

    2011-10-10

    Vitamin A supplementation among women is a common habit worldwide in an attempt to slow aging progression due to the antioxidant potential attributed to retinoids. Nonetheless, vitamin A elicits a myriad of side effects that result from either therapeutic or inadvertent intake at varying doses for different periods. The mechanism behind such effects remains to be elucidated. In this regard, we performed the present work aiming to investigate the effects of vitamin A supplementation at 100, 200, or 500IU/kgday(-1) for 2 months on female rat brain, analyzing tissue lipid peroxidation levels, antioxidant enzyme activities (both Cu/Zn-superoxide dismutase - SOD - and Mn-SOD); glutathione S-transferase (GST) and monoamine oxidase (MAO) enzyme activity; mitochondrial respiratory chain activity and redox parameters in mitochondrial membranes, as well as quantifying α- and β-synucleins, β-amyloid peptide(1-40), immunoglobulin heavy-chain binding protein/78kDa glucose-regulated protein (BiP/GRP78), receptor for advanced glycation end products (RAGE), D2 receptor, and tumor necrosis factor-α (TNF-α) contents in rat frontal cortex, hippocampus, striatum, and cerebellum. We observed increased lipid peroxidation marker levels, altered Cu/Zn-SOD and Mn-SOD enzyme activities, mitochondrial nitrosative stress, and impaired respiratory chain activity in such brain regions. On the other hand, we did not find any change in MAO and GST enzyme activities, and on α- and β-synucleins, β-amyloid peptide(1-40), GRP78/BiP, RAGE, D2 receptor, and TNF-α contents. Importantly, we did not observed any evidence regarding an antioxidant effect of such vitamin at low doses in this experimental model. The use of vitamin A as an antioxidant therapy among women needs to be reexamined. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine

    Science.gov (United States)

    Hill, Rob; Lyndon, Abi; Withey, Sarah; Roberts, Joanne; Kershaw, Yvonne; MacLachlan, John; Lingford-Hughes, Anne; Kelly, Eamonn; Bailey, Chris; Hickman, Matthew; Henderson, Graeme

    2016-01-01

    Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO2 in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths. PMID:26171718

  12. Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions

    Science.gov (United States)

    Ming, Guo-li; Song, Hongjun

    2011-01-01

    Summary Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining questions related to adult neural stem cells and their niches, underlying regulatory mechanisms and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new technologies, the adult neurogenesis field is poised to leap forward in the next decade. PMID:21609825

  13. Brain plasticity of rats exposed to prenatal immobilization stress

    Directory of Open Access Journals (Sweden)

    Badalyan B. Yu.

    2011-10-01

    Full Text Available Aim. This histochemical and immunohistochemical study was aimed at examining the brain cellular structures of newborn rats exposed to prenatal immobilization (IMO stress. Methods. Histochemical method on detection of Ca2+-dependent acid phosphatase activity and ABC immunohistochemical technique. Results. Cell structures with radial astrocytes marker GFAP, neuroepithelial stem cell marker gene nestin, stem-cells marker and the hypothalamic neuroprotective proline-rich polypeptide PRP-1 (Galarmin, a natural cytokine of a common precursor to neurophysin vasopressin associated glycoprotein have been revealed in several brain regions. Conclusions. Our findings indicate the process of generation of new neurons in response to IMO and PRP-1 involvement in this recovery mechanism, as PRP-1-Ir was detected in the above mentioned cell structures, as well as in the neurons and nerve fibers.

  14. Control of Drosophila Type I and Type II central brain neuroblast proliferation by bantam microRNA

    DEFF Research Database (Denmark)

    Weng, Ruifen; Cohen, Stephen M

    2015-01-01

    Post-transcriptional regulation of stem cell self-renewal by microRNAs is emerging as an important mechanism controlling tissue homeostasis. Here, we provide evidence that bantam microRNA controls neuroblast number and proliferation in the Drosophila central brain. Bantam also supports proliferat......Post-transcriptional regulation of stem cell self-renewal by microRNAs is emerging as an important mechanism controlling tissue homeostasis. Here, we provide evidence that bantam microRNA controls neuroblast number and proliferation in the Drosophila central brain. Bantam also supports...

