WorldWideScience

Sample records for brain stem descending

  1. Brain stem cavernous angioma

    International Nuclear Information System (INIS)

    Delcarpio-O'Donovan, R.; Melanson, D.; Tampieri, D.; Ethier, R.

    1988-01-01

    Twenty-two cases of cavernous angioma of the brain stem were definitely diagnosed by means of magnetic resonance (MR) imaging. In many cases, the diagnosis had remained elusive for several years. Clinically, some cases behaved like multiple sclerosis or brain stem tumor. Others, usually associated with bleeding, caused increased intracranial pressure or subarachnoid hemorrhage. The diagnostic limitations of computed tomography in the posterior fossa are well known. Angiography fails to reveal abnormalities, since this malformation has neither a feeding artery nor a draining vein. Diagnosticians' familiarity with the MR appearance of this lesion may save patients from invasive diagnostic studies and potentially risky treatment

  2. Paraneoplastic brain stem encephalitis.

    Science.gov (United States)

    Blaes, Franz

    2013-04-01

    Paraneoplastic brain stem encephalitis can occur as an isolated clinical syndrome or, more often, may be part of a more widespread encephalitis. Different antineuronal autoantibodies, such as anti-Hu, anti-Ri, and anti-Ma2 can be associated with the syndrome, and the most frequent tumors are lung and testicular cancer. Anti-Hu-associated brain stem encephalitis does not normally respond to immunotherapy; the syndrome may stabilize under tumor treatment. Brain stem encephalitis with anti-Ma2 often improves after immunotherapy and/or tumor therapy, whereas only a minority of anti-Ri positive patients respond to immunosuppressants or tumor treatment. The Opsoclonus-myoclonus syndrome (OMS) in children, almost exclusively associated with neuroblastoma, shows a good response to steroids, ACTH, and rituximab, some patients do respond to intravenous immunoglobulins or cyclophosphamide. In adults, OMS is mainly associated with small cell lung cancer or gynecological tumors and only a small part of the patients show improvement after immunotherapy. Earlier diagnosis and treatment seem to be one major problem to improve the prognosis of both, paraneoplastic brain stem encephalitis, and OMS.

  3. Descending brain neurons in larval lamprey: Spinal projection patterns and initiation of locomotion

    Science.gov (United States)

    Shaw, Albert C.; Jackson, Adam W.; Holmes, Tamra; Thurman, Suzie; Davis, G.R.; McClellan, Andrew D.

    2010-01-01

    In larval lamprey, partial lesions were made in the rostral spinal cord to determine which spinal tracts are important for descending activation of locomotion and to identify descending brain neurons that project in these tracts. In whole animals and in vitro brain/spinal cord preparations, brain-initiated spinal locomotor activity was present when the lateral or intermediate spinal tracts were spared but usually was abolished when the medial tracts were spared. We previously showed that descending brain neurons are located in eleven cell groups, including reticulospinal (RS) neurons in the mesenecephalic reticular nucleus (MRN) as well as the anterior (ARRN), middle (MRRN), and posterior (PRRN) rhombencephalic reticular nuclei. Other descending brain neurons are located in the diencephalic (Di) as well as the anterolateral (ALV), dorsolateral (DLV), and posterolateral (PLV) vagal groups. In the present study, the Mauthner and auxillary Mauthner cells, most neurons in the Di, ALV, DLV, and PLV cell groups, and some neurons in the ARRN and PRRN had crossed descending axons. The majority of neurons projecting in medial spinal tracts included large identified Müller cells and neurons in the Di, MRN, ALV, and DLV. Axons of individual descending brain neurons usually did not switch spinal tracts, have branches in multiple tracts, or cross the midline within the rostral cord. Most neurons that projected in the lateral/intermediate spinal tracts were in the ARRN, MRRN, and PRRN. Thus, output neurons of the locomotor command system are distributed in several reticular nuclei, whose neurons project in relatively wide areas of the cord. PMID:20510243

  4. Traumatic primary brain stem haemorrhage

    International Nuclear Information System (INIS)

    Andrioli, G.C.; Zuccarello, M.; Trincia, G.; Fiore, D.L.; De Caro, R.

    1983-01-01

    We report 36 cases of post-traumatic 'primary brain stem haemorrhage' visualized by the CT scan and confirmed at autopsy. Clinical experience shows that many technical factors influence the inability to visualize brain stem haemorrhages. Experimental injection of fresh blood into the pons and midbrain of cadavers shows that lesions as small as 0.25 ml in volume may be visualized. The volume and the anatomical configuration of traumatic lesions of the brain stem extended over a rostro-caudal direction, and their proximity to bony structures at the base of the skull are obstacles to the visualization of brain stem haemorrhages. (Author)

  5. Diversity of Cortico-descending Projections

    DEFF Research Database (Denmark)

    Innocenti, Giorgio M; Caminiti, Roberto; Rouiller, Eric M

    2018-01-01

    The axonal composition of cortical projections originating in premotor, supplementary motor (SMA), primary motor (a4), somatosensory and parietal areas and descending towards the brain stem and spinal cord was characterized in the monkey with histological tract tracing, electron microscopy (EM) a...

  6. Brain stem type neuro-Behcet's syndrome

    International Nuclear Information System (INIS)

    Kataoka, Satoshi; Hirose, Genjiro; Kosoegawa, Hiroshi; Oda, Rokuhei; Yoshioka, Akira

    1987-01-01

    Two cases of brain stem type Neuro-Behcet's syndrome were evaluated by brain CT and Magnetic Resonance Imaging (Super-conducting type, 0.5 tesla) to correlate with the neurological findings. In the acute phase, low density area with peripheral enhancement effect and mass effect were seen at the brain stem in brain CT. MRI revealed a extensive high intensity signal area mainly involving the corticospinal tract in the meso-diencephalon as well as pons by T 2 weighted images (spin echo, TR = 1, 600 msec, TE = 90 msec) and the value of T 1 , T 2 , at the brain stem lesion were prolonged moderately. After high dose steroid treatment, the low density area in brain CT and high signal area in MRI were gradually reduced in its size. Peripheral enhancement effect in brain CT disappeared within 10 months in case 1, one month in the other case. In the chronic stage, the reduction of low density area and atrophy of brain stem were noted in brain CT. The lesion in chronic stage had low intensity in T 1 , T 2 weighted images and the T 1 , T 2 values at the lesion were mildly prolonged in MRI. Sequentially CT with enhancement and MRI examinations with T 1 , T 2 weighted images were useful to detect the lesion and to evaluate the activity, evolution of brain stem type Neuro-Behcet's syndrome. (author)

  7. Stem cells to regenerate the newborn brain

    NARCIS (Netherlands)

    van Velthoven, C.T.J.

    2011-01-01

    Perinatal hypoxia-ischemia (HI) is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. In this thesis we investigate whether mesenchymal stem cells (MSC) regenerate the neonatal brain after HI injury. We show that transplantation of MSC after neonatal brain injury

  8. Childhood Brain Stem Glioma Treatment

    Science.gov (United States)

    ... The tentorium separates the supratentorium from the infratentorium (right panel). The skull and meninges protect the brain and spinal cord (left panel). Brain tumors are the second most common ...

  9. Neurofibromatosis type 1: brain stem tumours

    International Nuclear Information System (INIS)

    Bilaniuk, L.T.; Molloy, P.T.; Zimmerman, R.A.; Phillips, P.C.; Vaughan, S.N.; Liu, G.T.; Sutton, L.N.; Needle, M.

    1997-01-01

    We describe the clinical and imaging findings of brain stem tumours in patients with neurofibromatosis type 1 (NF1). The NF1 patients imaged between January 1984 and January 1996 were reviewed and 25 patients were identified with a brain stem tumour. Clinical, radiographical and pathological results were obtained by review of records and images. Brain stem tumour identification occurred much later than the clinical diagnosis of NF1. Medullary enlargement was most frequent (68 %), followed by pontine (52 %) and midbrain enlargement (44 %). Patients were further subdivided into those with diffuse (12 patients) and those with focal (13 patients) tumours. Treatment for hydrocephalus was required in 67 % of the first group and only 15 % of the second group. Surgery was performed in four patients and revealed fibrillary astrocytomas, one of which progressed to an anaplastic astrocytoma. In 40 % of patients both brain stem and optic pathway tumours were present. The biological behaviour of brain stem tumours in NF1 is unknown. Diffuse tumours in the patients with NF1 appear to have a much more favourable prognosis than patients with similar tumours without neurofibromatosis type 1. (orig.). With 7 figs., 3 tabs

  10. Childhood Brain Stem Glioma Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood brain stem glioma can be a benign (not cancer) or malignant (cancer) condition where abnormal cells form in the tissues of the brain stem. Get information about the symptoms, diagnosis, prognosis, and treatment of newly diagnosed and recurrent childhood brain stem glioma in this expert-reviewed summary.

  11. The brain stem function in patients with brain bladder

    International Nuclear Information System (INIS)

    Takahashi, Toshihiro

    1990-01-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author)

  12. Radiotherapy for pediatric brain stem tumors

    International Nuclear Information System (INIS)

    Shcherbenko, O.I.; Parkhomenko, R.A.; Govorina, E.V.; Zelinskaya, N.I.; Ardatova, G.V.; Nechaeva, V.N.

    2000-01-01

    The immediate and short-term results of gamma therapy of brain stem tumors in 24 children were evaluated. All the patients were able to sustain treatment due to adjuvant support with dehydrating and hormonal drugs, and beneficial clinical effect was recorded in 80%. However, magnetic resonance tomography showed no decrease in tumor size. Tumor growth relapsed 3-8 months after radiotherapy. Although total dose ranged 60-72 Gy in 19 patients, there was no clinical evidence of radiation injury [ru

  13. Characterization of Cancer Stem Cells in Patients with Brain ...

    African Journals Online (AJOL)

    Background: Gliomas, in general, and astrocytomas, in particular, represent the most frequent primary brain tumors. Nowadays, it is increasingly believed that gliomas may arise from cancer stem cells, which share several characteristics with normal neural stem cells. Brain tumor stem cells have been found to express a ...

  14. Wallerian degeneration of the corticospinal tract in the brain stem

    International Nuclear Information System (INIS)

    Uchino, Akira; Onomura, Kentaro; Ohno, Masato

    1989-01-01

    Magnetic resonance imaging (MRI) of wallerian degeneration of the corticospinal tract in the brain stem was studied in 25 patients with chronic supratentorial vascular accidents. In the relatively early stages, at least three months after ictus, increased signal intensities in axial T 2 -weighted images - with or without decreased signal intensities in axial T 1 -weighted images - were observed in the brain stem ipsilaterally. In later stages, at least six months after ictus, shrinkage of the brain stem ipsilaterally - with or without decreased signal intensities - was clearly observed in axial T 1 -weighted images. MRI is therefore regarded a sensitive diagnostic modality for evaluating wallerian degeneration in the brain stem. (author)

  15. Aqp 9 and Brain Tumour Stem Cells

    Directory of Open Access Journals (Sweden)

    Guri Fossdal

    2012-01-01

    Full Text Available Several studies have implicated the aquaporins (aqp 1, 4, and 9 in the pathogenesis of malignant brain tumours, suggesting that they contribute to motility, invasiveness, and oedema formation and facilitate metabolism in tumour cells under hypoxic conditions. We have studied the expression of aqp1, 4, and 9 in biopsies from glioblastomas, isolated tumour stem cells grown in a tumoursphere assay and analyzed the progenitor and differentiated cells from these cultures. We have compared these to the situation in normal rat brain, its stem cells, and differentiated cells derived thereof. In short, qPCR in tumour tissue showed presence of aqp1, 4, and 9. In the tumour progenitor population, aqp9 was markedly more highly expressed, whilst in tumour-derived differentiated cells, aqp4 was downregulated. However, immunostaining did not reveal increased protein expression of aqp9 in the tumourspheres containing progenitor cells; in contrast, its expression (both mRNA and protein was high in differentiated cultures. We, therefore, propose that aquaporin 9 may have a central role in the tumorigenesis of glioblastoma.

  16. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  17. Milrinone in Enterovirus 71 Brain Stem Encephalitis

    Directory of Open Access Journals (Sweden)

    SHIH-MIN eWANG

    2016-03-01

    Full Text Available Enterovirus 71 (EV71 was implicated in a widespread outbreak of hand-foot-and-mouth disease (HFMD across the Asia Pacific area since 1997 and has also been reported sporadically in patients with brain stem encephalitis. Neurogenic shock with pulmonary edema (PE is a fatal complication of EV71 infection. Among inotropic agents, milrinone is selected as a therapeutic agent for EV71- induced PE due to its immunopathogenesis. Milrinone is a type III phosphodiesterase inhibitor that has both inotropic and vasodilator effects. Its clinical efficacy has been shown by modulating inflammation, reducing sympathetic over-activity, and improving survival in patients with EV71-associated PE. Milrinone exhibits immunoregulatory and anti-inflammatory effects in the management of systemic inflammatory responses in severe EV71 infection.

  18. Brain mesenchymal stem cells: The other stem cells of the brain?

    Science.gov (United States)

    Appaix, Florence; Nissou, Marie-France; van der Sanden, Boudewijn; Dreyfus, Matthieu; Berger, François; Issartel, Jean-Paul; Wion, Didier

    2014-04-26

    Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.

  19. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants.

    Science.gov (United States)

    Adams, Bret R; Golding, Sarah E; Rao, Raj R; Valerie, Kristoffer

    2010-04-02

    The DNA double-strand break (DSB) is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR) is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ) is dominant. We have characterized the DNA damage response (DDR) and quality of DNA double-strand break (DSB) repair in human embryonic stem cells (hESCs), and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF) was used as a surrogate for DSB repair. The resolution of gamma-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs) and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR), showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ]) in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.

  20. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants.

    Directory of Open Access Journals (Sweden)

    Bret R Adams

    2010-04-01

    Full Text Available The DNA double-strand break (DSB is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ is dominant. We have characterized the DNA damage response (DDR and quality of DNA double-strand break (DSB repair in human embryonic stem cells (hESCs, and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF was used as a surrogate for DSB repair. The resolution of gamma-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR, showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ] in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.

  1. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  2. Neurosyphilis Involving Cranial Nerves in Brain Stem: 2 Case Reports

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Hye [Dept. of Radiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Choi, Woo Suk; Kim, Eui Jong [Dept. of Radiology, Kyung Hee University Hospital, Seoul (Korea, Republic of); Yoon, Sung Sang; Heo, Sung Hyuk [Dept. of Neurology, Kyung Hee University Hospital, Seoul (Korea, Republic of)

    2012-01-15

    Neurosyphilis uncommonly presents with cranial neuropathies in acute syphilitic meningitis and meningovascular neurosyphilis. We now report two cases in which the meningeal form of neurosyphilis involved cranial nerves in the brain stem: the oculomotor and trigeminal nerve.

  3. Neurosyphilis Involving Cranial Nerves in Brain Stem: 2 Case Reports

    International Nuclear Information System (INIS)

    Jang, Ji Hye; Choi, Woo Suk; Kim, Eui Jong; Yoon, Sung Sang; Heo, Sung Hyuk

    2012-01-01

    Neurosyphilis uncommonly presents with cranial neuropathies in acute syphilitic meningitis and meningovascular neurosyphilis. We now report two cases in which the meningeal form of neurosyphilis involved cranial nerves in the brain stem: the oculomotor and trigeminal nerve.

  4. Stem cells for brain repair in neonatal hypoxia-ischemia.

    Science.gov (United States)

    Chicha, L; Smith, T; Guzman, R

    2014-01-01

    Neonatal hypoxic-ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain's plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic-ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.

  5. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  6. Brain stem hypoplasia associated with Cri-du-Chat syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Ho; Lee, Ha Young; Lim, Myung Kwan; Kim, Mi Young; Kang, Young Hye; Lee, Kyung Hee; Cho, Soon Gu [Dept. of Radiology, Inha University Hospital, Inha University School of Medicine, Incheon (Korea, Republic of)

    2013-12-15

    Cri-du-Chat syndrome, also called the 5p-syndrome, is a rare genetic abnormality, and only few cases have been reported on its brain MRI findings. We describe the magnetic resonance imaging findings of a 1-year-old girl with Cri-du-Chat syndrome who showed brain stem hypoplasia, particularly in the pons, with normal cerebellum and diffuse hypoplasia of the cerebral hemispheres. We suggest that Cri-du-Chat syndrome chould be suspected in children with brain stem hypoplasia, particularly for those with high-pitched cries.

  7. Are there fetal stem cells in the maternal brain?

    Institute of Scientific and Technical Information of China (English)

    Osman Demirhan; Necmi (C)ekin; Deniz Ta(s)temir; Erdal Tun(c); Ali irfan Güzel; Demet Meral; Bülent Demirbek

    2013-01-01

    Fetal cells can enter maternal blood during pregnancy but whether they can also cross the blood-brain barrier to enter the maternal brain remains poorly understood. Previous results suggest that fetal cells are summoned to repair damage to the mother's brain. If this is confirmed, it would open up new and safer avenues of treatment for brain damage caused by strokes and neural diseases. In this study, we aimed to investigate whether a baby's stem cells can enter the maternal brain during pregnancy. Deceased patients who had at least one male offspring and no history of abortion and blood transfusion were included in this study. DNA was extracted from brain tissue samples of deceased women using standard phenol-chloroform extraction and ethanol precipitation methods. Genomic DNA was screened by quantitative fluorescent-polymerase chain reaction amplification together with short tandem repeat markers specific to the Y chromosome, and 13, 18, 21 and X. Any foreign DNA residues that could be used to interpret the presence of fetal stem cells in the maternal brain were monitored. Results indicated that fetal stem cells can not cross the blood-brain barrier to enter the maternal brain.

  8. Magnetic resonance imaging in brain-stem tumors

    International Nuclear Information System (INIS)

    Nomura, Mikio; Saito, Hisazumi; Akino, Minoru; Abe, Hiroshi.

    1988-01-01

    Four patients with brain-stem tumors underwent magnetic resonance imaging (MRI) before and after radiotherapy. The brain-stem tumors were seen as a low signal intensity on T1-weighted images and as a high signal intensity on T2-weighted images. A tumor and its anatomic involvement were more clearly visualized on MRI than on cuncurrently performed CT. Changes in tumor before and after radiotherapy could be determined by measuring the diameter of tumor on sagittal and coronal images. This allowed quantitative evaluation of the reduction of tumor in association with improvement of symptoms. The mean T1 value in the central part of tumors was shortened in all patients after radiotherapy. The results indicate that MRI may assist in determining the effect of radiotherapy for brain-stem tumors. (Namekawa, K)

  9. Mapping the calcitonin receptor in human brain stem

    DEFF Research Database (Denmark)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J

    2016-01-01

    understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract...... receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our...

  10. The stem cell secretome and its role in brain repair.

    Science.gov (United States)

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2013-12-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  11. CT findings of traumatic primary brain-stem injury

    International Nuclear Information System (INIS)

    Hosaka, Yasuaki; Hatashita, Shizuo; Bandou, Kuniaki; Ueki, Yasuyuki; Abe, Kouzou; Koga, Nobunori; Sugimura, Jun; Sakakibara, Tokiwa; Takagi, Suguru

    1984-01-01

    A series of 27 consecutive patients with traumatic primary brain stem injuries was studied. They were diagnosed by means of clinical signs, neurological examination, and computerized tomography (CT). The CT findings of the brain-stem lesions were classified into 4 types: Type H, spotty, high-density; Type H and L, high- and low-densities; Type L, low-density; Type I, isodensity. The Glasgow coma scale (GCS), neurological findings on admission, CT findings (findings in the brain stem, obliteration of perimesencephalic cistern (PMC), and other findings), and the Glasgow outcome scale (GOS) were examined. In the 9 cases of Type H, there was a correlation between the GCS and the GOS, and the spotty, high-density lesions were localized mainly in the dorsal and/or ventral midbrain parenchyma, but these lesions did not show focal signs and symptoms. Without an obliteration of the PMC, Type-H patients did not always have a bad outcome. In the 4 cases of Type H and L, the 2 cases of Type L, and the 12 cases of Type I, there was an obliteration of the PMC. All of the these cases had a bad outcome (1 case of moderate disability, 3 cases of severe disability, and 14 cases of death). The mechanism producing a spotty, high-density area was discussed. The weaker impact (than the other types) and individual anatomical differences weresupposed to make for a spotty, high-density are in the brain stem. (author)

  12. Development and aging of a brain neural stem cell niche.

    Science.gov (United States)

    Conover, Joanne C; Todd, Krysti L

    2017-08-01

    In the anterior forebrain, along the lateral wall of the lateral ventricles, a neurogenic stem cell niche is found in a region referred to as the ventricular-subventricular zone (V-SVZ). In rodents, robust V-SVZ neurogenesis provides new neurons to the olfactory bulb throughout adulthood; however, with increasing age stem cell numbers are reduced and neurogenic capacity is significantly diminished, but new olfactory bulb neurons continue to be produced even in old age. Humans, in contrast, show little to no new neurogenesis after two years of age and whether V-SVZ neural stem cells persist in the adult human brain remains unclear. Here, we review functional and organizational differences in the V-SVZ stem cell niche of mice and humans, and examine how aging affects the V-SVZ niche and its associated functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Stem Cell Technology for (Epi)genetic Brain Disorders.

    Science.gov (United States)

    Riemens, Renzo J M; Soares, Edilene S; Esteller, Manel; Delgado-Morales, Raul

    2017-01-01

    Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

  14. Stem cells technology: a powerful tool behind new brain treatments.

    Science.gov (United States)

    Duru, Lucienne N; Quan, Zhenzhen; Qazi, Talal Jamil; Qing, Hong

    2018-06-18

    Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.

  15. Delayed radiation-induced necrosis of the brain stem

    International Nuclear Information System (INIS)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi; Uozumi, Toru.

    1993-01-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author)

  16. Infrequent lesions involving the brain stem: assessment with magnetic resonance

    International Nuclear Information System (INIS)

    Gonzalez, Alejandro P.; Salvatico, Rosana; Romero, Carlos; Lambre, Hector; Trejo, Mariano; Meli, Francisco

    2005-01-01

    Purpose: Report five non frequent cases that involve the brain stem studied with MRI. Material and methods: 115 patients were evaluated retrospectively between January 2002 and March 2004. Five non frequent cases were selected. Their ages were between 3 and 75 years, and all of them were male. A 1.5 magnet was used. The diagnosis was made with the clinical evolution, blood and CSF analysis and in one case by biopsy. Results: The mentioned cases were posterior reversible leucoencephalopathy, rhombencephalitis due to listeria monocytogenes, brain stem infiltrating glioma, Leigh syndrome and pontine myelinolysis. Conclusions: We think that the reported cases have to be considered among the different diagnosis of the brainstem pathology, in spite of their non frequent presentation. (author)

  17. Olivary degeneration after cerebellar or brain stem haemorrhage: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan) Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Hasuo, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Uchida, K. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Matsumoto, S. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan)); Tsukamoto, Y. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Ohno, M. (Dept. of Radiology, Kyushu Rosai Hospital, Kitakyushu (Japan)); Masuda, K. (Dept. of Radiology, Kyushu Univ. Hospital, Fukuoka (Japan))

    1993-05-01

    Magnetic resonance (MR) images of seven patients with olivary degeneration caused by cerebellar or brain stem haemorrhages were reviewed. In four patients with cerebellar haemorrhage, old haematomas were identified as being located in the dentate nucleus; the contralateral inferior olivary nuclei were hyperintense on proton-density- and T2-weighted images. In two patients with pontine haemorrhages, the old haematomas were in the tegmentum and the ipsilateral inferior olivary nuclei, which were hyperintense. In one case of midbrain haemorrhage, the inferior olivary nuclei were hyperintense bilaterally. The briefest interval from the ictus to MRI was 2 months. Hypertrophic olivary nuclei were observed only at least 4 months after the ictus. Olivary degeneration after cerebellar or brain stem haemorrhage should not be confused with ischaemic, neoplastic, or other primary pathological conditions of the medulla. (orig.)

  18. Brain stem auditory evoked responses in chronic alcoholics.

    OpenAIRE

    Chan, Y W; McLeod, J G; Tuck, R R; Feary, P A

    1985-01-01

    Brain stem auditory evoked responses (BAERs) were performed on 25 alcoholic patients with Wernicke-Korsakoff syndrome, 56 alcoholic patients without Wernicke-Korsakoff syndrome, 24 of whom had cerebellar ataxia, and 37 control subjects. Abnormal BAERs were found in 48% of patients with Wernicke-Korsakoff syndrome, in 25% of alcoholic patients without Wernicke-Korsakoff syndrome but with cerebellar ataxia, and in 13% of alcoholic patients without Wernicke-Korsakoff syndrome or ataxia. The mean...

  19. Pediatric brain stem tumors: analysis of 25 cases

    International Nuclear Information System (INIS)

    Pinel, M.I.S.; Kalifa, C.; Sarrazin, D.; Lemerle, J.

    1985-01-01

    The charts of 25 pediatric patients with brain stem tumors have been reviewed. The use of computed tomography was found to have been valuable in diagnosis and follow-up, as well as in the design of radiation therapy portals. Radiotherapy and combination chemotherapy with VM-26 (4'-1 demethyl-epipodophyllo toxin B-D-thenylidene glucoside) and CCNU(1-2-chloroethyl-methyl-3-Cyclohexyl-1-nitrosourea) were the treatment employed. (M.A.C.) [pt

  20. Acute traumatic brain-stem hemorrhage produced by sudden caudal displacement of the brain

    International Nuclear Information System (INIS)

    Mirvis, S.E.; Wolf, A.L.; Thompson, R.K.

    1990-01-01

    This paper determines in an experimental canine study and a clinical review, whether acute caudal displacement of the brain following blunt trauma produces hemorrhage in the rostral anterior midline of the brain stem by tethering the basilar to the fixed carotid arteries. In four dogs, a balloon catheter was suddenly inflated over the frontal lobe; in two, the carotid-basilar vascular connections were severed prior to balloon inflation. ICP was monitored during and after balloon inflation. Hemorrhage was verified by MR imaging and direct inspection of the fixed brain specimens. Admission CT scans demonstrating acute traumatic brain stem hemorrhage (TBH) in human patients were reviewed to determine the site of TBH, predominant site of impact, and neurologic outcome

  1. Neural stem cells in the ischemic and injured brain: endogenous and transplanted.

    Science.gov (United States)

    Dong, Jing; Liu, Baohua; Song, Lei; Lu, Lei; Xu, Haitao; Gu, Yue

    2012-12-01

    Neural stem cells functions as the pool of new neurons in adult brain, and plays important roles in normal brain function. Additionally, this pool reacts to brain ischemia, hemorrhage, trauma and many kinds of diseases, serving as endogenous repair mechanisms. The present manuscript discussed the responses of adult neurogenesis to brain ischemia and other insults, then the potential of neural stem cell transplantation therapy to treat such brain injury conditions.

  2. [Descending ocular myopathy].

    Science.gov (United States)

    de Freitas, M R; Nascimento, O J

    1975-06-01

    The case of a 23 years old female patient, with primary involvement of the extraocular and faringeal muscles without familiar history is reported. Electromyographic and muscular biopsy studies proved the myogenic nature of the process. A clinical comparison between the ocular myopathy and the descending ocular myopathy is made, the authors thinking that both of them would be variants of the same muscle disease.

  3. Tomographic criteria of gliomas in the brain stem in infants

    International Nuclear Information System (INIS)

    Machado Junior, M.A.; Bracchi, M.; D'Incerti, L.; Passerini, A.

    1994-01-01

    The relationship between Computed Tomography Imaging, histopathological and prognostic data is evaluated by reviewing 37 cases of brain stem neoplasm in infants. The results indicate a presence of a cystic lesion with solid mural nodule as the single prognostic criteria of a greater survival rate. Such finding frequently corresponds to Pilocytic Astrocytomas. No correlations between contrast enhancement and prognostic was found. The association between the prognostic value to the densitometric characteristics of the lesions was not possible. It was concluded that the evaluations of the extension of such lesion is fundamental. Therefore, Magnetic Resonance Imaging has more value than computed tomography. (M.A.C.)

  4. Brain mesenchymal stem cells: physiology and pathological implications.

    Science.gov (United States)

    Pombero, Ana; Garcia-Lopez, Raquel; Martinez, Salvador

    2016-06-01

    Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine. © 2016 Japanese Society of Developmental Biologists.

  5. Cytokine Immunopathogenesis of Enterovirus 71 Brain Stem Encephalitis

    Directory of Open Access Journals (Sweden)

    Shih-Min Wang

    2012-01-01

    Full Text Available Enterovirus 71 (EV71 is one of the most important causes of herpangina and hand, foot, and mouth disease. It can also cause severe complications of the central nervous system (CNS. Brain stem encephalitis with pulmonary edema is the severe complication that can lead to death. EV71 replicates in leukocytes, endothelial cells, and dendritic cells resulting in the production of immune and inflammatory mediators that shape innate and acquired immune responses and the complications of disease. Cytokines, as a part of innate immunity, favor the development of antiviral and Th1 immune responses. Cytokines and chemokines play an important role in the pathogenesis EV71 brain stem encephalitis. Both the CNS and the systemic inflammatory responses to infection play important, but distinctly different, roles in the pathogenesis of EV71 pulmonary edema. Administration of intravenous immunoglobulin and milrinone, a phosphodiesterase inhibitor, has been shown to modulate inflammation, to reduce sympathetic overactivity, and to improve survival in patients with EV71 autonomic nervous system dysregulation and pulmonary edema.

  6. Brain-stem evoked potentials and noise effects in seagulls.

    Science.gov (United States)

    Counter, S A

    1985-01-01

    Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.

  7. Age and Gender Effects On Auditory Brain Stem Response (ABR

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2012-10-01

    Full Text Available Objectives: Auditory Brain Stem Response (ABR is a result of eight nerve and brain stem nuclei stimulation. Several factors may affect the latencies, interpeak latencies and amplitudes in ABR especially sex and age. In this study, age and sex influence on ABR were studied. Methods: This study was performed on 120 cases (60 males and 60 females at Akhavan rehabilitation center of university of welfare and rehabilitation sciences, Tehran, Iran. Cases were divided in three age groups: 18-30, 31-50 and 51-70 years old. Each age group consists of 20 males and 20 females. Age and sex influences on absolute latency of wave I and V, and IPL of I-V were examined. Results: Independent t test showed that females have significantly shorter latency of wave I, V, and IPL I-V latency (P<0.001 than males. Two way ANOVA showed that latency of wave I, V and IPL I-V in 51-70 years old group was significantly higher than 18-30 and 31-50 years old groups (P<0.001 Discussion: According to the results of present study and similar studies, in clinical practice, different norms for older adults and both genders should be established.

  8. The Potential of Stem Cells in Treatment of Traumatic Brain Injury.

    Science.gov (United States)

    Weston, Nicole M; Sun, Dong

    2018-01-25

    Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.

  9. Descending with Angels

    DEFF Research Database (Denmark)

    Suhr, Christian

    2014-01-01

    Islamic exorcism or psychotropic medication? “Descending with Angels” explores two highly different solutions to the same problem: namely Danish Muslims who are possessed by invisible spirits, called jinn. A Palestinian refugee living in the city of Aarhus has been committed to psychiatric......, and directed by Christian Suhr Produced by Persona Film, November 2013 Distribution: Documentary Educational Resources (DER, Watertown) Screening format: DCP / Blu-ray / ProRes / Mpeg4 / DVD / DV SP. Original format: XDCAM 1080p Languages: Arabic, Danish, English Subtitles: English...

  10. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Hayashi, Norio; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Sanada, Shigeru; Suzuki, Masayuki; Matsui, Osamu

    2008-01-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: segmentation of the brain region; separation between the cerebrum and the cerebellum-brain stem; and segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain. (author)

  11. Progressive multifocal leukoencephalopathy limited to the brain stem

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, O.; Maschke, M.; Diener, H.C. [Neurologische Universitaetsklinik, University of Essen (Germany); Wanke, I. [Department of Neuroradiology, University of Essen (Germany)

    2002-03-01

    Progressive multifocal leukoencephalopathy (PML) is a subacute demyelinating slow-virus encephalitis caused by the JC polyomavirus in 2-5% of patients with AIDS. MRI typically shows multiple lesions in the cerebral hemispheres. We present a rare case of rapidly evolving and lethal PML with a severe bulbar syndrome and spastic tetraparesis in a patient with AIDS. MRI showed high-signal lesions on T2-weighted images confined to the brain stem, extending from the medulla oblongata to the midbrain. JC virus polymerase chain reaction in cerebrospinal fluid was positive, and neuropathology showed the findings of PML. This case was also notable because of the rapid progression despite improved immune status with antiretroviral therapy. (orig.)

  12. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.

    Science.gov (United States)

    Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan

    2018-05-03

    Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p mesenchymal stem cell-treated mice compared to the control group following ischemia (p cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.

  13. Proliferation of differentiated glial cells in the brain stem

    Directory of Open Access Journals (Sweden)

    P.C. Barradas

    1998-02-01

    Full Text Available Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase, that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions.

  14. Diffuse noxious inhibitory controls and nerve injury: restoring an imbalance between descending monoamine inhibitions and facilitations.

    Science.gov (United States)

    Bannister, Kirsty; Patel, Ryan; Goncalves, Leonor; Townson, Louisa; Dickenson, Anthony H

    2015-09-01

    Diffuse noxious inhibitory controls (DNICs) utilize descending inhibitory controls through poorly understood brain stem pathways. The human counterpart, conditioned pain modulation, is reduced in patients with neuropathy aligned with animal data showing a loss of descending inhibitory noradrenaline controls together with a gain of 5-HT3 receptor-mediated facilitations after neuropathy. We investigated the pharmacological basis of DNIC and whether it can be restored after neuropathy. Deep dorsal horn neurons were activated by von Frey filaments applied to the hind paw, and DNIC was induced by a pinch applied to the ear in isoflurane-anaesthetized animals. Spinal nerve ligation was the model of neuropathy. Diffuse noxious inhibitory control was present in control rats but abolished after neuropathy. α2 adrenoceptor mechanisms underlie DNIC because the antagonists, yohimbine and atipamezole, markedly attenuated this descending inhibition. We restored DNIC in spinal nerve ligated animals by blocking 5-HT3 descending facilitations with the antagonist ondansetron or by enhancing norepinephrine modulation through the use of reboxetine (a norepinephrine reuptake inhibitor, NRI) or tapentadol (μ-opioid receptor agonist and NRI). Additionally, ondansetron enhanced DNIC in normal animals. Diffuse noxious inhibitory controls are reduced after peripheral nerve injury illustrating the central impact of neuropathy, leading to an imbalance in descending excitations and inhibitions. Underlying noradrenergic mechanisms explain the relationship between conditioned pain modulation and the use of tapentadol and duloxetine (a serotonin, NRI) in patients. We suggest that pharmacological strategies through manipulation of the monoamine system could be used to enhance DNIC in patients by blocking descending facilitations with ondansetron or enhancing norepinephrine inhibitions, so possibly reducing chronic pain.

  15. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  16. Wallerian degeneration of the corticospinal tract in the brain stem; MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Onomura, Kentaro; Ohno, Masato (Kyushu Rosai Hospital, Kitakyushu, Fukuoka (Japan))

    1989-04-01

    Magnetic resonance imaging (MRI) of wallerian degeneration of the corticospinal tract in the brain stem was studied in 25 patients with chronic supratentorial vascular accidents. In the relatively early stages, at least three months after ictus, increased signal intensities in axial T{sub 2}-weighted images - with or without decreased signal intensities in axial T{sub 1}-weighted images - were observed in the brain stem ipsilaterally. In later stages, at least six months after ictus, shrinkage of the brain stem ipsilaterally - with or without decreased signal intensities - was clearly observed in axial T{sub 1}-weighted images. MRI is therefore regarded a sensitive diagnostic modality for evaluating wallerian degeneration in the brain stem. (author).

  17. Childhood Brain Stem Glioma Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Childhood brain stem glioma presents as a diffuse intrinsic pontine glioma (DIPG; a fast-growing tumor that is difficult to treat and has a poor prognosis) or a focal glioma (grows more slowly, is easier to treat, and has a better prognosis). Learn about the diagnosis, cellular classification, staging, treatment, and clinical trials for pediatric brain stem glioma in this expert-reviewed summary.

  18. Persistent Inflammation Alters the Function of the Endogenous Brain Stem Cell Compartment

    OpenAIRE

    Pluchino, Stefano; Muzio, Luca; Alfaro-Cervello, Clara; Salani, Giuliana; Porcheri, Cristina; Brambilla, Elena; Cavasinni, Francesca; Bergamaschi, Andrea; Garcia-Verdugo, Jose Manuel; Comi, Giancarlo; Martino, Gianvito; Imitola, Jaime; Deleidi, Michela; Khoury, Samia Joseph

    2008-01-01

    Endogenous neural stem/precursor cells (NPCs) are considered a functional reservoir for promoting tissue homeostasis and repair after injury, therefore regenerative strategies that mobilize these cells have recently been proposed. Despite evidence of increased neurogenesis upon acute inflammatory insults (e.g. ischaemic stroke), the plasticity of the endogenous brain stem cell compartment in chronic CNS inflammatory disorders remains poorly characterized. Here we show that persistent brain in...

  19. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation

    OpenAIRE

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving...

  20. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  1. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  2. Analysis of Neural Stem Cells from Human Cortical Brain Structures In Vitro.

    Science.gov (United States)

    Aleksandrova, M A; Poltavtseva, R A; Marei, M V; Sukhikh, G T

    2016-05-01

    Comparative immunohistochemical analysis of the neocortex from human fetuses showed that neural stem and progenitor cells are present in the brain throughout the gestation period, at least from week 8 through 26. At the same time, neural stem cells from the first and second trimester fetuses differed by the distribution, morphology, growth, and quantity. Immunocytochemical analysis of neural stem cells derived from fetuses at different gestation terms and cultured under different conditions showed their differentiation capacity. Detailed analysis of neural stem cell populations derived from fetuses on gestation weeks 8-9, 18-20, and 26 expressing Lex/SSEA1 was performed.

  3. Four cases with localized brain-stem lesion on CT scan following closed head injury

    International Nuclear Information System (INIS)

    Saeki, Naokatsu; Odaki, Masaru; Oka, Nobuo; Takase, Manabu; Ono, Junichi.

    1981-01-01

    Cases of primary brain-stem injury following closed head injury, verified by a CT scan, have been increasingly reported. However, most of them have other intracranial lesions in addition to the brain stem, resulting in a poor outcome. The CT scan of 200 cases with severe head injury-Araki's classification of types 3 and 4 - were analysed. Four cases out of them had localized brain-stem lesion without any other significant intracranial injury on a CT scan at the acute stage and had a better outcome than had previously been reported. In this analysis, these 4 cases were studied, and the CT findings, prognosis, and pathogenesis of the localized brain-stem injury were discussed. Follow-up CT of three cases, and taken one month or more later, showed diffuse cortical atrophy. This may indicate the presence of diffuse cerebral injury which could not be seen on CT scans at the acute stage. This atrophic change may also be related with the mechanism of posttraumatic conscious impairment and posttraumatic neurological deficits, such as mental symptoms and impairment of the higher cortical function. Shearing injury is a probable pathogenesis for this diffuse cortical injury. On the other hand, one case did not have any cortical atrophy on a follow-up CT scan. Therefore, this is a case with a localized primary brain-stem injury. Coup injury against the brain stem by a tentorial margin in a case with a small tentorial opening is a possible mechanism producing the localized brain-stem injury. (J.P.N.)

  4. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    OpenAIRE

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2007-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal ...

  5. Delayed radiation injury of brain stem after radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Yang Yunli; Liu Yingxin; Xie Dong; Su Danke; Chen Mingzhong

    2002-01-01

    Objective: To study the clinical characteristics, MRI findings, diagnosis, treatment and prognostic factors of patients with radiation induced brain stem injury in nasopharyngeal carcinoma. Methods: From January 1991 to January 2001, 24 patients with radiation injury of brain stem were treated, 14 males and 10 females. The latency ranged from 6 to 38 months, with a median of 18 months. The lesions were located in the pons in 10 patients, mesencephalon + pons in 4, pons + medulla oblongata in 5, medulla oblongata in 2 and mesencephalon + pons + medulla oblongata in 3. MRI findings showed that the injury was chiefly presented as hypointensity foci on T 1 WI and hyperintensity foci on T 2 WI. Results: Eighteen patients were treated with dexamethasone in the early phase, with symptoms relieved in 12 patients but unimproved in 6 patients. Eight 44% patients died within the 8-38 months, leaving 16 patients surviving for 0.5 to 6.0 years. Conclusions: Radiation injury of brain stem has a short latency with severe symptoms, signifying poor prognosis. It is suggested that adequate reduction of irradiation volume and dose at the brain stem should be able to lower the incidence of brain stem injury

  6. [Stem Cells in the Brain of Mammals and Human: Fundamental and Applied Aspects].

    Science.gov (United States)

    Aleksandrova, M A; Marey, M V

    2015-01-01

    Brain stem cells represent an extremely intriguing phenomenon. The aim of our review is to present an integrity vision of their role in the brain of mammals and humans, and their clinical perspectives. Over last two decades, investigations of biology of the neural stem cells produced significant changes in general knowledge about the processes of development and functioning of the brain. Researches on the cellular and molecular mechanisms of NSC differentiation and behavior led to new understanding of their involvement in learning and memory. In the regenerative medicine, original therapeutic approaches to neurodegenerative brain diseases have been elaborated due to fundamental achievements in this field. They are based on specific regenerative potential of neural stem cells and progenitor cells, which possess the ability to replace dead cells and express crucially significant biologically active factors that are missing in the pathological brain. For the needs of cell substitution therapy in the neural diseases, adequate methods of maintaining stem cells in culture and their differentiation into different types of neurons and glial cells, have been developed currently. The success of modern cellular technologies has significantly expanded the range of cells used for cell therapy. The near future may bring new perspective and distinct progress in brain cell therapy due to optimizing the cells types most promising for medical needs.

  7. The brain stem function in patients with brain bladder; Clinical evaluation using dynamic CT scan and auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshihiro (Yokohama City Univ. (Japan). Faculty of Medicine)

    1990-11-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author).

  8. Transcriptional profiling of adult neural stem-like cells from the human brain.

    Directory of Open Access Journals (Sweden)

    Cecilie Jonsgar Sandberg

    Full Text Available There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60. Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate. We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6, foetal human neural stem cells (n = 1 and human brain tissues (n = 12. The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular

  9. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    Science.gov (United States)

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  10. Patient-derived stem cells: pathways to drug discovery for brain diseases

    Directory of Open Access Journals (Sweden)

    Alan eMackay-Sim

    2013-03-01

    Full Text Available The concept of drug discovery through stem cell biology is based on technological developments whose genesis is now coincident. The first is automated cell microscopy with concurrent advances in image acquisition and analysis, known as high content screening (HCS. The second is patient-derived stem cells for modelling the cell biology of brain diseases. HCS has developed from the requirements of the pharmaceutical industry for high throughput assays to screen thousands of chemical compounds in the search for new drugs. HCS combines new fluorescent probes with automated microscopy and computational power to quantify the effects of compounds on cell functions. Stem cell biology has advanced greatly since the discovery of genetic reprogramming of somatic cells into induced pluripotent stem cells (iPSCs. There is now a rush of papers describing their generation from patients with various diseases of the nervous system. Although the majority of these have been genetic diseases, iPSCs have been generated from patients with complex diseases (schizophrenia and sporadic Parkinson’s disease. Some genetic diseases are also modelled in embryonic stem cells generated from blastocysts rejected during in vitro fertilisation. Neural stem cells have been isolated from post-mortem brain of Alzheimer’s patients and neural stem cells generated from biopsies of the olfactory organ of patients is another approach. These olfactory neurosphere-derived cells demonstrate robust disease-specific phenotypes in patients with schizophrenia and Parkinson’s disease. High content screening is already in use to find small molecules for the generation and differentiation of embryonic stem cells and induced pluripotent stem cells. The challenges for using stem cells for drug discovery are to develop robust stem cell culture methods that meet the rigorous requirements for repeatable, consistent quantities of defined cell types at the industrial scale necessary for high

  11. Sumoylation of hypoxia-inducible factor-1α ameliorates failure of brain stem cardiovascular regulation in experimental brain death.

    Directory of Open Access Journals (Sweden)

    Julie Y H Chan

    2011-03-01

    Full Text Available One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM. RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1, Ubc9 (the only known conjugating enzyme for the sumoylation pathway or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem

  12. MRI of the brain stem using fluid attenuated inversion recivery pulse sequences

    International Nuclear Information System (INIS)

    De Coene, B.; Hajnal, J.V.; Pennock, J.M.; Bydder, G.M.

    1993-01-01

    Heavily T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences with inversion times of 2000-2500 ms and echo times of 130-200 ms were used to image the brain stem of a normal adult and five patients. These sequences produce high signal from many white matter tracts and display high lesion contrast. The corticospinal and parietopontine tracts, lateral and medial lemnisci, superior and inferior cerebellar peduncles, medial longitudinal fasciculi, thalamo-olivary tracts the cuneate and gracile fasiculi gave high signal and were directly visualised. The oculomotor and trigeminal nerves were demonstrated within the brain stem. Lesions not seen with conventional T2-weighted spin echo sequences were seen with high contrast in patients with infarction, multiple sclerosis, sarcoidosis, chunt obstruction and metastatic tumour. The anatomical detail and high lesion contrast given by the FLAIR pulse sequence appear likely to be of value in diagnosis of disease in the brain stem. (orig.)

  13. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Pla, Conrado; Al-Amro, Abdullah S.; Bahary, Jean-Paul; Villemure, Jean-Guy; Caron, Jean-Louis; Olivier, Andre; Podgorsak, Ervin B.

    1998-01-01

    Purpose: The aim of this work was to develop a parameter for use during fractionated stereotactic radiotherapy treatment planning to aid in the determination of the appropriate treatment volume and fractionation regimen that will minimize risk of late damage to normal tissue. Materials and Methods: We have used the linear quadratic model to assess the biologically effective dose at the periphery of stereotactic radiotherapy treatment volumes that impinge on the brain stem. This paper reports a retrospective study of 77 patients with malignant and benign intracranial lesions, treated between 1987 and 1995, with the dynamic rotation technique in 6 fractions over a period of 2 weeks, to a total dose of 42 Gy prescribed at the 90% isodose surface. From differential dose-volume histograms, we evaluated biologically effective dose-volume histograms and obtained an integral biologically-effective dose (IBED) in each case. Results: Of the 77 patients in the study, 36 had target volumes positioned so that the brain stem received more than 1% of the prescribed dose, and 4 of these, all treated for meningioma, developed serious late damage involving the brain stem. Other than type of lesion, the only significant variable was the volume of brain stem exposed. An analysis of the IBEDs received by these 36 patients shows evidence of a threshold value for late damage to the brain stem consistent with similar thresholds that have been determined for external beam radiotherapy. Conclusions: We have introduced a new parameter, the IBED, that may be used to represent the fractional effective dose to structures such as the brain stem that are partially irradiated with stereotactic dose distributions. The IBED is easily calculated prior to treatment and may be used to determine appropriate treatment volumes and fractionation regimens minimizing possible toxicity to normal tissue

  14. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    Kamei, Hidekazu

    1989-01-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  15. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  16. Comparative brain stem lesions on MRI of acute disseminated encephalomyelitis, neuromyelitis optica, and multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Zhengqi Lu

    Full Text Available BACKGROUND: Brain stem lesions are common in patients with acute disseminated encephalomyelitis (ADEM, neuromyelitis optica (NMO, and multiple sclerosis (MS. OBJECTIVES: To investigate comparative brain stem lesions on magnetic resonance imaging (MRI among adult patients with ADEM, NMO, and MS. METHODS: Sixty-five adult patients with ADEM (n = 17, NMO (n = 23, and MS (n = 25 who had brain stem lesions on MRI were enrolled. Morphological features of brain stem lesions among these diseases were assessed. RESULTS: Patients with ADEM had a higher frequency of midbrain lesions than did patients with NMO (94.1% vs. 17.4%, P<0.001 and MS (94.1% vs. 40.0%, P<0.001; patients with NMO had a lower frequency of pons lesions than did patients with MS (34.8% vs. 84.0%, P<0.001 and ADEM (34.8% vs. 70.6%, P = 0.025; and patients with NMO had a higher frequency of medulla oblongata lesions than did patients with ADEM (91.3% vs. 35.3%, P<0.001 and MS (91.3% vs. 36.0%, P<0.001. On the axial section of the brain stem, the majority (82.4% of patients with ADEM showed lesions on the ventral part; the brain stem lesions in patients with NMO were typically located in the dorsal part (91.3%; and lesions in patients with MS were found in both the ventral (44.0% and dorsal (56.0% parts. The lesions in patients with ADEM (100% and NMO (91.3% had poorly defined margins, while lesions of patients with MS (76.0% had well defined margins. Brain stem lesions in patients with ADEM were usually bilateral and symmetrical (82.4%, while lesions in patients with NMO (87.0% and MS (92.0% were asymmetrical or unilateral. CONCLUSIONS: Brain stem lesions showed various morphological features among adult patients with ADEM, NMO, and MS. The different lesion locations may be helpful in distinguishing these diseases.

  17. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  18. Physics strategies for sparing neural stem cells during whole-brain radiation treatments

    International Nuclear Information System (INIS)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean; Hwang, Andrew; Barani, Igor J.

    2011-01-01

    Purpose: Currently, there are no successful long-term treatments or preventive strategies for radiation-induced cognitive impairments, and only a few possibilities have been suggested. One such approach involves reducing the dose to neural stem cell compartments (within and outside of the hippocampus) during whole-brain radiation treatments for brain metastases. This study investigates the fundamental physics issues associated with the sparing of neural stem cells during photon radiotherapy for brain metastases. Methods: Several factors influence the stem cell dose: intracranial scattering, collimator leakage, beam energy, and total number of beams. The relative importance of these factors is investigated through a set of radiation therapy plans, which are all variations of an initial 6 MV intensity-modulated radiation therapy (IMRT) plan designed to simultaneously deliver a whole-brain dose of 30 Gy and maximally reduce stem cell compartment dose. Additionally, an in-house leaf segmentation algorithm was developed that utilizes jaw motion to minimize the collimator leakage. Results: The plans are all normalized such that 50% of the PTV receives 30 Gy. For the initial 6 MV IMRT plan, 50% of the stem cells receive a dose greater than 6.3 Gy. Calculations indicate that 3.6 Gy of this dose originates from intracranial scattering. The jaw-tracking segmentation algorithm, used in conjunction with direct machine parameter optimization, reduces the 50% stem cell dose to 4.3 and 3.7 Gy for 6 and 10 MV treatment beams, respectively. Conclusions: Intracranial scattering alone is responsible for a large dose contribution to the stem cell compartment. It is, therefore, important to minimize other contributing factors, particularly the collimator leakage, to maximally reduce dose to these critical structures. The use of collimator jaw tracking in conjunction with modern collimators can minimize this leakage.

  19. Effects of neuroinflammation on the regenerative capacity of brain stem cells

    OpenAIRE

    Russo, Isabella; Barlati, Sergio; Bosetti, Francesca

    2011-01-01

    In the adult brain, neurogenesis under physiological conditions occurs in the subventricular zone and in the dentate gyrus. Although the exact molecular mechanisms that regulate neural stem cell proliferation and differentiation are largely unknown, several factors have been shown to affect neurogenesis. Decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. Furthermore, in pathological conditions of the central nervous system ...

  20. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Directory of Open Access Journals (Sweden)

    Shengxiu Li

    Full Text Available TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  1. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Science.gov (United States)

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  2. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    Science.gov (United States)

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  3. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment.

    Science.gov (United States)

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-05-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.

  4. Diffusion Tensor Tractography Imaging in a Case of Acute Brain Stem Infarct

    Directory of Open Access Journals (Sweden)

    Nilgül Yardımcı

    2009-03-01

    Full Text Available Diffusion tensor tractography enables graphical reconstruction of the white matter pathways in the brain and quantitative study of white matter integrity. With this method virtual dissection of the living human brain can be performed. This technique has many potential clinical applications in neurological disorders, including the investigation of stroke. We present tractography findings of a patient that had an acute ischemic infarct in the brain stem. We aimed to report the disintegration of the white matter tracts at the infarct location in vivo, as well as the associated clinical symptoms. The current use of tractography in neurological disorders shows that it has the potential to improve our understanding of the damage and recovery process in diseases of the brain and spinal cord. From a clinical point of view tractography might be used to test new hypotheses, and to provide important new insights into the organization of the brain and the effects of brain disorders

  5. Stem cells and treatment of brain and spinal cord injury

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva

    2009-01-01

    Roč. 276, Suppl.1 (2009), s. 40-40 ISSN 1742-464X. [Congress of the Federation-of-European-Biochemical-Societies /34./. 04.07.2009-09.07.2009, Prague] Institutional research plan: CEZ:AV0Z50390703 Keywords : Stem cells Subject RIV: FH - Neurology

  6. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanoto, Masafumi, E-mail: mkanoto@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Hosoya, Takaaki, E-mail: thosoya@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Toyoguchi, Yuuki, E-mail: c-elegans_0201g@mail.goo.ne.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Oda, Atsuko, E-mail: a.oda@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan)

    2013-01-15

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis.

  7. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    International Nuclear Information System (INIS)

    Kanoto, Masafumi; Hosoya, Takaaki; Toyoguchi, Yuuki; Oda, Atsuko

    2013-01-01

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis

  8. Descendants of the Chiral Anomaly

    OpenAIRE

    Jackiw, R.

    2000-01-01

    Chern-Simons terms are well-known descendants of chiral anomalies, when the latter are presented as total derivatives. Here I explain that also Chern-Simons terms, when defined on a 3-manifold, may be expressed as total derivatives.

  9. Descending perineum syndrome: new perspectives.

    Science.gov (United States)

    Pucciani, F

    2015-08-01

    The classical clinical profile of descending perineum syndrome (DPS) has been replaced by new pathophysiological, diagnostic, and therapeutic acquisitions. This paper will focus on trigger factors ranging from dyssynergic defecation to excessive straining, fecal incontinence against the backdrop of obstructed defecation, attendant rectal diseases, and therapy tailored to evolving stages of DPS.