  15. Hypoxia Induces a Metabolic Shift and Enhances the Stemness and Expansion of Cochlear Spiral Ganglion Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Hsin-Chien Chen

    2015-01-01

    Full Text Available Previously, we demonstrated that hypoxia (1% O2 enhances stemness markers and expands the cell numbers of cochlear stem/progenitor cells (SPCs. In this study, we further investigated the long-term effect of hypoxia on stemness and the bioenergetic status of cochlear spiral ganglion SPCs cultured at low oxygen tensions. Spiral ganglion SPCs were obtained from postnatal day 1 CBA/CaJ mouse pups. The measurement of oxygen consumption rate, extracellular acidification rate (ECAR, and intracellular adenosine triphosphate levels corresponding to 20% and 5% oxygen concentrations was determined using a Seahorse XF extracellular flux analyzer. After low oxygen tension cultivation for 21 days, the mean size of the hypoxia-expanded neurospheres was significantly increased at 5% O2; this correlated with high-level expression of hypoxia-inducible factor-1 alpha (Hif-1α, proliferating cell nuclear antigen (PCNA, cyclin D1, Abcg2, nestin, and Nanog proteins but downregulated expression of p27 compared to that in a normoxic condition. Low oxygen tension cultivation tended to increase the side population fraction, with a significant difference found at 5% O2 compared to that at 20% O2. In addition, hypoxia induced a metabolic energy shift of SPCs toward higher basal ECARs and higher maximum mitochondrial respiratory capacity but lower proton leak than under normoxia, where the SPC metabolism was switched toward glycolysis in long-term hypoxic cultivation.

  16. Guideline of procedures 2003 for the gammagraphic study of brain death

    International Nuclear Information System (INIS)

    Mora R, R.A.

    2003-01-01

    The diagnosis of brain death is a clinical diagnosis that is sometimes made with the help of cerebral perfusion scintigraphy. It is important that all physicians be knowledgeable about the clinical requirements for the diagnosis of brain death, especially the need to establish irreversible cessation of all function of the cerebrum and brain stem. Institutions performing scintigraphy for the evaluation of possible brain death should develop clinical guidelines and procedures for the clinical diagnosis that incorporate both clinical evaluations and the integration of ancillary tests such as perfusion scintigraphy. (Author)

  17. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    International Nuclear Information System (INIS)

    Joseph, Bertrand; Hermanson, Ola

    2010-01-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  18. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Bertrand [Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden)

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  19. Respiratory system

    Science.gov (United States)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  20. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    Science.gov (United States)

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  1. Characterization of mitochondrial respiratory chain energetics in the vestibular nucleus complex.

    Science.gov (United States)

    Ashton, John C; Khalessi, Amirala; Kapoor, Mohit; Clarkson, Andrew; Sammut, Ivan A; Darlington, Cynthia L; Smith, Paul F

    2005-04-01

    Despite having very high neuronal firing rates, the VNC does not have unusually high mitochondrial activity in vitro. This study is the first in which functionally active mitochondria from the hindbrain have been isolated and characterized. Neurons in the vestibular nucleus complex (VNC) have exceptionally high spontaneous firing rates. Neuronal mitochondria generate adenosine triphosphate critical for maintaining the membrane potentials required for axon firing. We therefore hypothesized a high rate of mitochondrial activity in the VNC. To test this hypothesis, we compared mitochondrial activity in the VNC with mitochondrial activity from another area of the hindbrain, the cerebellum. Mitochondrial respiratory activity was assessed by measuring oxidative phosphorylation and mitochondrial respiratory enzyme complex activity. Assay results were not significantly different in the VNC compared to those obtained with the cerebellum or with rat brain mitochondria in previous studies.