  10. Diffusion-weighted magnetic resonance imaging (MRI) in acute brain stem infarction

    International Nuclear Information System (INIS)

    Narisawa, Aya; Shamoto, Hiroshi; Shimizu, Hiroaki; Tominaga, Teiji; Yoshimoto, Takashi

    2001-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) provides one of the earliest demonstrations of ischemic lesions. However some lesions may be missed in the acute stage due to technical limitation of DWI. We therefore conducted the study to clarify the sensitivity of DWI to acute brain stem infarctions. Twenty-eight patients with the final diagnosis of brain stem infarction (midbrain 2, pons 9, medulla oblongata 17) who had been examined by DWI within 24 hours of onset were retrospectively analyzed for how sensitively the initial DWI demonstrated the final ischemic lesion. Only obvious (distinguishable with DWI alone without referring clinical symptoms and other informations) hyperintensity on DWI was regarded to show an ischemic lesion. Sixteen (57.1%) out of 28 patients had brain stem infarctions demonstrated by initial DWI. In the remaining 12 cases, no obvious ischemic lesion was evident on initial DWI. Subsequent MRI studies obtained 127 hours, on average after the onset showed infarction in the medulla oblongate in 11 cases and in the pons in one case. Negative findings of DWI in the acute stage does not exclude possibility of the brain stem infarction, in particularly medulla oblongata infarction. (author)

  11. Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients

    NARCIS (Netherlands)

    Wu, L.; Sluiter, A.A.; Guo, Ho Fu; Balesar, R. A.; Swaab, D. F.; Zhou, Jiang Ning; Verwer, R. W H

    Neurodegenerative diseases are progressive and incurable and are becoming ever more prevalent. To study whether neural stem cell can reactivate or rescue functions of impaired neurons in the human aging and neurodegenerating brain, we co-cultured postmortem slices from Alzheimer patients and control

  12. Conductive Hearing Loss during Infancy: Effects on Later Auditory Brain Stem Electrophysiology.

    Science.gov (United States)

    Gunnarson, Adele D.; Finitzo, Terese

    1991-01-01

    Long-term effects on auditory electrophysiology from early fluctuating hearing loss were studied in 27 children, aged 5 to 7 years, who had been evaluated originally in infancy. Findings suggested that early fluctuating hearing loss disrupts later auditory brain stem electrophysiology. (Author/DB)

  13. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  14. Cell Therapy in Parkinson's Disease: Host Brain Repair Machinery Gets a Boost From Stem Cell Grafts.

    Science.gov (United States)

    Napoli, Eleonora; Borlongan, Cesar V

    2017-06-01

    This commentary highlights the major findings and future research directions arising from the recent publication by Zuo and colleagues in Stem Cells 2017 (in press). Here, we discuss the novel observations that transplanted human neural stem cells can induce endogenous brain repair by specifically stimulating a host of regenerative processes in the neurogenic niche (i.e., subventricular zone [SVZ]) in an animal model of Parkinson's disease. That the identified therapeutic proteomes, neurotrophic factors, and anti-inflammatory cytokines in the SVZ may facilitate brain regeneration and behavioral recovery open a new venue of research for our understanding of the pathology and treatment of Parkinson's disease. Stem Cells 2017;35:1443-1445. © 2017 AlphaMed Press.

  15. Sensorimotor Functional and Structural Networks after Intracerebral Stem Cell Grafts in the Ischemic Mouse Brain.

    Science.gov (United States)

    Green, Claudia; Minassian, Anuka; Vogel, Stefanie; Diedenhofen, Michael; Beyrau, Andreas; Wiedermann, Dirk; Hoehn, Mathias

    2018-02-14

    Past investigations on stem cell-mediated recovery after stroke have limited their focus on the extent and morphological development of the ischemic lesion itself over time or on the integration capacity of the stem cell graft ex vivo However, an assessment of the long-term functional and structural improvement in vivo is essential to reliably quantify the regenerative capacity of cell implantation after stroke. We induced ischemic stroke in nude mice and implanted human neural stem cells (H9 derived) into the ipsilateral cortex in the acute phase. Functional and structural connectivity changes of the sensorimotor network were noninvasively monitored using magnetic resonance imaging for 3 months after stem cell implantation. A sharp decrease of the functional sensorimotor network extended even to the contralateral hemisphere, persisting for the whole 12 weeks of observation. In mice with stem cell implantation, functional networks were stabilized early on, pointing to a paracrine effect as an early supportive mechanism of the graft. This stabilization required the persistent vitality of the stem cells, monitored by bioluminescence imaging. Thus, we also observed deterioration of the early network stabilization upon vitality loss of the graft after a few weeks. Structural connectivity analysis showed fiber-density increases between the cortex and white matter regions occurring predominantly on the ischemic hemisphere. These fiber-density changes were nearly the same for both study groups. This motivated us to hypothesize that the stem cells can influence, via early paracrine effect, the functional networks, while observed structural changes are mainly stimulated by the ischemic event. SIGNIFICANCE STATEMENT In recent years, research on strokes has made a shift away from a focus on immediate ischemic effects and towards an emphasis on the long-range effects of the lesion on the whole brain. Outcome improvements in stem cell therapies also require the understanding of

  16. Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody.

    Science.gov (United States)

    Barnett, M; Prosser, J; Sutton, I; Halmagyi, G M; Davies, L; Harper, C; Dalmau, J

    2001-02-01

    A woman developed brain stem encephalopathy in association with serum anti-Ma2 antibodies and left upper lobe lung mass. T2 weighted MRI of the brain showed abnormalities involving the pons, left middle and superior cerebellar peduncles, and bilateral basal ganglia. Immunohistochemical analysis for serum antineuronal antibodies was confounded by the presence of a non-neuronal specific antinuclear antibody. Immunoblot studies showed the presence of anti-Ma2 antibodies. A premortem tissue diagnosis of the lung mass could not be established despite two CT guided needle biopsies, and the patient died as a result of rapid neurological deterioration. The necropsy showed that the lung lesion was an adenocarcinoma which expressed Ma2 immunoreactive protein. Neuropathological findings included prominent perivascular inflammatory infiltrates, glial nodules, and neuronophagia involving the brain stem, basal ganglia, hippocampus and the dentate nucleus of the cerebellum. Ma2 is an autoantigen previously identified in patients with germ cell tumours of the testis and paraneoplastic brain stem and limbic encephalitis. Our patient's clinical and immunopathological findings indicate that this disorder can affect women with lung adenocarcinoma, and that the encephalitic changes predominate in those regions of the brain known to express high concentrations of Ma proteins.

  17. MRI measurements of the brain stem and cerebellum in high functioning autistic children

    International Nuclear Information System (INIS)

    Hashimoto, Toshiaki; Tayama, Masanobu; Miyazaki, Masahito; Murakawa, Kazuyoshi; Kuroda, Yasuhiro

    1994-01-01

    To determine involvements of the brain stem and/or cerebellum in autism, we compared midsagittal magnetic resonance images of the brains of high functioning autistic children with those of normal controls. We found that the midbrain and medulla oblongata were significantly smaller in these autistic children than in the control children. The pons area did not differ between the two groups, nor was there any difference in the cerebellar vermis area. The ratio of the brain stem and cerebellum to the posterior fossa area did not differ significantly between the high functioning autistic and the control children. The development of the cerebellar vermis area was delayed in autistic children as compared with that in the control children. Thus, it was suggested that significant anatomical changes in the midbrain and medulla oblongata existed in the autistic children. (author)

  18. MRI measurements of the brain stem and cerebellum in high functioning autistic children

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Toshiaki; Tayama, Masanobu; Miyazaki, Masahito; Murakawa, Kazuyoshi; Kuroda, Yasuhiro [Tokushima Univ. (Japan). School of Medicine

    1994-01-01

    To determine involvements of the brain stem and/or cerebellum in autism, we compared midsagittal magnetic resonance images of the brains of high functioning autistic children with those of normal controls. We found that the midbrain and medulla oblongata were significantly smaller in these autistic children than in the control children. The pons area did not differ between the two groups, nor was there any difference in the cerebellar vermis area. The ratio of the brain stem and cerebellum to the posterior fossa area did not differ significantly between the high functioning autistic and the control children. The development of the cerebellar vermis area was delayed in autistic children as compared with that in the control children. Thus, it was suggested that significant anatomical changes in the midbrain and medulla oblongata existed in the autistic children. (author).

  19. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, Ontario (Canada)

    2006-04-15

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  20. Basal ganglia germinoma in children with associated ipsilateral cerebral and brain stem hemiatrophy

    International Nuclear Information System (INIS)

    Ozelame, Rodrigo V.; Shroff, Manohar; Wood, Bradley; Bouffet, Eric; Bartels, Ute; Drake, James M.; Hawkins, Cynthia; Blaser, Susan

    2006-01-01

    Germinoma is the most common and least-malignant intracranial germ cell tumor, usually found in the midline. Germinoma that arises in the basal ganglia, called ectopic germinoma, is a rare and well-documented entity representing 5% to 10% of all intracranial germinomas. The association of cerebral and/or brain stem atrophy with basal ganglia germinoma on CT and MRI is found in 33% of the cases. To review the literature and describe the CT and MRI findings of basal ganglia germinoma in children, known as ectopic germinoma, with associated ipsilateral cerebral and brain stem hemiatrophy. Three brain CT and six brain MRI studies performed in four children at two institutions were retrospectively reviewed. All patients were male (case 1, 14 years; case 2, 13 years; case 3, 9 years; case 4, 13 years), with pathologically proved germinoma arising in the basal ganglia, and associated ipsilateral cerebral and/or brain stem hemiatrophy on the first imaging study. It is important to note that three of these children presented with cognitive decline, psychosis and slowly progressive hemiparesis as their indication for imaging. Imaging results on initial scans were varied. In all patients, the initial study showed ipsilateral cerebral and/or brain stem hemiatrophy, representing Wallerian degeneration. All patients who underwent CT imaging presented with a hyperdense or calcified lesion in the basal ganglia on unenhanced scans. Only one of these lesions had a mass effect on the surrounding structures. In one of these patients a large, complex, heterogeneous mass appeared 15 months later. Initial MR showed focal or diffusely increased T2 signal in two cases and heterogeneous signal in the other two. (orig.)

  1. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH

    2016-08-01

    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  2. Brain tumour stem cells: implications for cancer therapy and regenerative medicine.

    Science.gov (United States)

    Sanchez-Martin, Manuel

    2008-09-01

    The cancer relapse and mortality rate suggest that current therapies do not eradicate all malignant cells. Currently, it is accepted that tumorigenesis and organogenesis are similar in many respects, as for example, homeostasis is governed by a distinct sub-population of stem cells in both situations. There is increasing evidence that many types of cancer contain their own stem cells: cancer stem cells (CSC), which are characterized by their self-renewing capacity and differentiation ability. The investigation of solid tumour stem cells has gained momentum particularly in the area of brain tumours. Gliomas are the most common type of primary brain tumours. Nearly two-thirds of gliomas are highly malignant lesions with fast progression and unfortunate prognosis. Despite recent advances, two-year survival for glioblastoma (GBM) with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells endowed with features of primitive neural progenitor cells and a tumour-initiating function. In general, this fraction is characterized for forming neurospheres, being endowed with drug resistance properties and often, we can isolate some of them using sorting methods with specific antibodies. The molecular characterization of these stem populations will be critical to developing an effective therapy for these tumours with very dismal prognosis. To achieve this aim, the development of a mouse model which recapitulates the nature of these tumours is essential. This review will focus on glioma stem cell knowledge and discuss future implications in brain cancer therapy and regenerative medicine.

  3. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  4. Effects of neuroinflammation on the regenerative capacity of brain stem cells.

    Science.gov (United States)

    Russo, Isabella; Barlati, Sergio; Bosetti, Francesca

    2011-03-01

    In the adult brain, neurogenesis under physiological conditions occurs in the subventricular zone and in the dentate gyrus. Although the exact molecular mechanisms that regulate neural stem cell proliferation and differentiation are largely unknown, several factors have been shown to affect neurogenesis. Decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. Furthermore, in pathological conditions of the central nervous system associated with neuroinflammation, inflammatory mediators such as cytokines and chemokines can affect the capacity of brain stem cells and alter neurogenesis. In this review, we summarize the state of the art on the effects of neuroinflammation on adult neurogenesis and discuss the use of the lipopolysaccharide-model to study the effects of inflammation and reactive-microglia on brain stem cells and neurogenesis. Furthermore, we discuss the possible causes underlying reduced neurogenesis with normal aging and potential anti-inflammatory, pro-neurogenic interventions aimed at improving memory deficits in normal and pathological aging and in neurodegenerative diseases. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. Neurogenesis in the brain stem of the rabbit: an autoradiographic study

    International Nuclear Information System (INIS)

    Oblinger, M.M.; Das, G.D.

    1981-01-01

    With the aid of ( 3 H)-thymidine autoradiography, neurogenesis was documented in the nuclear groups of the medulla oblongata, pons, and mid-brain, as well as in the brain stem reticular formation of the rabbit. Following single injections of ( 3 H)-thymidine, counts were taken of intensely labeled neurons within the nuclei of the functional columns related to the cranial nerves, nuclei of several other functional classifications, and nuclei that did not fit into a functional category. In the brain stem as a whole, neurogenesis was found to occur between days 10.0 and 18.5 of gestation: however, the majority of nuclei studied contained intensely neurons only between days 12.0 and 15.0. Only in the pontine nucleus and the tectum were intensely labeled cells observed as late as day 18.5. Directional gradients of histogenesis were often observed within, as well as between, various nuclei. Within the nuclear columns related to the cranial nerves, a clear mediolateral spread of neurogenesis was observable such that nuclei of the motor columns reached a peak in neurogenesis before those in the sensory columns. Likewise, a mediolateral proliferation pattern was seen in the brain stem reticular formation. Other individual directional gradients were discernible; however, in the brain stem as a whole, distinct overall gradients were not observable. In many individual nuclei, gradients in neuron size were observed such that large neurons preferentially arose prior to smaller neurons. Information pertaining to gradients in neurogenesis, as well as to relationships among functionally related nuclei, are discussed

  6. Identifying endogenous neural stem cells in the adult brain in vitro and in vivo: novel approaches.

    Science.gov (United States)

    Rueger, Maria Adele; Androutsellis-Theotokis, Andreas

    2013-01-01

    In the 1960s, Joseph Altman reported that the adult mammalian brain is capable of generating new neurons. Today it is understood that some of these neurons are derived from uncommitted cells in the subventricular zone lining the lateral ventricles, and the dentate gyrus of the hippocampus. The first area generates new neuroblasts which migrate to the olfactory bulb, whereas hippocampal neurogenesis seems to play roles in particular types of learning and memory. A part of these uncommitted (immature) cells is able to divide and their progeny can generate all three major cell types of the nervous system: neurons, astrocytes, and oligodendrocytes; these properties define such cells as neural stem cells. Although the roles of these cells are not yet clear, it is accepted that they affect functions including olfaction and learning/memory. Experiments with insults to the central nervous system also show that neural stem cells are quickly mobilized due to injury and in various disorders by proliferating, and migrating to injury sites. This suggests a role of endogenous neural stem cells in disease. New pools of stem cells are being discovered, suggesting an even more important role for these cells. To understand these cells and to coax them to contribute to tissue repair it would be very useful to be able to image them in the living organism. Here we discuss advances in imaging approaches as well as new concepts that emerge from stem cell biology with emphasis on the interface between imaging and stem cells.

  7. TGFβ lengthens the G1 phase of stem cells in aged mouse brain.

    Science.gov (United States)

    Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André

    2014-12-01

    Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.

  8. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The plasticity of descending controls in pain: translational probing.

    Science.gov (United States)

    Bannister, Kirsty; Dickenson, A H

    2017-07-01

    Descending controls, comprising pathways that originate in midbrain and brainstem regions and project onto the spinal cord, have long been recognised as key links in the multiple neural networks that interact to produce the overall pain experience. There is clear evidence from preclinical and clinical studies that both peripheral and central sensitisation play important roles in determining the level of pain perceived. Much emphasis has been put on spinal cord mechanisms in central excitability, but it is now becoming clear that spinal hyperexcitability can be regulated by descending pathways from the brain that originate from predominantly noradrenergic and serotonergic systems. One pain can inhibit another. In this respect diffuse noxious inhibitory controls (DNIC) are a unique form of endogenous descending inhibitory pathway since they can be easily evoked and quantified in animals and man. The spinal pharmacology of pathways that subserve DNIC are complicated; in the normal situation these descending controls produce a final inhibitory effect through the actions of noradrenaline at spinal α 2 -adrenoceptors, although serotonin, acting on facilitatory spinal 5-HT 3 receptors, influences the final expression of DNIC also. These descending pathways are altered in neuropathy and the effects of excess serotonin may now become inhibitory through activation of spinal 5-HT 7 receptors. Conditioned pain modulation (CPM) is the human counterpart of DNIC and requires a descending control also. Back and forward translational studies between DNIC and CPM, gauged between bench and bedside, are key for the development of analgesic therapies that exploit descending noradrenergic and serotonergic control pathways. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  10. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    Directory of Open Access Journals (Sweden)

    Lars eRoll

    2014-08-01

    Full Text Available The limited regeneration capacity of the adult central nervous system requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation.In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo.As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM, a complex network that contains numerous signaling molecules. It appears that signals in the damaged central nervous system lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C.Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  11. Brain stem/brain stem occipital bone ratio and the four-line view in nuchal translucency images of fetuses with open spina bifida.

    Science.gov (United States)

    Iuculano, Ambra; Zoppi, Maria Angelica; Piras, Alessandra; Arras, Maurizio; Monni, Giovanni

    2014-09-10

    Abstract Objective: Brain stem depth/brain stem occipital bone distance (BS/BSOB ratio) and the four-line view, in images obtained for nuchal translucency (NT) screening in fetuses with open spina bifida (OSB). Methods: Single center, retrospective study based on the assessment of NT screening images of fetuses with OSB. A ratio between the BS depth and the BSOB distance was calculated (BS/BSOB ratio) and the four-line view observed, and the sensitivity for a BS/BSOB ratio superior/equal to 1, and for the lack of detection of the four-line view were calculated. Results: There were 17 cases of prenatal diagnosis OSB. In six cases, the suspicion on OSB was raised during NT screening, in six cases, the diagnosis was made before 20 weeks and in five cases during anomaly scan. The BS/BSOB ratio was superior/equal to 1 in all 17 cases, and three lines, were visualized in 15/17 images of the OSB cases, being the sensitivity 100% (95% CI, 81 to 100%) and 88% (95% CI, 65 to 96%). Conclusion: Assessment of BS/BSOB ratio and four-line view in NT images is feasible detecting affected by OSB with high sensitivity. The presence of associated anomalies or of an enlarged NT enhances the early detection.

  12. Delayed radiation-induced necrosis of the brain stem; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi (National Kure Hospital, Hiroshima (Japan)); Uozumi, Toru

    1993-03-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author).

  13. Long-term meditation is associated with increased gray matter density in the brain stem

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua

    2009-01-01

    density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some......Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter...

  14. Long-term meditation is associated with increased gray matter density in the brain stem

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua

    2009-01-01

    Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter...... density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some...... of the cardiorespiratory parasympathetic effects and traits, as well as the cognitive, emotional, and immunoreactive impact reported in several studies of different meditation practices....

  15. Auditory Brain Stem Processing in Reptiles and Amphibians: Roles of Coupled Ears

    DEFF Research Database (Denmark)

    Willis, Katie L.; Christensen-Dalsgaard, Jakob; Carr, Catherine

    2014-01-01

    Comparative approaches to the auditory system have yielded great insight into the evolution of sound localization circuits, particularly within the nonmammalian tetrapods. The fossil record demonstrates multiple appearances of tympanic hearing, and examination of the auditory brain stem of various...... groups can reveal the organizing effects of the ear across taxa. If the peripheral structures have a strongly organizing influence on the neural structures, then homologous neural structures should be observed only in groups with a homologous tympanic ear. Therefore, the central auditory systems...... of anurans (frogs), reptiles (including birds), and mammals should all be more similar within each group than among the groups. Although there is large variation in the peripheral auditory system, there is evidence that auditory brain stem nuclei in tetrapods are homologous and have similar functions among...

  16. Endovascular treatment of brain-stem arteriovenous malformations: safety and efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.M.; Wang, Y.H.; Chen, Y.F.; Huang, K.M. [Department of Medical Imaging, National Taiwan University Hospital, 7 Chung-Shan South Road, 10016, Taipei (Taiwan); Tu, Y.K. [Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, 1001, Taipei (Taiwan)

    2003-09-01

    Our purpose was to evaluate the safety and efficacy of endovascular treatment of brain-stem arteriovenous malformations (AVMs), reviewing six cases managed in the last 5 years. There were four patients who presented with bleeding, one with a progressive neurological deficit and one with obstructive hydrocephalus. Of the six patients, one showed 100%, one 90%, two 75% and two about 50% angiographic obliteration of the AVM after embolisation; the volume decreased about 75% on average. Five patients had a good outcome and one an acceptable outcome, with a mild postprocedure neurological deficit; none had further bleeding during midterm follow-up. Endovascular management of a brain-stem AVM may be an alternative to treatment such as radiosurgery and microsurgery in selected cases. It may be not as risky as previously thought. Embolisation can reduce the size of the AVM and possibly make it more treatable by radiosurgery and decrease the possibility of radiation injury. (orig.)

  17. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S K; Wei, W I; Sham, J S.T.; Choy, D T.K.; Hui, Y [Queen Mary Hospital, Hong Kong (Hong Kong)

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  18. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    International Nuclear Information System (INIS)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y.

    1992-01-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author)

  19. Human Umbilical Cord Blood Stem Cells: Rational for Use as a Neuroprotectant in Ischemic Brain Disease

    Directory of Open Access Journals (Sweden)

    Hadar Arien-Zakay

    2010-09-01

    Full Text Available The use of stem cells for reparative medicine was first proposed more than three decades ago. Hematopoietic stem cells from bone marrow, peripheral blood and human umbilical cord blood (CB have gained major use for treatment of hematological indications. CB, however, is also a source of cells capable of differentiating into various non-hematopoietic cell types, including neural cells. Several animal model reports have shown that CB cells may be used for treatment of neurological injuries. This review summarizes the information available on the origin of CB-derived neuronal cells and the mechanisms proposed to explain their action. The potential use of stem/progenitor cells for treatment of ischemic brain injuries is discussed. Issues that remain to be resolved at the present stage of preclinical trials are addressed.

  20. Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain.

    Directory of Open Access Journals (Sweden)

    Manohar B Mutnal

    2011-01-01

    Full Text Available Congenital cytomegalovirus (CMV brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons.

  1. Effects of the pyrethroid insecticide, deltamethrin, on respiratory modulated hypoglossal motoneurons in a brain stem slice from newborn mice

    DEFF Research Database (Denmark)

    Rekling, J C; Theophilidis, G

    1995-01-01

    We have studied the action of deltamethrin on respiratory modulated hypoglossal motoneurons in a brain stem slice from newborn mice. Deltamethrin depolarized the hypoglossal motoneurons, increased the background synaptic noise and reduced the frequency and amplitude of current elicited action...

  2. Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain

    Directory of Open Access Journals (Sweden)

    Marina E. Emborg

    2013-03-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies.

  3. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    Science.gov (United States)

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  4. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    Sun, Jinqiao; Sha, Bin; Zhou, Wenhao; Yang, Yi

    2010-01-01

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  5. Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Honma, Tsuguo

    2009-01-01

    Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)

  6. MRI findings of radiation encephalopathy of brain stem after radiotherapy for nasopharyngeal cancer

    International Nuclear Information System (INIS)

    Liang Changhong; Li Guoye; Huang Biao; Huang Meiping; Zheng Junhui; Tan Shaoheng; Zeng Qiongxin

    1998-01-01

    Purpose: To study MRI findings and clinical manifestation of radiation encephalopathy (RE) of brain stem. Methods: MRI findings and clinical symptoms in 51 patients with RE of brain stem after radiotherapy for nasopharyngeal cancer were reviewed. Results: Clinical symptoms included number weakness or paralysis in the limbs and symptoms of damaged cranial nerves. All lesions appeared hypo- or iso-intense on spin echo(SE) T 1 -weighted images and inhomogeneous and mixed hyper- and iso-intense on Turbo spin echo (TSE) T 2 -weighted images. The lesions were located in mesencephalon, pons, medulla, basilar part of pons, basilar part of pons and medulla oblongata in 2,7,3,9 and 30 patients respectively. The enhancement patterns included irregular rings in 39 patients, spotty in 3 and no enhancement in 9 patients. Mass effect was minimal in all patients. On follow-up MRI, the lesions disappeared in 4 patients, did not change in size and shape in 8 patients and enlarged in 2 patients. Conclusion: MRI could demonstrate the characteristic findings of RE of brain stem. MRI findings sometimes are not consistent with the clinical symptoms

  7. [Distribution of human enterovirus 71 in brainstem of infants with brain stem encephalitis and infection mechanism].

    Science.gov (United States)

    Hao, Bo; Gao, Di; Tang, Da-Wei; Wang, Xiao-Guang; Liu, Shui-Ping; Kong, Xiao-Ping; Liu, Chao; Huang, Jing-Lu; Bi, Qi-Ming; Quan, Li; Luo, Bin

    2012-04-01

    To explore the mechanism that how human enterovirus 71 (EV71) invades the brainstem and how intercellular adhesion molecules-1 (ICAM-1) participates by analyzing the expression and distribution of human EV71, and ICAM-1 in brainstem of infants with brain stem encephalitis. Twenty-two brainstem of infants with brain stem encephalitis were collected as the experimental group and 10 brainstems of fatal congenital heart disease were selected as the control group. The sections with perivascular cuffings were selected to observe EV71-VP1 expression by immunohistochemistry method and ICAM-1 expression was detected for the sections with EV71-VP1 positive expression. The staining image analysis and statistics analysis were performed. The experiment and control groups were compared. (1) EV71-VP1 positive cells in the experimental group were mainly astrocytes in brainstem with nigger-brown particles, and the control group was negative. (2) ICAM-1 positive cells showed nigger-brown. The expression in inflammatory cells (around blood vessels of brain stem and in glial nodules) and gliocytes increased. The results showed statistical difference comparing with control group (P diagnose fatal EV71 infection in infants. EV71 can invade the brainstem via hematogenous route. ICAM-1 may play an important role in the pathogenic process.

  8. Descending necrotising mediastinitis: Case report

    Directory of Open Access Journals (Sweden)

    Canan Eren

    2010-12-01

    Full Text Available Descending necrotising mediastinitis is a rare but usually fatal infection. It commonly results of oropharyngeal and odontogenic infections. Complete recovery may be achieved by early diagnosis, prompt medical and surgical approach. We are reporting our desending necrotizing mediastinitis case secondary to tooth abscess, and it’s successfull surgical treatment.A-48-year-old man admitted with fever, exhaustion neck distendion for a week. He had a tooth abscess one week ago. Chest tomography showed neck and mediastinal air and fluid collections. Antibiothreapy was started and urgent surgical management applied. Neck drainage was performed via transcervical approach. Mediastinal drainage was performed via right thoracotomy. Continue mediastinal washing feasibility was done by drainage tubes. Drainage was ended after nonextra drainage and cultural growthless. Vital signs became stable and control tomography showed complete recovery. He was healthfull at the 6th month’s follow-up.Broad antibiothreapy, surgical management are the main approaches for descending necrotising mediastinitis. The most common surgical procedure is the combination of transcervical approach and thoracotomy. We suggest early and agressive surgical management for the complete recovery. J Clin Exp Invest 2010; 1(3: 228-231

  9. A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors

    Directory of Open Access Journals (Sweden)

    Li Shengwen

    2008-05-01

    Full Text Available Abstract Brain tumors are now the leading cause of cancer-related deaths in children under age 15. Malignant gliomas are, for all practical purposes, incurable and new therapeutic approaches are desperately needed. One emerging strategy is to use the tumor tracking capacity inherent in many stem cell populations to deliver therapeutic agents to the brain cancer cells. Current limitations of the stem cell therapy strategy include that stem cells are treated as a single entity and lack of uniform technology is adopted for selection of clinically relevant sub-populations of stem cells. Specifically, therapeutic success relies on the selection of a clinically competent stem cell population based on their capacity of targeting brain tumors. A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors is proposed to fill the gap in the current work flow of stem cell-based therapy. The organotypic slice platform has advantages of being mimic in vivo model, easier to manipulate to optimize parameters than in vivo models such as rodents and primates. This model serves as a framework to address the discrepancy between anticipated in vivo results and actual in vivo results, a critical barrier to timely progress in the field of the use of stem cells for the treatment of neurological disorders.

  10. Optimized Longitudinal Monitoring of Stem Cell Grafts in Mouse Brain Using a Novel Bioluminescent/Near Infrared Fluorescent Fusion Reporter

    NARCIS (Netherlands)

    L. Mezzanotte (Laura); Iljas, J.D. (Juvita Delancy); I. Que (Ivo); A. Chan (Albert); E.L. Kaijzel (Eric); R.C. Hoeben (Rob); C.W.G.M. Löwik (Clemens)

    2017-01-01

    textabstractBiodistribution and fate of transplanted stem cells via longitudinal monitoring has been successfully achieved in the last decade using optical imaging. However, sensitive longitudinal imaging of transplanted stem cells in deep tissue like the brain remains challenging not only due to

  11. Mesenchymal Stem Cells Regulate Blood Brain Barrier Integrity in Traumatic Brain Injury Through Production of the Soluble Factor TIMP3

    Science.gov (United States)

    Menge, Tyler; Zhao, Yuhai; Zhao, Jing; Wataha, Kathryn; Geber, Michael; Zhang, Jianhu; Letourneau, Phillip; Redell, John; Shen, Li; Wang, Jing; Peng, Zhalong; Xue, Hasen; Kozar, Rosemary; Cox, Charles S.; Khakoo, Aarif Y.; Holcomb, John B.; Dash, Pramod K.; Pati, Shibani

    2013-01-01

    Mesenchymal stem cells (MCSs) have been shown to have therapeutic potential in multiple disease states associated with vascular instability including traumatic brain injury (TBI). In the present study, Tissue Inhibitor of Matrix Metalloproteinase-3 (TIMP3) is identified as the soluble factor produced by MSCs that can recapitulate the beneficial effects of MSCs on endothelial function and blood brain barrier (BBB) compromise in TBI. Attenuation of TIMP3 expression in MSCs completely abrogates the effect of MSCs on BBB permeability and stability, while intravenous administration of rTIMP3 alone can inhibit BBB permeability in TBI. Our results demonstrate that MSCs increase circulating levels of soluble TIMP3, which inhibits VEGF-A induced breakdown of endothelial AJs in vitro and in vivo. These findings elucidate a clear molecular mechanism for the effects of MSCs on the BBB in TBI, and directly demonstrate a role for TIMP3 in regulation of BBB integrity. PMID:23175708

  12. HTLV-I associated myelopathy with multiple spotty areas in cerebral white matter and brain stem by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Yasuo; Takahashi, Mitsuo; Yoshikawa, Hiroo; Yorifuji, Shirou; Tarui, Seiichiro

    1988-01-01

    A 48-year-old woman was admitted with complaints of urinary incontinence and gait disturbance, both of which had progressed slowly without any sign of remission. Family history was not contributory. Neurologically, extreme spasticity was recoginized in the lower limbs. Babinski sign was positive bilaterally. Flower-like atypical lymphocytes were seen in blood. Positive anti-HTLV-I antibody was confirmed in serum and spinal fluid by western blot. She was diagnosed as having HTLV-I associated myelopathy (HAM). CT reveald calcification in bilateral globus pallidus, and MRI revealed multiple spotty areas in cerebral white matter and brain stem, but no spinal cord lesion was detectable. Electrophysiologically, brain stem auditory evoked potential (BAEP) suggested the presence of bilateral brain stem lesions. Neither median nor posterior tibial nerve somatosensory evoked potentials were evoked, a finding suggesting the existence of spinal cord lesion. In this case, the lesion was not confined to spinal cord, it was also observed in brain stem and cerebral white matter. Such distinct lesions in cerebral white matter and brain stem have not been reported in patients with HAM. It is suggested that HTLV-I is probably associated with cerebral white matter and brain stem.

  13. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation.

    Science.gov (United States)

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-03-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving NSCs in the left hemisphere and PBS in the right; group B, receiving NSCs in the right hemisphere and PBS in the left; and group C, receiving equal NSCs in both hemispheres. Murine brains were stained for morphological analysis and subsequent evaluation of infiltrated immune cells. ELISA was performed to detect neurotrophic and immunomodulatory factors in the brain. The findings indicated that brain injury and secondary inflammation in the left hemisphere were more severe than those in the right hemisphere, following NSC transplantation. In contrast to the left hemisphere, more neurotrophic factors but less pro-inflammatory cytokines were detected in the right hemisphere. In addition, increased levels of neurotrophic factors and interleukin (IL)-10 were observed in the NSC transplantation side when compared with the PBS-treated hemispheres, although lower levels of IL-6 and tumor necrosis factor-α were detected. In conclusion, the present study indicated that syringe needle skull penetration vs. drill penetration is an improved method that reduces the risk of brain injury and secondary inflammation following intracerebral NSC transplantation. Furthermore, NSCs have the potential to modulate inflammation secondary to brain injuries.

  14. Therapeutic Potential of Umbilical Cord Blood Stem Cells on Brain Damage of a Model of Stroke

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Nikravesh

    2011-11-01

    Full Text Available Introduction: Human cord blood-derived stem cells are a rich source of stem cells as well as precursors. With regard to the researchers have focused on the therapeutic potential of stem cell in the neurological disease such as stroke, the aim of this study was the investiga-tion of the therapeutic effects of human cord blood-derived stem cells in cerebral ischemia on rat. Methods: This study was carried out on young rats. Firstly, to create a laboratory model of ischemic stroke, carotid artery of animals was occluded for 30 minutes. Then, umbilical cord blood cells were isolated and labeled using bromodeoxyuridine and 2×105 cells were injected into the experimental group via the tail vein. Rats with hypoxic condi-tions were used as a sham group. A group of animals did not receive any injection or sur-geries were used as a control. Results: Obtained results were evaluated based on behavior-al responses and immunohistochemistry, with emphasis on areas of putamen and caudate nucleus in the control, sham and experimental groups. Our results indicated that behavioral recovery was observed in the experimental group compared to the either the sham or the control group. However, histological studies demonstrated a low percent of tissue injury in the experimental group in comparison with the sham group. Conclusion: Stem cell trans-plantation is beneficial for the brain tissue reparation after hypoxic ischemic cell death.

  15. Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Cindy Leten

    2016-01-01

    Full Text Available Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683 in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI and magnetic resonance imaging (MRI. Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1 outliers can be detected earlier, (2 GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3 a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.

  16. Effectiveness of mesenchymal stems cells cultured by hanging drop vs. conventional culturing on the repair of hypoxic-ischemic-damaged mouse brains, measured by stemness gene expression

    OpenAIRE

    Lou Yongli; Guo Dewei; Zhang Hui; Song Laijun

    2016-01-01

    In this study, we investigated the therapeutic effects of Human Mesenchymal Stem Cells (hMSCs) cultured by hanging drop and conventional culturing methods on cerebellar repair in hypoxic-ischemic (HI) brain injured mice. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze the expression levels of three stemness genes, Oct4, Sox2 and Nanog, and the migration related gene CXCR4. MSC prepared by hanging drop or conventional techniques were adminis...

  17. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Romeo Cecchelli

    Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  18. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Radiation and misonidazole in children with brain stem gliomas and supratentorial glioblastoma

    International Nuclear Information System (INIS)

    Bloom, H.J.G.; Bugden, R.D.

    1982-01-01

    In a series of 484 children with intracranial tumors referred to the Royal Marsden Hospital for radiotherapy, there were 47 (12%) examples of inoperable pontine and medullary tumors for which the 5-year survival rate was 17%. The limited local tumor mass in brain stem tumors, the absence of cerebro-spinal or distant metastases, and their often initial good but short-lived response to irradiation, all support the trial of a chemical radiosensitizing agent with which to try and achieve greater and more prolonged local control of the disease. Since the prognosis for cerebral hemisphere glioblastoma, which is relatively uncommon in children, is also extremely poor, such cases were included in this pilot study. The problems and possible risks associated with combined radiotherapy and a chemical radiosensitizer in children with brain tumors is discussed. So far, 8 children with brain stem tumors and 3 children with cerebral hemisphere gliomas heave been treated in this study. In addtion, data is also available on 3 children re-treated for incurrent medulloblastomas. Preliminary observations regarding experience with this small series will be reported including blood misonidazole levels, drug tolerance and the possible influence of anticonvulsants and steriods on toxicity

  20. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  1. Regional brain stem atrophy in idiopathic Parkinson's disease detected by anatomical MRI.

    Directory of Open Access Journals (Sweden)

    Thomas Jubault

    Full Text Available Idiopathic Parkinson's disease (PD is a neurodegenerative disorder characterized by the dysfunction of dopaminergic dependent cortico-basal ganglia loops and diagnosed on the basis of motor symptoms (tremors and/or rigidity and bradykinesia. Post-mortem studies tend to show that the destruction of dopaminergic neurons in the substantia nigra constitutes an intermediate step in a broader neurodegenerative process rather than a unique feature of Parkinson's disease, as a consistent pattern of progression would exist, originating from the medulla oblongata/pontine tegmentum. To date, neuroimaging techniques have been unable to characterize the pre-symptomatic stages of PD. However, if such a regular neurodegenerative pattern were to exist, consistent damages would be found in the brain stem, even at early stages of the disease. We recruited 23 PD patients at Hoenn and Yahr stages I to II of the disease and 18 healthy controls (HC matched for age. T1-weighted anatomical scans were acquired (MPRAGE, 1 mm3 resolution and analyzed using an optimized VBM protocol to detect white and grey matter volume reduction without spatial a priori. When the HC group was compared to the PD group, a single cluster exhibited statistical difference (p<0.05 corrected for false detection rate, 4287 mm3 in the brain stem, between the pons and the medulla oblongata. The present study provides in-vivo evidence that brain stem damage may be the first identifiable stage of PD neuropathology, and that the identification of this consistent damage along with other factors could help with earlier diagnosis in the future. This damage could also explain some non-motor symptoms in PD that often precede diagnosis, such as autonomic dysfunction and sleep disorders.

  2. Prognostic factors and therapeutic options of radiotherapy in pediatric brain stem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Ming; Shiau, Cheng-Ying; Wong, Tai-Tong; Wang, Ling-Wei; Wu, Le-Jung; Chi, Kwan-Hwa; Chen, Kuang Y.; Yen, Sang-Hue [Veterans General Hospital-Taipei, Taipei, Taiwan (China)

    1998-08-01

    A retrospective analysis was made to clarify the relationship between prognosis, radiation dose and survival of brain stem gliomas. From 1983 to 1995, 22 children with brain stem tumors were treated by radiotherapy in the Veterans General Hospital-Taipei. Twelve patients had pathology proof and the remainder were diagnosed by computerized tomography and/or magnetic resonance imaging. Seven patients had postoperative radiotherapy. Fifteen patients had radiotherapy as primary management, five of whom had adjuvant chemotherapy. All patients received 4000-7060 cGy, either in conventional daily or hyperfractionated twice daily radiotherapy. Survival from date of diagnosis was calculated by the Kaplan-Meier method. Univariate analyses and multivariate analyses were calculated by the log rank test and the Cox proportional hazard model, respectively. Most patients showed improvement following treatment. The overall 2-year survival rate was 55.5% with a median survival of 27.1 months. Two-year survival for patients with primary management of operation and radiotherapy (n=7), radiotherapy alone (n=10) and radiotherapy with adjuvant chemotherapy (n=5) were 66.7, 50 and 53.3%, respectively. In univariate analysis, the study revealed that the growth pattern of tumors and the simultaneous presence of cranial neuropathy and long tract sign were significant prognostic factors (P=0.017 and 0.036). A trend of better outcome with radiation dose >6600 cGy and the hyperfractionation scheme was also noted in our study (P=0.0573 and 0.0615). However, only the hyperfractionation scheme showed significance in multivariate analyses (P=0.0355). Survival was not significantly affected by age, gender or method of diagnosis. Radiotherapy appears to be an effective treatment modality of brain stem tumors. Patients with both cranial neuropathy and long tract signs had a poorer outcome. Hyperfractionated radiotherapy may give better local control and lead to better survival. (author)

  3. Prognostic factors and therapeutic options of radiotherapy in pediatric brain stem gliomas

    International Nuclear Information System (INIS)

    Liu, Yu-Ming; Shiau, Cheng-Ying; Wong, Tai-Tong; Wang, Ling-Wei; Wu, Le-Jung; Chi, Kwan-Hwa; Chen, Kuang Y.; Yen, Sang-Hue

    1998-01-01

    A retrospective analysis was made to clarify the relationship between prognosis, radiation dose and survival of brain stem gliomas. From 1983 to 1995, 22 children with brain stem tumors were treated by radiotherapy in the Veterans General Hospital-Taipei. Twelve patients had pathology proof and the remainder were diagnosed by computerized tomography and/or magnetic resonance imaging. Seven patients had postoperative radiotherapy. Fifteen patients had radiotherapy as primary management, five of whom had adjuvant chemotherapy. All patients received 4000-7060 cGy, either in conventional daily or hyperfractionated twice daily radiotherapy. Survival from date of diagnosis was calculated by the Kaplan-Meier method. Univariate analyses and multivariate analyses were calculated by the log rank test and the Cox proportional hazard model, respectively. Most patients showed improvement following treatment. The overall 2-year survival rate was 55.5% with a median survival of 27.1 months. Two-year survival for patients with primary management of operation and radiotherapy (n=7), radiotherapy alone (n=10) and radiotherapy with adjuvant chemotherapy (n=5) were 66.7, 50 and 53.3%, respectively. In univariate analysis, the study revealed that the growth pattern of tumors and the simultaneous presence of cranial neuropathy and long tract sign were significant prognostic factors (P=0.017 and 0.036). A trend of better outcome with radiation dose >6600 cGy and the hyperfractionation scheme was also noted in our study (P=0.0573 and 0.0615). However, only the hyperfractionation scheme showed significance in multivariate analyses (P=0.0355). Survival was not significantly affected by age, gender or method of diagnosis. Radiotherapy appears to be an effective treatment modality of brain stem tumors. Patients with both cranial neuropathy and long tract signs had a poorer outcome. Hyperfractionated radiotherapy may give better local control and lead to better survival. (author)

  4. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain.

    Science.gov (United States)

    Emborg, Marina E; Liu, Yan; Xi, Jiajie; Zhang, Xiaoqing; Yin, Yingnan; Lu, Jianfeng; Joers, Valerie; Swanson, Christine; Holden, James E; Zhang, Su-Chun

    2013-03-28

    The generation of induced pluripotent stem cells (iPSCs) opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Transcranial magnetic stimulation of human adult stem cells in the mammalian brain

    Directory of Open Access Journals (Sweden)

    Karlea L Kremer

    2016-03-01

    Full Text Available Introduction: The burden of stroke on the community is growing, and therefore, so is the need for a therapy to overcome the disability following stroke. Cellular-based therapies are being actively investigated at a pre-clinical and clinical level. Studies have reported the beneficial effects of exogenous stem cell implantation, however, these benefits are also associated with limited survival of implanted stem cells. This exploratory study investigated the use of transcranial magnetic stimulation (TMS as a complementary therapy to increase stem cell survival following implantation of human dental pulp stem cells (DPSC in the rodent cortex. Methods: Sprague-Dawley rats were anaesthetised and injected with 6x105 DPSC or control media via an intracranial injection, and then received real TMS (TMS0.2Hz or sham TMS (TMSsham every 2nd day beginning on day 3 post DPSC injection for 2 weeks. Brain sections were analysed for the survival, migration and differentiation characteristics of the implanted cells. Results: In animals treated with DPSC and TMS0.2Hz there were significantly less implanted DPSC and those that survived remained in the original cerebral hemisphere compared to animals that received TMSsham. The surviving implanted DPSC in TMS0.2Hz were also found to express the apoptotic marker Caspase-3. Conclusions: We suggest that TMS at this intensity may cause an increase in glutamate levels, which promotes an unfavourable environment for stem cell implantation, proliferation and differentiation. It should be noted that only one paradigm of TMS was tested as this was conducted as an exploratory study, and further TMS paradigms should be investigated in the future.

  6. Value of CSF gating for T2-weighted images of the temporal lobes and brain stem

    International Nuclear Information System (INIS)

    Enzmann, D.R.; O'Donohue, J.; Griffin, C.; Rubin, J.B.; Drace, J.; Wright, A.

    1987-01-01

    Ungated and CSF-gated long TR, long TE MR images of the temporal lobes, basal ganglia, and brain stem in health and disease were quantitatively compared. Twenty-five pair of images were evaluated for the following three parameters: signal-to-noise ratio (S/N), object contrast, and resolving power. Ungated sequences were performed in the same fashion as gated sequences for TR (TR = 2,000 msec, TE = 80 msec for ungated sequences; TR = 1,500-1,800 msec, TE = 80 msec for CSF-gated sequences). In both normal and pathologic brain tissue, the CSF-gated image was superior to the ungated image in object contrast and resolving power and equivalent in S/N. The major benefit of CSF gating was elimination of phase shift images arising from the basal cisterns and the third ventricle

  7. Reelin signaling in the migration of ventral brain stem and spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Sandra eBlaess

    2016-03-01

    Full Text Available The extracellular matrix protein Reelin is an important orchestrator of neuronal migration during the development of the central nervous system. While its role and mechanism of action have been extensively studied and reviewed in the formation of dorsal laminar brain structures like the cerebral cortex, hippocampus, and cerebellum, its functions during the neuronal migration events that result in the nuclear organization of the ventral central nervous system are less well understood. In an attempt to delineate an underlying pattern of Reelin action in the formation of neuronal cell clusters, this review highlights the role of Reelin signaling in the migration of neuronal populations that originate in the ventral brain stem and the spinal cord.

  8. Initial Attempts of Development and Characterization of an In Vitro Blood Brain Barrier Model Derived from Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Hall, Vanessa Jane

    The human blood brain barrier has yet to be successfully replicated as an in vitro model. One of the more promising approaches has been to develop an in vitro model derived from human pluripotent stem cells. However, as promising as this model may be, a successful replication of the differentiation...... method on different kinds of pluripotent stem cell lines have yet to be accomplished. We try to approach the promising method as described by Stebbins et al. (2015) to differentiate human pluripotent stem cells into brain like endothelial cells (BECs). Five different human pluripotent stem cell lines...... configurations (mono culture, non-contact co-culture and contact co-culture) with primary rat astrocytes to induce barrier-like properties. Endothelial cell media supplemented with retinoic acid were then applied to the cells to ensure selective expansion of BECs. The different culture configurations were...

  9. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications.

    Science.gov (United States)

    Abou-Antoun, Tamara J; Hale, James S; Lathia, Justin D; Dombrowski, Stephen M

    2017-04-01

    Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.

  10. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    International Nuclear Information System (INIS)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S.

    1998-01-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.)

  11. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S. [Internal Medicine III, Shimane Medical University, Izumo (Japan)

    1998-12-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.) With 4 figs., 3 tabs., 16 refs.

  12. Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Janel E. Le Belle

    2014-11-01

    Full Text Available A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

  13. Morphological and histochemical changes in the brain stem in case of experimental hemispheric intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    S. I. Tertishniy

    2015-10-01

    Full Text Available Aim. Investigation of the extent of morphological changes and activity of biogenic amines (according to the intensity of luminescence in the neurons of the brain stem in intracerebral hemorrhage (ICH. Methods and results. ICH was designed on 29 white rats of Vistar line by the administration of autologous blood in the cerebral hemisphere. It was revealed that increased luminescence intensity by 18.4±5.5% was registered in monoaminergic neurons in 1–6 hours after experimental ICH. After 12 hours – 1 day development of dislocation syndrome leads to mosaic focal ischemic neuronal injuries with maximum reduction in the level of catecholamines by 29.5±5.0% compared with control cases. Three–6 days after ICH on a background of selective neuronal necrosis in substantial number of neurons in the nuclei of the brainstem the level of catecholamines is significantly reduced. Conclusion. Disclosed observations reflect significant functional pathology of neurons responsible for the regulation of cardiorespiratory function and may underlie disturbances of integrative activity in the brain stem in general.

  14. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.

    Science.gov (United States)

    Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia

    2015-04-01

    Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.

  15. Human Mesenchymal Stem Cell Treatment Normalizes Cortical Gene Expression after Traumatic Brain Injury.

    Science.gov (United States)

    Darkazalli, Ali; Vied, Cynthia; Badger, Crystal-Dawn; Levenson, Cathy W

    2017-01-01

    Traumatic brain injury (TBI) results in a progressive disease state with many adverse and long-term neurological consequences. Mesenchymal stem cells (MSCs) have emerged as a promising cytotherapy and have been previously shown to reduce secondary apoptosis and cognitive deficits associated with TBI. Consistent with the established literature, we observed that systemically administered human MSCs (hMSCs) accumulate with high specificity at the TBI lesion boundary zone known as the penumbra. Substantial work has been done to illuminate the mechanisms by which MSCs, and the bioactive molecules they secrete, exert their therapeutic effect. However, no such work has been published to examine the effect of MSC treatment on gene expression in the brain post-TBI. In the present study, we use high-throughput RNA sequencing (RNAseq) of cortical tissue from the TBI penumbra to assess the molecular effects of both TBI and subsequent treatment with intravenously delivered hMSCs. RNAseq revealed that expression of almost 7000 cortical genes in the penumbra were differentially regulated by TBI. Pathway analysis using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database revealed that TBI regulated a large number of genes belonging to pathways involved in metabolism, receptor-mediated cell signaling, neuronal plasticity, immune cell recruitment and infiltration, and neurodegenerative disease. Remarkably, hMSC treatment was found to normalize 49% of all genes disrupted by TBI, with notably robust normalization of specific pathways within the categories mentioned above, including neuroactive receptor-ligand interactions (57%), glycolysis and gluconeogenesis (81%), and Parkinson's disease (100%). These data provide evidence in support of the multi-mechanistic nature of stem cell therapy and suggest that hMSC treatment is capable of simultaneously normalizing a wide variety of important molecular pathways that are disrupted by brain injury.

  16. Guidelines for the pathoanatomical examination of the lower brain stem in ingestive and swallowing disorders and its application to a dysphagic spinocerebellar ataxia type 3 patient

    NARCIS (Netherlands)

    Rub, U; Brunt, ER; Del Turco, D; de Vos, RAI; Gierga, K; Paulson, H; Braak, H

    Despite the fact that considerable progress has been made in the last 20 years regarding the three-phase process of ingestion and the lower brain stem nuclei involved in it, no comprehensive descriptions of the ingestion-related lower brain stem nuclei are available for neuropathologists confronted

  17. Establishment of 9L/F344 rat intracerebral glioma model of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Zong-yu XIAO

    2015-04-01

    Full Text Available Objective To establish the 9L/F344 rat intracerebral glioma model of brain tumor stem cells.  Methods Rat 9L gliosarcoma stem-like cells were cultured in serum-free suspension. The expression of CD133 and nestin were tested by immunohistochemistry. A total of 48 inbredline male F344 rats were randomly divided into 2 groups, and 9L tumor sphere cells and 9L monolayer cells were respectively implanted into the right caudate nucleus of F344 rats in 2 groups. Survival time was observed and determined using the method of Kaplan-Meier survival analysis. Fourteen days after implantation or when the rats were dying, their brains were perfused and sectioned for HE staining, and CD133 and nestin were detected by immunohistochemistry.  Results Rat 9L tumor spheres were formed with suspension culture in serum-free medium. The gliomas formed in both groups were invasive without obvious capsule. More new vessels, bleeding and necrosis could be detected in 9L tumor spheres group. The tumor cells in both groups were positive for CD133 and nestin. There was no significant difference in the expression of CD133 and nestin between 2 groups (P > 0.05, for all. According to the expression of nestin, the tumors formed by 9L tumor sphere cells were more invasive. The median survival time of the rats bearing 9L tumor sphere cells was 15 d (95%CI: 15.219-15.781, and the median survival time of the rats bearing 9L monolayer cells was 21 d (95%CI: 20.395-21.605. There was significant difference between 2 groups (χ2 = 12.800, P = 0.000.  Conclusions 9L/F344 rat intracerebral glioma model of brain tumor stem cells is successfully established, which provides a glioma model for the future research. DOI: 10.3969/j.issn.1672-6731.2015.04.012

  18. Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain.

    Science.gov (United States)

    Hawkins, Kate E; Corcelli, Michelangelo; Dowding, Kate; Ranzoni, Anna M; Vlahova, Filipa; Hau, Kwan-Leong; Hunjan, Avina; Peebles, Donald; Gressens, Pierre; Hagberg, Henrik; de Coppi, Paolo; Hristova, Mariya; Guillot, Pascale V

    2018-05-01

    Human mesenchymal stem cells (MSCs) have huge potential for regenerative medicine. In particular, the use of pluripotent stem cell-derived mesenchymal stem cells (PSC-MSCs) overcomes the hurdle of replicative senescence associated with the in vitro expansion of primary cells and has increased therapeutic benefits in comparison to the use of various adult sources of MSCs in a wide range of animal disease models. On the other hand, fetal MSCs exhibit faster growth kinetics and possess longer telomeres and a wider differentiation potential than adult MSCs. Here, for the first time, we compare the therapeutic potential of PSC-MSCs (ES-MSCs from embryonic stem cells) to fetal MSCs (AF-MSCs from the amniotic fluid), demonstrating that ES-MSCs have a superior neuroprotective potential over AF-MSCs in the mouse brain following hypoxia-ischemia. Further, we demonstrate that nuclear factor (NF)-κB-stimulated interleukin (IL)-13 production contributes to an increased in vitro anti-inflammatory potential of ES-MSC-conditioned medium (CM) over AF-MSC-CM, thus suggesting a potential mechanism for this observation. Moreover, we show that induced pluripotent stem cell-derived MSCs (iMSCs) exhibit many similarities to ES-MSCs, including enhanced NF-κB signaling and IL-13 production in comparison to AF-MSCs. Future studies should assess whether iMSCs also exhibit similar neuroprotective potential to ES-MSCs, thus presenting a potential strategy to overcome the ethical issues associated with the use of embryonic stem cells and providing a potential source of cells for autologous use against neonatal hypoxic-ischemic encephalopathy in humans. Stem Cells Translational Medicine 2018;7:439-449. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    Zhong-jun Zhang

    2015-01-01

    Full Text Available Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10 6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.

  20. Effects of atelocollagen on neural stem cell function and its migrating capacity into brain in psychiatric disease model.

    Science.gov (United States)

    Yoshinaga, Toshihiro; Hashimoto, Eri; Ukai, Wataru; Ishii, Takao; Shirasaka, Tomohiro; Kigawa, Yoshiyasu; Tateno, Masaru; Kaneta, Hiroo; Watanabe, Kimihiko; Igarashi, Takeshi; Kobayashi, Seiju; Sohma, Hitoshi; Kato, Tadafumi; Saito, Toshikazu

    2013-10-01

    Stem cell therapy is well proposed as a potential method for the improvement of neurodegenerative damage in the brain. Among several different procedures to reach the cells into the injured lesion, the intravenous (IV) injection has benefit as a minimally invasive approach. However, for the brain disease, prompt development of the effective treatment way of cellular biodistribution of stem cells into the brain after IV injection is needed. Atelocollagen has been used as an adjunctive material in a gene, drug and cell delivery system because of its extremely low antigenicity and bioabsorbability to protect these transplants from intrabody environment. However, there is little work about the direct effect of atelocollagen on stem cells, we examined the functional change of survival, proliferation, migration and differentiation of cultured neural stem cells (NSCs) induced by atelocollagen in vitro. By 72-h treatment 0.01-0.05% atelocollagen showed no significant effects on survival, proliferation and migration of NSCs, while 0.03-0.05% atelocollagen induced significant reduction of neuronal differentiation and increase of astrocytic differentiation. Furthermore, IV treated NSCs complexed with atelocollagen (0.02%) could effectively migrate into the brain rather than NSC treated alone using chronic alcohol binge model rat. These experiments suggested that high dose of atelocollagen exerts direct influence on NSC function but under 0.03% of atelocollagen induces beneficial effect on regenerative approach of IV administration of NSCs for CNS disease.

  1. Evaluation of quality of life in long-term survivors of paediatric brain stem tumors, treated with radiotherapy

    International Nuclear Information System (INIS)

    Skowronska-Gardas, Anna; Pedziwiatr, Katarzyna; Chojnacka, Marzanna

    2004-01-01

    The quality of life in long-term survivors of paediatric brain stem tumors, treated with radiotherapy is evaluated. They suffer predominantly from pre-treatment neurological impairments, which seriously influence their quality of life. The most often observed treatment sequelae are pituitary insufficiency and hearing loss

  2. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain

    Czech Academy of Sciences Publication Activity Database

    Kosi, N.; Alic, I.; Kolacevic, M.; Vrsaljko, N.; Milosevic, N.J.; Sobol, Margaryta; Philimonenko, Anatoly; Hozák, Pavel; Gajovic, S.; Pochet, R.; Mitrecic, D.

    2015-01-01

    Roč. 1597, FEB 9 (2015), s. 65-76 ISSN 1872-6240 R&D Projects: GA TA ČR(CZ) TE01020118; GA MPO FR-TI3/588 Institutional support: RVO:68378050 Keywords : Nop2 * Brain * Stem cells * Stroke * Nucleolus * Cell cycle Subject RIV: EB - Genetics ; Molecular Biology

  3. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain

    Czech Academy of Sciences Publication Activity Database

    Kosi, N.; Alic, I.; Kolačevic, M.; Vrsaljko, N.; Miloševic, N.J.; Sobol, Margaryta; Filimonenko, Anatolij; Hozák, Pavel; Gajovic, S.; Pochet, R.; Mitrečic, D.

    2015-01-01

    Roč. 1597, February (2015), s. 65-76 ISSN 1872-6240 R&D Projects: GA TA ČR(CZ) TE01020118; GA MPO FR-TI3/588 Institutional support: RVO:68378050 Keywords : Nop2 * Brain * Stem cells * Stroke Subject RIV: EB - Genetics ; Molecular Biology

  4. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.

    Science.gov (United States)

    Liu, Yung-Chiang; Lee, I-Chi; Chen, Pin-Yuan

    2018-05-01

    Glioblastoma (GBM) is the most malignant primary brain tumor and contains tumorigenic cancer stem cells (CSCs), which support the progression of tumor growth. The selection of CSCs and facilitation of the brain tumor niches may assist the development of novel therapeutics for GBM. Herein, hydrogel materials composed of agarose and hydroxypropyl methyl cellulose (HMC) in different concentrations were established and compared to emulate brain tumor niches and CSC microenvironments within a label-free system. Human GBM cell line, U-87 MG, was cultured on a series of HMC-agarose based culture system. Cell aggregation and spheroids formation were investigated after 4 days of culture, and 2.5% HMC-agarose based culture system demonstrated the largest spheroids number and size. Moreover, CD133 marker expression of GBM cells after 6 days of culture in 2.5% HMC-agarose based culture system was 60%, relatively higher than the control group at only 15%. Additionally, cells on 2.5% HMC-agarose based culture system show the highest chemoresistance, even at the high dose of 500 µM temozolomide for 72 h, the live cell ratio was still > 80%. Furthermore, the results also indicate that the expression of ABCG2 gene was up-regulated after culture in 2.5% HMC-agarose based culture system. Therefore, our results demonstrated that biomimetic brain tumor microenvironment may regulate GBM cells towards the CSC phenotype and expression of CSC characteristics. The microenvironment selection and spheroids formation in HMC-agarose based culture system may provide a label-free CSC selection strategy and drug testing model for future biomedical applications.

  5. Exogenous stem cells pioneer a biobridge to the advantage of host brain cells following stroke: New insights for clinical applications

    Directory of Open Access Journals (Sweden)

    Marci G Crowley

    2017-01-01

    Full Text Available Stroke continues to maintain its status as one of the top causes of mortality within the United States. Currently, the only Food and Drug Administration (FDA-approved drug in place for stroke patients, tissue plasminogen activator (tPA, has a rigid therapeutic window, closing at approximately 4.5 h after stroke onset. Due to this short time frame and other restrictions, such as any condition that increases a patient's risk for hemorrhaging, it has been predicted that <5% of ischemic stroke patients benefit from tPA. Given that rehabilitation therapy remains the only other option for stroke victims, there is a clear unmet clinical need for treatment available for the remaining 95%. While still considered an experimental treatment, the utilization of stem cell therapies for stroke holds consistent promise. Copious preclinical studies report the capacity for transplanted stem cells to rescue the brain parenchyma surrounding the stroke-induced infarct core. At present, the exact mechanisms in which stem cells contribute a robust therapeutic benefit remains unclear. Following stem cell administration, researchers have observed cell replacement, an increase in growth factors, and a reduction in inflammation. With a deeper understanding of the precise mechanism of stem cells, these therapies can be optimized in the clinic to afford the greatest therapeutic benefit. Recent studies have depicted a unique method of endogenous stem cell activation as a result of stem cell therapy. In both traumatic brain injury and stroke models, transplanted mesenchymal stromal cells (MSCs facilitated a pathway between the neurogenic niches of the brain and the damaged area through extracellular matrix remodeling. The biobridge pioneered by the MSCs was utilized by the endogenous stem cells, and these cells were able to travel to the damaged areas distal to the neurogenic niches, a feat unachievable without prior remodeling. These studies broaden our understanding of stem

  6. Role of the brain stem in tibial inhibition of the micturition reflex in cats.

    Science.gov (United States)

    Ferroni, Matthew C; Slater, Rick C; Shen, Bing; Xiao, Zhiying; Wang, Jicheng; Lee, Andy; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-08-01

    This study examined the role of the brain stem in inhibition of bladder reflexes induced by tibial nerve stimulation (TNS) in α-chloralose-anesthetized decerebrate cats. Repeated cystometrograms (CMGs) were performed by infusing saline or 0.25% acetic acid (AA) to elicit normal or overactive bladder reflexes, respectively. TNS (5 or 30 Hz) at three times the threshold (3T) intensity for inducing toe movement was applied for 30 min between CMGs to induce post-TNS inhibition or applied during the CMGs to induce acute TNS inhibition. Inhibition was evident as an increase in bladder capacity without a change in amplitude of bladder contractions. TNS applied for 30 min between saline CMGs elicited prolonged (>2 h) poststimulation inhibition that significantly (P reflexes but are not involved in inhibition of normal bladder reflexes. Copyright © 2015 the American Physiological Society.

  7. Brain stem death as the vital determinant for resumption of spontaneous circulation after cardiac arrest in rats.

    Directory of Open Access Journals (Sweden)

    Alice Y W Chang

    Full Text Available BACKGROUND: Spontaneous circulation returns to less than half of adult cardiac arrest victims who received in-hospital resuscitation. One clue for this disheartening outcome arises from the prognosis that asystole invariably takes place, after a time lag, on diagnosis of brain stem death. The designation of brain stem death as the point of no return further suggests that permanent impairment of the brain stem cardiovascular regulatory machinery precedes death. It follows that a crucial determinant for successful revival of an arrested heart is that spontaneous circulation must resume before brain stem death commences. Here, we evaluated the hypothesis that maintained functional integrity of the rostral ventrolateral medulla (RVLM, a neural substrate that is intimately related to brain stem death and central circulatory regulation, holds the key to the vital time-window between cardiac arrest and resumption of spontaneous circulation. METHODOLOGY/PRINCIPAL FINDINGS: An animal model of brain stem death employing the pesticide mevinphos as the experimental insult in Sprague-Dawley rats was used. Intravenous administration of lethal doses of mevinphos elicited an abrupt cardiac arrest, accompanied by elevated systemic arterial pressure and anoxia, augmented neuronal excitability and enhanced microvascular perfusion in RVLM. This period represents the vital time-window between cardiac arrest and resumption of spontaneous circulation in our experimental model. Animals with restored spontaneous circulation exhibited maintained neuronal functionality in RVLM beyond this critical time-window, alongside resumption of baseline tissue oxygen and enhancement of local blood flow. Intriguingly, animals that subsequently died manifested sustained anoxia, diminished local blood flow, depressed mitochondrial electron transport activities and reduced ATP production, leading to necrotic cell death in RVLM. That amelioration of mitochondrial dysfunction and

  8. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Erica L. McGrath

    2017-03-01

    Full Text Available Zika virus (ZIKV infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7, to infect primary human neural stem cells (hNSCs originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection.

  9. Differential Responses of Human Fetal Brain Neural Stem Cells to Zika Virus Infection.

    Science.gov (United States)

    McGrath, Erica L; Rossi, Shannan L; Gao, Junling; Widen, Steven G; Grant, Auston C; Dunn, Tiffany J; Azar, Sasha R; Roundy, Christopher M; Xiong, Ying; Prusak, Deborah J; Loucas, Bradford D; Wood, Thomas G; Yu, Yongjia; Fernández-Salas, Ildefonso; Weaver, Scott C; Vasilakis, Nikos; Wu, Ping

    2017-03-14

    Zika virus (ZIKV) infection causes microcephaly in a subset of infants born to infected pregnant mothers. It is unknown whether human individual differences contribute to differential susceptibility of ZIKV-related neuropathology. Here, we use an Asian-lineage ZIKV strain, isolated from the 2015 Mexican outbreak (Mex1-7), to infect primary human neural stem cells (hNSCs) originally derived from three individual fetal brains. All three strains of hNSCs exhibited similar rates of Mex1-7 infection and reduced proliferation. However, Mex1-7 decreased neuronal differentiation in only two of the three stem cell strains. Correspondingly, ZIKA-mediated transcriptome alterations were similar in these two strains but significantly different from that of the third strain with no ZIKV-induced neuronal reduction. This study thus confirms that an Asian-lineage ZIKV strain infects primary hNSCs and demonstrates a cell-strain-dependent response of hNSCs to ZIKV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Preventive sparing of spinal cord and brain stem in the initial irradiation of locally advanced head and neck cancers.

    Science.gov (United States)

    Farace, Paolo; Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco

    2014-01-06

    Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step-and-shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose < 45 Gy to spinal cord and < 50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5 ± 2.2 Gy and 36.7 ± 14.0 Gy), without significant changes on the other OARs. A marked difference (-15.9 ± 1.9 Gy and -10.1 ± 5.7 Gy) was obtained at the expense of a small difference (-1.3% ± 0.9%) from initial PTV195% coverage (96.6% ± 0.9%). Similar difference (-15.7 ± 2.2 Gy and -10.2 ± 6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (-0.3% ± 0.3% from the initial 98.3% ± 0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer.

  11. In vitro delineation of human brain-stem anatomy using a small resonator: correlation with macroscopic and histological findings

    International Nuclear Information System (INIS)

    Maeurer, J.; Mitrovic, T.; Knollmann, F.D.; Luedtke, E.; Requardt

    1996-01-01

    Our purpose was to investigate the potential of an experimental animal coil using a commercial MRI unit to delineate the anatomical structure of the human brain stem. Three formaldehyde-fixed brain-stem specimens were examined by MRI and sectioned perpendicular to their longitudinal axis. The images were compared with gross anatomy and myelin-stained histological sections. Fibre tracts and nuclei which were not evident on examination of the unstained specimen were readily identified by MRI. Due to its inherent grey/white matter contrast, MRI with a high-resolution coil delineates anatomical structures in a way comparable to the myelin-stained histological sections. However, pigmented structures, readily visible on examination of the unstained specimen were discernible on neither MRI nor on myelin-stained sections. The excellent anatomical detail and grey/white matter contrast provided by these images could make MRI a useful adjunct to the pathologist investigating brain disease. (orig.)

  12. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, Elke R. [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Maderwald, Stefan [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Linn, Jennifer; Bochmann, Katja [LMU Munich, Department of Neuroradiology, Munich (Germany); Dassinger, Benjamin [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Justus-Liebig-University Giessen, Department of Neuroradiology, Giessen (Germany); Forsting, Michael [University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Ladd, Mark E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2014-03-15

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  13. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    International Nuclear Information System (INIS)

    Gizewski, Elke R.; Maderwald, Stefan; Linn, Jennifer; Bochmann, Katja; Dassinger, Benjamin; Forsting, Michael; Ladd, Mark E.

    2014-01-01

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  14. A Case of Primary Central Nervous System Lymphoma Located at Brain Stem in a Child.

    Science.gov (United States)

    Kim, Jinho; Kim, Young Zoon

    2016-10-01

    Primary central nervous system lymphoma (PCNSL) is an extranodal Non-Hodgkin's lymphoma that is confined to the brain, eyes, and/or leptomeninges without evidence of a systemic primary tumor. Although the tumor can affect all age groups, it is rare in childhood; thus, its incidence and prognosis in children have not been well defined and the best treatment strategy remains unclear. A nine-year old presented at our department with complaints of diplopia, dizziness, dysarthria, and right side hemiparesis. Magnetic resonance image suggested a diffuse brain stem glioma with infiltration into the right cerebellar peduncle. The patient was surgically treated by craniotomy and frameless stereotactic-guided biopsy, and unexpectedly, the histopathology of the mass was consistent with diffuse large B cell lymphoma, and immunohistochemical staining revealed positivity for CD20 and CD79a. Accordingly, we performed a staging work-up for systemic lymphoma, but no evidence of lymphoma elsewhere in the body was obtained. In addition, she had a negative serologic finding for human immunodeficient virus, which confirmed the histopathological diagnosis of PCNSL. She was treated by radiosurgery at 12 Gy and subsequent adjuvant combination chemotherapy based on high dose methotrexate. Unfortunately, 10 months after the tissue-based diagnosis, she succumbed due to an acute hydrocephalic crisis.

  15. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Coránguez

    Full Text Available Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  16. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Science.gov (United States)

    Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza

    2013-01-01

    Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  17. Regional Susceptibility to Domoic Acid in Primary Astrocyte Cells Cultured from the Brain Stem and Hippocampus

    Directory of Open Access Journals (Sweden)

    Olga M. Pulido

    2008-02-01

    Full Text Available Domoic acid is a marine biotoxin associated with harmful algal blooms and is the causative agent of amnesic shellfish poisoning in marine animals and humans. It is also an excitatory amino acid analog to glutamate and kainic acid which acts through glutamate receptors eliciting a very rapid and potent neurotoxic response. The hippocampus, among other brain regions, has been identified as a specific target site having high sensitivity to DOM toxicity. Histopathology evidence indicates that in addition to neurons, the astrocytes were also injured. Electron microscopy data reported in this study further supports the light microscopy findings. Furthermore, the effect of DOM was confirmed by culturing primary astrocytes from the hippocampus and the brain stem and subsequently exposing them to domoic acid. The RNA was extracted and used for biomarker analysis. The biomarker analysis was done for the early response genes including c-fos, c-jun, c-myc, Hsp-72; specific marker for the astrocytes- GFAP and the glutamate receptors including GluR 2, NMDAR 1, NMDAR 2A and B. Although, the astrocyte-GFAP and c-fos were not affected, c-jun and GluR 2 were down-regulated. The microarray analysis revealed that the chemokines / cytokines, tyrosine kinases (Trk, and apoptotic genes were altered. The chemokines that were up-regulated included - IL1-a, IL-1B, IL-6, the small inducible cytokine, interferon protein IP-10, CXC chemokine LIX, and IGF binding proteins. The Bax, Bcl-2, Trk A and Trk B were all downregulated. Interestingly, only the hippocampal astrocytes were affected. Our findings suggest that astrocytes may present a possible target for pharmacological interventions for the prevention and treatment of amnesic shellfish poisoning and for other brain pathologies involving excitotoxicity

  18. Spatio-temporal neural stem cell behavior that leads to both perfect and imperfect structural brain regeneration in adult newts.

    Science.gov (United States)

    Urata, Yuko; Yamashita, Wataru; Inoue, Takeshi; Agata, Kiyokazu

    2018-06-14

    Adult newts can regenerate large parts of their brain from adult neural stem cells (NSCs), but how adult NSCs reorganize brain structures during regeneration remains unclear. In development, elaborate brain structures are produced under broadly coordinated regulations of embryonic NSCs in the neural tube, whereas brain regeneration entails exquisite control of the reestablishment of certain brain parts, suggesting a yet-unknown mechanism directs NSCs upon partial brain excision. Here we report that upon one-quarter excision of the adult newt ( Pleurodeles waltl ) mesencephalon, active participation of local NSCs around specific brain subregions' boundaries leads to some imperfect and some perfect brain regeneration along an individual's rostrocaudal axis. Regeneration phenotypes depend on how the wound closing occurs using local NSCs, and perfect regeneration replicates development-like processes but takes more than one year. Our findings indicate that newt brain regeneration is supported by modularity of boundary-domain NSCs with self-organizing ability in neighboring fields. © 2018. Published by The Company of Biologists Ltd.

  19. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    Science.gov (United States)

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  20. Brain Injury Expands the Numbers of Neural Stem Cells and Progenitors in the SVZ by Enhancing Their Responsiveness to EGF

    Directory of Open Access Journals (Sweden)

    Dhivyaa Alagappan

    2009-04-01

    Full Text Available There is an increase in the numbers of neural precursors in the SVZ (subventricular zone after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries.

  1. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    OpenAIRE

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C.

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  2. A phase I trial of etanidazole and hyperfractionated radiotherapy in children with diffuse brain stem glioma

    International Nuclear Information System (INIS)

    Dutton, S.C.; Pomeroy, S.L.; Billett, A.L.; Barnes, P.; Kuhlman, C.; Riese, N.E.; Goumnerova, L.; Scott, R.M.; Coleman, C.N.; Tarbell, N.J.

    1997-01-01

    Objective: Prospective phase I study to evaluate the toxicity and maximum tolerated dose of etanidazole administered concurrently with hyperfractionated radiation therapy (HRT) for children with brain stem glioma. Materials and Methods: Eighteen patients with brain stem glioma were treated with etanidazole and HRT from 1990-1996. Eligibility required MRI confirmation of diffuse glioma of medulla, pons or mesencephalon, and signs/symptoms of cranial nerve deficit, ataxia or long tract signs of ≤ 6 months duration. Cervico-medullary tumors were excluded. Patients (median age 8.5 years; 11 males, 7 females) received HRT to the tumor volume plus a 2 cm margin with parallel opposed 6-15 MV photons. The total dose was 66 Gy for the first 3 patients, followed by 63 Gy over 4.2 weeks (1.5 Gy BID with 6 hours between fractions) for the subsequent 15 patients. Etanidazole was administered as a rapid IV infusion 30 minutes prior to the morning fraction of HRT at doses of 1.8 gm/m2 x 17 doses (30.6 gm/m2) at step 1 to a maximum of 2.4 gm/m2 x 21 doses (50.4 gm/m2) at step 8. Dose escalation was planned with 3 patients at each of the 8 levels. Results: Three patients were treated at each dose level except level 2, on which only one patient was treated. The highest dose level achieved was step 7 which delivered a total etanidazole dose of 46.2 gm/m2. Two patients were treated at this level, and both patients experienced grade 3 toxicity in the form of a diffuse cutaneous rash. Three patients received a lower dose of 42 gm/m2 without significant toxicity, and this represents the maximum tolerated dose (MTD). There were 24 cases of grade 1 toxicity (10 vomiting, 5 peripheral neuropathy, 2 rash, 2 constipation, 1 skin erythema, 1 weight loss, 3 other), eleven cases of grade 2 toxicity (4 vomiting, 2 skin erythema, 2 constipation, 1 arthalgia, 1 urinary retention, 1 hematologic), and four grade b 3 toxicities (2 rash, 1 vomiting, 1 skin desquamation). Grade 2 or 3 peripheral

  3. Metformin and Ara-a Effectively Suppress Brain Cancer by Targeting Cancer Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Tarek H. Mouhieddine

    2015-11-01

    Full Text Available Background: Gliomas and neuroblastomas pose a great health burden worldwide with a poor and moderate prognosis, respectively. Many studies have tried to find effective treatments for these primary malignant brain tumors. Of interest, the AMP-activated protein kinase (AMPK pathway was found to be associated with tumorigenesis and tumor survival, leading to many studies on AMPK drugs, especially Metformin, and their potential role as anti-cancer treatments. Cancer stem cells (CSCs are a small population of slowly-dividing, treatment-resistant, undifferentiated cancer cells that are being discovered in a multitude of cancers. They are thought to be responsible for replenishing the tumor with highly proliferative cells and increasing the risk of recurrence. Methods: Metformin and 9-β-d-Arabinofuranosyl Adenine (Ara-a were used to study the role of the AMPK pathway in vitro on U251 (glioblastoma and SHSY-5Y (neuroblastoma cell lines.Results: We found that both drugs are able to decrease the survival of U251 and SH-SY5Y cell lines in a 2D as well as a 3D culture model. Metformin and Ara-a significantly decreased the invasive ability of these cancer cell lines. Treatment with these drugs decreased the sphere-forming units (SFU of U251 cells, with Ara-a being more efficient, signifying the extinction of the CSC population. However, if treatment is withdrawn before all SFUs are extinguished, the CSCs regain some of their sphere-forming capabilities in the case of Metformin but not Ara-a treatment. Conclusion: Metformin and Ara-a have proved to be effective in the treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer stem/progenitor cell population, which prevents recurrence.

  4. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells.

    Science.gov (United States)

    Hollmann, Emma K; Bailey, Amanda K; Potharazu, Archit V; Neely, M Diana; Bowman, Aaron B; Lippmann, Ethan S

    2017-04-13

    Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods. Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines. The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm 2 across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm 2 and fluorescein permeability below 1.95 × 10 -7 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm 2 for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated

  5. Presenilins are required for maintenance of neural stem cells in the developing brain

    Directory of Open Access Journals (Sweden)

    Kim Woo-Young

    2008-01-01

    Full Text Available Abstract The early embryonic lethality of mutant mice bearing germ-line deletions of both presenilin genes precluded the study of their functions in neural development. We therefore employed the Cre-loxP technology to generate presenilin conditional double knockout (PS cDKO mice, in which expression of both presenilins is inactivated in neural progenitor cells (NPC or neural stem cells and their derivative neurons and glia beginning at embryonic day 11 (E11. In PS cDKO mice, dividing NPCs labeled by BrdU are decreased in number beginning at E13.5. By E15.5, fewer than 20% of NPCs remain in PS cDKO mice. The depletion of NPCs is accompanied by severe morphological defects and hemorrhages in the PS cDKO embryonic brain. Interkinetic nuclear migration of NPCs is also disrupted in PS cDKO embryos, as evidenced by displacement of S-phase and M-phase nuclei in the ventricular zone of the telencephalon. Furthermore, the depletion of neural progenitor cells in PS cDKO embryos is due to NPCs exiting cell cycle and differentiating into neurons rather than reentering cell cycle between E13.5 and E14.5 following PS inactivation in most NPCs. The length of cell cycle, however, is unchanged in PS cDKO embryos. Expression of Notch target genes, Hes1 and Hes5, is significantly decreased in PS cDKO brains, whereas Dll1 expression is up-regulated, indicating that Notch signaling is effectively blocked by PS inactivation. These findings demonstrate that presenilins are essential for neural progenitor cells to re-enter cell cycle and thus ensure proper expansion of neural progenitor pool during embryonic neural development.

  6. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement.

    Directory of Open Access Journals (Sweden)

    Vanessa Donega

    Full Text Available Mesenchymal stem cell (MSC administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. Nine-day-old mice were subjected to unilateral carotid artery occlusion and hypoxia. MSCs were administered intranasally at 3, 10 or 17 days after hypoxia-ischemia (HI. Motor, cognitive and histological outcome was investigated. PKH-26 labeled cells were used to localize MSCs in the brain. We identified 0.5 × 10(6 MSCs as the minimal effective dose with a therapeutic window of at least 10 days but less than 17 days post-HI. A single dose was sufficient for a marked beneficial effect. MSCs reach the lesion site within 24 h when given 3 or 10 days after injury. However, no MSCs were detected in the lesion when administered 17 days following HI. We also show for the first time that intranasal MSC treatment after HI improves cognitive function. Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy.

  7. Therapy of brain stem tumors - palliative conception with prospect of curative success

    International Nuclear Information System (INIS)

    Bamberg, M.; Budach, V.; Clar, H.E.; Schmitt, G.

    1984-01-01

    From 1969 to 1981, 23 patients with tumors in the pons region were irradiated at the Department of Radiotherapy of the West German Tumor Center in Essen. The age of the patients ranged from 18 months to 50 years. Fifteen patients (65%) were younger than 18 years, one was 25 years old, and seven were between 40 and 50 years old. In two cases the histologic diagnosis of an astrocytoma I and astrocytoma II could be confirmed by exploratory excision and cyst punction, respectively. Nineteen patients received a shunt system (ventriculoatrial shunt) prior to radiotherapy in order to achieve a pressure reduction. After a follow-up period of 1.5 to 12 years, eleven patients are alive, and twelve patients died from a local recurrence or from progressive tumor growth. The five-year survival rate is 47%. Five of the surviving patients show no or only slight adverse effects on their general condition and are able to attend school or carry out their profession (in Karnofsky: 90 to 100%). Four other patients suffering from marked remaining neurologic symptoms are able to take care of themselves (Karnofsky: 70 to 80%). Two patients need permanent nursing (Karnofsky: 50 to 60%). Because of the local propagation tendency of pons tumors, radiotherapy should be locally restricted to the brain stem and the adjacent brain structures, e.g. cerebellum and proximal neck marrow. The authors recommend target volumes of 55 to 60 Gy, which must be applied within 6 to 8 weeks, taking into account the age of patients. This palliative therapy conception should be applied routinely in the hope of bringing about a curative treatment to this group of patients. (orig.) [de

  8. Estradiol receptors mediate estradiol-induced inhibition of mitochondrial Ca^{2+} efflux in rat caudate nucleus and brain stem

    OpenAIRE

    PETROVIC, SNJEZANA; MILOSEVIC, MAJA; RISTIC-MEDIC, DANIJELA; VELICKOVIC, NATASA; DRAKULIC, DUNJA; GRKOVIC, IVANA; HORVAT, ANICA

    2015-01-01

    Our earlier studies found that in vitro estradiol modulates mitochondrial Ca2+ transport in discrete brain regions. The present study examined the role of estradiol receptors (ERs) in estradiol-induced inhibition of Ca^{2+} efflux from synaptosomal mitochondria isolated from rat caudate nuclei and brain stems. Radioactively labeled CaCl_2 (0.6?0.75 µCi ^45CaCl_{2}) was used for Ca^{2+} transport monitoring. The results revealed that in the presence of ER antagonist 7\\alpha,17ß-[9[(4,4,5,5,5-...

  9. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances.

    Science.gov (United States)

    Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel

    2014-11-01

    The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.

  10. A case of myxedema coma presenting as a brain stem infarct in a 74-year-old Korean woman.

    Science.gov (United States)

    Ahn, Ji Yun; Kwon, Hyuk-Sool; Ahn, Hee Chol; Sohn, You Dong

    2010-09-01

    Myxedema coma is the extreme form of untreated hypothyroidism. In reality, few patients present comatose with severe myxedema. We describe a patient with myxedema coma which was initially misdiagnosed as a brain stem infarct. She presented to the hospital with alteration of the mental status, generalized edema, hypothermia, hypoventilation, and hypotension. Initially her brain stem reflexes were absent. After respiratory and circulatory support, her neurologic status was not improved soon. The diagnosis of myxedema coma was often missed or delayed due to various clinical findings and concomitant medical condition and precipitating factors. It is more difficult to diagnose when a patient has no medical history of hypothyroidism. A high index of clinical suspicion can make a timely diagnosis and initiate appropriate treatment. We report this case to alert clinicians considering diagnosis of myxedema coma in patients with severe decompensated metabolic state including mental change.

  11. Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation is associated with cell-type-dependent splicing of mtAspRS mRNA

    NARCIS (Netherlands)

    van Berge, Laura; Dooves, Stephanie; van Berkel, Carola G. M.; Polder, Emiel; van der Knaap, Marjo S.; Scheper, Gert C.

    2012-01-01

    LBSL (leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation) is an autosomal recessive white matter disorder with slowly progressive cerebellar ataxia, spasticity and dorsal column dysfunction. Magnetic resonance imaging shows characteristic abnormalities in the

  12. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    Science.gov (United States)

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  13. Critical appraisal of cerebral blood flow measured from brain stem and cerebellar regions after 133 Xe inhalation in humans

    International Nuclear Information System (INIS)

    Juge, O.; Meyer, J.S.; Sakai, F.; Yamaguchi, F.; Yamamoto, M.; Shaw, T.

    1979-01-01

    Validity of regional blood flow (rCBF) measurements recorded over the human posterior fossa after 133Xe inhalation was tested. Recording of counts from both brain stem and cerebellum (BSC) was reproducible and contamination by counts derived from surrounding anatomical structures was low and no greater than that found over hemispheres. BSC flow values showed significant correlation with the state of awareness as judged by clinical and EEG evaluation

  14. Neural stem cells in the immature, but not the mature, subventricular zone respond robustly to traumatic brain injury.

    Science.gov (United States)

    Goodus, Matthew T; Guzman, Alanna M; Calderon, Frances; Jiang, Yuhui; Levison, Steven W

    2015-01-01

    Pediatric traumatic brain injury is a significant problem that affects many children each year. Progress is being made in developing neuroprotective strategies to combat these injuries. However, investigators are a long way from therapies to fully preserve injured neurons and glia. To restore neurological function, regenerative strategies will be required. Given the importance of stem cells in repairing damaged tissues and the known persistence of neural precursors in the subventricular zone (SVZ), we evaluated regenerative responses of the SVZ to a focal brain lesion. As tissues repair more slowly with aging, injury responses of male Sprague Dawley rats at 6, 11, 17, and 60 days of age and C57Bl/6 mice at 14 days of age were compared. In the injured immature animals, cell proliferation in the dorsolateral SVZ more than doubled by 48 h. By contrast, the proliferative response was almost undetectable in the adult brain. Three approaches were used to assess the relative numbers of bona fide neural stem cells, as follows: the neurosphere assay (on rats injured at postnatal day 11, P11), flow cytometry using a novel 4-marker panel (on mice injured at P14) and staining for stem/progenitor cell markers in the niche (on rats injured at P17). Precursors from the injured immature SVZ formed almost twice as many spheres as precursors from uninjured age-matched brains. Furthermore, spheres formed from the injured brain were larger, indicating that the neural precursors that formed these spheres divided more rapidly. Flow cytometry revealed a 2-fold increase in the percentage of stem cells, a 4-fold increase in multipotential progenitor-3 cells and a 2.5-fold increase in glial-restricted progenitor-2/multipotential-3 cells. Analogously, there was a 2-fold increase in the mitotic index of nestin+/Mash1- immunoreactive cells within the immediately subependymal region. As the early postnatal SVZ is predominantly generating glial cells, an expansion of precursors might not

  15. Novel Regenerative Therapies Based on Regionally Induced Multipotent Stem Cells in Post-Stroke Brains: Their Origin, Characterization, and Perspective.

    Science.gov (United States)

    Takagi, Toshinori; Yoshimura, Shinichi; Sakuma, Rika; Nakano-Doi, Akiko; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-12-01

    Brain injuries such as ischemic stroke cause severe neural loss. Until recently, it was believed that post-ischemic areas mainly contain necrotic tissue and inflammatory cells. However, using a mouse model of cerebral infarction, we demonstrated that stem cells develop within ischemic areas. Ischemia-induced stem cells can function as neural progenitors; thus, we initially named them injury/ischemia-induced neural stem/progenitor cells (iNSPCs). However, because they differentiate into more than neural lineages, we now refer to them as ischemia-induced multipotent stem cells (iSCs). Very recently, we showed that putative iNSPCs/iSCs are present within post-stroke areas in human brains. Because iNSPCs/iSCs isolated from mouse and human ischemic tissues can differentiate into neuronal lineages in vitro, it is possible that a clearer understanding of iNSPC/iSC profiles and the molecules that regulate iNSPC/iSC fate (e.g., proliferation, differentiation, and survival) would make it possible to perform neural regeneration/repair in patients following stroke. In this article, we introduce the origin and traits of iNSPCs/iSCs based on our reports and recent viewpoints. We also discuss their possible contribution to neurogenesis through endogenous and exogenous iNSPC/iSC therapies following ischemic stroke.

  16. Recovery function of the human brain stem auditory-evoked potential.

    Science.gov (United States)

    Kevanishvili, Z; Lagidze, Z

    1979-01-01

    Amplitude reduction and peak latency prolongation were observed in the human brain stem auditory-evoked potential (BEP) with preceding (conditioning) stimulation. At a conditioning interval (CI) of 5 ms the alteration of BEP was greater than at a CI of 10 ms. At a CI of 10 ms the amplitudes of some BEP components (e.g. waves I and II) were more decreased than those of others (e.g. wave V), while the peak latency prolongation did not show any obvious component selectivity. At a CI of 5 ms, the extent of the amplitude decrement of individual BEP components differed less, while the increase in the peak latencies of the later components was greater than that of the earlier components. The alterations of the parameters of the test BEPs at both CIs are ascribed to the desynchronization of intrinsic neural events. The differential amplitude reduction at a CI of 10 ms is explained by the different durations of neural firings determining various effects of desynchronization upon the amplitudes of individual BEP components. The decrease in the extent of the component selectivity and the preferential increase in the peak latencies of the later BEP components observed at a CI of 5 ms are explained by the intensification of the mechanism of the relative refractory period.

  17. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    International Nuclear Information System (INIS)

    Joseph, Bertrand; Hermanson, Ola

    2010-01-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  18. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Bertrand [Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm (Sweden); Hermanson, Ola, E-mail: ola.hermanson@ki.se [Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden)

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  19. Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain.

    Science.gov (United States)

    Kippin, Tod E; Cain, Sean W; Masum, Zahra; Ralph, Martin R

    2004-03-17

    Many of the effects of prenatal stress on the endocrine function, brain morphology, and behavior in mammals can be reversed by brief sessions of postnatal separation and handling. We have tested the hypothesis that the effects of both the prenatal and postnatal experiences are mediated by negative and positive regulation of neural stem cell (NSC) number during critical stages in neurodevelopment. We used the in vitro clonal neurosphere assay to quantify NSCs in hamsters that had experienced prenatal stress (maternal restraint stress for 2 hr per day, for the last 7 d of gestation), postnatal handling (maternal-offspring separation for 15 min per day during postnatal days 1-21), orboth. Prenatal stress reduced the number of NSCs derived from the subependyma of the lateral ventricle. The effect was already present at postnatal day 1 and persisted into adulthood (at least 14 months of age). Similarly, prenatal stress reduced in vivo proliferation in the adult subependyma of the lateral ventricle. Conversely, postnatal handling increased NSC number and reversed the effect of prenatal stress. The effects of prenatal stress on NSCs and proliferation and the effect of postnatal handling on NSCs did not differ between male and females. The findings demonstrate that environmental factors can produce changes in NSC number that are present at birth and endure into late adulthood. These changes may underlie some of the behavioral effects produced by prenatal stress and postnatal handling.

  20. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  1. Brain stem tumors in children - therapeutic results in patients of the University Children's Hospital of Cracow in Poland

    International Nuclear Information System (INIS)

    Korab-Chrzanowska, E.; Bartoszewska, J.; Kwiatkowski, S.

    2005-01-01

    To analyse the treatment results achieved in children treated for brain stem tumours at one institution between the years 1990 and 2004. Material. 20 patients (10 girls, 10 boys) aged 2.8-15.6 years were treated for brain stem tumors at the University Children's Hospital of Cracow (UCHC) in the years 1990-2004. The tumour type was defined basing on imaging studies (CT, MRI), and, in the case of 7 patients, additionally basing on histopathological results. In the collected material the predominant tumor type was benign glioma, detected in 17 patients. Malignant gliomas were diagnosed in 3 children. 7 children were treated by radiotherapy only. Surgical procedures and adjuvant radiotherapy were employed in 3 patients. 6 children underwent radiotherapy and chemotherapy. Combined surgical treatment followed by radiotherapy and chemotherapy was employed in 4 patients. Of the 20 patients 6 have died (30%). The surviving group (70%) includes 1 patient with tumor progression (5%), 5 - with stable tumors (25%), and 8 (40%) - with tumor regression. The probability of three-year overall survival for the entire group as calculated by the Kaplan-Meier method was 70% while the probability of three-year progression-free survival was 65%. Conclusions. Diffuse brain stem tumors, mostly those involving the pons, and malignant gliomas have poor prognosis. In the presented material we achieved the best treatment results in patients with exophytic or focal tumors, treated surgically with adjuvant therapy. (author)

  2. Clinical translation of stem cell therapy in traumatic brain injury: the potential of encapsulated mesenchymal cell biodelivery of glucagon-like peptide-1

    OpenAIRE

    Heile, Anna; Brinker, Thomas

    2011-01-01

    Traumatic brain injury remains a major cause of death and disability; it is estimated that annually 10 million people are affected. Preclinical studies have shown the potential therapeutic value of stem cell therapies. Neuroprotective as well as regenerative properties of stem cells have been suggested to be the mechanism of action in preclinical studies. However, up to now stem cell therapy has not been studied extensively in clinical trials. This article summarizes the current experimental ...

  3. Suicide awareness of japanese family descendants

    Directory of Open Access Journals (Sweden)

    Carla Tiemi Kawaziri Diogo

    2014-10-01

    Full Text Available This study aimed to comprehend the meaning of suicide for Japanese descendants. This was a qualitative study, based on Grounded Theory, using a structured interview with sixteen questions, digitally recorded. Subjects were ten descendants who were interviewed in 2011. The opinions of the interviewed showed factors of psychological, social and cultural origin involved in suicide, such as: heredity, religion, mental health, personality characteristics and interpersonal relationships, pleasure and pain at work, stigma and consequences of the act on the family. Family without case of suicide showed attitudes of prejudice and judgment, while those with case displayed feelings of pain in their reports. It was concluded that the Japanese rigid culture, personality, interpersonal communication and the way family and work have effects on their behavior are predisposing factors to suicide, as well as the identification of these factors contributes to a better performance of the nurse.

  4. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Science.gov (United States)

    Zhou, Hai-xiao; Liu, Zhi-gang; Liu, Xiao-jiao; Chen, Qian-xue

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. PMID:26981097

  5. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hai-xiao Zhou

    2016-01-01

    Full Text Available Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5-3.0 atm impact force. The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions.

  6. The role of CXC chemokine ligand (CXCL)12-CXC chemokine receptor (CXCR)4 signalling in the migration of neural stem cells towards a brain tumour

    NARCIS (Netherlands)

    van der Meulen, A. A. E.; Biber, K.; Lukovac, S.; Balasubramaniyan, V.; den Dunnen, W. F. A.; Boddeke, H. W. G. M.; Mooij, J. J. A.

    2009-01-01

    Aims: It has been shown that neural stem cells (NSCs) migrate towards areas of brain injury or brain tumours and that NSCs have the capacity to track infiltrating tumour cells. The possible mechanism behind the migratory behaviour of NSCs is not yet completely understood. As chemokines are involved

  7. Assessment of cardiotoxicity during haemopoietic stem cell transplantation with plasma brain natriuretic peptide.

    Science.gov (United States)

    Snowden, J A; Hill, G R; Hunt, P; Carnoutsos, S; Spearing, R L; Espiner, E; Hart, D N

    2000-08-01

    Cardiac failure is a known complication of haemopoietic stem cell transplantation (HSCT) and is often difficult to diagnose as patients may have multiple medical problems. Since brain natriuretic peptide (BNP) is largely a hormone of cardiac ventricular origin and is released early in the course of ventricular dysfunction, we have examined the value of serial plasma BNP levels for detecting cardiac failure in patients undergoing cytotoxic conditioning for HSCT. Fifteen patients undergoing HSCT were evaluated (10 undergoing autologous HSCT; five undergoing allogeneic HSCT). BNP was measured by radioimmunoassay prior to therapy and weekly for 5 weeks. Seven patients had a significant rise in BNP level (above a previously established threshold of 43 pmol/l associated with cardiac failure), occurring 1-4 weeks post commencement of conditioning. In three of these patients, cardiac failure was subsequently diagnosed clinically 3, 9 and 23 days after a BNP level of 43 pmol/l had been detected. These three patients had the highest peak BNP levels for the group and in each case elevation in BNP level occurred for a period exceeding 1 week. Although numbers were relatively small, a BNP >43 pmol/l was significantly associated with the inclusion of high-dose cyclophosphamide in the preparative regimen (P = 0.02). BNP levels showed no relationship to febrile episodes. In conclusion, these results show that plasma BNP may be used as a marker for early detection of cardiac dysfunction in patients undergoing HSCT, particularly if levels are increased for periods exceeding 1 week. Measurement of BNP during HSCT may be helpful in patients at risk of cardiac failure, in complex clinical situations and in monitoring the cardiotoxicity of preparative regimens.

  8. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway.

    Directory of Open Access Journals (Sweden)

    Mayumi Jijiwa

    Full Text Available Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6 in BTSC of a subset of glioblastoma multiforme (GBM. Patients with CD44(high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44(high GBM but not from CD44(low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN, increased expression of phosphorylated AKT in CD44(high GBM, but not in CD44(low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKT pathway.

  9. A detrimental effect of a combined chemotherapy-radiotherapy approach in children with diffuse intrinsic brain stem gliomas?

    International Nuclear Information System (INIS)

    Freeman, Carolyn R.; Kepner, Jim; Kun, Larry E.; Sanford, Robert A.; Kadota, Richard; Mandell, Lynda; Friedman, Henry

    2000-01-01

    Purpose: To compare the proportion of patients that survive at least 1 year following treatment with hyperfractionated radiotherapy (HRT) to a dose of 70.2 Gy on Pediatric Oncology Group (POG) study no. 8495 with that of patients treated with similar radiotherapy plus cisplatinum given by continuous infusion on weeks 1, 3, and 5 of radiotherapy on POG no. 9239. Methods and Materials: The eligibility criteria for the two studies were identical and included age 3 to 21 years, previously untreated tumor involving the brain stem of which two-thirds was in the pons, history less than 6 months, and clinical findings typical for diffuse intrinsic brain stem glioma, including cranial nerve deficits, long tract signs, and ataxia. The outcome of 57 patients who were treated at the 70.2 Gy dose level of POG no. 8495 between May 1986 and February 1988 was compared with that of 64 patients treated with identical radiotherapy plus cisplatinum on POG no. 9239 between June 1992 and March 1996. Results: The number of patients accrued to POG no. 9239 was determined to guarantee that the probability was at least 0.80 of correctly detecting that the 1-year survival rate exceeded that of patients on POG no. 8495 by 0.2. However, the z value for this test was -1.564, giving a p value of 0.9411. That is, there is almost sufficient evidence to conclude that survival for patients receiving HRT plus cisplatinum on POG no. 9239 was worse than that for patients receiving the same radiotherapy alone on POG no. 8495. Conclusion: The finding that patients who received cisplatinum given as a radiosensitizing agent concurrent with HRT fared less well than those receiving the same dose of HRT alone was unexpected and is clearly a cause for concern as many current protocols for patients with diffuse intrinsic brain stem gliomas call for use of chemotherapeutic and/or biological agents given concurrent with radiotherapy

  10. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Champagnat, J; Denavit-Saubié, M

    1996-01-01

    with the aim of extending the classification of inspiratory neurons to include analysis of active membrane properties. 2. The slice generated a regular rhythmic motor output recorded as burst of action potentials on a XII nerve root with a peak to peak time of 11.5 +/- 3.4 s and a duration of 483 +/- 54 ms......1. The electrophysiological properties of inspiratory neurons were studied in a rhythmically active thick-slice preparation of the newborn mouse brain stem maintained in vitro. Whole cell patch recordings were performed from 60 inspiratory neurons within the rostral ventrolateral part of the slice...

  11. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483-2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization......-stimulus orthodromic activation, using an electrode placed in the dorsomedial slice near the nucleus tractus solitarius, evoked single excitatory postsynaptic potentials (EPSPs) or short trains of EPSPs (500 ms to 1 s). However, tetanic stimulation (5 pulses, 10 Hz) induced voltage-dependent afterdepolarizations...

  12. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.

    Science.gov (United States)

    Sukiasyan, N; Hultborn, H; Zhang, M

    2009-03-03

    The function of local networks in the CNS depends upon both the connectivity between neurons and their intrinsic properties. An intrinsic property of spinal motoneurons is the presence of persistent inward currents (PICs), which are mediated by non-inactivating calcium (mainly Ca(V)1.3) and/or sodium channels and serve to amplify neuronal input signals. It is of fundamental importance for the prediction of network function to determine the distribution of neurons possessing the ion channels that produce PICs. Although the distribution pattern of Ca(V)1.3 immunoreactivity (Ca(V)1.3-IR) has been studied in some specific central nervous regions in some species, so far no systematic investigations have been performed in both the rat spinal cord and brain stem. In the present study this issue was investigated by immunohistochemistry. The results indicated that the Ca(V)1.3-IR neurons were widely distributed across different parts of the spinal cord and the brain stem although with variable labeling intensities. In the spinal gray matter large neurons in the ventral horn (presumably motoneurons) tended to display higher levels of immunoreactivity than smaller neurons in the dorsal horn. In the white matter, a subset of glial cells labeled by an oligodendrocyte marker was also Ca(V)1.3-positive. In the brain stem, neurons in the motor nuclei appeared to have higher levels of immunoreactivity than those in the sensory nuclei. Moreover, a number of nuclei containing monoaminergic cells, for example the locus coeruleus, were also strongly immunoreactive. Ca(V)1.3-IR was consistently detected in the neuronal perikarya regardless of the neuronal type. However, in the large neurons in the spinal ventral horn and the cranial motor nuclei the Ca(V)1.3-IR was clearly detectable in first and second order dendrites. These results indicate that in the rat spinal cord and brain stem Ca(V)1.3 is probably a common calcium channel used by many kinds of neurons to facilitate the neuronal

  13. Effectiveness of mesenchymal stems cells cultured by hanging drop vs. conventional culturing on the repair of hypoxic-ischemic-damaged mouse brains, measured by stemness gene expression

    Directory of Open Access Journals (Sweden)

    Lou Yongli

    2016-01-01

    Full Text Available In this study, we investigated the therapeutic effects of Human Mesenchymal Stem Cells (hMSCs cultured by hanging drop and conventional culturing methods on cerebellar repair in hypoxic-ischemic (HI brain injured mice. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR was used to analyze the expression levels of three stemness genes, Oct4, Sox2 and Nanog, and the migration related gene CXCR4. MSC prepared by hanging drop or conventional techniques were administered intranasally to nine day old mice, and analyzed by MRI at day 28. Results indicate that the MSCs, especially the hanging drop cultured MSCs, significantly improved the mice’s cerebellar damage repair. MSCs derived from the hanging drop culture were smaller than those from the conventional culture. The gene expression levels were significantly increased for the MSCs derived from the hanging drop culture. The mechanism might relate to the fact that the hanging drop cultured MSCs can be kept in an undifferentiated state, resulting in its higher expression level of migration receptor of CXCR4.

  14. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  15. Descending projections of the hamster intergeniculate leaflet: relationship to the sleep/arousal and visuomotor systems

    Science.gov (United States)

    Morin, Lawrence P.; Blanchard, Jane H.

    2005-01-01

    The intergeniculate leaflet (IGL), homolog of the primate pregeniculate nucleus, modulates circadian rhythms. However, its extensive anatomical connections suggest that it may regulate other systems, particularly those for visuomotor function and sleep/arousal. Here, descending IGL-efferent pathways are identified with the anterograde tracer, Phaseolus vulgaris leucoagglutinin, with projections to over 50 brain stem nuclei. Projections of the ventral lateral geniculate are similar, but more limited. Many of the nuclei with IGL afferents contribute to circuitry governing visuomotor function. These include the oculomotor, trochlear, anterior pretectal, Edinger-Westphal, and the terminal nuclei; all layers of the superior colliculus, interstitial nucleus of the medial longitudinal fasciculus, supraoculomotor periaqueductal gray, nucleus of the optic tract, the inferior olive, and raphe interpositus. Other target nuclei are known to be involved in the regulation of sleep, including the lateral dorsal and pedunculopontine tegmentum. The dorsal raphe also receives projections from the IGL and may contribute to both sleep/arousal and visuomotor function. However, the locus coeruleus and medial vestibular nucleus, which contribute to sleep and eye movement regulation and which send projections to the IGL, do not receive reciprocal projections from it. The potential involvement of the IGL with the sleep/arousal system is further buttressed by existing evidence showing IGL-efferent projections to the ventrolateral preoptic area, dorsomedial, and medial tuberal hypothalamus. In addition, the great majority of all regions receiving IGL projections also receive input from the orexin/hypocretin system, suggesting that this system contributes not only to the regulation of sleep, but to eye movement control as well.

  16. Induced Neural Stem Cells Achieve Long-Term Survival and Functional Integration in the Adult Mouse Brain

    Directory of Open Access Journals (Sweden)

    Kathrin Hemmer

    2014-09-01

    Full Text Available Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]. iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications.

  17. Mesenchymal Stem Cells of Dental Origin-Their Potential for Antiinflammatory and Regenerative Actions in Brain and Gut Damage.

    Science.gov (United States)

    Földes, Anna; Kádár, Kristóf; Kerémi, Beáta; Zsembery, Ákos; Gyires, Klára; S Zádori, Zoltán; Varga, Gábor

    2016-01-01

    Alzheimer's disease, Parkinson's disease, traumatic brain and spinal cord injury and neuroinflammatory multiple sclerosis are diverse disorders of the central nervous system. However, they are all characterized by various levels of inappropriate inflammatory/immune response along with tissue destruction. In the gastrointestinal system, inflammatory bowel disease (IBD) is also a consequence of tissue destruction resulting from an uncontrolled inflammation. Interestingly, there are many similarities in the immunopathomechanisms of these CNS disorders and the various forms of IBD. Since it is very hard or impossible to cure them by conventional manner, novel therapeutic approaches such as the use of mesenchymal stem cells, are needed. Mesenchymal stem cells have already been isolated from various tissues including the dental pulp and periodontal ligament. Such cells possess transdifferentiating capabilities for different tissue specific cells to serve as new building blocks for regeneration. But more importantly, they are also potent immunomodulators inhibiting proinflammatory processes and stimulating anti-inflammatory mechanisms. The present review was prepared to compare the immunopathomechanisms of the above mentioned neurodegenerative, neurotraumatic and neuroinflammatory diseases with IBD. Additionally, we considered the potential use of mesenchymal stem cells, especially those from dental origin to treat such disorders. We conceive that such efforts will yield considerable advance in treatment options for central and peripheral disorders related to inflammatory degeneration.

  18. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain.

    Science.gov (United States)

    Hemmer, Kathrin; Zhang, Mingyue; van Wüllen, Thea; Sakalem, Marna; Tapia, Natalia; Baumuratov, Aidos; Kaltschmidt, Christian; Kaltschmidt, Barbara; Schöler, Hans R; Zhang, Weiqi; Schwamborn, Jens C

    2014-09-09

    Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells

    Directory of Open Access Journals (Sweden)

    Margie eCastillo-Melendez

    2013-10-01

    Full Text Available In the research, clinical and wider community there is great interest in the use of stem cells to reduce the progression, or indeed repair brain injury. Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The most readily identifiable outcome of perinatal brain injury is cerebral palsy, however this is just one consequence in a spectrum of mild to severe neurological deficits. As we review, there are now clinical trials taking place worldwide targeting cerebral palsy with stem cell therapies. It will likely be many years before strong evidence-based results emerge from these trials. With such trials underway, it is both appropriate and timely to address the physiological basis for the efficacy of stem-like cells in preventing damage to, or regenerating, the newborn brain. Appropriate experimental animal models are best placed to deliver this information. Cell availability, the potential for immunological rejection, ethical and logistical considerations, together with the propensity for native cells to form terratomas, make it unlikely that embryonic or fetal stem cells will be practical. Fortunately, these issues do not pertain to the use of human amnion epithelial cells (hAECs, or umbilical cord blood (UCB stem cells that are readily and economically obtained from the placenta and umbilical cord discarded at birth. These cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. We will explore the novel characteristics of hAECs and undifferentiated UCB cells, as well as UCB-derived endothelial progenitor cells and mesenchymal stem cells, and how immunomodulation and anti-inflammatory properties are principal mechanisms of action that are common to these cells, and which in turn may ameliorate the cerebral hypoxia and inflammation that are final pathways in the pathogenesis of perinatal brain

  20. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment

    OpenAIRE

    Donega, Vanessa; van Velthoven, Cindy TJ; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-01-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia–ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategie...