  2. Effect of radiotherapy on stem cells in head and neck region

    International Nuclear Information System (INIS)

    Sharma, Anu; Krishnan, Manu

    2014-01-01

    Head and neck cancers form a major group of dreaded diseases in India. Radiation therapy is one important treatment modality for this type of cancer. However, inadvertent radiation to normal tissue leads to depletion of its critical stem cells due to genotoxic damage. Cells mostly affected by radiation are rapidly dividing bone marrow and epidermal skin stem cells. The erythroid and myeloid progenitor cells of bone marrow bear the brunt of it causing leucopenia/thrombocytopenia/anemia. Alopecia and pigmentation mark the changes on skin. In brain, two stem cell populations; subgranular and subventricular zones, where neurogenesis occurs throughout life are affected. However, terminally differentiating neurons with low proliferative capacity are spared. In oral tissues, xerostomia is a prominent feature, while dental pulp stem cells undergo senescence. Enamel calcification and tooth root formation are also impaired. Eye shows changes in the limbal stem cells that replace corneal epithelium. All these imply a varied response of stem cells to radiation therapy based on their proliferation capacity; quiescent stem cells being more resistant whereas actively dividing cells, less resistant to radiotherapy. This paper evaluates the differential response of stem cells to radiation therapy in the head and neck area and thereby aims to predict their therapeutic potential. (author)

  3. Targeted inactivation of the murine Abca3 gene leads to respiratory failure in newborns with defective lamellar bodies

    International Nuclear Information System (INIS)

    Hammel, Markus; Michel, Geert; Hoefer, Christina; Klaften, Matthias; Mueller-Hoecker, Josef; Angelis, Martin Hrabe de; Holzinger, Andreas

    2007-01-01

    Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies in type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns

  4. Respiratory Viruses in Febrile Neutropenic Patients with Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Mohsen Meidani

    2018-01-01

    Full Text Available Background: Respiratory infections are a frequent cause of fever in neutropenic patients, whereas respiratory viral infections are not frequently considered as a diagnosis, which causes high morbidity and mortality in these patients. Materials and Methods: This prospective study was performed on 36 patients with neutropenia who admitted to hospital were eligible for inclusion with fever (single temperature of >38.3°C or a sustained temperature of >38°C for more than 1 h, upper and lower respiratory symptoms. Sampling was performed from the throat of the patient by the sterile swab. All materials were analyzed by quantitative real-time multiplex polymerase chain reaction covering the following viruses; influenza, parainfluenza virus (PIV, rhinovirus (RV, human metapneumovirus, and respiratory syncytial virus (RSV. Results: RV was the most frequently detected virus and then RSV was the most. PIV was not present in any of the tested samples. Furthermore, no substantial differences in the distribution of specific viral species were observed based on age, sex, neutropenia duration, hematological disorder, and respiratory tract symptoms and signs (P > 0.05. Conclusion: Our prospective study supports the hypothesis that respiratory viruses play an important role in the development of neutropenic fever, and thus has the potential to individualize infection treatment and to reduce the extensive use of antibiotics in immunocompromised patients with neutropenia.

  5. CD133 Immunohistochemisty in Glioblastoma – Identification of Tumor Stem Cells or a Matter of Coincidence?

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Christensen, Karina Garnier; Jensen, Stine Skov

    The putative stem cell marker CD133 is the marker of choice for identifying brain tumor stem cells in gliomas, but the use of different antibody clones recognizing different epitopes with different glycosylation status, confuses the field. In this study, we sat out to highlight if current...... suggest that CD133 immunohistochemical studies take this in to consideration by using different CD133 antibody clones together with other stem cell markers and e.g. PCR techniques before too firm conclusions are drawn....

  6. Middle East Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  7. A clinico-radiological study on 254 cases of pontine high signals on magnetic resonance imaging in relation to brain stem semiology

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-11-01

    A total of 254 patients who were proved to have pontine high intensity areas on T[sub 2]-weighted magnetic resonance imaging (MRI) were analyzed in relation to brain stem semiology. A comparative study on MRI and MR angiography was made between 254 patients with pontine high signals and 276 control cases showing no abnormality either on T[sub 1] or T[sub 2]-weighted images. Of the 254 patients, 62 had transient subjective complaints such as vertigo-dizziness. Supratentorial high signals, basilar artery tortuousness and vertebral artery asymmetry on MR angiography were seen more frequently in patients with pontine high signals than in the controls. In conclusion, pontine high signals may result from diffuse arteriosclerosis and MR angiography is considered to be a useful screening method. (author).