  1. Expiratory muscle control during vomiting - Role of brain stem expiratory neurons

    Science.gov (United States)

    Miller, A. D.; Tan, L. K.

    1987-01-01

    The neural mechanisms controlling the muscles involved during vomiting were examined using decerebrated cats. In one experiment, the activity of the ventral respiratory group (VRG) expiratory (E) neurons was recorded during induced 'fictive vomiting' (i.e., a series of bursts of coactivation of abdominal and phrenic nerves that would be expected to produce expulsion in unparalyzed animals) and vomiting. In a second, abdominal muscle electromyographic and nerve activity were compared before and after sectioning the axons of descending VRG E neurons as they cross the midline between C1 and the obex (the procedure that is known to abolish expiratory modulation of internal intercostal muscle activity). The results of the study indicate that the abdominal muscles are controlled differently during respiration and vomiting.

  2. Bioreactivity: Studies on a Simple Brain Stem Reflex in Behaving Animals

    Science.gov (United States)

    1990-01-04

    attempting to understand complex physiological processes, such as brain neuromodulation , or complex behavioral processes, such as arousal, is finding a...one synapse in brain, and receives dense inputs from two neurochemical systems important in neuromodulation and arousal. Initial pharmacologic studies

  3. Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury.

    Science.gov (United States)

    Llorens-Bobadilla, Enric; Zhao, Sheng; Baser, Avni; Saiz-Castro, Gonzalo; Zwadlo, Klara; Martin-Villalba, Ana

    2015-09-03

    Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Plant stem cell niches.

    Science.gov (United States)

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  5. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain.

    Science.gov (United States)

    Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji

    2016-05-01

    Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.

  6. Severe encephalopathy after high-dose chemotherapy with autologous stem cell support for brain tumours

    NARCIS (Netherlands)

    van den Berkmortel, F.; Gidding, C.; de Kanter, M.; Punt, C. J. A.

    2006-01-01

    Recurrent medulloblastoma carries a poor prognosis. Long-term survival has been obtained with high-dose chemotherapy with autologous stem cell transplantation and secondary irradiation. A 21-year-old woman with recurrent medulloblastoma after previous chemotherapy and radiotherapy is presented. The

  7. Inverted Lymphoglandular Polyp in Descending Colon

    Directory of Open Access Journals (Sweden)

    Shengmei Zhou

    2015-01-01

    Full Text Available A 47-year-old male with a history of left colon cancer, status post left colon resection for 12 years, presented with rectal bleeding. Colonoscopic examination revealed an 8 mm sessile polyp in the proximal descending colon. Microscopic examination showed that the surface of this polyp was covered with a layer of normal colonic mucosa with focal surface erosion. In the submucosal layer, an intimate admixture of multiple cystically dilated glands and prominent lymphoid aggregates with germinal centers was seen. The glands were lined by columnar epithelium. Immunohistochemical staining showed the glands were positive for CK20 and CDX2 and negative for CK7, with a low proliferative index, mostly consistent with reactive colonic glands. The patient remained asymptomatic after one-year follow-up. A review of the literature shows very rare descriptions of similar lesions, but none fits exactly this pattern. We would designate this inverted lymphoglandular polyp and present this case to raise the awareness of recognizing this unusual histological entity.

  8. In vivo Brain Delivery of v-myc Overproduced Human Neural Stem Cells via the Intranasal Pathway: Tumor Characteristics in the Lung of a Nude Mouse

    Directory of Open Access Journals (Sweden)

    Eun Seong Lee

    2015-01-01

    Full Text Available We aimed to monitor the successful brain delivery of stem cells via the intranasal route and to observe the long-term consequence of the immortalized human neural stem cells in the lungs of a nude mouse model. Stably immortalized HB1.F3 human neural stem cells with firefly luciferase gene (F3-effluc were intranasally delivered to BALB/c nude mice. Bioluminescence images were serially acquired until 41 days in vivo and at 4 hours and 41 days ex vivo after intranasal delivery. Lungs were evaluated by histopathology. After intranasal delivery of F3-effluc cells, the intense in vivo signals were detected in the nasal area, migrated toward the brain areas at 4 hours (4 of 13, 30.8%, and gradually decreased for 2 days. The brain signals were confirmed by ex vivo imaging (2 of 4, 50%. In the mice with initial lung signals (4 of 9, 44.4%, the lung signals disappeared for 5 days but reappeared 2 weeks later. The intense lung signals were confirmed to originate from the tumors in the lungs formed by F3-effluc cells by ex vivo imaging and histopathology. We propose that intranasal delivery of immortalized stem cells should be monitored for their successful delivery to the brain and their tumorigenicity longitudinally.

  9. Pivotal Role of Brain-Derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats.

    Science.gov (United States)

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon

    2017-01-24

    Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.

  10. Mesenchymal stem cells induce T-cell tolerance and protect the preterm brain after global hypoxia-ischemia.

    Directory of Open Access Journals (Sweden)

    Reint K Jellema

    Full Text Available Hypoxic-ischemic encephalopathy (HIE in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 10(6 MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI, in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE.

  11. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Champagnat, J; Denavit-Saubié, M

    1996-01-01

    neurons located in the rostral ventrolateral part of the slice. 2. Bath-applied TRH (1 microM) decreased the time between inspiratory discharges recorded on the XII nerve from 12.3 +/- 3.3 s to 4.9 +/- 1.1 s (n = 28; means +/- SD), i.e., caused an approximate threefold increase in the respiratory...... frequency. The coefficient of variation of the time between the inspiratory discharges decreased by one-half. Thus the respiratory output became more stable in response to TRH. The duration of the inspiratory discharges increased from 474 +/- 108 ms to 679 +/- 114 ms, and the amplitude decreased by 24...... in a thick brain stem slice preparation from the newborn mouse. The action of TRH on the respiratory output from the slice was investigated by recordings from the XII nerve. Cellular responses to TRH were investigated using whole cell recordings from hypoglossal motoneurons and three types of inspiratory...

  12. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  13. Development and Characterization of a Brain Endothelial Cell Phenotype using Human Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Holst, Bjørn

    for experiments the following day. The model was monitored by measuring the trans-endothelial electrical resistance (TEER). RA had an inductive effect on the model, shown by an elevation in barrier tightness which correlated with the presence of tight junction proteins, shown by confocal microscopy images which...... be used to investigate drug transport in vitro, and screen candidates for permeation properties. One recent approach is to develop in vitro models of the BBB using human induced pluripotent stem cells (hIPSCs) as described by Stebbins et al. (2015).The aim of the present study was to investigate whether...... the published protocols were generically applicable and thus to develop and characterize in vitro models of the BBB using hIPSCs from different sources. Two stem cell lines, Bioni010-C and WTSli024-A, were seeded and maintained on Matrigel in mTesR1 media. Cells were then seeded as single cells at different...

  14. Quiescent Oct4+ Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein+ NSCs in the Adult Mouse Brain.

    Science.gov (United States)

    Reeve, Rachel L; Yammine, Samantha Z; Morshead, Cindi M; van der Kooy, Derek

    2017-09-01

    Adult primitive neural stem cells (pNSCs) are a rare population of glial fibrillary acidic protein (GFAP) - Oct4 + cells in the mouse forebrain subependymal zone bordering the lateral ventricles that give rise to clonal neurospheres in leukemia inhibitory factor in vitro. pNSC neurospheres can be passaged to self-renew or give rise to GFAP + NSCs that form neurospheres in epidermal growth factor and fibroblast growth factor 2, which we collectively refer to as definitive NSCs (dNSCs). Label retention experiments using doxycycline-inducible histone-2B (H2B)-green fluorescent protein (GFP) mice and several chase periods of up to 1 year quantified the adult pNSC cell cycle time as 3-5 months. We hypothesized that while pNSCs are not very proliferative at baseline, they may exist as a reserve pool of NSCs in case of injury. To test this function of pNSCs, we obtained conditional Oct4 knockout mice, Oct4 fl/fl ;Sox1 Cre (Oct4 CKO ), which do not yield adult pNSC-derived neurospheres. When we ablated the progeny of pNSCs, namely all GFAP + dNSCs, in these Oct4 CKO mice, we found that dNSCs did not recover as they do in wild-type mice, suggesting that pNSCs are necessary for dNSC repopulation. Returning to the H2B-GFP mice, we observed that the cytosine β-d-arabinofuranoside ablation of proliferating cells including dNSCs-induced quiescent pNSCs to proliferate and significantly dilute their H2B-GFP label. In conclusion, we demonstrate that pNSCs are the most quiescent stem cells in the adult brain reported to date and that their lineage position upstream of GFAP + dNSCs allows them to repopulate a depleted neural lineage. Stem Cells 2017;35:2071-2082. © 2017 AlphaMed Press.

  15. MR tracking of stem cells labeled with superparamagnetic nanoparticles in ischemic brain

    Czech Academy of Sciences Publication Activity Database

    Jendelová, Pavla; Růžičková, Kateřina; Urdzíková, Lucia; Kroupová, Jana; Herynek, V.; Dvořák, Petr; Hájek, M.; Syková, Eva

    č. 2 (2003), s. 35 ISSN 0894-1491. [European Meeting on Glia l Cell Function in Health and Disease /6./. Berlín, 03.09.2003-06.09.2003] R&D Projects: GA MŠk LN00A065; GA ČR GA304/03/1189 Institutional research plan: CEZ:AV0Z5039906; CEZ:MSM 111300004 Keywords : Stem cells * Nanoparticles Subject RIV: FH - Neurology Impact factor: 4.677, year: 2003

  16. Geminin Participates in Differentiation Decisions of Adult Neural Stem Cells Transplanted in the Hemiparkinsonian Mouse Brain.

    Science.gov (United States)

    Taouki, Ioanna; Tasiudi, Eve; Lalioti, Maria-Eleni; Kyrousi, Christina; Skavatsou, Eleni; Kaplani, Konstantina; Lygerou, Zoi; Kouvelas, Elias D; Mitsacos, Adamantia; Giompres, Panagiotis; Taraviras, Stavros

    2017-08-15

    Neural stem cells have been considered as a source of stem cells that can be used for cell replacement therapies in neurodegenerative diseases, as they can be isolated and expanded in vitro and can be used for autologous grafting. However, due to low percentages of survival and varying patterns of differentiation, strategies that will enhance the efficacy of transplantation are under scrutiny. In this article, we have examined whether alterations in Geminin's expression, a protein that coordinates the balance between self-renewal and differentiation, can improve the properties of stem cells transplanted in 6-OHDA hemiparkinsonian mouse model. Our results indicate that, in the absence of Geminin, grafted cells differentiating into dopaminergic neurons were decreased, while an increased number of oligodendrocytes were detected. The number of proliferating multipotent cells was not modified by the absence of Geminin. These findings encourage research related to the impact of Geminin on transplantations for neurodegenerative disorders, as an important molecule in influencing differentiation decisions of the cells composing the graft.

  17. A combinatorial approach for analyzing the number of descendants ...

    African Journals Online (AJOL)

    This work is devoted to a study of the number of descendants of node j in random increasing trees, previously treated in [5, 8, 10, 15], and also to a study of the number of descendants of node j in pairs of random trees generated by a certain growth process generalizing the corresponding analysis of various classes of ...

  18. IL-6 deficiency leads to reduced metallothionein-I+II expression and increased oxidative stress in the brain stem after 6-aminonicotinamide treatment

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2000-01-01

    -AN-injected IL-6KO mice reactive astrocytosis and recruitment of macrophages and T-lymphocytes were clearly reduced, as were BM leukopoiesis and spleen immune reaction. Expression of MT-I+II was significantly reduced while MT-III was increased. Oxidative stress, as determined by measuring nitrated...... in brain stem gray matter areas and BM toxicity. In both normal and genetically IL-6-deficient mice (IL-6 knockout (IL-6KO) mice), the extent of astroglial degeneration/cell death in the brain stem was similar as determined from disappearance of GFAP immunoreactivity. In 6-AN-injected normal mice reactive...... tyrosine and malondialdehyde, was increased by 6-AN to a greater extent in IL-6KO mice. The blood-brain barrier to albumin was only disrupted in 6-AN-injected normal mice, which likely is due to the substantial migration of blood-derived inflammatory cells into the CNS. The present results demonstrate...

  19. Controlling micro- and nano-environment of tumor and stem cells for novel research and therapy of brain cancer

    Science.gov (United States)

    Smith, Christopher Lloyd

    The use of modern technologies in cancer research has engendered a great deal of excitement. Many of these advanced approaches involve in-depth mathematical analyses of the inner working of cells, via genomic and proteomic analyses. However these techniques may not be ideal for the study of complex cell phenotypes and behaviors. This dissertation explores cancer and potential therapies through phenotypic analysis of cell behaviors, an alternative approach. We employ this experimental framework to study brain cancer (glioma), a particularly formidable example of this diverse ailment. Through the application of micro- and nanotechnology, we carefully control the surrounding environments of cells to understand their responses to various cues and to manipulate their behaviors. Subsequently we obtain clinically relevant information that allows better understanding of glioma, and enhancement of potential therapies. We first aim to address brain tumor dispersal, through analysis of cell migration. Utilizing nanometer-scale topographic models of the extracellular matrix, we study the migratory response of glioma cells to various stimuli in vitro. Second, we implement knowledge gained from these investigations to define characteristics of tumor progression in patients, and to develop treatments inhibiting cell migration. Next we use microfluidic and nanotopographic models to study the behaviors of stem cells in vitro. Here we attempt to improve their abilities to deliver therapeutic proteins to cancer, an innovative treatment approach. We analyze the multi-step process by which adipose-derived stem cells naturally home to tumor sites, and identify numerous environmental perturbations to enhance this behavior. Finally, we attempt to demonstrate that these cell culture-based manipulations can enhance the localization of adipose stem cells to glioma in vivo using animal models. Throughout this work we utilize environmental cues to analyze and induce particular behaviors in

  20. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  1. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain

    International Nuclear Information System (INIS)

    Vittori, Milos; Breznik, Barbara; Gredar, Tajda; Hrovat, Katja; Bizjak Mali, Lilijana; Lah, Tamara T

    2016-01-01

    An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors

  2. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Sung-Rae Cho

    2016-09-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min. At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS-control (CON, PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes.

  3. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Heile, Anna M B; Wallrapp, Christine; Klinge, Petra M

    2009-01-01

    -protective substance glucagon-like peptide-1 (GLP-1). METHODS: Thirty two Sprague-Dawley rats were randomized to five groups: controls (no CCI), CCI-only, CCI+eMSC, CCI+GLP-1 eMSC, and CCI+empty capsules. On day 14, cisternal cerebro-spinal fluid (CSF) was sampled for measurement of GLP-1 concentration. Brains were...

  4. Repair of neonatal brain injury : bringing stem cell-based therapy into clinical practice

    NARCIS (Netherlands)

    Wagenaar, Nienke; Nijboer, Cora H.; van Bel, Frank

    2017-01-01

    Hypoxic-ischaemic brain injury is one of most important causes of neonatal mortality and long-term neurological morbidity in infants born at term. At present, only hypothermia in infants with perinatal hypoxic-ischaemic encephalopathy has shown benefit as a neuroprotective strategy. Otherwise,

  5. Cortical and brain stem changes in neural activity during static handgrip and postexercise ischemia in humans

    DEFF Research Database (Denmark)

    Sander, Mikael; Macefield, Vaughan G; Henderson, Luke A

    2010-01-01

    , and to differentiate between central command and reflex inputs, we used blood oxygen level-dependent (BOLD) functional MRI (fMRI) of the whole brain (3 T). Subjects performed submaximal static handgrip exercise for 2 min followed by 6 min of PEI; MSNA was recorded on a separate day. During the contraction phase...

  6. Descending pain modulation in irritable bowel syndrome (IBS): a systematic review and meta-analysis.

    Science.gov (United States)

    Chakiath, Rosemary J; Siddall, Philip J; Kellow, John E; Hush, Julia M; Jones, Mike P; Marcuzzi, Anna; Wrigley, Paul J

    2015-12-10

    Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. While abdominal pain is a dominant symptom of IBS, many sufferers also report widespread hypersensitivity and present with other chronic pain conditions. The presence of widespread hypersensitivity and extra-intestinal pain conditions suggests central nervous dysfunction. While central nervous system dysfunction may involve the spinal cord (central sensitisation) and brain, this review will focus on one brain mechanism, descending pain modulation. We will conduct a comprehensive search for the articles indexed in the databases Ovid MEDLINE, Ovid Embase, Ovid PsycINFO and Cochrane Central Register of Controlled Trial (CENTRAL) from their inception to August 2015, that report on any aspect of descending pain modulation in irritable bowel syndrome. Two independent reviewers will screen studies for eligibility, assess risk of bias and extract relevant data. Results will be tabulated and, if possible, a meta-analysis will be carried out. The systematic review outlined in this protocol aims to summarise current knowledge regarding descending pain modulation in IBS. PROSPERO CRD42015024284.

  7. Hypoxia-Mediated Epigenetic Regulation of Stemness in Brain Tumor Cells.

    Science.gov (United States)

    Prasad, Pankaj; Mittal, Shivani Arora; Chongtham, Jonita; Mohanty, Sujata; Srivastava, Tapasya

    2017-06-01

    Activation of pluripotency regulatory circuit is an important event in solid tumor progression and the hypoxic microenvironment is known to enhance the stemness feature of some cells. The distinct population of cancer stem cells (CSCs)/tumor initiating cells exist in a niche and augment invasion, metastasis, and drug resistance. Previously, studies have reported global hypomethylation and site-specific aberrant methylation in gliomas along with other epigenetic modifications as important contributors to genomic instability during glioma progression. Here, we have demonstrated the role of hypoxia-mediated epigenetic modifications in regulating expression of core pluripotency factors, OCT4 and NANOG, in glioma cells. We observe hypoxia-mediated induction of demethylases, ten-eleven-translocation (TET) 1 and 3, but not TET2 in our cell-line model. Immunoprecipitation studies reveal active demethylation and direct binding of TET1 and 3 at the Oct4 and Nanog regulatory regions. Tet1 and 3 silencing assays further confirmed induction of the pluripotency pathway involving Oct4, Nanog, and Stat3, by these paralogues, although with varying degrees. Knockdown of Tet1 and Tet3 inhibited the formation of neurospheres in hypoxic conditions. We observed independent roles of TET1 and TET3 in differentially regulating pluripotency and differentiation associated genes in hypoxia. Overall, this study demonstrates an active demethylation in hypoxia by TET1 and 3 as a mechanism of Oct4 and Nanog overexpression thus contributing to the formation of CSCs in gliomas. Stem Cells 2017;35:1468-1478. © 2017 AlphaMed Press.

  8. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells.

    Science.gov (United States)

    Bernal, Giovanna M; Peterson, Daniel A

    2011-06-01

    Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  9. Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Niu Chao

    2010-08-01

    Full Text Available Abstract Objective To investigate the effect of all-trans retinoic acid(ATRA on the proliferation and differentiation of brain tumor stem cells(BTSCs in vitro. Methods Limiting dilution and clonogenic assay were used to isolate and screen BTSCs from the fresh specimen of human brain glioblastoma. The obtained BTSCs, which were cultured in serum-free medium, were classified into four groups in accordance with the composition of the different treatments. The proliferation of the BTSCs was evaluated by MTT assay. The BTSCs were induced to differentiate in serum-containing medium, and classified into the ATRA group and control group. On the 10th day of induction, the expressions of CD133 and glial fibrillary acidic protein (GFAP in the differentiated BTSCs were detected by immunofluorescence. The differentiated BTSCs were cultured in serum-free medium, the percentage and the time required for formation of brain tumor spheres (BTS were observed. Results BTSCs obtained by limiting dilution were all identified as CD133-positive by immunofluorescence. In serum-free medium, the proliferation of BTSCs in the ATRA group was observed significantly faster than that in the control group, but slower than that in the growth factor group and ATRA/growth factor group, and the size of the BTS in the ATRA group was smaller than that in the latter two groups(P P P P Conclusion ATRA can promote the proliferation and induce the differentiation of BTSCs, but the differentiation is incomplete, terminal differentiation cannot be achieved and BTSs can be formed again.

  10. The importance of the descending monoamine system for the pain experience and its treatment

    Science.gov (United States)

    Dickenson, Anthony H

    2009-01-01

    Brainstem and midbrain areas engage descending facilitatory and inhibitory neurones to potentiate or suppress the passage of sensory inputs from spinal loci to the brain. The balance between descending controls, both excitatory and inhibitory, can be altered in various pain states and can critically determine the efficacy of certain analgesic drugs. There is good evidence for a prominent α2 adrenoceptor-mediated inhibitory system and for 5-HT3 receptor-mediated excitatory control of spinal cord activity that originates in supraspinal areas. Given the multiple roles of these transmitters in pain and functions such as sleep, depression, and anxiety, the link between spinal and supraspinal processing of noxious inputs (via the monoamine transmitters) could be pivotal for linking the sensory and affective components of pain and their common co-morbidities, and also may potentially explain differences in pain scores and treatment outcomes in the patient population. PMID:20948695

  11. Effects of intravenous administration of bone marrow stromal stem cells on cognitive impairment of the whole-brain irradiated rat models

    International Nuclear Information System (INIS)

    Ding Weijun; Wang Jianhua; Zhu Min; Chen Baoguo; Wang Yang

    2007-01-01

    Objective: To explore the effect of intravenous infusion of bone marrow stromal stem cells(MSCs) on cognitive function of rats after whole brain irradiation. Methods: MSCs were isolated and cultured from adult rats. After Sprague-Dawly female rats were anaesthetized with chloral hydrate, their whole cerebrum was irradiated with a single dose of 20 Gy by 6 MV X-ray. Seven days after irradiation, 4 x 106 Hoechst33342-1abelled MSCs were intravenously injected into the tail vein of these rats. Four and 8 weeks after transplantation, the learning and memorizing ability was measured with the Y maze test. Immunohistochemical method was used to identify MSCs or ceils derived from MSCs in the brain. Results: The learning and memorizing ability of irradiation groups were significantly different from that of normal control group (P < 0.01). Significant improvement of cognitive impairment was observed in rats treated with MSCs at 4 and 8 weeks after transplantation as compared with the controll groups (P<0.05). This showed that the MSCs survived and were localized to the brain tissue. The number of Hoechst33342 immunohistofluorescence positive cells and double-immunostaining cells significantly decreased in 8 weeks group as compared with the 4 weeks group. Conclusion: Marrow stromal stem cells delivered to the irradiation brain tissue through intravenous route improve the cognitive impairment after whole brain irradiation. These cells may survive and differentiate in the brain tissue of irradiated rats. (authors)

  12. Diagnostic challenges in primary brain stem glioblastoma multiform; a case report

    Directory of Open Access Journals (Sweden)

    Muhammad Taimur Malik, MD

    2017-12-01

    Full Text Available Brainstem gliomas are rare form of primary brain tumors in adult and represent <2% of gliomas. Glioblastomas (GBM are much less common in pediatric patients; adult GBM vary in presentation and response to therapy, and generally have a very poor prognosis. GBM is less common in the brainstem, comprising <2% gliomas and there is therefore limited data available to provide a standard of care. Here we present a case report of a patient who presented with aggressive primary pontine GBM.

  13. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury.

    Science.gov (United States)

    Donega, Vanessa; Nijboer, Cora H; van Tilborg, Geralda; Dijkhuizen, Rick M; Kavelaars, Annemieke; Heijnen, Cobi J

    2014-11-01

    Previous work from our group has shown that intranasal MSC-treatment decreases lesion volume and improves motor and cognitive behavior after hypoxic-ischemic (HI) brain damage in neonatal mice. Our aim was to determine the kinetics of MSC migration after intranasal administration, and the early effects of MSCs on neurogenic processes and gliosis at the lesion site. HI brain injury was induced in 9-day-old mice and MSCs were administered intranasally at 10days post-HI. The kinetics of MSC migration were investigated by immunofluorescence and MRI analysis. BDNF and NGF gene expression was determined by qPCR analysis following MSC co-culture with HI brain extract. Nestin, Doublecortin, NeuN, GFAP, Iba-1 and M1/M2 phenotypic expression was assessed over time. MRI and immunohistochemistry analyses showed that MSCs reach the lesion site already within 2h after intranasal administration. At 12h after administration the number of MSCs at the lesion site peaks and decreases significantly at 72h. The number of DCX(+) cells increased 1 to 3days after MSC administration in the SVZ. At the lesion, GFAP(+)/nestin(+) and DCX(+) expression increased 3 to 5days after MSC-treatment. The number of NeuN(+) cells increased within 5days, leading to a dramatic regeneration of the somatosensory cortex and hippocampus at 18days after intranasal MSC administration. Interestingly, MSCs expressed significantly more BDNF gene when exposed to HI brain extract in vitro. Furthermore, MSC-treatment resulted in the resolution of the glial scar surrounding the lesion, represented by a decrease in reactive astrocytes and microglia and polarization of microglia towards the M2 phenotype. In view of the current lack of therapeutic strategies, we propose that intranasal MSC administration is a powerful therapeutic option through its functional repair of the lesion represented by regeneration of the cortical and hippocampal structure and decrease of gliosis. Copyright © 2014. Published by Elsevier Inc.

  14. Combination of systemic chemotherapy with local stem cell delivered S-TRAIL in resected brain tumors.

    Science.gov (United States)

    Redjal, Navid; Zhu, Yanni; Shah, Khalid

    2015-01-01

    Despite advances in standard therapies, the survival of glioblastoma multiforme (GBM) patients has not improved. Limitations to successful translation of new therapies include poor delivery of systemic therapies and use of simplified preclinical models which fail to reflect the clinical complexity of GBMs. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically in tumor cells and we have tested its efficacy by on-site delivery via engineered stem cells (SC) in mouse models of GBM that mimic the clinical scenario of tumor aggressiveness and resection. However, about half of tumor lines are resistant to TRAIL and overcoming TRAIL-resistance in GBM by combining therapeutic agents that are currently in clinical trials with SC-TRAIL and understanding the molecular dynamics of these combination therapies are critical to the broad use of TRAIL as a therapeutic agent in clinics. In this study, we screened clinically relevant chemotherapeutic agents for their ability to sensitize resistant GBM cell lines to TRAIL induced apoptosis. We show that low dose cisplatin increases surface receptor expression of death receptor 4/5 post G2 cycle arrest and sensitizes GBM cells to TRAIL induced apoptosis. In vivo, using an intracranial resection model of resistant primary human-derived GBM and real-time optical imaging, we show that a low dose of cisplatin in combination with synthetic extracellular matrix encapsulated SC-TRAIL significantly decreases tumor regrowth and increases survival in mice bearing GBM. This study has the potential to help expedite effective translation of local stem cell-based delivery of TRAIL into the clinical setting to target a broad spectrum of GBMs. © 2014 AlphaMed Press.

  15. Role of thin descending limb urea transport in renal urea handling and the urine concentrating mechanism

    Science.gov (United States)

    Lei, Tianluo; Zhou, Lei; Layton, Anita T.; Zhou, Hong; Zhao, Xuejian; Bankir, Lise

    2011-01-01

    Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts. PMID:21849488

  16. Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain.

    Science.gov (United States)

    Ara, Jahan; De Montpellier, Sybille

    2013-09-01

    Perinatal hypoxia-ischemia (HI) results in brain injury, whereas mild hypoxic episodes result in preconditioning, which can significantly reduce the vulnerability of the brain to subsequent severe hypoxia-ischemia. Hypoxic-preconditioning (PC) has been shown to enhance cell survival and differentiation of progenitor cells in the central nervous system (CNS). The purpose of this study was to determine whether pretreatment with PC prior to HI stimulates subventricular zone (SVZ) proliferation and neurogenesis in newborn piglets. One-day-old piglets were subjected to PC (8% O2/92% N2) for 3h and 24h later were exposed to HI produced by combination of hypoxia (5% FiO2) for a pre-defined period of 30min and ischemia induced by a period of 10min of hypotension. Here we demonstrate that SVZ derived neural stem/progenitor cells (NSPs) from PC, HI and PC+HI piglets proliferated as neurospheres, expressed neural progenitor and neurodevelopmental markers, and that greater proportion of the spheres generated are multipotential. Neurosphere assay revealed that preconditioning pretreatment increased the number of NSP-derived neurospheres in SVZ following HI compared to normoxic and HI controls. NSPs from preconditioned SVZ generated twice as many neurons and astrocytes in vitro. Injections with 5-Bromo-2-deoxyuridine (BrdU) after PC revealed a robust proliferative response within the SVZ that continued for one week. PC also increased neurogenesis in vivo, doublecortin positive cells with migratory profiles were observed streaming from the SVZ to striatum and neocortex. These findings show that the induction of proliferation and neurogenesis by PC might be a positive adaptation for an efficient repair and plasticity in the event of a hypoxic-ischemic insult. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. 14C-dopamine microinjected into the brain-stem of the rat: dispersion kinetics, site content and functional dose

    International Nuclear Information System (INIS)

    Myers, R.D.; Hoch, D.B.

    1978-01-01

    A morphological analysis was undertaken of both the dispersion characteristics and tissue content of dopamine (DA) microinjected acutely into the brain-stem of the anesthetized rat. 14C-DA, with a specific activity of 56-62 mCi/mMol, was infused unilaterally into the pars compacta of the substantia nigra in one of four test volumes: 0.5, 1.0, 4.0 or 8.0 microliters. The concentration of the 14C-DA solution was 1.0 microCi/microliter, equivalent to 3.01 micrograms/microliters, which was delivered at an injection rate of 1.0 microliter per 45 sec. At an interval of either one min or 15 min following the microinjection, the rat's brain was removed rapidly from its calvarium, flash frozen and then cut in the coronal plane on a freezing microtome in 500 micron slabs. After each of the respective serial slabs was mounted on glass, the Eik Nes-Brizzee trochar technique for the discrete removal of tissue samples was used to obtain 0.5 mm dia. cylindrical plugs of meso-diencephalic tissue at distances from the site of injection ranging from 0.5 to 2.5 mm, center to center. Each sample plug was subsequently solubilized and 14C-DA activity quantitated by liquid scintillation spectrometry. The results show that regardless of volume, the spatial patterning of the microinjected solution assumes a tear-drop or pear shape, not a sphere. Further, as the volume of the injection is increased from 0.5 to 8.0 microliters, the magnitude of the dispersion of 14C-DA is enhanced throughout the surrounding parenchyma, but not in a linear fashion

  18. Successful outcome of descending necrotizing mediastinitis due to neck trauma

    International Nuclear Information System (INIS)

    Kurowski, K.; Matuszek, I.; Nunez, C. F. M.

    2011-01-01

    Descending necrotizing mediastinitis (DNM) is an uncommon form of mediastinitis that can rapidly progress to septicemia. The optimal surgical approach still remains controversial. In this paper we would like to present a case of descending necrotizing mediastinitis that was treated successfully by means of thoracic drainage through trans-thoracic approach. In our case DNM occurred as a complication of oropharyngeal abscesses and a complication of cervical spine trauma. (authors)

  19. Exophytic pilocytic astrocytoma of the brain stem in an adult with encasement of the caudal cranial nerve complex (IX-XII): presurgical anatomical neuroimaging using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yousry, Indra; Yousry, Tarek A. [Department of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich (Germany); Muacevic, Alexander; Olteanu-Nerbe, Vlad [Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians University, Munich (Germany); Naidich, Thomas P. [Department of Radiology, Section of Neuroradiology, Mount Sinai Hospital, New York (United States)

    2004-07-01

    We describe a rare case of adult pilocytic astrocytoma in which exophytic growth from the brain stem presented as a right cerebellopontine angle mass. An initial MRI examination using T2- and T1-weighted images without and with contrast suggested the diagnosis of schwannoma. Subsequent use of 3D CISS (three-dimensional constructive interference in steady state) and T1-weighted contrast-enhanced 3D MP-RAGE (three-dimensional magnetization prepared rapid acquisition gradient echo) sequences led to the diagnosis of an exophytic brain stem tumor, documented the precise relationships of the tumor to cranial nerve VIII, revealed encasement of cranial nerves IX-XII (later confirmed intraoperatively), and provided the proper basis for planning surgical management. (orig.)

  20. A functional study of EGFR and Notch signaling in brain cancer stem-like cells from glioblastoma multiforme (Ph.d.)

    DEFF Research Database (Denmark)

    Kristoffersen, Karina

    2013-01-01

    Glioblastoma Multiforme (GBM) is the most common and aggressive brain tumor in adults with a median survival for newly diagnosed GBM patients at less than 1.5 year. Despite intense treatment efforts the vast majority of patients will experience relapse and much research today is therefore searching...... for new molecular and cellular targets that can improve the prognosis for GBM patients. One such target is the brain cancer stem-like cells (bCSC) that are believed to be responsible for tumor initiation, progression, treatment resistance and ultimately relapse. bCSC are identified based...... on their resemblance to normal neural stem cells (NSC) and their tumorigenic potential. Like for NSC, the epidermal growth factor receptor (EGFR) and Notch receptor signaling pathways are believed to be important for the maintenance of bCSC. These pathways as such present promising targets in a future anti-bCSC GBM...

  1. Exophytic pilocytic astrocytoma of the brain stem in an adult with encasement of the caudal cranial nerve complex (IX-XII): presurgical anatomical neuroimaging using MRI

    International Nuclear Information System (INIS)

    Yousry, Indra; Yousry, Tarek A.; Muacevic, Alexander; Olteanu-Nerbe, Vlad; Naidich, Thomas P.

    2004-01-01

    We describe a rare case of adult pilocytic astrocytoma in which exophytic growth from the brain stem presented as a right cerebellopontine angle mass. An initial MRI examination using T2- and T1-weighted images without and with contrast suggested the diagnosis of schwannoma. Subsequent use of 3D CISS (three-dimensional constructive interference in steady state) and T1-weighted contrast-enhanced 3D MP-RAGE (three-dimensional magnetization prepared rapid acquisition gradient echo) sequences led to the diagnosis of an exophytic brain stem tumor, documented the precise relationships of the tumor to cranial nerve VIII, revealed encasement of cranial nerves IX-XII (later confirmed intraoperatively), and provided the proper basis for planning surgical management. (orig.)

  2. Brain Stem Infarction Due to Basilar Artery Dissection in a Patient with Moyamoya Disease Four Years after Successful Bilateral Revascularization Surgeries.

    Science.gov (United States)

    Abe, Takatsugu; Fujimura, Miki; Mugikura, Shunji; Endo, Hidenori; Tominaga, Teiji

    2016-06-01

    Moyamoya disease (MMD) is a rare cerebrovascular disease with an unknown etiology and is characterized by intrinsic fragility in the intracranial vascular walls such as the affected internal elastic lamina and thinning medial layer. The association of MMD with intracranial arterial dissection is extremely rare, whereas that with basilar artery dissection (BAD) has not been reported previously. A 46-year-old woman developed brain stem infarction due to BAD 4 years after successful bilateral superficial temporal artery-middle cerebral artery anastomosis with indirect pial synangiosis for ischemic-onset MMD. She presented with sudden occipitalgia and subsequently developed transient dysarthria and mild hemiparesis. Although a transient ischemic attack was initially suspected, her condition deteriorated in a manner that was consistent with left hemiplegia with severe dysarthria. Magnetic resonance (MR) imaging revealed brain stem infarction, and MR angiography delineated a double-lumen sign in the basilar artery, indicating BAD. She was treated conservatively and brain stem infarction did not expand. One year after the onset of brain stem infarction, her activity of daily living is still dependent (modified Rankin Scale of 4), and there were no morphological changes associated with BAD or recurrent cerebrovascular events during the follow-up period. The association of MMD with BAD is extremely rare. While considering the common underlying pathology such as an affected internal elastic lamina and fragile medial layer, the occurrence of BAD in a patient with MMD in a stable hemodynamic state is apparently unique. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain.

    Science.gov (United States)

    Janssens, Derek H; Lee, Cheng-Yu

    2014-04-01

    During malignant transformation the cells of origin give rise to cancer stem cells which possess the capacity to undergo limitless rounds of self-renewing division, regenerating themselves while producing more tumor cells. Within normal tissues, a limitless self-renewal capacity is unique to the stem cells, which divide asymmetrically to produce more restricted progenitors. Accumulating evidence suggests that misregulation of the self-renewal machinery in stem cell progeny can lead to tumorigenesis, but how it influences the properties of the resulting tumors remains unclear. Studies of the type II neural stem cell (neuroblast) lineages in the Drosophila larval brain have identified a regulatory cascade that promotes commitment to a progenitor cell identity by restricting their response to the self-renewal machinery. Brain tumor (Brat) and Numb initiate this cascade by asymmetrically extinguishing the activity of the self-renewal factors. Subsequently, Earmuff (Erm) and the SWI/SNF complex stably restrict the competence of the progenitor cell to respond to reactivation of self-renewal mechanisms. Together, this cascade programs the progenitor cell to undergo limited rounds of division, generating exclusive differentiated progeny. Here we review how defects in this cascade lead to tumor initiation and how inhibiting the self-renewal mechanisms may be an effective strategy to block CSC expansion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Ochratoxin A at nanomolar concentration perturbs the homeostasis of neural stem cells in highly differentiated but not in immature three-dimensional brain cell cultures.

    Science.gov (United States)

    Zurich, Marie-Gabrielle; Honegger, Paul

    2011-08-28

    Ochratoxin A (OTA), a fungal contaminant of basic food commodities, is known to be highly cytotoxic, but the pathways underlying adverse effects at subcytotoxic concentrations remain to be elucidated. Recent reports indicate that OTA affects cell cycle regulation. Therefore, 3D brain cell cultures were used to study OTA effects on mitotically active neural stem/progenitor cells, comparing highly differentiated cultures with their immature counterparts. Changes in the rate of DNA synthesis were related to early changes in the mRNA expression of neural stem/progenitor cell markers. OTA at 10nM, a concentration below the cytotoxic level, was ineffective in immature cultures, whereas in mature cultures it significantly decreased the rate of DNA synthesis together with the mRNA expression of key transcriptional regulators such as Sox2, Mash1, Hes5, and Gli1; the cell cycle activator cyclin D2; the phenotypic markers nestin, doublecortin, and PDGFRα. These effects were largely prevented by Sonic hedgehog (Shh) peptide (500ngml(-1)) administration, indicating that OTA impaired the Shh pathway and the Sox2 regulatory transcription factor critical for stem cell self-renewal. Similar adverse effects of OTA in vivo might perturb the regulation of stem cell proliferation in the adult brain and in other organs exhibiting homeostatic and/or regenerative cell proliferation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem.

    Science.gov (United States)

    Goldwyn, Joshua H; Rinzel, John

    2016-04-01

    The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function. Copyright © 2016 the American Physiological Society.

  6. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  7. Effect of controlled release of brain-derived neurotrophic factor and neurotrophin-3 from collagen gel on neural stem cells.

    Science.gov (United States)

    Huang, Fei; Wu, Yunfeng; Wang, Hao; Chang, Jun; Ma, Guangwen; Yin, Zongsheng

    2016-01-20

    This study aimed to examine the effect of controlled release of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from collagen gel on rat neural stem cells (NSCs). With three groups of collagen gel, BDNF/collagen gel, and NT-3/collagen gel as controls, BDNF and NT-3 were tested in the BDNF-NT-3/collagen gel group at different time points. The enzyme-linked immunosorbent assay results showed that BDNF and NT-3 were steadily released from collagen gels for 10 days. The cell viability test and the bromodeoxyuridine incorporation assay showed that BDNF-NT-3/collagen gel supported the survival and proliferation of NSCs. The results also showed that the length of processes was markedly longer and differentiation percentage from NSCs into neurons was much higher in the BDNF-NT-3/collagen gel group than those in the collagen gel, BDNF/collagen gel, and NT-3/collagen gel groups. These findings suggest that BDNF-NT-3/collagen gel could significantly improve the ability of NSCs proliferation and differentiation.

  8. Transplanted Adult Neural Stem Cells Express Sonic Hedgehog In Vivo and Suppress White Matter Neuroinflammation after Experimental Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Genevieve M. Sullivan

    2017-01-01

    Full Text Available Neural stem cells (NSCs delivered intraventricularly may be therapeutic for diffuse white matter pathology after traumatic brain injury (TBI. To test this concept, NSCs isolated from adult mouse subventricular zone (SVZ were transplanted into the lateral ventricle of adult mice at two weeks post-TBI followed by analysis at four weeks post-TBI. We examined sonic hedgehog (Shh signaling as a candidate mechanism by which transplanted NSCs may regulate neuroregeneration and/or neuroinflammation responses of endogenous cells. Mouse fluorescent reporter lines were generated to enable in vivo genetic labeling of cells actively transcribing Shh or Gli1 after transplantation and/or TBI. Gli1 transcription is an effective readout for canonical Shh signaling. In ShhCreERT2;R26tdTomato mice, Shh was primarily expressed in neurons and was not upregulated in reactive astrocytes or microglia after TBI. Corroborating results in Gli1CreERT2;R26tdTomato mice demonstrated that Shh signaling was not upregulated in the corpus callosum, even after TBI or NSC transplantation. Transplanted NSCs expressed Shh in vivo but did not increase Gli1 labeling of host SVZ cells. Importantly, NSC transplantation significantly reduced reactive astrogliosis and microglial/macrophage activation in the corpus callosum after TBI. Therefore, intraventricular NSC transplantation after TBI significantly attenuated neuroinflammation, but did not activate host Shh signaling via Gli1 transcription.

  9. Activation of PAF-synthesizing enzymes in rat brain stem slices after LTP induction in the medial vestibular nuclei.

    Science.gov (United States)

    Francescangeli, Ermelinda; Grassi, Silvarosa; Pettorossi, Vito E; Goracci, Gianfrancesco

    2002-11-01

    LysoPAF acetyltransferase (lysoPAF-AT) and PAF-synthesizing phosphocholinetransferase (PAF-PCT) are the two enzymes which catalyze the final reactions for the synthesis of PAF. Their activities, assayed in the homogenate of rat brain stem slices and under their optimal conditions, increased 5 min after high frequency stimulation of vestibular afferents, inducing LTP in the medial vestibular nuclei. The activity of phosphatidylcholine-synthesizing phosphocholinetransferase, was not affected. Sixty minutes from the induction of LTP, PAF-PCT activity, but not that of lysoPAF-AT, was still significantly higher with respect to 5 min test stimulated control. We used AP-5 to verify whether this increase was strictly dependent upon LTP induction, which requires NMDA receptor activation. In AP-5 treated slices, lysoPAF-acetyltransferase and PAF-synthesizing phosphocholinetransferase activities increased, but they were reduced after high frequency stimulation under AP-5. In conclusion, we have demonstrated that the activities of PAF-synthesizing enzymes are activated soon after the induction of LTP and that this effect is linked to the activation of NMDA-receptors. We suggest that the enzyme activation by AP-5, preventing LTP, might be due to glutamate enhancement but, in neurons showing LTP and under normal conditions, the activation of potentiation mechanisms is critical for the enhancement of enzyme activities.

  10. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster.

    Science.gov (United States)

    Li, Cheng-Shu; Lu, Da-Peng; Cho, Young K

    2015-06-01

    The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway. Copyright © 2015 the American Physiological Society.

  11. Distinct spatial distribution of microglia and macrophages following mesenchymal stem cell implantation in mouse brain.

    Science.gov (United States)

    Le Blon, Debbie; Hoornaert, Chloé; Daans, Jasmijn; Santermans, Eva; Hens, Niel; Goossens, Herman; Berneman, Zwi; Ponsaerts, Peter

    2014-09-01

    Although implantation of cellular material in the central nervous system (CNS) is a key direction in CNS regenerative medicine, this approach is currently limited by the occurrence of strong endogenous immune cell responses. In a model of mesenchymal stem cell (MSC) grafting in the CNS of immune-competent mice, we previously described that MSC grafts become highly surrounded and invaded by Iba1(+) myeloid cells (microglia and/or macrophages). Here, following grafting of blue fluorescent protein (BFP)-expressing MSC in the CNS of CX3CR1(+/-) and CX3CR1(-/-) mice, our results indicate: (1) that the observed inflammatory response is independent of the fractalkine signalling axis, and (2) that a significant spatial distribution of Iba1(+) inflammatory cells occurs, in which Iba1(+) CX3CR1(+) myeloid cells mainly surround the MSC graft and Iba1(+) CX3CR1(-) myeloid cells mainly invade the graft at 10 days post transplantation. Although Iba1(+) CX3CR1(+) myeloid cells are considered to be of resident microglial origin, Iba1(+) CX3CR1(-) myeloid cells are most likely of peripheral monocyte/macrophage origin. In order to confirm the latter, we performed MSC-BFP grafting experiments in the CNS of eGFP(+) bone marrow chimeric C57BL/6 mice. Analysis of MSC-BFP grafts in the CNS of these mice confirmed our observation that peripheral monocytes/macrophages invade the MSC graft and that resident microglia surround the MSC graft site. Furthermore, analysis of major histocompatibility complex class II (MHCII) expression revealed that mainly macrophages, but not microglia, express this M1 pro-inflammatory marker in the context of MSC grafting in the CNS. These results again highlight the complexity of cell implantation immunology in the CNS.

  12. Analog and digital filtering of the brain stem auditory evoked response.

    Science.gov (United States)

    Kavanagh, K T; Franks, R

    1989-07-01

    This study compared the filtering effects on the auditory evoked potential of zero and standard phase shift digital filters (the former was a mathematical approximation of a standard Butterworth filter). Conventional filters were found to decrease the height of the evoked response in the majority of waveforms compared to zero phase shift filters. A 36-dB/octave zero phase shift high pass filter with a cutoff frequency of 100 Hz produced a 16% reduction in wave amplitude compared to the unfiltered control. A 36-dB/octave, 100-Hz standard phase shift high pass filter produced a 41% reduction, and a 12-dB/octave, 150-Hz standard phase shift high pass filter produced a 38% reduction in wave amplitude compared to the unfiltered control. A decrease in the mean along with an increase in the variability of wave IV/V latency was also noted with conventional compared to zero phase shift filters. The increase in the variability of the latency measurement was due to the difficulty in waveform identification caused by the phase shift distortion of the conventional filter along with the variable decrease in wave latency caused by phase shifting responses with different spectral content. Our results indicated that a zero phase shift high pass filter of 100 Hz was the most desirable filter studied for the mitigation of spontaneous brain activity and random muscle artifact.

  13. Lineage analysis of quiescent regenerative stem cells in the adult brain by genetic labelling reveals spatially restricted neurogenic niches in the olfactory bulb.

    Science.gov (United States)

    Giachino, Claudio; Taylor, Verdon

    2009-07-01

    The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo. Taking advantage of the recombination characteristics of a nestin::CreER(T2) allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER(T2)-expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER(T2)-expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER(T2)-targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.

  14. Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus.

    Science.gov (United States)

    Cruce, W L; Newman, D B

    1981-05-10

    In order to study brainstem origins of spinal projections, ten Tegu lizards (Tupinambis nigropunctatus) received complete or partial hemisections of the spinal cord at the first or second cervical segment. Their brains were processed for conventional Nissl staining. The sections were surveyed for the presence or absence of retrograde chromatolysis. Based on analysis and comparison of results from lesions in the various spinal cord funiculi, the following conclusions were reached: The interstitial nucleus projects ipsilaterally to the spinal cord via the medial longitudinal fasciculus, as does the middle reticular field of the metencephalon. The red nucleus and dorsal vagal motor nucleus both project contralaterally to the spinal cord via the dorsal part of the lateral funiculus. The superior reticular field in the rostral metencephalon and the ventrolateral vestibular nucleus project ipsilaterally to the spinal cord via the ventral funiculus. The dorsolateral metencephalic nucleus and the ventral part of the inferior reticular nucleus of the myelencephalon both project ipsilaterally to the spinal cord via the dorsal part of the lateral funiculus. Several brainstem nuclei in Tupinambis project bilaterally to the spinal cord. The ventrolateral metencephalic nucleus, for example, projects ipsilaterally to the cord via the medial longitudinal fasciculus and contralaterally via the dorsal part of the lateral funiculus. The dorsal part of the inferior reticular nucleus projects bilaterally to the spinal cord via the dorsal part of the lateral funiculus. The nucleus solitarius complex projects contralaterally via the dorsal part of the lateral funiculus but ipsilaterally via the middle of the lateral funiculus. The inferior raphe nucleus projects bilaterally to the spinal cord via the middle part of the lateral funiculus. These data suggest that supraspinal projections in reptiles, especially reticulospinal systems, are more highly differentiated than previously thought

  15. Bilateral cerebellar and brain stem infarction resulting from vertebral artery injury following cervical trauma without radiographic damage of the spinal column: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Mimata, Yoshikuni; Sato, Kotaro; Suzuki, Yoshiaki [Iwate Prefectural Chubu Hospital, Department of Orthopaedic Surgery, Kitakami (Japan); Murakami, Hideki [Iwate Medical University, Department of Orthopaedic Surgery, School of Medicine, Morioka (Japan)

    2014-01-15

    Vertebral artery injury can be a complication of cervical spine injury. Although most cases are asymptomatic, the rare case progresses to severe neurological impairment and fatal outcomes. We experienced a case of bilateral cerebellar and brain stem infarction with fatal outcome resulting from vertebral artery injury associated with cervical spine trauma. A 69-year-old male was admitted to our hospital because of tetraplegia after falling down the stairs and hitting his head on the floor. Marked bony damage of the cervical spine was not apparent on radiographs and CT scans, so the injury was initially considered to be a cervical cord injury without bony damage. However, an intensity change in the intervertebral disc at C5/C6, and a ventral epidural hematoma were observed on MRI. A CT angiogram of the neck showed the right vertebral artery was completely occluded at the C4 level of the spine. Forty-eight hours after injury, the patient lapsed into drowsy consciousness. The cranial CT scan showed a massive low-density area in the bilateral cerebellar hemispheres and brain stem. Anticoagulation was initiated after a diagnosis of the right vertebral artery injury, but the patient developed bilateral cerebellar and brain stem infarction. The patient's brain herniation progressed and the patient died 52 h after injury. We considered that not only anticoagulation but also treatment for thrombosis would have been needed to prevent cranial embolism. We fully realize that early and appropriate treatment are essential to improve the treatment results, and constructing a medical system with a team of orthopedists, radiologists, and neurosurgeons is also very important. (orig.)

  16. Brain stem auditory potentials evoked by clicks in the presence of high-pass filtered noise in dogs.

    Science.gov (United States)

    Poncelet, L; Deltenre, P; Coppens, A; Michaux, C; Coussart, E

    2006-04-01

    This study evaluates the effects of a high-frequency hearing loss simulated by the high-pass-noise masking method, on the click-evoked brain stem-evoked potentials (BAEP) characteristics in dogs. BAEP were obtained in response to rarefaction and condensation click stimuli from 60 dB normal hearing level (NHL, corresponding to 89 dB sound pressure level) to wave V threshold, using steps of 5 dB in eleven 58 to 80-day-old Beagle puppies. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation potential (RCDP). The procedure was repeated while constant level, high-pass filtered (HPF) noise was superposed to the click. Cut-off frequencies of the successively used filters were 8, 4, 2 and 1 kHz. For each condition, wave V and RCDP thresholds, and slope of the wave V latency-intensity curve (LIC) were collected. The intensity range at which RCDP could not be recorded (pre-RCDP range) was calculated. Compared with the no noise condition, the pre-RCDP range significantly diminished and the wave V threshold significantly increased when the superposed HPF noise reached the 4 kHz area. Wave V LIC slope became significantly steeper with the 2 kHz HPF noise. In this non-invasive model of high-frequency hearing loss, impaired hearing of frequencies from 8 kHz and above escaped detection through click BAEP study in dogs. Frequencies above 13 kHz were however not specifically addressed in this study.

  17. Descending colon endometriosis misdiagnosis as diverticulitis: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyun; Kim, Min Jeong; Ha, Hong Il; Lee, Kwan Seop; Min, Soo Kee [Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of)

    2016-09-15

    Endometriosis is defined as the presence of ectopic endometrial tissue outside the uterus. It is a common disease in menstruating females and intestinal involvement is not uncommon. Intestinal endometriosis most commonly involves the sigmoid colon, rectum, ileum, appendix, and cecum. However, the descending colon is a rare site of intestinal endometriosis. Although computed tomography (CT) findings of bowel endometriosis have been presented in several articles, there has been no report describing the CT findings of descending colon endometriosis above the pelvic cavity. Here, we report a rare case of descending colon endometriosis located in the retroperitoneal space, in which the initial impression was acute colonic diverticulitis with a small abscess on preoperative multidetector CT.

  18. Descending colon endometriosis misdiagnosis as diverticulitis: A case report

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Kim, Min Jeong; Ha, Hong Il; Lee, Kwan Seop; Min, Soo Kee

    2016-01-01

    Endometriosis is defined as the presence of ectopic endometrial tissue outside the uterus. It is a common disease in menstruating females and intestinal involvement is not uncommon. Intestinal endometriosis most commonly involves the sigmoid colon, rectum, ileum, appendix, and cecum. However, the descending colon is a rare site of intestinal endometriosis. Although computed tomography (CT) findings of bowel endometriosis have been presented in several articles, there has been no report describing the CT findings of descending colon endometriosis above the pelvic cavity. Here, we report a rare case of descending colon endometriosis located in the retroperitoneal space, in which the initial impression was acute colonic diverticulitis with a small abscess on preoperative multidetector CT

  19. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-06-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. Methods We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. Results Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III and glioblastoma multiforme (World Health Organization grade IV relative to non-neoplastic brain tissue (P erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969. Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811 proteins. Conclusion microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse

  20. Homing and Tracking of Iron Oxide Labelled Mesenchymal Stem Cells After Infusion in Traumatic Brain Injury Mice: a Longitudinal In Vivo MRI Study.

    Science.gov (United States)

    Mishra, Sushanta Kumar; Khushu, Subash; Singh, Ajay K; Gangenahalli, Gurudutta

    2018-06-17

    Stem cells transplantation has emerged as a promising alternative therapeutic due to its potency at injury site. The need to monitor and non-invasively track the infused stem cells is a significant challenge in the development of regenerative medicine. Thus, in vivo tracking to monitor infused stem cells is especially vital. In this manuscript, we have described an effective in vitro labelling method of MSCs, a serial in vivo tracking of implanted stem cells at traumatic brain injury (TBI) site through 7 T magnetic resonance imaging (MRI). Proper homing of infused MSCs was carried out at different time points using histological analysis and Prussian blue staining. Longitudinal in vivo tracking of infused MSCs were performed up to 21 days in different groups through MRI using relaxometry technique. Results demonstrated that MSCs incubated with iron oxide-poly-L-lysine complex (IO-PLL) at a ratio of 50:1.5 μg/ml and a time period of 6 h was optimised to increase labelling efficiency. T2*-weighted images and relaxation study demonstrated a significant signal loss and effective decrease in transverse relaxation time on day-3 at injury site after systemic transplantation, revealed maximum number of stem cells homing to the lesion area. MRI results further correlate with histological and Prussian blue staining in different time periods. Decrease in negative signal and increase in relaxation times were observed after day-14, may indicate damage tissue replacement with healthy tissue. MSCs tracking with synthesized negative contrast agent represent a great advantage during both in vitro and in vivo analysis. The proposed absolute bias correction based relaxometry analysis could be extrapolated for stem cell tracking and therapies in various neurodegenerative diseases.

  1. Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expectations in the era of regenerative biology.

    Science.gov (United States)

    Kazanis, Ilias

    2012-02-01

    Since the first experimental reports showing the persistence of neurogenic activity in the adult mammalian brain, this field of neurosciences has expanded significantly. It is now widely accepted that neural stem and precursor cells survive during adulthood and are able to respond to various endogenous and exogenous cues by altering their proliferation and differentiation activity. Nevertheless, the pathway to therapeutic applications still seems to be long. This review attempts to summarize and revisit the available data regarding the plasticity potential of adult neural stem cells and of their normal microenvironment, the neurogenic niche. Recent data have demonstrated that adult neural stem cells retain a high level of pluripotency and that adult neurogenic systems can switch the balance between neurogenesis and gliogenesis and can generate a range of cell types with an efficiency that was not initially expected. Moreover, adult neural stem and precursor cells seem to be able to self-regulate their interaction with the microenvironment and even to contribute to its synthesis, altogether revealing a high level of plasticity potential. The next important step will be to elucidate the factors that limit this plasticity in vivo, and such a restrictive role for the microenvironment is discussed in more details.

  2. The spermatogonial stem cell niche

    NARCIS (Netherlands)

    de Rooij, Dirk G.

    2009-01-01

    Spermatogonial stem cells (SSCs; A(s) spermatogonia) and their direct descendants (A(pr) and A(al) spermatogonia) are preferentially located in those areas of the seminiferous tubules that border on the interstitial tissue. Fewer of these cells are present in tubule areas directly bordering on

  3. Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells.

    Science.gov (United States)

    Al-Ahmad, Abraham J

    2017-10-01

    Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells. Copyright © 2017 the American Physiological Society.

  4. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Kokubu, Yasuhiro; Yamaguchi, Tomoko; Kawabata, Kenji

    2017-04-29

    Brain-derived microvascular endothelial cells (BMECs), which play a central role in blood brain barrier (BBB), can be used for the evaluation of drug transport into the brain. Although human BMEC cell lines have already been reported, they lack original properties such as barrier integrity. Pluripotent stem cells (PSCs) can be used for various applications such as regenerative therapy, drug screening, and pathological study. In the recent study, an induction method of BMECs from PSCs has been established, making it possible to more precisely study the in vitro human BBB function. Here, using induced pluripotent stem (iPS) cell-derived BMECs, we examined the effects of oxygen-glucose deprivation (OGD) and OGD/reoxygenation (OGD/R) on BBB permeability. OGD disrupted the barrier function, and the dysfunction was rapidly restored by re-supply of the oxygen and glucose. Interestingly, TNF-α, which is known to be secreted from astrocytes and microglia in the cerebral ischemia, prevented the restoration of OGD-induced barrier dysfunction in an apoptosis-independent manner. Thus, we could establish the in vitro BBB disease model that mimics the cerebral ischemia by using iPS cell-derived BMECs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Entanglement entropy for descendent local operators in 2D CFTs

    International Nuclear Information System (INIS)

    Chen, Bin; Guo, Wu-Zhong; He, Song; Wu, Jie-qiang

    2015-01-01

    We mainly study the Rényi entropy and entanglement entropy of the states locally excited by the descendent operators in two dimensional conformal field theories (CFTs). In rational CFTs, we prove that the increase of entanglement entropy and Rényi entropy for a class of descendent operators, which are generated by L"("−")L̄"("−") onto the primary operator, always coincide with the logarithmic of quantum dimension of the corresponding primary operator. That means the Rényi entropy and entanglement entropy for these descendent operators are the same as the ones of their corresponding primary operator. For 2D rational CFTs with a boundary, we confirm that the Rényi entropy always coincides with the logarithmic of quantum dimension of the primary operator during some periods of the evolution. Furthermore, we consider more general descendent operators generated by ∑d_{_n__i_}_{_n__j_}(∏_iL_−_n__i∏_jL̄_−_n__j) on the primary operator. For these operators, the entanglement entropy and Rényi entropy get additional corrections, as the mixing of holomorphic and anti-holomorphic Virasoro generators enhance the entanglement. Finally, we employ perturbative CFT techniques to evaluate the Rényi entropy of the excited operators in deformed CFT. The Rényi and entanglement entropies are increased, and get contributions not only from local excited operators but also from global deformation of the theory.

  6. CASE REPORT Dual (type IV) left anterior descending artery

    African Journals Online (AJOL)

    about 1.38%. [1,3] This anomaly is seen relatively often with congenital malformations such as complete transposition of the great arteries and tetralogy of Fallot.[2]. When a short or hypoplastic LAD is detected, a differential diagnosis should be sought. There may be a long dominant posterior descending branch of the RCA, ...

  7. Resection and anastomosis of the descending colon in 43 horses.

    Science.gov (United States)

    Prange, Timo; Holcombe, Susan J; Brown, Jennifer A; Dechant, Julie E; Fubini, Susan L; Embertson, Rolf M; Peroni, John; Rakestraw, Peter C; Hauptman, Joe G

    2010-08-01

    To determine (1) the short- (to hospital discharge) and long- (>6 months) term survival, (2) factors associated with short-term survival, and (3) the perioperative course for horses with resection and anastomosis of the descending colon. Multicentered case series. Horses (n=43) that had descending colon resection and anastomosis. Medical records (January 1995-June 2009) of 7 equine referral hospitals were reviewed for horses that had descending colon resection and anastomosis and were recovered from anesthesia. Retrieved data included history, results of clinical and clinicopathologic examinations, surgical findings, postsurgical treatment and complications, and short-term survival (hospital discharge). Long-term survival was defined as survival > or =6 months after hospital discharge. Of 43 horses, 36 (84%) were discharged from the hospital. Twenty-eight of 30 horses with follow-up information survived > or =6 months. No significant associations between perioperative factors and short-term survival were identified. Lesions included strangulating lipoma (n=27), postfoaling trauma (4), infarction (4), intraluminal obstruction (2), and other (6). Common postoperative complications included fever and diarrhea. During hospitalization 7 horses were euthanatized or died because of septic peritonitis (3), endotoxemia (3), and colic and ileus (1). Descending colon resection and anastomosis has a favorable prognosis for hospital discharge and survival > or =6 months. The most common cause of small colon incarceration was strangulating lipoma. Complications include postoperative fever and diarrhea but the prognosis is good after small colon resection and anastomosis.

  8. DESCENDING PATHWAYS AND THE HOPPING RESPONSE IN THE RABBIT

    NARCIS (Netherlands)

    HOBBELEN, JF; GRAMSBERGEN, A; VANHOF, MW

    1992-01-01

    Descending pathways were studied in 5 adult rabbits by means of HRP, injected in the cervical spinal cord (in C2 and C3) at the right side. Results indicate the existence of pathways from the contralateral motor cortex, bilateral projections from the red nuclei, from the vestibular nuclei and from

  9. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma

    International Nuclear Information System (INIS)

    Evers, Patrick; Lee, Percy P; DeMarco, John; Agazaryan, Nzhde; Sayre, James W; Selch, Michael; Pajonk, Frank

    2010-01-01

    Glioblastoma is the most common brain tumor in adults. The mechanisms leading to glioblastoma are not well understood but animal studies support that inactivation of tumor suppressor genes in neural stem cells (NSC) is required and sufficient to induce glial cancers. This suggests that the NSC niches in the brain may harbor cancer stem cells (CSCs), Thus providing novel therapy targets. We hypothesize that higher radiation doses to these NSC niches improve patient survival by eradicating CSCs. 55 adult patients with Grade 3 or Grade 4 glial cancer treated with radiotherapy at UCLA between February of 2003 and May of 2009 were included in this retrospective study. Using radiation planning software and patient radiological records, the SVZ and SGL were reconstructed for each of these patients and dosimetry data for these structures was calculated. Using Kaplan-Meier analysis we show that patients whose bilateral subventricular zone (SVZ) received greater than the median SVZ dose (= 43 Gy) had a significant improvement in progression-free survival if compared to patients who received less than the median dose (15.0 vs 7.2 months PFS; P = 0.028). Furthermore, a mean dose >43 Gy to the bilateral SVZ yielded a hazard ratio of 0.73 (P = 0.019). Importantly, similarly analyzing total prescription dose failed to illustrate a statistically significant impact. Our study leads us to hypothesize that in glioma targeted radiotherapy of the stem cell niches in the adult brain could yield significant benefits over radiotherapy of the primary tumor mass alone and that damage caused by smaller fractions of radiation maybe less efficiently detected by the DNA repair mechanisms in CSCs

  10. Characteristics of MR imaging of brain stem glioma for the treatment of combination chemotherapy with interferon-. beta. and ACNU in addition to radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Toshihiko; Yoshida, Jun; Sugita, Kenichiro (Nagoya Univ. (Japan). Faculty of Medicine)

    1990-08-01

    In an attempt to improve the prognosis of brain stem glioma patients, a new treatment using a combination of chemotherapy of interferon-{beta}, ACNU, (1) - (4 - Amino - 2 - methyl - 5 - primidinyl) - methyl - 3 - (2-chloroethyl) - 3 -nitrosourea hydrochloride, and radiation, so called IAR therapy, was utilized on 19 patients who were diagnosed through CT and/or MRI findings as having pontine glioma. Eight of these patients were given IAR therapy at four week intervals and the changes were checked on MRI. The MRI response was classified into 3 types, that is, type 1: diffuse low intensity lesion on T{sub 1} WI changing to isodensity and tumor mass disappearing rapidly; type 2: located high intensity lesion in low intensity on T{sub 1} WI once appearing on decreasing the whole tumor size, then this lesion disappearing gradually; type 3: spotted low and/or iso mosaic intensity lesion appearing on and after treatment, with little change in tumor mass. The type 1 patients showed rapid improvement of neurological deficits and good recovery was obtained. Type 2 patients also recovered well but at recurrent periods tended to show disseminated sings intraspinally. The type 3 patients did not recover from neurological deficits well. But there were no significant differences of prognosis among these 3 types. Furthermore, MRI showed more precise data than CT scan on brain stem lesions and seemed to be more useful for diagnosis and follow-up treatment than CT scan. Though it is suggested that IAR combination therapy should be respected as the first choice for the treatment of brain stem glioma, it is strongly requested that some maintenance therapy is established for continuing the reduction time after induction of complete or partial remission with IAR therapy. (author).

  11. dp53 Restrains ectopic neural stem cell formation in the Drosophila brain in a non-apoptotic mechanism involving Archipelago and cyclin E.

    Directory of Open Access Journals (Sweden)

    Yingshi Ouyang

    Full Text Available Accumulating evidence suggests that tumor-initiating stem cells or cancer stem cells (CSCs possibly originating from normal stem cells may be the root cause of certain malignancies. How stem cell homeostasis is impaired in tumor tissues is not well understood, although certain tumor suppressors have been implicated. In this study, we use the Drosophila neural stem cells (NSCs called neuroblasts as a model to study this process. Loss-of-function of Numb, a key cell fate determinant with well-conserved mammalian counterparts, leads to the formation of ectopic neuroblasts and a tumor phenotype in the larval brain. Overexpression of the Drosophila tumor suppressor p53 (dp53 was able to suppress ectopic neuroblast formation caused by numb loss-of-function. This occurred in a non-apoptotic manner and was independent of Dacapo, the fly counterpart of the well-characterized mammalian p53 target p21 involved in cellular senescence. The observation that dp53 affected Edu incorporation into neuroblasts led us to test the hypothesis that dp53 acts through regulation of factors involved in cell cycle progression. Our results show that the inhibitory effect of dp53 on ectopic neuroblast formation was mediated largely through its regulation of Cyclin E (Cyc E. Overexpression of Cyc E was able to abrogate dp53's ability to rescue numb loss-of-function phenotypes. Increasing Cyc E levels by attenuating Archipelago (Ago, a recently identified transcriptional target of dp53 and a negative regulator of Cyc E, had similar effects. Conversely, reducing Cyc E activity by overexpressing Ago blocked ectopic neuroblast formation in numb mutant. Our results reveal an intimate connection between cell cycle progression and NSC self-renewal vs. differentiation control, and indicate that p53-mediated regulation of ectopic NSC self-renewal through the Ago/Cyc E axis becomes particularly important when NSC homeostasis is perturbed as in numb loss-of-function condition. This has

  12. Postnatal Development of Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Protein Kinase B (TrkB) Receptor Immunoreactivity in Multiple Brain Stem Respiratory-Related Nuclei of the Rat

    Science.gov (United States)

    Liu, Qiuli; Wong-Riley, Margaret T.T.

    2013-01-01

    Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12–13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmission, and BDNF is essential for respiratory development. We hypothesized that the excitation-inhibition imbalance during the critical period stemmed from a reduced expression of BDNF and TrkB at that time within respiratory-related nuclei of the brain stem. An in-depth, semiquantitative immunohistochemical study was undertaken in seven respiratory-related brain stem nuclei and one nonrespiratory nucleus in P0–21 rats. The results indicate that the expressions of BDNF and TrkB: 1) in the pre-Bötzinger complex, nucleus ambiguus, commissural and ventrolateral subnuclei of solitary tract nucleus, and retrotrapezoid nucleus/parafacial respiratory group were significantly reduced at P12, but returned to P11 levels by P14; 2) in the lateral paragigantocellular nucleus and parapyramidal region were increased from P0 to P7, but were strikingly reduced at P10 and plateaued thereafter; and 3) in the nonrespiratory cuneate nucleus showed a gentle plateau throughout the first 3 post-natal weeks, with only a slight decline of BDNF expression after P11. Thus, the significant downregulation of both BDNF and TrkB in respiratory-related nuclei during the critical period may form the basis of, or at least contribute to, the inhibitory-excitatory imbalance within the respiratory network during this time. PMID:22678720

  13. 5-Fluorouracil and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) followed by hydroxyurea, misonidazole, and irradiation for brain stem gliomas: a pilot study of the Brain Tumor Research Center and the Childrens Cancer Group

    International Nuclear Information System (INIS)

    Levin, V.A.; Edwards, M.S.; Wara, W.M.; Allen, J.; Ortega, J.; Vestnys, P.

    1984-01-01

    Twenty-eight evaluable children with the diagnosis of brain stem glioma were treated with 5-fluorouracil and CCNU before posterior fossa irradiation (5500 rads); during irradiation, the children received hydroxyurea and misonidazole. The treatment was well tolerated, and minimal toxicity was produced. The median relapse-free survival was 32 weeks, and the median survival was 44 weeks. Analysis of covariates showed that, in patients between the ages of 2 and 19 years, survival was longest in the older children (P less than 0.02). Tumor histology, sex, extent of operation (if any), Karnofsky score, and radiation dose did not correlate with survival

  14. Descending thoracic aorta dissection associated with esophageal carcinoma

    Directory of Open Access Journals (Sweden)

    Kaushik Saha

    2013-01-01

    Full Text Available The association of aortic dissection with a malignancy is a rare finding and previous reports are usually those of primary aortic sarcomas. A 45-year-old male presented to us with chest pain and dysphagia for 1 month with a background history of obstructive airway disease and uncontrolled hypertension. In this report we present a case of typical descending aorta dissection with associated esophageal carcinoma.

  15. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  16. The Last Descendant of Tycho Brahe Lives in Romania

    Science.gov (United States)

    Stavinschi, M.

    On 24 October 1601 passed away, in the 55th year of his life, the great astronomer Tycho Brahe. Now, four centuries since his death, his last descendant is living in Romania: Lydia Baroness Løvendal-Papae. An encyclopedic culture and training as hers can rarely be found today; she also is an excellent specialist in genealogy and heraldry. She has not only the merit of studying the cosmic symbols in heraldry, but especially that of establishing the genealogical tree of the famous Danish astronomer. She also holds a genealogical record: as the last descendant of the old Danish dynasty, she descends from all European dynasties, including the founders of the Romanian countries. We shall dwell here neither upon the great personality of Tycho Brahe, nor on his role in the modern astronomy. We shall not refer to the Tycho catalogue resulted from the space mission Hipparcos. We shall dwell upon the ancient aristocratic family Brahe. The oldest firm mention goes as far back as in 1364, but there are data enough on the existence of some members of this family in the 13th century. The Brahe family was related to a no less famous family, that of the Barons Løvendal. One of the ancestors of Lydia Baroness Løvendal is the renowned Ulrik Frederik Voldemar, Baron, then Count Lovendal, marshal of France (1700-1755), whose name was assigned to one of the most important boulevards of Paris.

  17. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells

    OpenAIRE

    Kim, Brandon J.; Bee, Olivia B.; McDonagh, Maura A.; Stebbins, Matthew J.; Palecek, Sean P.; Doran, Kelly S.; Shusta, Eric V.

    2017-01-01

    ABSTRACT Bacterial meningitis is a serious infection of the central nervous system (CNS) that occurs after bacteria interact with and penetrate the blood-brain barrier (BBB). The BBB is comprised of highly specialized brain microvascular endothelial cells (BMECs) that function to separate the circulation from the CNS and act as a formidable barrier for toxins and pathogens. Certain bacteria, such as Streptococcus agalactiae (group B Streptococcus [GBS]), possess the ability to interact with a...

  18. Melatonin disturbs SUMOylation mediated crosstalk between c-Myc and Nestin via MT1 activation and promotes the sensitivity of Paclitaxel in brain cancer stem cells.

    Science.gov (United States)

    Lee, Hyemin; Lee, Hyo-Jung; Jung, Ji Hoon; Shin, Eun Ah; Kim, Sung-Hoon

    2018-04-14

    Here the underlying antitumor mechanism of melatonin and its potency as a sensitizer of Paclitaxel was investigated in X02 cancer stem cells. Melatonin suppressed sphere formation and induced G2/M arrest in X02 cells expressing Nestin, CD133, CXCR4 and SOX-2 as biomarkers of stemness. Furthermore, melatonin reduced the expression of CDK2, CDK4, cyclin D1, cyclin E, and c-Myc and upregulated cyclin B1 in X02 cells. Notably, genes of c-Myc related mRNAs were differentially expressed in melatonin treated X02 cells by microarray analysis. Consistently, melatonin reduced the expression of c-Myc at mRNA and protein levels, which was blocked by MG132. Of note, overexpression of c-Myc increased the expression of Nestin, while overexpression of Nestin enhanced c-Myc through crosstalk despite different locations, nucleus and cytoplasm. Interestingly, melatonin attenuated small ubiquitin-related modifier-1 (SUMO-1) more than SUMO-2 or SUMO-3 and disturbed nuclear translocation of Nestin for direct binding to c-Myc by SUMOylation of SUMO-1 protein by immunofluorescence and immunoprecipitation. Also, melatonin reduced trimethylated histone H3K4me3 and H3K36me3 more than dimethylation in X02 cells by Western blotting and Chromatin immunoprecipitation assay. Notably, melatonin upregulated MT1, not MT2, in X02 cells and melatonin receptor inhibitor Luzindole blocked the ability of melatonin to decrease the expression of Nestin, p-c-Myc(S62) and c-Myc. Furthermore, melatonin promoted cytotoxicity, sub G1 accumulation and apoptotic body formation by Paclitaxcel in X02 cells. Taken together, these findings suggest that melatonin inhibits stemness via suppression of c-Myc, Nestin, and histone methylation via MT1 activation and promotes anticancer effect of Paclitaxcel in brain cancer stem cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Fatal outcome after brain stem infarction related to bilateral vertebral artery occlusion - case report of a detrimental complication of cervical spine trauma

    Directory of Open Access Journals (Sweden)

    Beauchamp Kathryn M

    2011-07-01

    Full Text Available Abstract Background Vertebral artery injury (VAI after blunt cervical trauma occurs more frequently than historically believed. The symptoms due to vertebral artery (VA occlusion usually manifest within the first 24 hours after trauma. Misdiagnosed VAI or delay in diagnosis has been reported to cause acute deterioration of previously conscious and neurologically intact patients. Case presentation A 67 year-old male was involved in a motor vehicle crash (MVC sustaining multiple injuries. Initial evaluation by the emergency medical response team revealed that he was alert, oriented, and neurologically intact. He was transferred to the local hospital where cervical spine computed tomography (CT revealed several abnormalities. Distraction and subluxation was present at C5-C6 and a comminuted fracture of the left lateral mass of C6 with violation of the transverse foramen was noted. Unavailability of a spine specialist prompted the patient's transfer to an area medical center equipped with spine care capabilities. After arrival, the patient became unresponsive and neurological deficits were noted. His continued deterioration prompted yet another transfer to our Level 1 regional trauma center. A repeat cervical spine CT at our institution revealed significantly worsened subluxation at C5-C6. CT angiogram also revealed complete occlusion of bilateral VA. The following day, a repeat CT of the head revealed brain stem infarction due to bilateral VA occlusion. Shortly following, the patient was diagnosed with brain death and care was withdrawn. Conclusion Brain stem infarction secondary to bilateral VA occlusion following cervical spine trauma resulted in fatal outcome. Prompt imaging evaluation is necessary to assess for VAI in cervical trauma cases with facet joint subluxation/dislocation or transverse foramen fracture so that treatment is not delayed. Additionally, multiple transportation events are risk factors for worsening when unstable cervical

  20. CFHR1-Modified Neural Stem Cells Ameliorated Brain Injury in a Mouse Model of Neuromyelitis Optica Spectrum Disorders.

    Science.gov (United States)

    Shi, Kaibin; Wang, Zhen; Liu, Yuanchu; Gong, Ye; Fu, Ying; Li, Shaowu; Wood, Kristofer; Hao, Junwei; Zhang, Guang-Xian; Shi, Fu-Dong; Yan, Yaping

    2016-11-01

    A major hurdle for effective stem cell therapy is ongoing inflammation in the target organ. Reconditioning the lesion microenvironment may be an effective way to promote stem cell therapy. In this study, we showed that engineered neural stem cells (NSCs) with complement factor H-related protein 1, a complement inhibitor protein, can attenuate inflammatory infiltration and immune-mediated damage of astrocytes, an important pathogenic progress in patients with neuromyelitis optica spectrum disorders. Furthermore, we demonstrated that transplantation of the complement factor H-related protein 1-modified NSCs effectively blocked the complement activation cascade and inhibited formation of the membrane attack complex, thus contributing to the protection of endogenous and transplanted NSC-differentiated astrocytes. Therefore, manipulation of the lesion microenvironment contributes to a more effective cell replacement therapeutic strategy for autoimmune diseases of the CNS. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Descending pain modulation and its interaction with peripheral sensitization following sustained isometric muscle contraction in fibromyalgia

    DEFF Research Database (Denmark)

    Ge, H-Y; Nie, Hongling; Graven-Nielsen, Thomas

    2012-01-01

    OBJECTIVE: Sustained isometric muscle contraction (fatiguing contraction) recruits segmental and/or extrasegmental descending inhibition in healthy subjects but not in fibromyalgia (FM). We hypothesized that fatiguing contraction may shift descending pain modulation from inhibition towards...

  2. Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson's disease.

    Science.gov (United States)

    Chao, Yin Xia; He, Bei Ping; Tay, Samuel Sam Wah

    2009-11-30

    Immunomodulatory effects of transplanted mesenchymal stem cells (MSCs) in the treatment of Parkinson's disease were studied in the MPTP-induced mouse model. MPTP treatment induced a significant loss of dopaminergic neurons, decreased expressions of claudin 1, claudin 5 and occludin in the substantia nigra compacta (SNc), and functional damage of the blood brain barrier (BBB). Our study further discovered that infiltration of MBLs into the brain to bind with microglia was detected in the SNc of MPTP-treated mice, suggesting that the BBB compromise and MBL infiltration might be involved in the pathogenesis of MPTP-induced PD. In addition, MPTP treatment also increased the expression of mannose-binding lectins (MBLs) in the liver tissue. Intravenous transplantation of MSCs into MPTP-treated mice led to recovery of BBB integrity, suppression of MBL infiltration at SNc and MBL expression in the liver, suppression of microglial activation and prevention of dopaminergic neuron death. No transplanted MSCs were observed to differentiate into dopaminergic neurons, while the MSCs migrated into the SNc and released TGF-beta1 there. Therefore, intravenous transplantation of MSCs which protect dopaminergic neurons from MPTP toxicity may be engaged in anyone or a combination of these mechanisms: repair of the BBB, reduction of MBL in the brain, inhibition of microglial cytotoxicity, and direct protection of dopaminergic neurons.

  3. [Ferumoxide labeled Flk1+ CD31- CD34- human bone marrow mesenchymal stem cells and its in vivo tracing in the brains of Macaca Fascicularis].

    Science.gov (United States)

    Feng, Ming; Wang, Ren-Zhi; Zhu, Hua; Zhang, Nan; Wang, Chang-Jun; Wei, Jun-Ji; Lu, Shan; Li, Qin; Yin, Xiao-Ming; Han, Qin; Ma, Wen-Bin; Qin, Chuang; Zhao, Chun-Hua; An, Yi-Hua; Kong, Yan-Guo

    2008-10-01

    To explore the method for labeling Flk1+ CD31- CD34- human bone marrow mesenchymal stem cells (hBMSCs) with ferumoxide-PLL and evaluate the feasibility of its tracing after transplantation into the brains of Macaca Fascicularis. The hBMSCs were incubated with ferumoxide-PLL. Trypan blue staining, Prussian blue staining, and transmission electron microscope were performed to show intracellular iron, marking efficiency, and the vigor of the labeled cells. After the hBMSCs were transplanted into the brains of cynomolgus monkeys by stereotaxis, magnetic resonance imaging (MRI) was performed to trace the cells in vivo. Cell survival and differentiation were studied with immunohistochemistry, Prussian blue staining, and HE staining. The marking efficiency of the ferumoxide-PLL was 96%. Iron particles were found intracytoplasmic of the hBMSCs by Prussian blue staining and transmission electron microscopy. The relaxation rates of labeled cells in MRI were 4.4 and 4.2 times higher than those of the unlabeled cells. Hypointensity area was found by MRI three weeks after transplantation. Many hBMSCs and new vessels were found in the transplantation zone by pathological and immunofluorescence methods. Ferumoxide-PLL can effectively label hBMSCs and thus increase its contrast in MRI results. The cells can survive in the brains of cynomolgus monkeys. The labeled hBMSCs can be traced in vivo by MRI.

  4. The Impact of the Organism on Its Descendants

    Directory of Open Access Journals (Sweden)

    Patrick Bateson

    2012-01-01

    Full Text Available Historically, evolutionary biologists have taken the view that an understanding of development is irrelevant to theories of evolution. However, the integration of several disciplines in recent years suggests that this position is wrong. The capacity of the organism to adapt to challenges from the environment can set up conditions that affect the subsequent evolution of its descendants. Moreover, molecular events arising from epigenetic processes can be transmitted from one generation to the next and influence genetic mutation. This in turn can facilitate evolution in the conditions in which epigenetic change was first initiated.

  5. Effect of Mobile Phone-Induced Electromagnetic Field on Brain Hemodynamics and Human Stem Cell Functioning: Possible Mechanistic Link to Cancer Risk and Early Diagnostic Value of Electronphotonic Imaging.

    Science.gov (United States)

    Bhargav, Hemant; Srinivasan, T M; Varambally, S; Gangadhar, B N; Koka, Prasad

    2015-01-01

    The mobile phones (MP) are low power radio devices which work on electromagnetic fields (EMFs), in the frequency range of 900-1800 MHz. Exposure to MPEMFs may affect brain physiology and lead to various health hazards including brain tumors. Earlier studies with positron emission tomography (PET) have found alterations in cerebral blood flow (CBF) after acute exposure to MPEMFs. It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemia and tumors, including brain tumors such as gliomas. Both significant misbalance in DSB repair and severe stress response have been triggered by MPEMFs and EMFs from cell towers. It has been shown that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells. This may be important for cancer risk assessment and indicates that stem cells are the most relevant cellular model for validating safe mobile communication signals. Recently developed technology for recording the human bio-electromagnetic (BEM) field using Electron photonic Imaging (EPI) or Gas Discharge Visualisation (GDV) technique provides useful information about the human BEM. Studies have recorded acute effects of Mobile Phone Electromagnetic Fields (MPEMFs) using EPI and found quantifiable effects on human BEM field. Present manuscript reviews evidences of altered brain physiology and stem cell functioning due to mobile phone/cell tower radiations, its association with increased cancer risk and explores early diagnostic value of EPI imaging in detecting EMF induced changes on human BEM.

  6. Functional recovery after injury of motor cortex in rats: effects of rehabilitation and stem cell transplantation in a traumatic brain injury model of cortical resection.

    Science.gov (United States)

    Lee, Do-Hun; Lee, Ji Yeoun; Oh, Byung-Mo; Phi, Ji Hoon; Kim, Seung-Ki; Bang, Moon Suk; Kim, Seung U; Wang, Kyu-Chang

    2013-03-01

    Experimental studies and clinical trials designed to help patients recover from various brain injuries, such as stroke or trauma, have been attempted. Rehabilitation has shown reliable, positive clinical outcome in patients with various brain injuries. Transplantation of exogenous neural stem cells (NSCs) to repair the injured brain is a potential tool to help patient recovery. This study aimed to evaluate the therapeutic efficacy of a combination therapy consisting of rehabilitation and NSC transplantation compared to using only one modality. A model of motor cortex resection in rats was used to create brain injury in order to obtain consistent and prolonged functional deficits. The therapeutic results were evaluated using three methods during an 8-week period with a behavioral test, motor-evoked potential (MEP) measurement, and measurement of the degree of endogenous NSC production. All three treatment groups showed the effects of treatment in the behavioral test, although the NSC transplantation alone group (CN) exhibited slightly worse results than the rehabilitation alone group (CR) or the combination therapy group (CNR). The latency on MEP was shortened to a similar extent in all three groups compared to the untreated group (CO). However, the enhancement of endogenous NSC proliferation was dramatically reduced in the CN group compared not only to the CR and CNR groups but also to the CO group. The CR and CNR groups seemed to prolong the duration of endogenous NSC proliferation compared to the untreated group. A combination of rehabilitation and NSC transplantation appears to induce treatment outcomes that are similar to rehabilitation alone. Further studies are needed to evaluate the electrophysiological outcome of recovery and the possible effect of prolonging endogenous NSC proliferation in response to NSC transplantation and rehabilitation.

  7. Validation of the 133Xe inhalation method for measuring brain stem and cerebellar blood flow in human subjects and the baboon

    International Nuclear Information System (INIS)

    Sakai, F.; Meyer, J. St.; Yamaguchi, F.; Yamamoto, M.; Shaw, T.; Juge, O.

    1979-01-01

    Regional cerebral blood flow (rCBF) measurements recorded by probes placed over the posterior fossa after 133 Xe inhalation have been validated here in. After inhalation, 133 Xe gas is distributed via arterial blood of both carotid an vertebrobasilar systems, so that it should be possible to measure rCBF of the brain stem and cerebellum if appropriate collimation, probe placement and selection of activity are employed. Detectors placed over the suboccipital regions may be subject to distortion by radioactivity derived from extracerebral sources so that the following questions were asked: 1) What is the counting geometry for each probe looking at this area 2) What is the extent of contamination from surrounding tissues 3) Are the flow values reproducible and in accordance with values obtained by other techniques 4) Are the flow values able to show predictable changes under physiological and pathological conditions Animal and human experiments designed to answer these questions are reported. (Auth.)

  8. A clinico-radiological study on 254 cases of pontine high signals on magnetic resonance imaging in relation to brain stem semiology

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-11-01

    A total of 254 patients who were proved to have pontine high intensity areas on T[sub 2]-weighted magnetic resonance imaging (MRI) were analyzed in relation to brain stem semiology. A comparative study on MRI and MR angiography was made between 254 patients with pontine high signals and 276 control cases showing no abnormality either on T[sub 1] or T[sub 2]-weighted images. Of the 254 patients, 62 had transient subjective complaints such as vertigo-dizziness. Supratentorial high signals, basilar artery tortuousness and vertebral artery asymmetry on MR angiography were seen more frequently in patients with pontine high signals than in the controls. In conclusion, pontine high signals may result from diffuse arteriosclerosis and MR angiography is considered to be a useful screening method. (author).

  9. Anti-Ma2 antibody related paraneoplastic limbic/brain stem encephalitis associated with breast cancer expressing Ma1, Ma2, and Ma3 mRNAs.

    Science.gov (United States)

    Sahashi, K; Sakai, K; Mano, K; Hirose, G

    2003-09-01

    A 69 year old woman presented with cognitive impairment and supranuclear gaze palsy caused by paraneoplastic limbic/brain stem encephalitis associated with atypical medullary breast carcinoma. The cerebrospinal fluid from the patient harboured an anti-neuronal cell antibody against Ma2 antigen, but not against Ma1 or Ma3 antigen. Despite the antibody being restricted to the Ma2 antigen, the patient's cancer tissue expressed Ma1, Ma2, and Ma3 mRNAs. These results, and the expression of Ma2 mRNA in an atypical medullar breast carcinoma in another patient without paraneoplastic encephalitis, indicate that the induction of anti-Ma2 antibody depends on host immunoreponsiveness and not on the presence of the antigen itself in the cancer.

  10. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture.

    Science.gov (United States)

    Kaiser, Andreas; Kale, Ajay; Novozhilova, Ekaterina; Siratirakun, Piyaporn; Aquino, Jorge B; Thonabulsombat, Charoensri; Ernfors, Patrik; Olivius, Petri

    2014-05-30

    Conditioned medium (CM), made by collecting medium after a few days in cell culture and then re-using it to further stimulate other cells, is a known experimental concept since the 1950s. Our group has explored this technique to stimulate the performance of cells in culture in general, and to evaluate stem- and progenitor cell aptitude for auditory nerve repair enhancement in particular. As compared to other mediums, all primary endpoints in our published experimental settings have weighed in favor of conditioned culture medium, where we have shown that conditioned culture medium has a stimulatory effect on cell survival. In order to explore the reasons for this improved survival we set out to analyze the conditioned culture medium. We utilized ELISA kits to investigate whether brain stem (BS) slice CM contains any significant amounts of brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF). We further looked for a donor cell with progenitor characteristics that would be receptive to BDNF and GDNF. We chose the well-documented boundary cap (BC) progenitor cells to be tested in our in vitro co-culture setting together with cochlear nucleus (CN) of the BS. The results show that BS CM contains BDNF and GDNF and that survival of BC cells, as well as BC cell differentiation into neurons, were enhanced when BS CM were used. Altogether, we conclude that BC cells transplanted into a BDNF and GDNF rich environment could be suitable for treatment of a traumatized or degenerated auditory nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Brain-Derived Neurotrophic Factor Loaded PS80 PBCA Nanocarrier for In Vitro Neural Differentiation of Mouse Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Chiu-Yen Chung

    2017-03-01

    Full Text Available Brain derived neurotrophic factor (BDNF can induce neural differentiation in stem cells and has the potential for repair of the nervous system. In this study, a polysorbate 80-coated polybutylcyanoacrylate nanocarrier (PS80 PBCA NC was constructed to deliver plasmid DNAs (pDNAs containing BDNF gene attached to a hypoxia-responsive element (HRE-cmvBDNF. The hypoxia-sensing mechanism of BDNF expression and inductiveness of the nano-formulation on mouse induced pluripotent stem cells (iPSCs to differentiate into neurons following hypoxia was tested in vitro with immunofluorescent staining and Western blotting. The HRE-cmvBDNF appeared to adsorb onto the surface of PS80 PBCA NC, with a resultant mean diameter of 92.6 ± 1.0 nm and zeta potential of −14.1 ± 1.1 mV. HIF-1α level in iPSCs was significantly higher in hypoxia, which resulted in a 51% greater BDNF expression when transfected with PS80 PBCA NC/HRE-cmvBDNF than those without hypoxia. TrkB and phospho-Akt were also elevated which correlated with neural differentiation. The findings suggest that PS80 PBCA NC too can be endocytosed to serve as an efficient vector for genes coupled to the HRE in hypoxia-sensitive cells, and activation of the PI3/Akt pathway in iPSCs by BDNF is capable of neural lineage specification.

  12. Lymphocytic infundibulo-neurohypophysitis (LINH) with involvement of the hypothalamus and with coexistent focal infiltration of the brain stem: A case report

    International Nuclear Information System (INIS)

    Spalek, M.; Kowalska, A.

    2006-01-01

    Autoimmune (lymphocytic) hypophysitis is a rare disease. It was originally labeled lymphocytic adenohypophysitis (LAH) and was first described in 1962. However, when it was later realized that the autoimmune infiltrate could exclusively involve the infundibular stem and the posterior lobe, the term lymphocytic infundibulo-neurohypophysitis (LINH) was created. Review of the literature identified 39 patients with LINH, 245 with LAH, and 95 with LPH (lymphocytic pan-hypophysitis) to date. The authors present the case of a 19-year-old woman with acute bacterial infection previous to symptoms of hypopituitarism. CT and MR imaging showed tumor-like areas of intensive post-contrast enhancement without edema in the suprasellar region and in the brain stem. Based on the diagnostic investigations, LINH was diagnosed. Germinoma, sarcoidosis, tuberculosis, and bacterial hypophysitis were excluded in the diagnostic differentiation. Regression of clinical and radiological symptoms was observed after corticotherapy. Lymphocytic infundibulo-neurohypophysitis is a rare disease that should be considered in the differential diagnosis of any suprasellar and/or intrasellar mass. (author)

  13. Responsibility of parents for misdemeanors committed by their descendants

    Directory of Open Access Journals (Sweden)

    Ristivojević Branislav R.

    2016-01-01

    Full Text Available The subject of the authors' attention are certain questions concerning the responsibility for the acts of other persons in the misdemeanor law of the Republic of Serbia. Under certain conditions, if a child or a minor (descendants commits a misdemeanor, instead of him or together with him, other persons can be held responsible as well, foremost his parents who had not exercised due supervision. There is a difference between the responsibility of a parent whose children have committed a misdemeanor and are under 14, and that of a parent whose children are between 14 and 18 years old. Therefore, there is a difference in terms of responsibility of the parent depending on if the person who committed the misdemeanor is, from the perspective of the Misdemeanor Law, a child or a minor. The authors critically analyze the articles of the Misdemeanor Law that concern the responsibility of the parent for the misdemeanors committed by their descendants. In the end, they conclude that the Misdemeanor Law undermines one of the essential legal principle that the 'scope of rights has to correspond to the scope of obligations and responsibility'.

  14. Bilateral anterior thalamic low densities in descending transtentorial herniation

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Chikao; Watanabe, Takao

    1985-02-01

    Round, well-demarcated, symmetrical low densities in a bilateral thalamus in a case of descending transtentorial herniation due secondarily to acute traumatic left subdural hematoma are reported. An 8-year-old boy, on whom emergency surgery was refused by his parents, showed a marked shift due to the hematoma on admission; this was followed by a low density in the left PCA territory and round, equivocal hypodensities in the anterior thalamus 44 hours post-trauma. The equivocal hypodensities became definite, well-demarcated, round low densities situated symmetrically in the anterior thalamus on the 39th day post-trauma. Akinetic mutism was noted at this time. The symmetrical low densities and the PCA-territory low density persisted as late as the 39th day post-trauma, suggesting infarcts. The downward stretch of the bilateral thalamoperforators, which was effected by a narrowing of the interpeduncular fossa with an approximation of the bilateral perforators, plus a downward shift of the PCA due to descending transtentorial herniation, was assumed to be the mechanism involved. (author).

  15. Surgical treatment of penetrating atherosclerotic ulcer of the descending aorta

    Directory of Open Access Journals (Sweden)

    Kovačević Pavle

    2013-01-01

    Full Text Available Introduction. The term “penetrating atherosclerotic ulcer” (PAU of the aorta describes the condition in which ulceration of an aortic atherosclerotic lesion penetrates the internal elastic lamina into media. PAU is a high-risk lesion due to its deleterious effects on the integrity of aortic wall, with potentially fatal outcome. Case report. A patient with intensive, sharp chest pain irradiating to the back but with no signs of myocardial ischemia on an electrocardiogram was referred to our hospital. Transthoracic echocardiography showed no pathological changes of the ascending aorta. However, multislice computed tomography (CT showed an aortic ulcer with varying degree of the subadventitial hemorrhage in the region of the thoracic aorta at the level of Th 8-9. Due to imminent rupture of the penetrating aortic ulcer, the patient was promptly prepared for surgery. A 15 cm long subadventitial hematoma was found intraoperatively in the right posterolateral aspect of the descending aorta, 5 cm above the diaphragm and 7 cm below the origin of the left subclavial artery. The affected segment of the aorta was resected, followed by an inlay aortic reconstruction with a Dacron tube graft of 24 mm. Control CT revealed satisfactory reconstruction of the descending aorta. Conclusion. PAU is a rare, but potentially fatal disease. Open surgery in patients with PAU is an effective treatment strategy, although endovascular treatment options are emerging.

  16. Participation: A Descending Road of the Metaphysical Cognition of Being

    Directory of Open Access Journals (Sweden)

    Andrzej Maryniarczyk

    2016-12-01

    Full Text Available When we see in the world the fact that there are many beings, and we indicate that the particular beings exist in a compositional way, we face the task of learning about a new problem: how can we define and determine the relations between beings and between the elements within a being? Although the theory of participation has roots that go back to Plato, and so to a philosophy in which the pluralism of being was rejected and which accepted an identity-based conception of being, participation finds its ontological rational justification only (and ultimately in the pluralistic and compositional conception of being. With the description of participation as a “descending road” in the cognition of being, we are restricting ourselves to the presentation of how participation is understood in realistic metaphysics (while we shall leave aside the history of the question. We will show the aspects of participation that provide a foundation for wisdom-oriented cognition, and we will show the specific character of participation-oriented cognition as a “descending road.”

  17. Stem cell biology meets systems biology

    OpenAIRE

    Roeder, I.; Radtke, F.

    2009-01-01

    Stem cells and their descendents are the building blocks of life. How stem cell populations guarantee their maintenance and/or self-renewal, and how individual stem cells decide to transit from one cell stage to another to generate different cell types are long-standing and fascinating questions in the field. Here, we review the discussions that took place at a recent EMBO conference in Cambridge, UK, in which these questions were placed in the context of the latest advances in stem cell biol...

  18. Mobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat

    Directory of Open Access Journals (Sweden)

    Mohsen Marzban

    2010-01-01

    Full Text Available Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF administration in rats for 6 weeks after traumatic brain injury (TBI. Methods: Adult male Wistar rats (n = 30 were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each were injected subcutaneously with recombinant human G-CSF. Vehicle group (n=10 received phosphate buffered saline (PBS and only Brdu intraperitoneally. Bromodeoxyuridine (BrdU was used for mitotic labeling. Experimental rats were injected intraperitoneally with BrdU. Rats were killed at 6th week after traumatic brain injury. Neurological functional evaluation of animals was performed before and after injury using neurological severity scores (NSS. Animals were sacrificed 42 days after TBI and brain sections were stained using Brdu immunohistochemistry. Results: Statistically significant improvement in functional outcome was observed in treatment groups when compared with control (p<0.01. This benefit was visible 7 days after TBI and persisted until 42 days (end of trial. Histological analysis showed that Brdu cell positive was more in the lesion boundary zone at treatment animal group than all injected animals. Discussion: We believe that G-CSF therapeutic protocol reported here represents an attractive strategy for the development of a clinically significant noninvasive traumatic brain injury therapy.

  19. Primary and Secondary Vestibular Connections in the Brain Stem and Cerebellum: An Axoplasmic Transport Study in the Monkey and Cat

    Science.gov (United States)

    1983-08-25

    Edinger-Westphal nucleus in the cat, Brain Research, 141 (1978) 153-159. Lorente de No, R., Etudes sur le cerveau posterieur. Ill, Sur 1 es connexions...extra-cerebelleuses des fascicules afferents au cerveau , et sur la fontion de cet organe, Trav. Lab. Rech. Biol. Univ. Madrid, 22 (1924) 51-65

  20. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  1. An extinct vertebrate preserved by its living hybridogenetic descendant.

    Science.gov (United States)

    Dubey, Sylvain; Dufresnes, Christophe

    2017-10-06

    Hybridogenesis is a special mode of hybrid reproduction where one parental genome is eliminated and the other is transmitted clonally. We propose that this mechanism can perpetuate the genome of extinct species, based on new genetic data from Pelophylax water frogs. We characterized the genetic makeup of Italian hybridogenetic hybrids (P. kl. hispanicus and esculentus) and identified a new endemic lineage of Eastern-Mediterranean origin as one parental ancestor of P. kl. hispanicus. This taxon is nowadays extinct in the wild but its germline subsists through its hybridogenetic descendant, which can thus be considered as a "semi living fossil". Such rare situation calls for realistic efforts of de-extinction through selective breeding without genetic engineering, and fuels the topical controversy of reviving long extinct species. "Ghost" species hidden by taxa of hybrid origin may be more frequent than suspected in vertebrate groups that experienced a strong history of hybridization and semi-sexual reproduction.

  2. Miopatia ocular descendente Descending ocular myopathy: a case report

    Directory of Open Access Journals (Sweden)

    Marcos R. G. de Freitas

    1975-06-01

    Full Text Available Os autores apresentam caso de paciente jovem, do sexo feminino, com afecção muscular primária ocular e faríngea sem caráter familial. Foram feitos estudos eletromiográficos e histopatológicos musculares que confirmam o caráter miogênico do processo. É feita comparação entre a miopatia ocular e a miopatia ocular descendente, acreditando os autores que seriam variantesThe case of a 23 years old female patient, with primary involvement of the extraocular and faringeal muscles without familiar history is reported. Electromyographic and muscular biopsy studies proved the myogenic nature of the process. A clinical comparison between the ocular myopathy and the descending ocular myopathy is made, the authors thinking that both of them would be variants of the same muscle disease.

  3. Testicular Descend, How and Why: A Review Article

    Directory of Open Access Journals (Sweden)

    Sujan Narayan Agrawal

    2017-08-01

    Full Text Available Background: The testis develops in the dorsal abdominal wall, and then descends to scrotum. The development begins as early as 6th week of intrauterine life and is completed by fifth month of intrauterine life. The testis may get arrested during its descent from dorsal abdominal wall to scrotum. The anomalies of descent includes cryptorchism (and its variant like anarchism, monarchism or partially descended testis, ectopic testis, persistent processus vaginalis and encysted hydrocoel of spermatic cord etc. Cryptorchism is usually diagnosed during the new born examination. The recognition of this condition, identification of associated syndromes, proper diagnostic evaluation and timely treatment by surgical urologist is important to prevent adverse consequences like sterility, congenital hernia & hydrocoel, testicular carcinoma etc. Objectives: the objective of this review is to study the role of gubernaculum in the testicular migration process. Material & Method: We performed a descriptive review of the literature about the role of the gubernaculum in testicular migration during the human fetal life. This article provides an overview of role of gubernaculum and other factors responsible for gonadal migration. Results: In the first phase of testicular migration the gubernaculum enlarges to hold the testis near groin and in the second phase the gubernaculum migrates across the pubic region to reach the scrotum. The proximal end of gubernaculum is attached to the testis and epididymis. The lower end reaches to bottom of scrotum. A failure in the proper functioning of gubernaculum causes cryptorchism. Rarely male gonads may deviate from main pathway due to presence of many tails of distal gubernaculum, and it may give rise to ectopic testis. The processus vaginalis usually closes by birth. If it remains patent, it leads to congenital hernia, hydrocoel, encysted hydrocoel etc. Conclusion: the gubernaculum presents a significant structure during

  4. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy?

    Science.gov (United States)

    Sandu, Raluca Elena; Balseanu, Adrian Tudor; Bogdan, Catalin; Slevin, Mark; Petcu, Eugen; Popa-Wagner, Aurel

    2017-08-01

    Stroke is a devastating disease demanding vigorous search for new therapies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments that may be related to unfavorable age-associated environments. Recent results using a variety of drug, cell therapy or combination thereof suggest that, (i) treatment with Granulocyte-Colony Stimulating Factor (G-CSF) in aged rats has primarily a beneficial effect on functional outcome most likely via supportive cellular processes such as neurogenesis; (ii) the combination therapy, G-CSF with mesenchymal cells (G-CSF+BM-MSC or G-CSF+BM-MNC) did not further improve behavioral indices, neurogenesis or infarct volume as compared to G-CSF alone in aged animals; (iii) better results with regard to integration of transplanted cells in the aged rat environment have been obtained using iPS of human origin; (iv) mesenchymal cells may be used as drug carriers for the aged post-stroke brains. While the middle aged brain does not seem to impair drug and cell therapies, in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time. Copyright © 2017. Published by Elsevier Inc.

  5. The number of stem cells in the subependymal zone of the adult rodent brain is correlated with the number of ependymal cells and not with the volume of the niche.

    Science.gov (United States)

    Kazanis, Ilias; Ffrench-Constant, Charles

    2012-05-01

    The mammalian subependymal zone (SEZ; often called subventricular) situated at the lateral walls of the lateral ventricles of the brain contains a pool of relatively quiescent adult neural stem cells whose neurogenic activity persists throughout life. These stem cells are positioned in close proximity both to the ependymal cells that provide the cerebrospinal fluid interface and to the blood vessel endothelial cells, but the relative contribution of these 2 cell types to stem cell regulation remains undetermined. Here, we address this question by analyzing a naturally occurring example of volumetric scaling of the SEZ in a comparison of the mouse SEZ with the larger rat SEZ. Our analysis reveals that the number of stem cells in the SEZ niche is correlated with the number of ependymal cells rather than with the volume, thereby indicating the importance of ependymal-derived factors in the formation and function of the SEZ. The elucidation of the factors generated by ependymal cells that regulate stem cell numbers within the SEZ is, therefore, of importance for stem cell biology and regenerative neuroscience.

  6. (3H)-dihydrotestosterone in catecholamine neurons of rat brain stem: combined localization by autoradiography and formaldehyde-induced fluorescence

    International Nuclear Information System (INIS)

    Heritage, A.S.; Stumpf, W.E.; Sar, M.; Grant, L.D.

    1981-01-01

    A combined formaldehyde-induced fluorescence (FIF)-autoradiography procedure was used to determine how and where the androgen, dihydrotestosterone (DHT), is associated with catecholamine systems in the rat brain. With this dual localization method, ( 3 H)-DHT target sites can be visualized in relation to catecholamine perikarya and terminals. In the hindbrain, catecholamine neurons adjacent to the fourth ventricle (group A4), the nucleus (n.) olivaris superior (group A5), the n. parabranchialis medialis (group A7), and in the locus coeruleus (group A6) and subcoeruleal regions, as well as in the substantia grisea centralis, concentrate ( 3 H)-DHT in their nuclei. ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following hindbrain regions: n. motorius dorsalis nervi vagi, n. tractus solitarii, n. commissuralis, n. raphe pallidus, n. olivaris inferior, the ventrolateral portion of the substantia grisea centralis, n. cuneiformis, and the ventrolateral reticular formation in the caudal mesencephalon. In the forebrain, ( 3 H)-DHT concentrates in nuclei of catecholamine neurons located in the n. arcuatus and n. periventricularis (group A12). In addition, ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following forebrain regions: n. periventricularis rotundocellularis, n. paraventricularis, n. dorsomedialis, n. periventricularis, area retrochiasmatica, n. interstititalis striae terminalis (ventral portion), and n. amygdaloideus centralis. The disclosure of a morphologic association between ( 3 H)-DHT target sites and certain brain catecholamine systems suggests a close functional interdependence between androgens and catecholamines

  7. [Influence of granulocyte colony stimulating factor on distribution of bone marrow stem cells and its role in protecting brain in rats with cerebral ischemia].

    Science.gov (United States)

    Li, Jian-sheng; Liu, Jing-xia; Liu, Ke; Wang, Ding-chao; Ren, Wei-hong; Zhang, Xin-feng; Tian, Yu-shou

    2011-06-01

    To explore the influence of recombination granulocyte colony stimulating factor (rG-CSF) on mobilization and distribution of bone marrow stem cells (BMSCs) in blood and brain tissue, and its role in protecting brain in rats with cerebral ischemia. One hundred and six Sprague-Dawley (SD) rats were divided into sham-operated group (n=10),model group (n=48), rG-CSF group (n=48) according to the method of random digital table, and rats in model and rG-CSF groups were divided into four subgroups: i.e. 2, 3, 7 and 14 days subgroups, with 12 rats in each subgroup. Middle cerebral artery occlusion (MCAO) model was reproduced with nylon thread. In rats of rG-CSF group rG-CSF (10 μg/kg) was administered by subcutaneous injection 3 days before and 2 days after operation respectively, once a day. Rats in sham-operated and model groups were administered with normal saline in the same volume, once a day. At the corresponding time after operation, general neural function score (GNFS) of rats was measured. Blood was collected through abdominal aorta, then white blood cell (WBC) and CD34+ cells in peripheral blood were counted. Brain pathologic changes were observed, and expression of CD34+ cells in rats brain tissue was determined by using immunohistochemical method. (1) GNFS was lower obviously in 2-day model group compared with that in sham-operated group, and then increased gradually. At 7 days and 14 days after operation, GNFS in rG-CSF group was higher significantly than that in model group (7 days: 11.86±0.69 vs. 10.53±0.76, 14 days: 13.38±0.52 vs. 12.38±0.52, both P<0.01). (2) WBC and CD34+ cells in peripheral blood in model group increased obviously, with the highest level appeared at 3 days and lowered at 7 days and 14 days. Increase of WBC and CD34+ cells in rats of rG-CSF group was more obvious than that of model group at each time point except CD34+ in 14 days group [WBC (×10(9)/L) 2 days: 11.75±1.76 vs. 8.07±1.27, 3 days: 13.07±1.70 vs. 10.88±1.78, 7 days: 8

  8. Retinoic acid-pretreated Wharton's jelly mesenchymal stem cells in combination with triiodothyronine improve expression of neurotrophic factors in the subventricular zone of the rat ischemic brain injury.