  8. Air pollutant sulfur dioxide-induced alterations on the levels of lipids, lipid peroxidation and lipase activity in various regions of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Haider, S S; Hasan, M; Khan, N H

    1982-07-01

    The exposure of rats to SO/sub 2/ (10 p.p.m.) for one hour daily for 30 days caused depletion of total lipids in all brain areas. The contents of phospholipid were elevated in cerebellum and brain stem, but were depleted in cerebral hemisphere. Cholesterol levels showed an increase in various brain regions. On the other hand, gangliosides were increased in cerebellum and brain stem, but were decreased in cerebral hemisphere. Interestingly, cholesterol/phospholipid ratio was increased in different regions of the brain. Lipase activity was elevated in cerebral hemisphere. Lipid peroxidation showed marked increment in whole brain and in all the brain areas studied. The results suggest that SO/sub 2/-exposure induces degradation of lipids. Interestingly, the lipid contents are affected differentially in the various parts of the brain.

  9. Respiratory alkalosis in children with febrile seizures.

    Science.gov (United States)

    Schuchmann, Sebastian; Hauck, Sarah; Henning, Stephan; Grüters-Kieslich, Annette; Vanhatalo, Sampsa; Schmitz, Dietmar; Kaila, Kai

    2011-11-01

    Febrile seizures (FS) are the most common type of convulsive events in children. FS are suggested to result from a combination of genetic and environmental factors. However, the pathophysiologic mechanisms underlying FS remain unclear. Using an animal model of experimental FS, it was demonstrated that hyperthermia causes respiratory alkalosis with consequent brain alkalosis and seizures. Here we examine the acid-base status of children who were admitted to the hospital for FS. Children who were admitted because of gastroenteritis (GE), a condition known to promote acidosis, were examined to investigate a possible protective effect of acidosis against FS. We enrolled 433 age-matched children with similar levels of fever from two groups presented to the emergency department. One group was admitted for FS (n = 213) and the other for GE (n = 220). In the FS group, the etiology of fever was respiratory tract infection (74.2%), otitis media (7%), GE (7%), tonsillitis (4.2%), scarlet fever (2.3%) chickenpox (1.4%), urinary tract infection (1.4%), postvaccination reaction (0.9%), or unidentified (1.4%). In all patients, capillary pH and blood Pco(2) were measured immediately on admission to the hospital. Respiratory alkalosis was found in children with FS (pH 7.46 ± 0.04, [mean ± standard deviation] Pco(2) 29.5 ± 5.5 mmHg), whereas a metabolic acidosis was seen in all children admitted for GE (pH 7.31 ± 0.03, Pco(2) 37.7 ± 4.3 mmHg; p respiratory alkalosis, irrespective of the severity of the underlying infection as indicated by the level of fever. The lack of FS in GE patients is attributable to low pH, which also explains the fact that children with a susceptibility to FS do not have seizures when they have GE-induced fever that is associated with acidosis. The present demonstration of a close link between FS and respiratory alkalosis may pave the way for further clinical studies and attempts to design novel therapies for the treatment of FS by controlling the

  10. Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Dana M. Cairns

    2016-09-01

    Full Text Available Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain.

  11. Thoracic air-leakage syndrome in allogeneic stem cell transplant recipients as a late complication of chronic graft-versus-host disease: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Wook; Kim, Song Soo; Jo, Daeg Yeon; Yun, Hwan Jung; Lee, Hyo Jin; Kim, Jin Hwan [Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon (Korea, Republic of)

    2016-08-15

    Air-leakage syndrome associated with graft-versus-host disease (GVHD) is a rare complication, but it is also reported as an independent predictor of a worse survival rate after stem cell transplantation. We report two cases of air-leakage syndrome associated with GVHD after allogeneic stem cell transplantation in acute leukemia patients who presented with spontaneous pneumomediastinum and subcutaneous emphysema, and finally death due to respiratory failure seven to eight months later.

  12. Electrical stimulation for physiologic measurement of neuromuscular function and respiratory support during anticholinesterase poisoning. Annual report, October 1983-September 1984

    Energy Technology Data Exchange (ETDEWEB)

    Yodlowski, E.H.