    Science.gov (United States)

    Sabbaghziarani, Fatemeh; Mortezaee, Keywan; Akbari, Mohammad; Kashani, Iraj Ragerdi; Soleimani, Mansooreh; Moini, Ashraf; Ataeinejad, Nahid; Zendedel, Adib; Hassanzadeh, Gholamreza

    2017-02-01

    Stroke is the consequence of limited blood flow to the brain with no established treatment to reduce the neurological deficits. Focusing on therapeutic protocols in targeting subventricular zone (SVZ) neurogenesis has been investigated recently. This study was designed to evaluate the effects of retinoic acid (RA)-pretreated Wharton's jelly mesenchymal stem cells (WJ-MSCs) in combination with triiodothyronine (T3) in the ischemia stroke model. Male Wistar rats were used to induce focal cerebral ischemia by middle cerebral artery occlusion (MCAO). There were seven groups of six animals: Sham, Ischemic, WJ-MSCs, RA-pretreated WJ-MSCs, T3, WJ-MSCs +T3, and RA-pretreated WJ-MSCs + T3. The treatment was performed at 24 h after ischemia, and animals were sacrificed one week later for assessments of retinoid X receptor β (RXRβ), brain-derived neurotrophic factor (BDNF), Sox2 and nestin in the SVZ. Pro-inflammatory cytokines in sera were measured at days four and seven after ischemia. RXRβ, BDNF, Sox2 and nestin had the significant expressions in gene and protein levels in the treatment groups, compared with the ischemic group, which were more vivid in the RA-pretreated WJ-MSCs + T3 (p ≤ 0.05). The same trend was also resulted for the levels of TNF-α and IL-6 at four days after ischemia (p ≤ 0.05). In conclusion, application of RA-pretreated WJ-MSCs + T3 could be beneficial in exerting better neurotrophic function probably via modulation of pro-inflammatory cytokines.

  9. A preclinical murine model for the early detection of radiation-induced brain injury using magnetic resonance imaging and behavioral tests for learning and memory: with applications for the evaluation of possible stem cell imaging agents and therapies.

    Science.gov (United States)

    Ngen, Ethel J; Wang, Lee; Gandhi, Nishant; Kato, Yoshinori; Armour, Michael; Zhu, Wenlian; Wong, John; Gabrielson, Kathleen L; Artemov, Dmitri

    2016-06-01

    Stem cell therapies are being developed for radiotherapy-induced brain injuries (RIBI). Magnetic resonance imaging (MRI) offers advantages for imaging transplanted stem cells. However, most MRI cell-tracking techniques employ superparamagnetic iron oxide particles (SPIOs), which are difficult to distinguish from hemorrhage. In current preclinical RIBI models, hemorrhage occurs concurrently with other injury markers. This makes the evaluation of the recruitment of transplanted SPIO-labeled stem cells to injury sites difficult. Here, we developed a RIBI model, with early injury markers reflective of hippocampal dysfunction, which can be detected noninvasively with MRI and behavioral tests. Lesions were generated by sub-hemispheric irradiation of mouse hippocampi with single X-ray beams of 80 Gy. Lesion formation was monitored with anatomical and contrast-enhanced MRI and changes in memory and learning were assessed with fear-conditioning tests. Early injury markers were detected 2 weeks after irradiation. These included an increase in the permeability of the blood-brain barrier, demonstrated by a 92 ± 20 % contrast enhancement of the irradiated versus the non-irradiated brain hemispheres, within 15 min of the administration of an MRI contrast agent. A change in short-term memory was also detected, as demonstrated by a 40.88 ± 5.03 % decrease in the freezing time measured during the short-term memory context test at this time point, compared to that before irradiation. SPIO-labeled stem cells transplanted contralateral to the lesion migrated toward the lesion at this time point. No hemorrhage was detected up to 10 weeks after irradiation. This model can be used to evaluate SPIO-based stem cell-tracking agents, short-term.

  10. In vitro modeling of experimental succinic semialdehyde dehydrogenase deficiency (SSADHD using brain-derived neural stem cells.

    Directory of Open Access Journals (Sweden)

    Kara R Vogel

    Full Text Available We explored the utility of neural stem cells (NSCs as an in vitro model for evaluating preclinical therapeutics in succinic semialdehyde dehydrogenase-deficient (SSADHD mice. NSCs were obtained from aldh5a1+/+ and aldh5a1-/- mice (aldh5a1 = aldehyde dehydrogenase 5a1 = SSADH. Multiple parameters were evaluated including: (1 production of GHB (γ-hydroxybutyrate, the biochemical hallmark of SSADHD; (2 rescue from cell death with the dual mTOR (mechanistic target of rapamycin inhibitor, XL-765, an agent previously shown to rescue aldh5a1-/- mice from premature lethality; (3 mitochondrial number, total reactive oxygen species, and mitochondrial superoxide production, all previously documented as abnormal in aldh5a1-/- mice; (4 total ATP levels and ATP consumption; and (5 selected gene expression profiles associated with epilepsy, a prominent feature in both experimental and human SSADHD. Patterns of dysfunction were observed in all of these parameters and mirrored earlier findings in aldh5a1-/- mice. Patterns of dysregulated gene expression between hypothalamus and NSCs centered on ion channels, GABAergic receptors, and inflammation, suggesting novel pathomechanisms as well as a developmental ontogeny for gene expression potentially associated with the murine epileptic phenotype. The NSC model of SSADHD will be valuable in providing a first-tier screen for centrally-acting therapeutics and prioritizing therapeutic concepts of preclinical animal studies applicable to SSADHD.

  11. Hypotrochoids in conformal restriction systems and Virasoro descendants

    International Nuclear Information System (INIS)

    Doyon, Benjamin

    2013-01-01

    A conformal restriction system is a commutative, associative, unital algebra equipped with a representation of the groupoid of univalent conformal maps on connected open sets of the Riemann sphere, along with a family of linear functionals on subalgebras, satisfying a set of properties including conformal invariance and a type of restriction. This embodies some expected properties of expectation values in conformal loop ensembles CLE κ (at least for 8/3 iθ and w. We find that it has an expansion in positive powers of u and u-bar , and that the coefficients of pure u ( u-bar ) powers are holomorphic in w ( w-bar ). We identify these coefficients (the ‘hypotrochoid fields’) with certain Virasoro descendants of the identity field in conformal field theory, thereby showing that they form part of a vertex operator algebraic structure. This largely generalizes works by the author (in CLE), and the author with his collaborators Riva and Cardy (in SLE 8/3 and other restriction measures), where the case of the ellipse, at the order u 2 , led to the stress–energy tensor of CFT. The derivation uses in an essential way the Virasoro vertex operator algebra structure of conformal derivatives established recently by the author. The results suggest in particular the exact evaluation of CLE expectations of products of hypotrochoid fields as well as nontrivial relations amongst them through the vertex operator algebra, and further shed light onto the relationship between CLE and CFT. (paper)

  12. Partnership dynamics among migrants and their descendants in Estonia

    Directory of Open Access Journals (Sweden)

    Leen Rahnu

    2015-06-01

    Full Text Available Background: Extensive scholarly literature documents the decline in marriage and increase in non-marital cohabitation and divorce across regions and countries of Europe, but we know less about the extent to which these new family behaviours that have emerged in host societies are adopted by migrants. Objective: The aim of this study is to examine partnership transitions among the migrants and their descendants in Estonia, who mainly originate from the European part of Russia. By investigating an East European context, the study contributes to a more comprehensive account of migrant populations in different socio-economic and cultural settings. Methods: The study is based on the Estonian Generations and Gender Survey (2004/2005 and the Estonian Family and Fertility Survey (1994/1997, and employs proportional hazards models. Results: The results show that new family formation patterns, associated with the Second Demographic Transition, are less prevalent among migrants. The difference between migrants and native Estonians is most pronounced in the mode of partnership formation and outcomes of cohabiting unions, whereas the results pertaining to union dissolution reveal a less systematic difference between population groups. Reflecting the relatively slow integration, the second-generation migrants exhibit partnership behaviour that differs from that of the native population. The observed differences between migrants and the native population appear largely similar for both men and women. Conclusions: The results lend support to socialisation, cultural maintenance, and adaptation hypotheses, and underscore the importance of contextual factors. The analysis reveals disruption effects of migration on partnership processes.

  13. Cannabinoid receptor expression and phosphorylation are differentially regulated between male and female cerebellum and brain stem after repeated stress: implication for PTSD and drug abuse.

    Science.gov (United States)

    Xing, Guoqiang; Carlton, Janis; Zhang, Lei; Jiang, Xiaolong; Fullerton, Carol; Li, He; Ursano, Robert

    2011-09-08

    Recent study demonstrated a close relationship between cerebellum atrophy and symptom severity of pediatric maltreatment-related posttraumatic stress disorder (PTSD). It has also been known that females are more vulnerable than males in developing anxiety disorders after exposure to traumatic stress. The mechanisms are unknown. Because cannabinoid receptors (CB₁ and CB₂) are neuroprotective and highly expressed in the cerebellum, we investigated cerebellar CB expression in stressed rats. Young male and female Sprague-Dawley rats were given 40 unpredictable electric tail-shocks for 2h daily on 3 consecutive days. CB₁ and CB₂ mRNA and protein levels in rat cerebellum and brain stem were determined using quantitative real-time PCR and Western blot, respectively. Two-way ANOVA revealed significant gender and stress effects on cerebellar CB₁ mRNA expression, with females and non-stressed rats exhibiting higher CB₁ mRNA levels than the males (3 fold, pstressed rats (30%, pstress increased the level of phosphorylated CB₁ receptors, the inactivated CB₁, in rat cerebellum (pstress interaction. Thus, repeated severe stress caused greater CB₁ mRNA suppression and CB₁ receptor phosphorylation in female cerebellum that could lead to increased susceptibility to stress-related anxiety disorders including PTSD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte.

    Science.gov (United States)

    Gu, Yan; He, Mulan; Zhou, Xiaoqin; Liu, Jinngjing; Hou, Nali; Bin, Tan; Zhang, Yun; Li, Tingyu; Chen, Jie

    2016-01-14

    Mesenchymal stem cell (MSC) transplantation reduces the neurological impairment caused by hypoxic-ischemic brain damage (HIBD) via immunomodulation. In the current study, we found that MSC transplantation improved learning and memory function and enhanced long-term potentiation in neonatal rats subjected to HIBD and the amount of IL-6 released from MSCs was far greater than that of other cytokines. However, the neuroprotective effect of MSCs infected with siIL-6-transduced recombinant lentivirus (siIL-6 MSCs) was significantly weakened in the behavioural tests and electrophysiological analysis. Meanwhile, the hippocampal IL-6 levels were decreased following siIL-6 MSC transplantation. In vitro, the levels of IL-6 release and the levels of IL-6R and STAT3 expression were increased in both primary neurons and astrocytes subjected to oxygen and glucose deprivation (OGD) following MSCs co-culture. The anti-apoptotic protein Bcl-2 was upregulated and the pro-apoptotic protein Bax was downregulated in OGD-injured astrocytes co-cultured with MSCs. However, the siIL-6 MSCs suppressed ratio of Bcl-2/Bax in the injured astrocytes and induced apoptosis number of the injured astrocytes. Taken together, these data suggest that the neuroprotective effect of MSC transplantation in neonatal HIBD rats is partly mediated by IL-6 to enhance anti-apoptosis of injured astrocytes via the IL-6/STAT3 signaling pathway.

  15. Transplantation of N-Acetyl Aspartyl-Glutamate Synthetase-Activated Neural Stem Cells after Experimental Traumatic Brain Injury Significantly Improves Neurological Recovery

    Directory of Open Access Journals (Sweden)

    Mingfeng Li

    2013-12-01

    Full Text Available Background/Aims: Neural stem cells (NSCs hold considerable potential as a therapeutic tool for repair of the damaged nervous system. In the current study, we examined whether transplanted N-acetyl aspartyl-glutamate synthetase (NAAGS-activated NSCs (NAAGS/NSCs further improve neurological recovery following traumatic brain injury (TBI in Sprague-Dawley rats. Methods: Animals received TBI and stereotactic injection of NSCs, NAAGS/NSCs or phosphate buffered saline without cells (control into the injured cortex. NAAGS protein expression was detected through western blot analysis. Dialysate NAAG levels were analyzed with radioimmunoassay. Cell apoptosis was detected via TUNEL staining. The expression levels of specific pro-inflammatory cytokines were detected with enzyme-linked immunosorbent assay. Results: Groups with transplanted NSCs and NAAGS/NSCs displayed significant recovery of the motor behavior, compared to the control group. At 14 and 21 days post-transplantation, the motor behavior in NAAGS/NSC group was significantly improved than that in NSC group (pConclusion: Our results collectively demonstrate that NAAGS/NSCs provide a more powerful autoplastic therapy for the injured nervous system.

  16. Brain-Derived Neurotrophic Factor Increases Synaptic Protein Levels via the MAPK/Erk Signaling Pathway and Nrf2/Trx Axis Following the Transplantation of Neural Stem Cells in a Rat Model of Traumatic Brain Injury.

    Science.gov (United States)

    Chen, Tao; Wu, Yu; Wang, Yuzi; Zhu, Jigao; Chu, Haiying; Kong, Li; Yin, Liangwei; Ma, Haiying

    2017-11-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in promoting the growth, differentiation, survival and synaptic stability of neurons. Presently, the transplantation of neural stem cells (NSCs) is known to induce neural repair to some extent after injury or disease. In this study, to investigate whether NSCs genetically modified to encode the BDNF gene (BDNF/NSCs) would further enhance synaptogenesis, BDNF/NSCs or naive NSCs were directly engrafted into lesions in a rat model of traumatic brain injury (TBI). Immunohistochemistry, western blotting and RT-PCR were performed to detect synaptic proteins, BDNF-TrkB and its downstream signaling pathways, at 1, 2, 3 or 4 weeks after transplantation. Our results showed that BDNF significantly increased the expression levels of the TrkB receptor gene and the phosphorylation of the TrkB protein in the lesions. The expression levels of Ras, phosphorylated Erk1/2 and postsynaptic density protein-95 were elevated in the BDNF/NSCs-transplanted groups compared with those in the NSCs-transplanted groups throughout the experimental period. Moreover, the nuclear factor (erythroid-derived 2)-like 2/Thioredoxin (Nrf2/Trx) axis, which is a specific therapeutic target for the treatment of injury or cell death, was upregulated by BDNF overexpression. Therefore, we determined that the increased synaptic proteins level implicated in synaptogenesis might be associated with the activation of the MAPK/Erk1/2 signaling pathway and the upregulation of the antioxidant agent Trx modified by BDNF-TrkB following the BDNF/NSCs transplantation after TBI.

  17. Chemo-predictive assay for targeting cancer stem-like cells in patients affected by brain tumors.

    Directory of Open Access Journals (Sweden)

    Sarah E Mathis

    Full Text Available Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID, which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1 and a 5-month female (patient 2, affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity

  18. Hybrid Approach of Aortic Diseases: Zone 1 Delivery and Volumetric Analysis on the Descending Aorta

    Directory of Open Access Journals (Sweden)

    José Augusto Duncan

    Full Text Available Abstract Introduction: Conventional techniques of surgical correction of arch and descending aortic diseases remains as high-risk procedures. Endovascular treatments of abdominal and descending thoracic aorta have lower surgical risk. Evolution of both techniques - open debranching of the arch and endovascular approach of the descending aorta - may extend a less invasive endovascular treatment for a more extensive disease with necessity of proximal landing zone in the arch. Objective: To evaluate descending thoracic aortic remodeling by means of volumetric analysis after hybrid approach of aortic arch debranching and stenting the descending aorta. Methods: Retrospective review of seven consecutive patients treated between September 2014 and August 2016 for diseases of proximal descending aorta (aneurysms and dissections by hybrid approach to deliver the endograft at zone 1. Computed tomography angiography were analyzed using a specific software to calculate descending thoracic aorta volumes pre- and postoperatively. Results: Follow-up was done in 100% of patients with a median time of 321 days (range, 41-625 days. No deaths or permanent neurological complications were observed. There were no endoleaks or stent migrations. Freedom from reintervention was 100% at 300 days and 66% at 600 days. Median volume reduction was of 45.5 cm3, representing a median volume shrinkage by 9.3%. Conclusion: Hybrid approach of arch and descending thoracic aorta diseases is feasible and leads to a favorable aortic remodeling with significant volume reduction.

  19. Argillization by descending acid at Steamboat Springs, Nevada

    Science.gov (United States)

    Schoen, Robert; White, Donald E.; Hemley, J.J.

    1974-01-01

    Steamboat Springs, Nevada, an area of present-day hot springs, clearly illustrates the genetic dependence of some kaolin deposits on hot-spring activity. Andesite, granodiorite and arkosic sediments are locally altered at the land surface to siliceous residues consisting of primary quartz and anatase, plus opal from primary silicates. These siliceous residues commonly exhibit the textural and structural features of their unaltered equivalents. Beneath the siliceous residues, kaolin and alunite replace primary silicates and fill open spaces, forming a blanketlike deposit. Beneath the kaolin-alunite zone, montmorillonite, commonly accompanied by pyrite, replaces the primary silicates. On the ground surface, the same alteration mineral zones can be traced outward from the siliceous residue; however, hematite rather than pyrite accompanies montmorillonite.Chemical analysis indicates that sulfuric acid is the active altering agent. The acid forms from hydrogen sulfide that exsolves from deep thermal water, rises above the water table and is oxidized by sulfur-oxidizing bacteria living near the ground surface. This acid dissolves in precipitation or condensed water vapor and percolates downward destroying most of the primary minerals producing a siliceous residue. Coincidence of the water table with the downward transition from siliceous residue to kaolin-alunite signifies decreasing hydrogen metasomatism because of dilution of descending acid by ground water.In hot-spring areas, beds of siliceous sinter deposited at the surface by hypogene thermal water look, superficially, like areas of surficial acid alteration. Features diagnostic of a surficial alteration are the relict rock structures of a siliceous residue and a kaolin-alunite zone immediately beneath.

  20. Stem cells: Concepts and prospects

    Indian Academy of Sciences (India)

    development exemplified by murine experiments motivated the ... from specific regions of the brain, cardiac stem cells from atrial ..... have also been shown to integrate and differentiate .... to vascular network structures in three dimensional.

  1. The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer's disease-related cytoskeletal pathology.

    Science.gov (United States)

    Rüb, U; Del Tredici, K; Schultz, C; Thal, D R; Braak, E; Braak, H

    2001-06-01

    The nuclei of the pontine parabrachial region (medial parabrachial nucleus, MPB; lateral parabrachial nucleus, LPB; subpeduncular nucleus, SPP) together with the intermediate zone of the medullary reticular formation (IRZ) are pivotal relay stations within central autonomic regulatory feedback systems. This study was undertaken to investigate the evolution of the Alzheimer's disease-related cytoskeletal pathology in these four sites of the lower brain stem. We examined the MPB, LPB, SPP and IRZ in 27 autopsy cases and classified the cortical Alzheimer-related cytoskeletal anomalies according to an established staging system (neurofibrillary tangle/neuropil threads [NFT/NT] stages I-VI). The lesions were visualized either with the antibody AT8, which is immunospecific for the abnormally phosphorylated form of the cytoskeletal protein tau, or with a modified Gallyas silver iodide stain. The MPB, SPB, and IRZ display cytoskeletal pathology in stage I and the LPB in stage II, whereby bothstages correspond to the preclinical phase of Alzheimer's disease (AD). In stages III-IV (incipient AD), the MPB and SPP are severely affected. In all of the stage III-IV cases, the lesions in the LPB and IRZ are well developed. In stages V and VI (clinical phase of AD), the MPB and SPP are filled with the abnormal intraneuronal material. At stages V-VI, the LPB is moderately involved and the IRZ shows severe damage. The pathogenesis of the AD-related cytoskeletal lesions in the nuclei of the pontine parabrachial region and in the IRZ conforms with the cortical NFT/NT staging sequence I-VI. In the event that the cytoskeletal pathology observed in this study impairs the function of the nerve cells involved, it is conceivable that autonomic mechanisms progressively deteriorate with advancing cortical NFT/NT stages. This relationship remains to be established, but it could provide insights into the illusive correlation between the AD-related cytoskeletal pathology and the function of

  2. Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker proteins.

    Science.gov (United States)

    Bierlein De la Rosa, Metzere; Sharma, Anup D; Mallapragada, Surya K; Sakaguchi, Donald S

    2017-11-01

    The use of genetically modified mesenchymal stem cells (MSCs) is a rapidly growing area of research targeting delivery of therapeutic factors for neuro-repair. Cells can be programmed to hypersecrete various growth/trophic factors such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and nerve growth factor (NGF) to promote regenerative neurite outgrowth. In addition to genetic modifications, MSCs can be subjected to transdifferentiation protocols to generate neural cell types to physically and biologically support nerve regeneration. In this study, we have taken a novel approach by combining these two unique strategies and evaluated the impact of transdifferentiating genetically modified MSCs into a Schwann cell-like phenotype. After 8 days in transdifferentiation media, approximately 30-50% of transdifferentiated BDNF-secreting cells immunolabeled for Schwann cell markers such as S100β, S100, and p75 NTR . An enhancement was observed 20 days after inducing transdifferentiation with minimal decreases in expression levels. BDNF production was quantified by ELISA, and its biological activity tested via the PC12-TrkB cell assay. Importantly, the bioactivity of secreted BDNF was verified by the increased neurite outgrowth of PC12-TrkB cells. These findings demonstrate that not only is BDNF actively secreted by the transdifferentiated BDNF-MSCs, but also that it has the capacity to promote neurite sprouting and regeneration. Given the fact that BDNF production remained stable for over 20 days, we believe that these cells have the capacity to produce sustainable, effective, BDNF concentrations over prolonged time periods and should be tested within an in vivo system for future experiments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI

    Science.gov (United States)

    Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel

    2012-01-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696

  4. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI.

    Science.gov (United States)

    Bible, Ellen; Dell'Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter M; Badylak, Stephen F; Ahrens, Eric T; Modo, Michel

    2012-04-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based (1)H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a (19)F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on (1)H-MRI scans. Twenty percent of cells labeled with the (19)F agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T(2)- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Sánchez-Martín

    Full Text Available Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb, an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD. Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons, and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents.

  6. Mean blood velocities and flow impedance in the fetal descending thoracic aortic and common carotid artery in normal pregnancy.

    Science.gov (United States)

    Bilardo, C M; Campbell, S; Nicolaides, K H

    1988-12-01

    A linear array pulsed Doppler duplex scanner was used to establish reference ranges for mean blood velocities and flow impedance (Pulsatility Index = PI) in the descending thoracic aorta and in the common carotid artery from 70 fetuses in normal pregnancies at 17-42 weeks' gestation. The aortic velocity increased with gestation up to 32 weeks, then remained constant until term, when it decreased. In contrast, the velocity in the common carotid artery increased throughout pregnancy. The PI in the aorta remained constant throughout pregnancy, while in the common carotid artery it fell steeply after 32 weeks. These results suggest that with advancing gestation there is a redistribution of the fetal circulation with decreased impedance to flow to the fetal brain, presumably to compensate for the progressive decrease in fetal blood PO2.

  7. Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment

    International Nuclear Information System (INIS)

    Marsh, James C.; Ziel, Ellis G; Diaz, Aidnag Z; Turian, Julius V; Wendt, Julie A.; Gobole, Rohit

    2013-01-01

    We compared integral dose with uninvolved brain (ID brain ) during partial brain radiotherapy (PBRT) for high-grade glioma patients using helical tomotherapy (HT) and seven field traditional inverse-planned intensity-modulated radiotherapy (IMRT) with and without selective sparing (SPA) of contralateral hippocampus, neural stem cell compartment (NSC) and limbic circuit. We prepared four PBRT treatment plans for four patients with high-grade gliomas (60Gy in 30 fractions delivered to planning treatment volume (PTV60Gy)). For all plans, a structure denoted 'uninvolved brain' was created, which included all brain tissue not part of PTV or standard (STD) organs at risk (OAR). No dosimetric constraints were included for uninvolved brain. Selective SPA plans were prepared with IMRT and HT; contralateral hippocampus, NSC and limbic circuit were contoured; and dosimetric constraints were entered for these structures without compromising dose to PTV or STD OAR. We compared V100 and D95 for PTV46Gy and PTV60Gy, and ID brain for all plans. There were no significant differences in V100 and D95 for PTV46Gy and PTV60Gy. ID brain was lower in traditional IMRT versus HT plans for STD and SPA plans (mean ID brain 23.64Gy vs. 28Gy and 18.7Gy vs. 24.5Gy, respectively) and in SPA versus STD plans both with IMRT and HT (18.7Gy vs. 23.64Gy and 24.5Gy vs. 28Gy, respectively). n the setting of PBRT for high-grade gliomas, IMRT reduces ID brain compared with HT with or without selective SPA of contralateral hippocampus, limbic circuit and NSC, and the use of selective SPA reduces ID brain compared with STD PBRT delivered with either traditional IMRT or HT.

  8. the priests and the descendants of levi in the book of malachi

    African Journals Online (AJOL)

    Fanie Snyman for his hospitality and for all his generous efforts to make my stay ... This interpretation of the descendants of Levi has long since found many ...... 1998. Malachi. A New Translation with Introduction and Commentary. New.

  9. Is there equity in use of healthcare services among immigrants, their descendents, and ethnic Danes?

    DEFF Research Database (Denmark)

    Nielsen, Signe S; Hempler, Nana F; Waldorff, Frans B

    2012-01-01

    Legislation in Denmark explicitly states the right to equal access to healthcare. Nevertheless, inequities may exist; accordingly evidence is needed. Our objective was to investigate whether differences in healthcare utilisation in immigrants, their descendents, and ethnic Danes could be explaine...

  10. [Coarctation of the descending aorta. A rare form of connatal aortic stenosis].

    Science.gov (United States)

    Stammwitz, E; Schöttler, M; Brix, F; Poser, H L; Langkau, G; Yükseltan, I

    1983-07-01

    A clinical diagnosis of a coarctation of the aorta was made in a 17-year-old female hypertensive patient. Angiography revealed an atypical stenosis of the descending aorta which was surgically corrected. The causes of aortic stenoses are discussed.

  11. Performance and physiological effects of different descending strategies for cross-country mountain biking.

    Science.gov (United States)

    Miller, Matthew C; Macdermid, Paul W; Fink, Phil W; Stannard, Stephen R

    2017-04-01

    This study investigated the performance-related feasibility and physiological benefits of purposefully eliminating propulsive work while descending in mountain biking and compared values to those measured during road descending. Participants cycled uphill on a road at race pace before descending over three conditions (off-road pedalling; off-road coasting; road coasting). Relatively low power output during off-road pedalling was associated with a greater oxygen uptake (p  .05). Importantly, pedalling did not invoke a performance benefit (p > .05) on the descent used in this study. Significantly greater heart rate and oxygen uptake (both p bike athletes focus on skills to increase descending speed without the addition of pedalling, and that equipment be used to decrease vibrations nearer to those seen on the road.

  12. Congenital Membrane Causing Duodenal Obstruction and Malpositioning of the Descending Colon

    Directory of Open Access Journals (Sweden)

    Chee-Chee Koh

    2013-08-01

    Full Text Available A congenital membrane without intestinal malrotation is a rare cause of duodenal obstruction. Here we present an 11-year-old girl who had suffered from intermittent abdominal cramping pain and vomiting for more than 5 years. The image studies, including a plain abdomen roentgenogram and sonogram, showed no definite diagnosis. The upper gastrointestinal series and small bowel series showed the contrast was static over the third portion of the duodenum and the descending colon pulled up toward the epigastric area. Laparoscopic exploration revealed a congenital membrane extending from the right-side paraduodenal peritoneum through the third portion of the duodenum to the descending colon, which had caused obstruction of the third portion of the duodenum and malpositioning of the descending colon. To the best of our knowledge, this is the first case report in the literature where a congenital membrane caused both duodenal obstruction and malpositioning of the descending colon.

  13. Mural Thrombus in the Normal-Appearing Descending Thoracic Aorta of a Chronic Smoker

    Science.gov (United States)

    Habib, Habib; Hsu, Judy; Winchell, Patricia Jo; Daoko, Joseph

    2013-01-01

    Thrombus formation in an atherosclerotic or aneurysmal descending thoracic aorta is a well-described, frequently encountered vascular condition. In comparison, thrombus formation in a normal-appearing descending thoracic aorta is reported far less often. We describe the case of a 46-year-old woman who had splenic and renal infarctions secondary to embolic showers from a large, mobile thrombus in a morphologically normal proximal descending thoracic aorta. After the patient underwent anticoagulation, stent-grafting, and surgical bypass to correct an arterial blockage caused by the stent-graft, she resumed a relatively normal life. In contrast with other cases of a thrombotic but normal-appearing descending thoracic aorta, this patient had no known malignancy or systemic coagulative disorders; her sole risk factor was chronic smoking. We discuss our patient's case and review the relevant medical literature, focusing on the effect of smoking on coagulation physiology. PMID:24391341

  14. Your Brain and Nervous System

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Brain & Nervous System KidsHealth / For Kids / Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  15. Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation.

    Science.gov (United States)

    Peña, Juan A; Corral, Victoria; Martínez, Miguel A; Peña, Estefanía

    2018-01-01

    In this paper, we hypothesize that the biaxial mechanical properties of the aorta may be dependent on arterial location. To demonstrate any possible position-related difference, our study analyzed and compared the biaxial mechanical properties of the ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta stemming from the same porcine subjects, and reported values of constitutive parameters for well-known strain energy functions, showing how these mechanical properties are affected by location along the aorta. When comparing ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta, abdominal tissues were found to be stiffer and highly anisotropic. We found that the aorta changed from a more isotropic to a more anisotropic tissue and became progressively less compliant and stiffer with the distance to the heart. We observed substantial differences in the anisotropy parameter between aortic samples where abdominal samples were more anisotropic and nonlinear than the thoracic samples. The phenomenological model was not able to capture the passive biaxial properties of each specific porcine aorta over a wide range of biaxial deformations, showing the best prediction root mean square error ε=0.2621 for ascending thoracic samples and, especially, the worst for the infrarenal abdominal samples ε=0.3780. The micro-structured model with Bingham orientation density function was able to better predict biaxial deformations (ε=0.1372 for ascending thoracic aorta samples). The root mean square error of the micro-structural model and the micro-structured model with von Mises orientation density function were similar for all positions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A Case of Advanced Descending Colon Cancer in an Adult Patient with Intestinal Malrotation

    Directory of Open Access Journals (Sweden)

    Yoshifumi Nakayama

    2016-01-01

    Full Text Available This report presents an operative case of advanced descending colon cancer in an adult patient with intestinal malrotation. A 63-year-old Japanese male was suffering from left side abdominal pain, abdominal distension, and constipation. An endoscopic examination revealed an advanced tumor in the descending colon. Computed tomography (CT of the abdomen revealed the thickening of the descending colon wall and superior mesenteric vein rotation. An opaque enema detected severe stenosis of the descending colon. An abdominal X-ray examination revealed the dilation of the colon and small intestine with niveau. At the insertion of an ileus tube, the C-loop of the duodenum was observed to be absent and the small intestine was located on the right side of the abdomen. After the decompression of the bowel contents, laparotomy was performed. Descending colon cancer was observed to have directly invaded the left side of the transverse colon. Left hemicolectomy, lymph node dissection, and appendectomy were performed. The patient had an uneventful recovery and was discharged from the hospital on the 16th day after surgery. This report presents a rare operative case of descending colon cancer in an adult patient with intestinal malrotation.

  17. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F; Tremblay, Kelly L

    2011-01-01

    The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial

  18. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection

    Science.gov (United States)

    Qiao, Yang; Gumin, Joy; MacLellan, Christopher J.; Gao, Feng; Bouchard, Richard; Lang, Frederick F.; Stafford, R. Jason; Melancon, Marites P.

    2018-04-01

    Objective. To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. Materials and methods. Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ˜82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 μg ml-1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. Results. MSCs labeled with SPIO@Au at 4 μg ml-1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. Conclusions. Our results demonstrated the feasibility of tracking carotid artery

  19. Selection of reference genes for normalisation of real-time RT-PCR in brain-stem death injury in Ovis aries

    Directory of Open Access Journals (Sweden)

    Fraser John F

    2009-07-01

    Full Text Available Abstract Background Heart and lung transplantation is frequently the only therapeutic option for patients with end stage cardio respiratory disease. Organ donation post brain stem death (BSD is a pre-requisite, yet BSD itself causes such severe damage that many organs offered for donation are unusable, with lung being the organ most affected by BSD. In Australia and New Zealand, less than 50% of lungs offered for donation post BSD are suitable for transplantation, as compared with over 90% of kidneys, resulting in patients dying for lack of suitable lungs. Our group has developed a novel 24 h sheep BSD model to mimic the physiological milieu of the typical human organ donor. Characterisation of the gene expression changes associated with BSD is critical and will assist in determining the aetiology of lung damage post BSD. Real-time PCR is a highly sensitive method involving multiple steps from extraction to processing RNA so the choice of housekeeping genes is important in obtaining reliable results. Little information however, is available on the expression stability of reference genes in the sheep pulmonary artery and lung. We aimed to establish a set of stably expressed reference genes for use as a standard for analysis of gene expression changes in BSD. Results We evaluated the expression stability of 6 candidate normalisation genes (ACTB, GAPDH, HGPRT, PGK1, PPIA and RPLP0 using real time quantitative PCR. There was a wide range of Ct-values within each tissue for pulmonary artery (15–24 and lung (16–25 but the expression pattern for each gene was similar across the two tissues. After geNorm analysis, ACTB and PPIA were shown to be the most stably expressed in the pulmonary artery and ACTB and PGK1 in the lung tissue of BSD sheep. Conclusion Accurate normalisation is critical in obtaining reliable and reproducible results in gene expression studies. This study demonstrates tissue associated variability in the selection of these

  20. [Investigation of neural stem cell-derived donor contribution in the inner ear following blastocyst injection].

    Science.gov (United States)

    Volkenstein, S; Brors, D; Hansen, S; Mlynski, R; Dinger, T C; Müller, A M; Dazert, S

    2008-03-01

    Utilising the enormous proliferation and multi-lineage differentiation potentials of somatic stem cells represents a possible therapeutical strategy for diseases of non-regenerative tissues like the inner ear. In the current study, the possibility of murine neural stem cells to contribute to the developing inner ear following blastocyst injection was investigated. Fetal brain-derived neural stem cells from the embryonic day 14 cortex of male mice were isolated and expanded for four weeks in neurobasal media supplemented with bFGF and EGF. Neural stem cells of male animals were harvested, injected into blastocysts and the blastocysts were transferred into pseudo-pregnant foster animals. Each blastocyst was injected with 5-15 microspheres growing from single cell suspension from neurospheres dissociated the day before. The resulting mice were investigated six months POST PARTUM for the presence of donor cells. Brainstem evoked response audiometry (BERA) was performed in six animals. To visualize donor cells Lac-Z staining was performed on sliced cochleas of two animals. In addition, the cochleas of four female animals were isolated and genomic DNA of the entire cochlea was analyzed for donor contribution by Y-chromosome-specific PCR. All animals had normal thresholds in brainstem evoked response audiometry. The male-specific PCR product indicating the presence of male donor cells were detected in the cochleas of three of the four female animals investigated. In two animals, male donor cells were detected unilateral, in one animal bilateral. The results suggest that descendants of neural stem cells are detectable in the inner ear after injection into blastocysts and possess the ability to integrate into the developing inner ear without obvious loss in hearing function.

  1. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  2. Effects of ascending and descending climbers on space elevator cable dynamics

    Science.gov (United States)

    Ishikawa, Yoji; Otsuka, Kiyotoshi; Yamagiwa, Yoshiki; Doi, Hinata

    2018-04-01

    Based on a mass-point model, the cable dynamics of a space elevator during a climber's travel motion are examined. The cable response during a single operation of one ascending or descending climber is analyzed first, and then, based on the results, the cable dynamics for simultaneous operation of an ascending and a descending climber are evaluated. For the single operation, bending is significant when the climber is traveling near the Earth's surface. The cable also inclines with periodic oscillation as a result of a Coriolis force corresponding to the climber velocity. However, simultaneous operation of ascending and descending climbers can suppress the inclination of the cable by almost a factor of ten. In simultaneous operation, compared to single operation, a descending climber has a smaller amplitude of libration angle and less cable bending, while an ascending climber has a smaller amplitude when the climber is traveling at a higher altitude with climber velocities of 200 km/h and 400 km/h. The phase of the oscillation of the overall cable is found to be close to that of the descending climber. Cable bending is suppressed for any examined climber velocity, but the dependency of this suppression of displacement on climber velocity is not found. In summary, simultaneous operation can surely suppress the inclination of the cable via the cancellation of Coriolis forces by the two climbers.

  3. The descendants of the first quasars in the BlueTides simulation

    Science.gov (United States)

    Tenneti, Ananth; Di Matteo, Tiziana; Croft, Rupert; Garcia, ThomasJae; Feng, Yu

    2018-02-01

    Supermassive blackholes with masses of a billion solar masses or more are known to exist up to z = 7. However, the present-day environments of the descendants of first quasars are not well understood and it is not known if they live in massive galaxy clusters or more isolated galaxies at z = 0. We use a dark matter-only realization (BTMassTracer) of the BlueTides cosmological hydrodynamic simulation to study the halo properties of the descendants of the most massive black holes at z = 8. We find that the descendants of the quasars with most massive black holes are not amongst the most massive haloes. They reside in haloes of with group-like (˜1014 M⊙) masses, while the most massive haloes in the simulations are rich clusters with masses ˜1015 M⊙. At z = 0, the distribution of halo masses of these quasar descendants is similar to that of the descendants of least massive black holes, which indicates that they are likely to exist in similar environments. By tracing back to the z = 8 progenitors of the most massive (cluster sized) haloes at z = 0; we find that their most likely black hole mass is less than 107 M⊙; they are clearly not amongst the most massive black holes. For haloes above 1015 M⊙, there is only 20 per cent probability that their z = 8 progenitors hosted a black hole with mass above 107 M⊙.

  4. Selective deficiencies in descending inhibitory modulation in neuropathic rats: implications for enhancing noradrenergic tone.

    Science.gov (United States)

    Patel, Ryan; Qu, Chaoling; Xie, Jennifer Y; Porreca, Frank; Dickenson, Anthony H

    2018-05-31

    Pontine noradrenergic neurones form part of a descending inhibitory system that influences spinal nociceptive processing. Weak or absent descending inhibition is a common feature of chronic pain patients. We examined the extent to which the descending noradrenergic system is tonically active, how control of spinal neuronal excitability is integrated into thalamic relays within sensory-discriminative projection pathways, and how this inhibitory control is altered after nerve injury. In vivo electrophysiology was performed in anaesthetised spinal nerve ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus (VPL). In sham rats, spinal block of α2-adrenoceptors with atipamezole resulted in enhanced stimulus-evoked and spontaneous firing in the VPL, and produced conditioned place avoidance. However, in SNL rats these conditioned avoidance behaviours were absent. Furthermore, inhibitory control of evoked neuronal responses was lost but spinal atipamezole markedly increased spontaneous firing. Augmenting spinal noradrenergic tone in neuropathic rats with reboxetine, a selective noradrenergic reuptake inhibitor, modestly reinstated inhibitory control of evoked responses in the VPL but had no effect on spontaneous firing. In contrast, clonidine, an α2 agonist, inhibited both evoked and spontaneous firing, and exhibited increased potency in SNL rats compared to sham controls. These data suggest descending noradrenergic inhibitory pathways are tonically active in sham rats. Moreover, in neuropathic states descending inhibitory control is diminished, but not completely absent, and distinguishes between spontaneous and evoked neuronal activity. These observations may have implications for how analgesics targeting the noradrenergic system provide relief.

  5. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  6. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...... offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models...

  7. [Descending control of quiet standing and walking: a plausible neurophysiological basis of falls in elderly people].

    Science.gov (United States)

    Nakajima, Masashi

    2011-03-01

    Quiet standing and walking are generally considered to be an automatic process regulated by sensory feedback. In our report "Astasia without abasia due to peripheral neuropathy," which was published in 1994, we proposed that forced stepping in patients lacking the ankle torque is a compensatory motor control in order to maintain an upright posture. A statistical-biomechanics approach to the human postural control system has revealed open-loop (descending) control as well as closed-loop (feedback) control in quiet standing, and fractal dynamics in stride-to-stride fluctuations of walking. The descending control system of bipedal upright posture and gait may have a functional link to cognitive domains. Increasing dependence on the descending control system with aging may play a role in falls in elderly people.

  8. Union formation and dissolution among immigrants and their descendants in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Tina Hannemann

    2015-08-01

    Full Text Available Background: There is a growing literature on the dynamics of immigrant fertility and mixed marriages, but partnership transitions among immigrants and ethnic minorities are little studied. Objective: This study investigates union formation and dissolution among immigrants and their descendants in the UK. Methods: We use data from the Understanding Society study and apply the techniques of event history analysis. We contrast partnership trajectories of various immigrant groups and compare these with those of the 'native' British population. Results: The analysis shows significant differences in partnership formation and dissolution among immigrants and ethnic minorities. Women of Caribbean origin have the highest cohabitation and the lowest marriage rates, whereas cohabitation remains rare among immigrants from South Asia and their descendants, as most of them marry directly. Immigrants from the Caribbean region and their descendants also show higher divorce rates than 'native' British women, whereas women of South Asian origin have a low divorce risk.

  9. Is there Equity in Use of Healthcare Services among immigrants, their descendents, and ethnic Danes?

    DEFF Research Database (Denmark)

    Nielsen, Signe Smith; Hempler, Nana Folmann; Waldorff, Frans Boch

    2012-01-01

    Background: Legislation in Denmark explicitly states the right to equal access to healthcare. Nevertheless, inequities may exist; accordingly evidence is needed. Our objective was to investigate whether differences in healthcare utilization in immigrants, their descendents, and ethnic Danes could...... were linked to registries on healthcare utilization. Using Poisson regression models, contacts to hospital, emergency room (ER), general practitioner (GP), specialist in private practice, and dentist were estimated. Analyses were adjusted for health symptoms, sociodemographic factors, and proxies...... of integration. Results: In adjusted analyses, immigrants and their descendents had increased use of ER (multiplicative effect=1.19–5.02 dependent on immigrant and descendent group) and less frequent contact to dentist (multiplicative effect=0.04–0.80 dependent on the group). For hospitalization, GP...

  10. Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors

    Directory of Open Access Journals (Sweden)

    Linda H. Kim

    2017-10-01

    Full Text Available Over the past decade there has been a renaissance in our understanding of spinal cord circuits; new technologies are beginning to provide key insights into descending circuits which project onto spinal cord central pattern generators. By integrating work from both the locomotor and animal behavioral fields, we can now examine context-specific control of locomotion, with an emphasis on descending modulation arising from various regions of the brainstem. Here we examine approach and avoidance behaviors and the circuits that lead to the production and arrest of locomotion.

  11. Seawifs Technical Report Series. Volume 2: Analysis of Orbit Selection for Seawifs: Ascending Versus Descending Node

    Science.gov (United States)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Gregg, Watson W.

    1992-01-01

    Due to range safety considerations, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color instrument may be required to be launched into a near-noon descending node, as opposed to the ascending node used by the predecessor sensor, the Coastal Zone Color Scanner (CZCS). The relative importance of ascending versus descending near-noon orbits was assessed here to determine if descending node will meet the scientific requirements of SeaWiFS. Analyses focused on ground coverage, local times of coverage, solar and viewing geometries (zenith and azimuth angles), and sun glint. Differences were found in the areas covered by individual orbits, but were not important when taken over a 16 day repeat time. Local time of coverage was also different: for ascending node orbits the Northern Hemisphere was observed in the morning and the Southern Hemisphere in the afternoon, while for descending node orbits the Northern Hemisphere was observed in the afternoon and the Southern in the morning. There were substantial differences in solar azimuth and spacecraft azimuth angles both at equinox and at the Northern Hemisphere summer solstice. Negligible differences in solar and spacecraft zenith angles, relative azimuth angles, and sun glint were obtained at the equinox. However, large differences were found in solar zenith angles, relative azimuths, and sun glint for the solstice. These differences appeared to compensate across the scan, however, an increase in sun glint in descending node over that in ascending node on the western part of the scan was compensated by a decrease on the eastern part of the scan. Thus, no advantage or disadvantage could be conferred upon either ascending node or descending node for noon orbits. Analyses were also performed for ascending and descending node orbits that deviated from a noon equator crossing time. For ascending node, afternoon orbits produced the lowest mean solar zenith angles in the Northern Hemisphere, and morning orbits produced

  12. Torsion and volvulus of the transverse and descending colon in a German shepherd dog.

    Science.gov (United States)

    Halfacree, Z J; Beck, A L; Lee, K C L; Lipscomb, V J

    2006-08-01

    A German shepherd dog was presented two months after surgery for correction of acute gastric dilatation volvulus. The dog had been diagnosed with exocrine pancreatic insufficiency. Radiographs revealed marked gaseous distension of one loop of intestine with a generalised increase in intestinal gas content. A 360 degrees anticlockwise rotation of the descending and transverse colon, around the longitudinal axis of the mesocolon, was diagnosed at exploratory coeliotomy. The transverse and descending colon appeared uniformly necrotic and an end-to-end colo-colic resection and anastomosis was performed. The dog initially made satisfactory postoperative progress but was euthanased on the third postoperative day after it developed an intestinal intussusception.

  13. [Distribution of the male lineages of Genghis Khan's descendants in northern Eurasian populations].

    Science.gov (United States)

    Derenko, M V; Maliarchuk, B A; Wozniak, M; Denisova, G A; Dambueva, I K; Dorzhu, C M; Grzybowski, T; Zakharov, I A

    2007-03-01

    Data on the variation of 12 microsatellite loci of Y-chromosome haplogroup C3 were used to screen lineages included in the cluster of Genghis Khan's descendants in 18 northern Eurasian populations (Altaian Kazakhs, Altaians-Kizhi, Teleuts, Khakassians, Shorians, Tyvans, Todjins, Tofalars, Sojots, Buryats, Khamnigans, Evenks, Mongols, Kalmyks, Tajiks, Kurds, Persians, and Russians; the total sample size was 1437 people). The highest frequency of haplotypes from the cluster of the Genghis Khan's descendants was found in Mongols (34.8%). In Russia, this cluster was found in Altaian Kazakhs (8.3%), Altaians (3.4%), Buryats (2.3%), Tyvans (1.9%), and Kalmyks (1.7%).

  14. Successful Large-volume Leukapheresis for Hematopoietic Stem Cell Collection in a Very-low-weight Brain Tumor Infant with Coagulopathy

    Directory of Open Access Journals (Sweden)

    Yu-Mei Liao

    2013-06-01

    Full Text Available Peripheral apheresis has become a safe procedure to collect hematopoietic stem cells, even in pediatric patients and donors. However, the apheresis procedure for small and sick children is more complicated due to difficult venous access, relatively large extracorporeal volume, toxicity of citrate, and unstable hemostasis. We report a small and sick child with refractory medulloblastoma, impaired liver function, and coagulopathy after several major cycles of cisplatin-based chemotherapy. She successfully received large-volume leukapheresis for hematopoietic stem cell collection, although the patient experienced severe coagulopathy during the procedures. Health care providers should be alert to this potential risk.

  15. Neurogenesis and brain injury: managing a renewable resource for repair

    OpenAIRE

    Hallbergson, Anna F.; Gnatenco, Carmen; Peterson, Daniel A.

    2003-01-01

    The brain shows limited ability to repair itself, but neurogenesis in certain areas of the adult brain suggests that neural stem cells may be used for structural brain repair. It will be necessary to understand how neurogenesis in the adult brain is regulated to develop strategies that harness neural stem cells for therapeutic use.

  16. Measuring and Comparing Descend in Elite Race Cycling with a Perspective on Real-Time Feedback for Improving Individual Performance

    OpenAIRE

    Reijne, M.M.; Bregman, D.J.J.; Schwab, A.L.; Espinosa, Hugo G.; Rowlands, David R.; Shepherd, Jonathan; Thiel, David V.

    2018-01-01

    Descend technique and performance vary among elite racing cyclists and it is not clear what slower riders should do to improve their performance. An observation study was performed of the descending technique of members of a World Tour cycling team and the technique of each member was compared with the fastest descender amongst them. The obtained data gives us guidelines for rider specific feedback in order to improve his performance. The bicycles were equipped with a system that could measur...

  17. Stem cells

    NARCIS (Netherlands)

    Jukes, Jojanneke; Both, Sanne; Post, Janine; van Blitterswijk, Clemens; Karperien, Marcel; de Boer, Jan; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter defines stem cells and their properties. It identifies the major differences between embryonic and adult stem cells. Stem cells can be defined by two properties: the ability to make identical copies of themselves and the ability to form other cell types of the body. These properties are

  18. The Use of Human-Induced Pluripotent Stem Cell-Derived Neural Precursors in the Treatment of Brain and Spinal Cord Injury

    Czech Academy of Sciences Publication Activity Database

    Jendelová, Pavla; Kozubenko, Nataliya; Amemori, Takashi; Turnovcová, Karolína; Seminatore, CH.; Jirák, D.; Onteniente, B.; Syková, Eva

    2011-01-01

    Roč. 20, č. 4 (2011), s. 564-564 ISSN 0963-6897. [International Neural Transplantatioin and Repair Meeting/18th Annual Meeting of the American-Society-for- Neural - Therapy - and -Repair /11./. 04.05.2011-08.05.2011, Clearwater] Institutional research plan: CEZ:AV0Z50390703 Keywords : spinal cord * stem cell Subject RIV: FH - Neurology

  19. The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain.

    Science.gov (United States)

    Wu, Yen-Chi; Lee, Kyu-Sun; Song, Yan; Gehrke, Stephan; Lu, Bingwei

    2017-05-01

    Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.

  20. Stem Cells in Regenerative Medicine

    OpenAIRE

    Sykova, Eva; Forostyak, Serhiy

    2013-01-01

    Background: A number of cardiovascular, neurological, musculoskeletal and other diseases have a limited capacity for repair and only a modest progress has been made in treatment of brain diseases. The discovery of stem cells has opened new possibilities for the treatment of these maladies, and cell therapy now stands at the cutting-edge of modern regenerative medicine and tissue engineering. Experimental data and the first clinical trials employing stem cells have shown their broad therapeuti...

  1. Cartographies of the Political Camp of Afro-Descendents in Latin America

    Directory of Open Access Journals (Sweden)

    Agustín Lao-Montes

    2009-07-01

    Full Text Available This article lays out, in general terms, what it calls the political camp of Afro-descendents in Latin America. After establishing a series of theoretical and methodological criteria for the historical analysis of black movements in modernity and the Afro-American movements in particular, the article focuses on the emergence of afro-descendant movements in Latin America during the last part of the 1980s. One of the principal arguments is that in the 1990s a political camp of afro-descendents starts to emerge in the region of Latin America based on a series of developments, including the emergence of new social movements that included ethno-racial movements of Afros and indigenous people, events of regional importance like the contra-celebration of 1492 in 1992, the World Conference against Racism 2001 in Durban, South Africa, and the effects of the neoliberal pattern of globalization. The political camp of Afro-descendents is composed not only of social movements, but also of state actors and transnational actors (such as the World Bank and the Ford Foundation. The article concludes with an analysis of the challenges and perspectives of Afro-American politics in general and of Afro-Latin movements in particular considering the current crisis of the modern/colonial world-system.

  2. [Descending necrotizing mediastinitis: the need for early diagnosis and aggressive treatment

    NARCIS (Netherlands)

    Schoenmakers, M.C.J.; Marres, H.A.M.; Merkx, M.A.W.; Verhagen, A.F.T.M.; Swieten, H.A. van

    2009-01-01

    Three patients developed descending necrotizing mediastinitis (DNM): a 44-year-old man due to poor dental status; a 54-year-old women due to a throat infection, 6 weeks after a tooth extraction; and a 30-year-old man a few days after a tooth extraction. Presenting symptoms were dyspnoea, fever,

  3. Descending motor pathways and the spinal motor system. Limbic and non-limbic components

    NARCIS (Netherlands)

    G. Holstege (Gert)

    1990-01-01

    textabstractFor a thorough understanding of the descending pathways of the motor system originating in the forebrain, knowledge about the anatomy and function of the structures in the more caudally located parts of the central nervous system is indispensable. In this paper an overview will be

  4. Descending motor pathways and the spinal motor system. Limbic and non-limbic components

    NARCIS (Netherlands)

    Holstege, G.

    1991-01-01

    For a thorough understanding of the descending pathways of the motor system originating in the forebrain, knowledge about the anatomy and function of the structures in the more caudally located parts of the central nervous system is indispensable. In this paper an overview will be presented of these

  5. Dissecting aneurysm of arch and descending thoracic aorta presenting as a left sided hemorrhagic pleural effusion

    Directory of Open Access Journals (Sweden)

    Shamim Shelley

    2010-01-01

    Full Text Available The most common cause of massive hemorrhagic effusion is malignancy. Herein we present a case of dissecting aneurysm of descending thoracic aorta presenting initially with shortness of breath due to left sided massive pleural effusion. Effusion was hemorrhagic in nature with high hematocrit value. CT scan of thorax with CT angiogram was done and that revealed the diagnosis.

  6. The oligosaccharidic content of the glycoconjugates of the prepubertal descended and undescended testis: lectin histochemical study.

    Science.gov (United States)

    Gheri, Gherardo; Sgambati, Eleonora; Thyrion, Giorgia D Zappoli; Vichi, Debora; Orlandini, Giovanni E

    2004-01-01

    The saccharidic content of the glycoconjugates has been studied in the descended the undescended testes of a 8 years old boy. For this purpose, a battery of seven HRP-conjugated lectins (SBA, DBA,PNA,WGA,UEAI, LTA and ConA) was used. D-galactose-N-acetyl-D-galactosamine and alpha-L-fucose sugar residues, which were present in the cytoplasm of the Sertoli cells of the normally positioned prepubertal testis, were not detected in the same cells of the undescended testis. The Leydig's cells of the descended testis appeared characterized by N-acetyl-D-glucosamine which was absent in the rare and atrophic Leydig's cells of the cryptorchid testis. Differences in sugar residues distribution between the descended and the undescended testis were also detected in the lamina propria of the seminiferous tubules. Peritubular myoid cells in the undescended testis only reacted with PNA, after neuraminidase digestion, thus revealing the presence of D-galactose (beta1-->3)-N-acetyl-D-galactosamine and sialic acid. In this study a complete distributional map of the sugar residues of the glycoconjugates in the descended and undescended prepubertal testis is reported.

  7. ranching pattern of the left anterior descending coronary artery in a ...

    African Journals Online (AJOL)

    Branching pattern of the left anterior descending coronary artery is important in explaining variations in occurrence of coronary atherosclerosis, informing management strategies for coronary heart disease and interventional cardiology. Data on African populations are, however, scarce. Since coronary heart disease is ...

  8. Left anterior descending coronary artery dissection during ventricular tachycardia ablation – case report

    Directory of Open Access Journals (Sweden)

    Kordic Kresimir

    2018-03-01

    Full Text Available Fascicular left ventricular tachycardia (VT is the second most frequent idiopathic left VT in the setting of a structurally normal heart. Catheter ablation is curative in most patients with low complication rates. We report a case of ostial left anterior descending coronary artery (LAD occlusion during fascicular ventricular tachycardia ablation.

  9. The effects of laser radiation on the descendants of irradiated rats

    International Nuclear Information System (INIS)

    Hernandez, J.W.R.; Barbosa, C.A.A.; Moderno, L.A.O.; Parizzotto, N.A.

    1991-01-01

    The effects of low energy laser radiation on the descendants of irradiated rats were investigated by comparing natimortality and the frequency of congenital malformations in three experimental and a control group. Natimortality was not significantly different among the groups. However, cardiomegaly, anophtalmia, dilated abdominal viscera, and premature closures of cranial sutures were recorded only in the experimental groups. (author)

  10. Fertility among descendants of immigrants in Belgium: The role of the partner

    NARCIS (Netherlands)

    Van Landschoot, L.; de Valk, H.A.G.; Van Bavel, J.

    2017-01-01

    BACKGROUND Research on the fertility behavior of descendants of immigrants has focused on female characteristics and has largely neglected those of the male partner. One key aspect is whether the partner is of same (endogamous) or of different (exogamous) ethnic origin. Moreover, the male partner

  11. Are immigrants and descendants with ill health more prone to unemployment? Evidence from 18 European countries.

    Science.gov (United States)

    Heggebø, Kristian

    2017-08-01

    Previous research has established that both ill health and minority status are associated with unemployment. Less is known, however, about the interplay between having ill health and being from minority background. The present study examines whether immigrants and descendants with ill health are particularly prone to unemployment during an economic downturn in Europe. The European Union Statistics on Income and Living Conditions (EU-SILC) cross-sectional data material is utilized, and linear probability models are estimated. The analysis is run for countries in which the two minority samples are acceptably large (N ≥ 100), resulting in 18 included European countries. The year 2011 is chosen because it is possible to identify both immigrants and descendants in EU-SILC due to a module on intergenerational transfer of disadvantages. The results indicate - as expected - that both ill health and minority status are independently related to higher unemployment likelihood. Immigrants and descendants with ill health, however, are not particularly likely to be unemployed. This finding is robust to a number of sensitivity tests, and the empirical pattern is very similar across the 18 included countries. Both minority status and ill health are associated with high unemployment probability in Europe. However, there does not seem to exist a 'double disadvantage' for immigrants and descendants with ill health, which is in line with a human capital perspective on how employers evaluate potential employees. Both a non-native-sounding name and bad health status are interpreted as a risk factor, but there is no reason to expect ill health to lower the productivity level more if the applicant is a descendant or immigrant.

  12. Measuring and Comparing Descend in Elite Race Cycling with a Perspective on Real-Time Feedback for Improving Individual Performance

    NARCIS (Netherlands)

    Reijne, M.M.; Bregman, D.J.J.; Schwab, A.L.; Espinosa, Hugo G.; Rowlands, David R.; Shepherd, Jonathan; Thiel, David V.

    2018-01-01

    Descend technique and performance vary among elite racing cyclists and it is not clear what slower riders should do to improve their performance. An observation study was performed of the descending technique of members of a World Tour cycling team and the technique of each member was compared with

  13. Toward the Development of an Artificial Brain on a Micropatterned and Material-Regulated Biochip by Guiding and Promoting the Differentiation and Neurite Outgrowth of Neural Stem/Progenitor Cells.

    Science.gov (United States)

    Liu, Yung-Chiang; Lee, I-Chi; Lei, Kin Fong

    2018-02-14

    An in vitro model mimicking the in vivo environment of the brain must be developed to study neural communication and regeneration and to obtain an understanding of cellular and molecular responses. In this work, a multilayered neural network was successfully constructed on a biochip by guiding and promoting neural stem/progenitor cell differentiation and network formation. The biochip consisted of 3 × 3 arrays of cultured wells connected with channels. Neurospheroids were cultured on polyelectrolyte multilayer (PEM) films in the culture wells. Neurite outgrowth and neural differentiation were guided and promoted by the micropatterns and the PEM films. After 5 days in culture, a 3 × 3 neural network was constructed on the biochip. The function and the connections of the network were evaluated by immunocytochemistry and impedance measurements. Neurons were generated and produced functional and recyclable synaptic vesicles. Moreover, the electrical connections of the neural network were confirmed by measuring the impedance across the neurospheroids. The current work facilitates the development of an artificial brain on a chip for investigations of electrical stimulations and recordings of multilayered neural communication and regeneration.

  14. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    DEFF Research Database (Denmark)

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza

    2015-01-01

    , the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have...

  15. Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle

    Science.gov (United States)

    Mang, Daniel WH; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2014-01-01

    Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury. However, most previous studies only assessed the presence of startle using data collected from the neck muscles and head/neck kinematics. The startle response also evokes a descending pattern of muscle recruitment and changes in autonomic activity. Here we examined the recruitment of axial and appendicular muscles along with autonomic responses to confirm whether these other features of a startle response were present during the first exposure to a whiplash perturbation. Ten subjects experienced a single whiplash perturbation while recording electromyography, electrocardiogram, and electrodermal responses. All subjects exhibited a descending pattern of muscle recruitment, and increasing heart rate and electrodermal responses following the collision. Our results provide further support that the startle response is a component of the response to whiplash collisions. PMID:24932015

  16. Relevant Factors in the Process of Socialization, Involvement and Belonging of Descendants in Family Businesses

    Directory of Open Access Journals (Sweden)

    Melquicedec Lozano-Posso

    2016-12-01

    Full Text Available This research works toward the identification of the factors that comprise the process of socialization, involvement and initial belonging of descendants in family businesses and the key relationships between them. By means of a qualitative detailed study of four cases, complemented by a quantitative survey of 274 Colombian family businesses, the authors generate a new model that takes into account both factors explored in previous research as well as others identified in this study. Findings confirm the specific dependency of each stage on the subsequent ones; socialization influences involvement, which in turn influences the belonging of the descendants to the family business, with a strong presence of factors such as knowledge, leadership, mode, timing, and motivation. Those responsible for the orientation of potential successors may examine these findings in order to optimize their preparation efforts and support of family human resources for the continuity of the business.

  17. Descending necrotizing mediastinitis following dental extraction. Radiological features and surgical treatment considerations.

    Science.gov (United States)

    González-García, Raúl; Risco-Rojas, Roberto; Román-Romero, Leticia; Moreno-García, Carlos; López García, Cipriano

    2011-07-01

    Descending necrotizing mediastinitis (DNM) following dental extraction is an extremely serious infection with a high mortality rate. Oral infection may rapidly descend into the mediastinum across the retropharyngeal and retrovisceral spaces. Once established, mediastinitis is rapidly followed by sepsis and death. If DNM is suspected cervical and thoracic CT must be carried out urgently. After this, prompt control of the upper airway with tracheostomy, aggressive surgical debridement of the deep cervical spaces and mediastinum, and intravenous broad spectrum antibiotic therapy are mandatory. The present paper reports two new cases of DNM following dental extraction, and focuses on radiological features of abscess progression through the cervical spaces down into the mediastinum. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Discrete torsion in non-geometric orbifolds and their open-string descendants

    International Nuclear Information System (INIS)

    Bianchi, Massimo; Morales, Jose F.; Pradisi, Gianfranco

    2000-01-01

    We discuss some Z N L xZ N R orbifold compactifications of the type IIB superstring to D=4,6 dimensions and their type I descendants. Although the Z N L xZ N R generators act asymmetrically on the chiral string modes, they result into left-right symmetric models that admit sensible unorientable reductions. We carefully work out the phases that appear in the modular transformations of the chiral amplitudes and identify the possibility of introducing discrete torsion. We propose a simplifying ansatz for the construction of the open-string descendants in which the transverse-channel Klein-bottle, annulus and Moebius-strip amplitudes are numerically identical in the proper parametrization of the world-sheet. A simple variant of the ansatz for the Z 2 L xZ 2 R orbifold gives rise to models with supersymmetry breaking in the open-string sector

  19. Papillary Adenocarcinoma of the descending colon in a dog: case report

    Directory of Open Access Journals (Sweden)

    M.G.P.A. Ferreira

    Full Text Available ABSTRACT The aim of this report was to describe the clinical findings and therapeutic management of a case of papillary adenocarcinoma of the descending colon in a Beagle. The patient presented soft stools, haematochezia, tenesmus, and dyschezia. Clinical examination revealed alterations on the ultrasonographic features of the descending colon suggestive of colitis and neoplasia. Following local mass resection, histopathology analysis revealed mild lymphoplasmocytic enteritis and papillary adenocarcinoma of the colon. Enterectomy for tumoral resection and biopsy of locoregional lymph nodes were carried out. Subsequent to the surgical procedure, it was possible to confirm the previous diagnosis and the tumor was classified as intestinal intraluminal papillary adenocarcinoma, with incomplete surgical margins. Adjuvant chemotherapy was performed using carboplatin, cyclophosphamide, and piroxicam, leading to remission of clinical signs and absence of any clinical or imaging alterations compatible with the patient’s previous clinical condition.

  20. The Role of Descending Modulation in Manual Therapy and Its Analgesic Implications: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Andrew D. Vigotsky

    2015-01-01

    Full Text Available Manual therapy has long been a component of physical rehabilitation programs, especially to treat those in pain. The mechanisms of manual therapy, however, are not fully understood, and it has been suggested that its pain modulatory effects are of neurophysiological origin and may be mediated by the descending modulatory circuit. Therefore, the purpose of this review is to examine the neurophysiological response to different types of manual therapy, in order to better understand the neurophysiological mechanisms behind each therapy’s analgesic effects. It is concluded that different forms of manual therapy elicit analgesic effects via different mechanisms, and nearly all therapies appear to be at least partially mediated by descending modulation. Additionally, future avenues of mechanistic research pertaining to manual therapy are discussed.

  1. Experimental and numerical investigations of coke descending behavior in a coke dry quenching cooling shaft

    International Nuclear Information System (INIS)

    Feng Yanhui; Zhang Xinxin; Yu Quan; Shi Zhongyin; Liu Zhicheng; Zhang Hu; Liu Huafei

    2008-01-01

    A viscous flow model based on the Navier-Stokes equation is developed to describe coke descending behavior in the 1/7-scaled-down experimental setup of an actual 75 t/h cooling shaft. It is found that the internal friction due to cokes viscosity significantly influences the descending behavior of cokes in the lower part of the shaft, while the external wall friction dominates the sluggish flow of the cokes in the shaft. An asymptotic friction coefficient expression is proposed for granular mixtures flowing along the shaft wall modified from normal wall tress, and the concept of bulk solid viscosity is introduced to describe the internal friction between coke particles. The results simulated by the present model are compared with those by the potential flow and the kinematic model without friction. The viscous flow model is quite good to simulate the bulk coke flow as the physically important frictions are engaged

  2. A case of descending colon carcinoma metastasized to left spermatic cord, testis, and epididymis

    Science.gov (United States)

    Augustin, Herbert; Popper, Helmut; Pummer, Karl

    2012-01-01

    We report a case of descending colon carcinoma metastasized to the left spermatic cord, testis, and epididymis. A 77-year old male patient underwent a left hemicolectomy for a descending colon cancer. He was referred to our department because of swelling and pain of the left scrotum two years and six months after surgery. High left orchiectomy was performed. Histological examination revealed a metastasis of the colon carcinoma within the spermatic cord and epididymis approaching the testicle. Reports on metastatic cancer of the testis are scarce, because this metastatic cancer is extremely rare. In general, testicular pain is rare in the elderly. We suggest that any elder presenting with testicular pain deserves a complete clinical and diagnostic evaluation. PMID:24578939

  3. Wandering spleen, gastric and pancreatic volvulus and right-sided descending and sigmoid colon.

    Science.gov (United States)

    Flores-Ríos, Enrique; Méndez-Díaz, Cristina; Rodríguez-García, Esther; Pérez-Ramos, Tania

    2015-10-01

    Wandering spleen is a rare condition, characterized by a mobile spleen that is attached only by an elongated vascular pedicle, allowing it to migrate to any part of the abdomen or pelvis. Mesenteroaxial gastric volvulus usually occurs in children and may be associated with wandering spleen. Both entities result from abnormal laxity or absence of the peritoneal attachments due to abnormal fusion of the peritoneal mesenteries. Pancreatic volvulus is a very rare anomaly, with only a few isolated case reports described in association with wandering spleen. Anomalous right sided descending and sigmoid colon is a very rare entity and its association with wandering spleen has not been previously reported. We report a case of wandering spleen associated with mesenteroaxial gastric volvulus, pancreatic volvulus and rightward shift of the splenic flexure of the colon and right sided descending and sigmoid colon in a young female.

  4. When Is Visual Information Used to Control Locomotion When Descending a Kerb?

    OpenAIRE

    Buckley, John G.; Timmis, Matthew A.; Scally, Andy J.; Elliott, David B.

    2011-01-01

    BACKGROUND: Descending kerbs during locomotion involves the regulation of appropriate foot placement before the kerb-edge and foot clearance over it. It also involves the modulation of gait output to ensure the body-mass is safely and smoothly lowered to the new level. Previous research has shown that vision is used in such adaptive gait tasks for feedforward planning, with vision from the lower visual field (lvf) used for online updating. The present study determined when lvf information is ...

  5. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing.

    Directory of Open Access Journals (Sweden)

    Jan M Ache

    2015-07-01

    Full Text Available Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs. First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs 'coding-space' because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This

  6. Supracardiac total anomalous pulmonary venous connection with a descending vertical vein.

    Science.gov (United States)

    Shah, Sejal; Singh, Mukesh; John, Colin; Maheshwari, Sunita

    2009-10-01

    The commonly used Darling classification for total anomalous pulmonary venous connection (TAPVC) consists of supracardiac, cardiac, infracardiac, and mixed types (Craig et al., Lab Invest 6:44-64, 1967). In supracardiac TAPVC, the common pulmonary vein drains superiorly into the left innominate vein, the superior vena cava, or the azygos vein by way of an ascending vertical vein. We describe a case of supracardiac TAPVC draining into the azygos vein atypically by way of a descending vertical vein.

  7. Telecast of Astronaut Neil Armstrong descending ladder to surface of the moon

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, descends the ladder of the Apollo 11 Lunar Module prior to making the first step by man on the moon. This view is a black and white reproduction taken from a telecast by the Apollo 11 lunar surface camera during extravehicular activity. The black bar running through the center of the picture is an anamoly in the television ground data system at the Goldstone Tracking Station.

  8. Interictal dysfunction of a brainstem descending modulatory center in migraine patients.

    Directory of Open Access Journals (Sweden)

    Eric A Moulton

    Full Text Available The brainstem contains descending circuitry that can modulate nociceptive processing (neural signals associated with pain in the dorsal horn of the spinal cord and the medullary dorsal horn. In migraineurs, abnormal brainstem function during attacks suggest that dysfunction of descending modulation may facilitate migraine attacks, either by reducing descending inhibition or increasing facilitation. To determine whether a brainstem dysfunction could play a role in facilitating migraine attacks, we measured brainstem function in migraineurs when they were not having an attack (i.e. the interictal phase.Using fMRI (functional magnetic resonance imaging, we mapped brainstem activity to heat stimuli in 12 episodic migraine patients during the interictal phase. Separate scans were collected to measure responses to 41 degrees C and noxious heat (pain threshold+1 degrees C. Stimuli were either applied to the forehead on the affected side (as reported during an attack or the dorsum of the hand. This was repeated in 12 age-gender-matched control subjects, and the side tested corresponded to that in the matched migraine patients. Nucleus cuneiformis (NCF, a component of brainstem pain modulatory circuits, appears to be hypofunctional in migraineurs. 3 out of the 4 thermal stimulus conditions showed significantly greater NCF activation in control subjects than the migraine patients.Altered descending modulation has been postulated to contribute to migraine, leading to loss of inhibition or enhanced facilitation resulting in hyperexcitability of trigeminovascular neurons. NCF function could potentially serve as a diagnostic measure in migraine patients, even when not experiencing an attack. This has important implications for the evaluation of therapies for migraine.

  9. Cancer stem cell hypotheses: Impact on modern molecular

    Indian Academy of Sciences (India)

    basis for the so-called cancer stem cell (CSC) hypotheses. The first exact proof of CSC ... or less equal ability for tumour regeneration and repopulation. (Nowell 1976 .... Also, there are reports that the 'stemness' (stem-like properties) of brain.

  10. Factors influencing the mechanical behaviour of healthy human descending thoracic aorta

    International Nuclear Information System (INIS)

    Guinea, Gustavo V; Atienza, José M; Rojo, Francisco J; Yiqun, Li; Claes, Els; Elices, Manuel; García-Herrera, Claudio M; Goicolea, José M; García-Montero, Carlos; Burgos, Raúl L; Goicolea, Francisco J

    2010-01-01

    In recent times, significant effort has been made to understand the mechanical behaviour of the arterial wall and how it is affected by the different vascular pathologies. However, to be able to interpret the results correctly, it is essential that the influence of other factors, such as aging or anisotropy, be understood. Knowledge of mechanical behaviour of the aorta has been customarily constrained by lack of data on fresh aortic tissue, especially from healthy young individuals. In addition, information regarding the point of rupture is also very limited. In this study, the mechanical behaviour of the descending thoracic aorta of 28 organ donors with no apparent disease, whose ages vary from 17 to 60 years, is evaluated. Tensile tests up to rupture are carried out to evaluate the influence of age and wall anisotropy. Results reveal that the tensile strength and stretch at failure of healthy descending aortas show a significant reduction with age, falling abruptly beyond the age of 30. This fact places age as a key factor when mechanical properties of descending aorta are considered

  11. Schwannoma of the descending loop of the hypoglossal nerve: Case report.

    Science.gov (United States)

    Illuminati, Giulio; Pizzardi, Giulia; Pasqua, Rocco; Palumbo, Piergaspare; Vietri, Francesco

    2017-01-01

    Schwannomas of the descending loop of the hypoglossal nerve are very rare. They are slow-growing tumors that may masquerade a carotid body tumor. A 60-year-old female was referred for a latero-cervical mass appearing as a chemodectoma at CT-scan. At operation, a 2cm mass arising from the descending loop of the hypoglossal nerve was resected en bloc with the loop itself and a functional lymphadenectomy was associated. Post-operative course was uneventful and the patient is free from disease recurrence at one year follow-up. En bloc resection remains the real curative treatment of Schwannomas, ensuring unlimited freedom from disease, although causing functional impairment which may be significant. Nonetheless recurrence should be prevented as, beside requiring reintervention, it may harbor a malignant evolution towards sarcoma. Schwannomas of the descending lop of the hypoglossal nerve may masquerade a chemodectoma of the carotid bifurcation and can be curatively resected without any functional impairment. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Neurotransmitter implications in descending motility of longitudinal and circular muscles in rat colon

    Directory of Open Access Journals (Sweden)

    Zornitsa V. Gorcheva

    2018-03-01

    Full Text Available Introduction. The role of neurotransmitter systems in the motor activity of longitudinal or circular muscles in autonomic regulation of the motility of the colon by the nervous system is unclear. The aim of the study was to investigate the neurotransmitter implications in descending motility of longitudinal and circular muscles in rat colon. Methods. Electrically-induced (2, 5 or 10 Hz, 0.8 ms, 40 V, 20 s local or descending motor responses of longitudinal and circular muscles in isolated preparations and drugs were used to define the neurotransmitters’ role in colonic motility. Results. The spontaneous activity of the distal part of preparations manifested as high-amplitude irregular contractions more expressed in the longitudinal muscles. The electrically-induced local responses differed considerably in the two muscles: in longitudinal muscle there were frequency-dependent contractions, while initial relaxation followed by contraction was observed in circular muscle. The descending motor response resembled the pattern of the local responses, but the amplitudes were significantly less expressed, as compared to the respective local responses.

  13. Cervical necrotising fasciitis and descending mediastinitis secondary to unilateral tonsillitis: a case report

    Directory of Open Access Journals (Sweden)

    Islam Asad

    2008-12-01

    Full Text Available Abstract Introduction Cervical necrotizing fasciitis is an aggressive infection with high morbidity and mortality. We present a case of cervical necrotizing fasciitis and descending mediastinitis in a healthy young man, caused by unilateral tonsillitis with a successful outcome without aggressive debridement. Case presentation A 41-year-old man was admitted to our unit with a diagnosis of severe acute unilateral tonsillitis. On admission, he had painful neck movements and the skin over his neck was red, hot and tender. Computed tomography scan of his neck and chest showed evidence of cervical necrotizing fasciitis and descending mediastinitis secondary to underlying pharyngeal disease. He was treated with broad-spectrum intravenous antibiotics. His condition improved over the next 3 days but a tender and fluctuant swelling appeared in the suprasternal region. A repeat scan showed the appearance of an abscess extending from the pretracheal region to the upper mediastinum which was drained through a small transverse anterior neck incision. After surgery, the patient's condition quickly improved and he was discharged on the 18th day of admission. Conclusion Less invasive surgical techniques may replace conventional aggressive debridement as the treatment of choice for cervical necrotizing fasciitis and descending necrotizing mediastinitis.

  14. Opportunities for mourning when grief is disenfranchised: descendants of Nazi perpetrators in dialogue with Holocaust survivors.

    Science.gov (United States)

    Livingston, Kathy

    2010-01-01

    This article explores the concepts of unmourned and disenfranchised grief as a way to understand the experiences of adult children of Nazi perpetrators, who grew up with cultural norms of grieving alone or in silence. The scholarly literature on descendants of Nazis reflects a group unlikely to warrant empathy or support from others because of the stigma surrounding their family's possible involvement in the Holocaust atrocities. This article uses, as a case study approach, the testimony given by Monika Hertwig, the adult daughter of a high ranking Nazi, who appears in the documentary film, Inheritance. From the perspective of disenfranchised grief, defined as grief that is not socially recognized or supported, the article links Monika's testimony with existing research from in-depth interviews with other descendants of Nazis to suggest that, as a group, they lacked permission to grieve their deceased parents, acknowledgment of their grief, and opportunities to mourn. Based on the theory that the effects of grief can be transgenerational, the disenfranchisement experienced by the "children of the Third Reich" does not have to pass to subsequent generations if opportunities for mourning are made possible and some resolution of grief occurs. Studies have shown that ongoing dialogue groups between Holocaust survivors and descendants of Nazis provide opportunities for mourning to both groups.

  15. Clinical outcomes of laparoscopic surgery for transverse and descending colon cancers in a community setting.

    Science.gov (United States)

    Matsuda, Takeru; Fujita, Hirofumi; Kunimoto, Yukihiro; Kimura, Taisei; Hayashi, Tomomi; Maeda, Toshiyuki; Yamakawa, Junichi; Mizumoto, Takuya; Ogino, Kazunori

    2013-08-01

    The feasibility, safety and oncological outcomes of laparoscopic surgery for transverse and descending colon cancers in a community hospital setting were evaluated. Twenty-six patients with transverse or descending colon cancers who underwent laparoscopic surgery at our hospital were included in this retrospective analysis (group A). Their outcomes were compared with those of 71 patients who underwent laparoscopic surgery for colon cancer at other tumor sites (group B). There were no significant differences between the two groups in terms of operative time, estimated blood loss, postoperative hospital stay and morbidity rate. Extended lymphadenectomy was performed more frequently and the number of harvested lymph nodes was significantly higher in group B than in group A. However, no recurrence developed in group A, while recurrence occurred in four patients from group B. The 3-year disease-free survival rates were 100% for group A and 93.5% for group B. The 3-year overall survival rates were 100% for group A and 91.6% for group B. Laparoscopic surgery for transverse and descending colon cancers can be performed safely with oncological validity in a community hospital setting, provided there is careful selection of the patients and adequate lymphadenectomy considering the clinical stage of their disease. © 2013 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  16. [Descending hypoglossal branch-facial nerve anastomosis in treating unilateral facial palsy after acoustic neuroma resection].

    Science.gov (United States)

    Liang, Jiantao; Li, Mingchu; Chen, Ge; Guo, Hongchuan; Zhang, Qiuhang; Bao, Yuhai

    2015-12-15

    To evaluate the efficiency of the descending hypoglossal branch-facial nerve anastomosis for the severe facial palsy after acoustic neuroma resection. The clinical data of 14 patients (6 males, 8 females, average age 45. 6 years old) underwent descending hypoglossal branch-facial nerve anastomosis for treatment of unilateral facial palsy was analyzed retrospectively. All patients previously had undergone resection of a large acoustic neuroma. House-Brackmann (H-B) grading system was used to evaluate the pre-, post-operative and follow up facial nerve function status. 12 cases (85.7%) had long follow up, with an average follow-up period of 24. 6 months. 6 patients had good outcome (H-B 2 - 3 grade); 5 patients had fair outcome (H-B 3 - 4 grade) and 1 patient had poor outcome (H-B 5 grade) Only 1 patient suffered hemitongue myoparalysis owing to the operation. Descending hypoglossal branch-facial nerve anastomosis is effective for facial reanimation, and it has little impact on the function of chewing, swallowing and pronunciation of the patients compared with the traditional hypoglossal-facial nerve anastomosis.

  17. Mitochondrial DNA mapping of social-biological interactions in Brazilian Amazonian African-descendant populations

    Directory of Open Access Journals (Sweden)

    Bruno Maia Carvalho

    2008-01-01

    Full Text Available The formation of the Brazilian Amazonian population has historically involved three main ethnic groups, Amerindian, African and European. This has resulted in genetic investigations having been carried out using classical polymorphisms and molecular markers. To better understand the genetic variability and the micro-evolutionary processes acting in human groups in the Brazilian Amazon region we used mitochondrial DNA to investigate 159 maternally unrelated individuals from five Amazonian African-descendant communities. The mitochondrial lineage distribution indicated a contribution of 50.2% from Africans (L0, L1, L2, and L3, 46.6% from Amerindians (haplogroups A, B, C and D and a small European contribution of 1.3%. These results indicated high genetic diversity in the Amerindian and African lineage groups, suggesting that the Brazilian Amazonian African-descendant populations reflect a possible population amalgamation of Amerindian women from different Amazonian indigenous tribes and African women from different geographic regions of Africa who had been brought to Brazil as slaves. The present study partially mapped the historical biological and social interactions that had occurred during the formation and expansion of Amazonian African-descendant communities.

  18. STEM Education.

    Science.gov (United States)

    Xie, Yu; Fang, Michael; Shauman, Kimberlee

    2015-08-01

    Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.'s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainment of education in general, and (2) attainment of STEM education relative to non-STEM education conditional on educational attainment. Cognitive and social psychological characteristics matter for both major components, as do structural influences at the neighborhood, school, and broader cultural levels. However, while commonly used measures of socioeconomic status (SES) predict the attainment of general education, social psychological factors are more important influences on participation and achievement in STEM versus non-STEM education. Domestically, disparities by family SES, race, and gender persist in STEM education. Internationally, American students lag behind those in some countries with less economic resources. Explanations for group disparities within the U.S. and the mediocre international ranking of US student performance require more research, a task that is best accomplished through interdisciplinary approaches.

  19. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury

    Science.gov (United States)

    Benthall, Katelyn N.; Hough, Ryan A.

    2016-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the

  20. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.

    Science.gov (United States)

    Benthall, Katelyn N; Hough, Ryan A; McClellan, Andrew D

    2017-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results

  1. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  2. Developmental biology, the stem cell of biological disciplines

    OpenAIRE

    Gilbert, Scott F.

    2017-01-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines.” Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, ...

  3. Acute Type II Aortic Dissection with Severe Aortic Regurgitation and Chronic Descending Aortic Dissection in Pregnant Patient with Marfan Syndrome.

    Science.gov (United States)

    Lee, Seok-Soo; Jung, Tae-Eun; Lee, Dong Hyup

    2012-12-01

    Aortic dilatation and dissection are severe complications during pregnancy that can be fatal to both the mother and the fetus. The risks of these complications are especially high in pregnant patients with Marfan syndrome; however, incidents of descending aortic dissection are very rare. This case report involves a successful Bentall procedure for and recovery from a rare aortic dissection in a pregnant Marfan patient who developed acute type II aortic dissection with severe aortic regurgitation and chronic descending aortic dissection immediately after Cesarean section. Regular follow-up will be needed to monitor the descending aortic dissection.

  4. STEM CELL RESEARCH-CONCEPT AND CONTROVERSIES

    African Journals Online (AJOL)

    Dr. E. P. Gharoro

    cells, heart cells, brain cells, etc.). Some researchers regard them as offering the greatest potential for the .... anaemia, heart damage, corneal damage, etc. To be useful for transplant purposes, stem cells must ... activity in the brain was demonstrated contradicting caja's “no new neurons” dogma. However, research into.

  5. Two Domains of Vimentin Are Expressed on the Surface of Lymph Node, Bone and Brain Metastatic Prostate Cancer Lines along with the Putative Stem Cell Marker Proteins CD44 and CD133

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Nicole F. [Case Western Reserve University, Department of Biomedical Engineering, 10900 Euclid Ave, Cleveland, OH 44106 (United States); Maurer, Jochen [Sanford-Burnham, Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Sheng, Huiming [Torrey Pines Institute for Molecular Studies, Division of Immune Regulation, 3550 General Atomics Court, San Diego, CA 92121 (United States); Bensussan, Armand [INSERM U976, Hôpital Saint Louis, F-75475 Paris (France); Department of Immunology, Dermatology and Oncology, Univ Paris Diderot, Sorbonne Paris Cité, UMRS976 F-75475 Paris (France); Maricic, Igor; Kumar, Vipin [Torrey Pines Institute for Molecular Studies, Laboratory of Autoimmunity, 3550 General Atomics Court, San Diego, CA 92121 (United States); Braciak, Todd A., E-mail: tbraciak@tpims.org [Torrey Pines Institute for Molecular Studies, Division of Immune Regulation, 3550 General Atomics Court, San Diego, CA 92121 (United States)

    2011-07-13

    Vimentin was originally identified as an intermediate filament protein present only as an intracellular component in many cell types. However, this protein has now been detected on the surface of a number of different cancer cell types in a punctate distribution pattern. Increased vimentin expression has been indicated as an important step in epithelial-mesenchymal transition (EMT) required for the metastasis of prostate cancer. Here, using two vimentin-specific monoclonal antibodies (SC5 and V9 directed against the coil one rod domain and the C-terminus of the vimentin protein, respectively), we examined whether either of these domains would be displayed on the surface of three commonly studied prostate cancer cell lines isolated from different sites of metastases. Confocal analysis of LNCaP, PC3 and DU145 prostate cancer cell lines (derived from lymph node, bone or brain prostate metastases, respectively) demonstrated that both domains of vimentin are present on the surface of these metastatic cancer cell types. In addition, flow cytometric analysis revealed that vimentin expression was readily detected along with CD44 expression but only a small subpopulation of prostate cancer cells expressed vimentin and the putative stem cell marker CD133 along with CD44. Finally, Cowpea mosaic virus (CPMV) nanoparticles that target vimentin could bind and internalize into tested prostate cancer cell lines. These results demonstrate that at least two domains of vimentin are present on the surface of metastatic prostate cancer cells and suggest that vimentin could provide a useful target for nanoparticle- or antibody- cancer therapeutic agents directed against highly invasive cancer and/or stem cells.

  6. Measuring and Comparing Descend in Elite Race Cycling with a Perspective on Real-Time Feedback for Improving Individual Performance

    Directory of Open Access Journals (Sweden)

    M. M. Reijne

    2018-02-01

    Full Text Available Descend technique and performance vary among elite racing cyclists and it is not clear what slower riders should do to improve their performance. An observation study was performed of the descending technique of members of a World Tour cycling team and the technique of each member was compared with the fastest descender amongst them. The obtained data gives us guidelines for rider specific feedback in order to improve his performance. The bicycles were equipped with a system that could measure: velocity, cadence, pedal power, position, steer angle, 3D orientation, rotational speeds and linear accelerations of the rear frame and brake force front and rear. From our observation study, the brake point and apex position turned out to be distinctive indicators of a fast cornering technique in a descent for a tight, hairpin corner. These two indicators can be used as feedback for a slower rider to improve his descend performance.

  7. STEM Education

    Science.gov (United States)

    & Development (LDRD) National Security Education Center (NSEC) Office of Science Programs Richard P Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute Scholarships STEM Education Programs Teachers (K-12) Students (K-12) Higher Education Regional Education

  8. The Role of Cannabinoid Receptors in the Descending Modulation of Pain

    Directory of Open Access Journals (Sweden)

    Francesco Rossi

    2010-08-01

    Full Text Available The endogenous antinociceptive descending pathway represents a circuitry of the supraspinal central nervous system whose task is to counteract pain. It includes the periaqueductal grey (PAG-rostral ventromedial medulla (RVM-dorsal horn (DH axis, which is the best characterized pain modulation system through which pain is endogenously inhibited. Thus, an alternative rational strategy for silencing pain is the activation of this anatomical substrate. Evidence of the involvement of cannabinoid receptors (CB in the supraspinal modulation of pain can be found in several studies in which intra-cerebral microinjections of cannabinoid ligands or positive modulators have proved to be analgesic in different pain models, whereas cannabinoid receptor antagonists or antisense nucleotides towards CB1 receptors have facilitated pain. Like opioids, cannabinoids produce centrally-mediated analgesia by activating a descending pathway which includes PAG and its projection to downstream RVM neurons, which in turn send inhibitory projections to the dorsal horn of the spinal cord. Indeed, several studies underline a supraspinal regulation of cannabinoids on g-aminobutyric acid (GABA and glutamate release which inhibit and enhance the antinociceptive descending pathway, respectively. Cannabinoid receptor activation expressed on presynaptic GABAergic terminals reduces the probability of neurotransmitter release thus dis-inhibiting the PAG-RVM-dorsal horn antinociceptive pathway. Cannabinoids seem to increase glutamate release (maybe as consequence of GABA decrease and to require glutamate receptor activation to induce antinociception. The consequent outcome is behavioral analgesia, which is reproduced in several pain conditions, from acute to chronic pain models such as inflammatory and neuropathic pain. Taken together these findings would suggest that supraspinal cannabinoid receptors have broad applications, from pain control to closely related central nervous system

  9. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats.

    Directory of Open Access Journals (Sweden)

    Khaled Abdallah

    Full Text Available Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG, into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project. These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.

  10. Redox environment in stem and differentiated cells: A quantitative approach

    Directory of Open Access Journals (Sweden)

    O.G. Lyublinskaya

    2017-08-01

    Full Text Available Stem cells are believed to maintain a specific intracellular redox status through a combination of enhanced removal capacity and limited production of ROS. In the present study, we challenge this assumption by developing a quantitative approach for the analysis of the pro- and antioxidant ability of human embryonic stem cells in comparison with their differentiated descendants, as well as adult stem and non-stem cells. Our measurements showed that embryonic stem cells are characterized by low ROS level, low rate of extracellular hydrogen peroxide removal and low threshold for peroxide-induced cytotoxicity. However, biochemical normalization of these parameters to cell volume/protein leads to matching of normalized values in stem and differentiated cells and shows that tested in the present study cells (human embryonic stem cells and their fibroblast-like progenies, adult mesenchymal stem cells, lymphocytes, HeLa maintain similar intracellular redox status. Based on these observations, we propose to use ROS concentration averaged over the cell volume instead of ROS level as a measure of intracellular redox balance. We show that attempts to use ROS level for comparative analysis of redox status of morphologically different cells could lead to false conclusions. Methods for the assessment of ROS concentration based on flow cytometry analysis with the use of H2DCFDA dye and HyPer, genetically encoded probe for hydrogen peroxide, are discussed. Keywords: Embryonic stem cells, Differentiated cells, ROS, Redox status, H2DCFDA, HyPer, Flow cytometry, Quantitative redox biology

  11. Dissection of descending aorta treated by stent-graft implantation in a patient with Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Marat A. Aripov

    2017-04-01

    Full Text Available This report describes a 32 years old patient with Marfan syndrome and hypertension. David`s procedure was performed to the patient three months before due to dissection of the ascending thoracic aorta. Computer tomography scan showed DeBakey type III dissection of aorta beginning from left subclavian artery with transition to the ostium of the celiac trunk and proximal part of the left common iliac artery. Stent-grafts in the descending thoracic aorta with overlapping of left subclavian artery were implanted to the patient with Marfan syndrome. Patient was discharged and no complications recorded at 6th month follow-up.

  12. Descending Necrotising Mediastinitis: A Case Report Illustrating a Trend in Conservative Management

    Directory of Open Access Journals (Sweden)

    B. A. P. Jayasekera

    2012-01-01

    Full Text Available The mortality rate from descending necrotising mediastinitis (DNM has declined since its first description in 1938. The decline in mortality has been attributed to earlier diagnosis by way of contrast-enhanced computed tomographic (CT scanning and aggressive surgical intervention in the form of transthoracic drainage. We describe a case of DNM with involvement of anterior and posterior mediastinum down to the diaphragm, managed by cervicotomy and transverse cervical drainage with placement of corrugated drains and a pleural chest drain, with a delayed mediastinoscopy and mediastinal drain placement. We advocate a conservative approach with limited debridement and emphasis on drainage of infection in line with published case series.

  13. Descending serotonergic facilitation and the antinociceptive effects of pregabalin in a rat model of osteoarthritic pain

    Directory of Open Access Journals (Sweden)

    Dolphin Annette C

    2009-08-01

    Full Text Available Abstract Background Descending facilitation, from the brainstem, promotes spinal neuronal hyperexcitability and behavioural hypersensitivity in many chronic pain states. We have previously demonstrated enhanced descending facilitation onto dorsal horn neurones in a neuropathic pain model, and shown this to enable the analgesic effectiveness of gabapentin. Here we have tested if this hypothesis applies to other pain states by using a combination of approaches in a rat model of osteoarthritis (OA to ascertain if 1 a role for descending 5HT mediated facilitation exists, and 2 if pregabalin (a newer analogue of gabapentin is an effective antinociceptive agent in this model. Further, quantitative-PCR experiments were undertaken to analyse the α2δ-1 and 5-HT3A subunit mRNA levels in L3–6 DRG in order to assess whether changes in these molecular substrates have a bearing on the pharmacological effects of ondansetron and pregabalin in OA. Results Osteoarthritis was induced via intra-articular injection of monosodium iodoacetate (MIA into the knee joint. Control animals were injected with 0.9% saline. Two weeks later in vivo electrophysiology was performed, comparing the effects of spinal ondansetron (10–100 μg/50 μl or systemic pregabalin (0.3 – 10 mg/kg on evoked responses of dorsal horn neurones to electrical, mechanical and thermal stimuli in MIA or control rats. In MIA rats, ondansetron significantly inhibited the evoked responses to both innocuous and noxious natural evoked neuronal responses, whereas only inhibition of noxious evoked responses was seen in controls. Pregabalin significantly inhibited neuronal responses in the MIA rats only; this effect was blocked by a pre-administration of spinal ondansetron. Analysis of α2δ-1 and 5-HT3A subunit mRNA levels in L3–6 DRG revealed a significant increase in α2δ-1 levels in ipsilateral L3&4 DRG in MIA rats. 5-HT3A subunit mRNA levels were unchanged. Conclusion These data suggest

  14. Ancestor–descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R. Ewan

    2015-01-01

    Ancestor–descendant relationships (ADRs), involving descent with modification, are the fundamental concept in evolution, but are usually difficult to recognize. We examined the cladistic relationship between the only reported fossil pygmy right whale, †Miocaperea pulchra, and its sole living relative, the enigmatic pygmy right whale Caperea marginata, the latter represented by both adult and juvenile specimens. †Miocaperea is phylogenetically bracketed between juvenile and adult Caperea marginata in morphologically based analyses, thus suggesting a possible ADR—the first so far identified within baleen whales (Cetacea: Mysticeti). The †Miocaperea–Caperea lineage may show long-term morphological stasis and, in turn, punctuated equilibrium. PMID:25589485

  15. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.

    Science.gov (United States)

    Nagao, Ryohei; Matsumoto, Keigo; Narumi, Takuji; Tanikawa, Tomohiro; Hirose, Michitaka

    2018-04-01

    This paper presents a novel interactive system that provides users with virtual reality (VR) experiences, wherein users feel as if they are ascending/descending stairs through passive haptic feedback. The passive haptic stimuli are provided by small bumps under the feet of users; these stimuli are provided to represent the edges of the stairs in the virtual environment. The visual stimuli of the stairs and shoes, provided by head-mounted displays, evoke a visuo-haptic interaction that modifies a user's perception of the floor shape. Our system enables users to experience all types of stairs, such as half-turn and spiral stairs, in a VR setting. We conducted a preliminary user study and two experiments to evaluate the proposed technique. The preliminary user study investigated the effectiveness of the basic idea associated with the proposed technique for the case of a user ascending stairs. The results demonstrated that the passive haptic feedback produced by the small bumps enhanced the user's feeling of presence and sense of ascending. We subsequently performed an experiment to investigate an improved viewpoint manipulation method and the interaction of the manipulation and haptics for both the ascending and descending cases. The experimental results demonstrated that the participants had a feeling of presence and felt a steep stair gradient under the condition of haptic feedback and viewpoint manipulation based on the characteristics of actual stair walking data. However, these results also indicated that the proposed system may not be as effective in providing a sense of descending stairs without an optimization of the haptic stimuli. We then redesigned the shape of the small bumps, and evaluated the design in a second experiment. The results indicated that the best shape to present haptic stimuli is a right triangle cross section in both the ascending and descending cases. Although it is necessary to install small protrusions in the determined direction, by

  16. Responses to selection for body weight in descendants of x-irradiated rats

    International Nuclear Information System (INIS)

    Gianola, D.; Chapman, A.B.; Rutledge, J.J.

    1979-01-01

    Th effectiveness of selection for high and low body weight at six weeks of age was studied in descendants of x-irradiated (R) and nonirradiated (C) inbred rats. There were two replicates of each of the direction of selection--irradiation treatments. In C lines, there were no consistent responses to selection, probably due to a low level of genetic variability. In R rats, selection was effective only for decreased body weight. The results of this experiment do not suggest the use of irradiation combined with selection as a means of enhancing responses to selection in animals

  17. [The assimilation of Italians and their descendants in Argentine society (1880-1925)].

    Science.gov (United States)

    Nascimbene, M C

    1996-09-01

    "The impact of massive immigration in the post-1870 period produced major changes in... Argentine society. Integration of immigrant groups (Italians, Spaniards, the French and others) was nevertheless fiercely opposed by local elites. The essay is firstly concerned with size and development of immigration flows; secondly it deals with the characteristics of local reaction against the immigrants; thirdly it reveals how, in spite of the latter, the Italians' integration did take place in the Argentine middle classes. Finally, a particular case-study is presented, in connection with integration of immigrants and their descendants in the national army." (SUMMARY IN ENG AND FRE) excerpt

  18. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    Science.gov (United States)

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Adult-Brain-Derived Neural Stem Cells Grafting into a Vein Bridge Increases Postlesional Recovery and Regeneration in a Peripheral Nerve of Adult Pig

    Directory of Open Access Journals (Sweden)

    Olivier Liard

    2012-01-01

    Full Text Available We attempted transplantation of adult neural stem cells (ANSCs inside an autologous venous graft following surgical transsection of nervis cruralis with 30 mm long gap in adult pig. The transplanted cell suspension was a primary culture of neurospheres from adult pig subventricular zone (SVZ which had been labeled in vitro with BrdU or lentivirally transferred fluorescent protein. Lesion-induced loss of leg extension on the thigh became definitive in controls but was reversed by 45–90 days after neurosphere-filled vein grafting. Electromyography showed stimulodetection recovery in neurosphere-transplanted pigs but not in controls. Postmortem immunohistochemistry revealed neurosphere-derived cells that survived inside the venous graft from 10 to 240 post-lesion days and all displayed a neuronal phenotype. Newly formed neurons were distributed inside the venous graft along the severed nerve longitudinal axis. Moreover, ANSC transplantation increased CNPase expression, indicating activation of intrinsic Schwann cells. Thus ANSC transplantation inside an autologous venous graft provides an efficient repair strategy.

  20. Clinical Trial of Human Fetal Brain-Derived Neural Stem/Progenitor Cell Transplantation in Patients with Traumatic Cervical Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Ji Cheol Shin

    2015-01-01

    Full Text Available In a phase I/IIa open-label and nonrandomized controlled clinical trial, we sought to assess the safety and neurological effects of human neural stem/progenitor cells (hNSPCs transplanted into the injured cord after traumatic cervical spinal cord injury (SCI. Of 19 treated subjects, 17 were sensorimotor complete and 2 were motor complete and sensory incomplete. hNSPCs derived from the fetal telencephalon were grown as neurospheres and transplanted into the cord. In the control group, who did not receive cell implantation but were otherwise closely matched with the transplantation group, 15 patients with traumatic cervical SCI were included. At 1 year after cell transplantation, there was no evidence of cord damage, syrinx or tumor formation, neurological deterioration, and exacerbating neuropathic pain or spasticity. The American Spinal Injury Association Impairment Scale (AIS grade improved in 5 of 19 transplanted patients, 2 (A → C, 1 (A → B, and 2 (B → D, whereas only one patient in the control group showed improvement (A → B. Improvements included increased motor scores, recovery of motor levels, and responses to electrophysiological studies in the transplantation group. Therefore, the transplantation of hNSPCs into cervical SCI is safe and well-tolerated and is of modest neurological benefit up to 1 year after transplants. This trial is registered with Clinical Research Information Service (CRIS, Registration Number: KCT0000879.

  1. M-CSF deficiency leads to reduced metallothioneins I and II expression and increased tissue damage in the brain stem after 6-aminonicotinamide treatment

    DEFF Research Database (Denmark)

    Penkowa, Milena; Poulsen, Christian; Carrasco, Javier

    2002-01-01

    6-Aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray-matter astrocytes followed by a vigorous inflammatory response. Macrophage colony stimulating factor (M-CSF) is important during inflammation, and in order to further clarify the roles for M-CSF...... in neurodegeneration and brain cell death, we have examined the effect of 6-AN on osteopetrotic mice with genetic M-CSF deficiency (op/op mice). The 6-AN-induced degeneration of gray-matter areas was comparable in control and op/op mice, but the numbers of reactive astrocytes, macrophages, and lymphocytes...... for caspases and cytochrome c) were significantly increased in 6-AN-injected op/op mice relative to controls. From a number of antioxidant factors assayed, only metallothioneins I and II (MT-I+II) were decreased in op/op mice in comparison to controls. Thus, the present results indicate that M-CSF...

  2. [Alternation of proteins in brain of Parkinson's disease model rats after the transplantation of TH-NTN gene modified bone marrow mesenchymal stem cells].

    Science.gov (United States)

    Huang, Yue; Chang, Cheng; Zhang, Jie-wen; Gao, Xiao-qun

    2012-09-04

    To explore the effects of tyrosine hydroxylase-neurturin (TH-NTN) gene modified bone marrow mesenchymal stem cell (BMSC) transplantation in Parkinson's disease (PD) model rats and the alternations of correlated proteins. The PD rat model was established by the 2-point injection of 6-hydroxydopamine (6-OHDA) into unilateral (right) striatum. Successful modeling rats were separated into PD, BMSC and TH-NTN-BMSC groups. BMSC and TH-NTN-BMSC groups were transplanted into BMSCs and TH-NTN gene modified BMSC cells separately into right striatum. After transplantation, ethology detection in all groups was made with an intraperitoneal injection of apomorphine (APO). Dopamine (DA) and Dihydroxyphenylacetic Acid (DOPAC) in striatum were detected by high performance liquid electrochemical analysis. TH and NTN proteins in right striatum were also analyzed by immunohistochemistry and Western blot. Finally the density of dopamine receptors in post synaptic density of dopaminergic synapses of corpus striatum were compared between each group by post-embedding immunogold electron microscopy. After an injection of APO, rotation frequency decreased in TH-NTN-BMSC group, i.e. (5.7 ± 1.3) circles/min versus (10.8 ± 2.2), (9.9 ± 1.2) circles/min in PD and BMSC groups (P TH-NTN-BMSC group versus (923 ± 132)/µm(2) in PD and (860 ± 116)/µm(2) in BMSC groups was also found. The combined therapy of TH and NTN genes increases the synthesis of DA and also protects the dopaminergic neurons to achieve double therapeutic effects. It may provide potential innovations of PD genetic therapy.

  3. Penetrating Atherosclerotic Ulcer of the Descending Thoracic Aorta: Treatment by Endovascular Stent-Graft

    International Nuclear Information System (INIS)

    Murgo, Salvatore; Dussaussois, Luc; Golzarian, Jafar; Cavenaile, Jean Christophe; Abada, Hicham Tarik; Ferreira, Jose; Struyven, Julien

    1998-01-01

    Purpose: To present four cases of penetrating ulcer of the descending thoracic aorta treated by transfemoral insertion of an endoluminal stent-graft. Methods: Four patients with penetrating aortic ulcers were reviewed. Three cases were complicated by rupture, false aneurysm, or retrograde dissection. All patients were treated by endovascular stent-graft and were followed by helical computed tomography (CT). Results: Endovascular stent-graft deployment was successful in all patients. However, in one case we observed a perigraft leak that spontaneously disappeared within the first month, and two interventions were needed for another patient. Following treatment, one episode of transient spinal ischemia was observed. The 30-day survival rate was 100%, but one patient died from pneumonia with cardiac failure 34 days after the procedure. In one patient, helical CT performed at 3 months showed a false aneurysm independent of the first ulcer. This patient refused any further treatment and suddenly died at home (unknown cause) after a 6-month follow-up period. Conclusion: Transluminal placement of endovascular stent-grafts for treatment of penetrating ulcers of the descending thoracic aorta appears to be a possible alternative to classical surgery. After treatment, follow-up by CT is essential to detect possible complications of the disease

  4. Math modeling for helicopter simulation of low speed, low altitude and steeply descending flight

    Science.gov (United States)

    Sheridan, P. F.; Robinson, C.; Shaw, J.; White, F.

    1982-01-01

    A math model was formulated to represent some of the aerodynamic effects of low speed, low altitude, and steeply descending flight. The formulation is intended to be consistent with the single rotor real time simulation model at NASA Ames Research Center. The effect of low speed, low altitude flight on main rotor downwash was obtained by assuming a uniform plus first harmonic inflow model and then by using wind tunnel data in the form of hub loads to solve for the inflow coefficients. The result was a set of tables for steady and first harmonic inflow coefficients as functions of ground proximity, angle of attack, and airspeed. The aerodynamics associated with steep descending flight in the vortex ring state were modeled by replacing the steady induced downwash derived from momentum theory with an experimentally derived value and by including a thrust fluctuations effect due to vortex shedding. Tables of the induced downwash and the magnitude of the thrust fluctuations were created as functions of angle of attack and airspeed.

  5. Pedicled Descending Branch Latissimus Dorsi Mini-flap for Repairing Partial Mastectomy Defect: A New Technique

    Directory of Open Access Journals (Sweden)

    Ruizhao Cai, M.D.

    2018-03-01

    Full Text Available Summary:. Volume loss is 1 of the major factors influencing cosmetic outcomes of breast after partial mastectomy (PM, especially for smaller breasts, and therefore, volume replacement is critical for optimizing the final aesthetic outcome. We present a novel technique of raising a pedicled descending branch latissimus dorsi (LD mini-flap for reconstruction of PM defects via an axillary incision. After PM, the LD mini-flap is harvested through the existing axillary incision of the axillary dissection or the sentinel lymph node biopsy. The descending branches of thoracodorsal vessels and nerve are carefully identified and isolated. The transverse branches are protected to maintain muscle innervation and function. The LD muscle is then undermined posteriorly and inferiorly to create a submuscular pocket and a subcutaneous pocket between LD muscle and superficial fascia. Once the submuscular plane is created, the muscle is divided along the muscle fibers from the deep surface including a layer of fat above the muscle. Finally, the LD mini-flap is transferred to the breast defect. Given the limited length and mobility of the LD mini-flap, this approach is best utilized for lateral breast defects. However, for medial defects, the lateral breast tissue is rearranged to reconstruct the medial breast defect, and an LD mini-flap is then used to reconstruct the lateral breast donor site. This technique can therefore be employed to reconstruct all quadrants of the breast and can provide aesthetic outcomes without scars on the back, with minimal dysfunction of LD muscle.