    1984-10-01

    The purpose of this research is to develop the techniques necessary for providing short-term respiratory support for personnel poisoned by organophosphate agents. Following acute exposure to organophosphate compounds, respiration ceases before cardiovascular collapse occurs. Military personnel exposed to these compounds in the field are most likely to die from asphyxiation. By virtue of their ability to cross the blood-brain barrier and inhibit cholinesterase activity the organophosphates are capable of interrupting control of respiration either centrally (i.e. within the central nervous system) or peripherally by blocking neuromuscular transmission or contraction coupling at the peripheral muscles. We hypothesize that it will be possible to overcome organophosphate induced respiratory arrest by providing artificial respiratory pacing. This research is aimed at producing a means of respiratory support via electronic stimulation of the phrenic nerve (s) that can be used when central respiratory drive has become blocked by organophosphate agents. Animal experiments have been conducted to implement and evaluate the transesophageal electrophrenic stimulation technique (TEST) for respiratory pacing and to determine appropriate stimulation parameters to produce effective and efficient respirations.

  13. Neural stem cell sparing by linac based intensity modulated stereotactic radiotherapy in intracranial tumors

    International Nuclear Information System (INIS)

    Oehler, Julia; Brachwitz, Tim; Wendt, Thomas G; Banz, Nico; Walther, Mario; Wiezorek, Tilo

    2013-01-01

    Neurocognitive decline observed after radiotherapy (RT) for brain tumors in long time survivors is attributed to radiation exposure of the hippocampus and the subventricular zone (SVZ). The potential of sparing capabilities for both structures by optimized intensity modulated stereotactic radiotherapy (IMSRT) is investigated. Brain tumors were irradiated by stereotactic 3D conformal RT or IMSRT using m3 collimator optimized for PTV and for sparing of the conventional OARs (lens, retina, optic nerve, chiasm, cochlea, brain stem and the medulla oblongata). Retrospectively both hippocampi and SVZ were added to the list of OAR and their dose volume histograms were compared to those from two newly generated IMSRT plans using 7 or 14 beamlets (IMSRT-7, IMSRT-14) dedicated for optimized additional sparing of these structures. Conventional OAR constraints were kept constant. Impact of plan complexity and planning target volume (PTV) topography on sparing of both hippocampi and SVZ, conformity index (CI), the homogeneity index (HI) and quality of coverage (QoC) were analyzed. Limits of agreement were used to compare sparing of stem cell niches with either IMSRT-7 or IMSRT-14. The influence of treatment technique related to the topography ratio between PTV and OARs, realized in group A-D, was assessed by a mixed model. In 47 patients CI (p ≤ 0.003) and HI (p < 0.001) improved by IMSRT-7, IMSRT-14, QoC remained stable (p ≥ 0.50) indicating no compromise in radiotherapy. 90% of normal brain was exposed to a significantly higher dose using IMSRT. IMSRT-7 plans resulted in significantly lower biologically effective doses at all four neural stem cell structures, while contralateral neural stem cells are better spared compared to ipsilateral. A further increase of the number of beamlets (IMSRT-14) did not improve sparing significantly, so IMSRT-7 and IMSRT-14 can be used interchangeable. Patients with tumors contacting neither the subventricular zone nor the cortex benefit

  14. Immunohistochemical study of doublecortin and nucleostemin in canine brain

    Directory of Open Access Journals (Sweden)

    E. De Nevi

    2013-03-01

    Full Text Available Finding a marker of neural stem cells remains a medical research priority. It was reported that the proteins doublecortin and nucleostemin were related with stem/progenitor cells in central nervous system. The aim of the present immunohistochemical study was to evaluate the expression of these proteins and their pattern of distribution in canine brain, including age-related changes, and in non-nervous tissues. We found that doublecortin had a more specific expression pattern, related with neurogenesis and neuronal migration, while nucleostemin was expressed in most cells of almost every tissue studied. The immunolabeling of both proteins decreased with age. We may conclude that nucleostemin is not a specific marker of stem/progenitor cells in the dog. Doublecortin, however, is not an exclusive marker of neural stem cells, but also of neuronal precursors.

  15. Ethanol stem bark extract of Rauwolfia vomitoria ameliorates MPTP ...

    African Journals Online (AJOL)

    Methods: The Parkinson's disease was induced in rats by a single intraperitoneal (IP) injection of MPTP. After 72h of induction, the young adult male rats were treated with oral administration of stem bark ethanol extract of the plant daily for 2 weeks. The blood chemistry, antioxidant markers and brain dopamine levels were ...