  6. Quantification of progression and regression of descending thoracic aortic wall thickness by enhanced computed tomography

    International Nuclear Information System (INIS)

    Yokoyama, Kenichi; Takasu, Junichiro; Yamamoto, Rie; Taguchi, Rie; Itani, Yasutaka; Ito, Yuichi; Watanabe, Shigeru; Masuda, Yoshiaki

    2001-01-01

    The purpose of this study is to verify the usefulness of the quantification of aortic wall involvement by enhanced computed tomography (CT). One-hundred thirteen Japanese patients underwent two enhanced CT of the descending thoracic aorta at intervals. We sliced the descending thoracic aorta continuously from the level of the tracheal bifurcation with 1 cm intervals, and we defined aortic wall volume (AWV) (cm 3 ) as the sum of a 7-slice area of aortic wall involving calcification. The average of AWV increased from 7.95±2.92 cm 3 to 8.70±2.98 cm 3 . The developmental rate of AWV (ΔAWV) was 0.270±0.281 cm 3 /year. ΔAWV did not have a significant correlation with any risk factor at the baseline. ΔAWV had significant correlation with total cholesterol, (LDL-C) low-density lipoprotein cholesterol and LDL-C/(HDL-C) high-density lipoprotein cholesterol ratio at the follow-up, and by multivariate analysis with only the LDL-C/HDL-C ratio. ΔAWV was not correlated with the intake status of hypoglycemic, antihypertensive or lipid-lowering drugs. The cut-off level of total cholesterol with the most significant odds ratio for progression of aortic wall was 190 mg/dl, and that of LDL-C was 130 mg/dl. This method proved to be useful for the non-invasive assessment of aortic wall thickness. (author)

  7. Electroacupuncture Potentiates Cannabinoid Receptor-Mediated Descending Inhibitory Control in a Mouse Model of Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Yuan

    2018-04-01

    Full Text Available Knee osteoarthritis (KOA is a highly prevalent, chronic joint disorder, which can lead to chronic pain. Although electroacupuncture (EA is effective in relieving chronic pain in the clinic, the involved mechanisms remain unclear. Reduced diffuse noxius inhibitory controls (DNIC function is associated with chronic pain and may be related to the action of endocannabinoids. In the present study, we determined whether EA may potentiate cannabinoid receptor-mediated descending inhibitory control and inhibit chronic pain in a mouse model of KOA. We found that the optimized parameters of EA inhibiting chronic pain were the low frequency and high intensity (2 Hz + 1 mA. EA reversed the reduced expression of CB1 receptors and the 2-arachidonoylglycerol (2-AG level in the midbrain in chronic pain. Microinjection of the CB1 receptor antagonist AM251 into the ventrolateral periaqueductal gray (vlPAG can reversed the EA effect on pain hypersensitivity and DNIC function. In addition, CB1 receptors on GABAergic but not glutamatergic neurons are involved in the EA effect on DNIC function and descending inhibitory control of 5-HT in the medulla, thus inhibiting chronic pain. Our data suggest that endocannabinoid (2-AG-CB1R-GABA-5-HT may be a novel signaling pathway involved in the effect of EA improving DNIC function and inhibiting chronic pain.

  8. Pattern of labelling of the rat brain stem after intraventricular administration of 3H-leucine; low and high resolution autoradiographic study

    International Nuclear Information System (INIS)

    Jakoubek, B.; Jirmanova, I.; Soukup, T.; Krekule, I.

    1982-01-01

    The pattern of labelling proteins of the periventricular grey matter was studied two hours after intraventricular administration of 3 H-leucine by low- and high-resolution autoradiography. The pattern was investigated by computer-controlled densitometry. The deposition of radioactive proteins in periventricular grey surrounding the mesencephalic part of the aquaeductus Sylvii was compared with that surrounding the fourth ventricle. In the former case, the distribution of grains was in a circular area 500 to 600 μm in diameter; the densitometric tracing revealed a homogeneous distribution of the label; in the latter case, the distribution was nonhomogeneous and was limited by the tissue components forming the wall of the fourth ventricle. A comparison of the intensity of labelling (performed by a combination of low- and high-resolution autoradiography) indicated relatively substantial labelling of proteins of ependymal cells, very sparce labelling of subependymal layers, and very high labelling of neurones adjacent to the subependymal layer. The significance of these findings for the interpretation of studies using intraventricular administration of labelled amino acids for investigating brain macromolecular metabolism is discussed. (author)

  9. Brain imaging during seizure: ictal brain SPECT

    International Nuclear Information System (INIS)

    Kottamasu, Sambasiva Rao

    1997-01-01

    The role of single photon computed tomography (SPECT) in presurgical localization of medically intractable complex partial epilepsy (CPE) in children is reviewed. 99m Technetium neurolite, a newer lipophylic agent with a high first pass brain extraction and little or no redistribution is injected during a seizure, while the child is monitored with a video recording and continuous EEG and SPECT imaging is performed in the next 1-3 hours with the images representing regional cerebral profusion at the time of injection. On SPECT studies performed with radiopharmaceutical injected during a seizure, ictal focus is generally hypervascular. Other findings on ictal brain SPECT include hypoperfusion of adjacent cerebral cortex and white matter, hyperperfusion of contralateral motor cortex, hyperperfusion of ipsilateral basal ganglia and thalamus, brain stem and contralateral cerebellum. Ictal brain SPECT is non-invasive, cost effective and highly sensitive for localization of epileptic focus in patients with intractable CPE. (author)

  10. Stem Cell Basics

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  11. Redox environment in stem and differentiated cells: A quantitative approach.

    Science.gov (United States)

    Lyublinskaya, O G; Ivanova, Ju S; Pugovkina, N A; Kozhukharova, I V; Kovaleva, Z V; Shatrova, A N; Aksenov, N D; Zenin, V V; Kaulin, Yu A; Gamaley, I A; Nikolsky, N N

    2017-08-01

    Stem cells are believed to maintain a specific intracellular redox status through a combination of enhanced removal capacity and limited production of ROS. In the present study, we challenge this assumption by developing a quantitative approach for the analysis of the pro- and antioxidant ability of human embryonic stem cells in comparison with their differentiated descendants, as well as adult stem and non-stem cells. Our measurements showed that embryonic stem cells are characterized by low ROS level, low rate of extracellular hydrogen peroxide removal and low threshold for peroxide-induced cytotoxicity. However, biochemical normalization of these parameters to cell volume/protein leads to matching of normalized values in stem and differentiated cells and shows that tested in the present study cells (human embryonic stem cells and their fibroblast-like progenies, adult mesenchymal stem cells, lymphocytes, HeLa) maintain similar intracellular redox status. Based on these observations, we propose to use ROS concentration averaged over the cell volume instead of ROS level as a measure of intracellular redox balance. We show that attempts to use ROS level for comparative analysis of redox status of morphologically different cells could lead to false conclusions. Methods for the assessment of ROS concentration based on flow cytometry analysis with the use of H 2 DCFDA dye and HyPer, genetically encoded probe for hydrogen peroxide, are discussed. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  13. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum.

    Science.gov (United States)

    Wefers, Annika K; Lindner, Sven; Schulte, Johannes H; Schüller, Ulrich

    2017-02-01

    LIN28B is a homologue of the RNA-binding protein LIN28A and regulates gene expression during development and carcinogenesis. It is strongly upregulated in a variety of brain tumors, such as medulloblastoma, embryonal tumor with multilayered rosettes (ETMR), atypical teratoid/rhabdoid tumor (AT/RT), or glioblastoma, but the effect of an in vivo overexpression of LIN28B on the developing central nervous system is unknown. We generated transgenic mice that either overexpressed Lin28b in Math1-positive cerebellar granule neuron precursors or in a broad range of Nestin-positive neural precursors. Sections of the cerebellar vermis from adult Math1-Cre::lsl-Lin28b mice had an additional subfissure in lobule IV. Vermes from p0 and p7 Nestin-Cre::lsl-Lin28b mice appeared normal, but we found a pronounced vermal hypersublobulation at p15 and p21 in these mice. Also, the external granule cell layer (EGL) was thicker at p15 than in controls, contained more proliferating cells, and persisted up to p21. Consistently, some Pax6- and NeuN-positive cells were present in the EGL of Nestin-Cre::lsl-Lin28b mice even at p21, and we detected more NeuN-positive granule neuron precursors in the molecular layer (ML) as compared to control. Finally, we found some residual Pax2-positive precursors of inhibitory interneurons in the ML of Nestin-Cre::lsl-Lin28b mice at p21, which have already disappeared in controls. We conclude that while overexpression of LIN28B in Nestin-positive cells does not lead to tumor formation, it results in a protracted development of granule cells and inhibitory interneurons and leads to a hypersublobulation of the cerebellar vermis.

  14. When stem cells grow old: phenotypes and mechanisms of stem cell aging

    Science.gov (United States)

    Schultz, Michael B.; Sinclair, David A.

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  15. Why STEM?

    Science.gov (United States)

    Mitts, Charles R.

    2016-01-01

    The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…

  16. Scuba diving, acute left anterior descending artery occlusion and normal ECG

    Science.gov (United States)

    Doll, Sébastien Xavier; Rigamonti, Fabio; Roffi, Marco; Noble, Stéphane

    2013-01-01

    We report the case of an acute proximal occlusion of the left anterior descending coronary (LAD) artery following a scuba diving decompression accident and associated with normal ECG. Following uneventful thromboaspiration and coronary stenting, the patient was discharged on day  4 with secondary preventative therapies. A transthoracic echocardiography performed at this point showed a complete recovery compared with an initial localised akinesia involving the anterior and apical portion of the left ventricle upon admission. This case highlights that significant acute coronary lesions involving the LAD can occur without any ECG anomaly. The presence of acute and persistent angina associated with troponin elevation should prompt physicians to consider coronary angiography without delay, independently of the ECG results. PMID:23376677

  17. Descending Necrotizing Mediastinitis Treated with Tooth Extractions following Mediastinal and Cervical Drainage

    Directory of Open Access Journals (Sweden)

    Minoru Fukuchi

    2015-10-01

    Full Text Available Descending necrotizing mediastinitis (DNM is a rare condition in which oropharyngeal infection spreads to the mediastinum via the cervical fascia. Delayed diagnosis and surgery result in a high mortality rate among patients with DNM. We present a case of DNM resulting from odontogenic infection treated successfully with tooth extraction following mediastinal and cervical drainage. A 43-year-old, previously healthy Japanese man was admitted to our hospital for treatment of acute mediastinitis. Computed tomography revealed gas collection around the mid-thoracic esophagus and bilateral pleural effusion. We performed mediastinal drainage via right thoracotomy. Cervicotomy was performed on postoperative day 14 to drain a residual cervical abscess. The patient required the extraction of ten teeth over three procedures to address primary odontogenic infection before his fever resolved on postoperative day 40. Prompt diagnosis, aggressive drainage and removal of the source of infection can improve survival among patients with this life-threatening disease.

  18. Revisiting colostomy irrigation: a viable option for persons with permanent descending and sigmoid colostomies.

    Science.gov (United States)

    Kent, Dea J; Arnold Long, Mary; Bauer, Carole

    2015-01-01

    Colostomy irrigation (CI) is the regular irrigation of the bowel for persons with a permanent colostomy of the descending or sigmoid colon. Although this technique was first described in the 1920s, a recent study of 985 WOC nurses found that almost half (47%) do not routinely teach CI to persons with colostomies. In a systematic review (Evidence-Based Report Card) published in this issue of the Journal, we summarized current best evidence concerning the effect of CI on bowel function and found that irrigation reduces the frequency of bowel elimination episodes and allows some patients to reduce or eliminate ongoing use of a pouching system. This article describes techniques for teaching CI and discussed additional findings associated with CI.

  19. Ancestor-descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata.

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2015-01-01

    Ancestor-descendant relationships (ADRs), involving descent with modification, are the fundamental concept in evolution, but are usually difficult to recognize. We examined the cladistic relationship between the only reported fossil pygmy right whale, †Miocaperea pulchra, and its sole living relative, the enigmatic pygmy right whale Caperea marginata, the latter represented by both adult and juvenile specimens. †Miocaperea is phylogenetically bracketed between juvenile and adult Caperea marginata in morphologically based analyses, thus suggesting a possible ADR-the first so far identified within baleen whales (Cetacea: Mysticeti). The †Miocaperea-Caperea lineage may show long-term morphological stasis and, in turn, punctuated equilibrium. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Differences in descending control of external oblique and latissimus dorsi muscles in humans: a preliminary study.

    Science.gov (United States)

    Wightman, Francesca; Delves, Suzanne; Alexander, Caroline M; Strutton, Paul H

    2011-07-01

    Descending bilateral control of external oblique (EO) and latissimus dorsi (LD) was investigated using transcranial magnetic stimulation. Contralateral (CL) motor evoked potential (MEP) thresholds were lower and latencies were shorter than for ipsilateral (IL) MEPs. Hotspots for EO were symmetrical; this was not the case for LD. The volumes of drive to the left and right muscles were not different. The laterality index was not different between the left and right muscles. The average index for the EO muscles was closer to zero than that for LD, suggesting a stronger IL drive to EO. The symmetry of drive to each muscle did not differ; however, the symmetry of drive varies within a subject for different muscles and between subjects for the same muscle. The findings may be useful in understanding a number of clinical conditions relating to the trunk and also for predicting the outcome of rehabilitative strategies.

  1. Pregnant Students Of Secondary Schools As Descendants Of Unwed Mothers Some Lessons To Learn

    Directory of Open Access Journals (Sweden)

    Rosenda M. Wamelda

    2015-08-01

    Full Text Available This phenomenological study was designed to determine the experiences of pregnant secondary school students aged 12-19 students who were descendants of unwed mothers. In-depth-interview and focus group discussion were applied with 14 pregnant students who were utilized in selecting the participants of the study. The participants revealed that their experiences were on humiliation and disdain remorse fear and insecurity escape and remediation support and love financial constraints and acquiescence. Their coping mechanisms were being positive about the situation having the aid and support of the family faith and hope to the divine God and the wisdom of the family. Importantly the teenage mothers valued the lessons learned from the experience the values of resilience and elasticity resolution and repentance for what they have done and hopes and dreams for the future.

  2. Nutritional profile in children under five years of Afro-descendant communities in Paraguay

    Directory of Open Access Journals (Sweden)

    Susana Sánchez-Bernal

    2015-12-01

    Full Text Available Background: In Paraguay, little is known about the Afro-descendant population. It is important to know about their nutritional status, mainly in childhood, to guide appropriate action. Objective: To determine the nutritional profile of children under five years from the African descendants’ communities in Paraguay and its associated factors. Material and methods: A cross-sectional and observational design with analytical component was developed. It involved healthy male and female children under five years old, with at least one African descendant as immediate family. Dietary habits and nutritional status (WHO criteria were assessed. WHO Anthro and SPSS 16.0 software were used. Results: 150 children were included. The median of age was 26.9 months (1.2-59.9 m, and 50.7% were males. The median maternal age was 28.3 years (16-49 years. Children with Exclusive Breast Feeding (EBF, n=119 had a mean duration of 3.5±1.8 months (1-7m. 26.9% were exclusively breastfed during six months. The starting of complementary feeding was on average 5.2 months. The underweight prevalence (UW, zP/E 0.05. Children with UW had a lower average of age of onset of complementary feeding (1.7 vs 4.9 months, p˂0.0001 compare with their pairs without malnutrition. Conclusion: Chronic malnutrition was the most prevalent chronic disease affecting over 1 in 10 children. Early initiation of complementary feeding could be a risk factor for malnutrition.

  3. Fertility among descendants of immigrants in Belgium: The role of the partner

    Directory of Open Access Journals (Sweden)

    Lisa Van Landschoot

    2017-06-01

    Full Text Available Background: Research on the fertility behavior of descendants of immigrants has focused on female characteristics and has largely neglected those of the male partner. One key aspect is whether the partner is of same (endogamous or of different (exogamous ethnic origin. Moreover, the male partner may be born in the same country as the female partner, or he may have migrated to that country later in the life course. Consequently, both his ethnic origin and migration history may affect the fertility behavior of second-generation women. Objective: This study analyzes to what extent second and higher order births of second-generation women of Southern European, Turkish, or Moroccan origin in Belgium differ by the ethnic origin and migration history of the male partner. Methods: We apply event history methods using the 2001 Belgian Census, linked with the 2006 Belgian National Population Register. Results: Women of Turkish and Moroccan origin in an endogamous union experience higher second and subsequent birth rates than their counterparts in an exogamous union. However, no variation is found within the endogamous unions: Whether or not the endogamous partner has been born in the country of origin does not seem to affect second and higher order birth rates. For women of Southern European origin, second and higher order birth rates do not differ by origin and generation of their partner. Contribution: This study extends the literature on the fertility behavior of the descendants of immigrants by demonstrating the importance of male partner characteristics in explaining the transition to a second or a higher order birth.

  4. Descending projections from the dysgranular zone of rat primary somatosensory cortex processing deep somatic input.

    Science.gov (United States)

    Lee, Taehee; Kim, Uhnoh

    2012-04-01

    In the mammalian somatic system, peripheral inputs from cutaneous and deep receptors ascend via different subcortical channels and terminate in largely separate regions of the primary somatosensory cortex (SI). How these inputs are processed in SI and then projected back to the subcortical relay centers is critical for understanding how SI may regulate somatic information processing in the subcortex. Although it is now relatively well understood how SI cutaneous areas project to the subcortical structures, little is known about the descending projections from SI areas processing deep somatic input. We examined this issue by using the rodent somatic system as a model. In rat SI, deep somatic input is processed mainly in the dysgranular zone (DSZ) enclosed by the cutaneous barrel subfields. By using biotinylated dextran amine (BDA) as anterograde tracer, we characterized the topography of corticostriatal and corticofugal projections arising in the DSZ. The DSZ projections terminate mainly in the lateral subregions of the striatum that are also known as the target of certain SI cutaneous areas. This suggests that SI processing of deep and cutaneous information may be integrated, to a certain degree, in this striatal region. By contrast, at both thalamic and prethalamic levels as far as the spinal cord, descending projections from DSZ terminate in areas largely distinguishable from those that receive input from SI cutaneous areas. These subcortical targets of DSZ include not only the sensory but also motor-related structures, suggesting that SI processing of deep input may engage in regulating somatic and motor information flow between the cortex and periphery. Copyright © 2011 Wiley-Liss, Inc.

  5. Axial compartmentation of descending and ascending thin limbs of Henle's loops.

    Science.gov (United States)

    Westrick, Kristen Y; Serack, Bradley; Dantzler, William H; Pannabecker, Thomas L

    2013-02-01

    In the inner medulla, radial organization of nephrons and blood vessels around collecting duct (CD) clusters leads to two lateral interstitial regions and preferential intersegmental fluid and solute flows. As the descending (DTLs) and ascending thin limbs (ATLs) pass through these regions, their transepithelial fluid and solute flows are influenced by variable transepithelial solute gradients and structure-to-structure interactions. The goal of this study was to quantify structure-to-structure interactions, so as to better understand compartmentation and flows of transepithelial water, NaCl, and urea and generation of the axial osmotic gradient. To accomplish this, we determined lateral distances of AQP1-positive and AQP1-negative DTLs and ATLs from their nearest CDs, so as to gauge interactions with intercluster and intracluster lateral regions and interactions with interstitial nodal spaces (INSs). DTLs express reduced AQP1 and low transepithelial water permeability along their deepest segments. Deep AQP1-null segments, prebend segments, and ATLs lie equally near to CDs. Prebend segments and ATLs abut CDs and INSs throughout much of their descent and ascent, respectively; however, the distal 30% of ATLs of the longest loops lie distant from CDs as they approach the outer medullary boundary and have minimal interaction with INSs. These relationships occur regardless of loop length. Finally, we show that ascending vasa recta separate intercluster AQP1-positive DTLs from descending vasa recta, thereby minimizing dilution of gradients that drive solute secretion. We hypothesize that DTLs and ATLs enter and exit CD clusters in an orchestrated fashion that is important for generation of the corticopapillary solute gradient by minimizing NaCl and urea loss.

  6. Maturation of the auditory system in clinically normal puppies as reflected by the brain stem auditory-evoked potential wave V latency-intensity curve and rarefaction-condensation differential potentials.

    Science.gov (United States)

    Poncelet, L C; Coppens, A G; Meuris, S I; Deltenre, P F

    2000-11-01

    To evaluate auditory maturation in puppies. Ten clinically normal Beagle puppies. Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.

  7. Organization of haemopoietic stem cells: the generation-age hypothesis

    International Nuclear Information System (INIS)

    Rosendaal, M.; Hodgson, G.S.; Bradley, T.R.

    1978-01-01

    This paper proposes that the previous division history of each stem cell is one determinant of the functional organisation of the haemopoietic stem cell population. Older stem cell are used to form blood before younger ones. The stem cells generating capacity of a lineage is finite, and cells are eventually lost to the system by forming two committed precursors of the cell lines, and the next oldest stem cell takes over. Hence the proposed term 'generation-age hypothesis', supported by experimental evidence. Older stem cells from normal bone marrow and 13 day foetal liver were stripped away with phase-specific drugs revealing a younger population of stem cells with three-to four-fold greater stem cell generating capacity. Normal stem cells aged by continuous irradiation and serial retransplantation had eight-fold reduced generating capacity. That of stem cells in the bloodstream was half to a quarter that of normal bone marrow stem cells. There were some circulating stem cells, identified by reaction to brain-associated antigen, positive for 75% of normal femoral stem cells but not their progeny, whose capacity for stem cell generation was an eighth to one fortieth that of normal cells. (U.K.)

  8. Semi-automated segmentation of the sigmoid and descending colon for radiotherapy planning using the fast marching method

    International Nuclear Information System (INIS)

    Losnegaard, Are; Hodneland, Erlend; Lundervold, Arvid; Hysing, Liv Bolstad; Muren, Ludvig Paul

    2010-01-01

    A fast and accurate segmentation of organs at risk, such as the healthy colon, would be of benefit for planning of radiotherapy, in particular in an adaptive scenario. For the treatment of pelvic tumours, a great challenge is the segmentation of the most adjacent and sensitive parts of the gastrointestinal tract, the sigmoid and descending colon. We propose a semi-automated method to segment these bowel parts using the fast marching (FM) method. Standard 3D computed tomography (CT) image data obtained from routine radiotherapy planning were used. Our pre-processing steps distinguish the intestine, muscles and air from connective tissue. The core part of our method separates the sigmoid and descending colon from the muscles and other segments of the intestine. This is done by utilizing the ability of the FM method to compute a specified minimal energy functional integrated along a path, and thereby extracting the colon centre line between user-defined control points in the sigmoid and descending colon. Further, we reconstruct the tube-shaped geometry of the sigmoid and descending colon by fitting ellipsoids to points on the path and by adding adjacent voxels that are likely voxels belonging to these bowel parts. Our results were compared to manually outlined sigmoid and descending colon, and evaluated using the Dice coefficient (DC). Tests on 11 patients gave an average DC of 0.83 (±0.07) with little user interaction. We conclude that the proposed method makes it possible to fast and accurately segment the sigmoid and descending colon from routine CT image data.

  9. Stem Cell Therapy: An emerging science

    International Nuclear Information System (INIS)

    Khan, Muhammad M.

    2007-01-01

    The research on stem cells is advancing knowledge about the development of an organism from a single cell and to how healthy cells replace damaged cells in adult organisms. Stem cell therapy is emerging rapidly nowadays as a technical tool for tissue repair and replacement. The purpose of this review to provide a framework of understanding for the challenges behind translating fundamental stem cell biology and its potential use into clinical therapies, also to give an overview on stem cell research to the scientists of Saudi Arabia in general. English language MEDLINE publications from 1980 through January 2007 for experimental, observational and clinical studies having relation with stem cells with different diseases were reviewed. Approximately 85 publications were reviewed based on the relevance, strength and quality of design and methods, 36 publications were selected for inclusion. Stem cells reside in a specific area of each tissue where they may remain undivided for several years until they are activated by disease or tissue injury. The embryonic stem cells are typically derived from four or five days old embryos and they are pluripotent. The adult tissues reported to contain stem cells brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin and liver. The promise of stem cell therapies is an exciting one, but significant technical hurdles remain that will only be overcome through years of intensive research. (author)

  10. Cancer Stem Cells – New Approach to Cancerogenensis and Treatment

    Directory of Open Access Journals (Sweden)

    Zuzana Mačingová

    2008-01-01

    Full Text Available Recently, there is an increasing evidence supporting the theory of cancer stem cells not only in leukemia but also in solid cancer. To date, the existence of cancer stem cells has been proven in acute and chronic myeloid leukemia, in breast cancer, in brain tumors, in lung cancer and gastrointestinal tumors. This review is focusing on the recent discovery of stem cells in leukemia, human brain tumors and breast cancer. A small population of cells in the tumor (less than 1 % shows the potential to give rise to the tumor and its growth. These cells have a substantial characteristic of stem cells – ability for self-renewal without loss of proliferation capacity with each cell division. Furthermore they are immortal, rather resistant to treatment and express typical markers of stem cells. The origin of these resident cancer stem cells is not clear. Whether the cancer stem cells originate from normal stem cells in consequence of genetic and epigenetic changes and/or redifferentiation from somatic tumor cells to the stem-like cells remains to be investigated. We propose the idea of the relation between normal tissue stem cells and cancer stem cells and their populations – progenitor cells. Based on this we highlight one of the major characteristic of stem cell – plasticity, which is equally important in the physiological regeneration process as well as carcinogenesis. Furthermore, we consider the microenvironment as a limiting factor for tumor genesis in AML, breast cancer and brain tumors. Thus the biological properties of cancer stem cells are just beginning to be revealed, the continuation of these studies should lead to the development of cancer stem cells target therapies for cancer treatment.

  11. Posterior brain in fetuses with open spina bifida at 11 to 13 weeks.

    Science.gov (United States)

    Lachmann, Robert; Chaoui, Rabih; Moratalla, Jose; Picciarelli, Gemma; Nicolaides, Kypros H

    2011-01-01

    To measure the changes in the posterior fossa in first-trimester fetuses with open spina bifida (OSB). The brain stem diameter and brain stem to occipital bone (BSOB) diameter were measured in stored images of the mid-sagittal view of the fetal face at 11(+0) to 13(+6) weeks from 30 fetuses with OSB and 1000 normal controls. In the control group, the brain stem and BSOB diameter increased significantly with crown-rump length (CRL) and the brain stem to BSOB ratio decreased. In the spina bifida group, the brain stem diameter was above the 95th percentile of the control group in 29 (96.7%) cases, the BSOB diameter was below the 5th percentile in 26 (86.7%) and the brain stem to BSOB ratio was above the 95th percentile in all cases. At 11 to 13 weeks the majority of fetuses with OSB have measurable abnormalities in the posterior brain.

  12. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  13. Percutaneous coronary intervention with ABSORB biodegradable vascular scaffold in patients with left anterior descending artery disease

    Directory of Open Access Journals (Sweden)

    К. М. Ваккосов

    2017-04-01

    Full Text Available Aim. The article evaluates 30-day results of percutaneous coronary intervention (PCI with ABSORB biodegradable vascular scaffold (BVS implanted in the case of stenosis of the left anterior descending (LAD coronary artery in patients with stable angina.Methods. 64 patients with significant (≥ 70% LAD disease were included in the study. At 30 days, scaffold thrombosis and major adverse cardiovascular events (all-cause mortality, myocardial infarction, stroke, target vessel revascularization were evaluated. The indicator of successful percutaneous coronary intervention (residual stenosis ≤20% in the presence of counterpulsation corresponding to TIMI 3rd Grade and in the absence of significant in-patient clinical complications and successful intervention assessed by clinical criteria (successful percutaneous coronary intervention alongside with a decrease in objective and subjective symptoms of myocardial ischemia, or their complete disappearance were also analyzed. Results. Mean age of patients was 61.6±8.5 years, with males accounting for 64%; 33% had earlier MI, 14% – diabetes mellitus. Mean left ventricular ejection fraction was 61.3±6.8%. Left anterior descending artery disease was presented in 89% of patients with SYNTAX Score 6.6±2.2. Mean number of implanted stents was 1.2±0.4, with mean length of the stented segment equal to18.7±1.8 mm and mean diameter 3.2±0.3 mm. At 30-day follow-up, the success of intervention assessed by clinical criteria amounted to 96.9% (n=62; that of myocardial infarction 3.1% (n=2; stent thrombosis 1.56% (n=1; repeated revascularization 1.56% (n=1; major adverse cardiovascular events (MACE 3.1%.Conclusion. The implantation of everolimus-eluting BVS for LAD stenosis demonstrates satisfactory results at 30-day follow-up.Received 16 January 2017. Accepted 21 March 2017.Financing: The study did not have sponsorship.Conflict of interest: The authors declare no conflict of interest.

  14. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    Science.gov (United States)

    2015-11-01

    Montero-Menei, C.; Menei, P. Mesenchymal Stem Cells as Cellular Vehicles for Delivery of Nanoparticles to Brain Tumors. Biomaterials 2010, 31, 8393... Stem Cells : Considerations for Regenerative Medicine Approaches. Tissue Eng. Part B. Rev. 2010, 16, 159–168. 55. Ellem, S. J.; Taylor, R. a.; Furic, L...Award Number: W81XWH-13-1-0304 TITLE: Mesenchymal Stem Cell -Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs CONTRACTING

  15. Osmotherapy in brain edema

    DEFF Research Database (Denmark)

    Grände, Per-Olof; Romner, Bertil

    2012-01-01

    Despite the fact that it has been used since the 1960s in diseases associated with brain edema and has been investigated in >150 publications on head injury, very little has been published on the outcome of osmotherapy. We can only speculate whether osmotherapy improves outcome, has no effect......, osmotherapy can be negative for outcome, which may explain why we lack scientific support for its use. These drawbacks, and the fact that the most recent Cochrane meta-analyses of osmotherapy in brain edema and stroke could not find any beneficial effects on outcome, make routine use of osmotherapy in brain...... edema doubtful. Nevertheless, the use of osmotherapy as a temporary measure may be justified to acutely prevent brain stem compression until other measures, such as evacuation of space-occupying lesions or decompressive craniotomy, can be performed. This article is the Con part in a Pro-Con debate...

  16. Stem cell biobanks.

    Science.gov (United States)

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment.

  17. Collateralization of descending spinal pathways from red nucleus and other brainstem cell groups in rat, cat and monkey

    NARCIS (Netherlands)

    A.M. Huisman (Margriet)

    1983-01-01

    textabstractThe somatotopically organized rubrospinal pathway is the major component of the laterally descending brainstem pathways, and is especially involved in steering of fractionated movements of the distal parts of the limbs. Electrophysiological studies in cat showed that this fiber

  18. Right Coronary Artery Originated from the Left Anterior Descending Artery in a Patient with Congenital Pulmonary Valvular Stenosis

    Directory of Open Access Journals (Sweden)

    Yusuf Hoşoğlu

    2013-01-01

    Full Text Available The single coronary artery, anomalous origin of the right coronary artery from the left anterior descending artery, is a benign and very rare coronary artery anomaly. We firstly present a case with this type of single coronary artery and congenital pulmonary valvular stenosis with large poststenotic dilatation.

  19. Evidence for modulation of pericryptal sheath myofibroblasts in rat descending colon by Transforming Growth Factor β and Angiotensin II.

    Directory of Open Access Journals (Sweden)

    Pedley Kevin C

    2002-02-01

    Full Text Available Abstract Background Absorption of water and Na+ in descending colonic crypts is dependent on the barrier function of the surrounding myofibroblastic pericryptal sheath. Here the effects of high and low Na+ diets and exposure to whole body ionising radiation on the growth and activation of the descending colonic pericryptal myofibroblasts are evaluated. In addition the effect of a post-irradiation treatment with the angiotensin converting enzyme inhibitor Captopril was investigated. Methods The levels of Angiotensin II type 1 receptor (AT1, ACE, collagen type IV, transforming growth factor-β type 1 receptor (TGF-βR1, OB cadherin and α-smooth muscle actin in both descending colon and caecum were evaluated, using immunocytochemistry and confocal microscopy, in rats fed on high and low Na+ diets (LS. These parameters were also determined during 3 months post-irradiation with 8Gy from a 60Co source in the presence and absence of the angiotensin converting enzyme inhibitor, Captopril. Results Increases in AT1 receptor (135.6% ± 18.3, P Conclusions These results demonstrate an activation of descending colonic myofibroblasts to trophic stimuli, or irradiation, which can be attenuated by Captopril, indicative of local trophic control by angiotensin II and TGF-β release.

  20. Determining the anatomy of the descending palatine artery and pterygoid plates with computed tomography in Class III patients.

    Science.gov (United States)

    Ueki, Koichiro; Hashiba, Yukari; Marukawa, Kohei; Nakagawa, Kiyomasa; Okabe, Katsuhiko; Yamamoto, Etsuhide

    2009-12-01

    Understanding the anatomy of the pterygomaxillary junction region helps prevent blood loss in Le Fort I osteotomy. Here, we determined the location of the descending palatine artery and the structure of the pterygomaxillary region. The study group consisted of 82 Japanese patients with mandibular prognathism and asymmetry, with and without maxillary retrognathism or asymmetry. A total of 164 sides were measured and divided into right versus left, men versus women, and bimaxillary osteotomy (B) versus mandibular osteotomy (S). Lateral and frontal cephalograms and computed tomography (CT) were analysed for all patients. The relationship between the cephalometric measurements and the measurements of the descending palatine artery and pterygoid plate (PP) were assessed. There were no significant correlations between measurements of cephalograms and those of the descending palatine artery and PPs. There were significant differences between right and left in lateral plate length (p=0.0014) and thickness of PP (p=0.0047). There were significant differences between men and women in right width of PP (p=0.0034), right thickness of PP (p=0.0063), left posterior length (p=0.0196), and left thickness of PP (p=0.0279). The B group had a shorter anterior length than the S group (right: ppalatine artery and the morphology of the PPs were not significantly associated with any cephalometric measurements. CT examination is necessary to recognize the anatomy of pterygomaxillary region and the exact positions of descending palatine artery before Le Fort I osteotomy.

  1. Clinical outcomes of laparoscopic surgery for advanced transverse and descending colon cancer: a single-center experience.

    Science.gov (United States)

    Yamamoto, Masashi; Okuda, Junji; Tanaka, Keitaro; Kondo, Keisaku; Tanigawa, Nobuhiko; Uchiyama, Kazuhisa

    2012-06-01

    The role of laparoscopic surgery in management of transverse and descending colon cancer remains controversial. The aim of the present study is to investigate the short-term and oncologic long-term outcomes associated with laparoscopic surgery for transverse and descending colon cancer. This cohort study analyzed 245 patients (stage II disease, n = 70; stage III disease, n = 63) who underwent resection of transverse and descending colon cancers, including 200 laparoscopic surgeries (LAC) and 45 conventional open surgeries (OC) from December 1996 to December 2010. Short-term and oncologic long-term outcomes were recorded. The operative time was longer in the LAC group than in the OC group. However, intraoperative blood loss was significantly lower and postoperative recovery time was significantly shorter in the LAC group than in the OC group. The 5-year overall and disease-free survival rates for patients with stage II were 84.9% and 84.9% in the OC group and 93.7% and 90.0% in the LAC group, respectively. The 5-year overall and disease-free survival rates for patients with stage III disease were 63.4% and 54.6% in the OC group and 66.7% and 56.9% in the LAC group, respectively. Use of laparoscopic surgery resulted in acceptable short-term and oncologic outcomes in patients with advanced transverse and descending colon cancer.

  2. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat

    Science.gov (United States)

    Asante, Curtis O.; Dickenson, Anthony H.

    2010-01-01

    We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflammation of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered 5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuating spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive pathways that contribute to persistent pain-like states. PMID:20709148

  3. Midterm results of endovascular stent graft treatment for descending aortic aneurysms including high-risk patients

    Directory of Open Access Journals (Sweden)

    Gussmann, Andreas

    2006-04-01

    Full Text Available Methods: 21 patients (17 men, 4 women; mean age 66.1 years, range 29-90 years with 15 true aneurysms, and 6 type B-dissections were treated by implantation of a TalentTM Endoluminal Stentgraft System from February 2000 to July 2003. In 3 cases it was necessary to overstent the left subclavian artery, in 1 case to overstent the left common carotid. Results: 2 patients (9.5% died during the first 30 days (1 myocardial infarction, 1 pneumonia. Two patients (9.5% suffered from cerebral ischemia and needed revascularisation. No paraplegia, no stroke occurred. One endoleak required additional stenting. No patient needed conversion. Follow-up, average 25.4 months (range 0-39, was 100% complete. During this another two patients died of myocardial infarction i.e. 9.5% (the above mentioned endoleak, but no late migration were detected in the remaining patients. In all cases the graft lumen stayed patent. Conclusions: Treatment of descending thoracic aortic aneurysm with an endovascular approach has acceptable mortality and morbidity-rates even in high risk patients. Procedural overstenting of the subclavian artery requires subclavian revascularisation in a minority of cases.

  4. Creation of DNA bank on the irradiated people and their descendants

    International Nuclear Information System (INIS)

    Rusinova, G.G.; Adamova, G.V.; Okladnikova, N.D.

    2000-01-01

    Now special interest in the scientific world acquiring the researches on influence of radiation and estimation of the remote consequences of an irradiation on a genome of the man with the help of modern molecular-genetic methods. The decision of this problem has connected with reception and preservation of a hereditary material at cohorts who were exposed to an irradiation. Such cohort are the workers of the first atomic enterprise in Russia. In period of starting of this enterprise the workers were exposed by a chronic irradiation and combined radiation (Pu-239) in more then permissible doses. Now average age of these workers exceed 65 years. With the purpose of study of genetic consequences of an irradiation in Branch N 1 the Biophysics Institute Russian Federation (Ozyorsk, Chelyabinsk region) DNA Bank is creating. The methodological and methodical bases of its creation are developed. The creation of DNA Bank will enable widely to use the saved genetic material in the newest techniques for the analysis mini - and microsatellite DNA, structural genes (genes of a reparation and stress-response genes), both in somatic (parents), and in germinal cells of the individuals (descendants). The selection of families for DNA study is rather wide - one of the parents is irradiated or both parents have exposed to radiation. DNA, received from sputum and blood serum of the workers with incorporation Pu (the group of risk) will allow to investigate a role of some genes (K-ras, p16, p53) in development of tumor process. (author)

  5. Cytogenetic abnormalities of the descendants of permanent residents of heavily contaminated East Kazakhstan.

    Science.gov (United States)

    Chaizhunusova, Nailya; Madiyeva, Madina; Tanaka, Kimio; Hoshi, Masaharu; Kawano, Noriyuki; Noso, Yoshihiro; Takeichi, Nobuo; Rakhypbekov, Tolebay; Urazalina, Nailya; Dovgal, Galina; Rymbaeva, Tamara; Tokanova, Sholpan; Beisengazina, Meruert; Kembayeva, Kulypash; Inoue, Ken

    2017-11-01

    More than 400 nuclear explosion tests were conducted at the Semipalatinsk Nuclear Test Site (SNTS) and significant radioactive substances were released. The long-term consequences of the activities at the SNTS and the appearance of any hereditary effects remain insufficiently studied about 25 years after the test site was closed. The population living in villages near the SNTS are considered to have been heavily exposed to external and internal radiation. This study aims to perform an assessment and comprehensive cytogenetic analysis of the inhabitants living near the SNTS, and their first-(F1) and second-(F2) generation children. Residents of the East Kazakhstan region living in the area covered by the former SNTS were included in the study. To evaluate the hereditary effects of nuclear testing, comprehensive chromosome analyses were performed in lymphocytes using conventional Giemsa and fluorescent in situ hybridization methods in 115 F1 and F2 descendants in the villages of Dolon and Sarzhal, which were heavily contaminated. The parents of the subjects had permanently lived in the villages. A higher number of stable-type chromosome aberrations such as translocations was found in these residents than in 80 residents of the control area, Kokpecty, which indicates the possibility that radiation had biological effects on the exposed subjects.

  6. Two-Port Laparoscopic Descending Colostomy with Separated Stomas for Anorectal Malformations in Newborns.

    Science.gov (United States)

    Gine, Carlos; Santiago, Saioa; Lara, Alba; Laín, Ana; Lane, Victoria Alison; Wood, Richard J; Levitt, Marc

    2016-10-01

    Introduction  We describe a two-port laparoscopic technique to create a colostomy in the descending colon with separated stomas for newborns with anorectal malformations. Material and Methods  Six patients with an anorectal malformation underwent this procedure in the early-neonatal period. The surgical technique was performed with two ports, which allows for an accurate inspection of the abdominal contents. The first loop of the sigmoid colon is grasped through the first port and exteriorized while the attachments to the left retroperitoneum and direction of the loop are checked with the scope introduced in the second port. The division of the colon is performed extracorporally, the colon irrigated of meconium, and the distal colon moved to the second port incision. Both stomas are then fixed to the abdominal wall. Results  The time of the procedure ranged from 50 to 90 minutes. A Mullerian duplication was noted in one case. Oral intake was started during the first 12 to 24 hours. No complications were seen during or after the procedure. Conclusions  This technique allows for the precise localization of the colostomy with direct visualization, provides for the inspection of the internal genitalia, eliminates the incision between the two stomas and its complications, allows for painless stoma bag changes immediately after surgery, avoids twisting of the colostomy, and permits a cosmetically pleasing incision at the colostomy closure. Georg Thieme Verlag KG Stuttgart · New York.

  7. Clinical, angiographic, hemodynamic, perfusional and functional changes after one-vessel left anterior descending coronary angioplasty

    International Nuclear Information System (INIS)

    Okada, R.D.; Lim, Y.L.; Boucher, C.A.; Pohost, G.M.; Chesler, D.A.; Block, P.C.

    1985-01-01

    Percutaneous transluminal coronary angioplasty (PTCA) was successfully performed in 20 patients with 1-vessel left anterior descending (LAD) coronary artery disease. Exercise capacity in terms of peak workload, heart rate and systolic blood pressure all increased significantly 1 week after PTCA. All patients had some decrease in stenosis size and gradient. All patients except 1 had an improvement in functional class. Eight of 12 patients with abnormal exercise electrocardiograms before PTCA had normal electrocardiograms after the procedure. Exercise thallium-201 (TI-201) myocardial perfusion images obtained in all 20 patients before and 1 week after PTCA were analyzed using a new computer method designed to quantitate regional myocardial TI-201 distribution, redistribution and clearance rate. Significant improvement in TI-201 activity was present in the anterior and septal segments of the left ventricle 1 week after PTCA. This increase in TI-201 uptake was associated with a significant reduction in the amount of TI-201 redistribution between initial and delayed postexercise images in the same regions. TI-201 clearance rate in the segments supplied by the dilated vessel also improved significantly. Abnormal TI-201 lung uptake was seen in 17 patients before and in 4 patients after PTCA. Exercise ejection fraction response and septal wall motion also improved after PTCA of the LAD stenosis in all 17 patients who had exercise radionuclide ventriculography

  8. Endovascular Treatment of Descending Thoracic Aortic Aneurysms with the EndoFit Stent-Graft

    International Nuclear Information System (INIS)

    Saratzis, N.; Saratzis, Athanasios; Melas, N.; Ginis, G.; Lioupis, A.; Lykopoulos, D.; Lazaridis, J.; Kiskinis, Dimitrios

    2007-01-01

    Objective. To evaluate the mid-term feasibility, efficacy, and durability of descending thoracic aortic aneurysm (DTAA) exclusion using the EndoFit device (LeMaitre Vascular). Methods. Twenty-three (23) men (mean age 66 years) with a DTAA were admitted to our department for endovascular repair (21 were ASA III+ and 2 refused open repair) from January 2003 to July 2005. Results. Complete aneurysm exclusion was feasible in all subjects (100% technical success). The median follow-up was 18 months (range 8-40 months). A single stent-graft was used in 6 cases. The deployment of a second stent-graft was required in the remaining 17 patients. All endografts were attached proximally, beyond the left subclavian artery, leaving the aortic arch branches intact. No procedure-related deaths have occurred. A distal type I endoleak was detected in 2 cases on the 1 month follow-up CT scan, and was repaired with reintervention and deployment of an extension graft. A nonfatal acute myocardial infarction occurred in 1 patient in the sixth postoperative month. Graft migration, graft infection, paraplegia, cerebral or distal embolization, renal impairment or any other major complications were not observed. Conclusion. The treatment of DTAAs using the EndoFit stent-graft is technically feasible. Mid-term results in this series are promising

  9. Termination of supraspinal descending pathways in the spinal cord of the tegu lizard, Tupinambis nigropunctatus.

    Science.gov (United States)

    Cruce, W L

    1975-01-01

    Descending fiber projections to the lizard spinal cord were studied using anterograde axonal degeneration. Following hemisection of the cord at the first spinal segment, degeneration was found in the white and gray matter as far down as the 31st (caudal) segment. Degenerating fibers in the white matter were confined to the ipsilateral side and were found in the medial longitudinal fasiculus and the outer half ot the lateral and ventral funiculi. Degeneration was more intense in the dorsolateral and ventromedial funiculi than in the ventrolateral funiculus. In the gray matter, REXED's criteria were applied to Nissl-stained material to delimit boundaries of ten laminae. Degeneration of suprospinal axons was most intense in the medial part of VII, dorsal and ventral commissures to ramify contralaterally in the medial part of VII, in VII, and in medial IX. No degeneration was present in the lateral part of the spinal gray on the contralateral side. In Golgi-stained material, dendrites of lateral IX cells were seen to extend into lamina VII, the dorsolateral part of VII, and the lateral funiculus. Thus, fibers of the ventromedial supraspinal pathway may make axodendritic contact with motoneurons of lateral IX as well as medial IX, ipsilaterally. In addition, there is a possibility of a crossed connection to contralateral motoneurons.

  10. Biomechanical analysis of a novel hemipelvic endoprosthesis during ascending and descending stairs.

    Science.gov (United States)

    Liu, Dongxu; Hua, Zikai; Yan, Xinyi; Jin, Zhongmin

    2016-10-01

    In this study, the biomechanical characteristic of a newly developed adjustable hemipelvic prosthesis under dynamic loading conditions was investigated using explicit finite element method. Both intact and reconstructed pelvis models, including pelvis, femur and soft tissues, were established referring to human anatomic data using a solid geometry of a human pelvic bone. Hip contact forces during ascending stairs and descending stairs were imposed on pelvic models. Results showed that maximum von Mises stresses in reconstructed pelvis were 421.85 MPa for prostheses and 109.12 MPa for cortical bone, which were still within a low and elastic range below the yielding strength of Ti-6Al-4V and cortical bone, respectively. Besides, no significant difference of load transferring paths along pelvic rings was observed between the reconstructed pelvis and natural pelvis models. And good agreement was found between the overall distribution of maximum principal stresses in trabecular bones of reconstructed pelvis and natural pelvis, while at limited stances, principal stresses in trabecular bone of reconstructed pelvis were slightly lower than natural pelvis. The results indicated that the load transferring function of pelvis could be restored by this adjustable hemipelvic prosthesis. Moreover, the prosthesis was predicted to have a reliable short- and long-term performance. However, due to the occurrence of slightly lower principal stresses at a few stances, a porous structure applied on the interface between the prosthesis and bone would be studied in future work to obtain better long-term stability. © IMechE 2016.

  11. DYNAMICS OF CORONAL RAIN AND DESCENDING PLASMA BLOBS IN SOLAR PROMINENCES. II. PARTIALLY IONIZED CASE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, R.; Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Zaqarashvili, T. V., E-mail: ramon.oliver@uib.es [Institute of Physics, IGAM, University of Graz, Universitätsplatz 5, 8010, Graz (Austria)

    2016-02-20

    Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30–150 km s{sup −1} and of the order of 10–30 km s{sup −1}, respectively, i.e., they are considerably smaller than free-fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presented here are an extension of those of Oliver et al. to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1 m s{sup −1} at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity, and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.

  12. Velocity distribution around a sphere descending in a salt-stratified water

    Science.gov (United States)

    Hanazaki, Hideshi; Akiyama, Shinsaku; Okino, Shinya

    2017-11-01

    When a sphere descends at constant speed in a salt-stratified water, a thin and high-speed jet is often generated above the sphere. The phenomenon has first been observed by shadowgraph and then has been investigated numerically. In this study, a systematic measurement by particle image velocimetry (PIV) has been performed for a wide range of Froude number Fr and Reynolds number Re , to actually observe the numerically simulated velocity distributions and confirm the accuracy of the numerical simulations for a very high Schmidt (Prandtl) number of Sc =(Pr =) 700 . The results show that the radius of the jet is proportional to both Fr 1 / 2 and Re - 1 / 2 , meaning that it is proportional to √{ Fr / Re } (when F < 1). The boundary layer on the sphere surface has a thickness comparable to the jet radius, and it is also proportional to √{ Fr / Re }. These results are in agreement with the recent numerical simulations and a simple dimensional analysis. Typical diverging internal-wave patterns, whose vertical wavelength has been predicted to be proportional to Fr , could also be observed.

  13. Pre-clinical evaluation of the mechanical properties of a low-stiffness cement-injectable hip stem.

    Science.gov (United States)

    Eldesouky, Ibrahim; Harrysson, Ola; Marcellin-Little, Denis J; West, Harvey; El-Hofy, Hassan

    2017-11-01

    In total hip arthroplasty (THA), the femoral stem can be fixed with or without bone cement. Cementless stem fixation is recommended for young and active patients as it eliminates the risk of loss of fixation at the bone-cement and cement-implant interfaces. Cementless fixation, however, suffers from a relatively high early revision rate. In the current research, a novel low-stiffness hip stem was designed, fabricated and tested. The stem design provided the option to inject biodegradable bone cement that could enhance initial stem stability. The stem was made of Ti6Al4V alloy. The proximal portion of the stem was porous, with cubic cells. The stem was fabricated using electron beam melting (EBM) technology and tested in compression and bending. Finite-element analysis was used to evaluate stem performance under a dynamic load representing a stair descending cycle and compare it to the performance of a solid stem with similar geometry. The von Mises stresses and maximum principal strains generated within the bone increased after porous stem insertion compared to solid stem insertion. The low-modulus stem tested in this study has acceptable mechanical properties and generates strain patterns in bone that appear compatible with clinical use.

  14. Genome-wide Ancestry and Demographic History of African-Descendant Maroon Communities from French Guiana and Suriname.

    Science.gov (United States)

    Fortes-Lima, Cesar; Gessain, Antoine; Ruiz-Linares, Andres; Bortolini, Maria-Cátira; Migot-Nabias, Florence; Bellis, Gil; Moreno-Mayar, J Víctor; Restrepo, Berta Nelly; Rojas, Winston; Avendaño-Tamayo, Efren; Bedoya, Gabriel; Orlando, Ludovic; Salas, Antonio; Helgason, Agnar; Gilbert, M Thomas P; Sikora, Martin; Schroeder, Hannes; Dugoujon, Jean-Michel

    2017-11-02

    The transatlantic slave trade was the largest forced migration in world history. However, the origins of the enslaved Africans and their admixture dynamics remain unclear. To investigate the demographic history of African-descendant Marron populations, we generated genome-wide data (4.3 million markers) from 107 individuals from three African-descendant populations in South America, as well as 124 individuals from six west African populations. Throughout the Americas, thousands of enslaved Africans managed to escape captivity and establish lasting communities, such as the Noir Marron. We find that this population has the highest proportion of African ancestry (∼98%) of any African-descendant population analyzed to date, presumably because of centuries of genetic isolation. By contrast, African-descendant populations in Brazil and Colombia harbor substantially more European and Native American ancestry as a result of their complex admixture histories. Using ancestry tract-length analysis, we detect different dates for the European admixture events in the African-Colombian (1749 CE; confidence interval [CI]: 1737-1764) and African-Brazilian (1796 CE; CI: 1789-1804) populations in our dataset, consistent with the historically attested earlier influx of Africans into Colombia. Furthermore, we find evidence for sex-specific admixture patterns, resulting from predominantly European paternal gene flow. Finally, we detect strong genetic links between the African-descendant populations and specific source populations in Africa on the basis of haplotype sharing patterns. Although the Noir Marron and African-Colombians show stronger affinities with African populations from the Bight of Benin and the Gold Coast, the African-Brazilian population from Rio de Janeiro has greater genetic affinity with Bantu-speaking populations from the Bight of Biafra and west central Africa. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter

    Science.gov (United States)

    Dantzler, William H.; Pannabecker, Thomas L.

    2012-01-01

    We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na+ or urea-Cl− cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na+ or urea- Cl− cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data. PMID:22088433

  16. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    Science.gov (United States)

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Microglia Polarization, Gene-Environment Interactions and Wnt/β-Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain

    Directory of Open Access Journals (Sweden)

    Francesca L'Episcopo

    2018-02-01

    Full Text Available Neuroinflammatory processes are recognized key contributory factors in Parkinson's disease (PD physiopathology. While the causes responsible for the progressive loss of midbrain dopaminergic (mDA neuronal cell bodies in the subtantia nigra pars compacta are poorly understood, aging, genetics, environmental toxicity, and particularly inflammation, represent prominent etiological factors in PD development. Especially, reactive astrocytes, microglial cells, and infiltrating monocyte-derived macrophages play dual beneficial/harmful effects, via a panel of pro- or anti-inflammatory cytokines, chemokines, neurotrophic and neurogenic transcription factors. Notably, with age, microglia may adopt a potent neurotoxic, pro-inflammatory “primed” (M1 phenotype when challenged with inflammatory or neurotoxic stimuli that hamper brain's own restorative potential and inhibit endogenous neurorepair mechanisms. In the last decade we have provided evidence for a major role of microglial crosstalk with astrocytes, mDA neurons and neural stem progenitor cells (NSCs in the MPTP- (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- mouse model of PD, and identified Wnt/β-catenin signaling, a pivotal morphogen for mDA neurodevelopment, neuroprotection, and neuroinflammatory modulation, as a critical actor in glia-neuron and glia-NSCs crosstalk. With age however, Wnt signaling and glia-NSC-neuron crosstalk become dysfunctional with harmful consequences for mDA neuron plasticity and repair. These findings are of importance given the deregulation of Wnt signaling in PD and the emerging link between most PD related genes, Wnt signaling and inflammation. Especially, in light of the expanding field of microRNAs and inflammatory PD-related genes as modulators of microglial-proinflammatory status, uncovering the complex molecular circuitry linking PD and neuroinflammation will permit the identification of new druggable targets for the cure of the disease. Here we summarize

  18. Systemic Injection of Neural Stem/progenitor Cells in Mice With Chronic EAE