  16. Human herpesviruses respiratory infections in patients with acute respiratory distress (ARDS).

    Science.gov (United States)

    Bonizzoli, Manuela; Arvia, Rosaria; di Valvasone, Simona; Liotta, Francesco; Zakrzewska, Krystyna; Azzi, Alberta; Peris, Adriano

    2016-08-01

    Acute respiratory distress syndrome (ARDS) is today a leading cause of hospitalization in intensive care unit (ICU). ARDS and pneumonia are closely related to critically ill patients; however, the etiologic agent is not always identified. The presence of human herpes simplex virus 1, human cytomegalovirus and Epstein-Barr virus in respiratory samples of critically ill patients is increasingly reported even without canonical immunosuppression. The main aim of this study was to better understand the significance of herpesviruses finding in lower respiratory tract of ARDS patients hospitalized in ICU. The presence of this group of herpesviruses, in addition to the research of influenza viruses and other common respiratory viruses, was investigated in respiratory samples from 54 patients hospitalized in ICU, without a known microbiological causative agent. Moreover, the immunophenotype of each patient was analyzed. Herpesviruses DNA presence in the lower respiratory tract seemed not attributable to an impaired immunophenotype, whereas a significant correlation was observed between herpesviruses positivity and influenza virus infection. A higher ICU mortality was significantly related to the presence of herpesvirus infection in the lower respiratory tract as well as to impaired immunophenotype, as patients with poor outcome showed severe lymphopenia, affecting in particular T (CD3+) cells, since the first days of ICU hospitalization. In conclusion, these results indicate that herpesviruses lower respiratory tract infection, which occurs more frequently following influenza virus infection, can be a negative prognostic marker. An independent risk factor for ICU patients with ARDS is an impaired immunophenotype.

  17. Reduced integrity of the uncinate fasciculus and cingulum in depression: A stem-by-stem analysis.

    Science.gov (United States)

    Bhatia, Kartik D; Henderson, Luke A; Hsu, Eugene; Yim, Mark

    2018-04-07

    The subgenual cingulate gyrus (Brodmann's Area 25: BA25) is hypermetabolic in depression and has been targeted successfully with deep brain stimulation. Two of the white matter tracts that play a role in treatment response are the uncinate fasciculus (UF) and the cingulum bundle. The UF has three prefrontal stems, the most medial of which extends from BA25 (which deals with mood regulation) and the most lateral of which extends from the dorso-lateral prefrontal cortex (concerned with executive function). The cingulum bundle has numerous fibers connecting the lobes of the cerebrum, with the longest fibers extending from BA25 to the amygdala. We hypothesize that there is reduced integrity in the UF, specific to the medial prefrontal stems, as well as in the subgenual and amygdaloid fibers of the cingulum bundle. Our secondary hypothesis is that these changes are present from the early stages of depression. Compare the white matter integrity of stems of the UF and components of the cingulum bundle in first-onset depressed, recurrent/chronic depressed, and non-depressed control subjects. Depressed patients (n = 103, first-onset = 57, chronic = 46) and non-depressed control subjects (n = 74) underwent MRI with 32-directional DTI sequences. The uncinate fasciculi and cingulum bundles were seeded, and the fractional anisotropy (FA) measured in each of the three prefrontal stems and the body of the UF, as well as the subgenual, body, and amygdaloid fiber components of the cingulum bundle. FA measurements were compared between groups using ANOVA testing with post-hoc Tukey analysis. There were significant reductions in FA in the subgenual and polar stems of the UF bilaterally, as well as the subgenual and amygdaloid fibers of the cingulum bundle, in depressed patients compared with controls (p lateral UF stem or the main body of the cingulum. No significant difference was demonstrated in any of the tracts between first-onset and chronic depression patients

  18. Rebuilding the injured brain: use of MRS in clinical regenerative medicine

    Science.gov (United States)

    Zare, Alina; Weiss, Michael; Gader, Paul

    2011-03-01

    Hypoxic-Ischemic Encephalopathy (HIE) is the brain manifestation of systemic asphyxia that occurs in 20 out of 1000 births. HIE triggers an immediate neuronal and glial injury leading to necrosis secondary to cellular edema and lysis. Because of this destructive neuronal injury, up to 25% of neonates exhibit severe permanent neuropsychological handicaps in the form of cerebral palsy, with or without associated mental retardation, learning disabilities, or epilepsy. Due to the devastating consequences of HIE, much research has focused on interrupting the cascade of events triggered by HIE. To date, none of these therapies, with the exception of hypothermia, have been successful in the clinical environment. Even in the case of hypothermia, only neonates with mild to moderate HIE respond to therapy. Stem cell therapy offers an attractive potential treatment for HIE. The ability to replace necrotic cells with functional cells could limit the degree of long-term neurological deficits. The neonatal brain offers a unique milieu for stem cell therapy due to its overall plasticity and the continued division of cells in the sub-ventricular zones. New powerful imaging tools allow researchers to track stem cells in vivo post-transplant, as shown in Figure 1. However, neuroimaging still leaves numerous questions unresolved: How can we identify stem cells without using tracking agents, what cells types are destroyed in the brain post injury? What is the final phenotypic fate of transplanted cells? Are the transplanted cells still viable? Do the transplanted cells spare endogenous neuronal tissue? We hypothesize that magnetic resonance spectroscopy (MRS), a broadly used clinical technique that can be performed at the time of a standard MRI scan, can provide answers to these questions when coupled with advanced computational approaches. MRS is widely available clinically, and is a relative measure of different metabolites within the sampled area. These measures are presented as a

  19. Multiple cortical brain abscesses due to Listeria monocytogenes in an immunocompetent patient.

    Science.gov (United States)

    Khan, Sadia; Kumar, Anil; Kale, Satyajit; Kurkure, Nitin; Nair, Gulsiv; Dinesh, Kavitha

    2018-04-01

    Listeria monocytogenes is an intracellular organism which is well recognised for its ability to cause meningeal infections in neonates, immunosuppressed, debilitated and elderly individuals. 1 Other less common central nervous system (CNS) infections caused by Listeria spp. include rhomboencephalitis, cerebritis and abscesses in the brain, brain stem and spinal cord. The neuroradiological appearance of Listeria brain abscesses is similar to other types and may also mimic primary or metastatic brain tumours. 2 , 3 We report a case of Listeria brain abscesses in a patient who was being treated for atypical parkinsonism. A good clinical outcome was achieved after appropriate antimicrobial therapy.

  20. Kenny Caffey syndrome with severe respiratory and gastrointestinal involvement: expanding the clinical phenotype.

    Science.gov (United States)

    Christodoulou, Loucas; Krishnaiah, Anil; Spyridou, Christina; Salpietro, Vincenzo; Hannan, Siobhan; Saggar, Anand; Mankad, Kshitij; Deep, Akash; Kinali, Maria

    2015-06-01

    Kenny Caffey syndrome (KCS) is a rare syndrome reported almost exclusively in Middle Eastern populations. It is characterized by severe growth retardation-short stature, dysmorphic features, episodic hypocalcaemia, hypoparathyroidism, seizures, and medullary stenosis of long bones with thickened cortices. We report a 10-year-old boy with KCS with an unusually severe respiratory and gastrointestinal system involvement-features not previously described in the literature. He had severe psychomotor retardation and regressed developmentally from walking unaided to sitting with support. MRI brain showed bilateral hippocampal sclerosis, marked supra-tentorial volume loss and numerous calcifications. A 12 bp deletion of exon 2 of tubulin-specific chaperone E (TBCE) gene was identified and the diagnosis of KCS was confirmed. Hypercarbia following a sleep study warranted nocturnal continuous positive airway pressure (CPAP) when aged 6. When boy aged 8, persistent hypercarbia with increasing oxygen requirement and increased frequency and severity of lower respiratory tract infections led to progressive respiratory failure. He became fully dependent on non-invasive ventilation and by 9 years he had a tracheotomy and was established on long-term ventilation. He developed retching, vomiting and diarrhea. Chest CT showed changes consistent with chronic aspiration, but no interstitial pulmonary fibrosis. He died aged 10 from respiratory complications.